WorldWideScience

Sample records for glioblastoma treatment reason

  1. Immunotherapy for the Treatment of Glioblastoma

    Science.gov (United States)

    Thomas, Alissa A.; Ernstoff, Marc S.; Fadul, Camilo E.

    2012-01-01

    Glioblastoma, the most aggressive primary brain tumor, thrives in a microenvironment of relative immunosuppression within the relatively immune-privileged central nervous system. Despite treatments with surgery, radiation therapy, and chemotherapy, prognosis remains poor. The recent success of immunotherapy in the treatment of other cancers has renewed interest in vaccine therapy for the treatment of gliomas. In this article, we outline various immunotherapeutic strategies, review recent clinical trials data, and discuss the future of vaccine therapy for glioblastoma. PMID:22290259

  2. A conceptually new treatment approach for relapsed glioblastoma: Coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care

    Science.gov (United States)

    Kast, Richard E.; Boockvar, John A.; Brüning, Ansgar; Cappello, Francesco; Chang, Wen-Wei; Cvek, Boris; Dou, Q. Ping; Duenas-Gonzalez, Alfonso; Efferth, Thomas; Focosi, Daniele; Ghaffari, Seyed H.; Karpel-Massler, Georg; Ketola, Kirsi; Khoshnevisan, Alireza; Keizman, Daniel; Magné, Nicolas; Marosi, Christine; McDonald, Kerrie; Muñoz, Miguel; Paranjpe, Ameya; Pourgholami, Mohammad H.; Sardi, Iacopo; Sella, Avishay; Srivenugopal, Kalkunte S.; Tuccori, Marco; Wang, Weiguang; Wirtz, Christian R.; Halatsch, Marc-Eric

    2013-01-01

    To improve prognosis in recurrent glioblastoma we developed a treatment protocol based on a combination of drugs not traditionally thought of as cytotoxic chemotherapy agents but that have a robust history of being well-tolerated and are already marketed and used for other non-cancer indications. Focus was on adding drugs which met these criteria: a) were pharmacologically well characterized, b) had low likelihood of adding to patient side effect burden, c) had evidence for interfering with a recognized, well-characterized growth promoting element of glioblastoma, and d) were coordinated, as an ensemble had reasonable likelihood of concerted activity against key biological features of glioblastoma growth. We found nine drugs meeting these criteria and propose adding them to continuous low dose temozolomide, a currently accepted treatment for relapsed glioblastoma, in patients with recurrent disease after primary treatment with the Stupp Protocol. The nine adjuvant drug regimen, Coordinated Undermining of Survival Paths, CUSP9, then are aprepitant, artesunate, auranofin, captopril, copper gluconate, disulfiram, ketoconazole, nelfinavir, sertraline, to be added to continuous low dose temozolomide. We discuss each drug in turn and the specific rationale for use- how each drug is expected to retard glioblastoma growth and undermine glioblastoma's compensatory mechanisms engaged during temozolomide treatment. The risks of pharmacological interactions and why we believe this drug mix will increase both quality of life and overall survival are reviewed. PMID:23594434

  3. Therapeutic Advances using Combinational Therapy in the Treatment of Glioblastoma

    DEFF Research Database (Denmark)

    Staberg, Mikkel

    2017-01-01

    Glioblastoma is the most malignant brain tumor in adults. Median survival is only about 15 months despite aggressive treatment, consisting of surgery followed by radio- and chemotherapy, stressing the need for new therapies. Development of glioblastoma is thought to be a result of both genetic...... and epigenetic alterations, ultimately leading to oncogenic transformation of normal glia cells. Several features are suggested to give rise to the poor prognosis of glioblastoma including treatment resistance, a high degree of abnormal blood vessels, and high heterogeneity, both within the single tumor and from...... patient to patient. Thus, investigations are needed to identify the genetic-molecular alterations that glioblastoma tumors depend on in order to overcome treatment and regrow after initial surgery. The findings presented in this thesis illustrate the promising potential of combinational treatments...

  4. Tonsillary carcinoma after temozolomide treatment for glioblastoma multiforme: treatment-related or dual-pathology?

    Science.gov (United States)

    Binello, E; Germano, I M

    2009-08-01

    Glioblastoma multiforme is a primary malignant brain tumor with a prognosis of typically less than 2 years. Standard treatment paradigms include surgery, radiation therapy and temozolomide. Little data exists for temozolomide recommendations after the first 6 months. We present a case of a patient with glioblastoma multiforme treated with surgery, radiation and chronic temozolomide for 6 years. He continues to survive glioblastoma-recurrence-free, but developed tonsillary carcinoma. This case raises the question of whether this secondary solid-organ malignancy is treatment-related or dual pathology.

  5. Treatment of glioblastoma with herbal medicines.

    Science.gov (United States)

    Trogrlić, Ivo; Trogrlić, Dragan; Trogrlić, Darko; Trogrlić, Amina Kadrić

    2018-02-13

    In the latest years, a lot of research studies regarding the usage of active agents from plants in the treatment of tumors have been published, but there is no data about successful usage of herbal remedies in the treatment of glioblastoma in humans. The phytotherapy involved five types of herbal medicine which the subjects took in the form of tea, each type once a day at regular intervals. Three patients took herbal medicine along with standard oncological treatment, while two patients applied for phytotherapy after completing medical treatment. The composition of herbal medicine was modified when necessary, which depended on the results of the control scans using the nuclear magnetic resonance technique and/or computed tomography. Forty-eight months after the introduction of phytotherapy, there were no clinical or radiological signs of the disease, in three patients; in one patient, the tumor was reduced and his condition was stable, and one patient lived for 48 months in spite of a large primary tumor and a massive recurrence, which developed after the treatment had been completed. The results achieved in patients in whom tumor regression occurred exclusively through the use of phytotherapy deserve special attention. In order to treat glioblastoma more effectively, it is necessary to develop innovative therapeutic strategies and medicines that should not be limited only to the field of conventional medicine. The results presented in this research paper are encouraging and serve as a good basis for further research on the possibilities of phytotherapy in the treatment of glioblastoma.

  6. CDK4/6 inhibitor PD0332991 in glioblastoma treatment: does it have a future?

    Directory of Open Access Journals (Sweden)

    Lisette eSchroder

    2015-11-01

    Full Text Available Glioblastoma is aggressive, highly infiltrating, and the most frequent malignant form of brain cancer. With a median survival time of only 14.6 months, when treated with the standard of care, it is essential to find new therapeutic options. A specific CDK4/6 inhibitor, PD0332991, obtained accelerated approval from the Food and Drug Administration for the treatment of patients with advanced estrogen receptor-positive and HER2-negative breast cancer. Common alterations in the cyclin D1-Cyclin Dependent Kinase 4/6-Retinoblastoma 1 pathway in glioblastoma make PD0332991 also an interesting drug for the treatment of glioblastoma. Promising results in in vitro studies, where patient derived glioblastoma cell lines showed sensitivity to PD0332991, gave motive to start in vivo studies. Outcomes of these studies have been contrasting in terms of PD0332991 efficacy within the brain: more research is necessary to conclude whether CDK4/6 inhibitor can be beneficial in the treatment of glioblastoma.

  7. Radiation induced sarcoma after treatment of glioblastoma: case report

    International Nuclear Information System (INIS)

    Rosa, Victor Domingos Lisita; Anjos, Caroline Souza dos; Candido, Priscila Barile Marchi; Dias Junior, Antonio Soares; Santos, Evandro Airton Sordi dos; Godoy, Antonio Carlos Cavalcante; Saggioro, Fabiano P.; Carlotti Junior, Carlos Gilberto; Oliveira, Harley Francisco de; Peria, Fernanda Maris

    2016-01-01

    Introduction: Glioblastoma multiform is the most lethal central nervous system neoplasm, with a median survival of around 13 months and the worst prognosis among all gliomas. The therapeutic approach of glioblastoma consists in neurosurgery with maximum possible resection of tumor volume, followed by radiotherapy and chemotherapy. Radiotherapy reduces the risk of tumor recurrence through direct and indirect damage to tumor deoxyribonucleic acid. The long-term effects of radiation therapy include tissue necrosis, vasculopathy, and radiation-induced neoplasia. The most reported secondary intracranial malignant tumors include meningiomas, gliomas, and sarcomas. The latency period between skull radiotherapy and the appearance of radioinduced lesions varies in the literature from six months to 47 years, with an average of 18.7 years. Case report: The present report describes the appearance of high-grade spindle cell sarcoma after ten months in a patient who received glioblastoma treatment at Hospital das Clínicas of Ribeirão Preto of the University of São Paulo. Conclusion: The rarity of this association is probably due to the poor survival of patients with glioblastoma, thus limiting the time to development of secondary neoplasia

  8. Evaluation of photodynamic treatment efficiency on glioblastoma cells received from malignant lesions: initial studies

    Science.gov (United States)

    Borisova, Ekaterina; Kyurkchiev, Dobroslav; Tumangelova-Yuzeir, Kalina; Angelov, Ivan; Genova-Hristova, Tsanislava; Semyachkina-Glushkovskaya, Oxana; Minkin, Krassimir

    2018-04-01

    Photodynamic therapy is well-established and extensively used method in treatment of different cancer types. This research reveals its potential in the treatment of cultivated human glioblastoma cells with adherent morphology. As the blood-brain barrier (BBB) permeability of the drugs is a significant problem that could not be solved easily for large biomolecules, we search for an appropriate low-molecular weight photosensitizer that could be applied for photodynamic treatment of glioblastoma cells. We used delta-aminolevulinic acid (5-ALA), which could pass BBB and plays the role of precursor of a protoporphyrin IX (PpIX) - photosensitizer, that is accumulated selectively in the tumour cells and could be a proper tool in PDT of glioblastoma. However, differences from patient to patient and between the cell activities could also lead to different effectiveness of the PDT treatment of the tumour areas. Therefore in our study we investigated not only the effect of using different fluence rates and light doses, but aims to establish more efficient values for further clinical applications for each sub-type of the GBM lesions. For the needs of PDT application an illumination device was developed in Laboratory of Biophotonics, BAS based on light-emitting diode (LED) matrix light sources for therapeutic application emitting at 635 nm. The device is optimized for PDT in combination with aminolevulinic acid/protoporphyrin IX applied as a photosensitizer drug. By the means of FACSCalibur flow cytometer (Becton Dickinson, USA) and Cell Quest Software was made evaluation of PDT effect on used human glioblastoma cells. Treatment of glioblastoma tumours continues to be a very serious issue and there is growing need in development of new concepts, methods and cancer-fighting strategies. PDT may contribute in accomplishing better results in cancer treatment and can be applied as well in combination with other techniques.

  9. Nanotechnology applications for glioblastoma.

    Science.gov (United States)

    Nduom, Edjah K; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-07-01

    Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. Although conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds promise in the use of multifunctional nanoparticles for imaging and targeted therapy of glioblastoma. This article examines the current state of nanotechnology in the treatment of glioblastoma and directions of further study. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Radiation induced sarcoma after treatment of glioblastoma: case report; Sarcoma radioinduzido pós-tratamento de glioblastoma: relato de caso

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Victor Domingos Lisita; Anjos, Caroline Souza dos; Candido, Priscila Barile Marchi; Dias Junior, Antonio Soares; Santos, Evandro Airton Sordi dos; Godoy, Antonio Carlos Cavalcante; Saggioro, Fabiano P.; Carlotti Junior, Carlos Gilberto; Oliveira, Harley Francisco de; Peria, Fernanda Maris, E-mail: fernandaperia@fmrp.usp.br, E-mail: victor_lisita@yahoo.com.br, E-mail: carolinesanjos@gmail.com, E-mail: priscilabarile@yahoo.com.br [Universidade de Sao Paulo (USP), Ribeirão Preto, SP (Brazil). Hospital das Clinicas

    2016-07-01

    Introduction: Glioblastoma multiform is the most lethal central nervous system neoplasm, with a median survival of around 13 months and the worst prognosis among all gliomas. The therapeutic approach of glioblastoma consists in neurosurgery with maximum possible resection of tumor volume, followed by radiotherapy and chemotherapy. Radiotherapy reduces the risk of tumor recurrence through direct and indirect damage to tumor deoxyribonucleic acid. The long-term effects of radiation therapy include tissue necrosis, vasculopathy, and radiation-induced neoplasia. The most reported secondary intracranial malignant tumors include meningiomas, gliomas, and sarcomas. The latency period between skull radiotherapy and the appearance of radioinduced lesions varies in the literature from six months to 47 years, with an average of 18.7 years. Case report: The present report describes the appearance of high-grade spindle cell sarcoma after ten months in a patient who received glioblastoma treatment at Hospital das Clínicas of Ribeirão Preto of the University of São Paulo. Conclusion: The rarity of this association is probably due to the poor survival of patients with glioblastoma, thus limiting the time to development of secondary neoplasia.

  11. KIF11 inhibition for glioblastoma treatment: reason to hope or a struggle with the brain?

    International Nuclear Information System (INIS)

    Valensin, Silvia; Ghiron, Chiara; Lamanna, Claudia; Kremer, Andreas; Rossi, Marco; Ferruzzi, Pietro; Nievo, Marco; Bakker, Annette

    2009-01-01

    Glioblastomas (GBM) are typically comprised of morphologically diverse cells. Despite current advances in therapy, including surgical resection followed by radiation and chemotherapy, the prognosis for patients with GBM remains poor. Unfortunately, most patients die within 2 years of diagnosis of their disease. Molecular abnormalities vary among individual patients and also within each tumor. Indeed, one of the distinguishing features of GBM is its marked genetic heterogeneity. Due to the brain location of the tumor, the potential target inhibition for anticancer therapy must exhibit a manageable neurotoxicity profile in the concentration range in which the compounds show anti-proliferative activity. Kinesin KIF11 inhibition by small molecules such as Monastrol or Ispinesib is currently under investigation in the field of malignant tumors. In the current study we have assessed the relevance of the anti-mitotic Kinesin-like protein KIF11 in human GBM cell-lines. In this study the target was validated using a set of well characterised and potentially specific small molecule inhibitors of KIF11: an ispinesib analog, Monastrol, a Merck compound and 3 simplified derivatives of the Merck compound. Following an in silico selection, those compounds predicted to bear a favorable BBB permeation profile were assessed for their phenotypic effect on cell lines derived both from primary (U87MG) as well as treated (DBTRG-05-MG) glioblastomas. For some compounds, these data could be compared to their effect on normal human astrocytes, as well as their neurotoxicity on primary rat cortical neurons. The ispinesib analogue 1 showed an anti-proliferative effect on GBM cell lines by blocking them in the G2/M phase in a concentration range which was shown to be harmless to primary rat cortical neurons. Furthermore, ispinesib analog increased caspase 3/7-induced apoptosis in U87MG cells. In the area of cell cycle inhibition, KIF11 is critical for proper spindle assembly and represents an

  12. Strategies of temozolomide in future glioblastoma treatment

    Directory of Open Access Journals (Sweden)

    Lee CY

    2017-01-01

    Full Text Available Chooi Yeng Lee School of Pharmacy, Monash University Malaysia, Selangor, Malaysia Abstract: Glioblastoma multiforme (GBM may be one of the most challenging brain tumors to treat, as patients generally do not live more than 2 years. This review aimed to give a timely review of potential future treatments for GBM by looking at the latest strategies, involving mainly the use of temozolomide (TMZ. Although these studies were carried out either in vitro or in rodents, the findings collectively suggested that we are moving toward developing a more efficacious therapy for GBM patients. Nanoparticles preparation was, by far, the most extensively studied strategy for targeted brain delivery. Therefore, the first section of this review presents a treatment strategy using TMZ-loaded nanocarriers, which encompassed nanoparticles, nanoliposomes, and nanosponges. Besides nanocarriers, new complexes that were formed between TMZ and another chemical agent or molecule have shown increased cytotoxicity and antitumor activity. Another approach was by reducing GBM cell resistance to TMZ, and this was achieved either through the suppression of metabolic change occurring in the cells, inhibition of the DNA repair protein, or up-regulation of the protein that mediates autophagy. Finally, the review collates a list of substances that have demonstrated the ability to suppress tumor cell growth. Keywords: cellular resistance, glioblastoma multiforme, nanoparticles, targeted delivery, temozolomide

  13. Advance Care Planning in Glioblastoma Patients

    Directory of Open Access Journals (Sweden)

    Lara Fritz

    2016-11-01

    Full Text Available Despite multimodal treatment with surgery, radiotherapy and chemotherapy, glioblastoma is an incurable disease with a poor prognosis. During the disease course, glioblastoma patients may experience progressive neurological deficits, symptoms of increased intracranial pressure such as drowsiness and headache, incontinence, seizures and progressive cognitive dysfunction. These patients not only have cancer, but also a progressive brain disease. This may seriously interfere with their ability to make their own decisions regarding treatment. It is therefore warranted to involve glioblastoma patients early in the disease trajectory in treatment decision-making on their future care, including the end of life (EOL care, which can be achieved with Advance Care Planning (ACP. Although ACP, by definition, aims at timely involvement of patients and proxies in decision-making on future care, the optimal moment to initiate ACP discussions in the disease trajectory of glioblastoma patients remains controversial. Moreover, the disease-specific content of these ACP discussions needs to be established. In this article, we will first describe the history of patient participation in treatment decision-making, including the shift towards ACP. Secondly, we will describe the possible role of ACP for glioblastoma patients, with the specific aim of treatment of disease-specific symptoms such as somnolence and dysphagia, epileptic seizures, headache, and personality changes, agitation and delirium in the EOL phase, and the importance of timing of ACP discussions in this patient population.

  14. Agomelatine or ramelteon as treatment adjuncts in glioblastoma and other M1- or M2-expressing cancers.

    Science.gov (United States)

    Kast, Richard E

    2015-01-01

    The impressive but sad list of over forty clinical studies using various cytotoxic chemotherapies published in the last few years has failed to increase median survival of glioblastoma beyond two years after diagnosis. In view of this apparent brick wall, adjunctive non-cytotoxic growth factor blocking drugs are being tried, as in the CUSP9* protocol. A related theme is searching for agonists at growth inhibiting receptors. One such dataset is that of melatonin agonism at M1 or M2 receptors found on glioblastoma cells, being a negative regulator of these cells' growth. Melatonin itself is an endogenous hormone, but when used as an exogenously administered drug it has many disadvantages. Agomelatine, marketed as an antidepressant, and ramelteon, marketed as a treatment for insomnia, are currently-available melatonin receptor agonists. These melatonin receptor agonists have significant advantages over the natural ligand: longer half-life, better oral absorption, and higher affinity to melatonin receptors. They have an eminently benign side effect profile. As full agonists they should function to inhibit glioblastoma growth, as demonstrated for melatonin. A potentially helpful ancillary attribute of melatonergic agonists in glioblastoma treatment is an increase in interleukin-2 synthesis, expected, at least partially, to reverse some of the immunosuppression associated with glioblastoma.

  15. Treatment options and outcomes for glioblastoma in the elderly patient

    Directory of Open Access Journals (Sweden)

    Arvold ND

    2014-02-01

    Full Text Available Nils D Arvold,1 David A Reardon2 1Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA; 2Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA Abstract: Age remains the most powerful prognostic factor among glioblastoma (GBM patients. Half of all patients with GBM are aged 65 years or older at the time of diagnosis, and the incidence rate of GBM in patients aged over 65 years is increasing rapidly. Median survival for elderly GBM patients is less than 6 months and reflects less favorable tumor biologic factors, receipt of less aggressive care, and comorbid disease. The standard of care for elderly GBM patients remains controversial. Based on limited data, extensive resection appears to be more beneficial than biopsy. For patients with favorable Karnofsky performance status (KPS, adjuvant radiotherapy (RT has a demonstrated survival benefit with no observed decrement in quality of life. Concurrent and adjuvant temozolomide (TMZ along with RT to 60 Gy have not been prospectively studied among patients aged over 70 years but should be considered for patients aged 65–70 years with excellent KPS. Based on the recent NOA-08 and Nordic randomized trials, testing for O6-methylguanine-DNA-methyltransferase (MGMT promoter methylation should be performed routinely immediately after surgery to aid in adjuvant treatment decisions. Patients aged over 70 years with favorable KPS, or patients aged 60–70 years with borderline KPS, should be considered for monotherapy utilizing standard TMZ dosing for patients with MGMT-methylated tumors, and hypofractionated RT (34 Gy in ten fractions or 40 Gy in 15 fractions for patients with MGMT-unmethylated tumors. The ongoing European Organisation for Research and Treatment of Cancer/National Cancer Institute of Canada trial will help clarify the role for concurrent TMZ with hypofractionated RT. For elderly patients with poor KPS, reasonable

  16. Systematic Evaluation of Promising Clinical Trials-Gene Silencing for the Treatment of Glioblastoma.

    Science.gov (United States)

    Karaarslan, Numan; Yilmaz, Ibrahim; Ozbek, Hanefi; Caliskan, Tezcan; Topuk, Savas; Sirin, Duygu Yasar; Ates, Ozkan

    2018-04-06

    The aim of this study was to systematically investigate the role of artificial small interfering RNA (siRNA) molecules in glioblastoma treatment and to give a detailed overview of the literature concerning studies performed in this field worldwide in the last 31 years. Articles about clinical trials conducted between December 1, 1949 and November 8, 2017, were identified from the Cochrane Collaboration, the Cochrane Library, Ovid MEDLINE, ProQuest, the National Library of Medicine, and PubMed electronic databases, using the terms "post transcriptional gene silencing," "small interfering RNA," "siRNA," and "glioblastoma," either individually or combined (\\"OR\\" and \\"AND"), without language and country restrictions. Articles that met the examination criteria were included in the study. After descriptive statistical evaluation, the results were reported in frequency (%). After scanning 2.752 articles, five articles were found that met the research criteria. Examination of full texts of the five identified articles provided no sufficient evidence for research conducted with regard to the use of gene silencing via siRNAs in glioblastoma treatment. To be able to evaluate the clinical use of siRNAs, there is an urgent need for in-vivo studies and for trials with randomized, controlled, and clinical designs that provide long-term functional outcomes.

  17. Immunological Evasion in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Roxana Magaña-Maldonado

    2016-01-01

    Full Text Available Glioblastoma is the most aggressive tumor in Central Nervous System in adults. Among its features, modulation of immune system stands out. Although immune system is capable of detecting and eliminating tumor cells mainly by cytotoxic T and NK cells, tumor microenvironment suppresses an effective response through recruitment of modulator cells such as regulatory T cells, monocyte-derived suppressor cells, M2 macrophages, and microglia as well as secretion of immunomodulators including IL-6, IL-10, CSF-1, TGF-β, and CCL2. Other mechanisms that induce immunosuppression include enzymes as indolamine 2,3-dioxygenase. For this reason it is important to develop new therapies that avoid this immune evasion to promote an effective response against glioblastoma.

  18. Dabrafenib Treatment in a Patient with an Epithelioid Glioblastoma and BRAF V600E Mutation

    Directory of Open Access Journals (Sweden)

    Garry Ceccon

    2018-04-01

    Full Text Available Novel therapeutic targets in malignant glioma patients are urgently needed. Point mutations of the v-Raf murine sarcoma viral oncogene homolog B (BRAF gene occur predominantly in melanoma patients, but may also occur in gliomas. Thus, this is a target of great interest for this group of patients. In a nine-year-old male patient, an anaplastic astrocytoma in the left temporoparietal region was diagnosed histologically. After first- and second-line treatment, a malignant progression to a secondary glioblastoma was observed ten years after the initial diagnosis. Within the following seven years, all other conventional treatment options were exhausted. At this time point, recurrent tumor histology revealed an epithelioid glioblastoma, without a mutation in the isocitrate dehydrogenase gene (IDH wild-type. In order to identify a potential target for an experimental salvage therapy, mutational tumor analysis showed a BRAF V600E mutation. Consecutively, dabrafenib treatment was initiated. The patient remained clinically stable, and follow-up magnetic resonance images (MRI were consistent with “Stable Disease” according to the Response Assessment in Neuro-Oncology Working Group (RANO criteria for the following ten months until tumor progression was detected. The patient died 16 months after dabrafenib treatment initiation. Particularly in younger glioma patients as well as in patients with an epithelioid glioblastoma, screening for a V600E BRAF mutation is promising since, in these cases, targeted therapy with BRAF inhibitors seems to be a useful salvage treatment option.

  19. A comprehensive profile of recurrent glioblastoma

    DEFF Research Database (Denmark)

    Campos, B.; Olsen, Lars Rønn; Urup, T.

    2016-01-01

    In spite of relentless efforts to devise new treatment strategies, primary glioblastomas invariably recur as aggressive, therapy-resistant relapses and patients rapidly succumb to these tumors. Many therapeutic agents are first tested in clinical trials involving recurrent glioblastomas. Remarkab...... 2016; doi:10.1038/onc.2016.85....

  20. Acyclovir inhibition of IDO to decrease Tregs as a glioblastoma treatment adjunct

    Directory of Open Access Journals (Sweden)

    Söderlund Johan

    2010-08-01

    Full Text Available Abstract Regulatory T cells, Tregs, are a subset of lymphocytes that have immunosuppressive attributes. They are elevated in blood of glioblastoma patients and within this tumor's tissue itself. Indoleamine 2,3-dioxygenase, IDO, converts tryptophan to kynurenine. IDO activity enhances Treg formation by pathways that are unknown. Experimentally, inhibition of IDO decreases Treg function and number in rodents. The common anti-viral agent acyclovir inhibits IDO. Acyclovir may thereby decrease Treg function in glioblastoma. If it can be confirmed that Treg counts are elevated in glioblastoma patients' tumor tissue, and if we can document acyclovir's lowering of tissue Treg counts by a small trial of acyclovir in pre-operative glioblastoma patients, a trial of acyclovir effect on survival should be done given the current poor prognosis of glioblastoma and the well-established safety and low side effect burden of acyclovir.

  1. Nanotechnology Applications for Glioblastoma

    Science.gov (United States)

    Nduom, Edjah; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G.

    2012-01-01

    Synopsis Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. While conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting the residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds much promise in the use of multifunctional nanoparticles for the imaging and targeted therapy of GBM.. Nanoparticles have emerged as potential “theranostic” agents that can permit the diagnosis and therapeutic treatment of GBM tumors. A recent human clinical trial with magnetic nanoparticles has provided feasibility and efficacy data for potential treatment of GBM patients with thermotherapy. Here we examine the current state of nanotechnology in the treatment of glioblastoma and interesting directions of further study. PMID:22748656

  2. Multimodality therapy approaches, local and systemic treatment, compared with chemotherapy alone in recurrent glioblastoma

    International Nuclear Information System (INIS)

    Scorsetti, Marta; Navarria, Pierina; Pessina, Federico; Ascolese, Anna Maria; D’Agostino, Giuseppe; Tomatis, Stefano; De Rose, Fiorenza; Villa, Elisa; Maggi, Giulia; Simonelli, Matteo; Clerici, Elena; Soffietti, Riccardo; Santoro, Armando; Cozzi, Luca; Bello, Lorenzo

    2015-01-01

    Long-term local control in Glioblastoma is rarely achieved and nearly all patients relapse. In this study we evaluated the clinical effect of different treatment approaches in recurrent patients. Forty-three patients, with median age of 51 years were evaluated for salvage treatment: re-resection and/or re-irradiation plus chemotherapy or chemotherapy alone. Response was recorded using the Response Assessment in Neuro-Oncology criteria. Hematologic and non-hematologic toxicities were graded according to Common Terminology Criteria for Adverse Events 4.0. Twenty-one patients underwent chemotherapy combined with local treatment, surgery and/or radiation therapy, and 22 underwent chemotherapy only. The median follow up was 7 months (range 3–28 months). The 1 and 2-years Progression Free Survival was 65 and 10 % for combined treatment and 22 and 0 % for chemotherapy alone (p < 0.01). The 1 and 2-years overall survival was 69 and 29 % for combined and 26 and 0 % for chemotherapy alone (p < 0.01). No toxicity greater than grade 2 was recorded. These data showed that in glioblastoma recurrence the combination of several approaches in a limited group of patients is more effective than a single treatment alone. This stress the importance of multimodality treatment whenever clinically feasible

  3. Glioblastoma: background, standard treatment paradigms, and supportive care considerations.

    Science.gov (United States)

    Ellor, Susan V; Pagano-Young, Teri Ann; Avgeropoulos, Nicholas G

    2014-01-01

    Glioblastoma is a brain tumor condition marked by rapid neurological and clinical demise, resulting in disproportionate disability for those affected. Caring for this group of patients is complex, intense, multidisciplinary in nature, and fraught with the need for expensive treatments, surveillance imaging, physician follow-up, and rehabilitative, psychological, and social support interventions. Few of these patients return to the workforce for any meaningful time frame, and because of the enormity of the financial burden that patients, their caregivers, and society face, utilization reviews become the focus of ethical scrutiny. © 2014 American Society of Law, Medicine & Ethics, Inc.

  4. Antiangiogenic agents in the treatment of recurrent or newly diagnosed glioblastoma: Analysis of single-agent and combined modality approaches

    International Nuclear Information System (INIS)

    Beal, Kathryn; Abrey, Lauren E; Gutin, Philip H

    2011-01-01

    Surgical resection followed by radiotherapy and temozolomide in newly diagnosed glioblastoma can prolong survival, but it is not curative. For patients with disease progression after frontline therapy, there is no standard of care, although further surgery, chemotherapy, and radiotherapy may be used. Antiangiogenic therapies may be appropriate for treating glioblastomas because angiogenesis is critical to tumor growth. In a large, noncomparative phase II trial, bevacizumab was evaluated alone and with irinotecan in patients with recurrent glioblastoma; combination treatment was associated with an estimated 6-month progression-free survival (PFS) rate of 50.3%, a median overall survival of 8.9 months, and a response rate of 37.8%. Single-agent bevacizumab also exceeded the predetermined threshold of activity for salvage chemotherapy (6-month PFS rate, 15%), achieving a 6-month PFS rate of 42.6% (p < 0.0001). On the basis of these results and those from another phase II trial, the US Food and Drug Administration granted accelerated approval of single-agent bevacizumab for the treatment of glioblastoma that has progressed following prior therapy. Potential antiangiogenic agents-such as cilengitide and XL184-also show evidence of single-agent activity in recurrent glioblastoma. Moreover, the use of antiangiogenic agents with radiation at disease progression may improve the therapeutic ratio of single-modality approaches. Overall, these agents appear to be well tolerated, with adverse event profiles similar to those reported in studies of other solid tumors. Further research is needed to determine the role of antiangiogenic therapy in frontline treatment and to identify the optimal schedule and partnering agents for use in combination therapy

  5. Reassessing the Role of Intra-Arterial Drug Delivery for Glioblastoma Multiforme Treatment

    Directory of Open Access Journals (Sweden)

    Jason A. Ellis

    2015-01-01

    Full Text Available Effective treatment for glioblastoma (GBM will likely require targeted delivery of several specific pharmacological agents simultaneously. Intra-arterial (IA delivery is one technique for targeting the tumor site with multiple agents. Although IA chemotherapy for glioblastoma (GBM has been attempted since the 1950s, the predicted benefits remain unproven in clinical practice. This review focuses on innovative approaches to IA drug delivery in treating GBM. Guided by novel in vitro and in vivo optical measurements, newer pharmacokinetic models promise to better define the complex relationship between background cerebral blood flow and drug injection parameters. Advanced optical technologies and tracers, unique nanoparticles designs, new cellular targets, and rational drug formulations are continuously modifying the therapeutic landscape for GBM. Personalized treatment approaches are emerging; however, such tailored approaches will largely depend on effective drug delivery techniques and on the ability to simultaneously deliver multidrug regimens. These new paradigms for tumor-selective drug delivery herald dramatic improvements in the effectiveness of IA chemotherapy for GBM. Therefore, within this context of so-called “precision medicine,” the role of IA delivery for GBM is thoroughly reassessed.

  6. An anatomic transcriptional atlas of human glioblastoma.

    Science.gov (United States)

    Puchalski, Ralph B; Shah, Nameeta; Miller, Jeremy; Dalley, Rachel; Nomura, Steve R; Yoon, Jae-Guen; Smith, Kimberly A; Lankerovich, Michael; Bertagnolli, Darren; Bickley, Kris; Boe, Andrew F; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Chapin, Mike; Datta, Suvro; Dee, Nick; Desta, Tsega; Dolbeare, Tim; Dotson, Nadezhda; Ebbert, Amanda; Feng, David; Feng, Xu; Fisher, Michael; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Hejazinia, Nika; Hohmann, John; Hothi, Parvinder; Howard, Robert; Joines, Kevin; Kriedberg, Ali; Kuan, Leonard; Lau, Chris; Lee, Felix; Lee, Hwahyung; Lemon, Tracy; Long, Fuhui; Mastan, Naveed; Mott, Erika; Murthy, Chantal; Ngo, Kiet; Olson, Eric; Reding, Melissa; Riley, Zack; Rosen, David; Sandman, David; Shapovalova, Nadiya; Slaughterbeck, Clifford R; Sodt, Andrew; Stockdale, Graham; Szafer, Aaron; Wakeman, Wayne; Wohnoutka, Paul E; White, Steven J; Marsh, Don; Rostomily, Robert C; Ng, Lydia; Dang, Chinh; Jones, Allan; Keogh, Bart; Gittleman, Haley R; Barnholtz-Sloan, Jill S; Cimino, Patrick J; Uppin, Megha S; Keene, C Dirk; Farrokhi, Farrokh R; Lathia, Justin D; Berens, Michael E; Iavarone, Antonio; Bernard, Amy; Lein, Ed; Phillips, John W; Rostad, Steven W; Cobbs, Charles; Hawrylycz, Michael J; Foltz, Greg D

    2018-05-11

    Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Veliparib in combination with radiotherapy for the treatment of MGMT unmethylated glioblastoma

    OpenAIRE

    Jue, Toni Rose; Nozue, Kyoko; Lester, Ashleigh J.; Joshi, Swapna; Schroder, Lisette B. W.; Whittaker, Shane P.; Nixdorf, Sheri; Rapkins, Robert W.; Khasraw, Mustafa; McDonald, Kerrie L.

    2017-01-01

    Background The O 6 -methylguanine methyltransferase (MGMT) gene is frequently unmethylated in patients with glioblastoma (GBM), rendering them non-responsive to the standard treatment regime of surgery followed by concurrent radiotherapy (RT) and temozolomide. Here, we investigate the efficacy of adding a PARP inhibitor, veliparib, to radiotherapy to treat MGMT unmethylated GBM. Methods The inhibition of PARP with veliparib (ABT-888), a potent and orally bioavailable inhibitor in combination ...

  8. Individualized targeted therapy for glioblastoma: fact or fiction?

    Science.gov (United States)

    Weller, Michael; Stupp, Roger; Hegi, Monika; Wick, Wolfgang

    2012-01-01

    This review will address the current state of individualized cancer therapy for glioblastoma. Glioblastomas are highly malignant primary brain tumors presumably originating from neuroglial progenitor cells. Median survival is less than 1 year. Recent developments in the morphologic, clinical, and molecular classification of glioblastoma were reviewed, and their impact on clinical decision making was analyzed. Glioblastomas can be classified by morphology, clinical characteristics, complex molecular signatures, single biomarkers, or imaging parameters. Some of these characteristics, including age and Karnofsky Performance Scale score, provide important prognostic information. In contrast, few markers help to choose between various treatment options. Promoter methylation of the O-methylguanine methyltransferase gene seems to predict benefit from alkylating agent chemotherapy. Hence, it is used as an entry criterion for alkylator-free experimental combination therapy with radiotherapy. Screening for a specific type of epidermal growth factor receptor mutation is currently being explored as a biomarker for selecting patients for vaccination. Positron emission tomography for the detection of ανβ3/5 integrins could be used to select patients for treatment with anti-integrin antiangiogenic approaches. Despite extensive efforts at defining biological markers as a basis for selecting therapies, most treatment decisions for glioblastoma patients are still based on age and performance status. However, several ongoing clinical trials may enrich the repertoire of criteria for clinical decision making in the very near future. The concept of individualized or personalized targeted cancer therapy has gained significant attention throughout oncology. Yet, data in support of such an approach to glioblastoma, the most malignant subtype of glioma, are limited, and personalized medicine plays a minor role in current clinical neuro-oncology practice. In essence, this concept proposes

  9. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance

    Science.gov (United States)

    Yip, Stephen; Miao, Jiangyong; Cahill, Daniel P.; Iafrate, A. John; Aldape, Ken; Nutt, Catherine L.; Louis, David N.

    2009-01-01

    Purpose Over the past few years, the alkylating agent temozolomide (TMZ) has become the standard-of-care therapy for patients with glioblastoma, the most common brain tumor. Recently, large-scale cancer genome sequencing efforts have identified a hypermutation phenotype and inactivating MSH6 mismatch repair gene mutations in recurrent, post-TMZ glioblastomas, particularly those growing more rapidly during TMZ treatment. This study aimed to clarify the timing and role of MSH6 mutations in mediating glioblastoma TMZ resistance. Experimental Design MSH6 sequence and microsatellite instability (MSI) status were determined in matched pre- and post-chemotherapy glioblastomas identified by The Cancer Genome Atlas (TCGA) as having post-treatment MSH6 mutations. TMZ-resistant lines were derived in vitro via selective growth under TMZ and the MSH6 gene was sequenced in resistant clones. The role of MSH6 inactivation in mediating resistance was explored using lentiviral shRNA knockdown and MSH6 reconstitution. Results MSH6 mutations were confirmed in post-treatment TCGA glioblastomas but absent in matched pre-treatment tumors. The post-treatment hypermutation phenotype displayed a signature bias toward CpC transitions and was not associated with MSI. In vitro modeling via exposure of an MSH6-wildtype glioblastoma line to TMZ resulted in resistant clones; one clone showed an MSH6 mutation, Thr1219Ile, that had been independently noted in two treated TCGA glioblastomas. Knockdown of MSH6 in the glioblastoma line U251 increased resistance to TMZ cytotoxicity and reconstitution restored cytotoxicity in MSH6-null glioma cells. Conclusions MSH6 mutations are selected for in glioblastomas during TMZ therapy both in vitro and in vivo, and are causally associated with TMZ resistance. PMID:19584161

  10. Mathematical modeling identifies optimum lapatinib dosing schedules for the treatment of glioblastoma patients.

    Directory of Open Access Journals (Sweden)

    Shayna Stein

    2018-01-01

    Full Text Available Human primary glioblastomas (GBM often harbor mutations within the epidermal growth factor receptor (EGFR. Treatment of EGFR-mutant GBM cell lines with the EGFR/HER2 tyrosine kinase inhibitor lapatinib can effectively induce cell death in these models. However, EGFR inhibitors have shown little efficacy in the clinic, partly because of inappropriate dosing. Here, we developed a computational approach to model the in vitro cellular dynamics of the EGFR-mutant cell line SF268 in response to different lapatinib concentrations and dosing schedules. We then used this approach to identify an effective treatment strategy within the clinical toxicity limits of lapatinib, and developed a partial differential equation modeling approach to study the in vivo GBM treatment response by taking into account the heterogeneous and diffusive nature of the disease. Despite the inability of lapatinib to induce tumor regressions with a continuous daily schedule, our modeling approach consistently predicts that continuous dosing remains the best clinically feasible strategy for slowing down tumor growth and lowering overall tumor burden, compared to pulsatile schedules currently known to be tolerated, even when considering drug resistance, reduced lapatinib tumor concentrations due to the blood brain barrier, and the phenotypic switch from proliferative to migratory cell phenotypes that occurs in hypoxic microenvironments. Our mathematical modeling and statistical analysis platform provides a rational method for comparing treatment schedules in search for optimal dosing strategies for glioblastoma and other cancer types.

  11. Histology-Based Expression Profiling Yields Novel Prognostic Markers in Human Glioblastoma

    Science.gov (United States)

    Dong, Shumin; Nutt, Catherine L.; Betensky, Rebecca A.; Stemmer-Rachamimov, Anat O.; Denko, Nicholas C.; Ligon, Keith L.; Rowitch, David H.; Louis, David N.

    2006-01-01

    Although the prognosis for patients with glioblastoma is poor, survival is variable, with some patients surviving longer than others. For this reason, there has been longstanding interest in the identi-fication of prognostic markers for glioblastoma. We hypothesized that specific histologic features known to correlate with malignancy most likely express molecules that are directly related to the aggressive behavior of these tumors. We further hypothesized that such molecules could be used as biomarkers to predict behavior in a manner that might add prognostic power to sole histologic observation of the feature. We reasoned that perinecrotic tumor cell palisading, which denotes the most aggressive forms of malignant gliomas, would be a striking histologic feature on which to test this hypothesis. We therefore used laser capture microdissection and oligonucleotide arrays to detect molecules differentially expressed in perinecrotic palisades. A set of RNAs (including POFUT2, PTDSR, PLOD2, ATF5, and HK2) that were differentially expressed in 3 initially studied, micro-dissected glioblastomas also provided prognostic information in an independent set of 28 glioblastomas that did not all have perinecrotic palisades. On validation in a second, larger independent series, this approach could be applied to other human glioma types to derive tissue biomarkers that could offer ancillary prognostic and predictive information alongside standard histopathologic examination. PMID:16254489

  12. [Glioblastoma in 2017].

    Science.gov (United States)

    Duffau, Hugues

    2017-02-01

    Glioblastomas are serious tumours of the central nervous system. Recurrence is systematic and prognosis poor. Radiotherapy and chemotherapy follow surgery, when surgery is possible, to lengthen survival, while preserving quality of life as much as possible. In this respect, symptomatic treatments and supportive care are necessary. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Angiotensinogen and HLA class II predict bevacizumab response in recurrent glioblastoma patients

    DEFF Research Database (Denmark)

    Urup, Thomas; Michaelsen, Signe Regner; Olsen, Lars Rønn

    2016-01-01

    Background: Bevacizumab combination therapy is among the most frequently used treatments in recurrent glioblastoma and patients who achieve response to bevacizumab have improved survival as well as quality of life. Accordingly, the aim of this study was to identify predictive biomarkers for bevac......Background: Bevacizumab combination therapy is among the most frequently used treatments in recurrent glioblastoma and patients who achieve response to bevacizumab have improved survival as well as quality of life. Accordingly, the aim of this study was to identify predictive biomarkers...... for bevacizumab response in recurrent glioblastoma patients. Methods: The study included a total of 82 recurrent glioblastoma patients treated with bevacizumab combination therapy whom were both response and biomarker evaluable. Gene expression of tumor tissue was analyzed by using a customized Nano...

  14. Radio-induced glioblastoma and myxoma after treatment of undifferentiated carcinoma of the nasopharynx

    International Nuclear Information System (INIS)

    Daoud, J.; Ben Salah, H.; Kammoun, W.; Ghorbel, A.; Drira, M.M.; Frikha, M.; Jlidi, R.; Besbes, M.; Maalej, M.

    2000-01-01

    Radio-induced tumor have been known for a long time to occur after treatment of cancer during childhood. This entity is exceptional following radiotherapy of the cavum. Skull and facial osteosarcoma were described after treatment of UCNT. We report two observations of radio-induced tumors arising respectively three and seven years after treatment of UCNT. The first one is a temporo-parietal glioblastoma and the second is a rhino- and pharyngeal myxoma. The two patients are alive after treatment of the second tumor. The delay of appearance of these tumors, their situation in the field's irradiated and dose received suggests their radioinduced nature. However, the cytogenetic study is necessary to confirm the implication of radiotherapy in the genesis of these cancers. (authors)

  15. Autophagy suppression potentiates the anti-glioblastoma effect of asparaginase in vitro and in vivo

    Science.gov (United States)

    Chen, Qicheng; Ye, Li; Fan, Jiajun; Zhang, Xuyao; Wang, Huan; Liao, Siyang; Song, Ping; Wang, Ziyu; Wang, Shaofei; Li, Yubin; Luan, Jingyun; Wang, Yichen; Chen, Wei; Zai, Wenjing; Yang, Ping; Cao, Zhonglian; Ju, Dianwen

    2017-01-01

    Asparaginase has been reported to be effective in the treatment of various leukemia and several malignant solid cancers. However, the anti-tumor effect of asparaginase is always restricted due to complicated mechanisms. Herein, we investigated the mechanisms of how glioblastoma resisted asparaginase treatment and reported a novel approach to enhance the anti-glioblastoma effect of asparaginase. We found that asparaginase could induce growth inhibition and caspase-dependent apoptosis in U87MG/U251MG glioblastoma cells. Meanwhile, autophagy was activated as indicated by autophagosomes formation and upregulated expression of LC3-II. Importantly, abolishing autophagy using chloroquine (CQ) and LY294002 enhanced the cytotoxicity and apoptosis induced by asparaginase in U87MG/U251MG cells. Further study proved that Akt/mTOR and Erk signaling pathways participated in autophagy induction, while reactive oxygen species (ROS) served as an intracellular regulator for both cytotoxicity and autophagy in asparaginase-treated U87MG/U251MG cells. Moreover, combination treatment with autophagy inhibitor CQ significantly enhanced anti-glioblastoma efficacy of asparaginase in U87MG cell xenograft model. Taken together, our results demonstrated that inhibition of autophagy potentiated the anti-tumor effect of asparagine depletion on glioblastoma, indicating that targeting autophagy and asparagine could be a potential approach for glioblastoma treatment. PMID:29207624

  16. CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide.

    Science.gov (United States)

    Kast, Richard E; Karpel-Massler, Georg; Halatsch, Marc-Eric

    2014-09-30

    CUSP9 treatment protocol for recurrent glioblastoma was published one year ago. We now present a slight modification, designated CUSP9*. CUSP9* drugs--aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, sertraline, ritonavir, are all widely approved by regulatory authorities, marketed for non-cancer indications. Each drug inhibits one or more important growth-enhancing pathways used by glioblastoma. By blocking survival paths, the aim is to render temozolomide, the current standard cytotoxic drug used in primary glioblastoma treatment, more effective. Although esthetically unpleasing to use so many drugs at once, the closely similar drugs of the original CUSP9 used together have been well-tolerated when given on a compassionate-use basis in the cases that have come to our attention so far. We expect similarly good tolerability for CUSP9*. The combined action of this suite of drugs blocks signaling at, or the activity of, AKT phosphorylation, aldehyde dehydrogenase, angiotensin converting enzyme, carbonic anhydrase -2,- 9, -12, cyclooxygenase-1 and -2, cathepsin B, Hedgehog, interleukin-6, 5-lipoxygenase, matrix metalloproteinase -2 and -9, mammalian target of rapamycin, neurokinin-1, p-gp efflux pump, thioredoxin reductase, tissue factor, 20 kDa translationally controlled tumor protein, and vascular endothelial growth factor. We believe that given the current prognosis after a glioblastoma has recurred, a trial of CUSP9* is warranted.

  17. Adenoid glioblastoma

    Directory of Open Access Journals (Sweden)

    Cui-yun SUN

    2018-04-01

    Full Text Available Objective To report the diagnosis and treatment of one case of adenoid glioblastoma and investigate the clinicopathological features, diagnosis and differential diagnosis. Methods and Results A 63-year-old male patient suffered from left-skewed corner of the mouth for more than 10 d. Brain enhanced MRI revealed a cystic mass in left frontotemporal lobe and metastatic tumor was considered. 18F-fluoro-2-deoxy-D-glucose (18F-FDG PET did not detected any sign of malignant neoplasm in the whole body. Under the guide of neuronavigation and ultrasound, the tumor was totally removed under microscope. Histologically, the tumor was located in brain parenchyma and presented a growing pattern of multicentric sheets or nests. Mucus scattered in some regions. Tumor cells were arranged in strip, cribriform, adenoid or papillary patterns. Tumor cells contained few cytoplasm with round or oval uniform hyperchromatic nuclei and occasionally obvious nucleoli. Proliferation of glomeruloid vascular endothelial cells could be seen. Immunohistochemical staining showed the cytoplasm of tumor cells was diffusively positive for glial fibrillary acidic protein (GFAP, vimentin (Vim and phosphatase and tensin homologue (PTEN; nuclei was positive for oligodendrocytes transcription factor-2 (Olig-2 and P53; cytoplasm and nuclei were positive for S-100 protein (S-100; membrane was positive for epidermal growth factor receptor (EGFR. The tumor cells showed a negative reaction for cytokeratin (CK, epithelial membrane antigen (EMA, carcinoembryonic antigen (CEA, thyroid transcription factor-1 (TTF-1, CD31, CD34, CAM5.2 and isocitrate dehydrogenase 1 (IDH1. Ki-67 labeling index was 76.80%. The final pathological diagnosis was adenoid glioblastoma. The patient died of respiratroy failure and circulation function failure 12 d after operation. Conclusions Adenoid glioblastoma was a rare glioblastoma subtype. A clear diagnosis depends on histological findings and immunohistochemical

  18. MicroRNA biomarkers in glioblastoma

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Kristensen, Bjarne Winther

    2013-01-01

    tissues. Understanding these alterations is key to developing new biomarkers and intelligent treatment strategies. This review presents an overview of current knowledge about miRNA alterations in glioblastoma while focusing on the clinical future of miRNAs as biomarkers and discussing the strengths...

  19. Glioblastoma chemotherapy adjunct via potent serotonin receptor-7 inhibition using currently marketed high-affinity antipsychotic medicines

    Science.gov (United States)

    Kast, RE

    2010-01-01

    Glioblastoma treatment as now constituted offers increased survival measured in months over untreated patients. Because glioblastomas are active in synthesizing a bewildering variety of growth factors, a systematic approach to inhibiting these is being undertaken as treatment adjunct. The serotonin 7 receptor is commonly overexpressed in glioblastoma. Research documentation showing agonists at serotonin receptor 7 cause increased extracellular regulated kinase 1/2 activation, increased interleukin-6 synthesis, increased signal transducer and activator of transcription-3 activation, increased resistance to apoptosis and other growth enhancing changes in glioblastoma is reviewed in this paper. Because three drugs in wide use to treat thought disorders – paliperidone, pimozide and risperidone – are also potent and well-tolerated inhibitors at serotonin receptor 7, these drugs should be studied for growth factor deprivation in an adjunctive role in glioblastoma treatment. PMID:20880389

  20. Stereotactic Radiosurgery and Hypofractionated Radiotherapy for Glioblastoma.

    Science.gov (United States)

    Shah, Jennifer L; Li, Gordon; Shaffer, Jenny L; Azoulay, Melissa I; Gibbs, Iris C; Nagpal, Seema; Soltys, Scott G

    2018-01-01

    Glioblastoma is the most common primary brain tumor in adults. Standard therapy depends on patient age and performance status but principally involves surgical resection followed by a 6-wk course of radiation therapy given concurrently with temozolomide chemotherapy. Despite such treatment, prognosis remains poor, with a median survival of 16 mo. Challenges in achieving local control, maintaining quality of life, and limiting toxicity plague treatment strategies for this disease. Radiotherapy dose intensification through hypofractionation and stereotactic radiosurgery is a promising strategy that has been explored to meet these challenges. We review the use of hypofractionated radiotherapy and stereotactic radiosurgery for patients with newly diagnosed and recurrent glioblastoma. Copyright © 2017 by the Congress of Neurological Surgeons.

  1. Tectal glioblastoma Glioblastoma tetal

    Directory of Open Access Journals (Sweden)

    Feres Chaddad Neto

    2007-12-01

    Full Text Available Brain stem gliomas are a heterogeneous group of neoplasms arising mostly in paediatric patients. Tectal plate gliomas represent a particular type of brain stem tumours usually with a benign, indolent clinical course, presenting with signs of raised intracranial hipertension due to supra-tentorialhydrocephalous caused by aqueductal stenosis. Seldom high-grade lesions arise in this location with tremendous therapeutic implications. When a malignant tumour is clinically and radiographically suspected a biopsy should be performed to obtain histhological confirmation. Treatment is then planned in a case-by-case basis. We present the case of a glioblastoma of the tectal plate in a 22 years-old woman operated upon by a supracerebellar-infratentorial approach.Os gliomas do tronco cerebral são um grupo heterogêneo de neoplasias que acometem habitualmente crianças. Os gliomas da placa quadrigeminal representam um tipo particular de tumores do tronco cerebral, habitualmente com um curso benigno e indolente, surgindo com sinais de hipertensão intracraniana devido a hidrocefalia supra-tentorial provocada por compressão do aqueduto cerebral. Raramente surgem lesões de alto grau nesta região, mas as implicações terapêuticas são tremendas. Quando existe suspeita clínica e imagiológica de que se trata de lesão maligna, esta deve ser biopsada para se obter confirmação histológica. O tratamento deve então ser planejado caso a caso. Apresentamos o caso de glioblastoma da placa quadrigeminal em uma paciente de 22 anos intervencionado por via supracerebelar-infratentorial.

  2. Combining Immunotherapy with Standard Glioblastoma Therapy

    Science.gov (United States)

    This clinical trial is testing standard therapy (surgery, radiation and temozolomide) plus immunotherapy with pembrolizumab with or without a cancer treatment vaccine for patients with newly diagnosed glioblastoma, a common and deadly type of brain tumor.

  3. Modeling the Treatment of Glioblastoma Multiforme and Cancer Stem Cells with Ordinary Differential Equations.

    Science.gov (United States)

    Abernathy, Kristen; Burke, Jeremy

    2016-01-01

    Despite improvements in cancer therapy and treatments, tumor recurrence is a common event in cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similar to normal stem cells in that their role is to maintain homeostasis. That is, when the population of tumor cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this paper, we study the application of the CSC Hypothesis to the treatment of glioblastoma multiforme by immunotherapy. We extend the work of Kogan et al. (2008) to incorporate the dynamics of CSCs, prove the existence of a recurrence state, and provide an analysis of possible cancerous states and their dependence on treatment levels.

  4. 3-Bromopyruvate treatment induces alterations of metabolic and stress-related pathways in glioblastoma cells.

    Science.gov (United States)

    Chiasserini, Davide; Davidescu, Magdalena; Orvietani, Pier Luigi; Susta, Federica; Macchioni, Lara; Petricciuolo, Maya; Castigli, Emilia; Roberti, Rita; Binaglia, Luciano; Corazzi, Lanfranco

    2017-01-30

    Glioblastoma (GBM) is the most common and aggressive brain tumour of adults. The metabolic phenotype of GBM cells is highly dependent on glycolysis; therefore, therapeutic strategies aimed at interfering with glycolytic pathways are under consideration. 3-Bromopyruvate (3BP) is a potent antiglycolytic agent, with a variety of targets and possible effects on global cell metabolism. Here we analyzed the changes in protein expression on a GBM cell line (GL15 cells) caused by 3BP treatment using a global proteomic approach. Validation of differential protein expression was performed with immunoblotting and enzyme activity assays in GL15 and U251 cell lines. The results show that treatment of GL15 cells with 3BP leads to extensive changes in the expression of glycolytic enzymes and stress related proteins. Importantly, other metabolisms were also affected, including pentose phosphate pathway, aminoacid synthesis, and glucose derivatives production. 3BP elicited the activation of stress response proteins, as shown by the phosphorylation of HSPB1 at serine 82, caused by the concomitant activation of the p38 pathway. Our results show that inhibition of glycolysis in GL15 cells by 3BP influences different but interconnected pathways. Proteome analysis may help in the molecular characterization of the glioblastoma response induced by pharmacological treatment with antiglycolytic agents. Alteration of the glycolytic pathway characterizes glioblastoma (GBM), one of the most common brain tumours. Metabolic reprogramming with agents able to inhibit carbohydrate metabolism might be a viable strategy to complement the treatment of these tumours. The antiglycolytic agent 3-bromopyruvate (3BP) is able to strongly inhibit glycolysis but it may affect also other cellular pathways and its precise cellular targets are currently unknown. To understand the protein expression changes induced by 3BP, we performed a global proteomic analysis of a GBM cell line (GL15) treated with 3BP. We

  5. Alcohol and drug abusers' reasons for seeking treatment.

    Science.gov (United States)

    Cunningham, J A; Sobell, L C; Sobell, M B; Gaskin, J

    1994-01-01

    Clients at two different treatment facilities were asked at assessment how influential each of 10 possible reasons were in their decision to change their alcohol or drug use. Clients at both facilities most often endorsed "weighing the pros and cons of drinking or drug use" and a "warning from spouse." Client's reasons for seeking treatment were also examined in relation to treatment compliance. Three reasons--"weighing the pros and cons," "hitting rock bottom," and experiencing a "major lifestyle change"--were predictive of treatment compliance. Clients who rated any of these reasons as influential were more likely to enter and complete treatment. Although more research is needed, knowledge of clients' reasons for seeking treatment might be useful in treatment matching.

  6. Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas

    International Nuclear Information System (INIS)

    Kaaijk, P.; Academic Medical Center, Amsterdam; Troost, D.; Leenstra, S.; Bosch, D.A.; Sminia, P.; Hulshof, M.C.C.M..; Kracht, A.H.W. van der

    1997-01-01

    The aim of this study was to examine the effect of radiation on glioblastoma, using an organotypic multicellular spheroid (OMS) model. Most glioblastoma cell lines are, in contrast to glioblastomas in vivo, relatively radiosensitive. This limits the value of using cell lines for studying the radiation effect of glioblastomas. The advantage of OMS is maintenance of the characteristics of the original tumour, which is lost in conventional cell cultures. OMS prepared from four glioblastomas were treated with hypofractionated radiation with a radiobiologically equivalent dose to standard radiation treatment for glioblastomas patients. After treatment, the histology as well as the cell proliferation of the OMS was examined. After radiation, a significant decrease in cell proliferation was found, although no histological damage to the OMS was observed. The modest effects of radiation on the OMS are in agreement with the limited therapeutic value of radiotherapy for glioblastoma patients. Therefore, OMS seems to be a good alternative for cell lines to study the radiobiological effect on glioblastomas. (author)

  7. Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas

    Energy Technology Data Exchange (ETDEWEB)

    Kaaijk, P [Academic Medical Center, Amsterdam (Netherlands). Dept. of (Neuro) Pathology; [Academic Medical Center, Amsterdam (Netherlands). Dept. of Neurosurgery; Troost, D [Academic Medical Center, Amsterdam (Netherlands). Dept. of (Neuro) Pathology; Leenstra, S; Bosch, D A [Academic Medical Center, Amsterdam (Netherlands). Dept. of Neurosurgery; Sminia, P; Hulshof, M C.C.M.; Kracht, A.H.W. van der [Academic Medical Center, Amsterdam (Netherlands). Dept. of (Experimental) Radiotherapy

    1997-04-01

    The aim of this study was to examine the effect of radiation on glioblastoma, using an organotypic multicellular spheroid (OMS) model. Most glioblastoma cell lines are, in contrast to glioblastomas in vivo, relatively radiosensitive. This limits the value of using cell lines for studying the radiation effect of glioblastomas. The advantage of OMS is maintenance of the characteristics of the original tumour, which is lost in conventional cell cultures. OMS prepared from four glioblastomas were treated with hypofractionated radiation with a radiobiologically equivalent dose to standard radiation treatment for glioblastomas patients. After treatment, the histology as well as the cell proliferation of the OMS was examined. After radiation, a significant decrease in cell proliferation was found, although no histological damage to the OMS was observed. The modest effects of radiation on the OMS are in agreement with the limited therapeutic value of radiotherapy for glioblastoma patients. Therefore, OMS seems to be a good alternative for cell lines to study the radiobiological effect on glioblastomas. (author).

  8. Bacterial Carriers for Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Nalini Mehta

    2017-03-01

    Full Text Available Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

  9. Third-line therapy in recurrent glioblastoma: is it another chance for bevacizumab?

    Science.gov (United States)

    Franceschi, Enrico; Lamberti, Giuseppe; Paccapelo, Alexandro; Di Battista, Monica; Genestreti, Giovenzio; Minichillo, Santino; Mura, Antonella; Bartolini, Stefania; Agati, Raffaele; Brandes, Alba A

    2018-04-18

    Standard glioblastoma therapy is long-lasting. Among second-line therapy, choices could be bevacizumab and nitrosoureas depending on National Agencies approval. There is no consensus on 3rd line therapy or clinical trials specifically designed for this setting. We reviewed our institutional database on all consecutive patients who received 3rd line therapy for glioblastoma. Data on 168 out of 1337 (12.6%) glioblastoma patients who underwent 3rd line therapy treatment were collected. Third line treatments were bevacizumab or chemotherapy (nitrosourea, temozolomide or carboplatin plus etoposide). Median progression free survival was 2.9 months and median survival time was 6.6 months from the start of 3rd line therapy. Bevacizumab significantly improved progression-free survival (4.7 vs. 2.6 months, p = .020) and survival from 3rd line start (8.0 vs. 6.0 months, p = .014) in respect to chemotherapy. Toxicity of grade ≥ 3 occurred in 13.7% of patients. In multivariate analysis, survival in 3rd line treatment depends on MGMT methylation (p = .006) and treatment with Bevacizumab (p = .011). Third line therapy in selected glioblastoma patients may be feasible and well tolerated. Bevacizumab improved outcome in 3rd line in respect to chemotherapy.

  10. Quantitative radiomic profiling of glioblastoma represents transcriptomic expression.

    Science.gov (United States)

    Kong, Doo-Sik; Kim, Junhyung; Ryu, Gyuha; You, Hye-Jin; Sung, Joon Kyung; Han, Yong Hee; Shin, Hye-Mi; Lee, In-Hee; Kim, Sung-Tae; Park, Chul-Kee; Choi, Seung Hong; Choi, Jeong Won; Seol, Ho Jun; Lee, Jung-Il; Nam, Do-Hyun

    2018-01-19

    Quantitative imaging biomarkers have increasingly emerged in the field of research utilizing available imaging modalities. We aimed to identify good surrogate radiomic features that can represent genetic changes of tumors, thereby establishing noninvasive means for predicting treatment outcome. From May 2012 to June 2014, we retrospectively identified 65 patients with treatment-naïve glioblastoma with available clinical information from the Samsung Medical Center data registry. Preoperative MR imaging data were obtained for all 65 patients with primary glioblastoma. A total of 82 imaging features including first-order statistics, volume, and size features, were semi-automatically extracted from structural and physiologic images such as apparent diffusion coefficient and perfusion images. Using commercially available software, NordicICE, we performed quantitative imaging analysis and collected the dataset composed of radiophenotypic parameters. Unsupervised clustering methods revealed that the radiophenotypic dataset was composed of three clusters. Each cluster represented a distinct molecular classification of glioblastoma; classical type, proneural and neural types, and mesenchymal type. These clusters also reflected differential clinical outcomes. We found that extracted imaging signatures does not represent copy number variation and somatic mutation. Quantitative radiomic features provide a potential evidence to predict molecular phenotype and treatment outcome. Radiomic profiles represents transcriptomic phenotypes more well.

  11. A Phase 1 trial of intravenous boronophenylalanine-fructose complex in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Bergland, R.; Elowitz, E.; Chadha, M.; Coderre, J.A.; Joel, D.

    1996-01-01

    Boron neutron capture therapy (BNCT) of glioblastoma multiforme was initially performed at the Brookhaven National Laboratory in the early 1950's While this treatment for malignant brain tumors has continued in Japan, new worldwide interest has been stimulated by the development of new and more selective boron compounds. Boronophenylalanine (BPA) is a blood-brain barrier penetrating compound that has been used in BNCT of malignant melanomas. SPA has been employed experimentally in BNCT of rat gliosarcoma and has potential use in the treatment of human glioblastoma. As a preface to clinical BNCT trials, we studied the biodistribution of SPA in patients with glioblastoma

  12. Management of glioblastoma after recurrence: A changing paradigm

    International Nuclear Information System (INIS)

    Mallick, S.; Benson, R.; Hakim, A.; Rath, G.K.

    2016-01-01

    Glioblastoma remains the most common primary brain tumor after the age of 40 years. Maximal safe surgery followed by adjuvant chemoradiotherapy has remained the standard treatment for glioblastoma (GBM). But recurrence is an inevitable event in the natural history of GBM with most patients experiencing it after 6–9 months of primary treatment. Recurrent GBM poses great challenge to manage with no well-defined management protocols. The challenge starts from differentiating radiation necrosis from true local progression. A fine balance needs to be maintained on improving survival and assuring a better quality of life. Treatment options are limited and ranges from re-excision, re-irradiation, systemic chemotherapy or a combination of these. Re-excision and re-irradiation must be attempted in selected patients and has been shown to improve survival outcomes. To facilitate the management of GBM recurrences, a treatment algorithm is proposed

  13. FUNCTIONAL SUBCLONE PROFILING FOR PREDICTION OF TREATMENT-INDUCED INTRA-TUMOR POPULATION SHIFTS AND DISCOVERY OF RATIONAL DRUG COMBINATIONS IN HUMAN GLIOBLASTOMA

    Science.gov (United States)

    Reinartz, Roman; Wang, Shanshan; Kebir, Sied; Silver, Daniel J.; Wieland, Anja; Zheng, Tong; Küpper, Marius; Rauschenbach, Laurèl; Fimmers, Rolf; Shepherd, Timothy M.; Trageser, Daniel; Till, Andreas; Schäfer, Niklas; Glas, Martin; Hillmer, Axel M.; Cichon, Sven; Smith, Amy A.; Pietsch, Torsten; Liu, Ying; Reynolds, Brent A.; Yachnis, Anthony; Pincus, David W.; Simon, Matthias; Brüstle, Oliver; Steindler, Dennis A.; Scheffler, Björn

    2016-01-01

    Purpose Investigation of clonal heterogeneity may be key to understanding mechanisms of therapeutic failure in human cancer. However, little is known on the consequences of therapeutic intervention on the clonal composition of solid tumors. Experimental Design Here, we used 33 single cell-derived subclones generated from five clinical glioblastoma specimens for exploring intra- and inter-individual spectra of drug resistance profiles in vitro. In a personalized setting, we explored whether differences in pharmacological sensitivity among subclones could be employed to predict drug-dependent changes to the clonal composition of tumors. Results Subclones from individual tumors exhibited a remarkable heterogeneity of drug resistance to a library of potential anti-glioblastoma compounds. A more comprehensive intra-tumoral analysis revealed that stable genetic and phenotypic characteristics of co-existing subclones could be correlated with distinct drug sensitivity profiles. The data obtained from differential drug response analysis could be employed to predict clonal population shifts within the naïve parental tumor in vitro and in orthotopic xenografts. Furthermore, the value of pharmacological profiles could be shown for establishing rational strategies for individualized secondary lines of treatment. Conclusions Our data provide a previously unrecognized strategy for revealing functional consequences of intra-tumor heterogeneity by enabling predictive modeling of treatment-related subclone dynamics in human glioblastoma. PMID:27521447

  14. Perfusion of surgical cavity wall enhancement in early post-treatment MR imaging may stratify the time-to-progression in glioblastoma.

    Directory of Open Access Journals (Sweden)

    Ji Eun Park

    Full Text Available To determine if perfusion in surgical cavity wall enhancement (SCWE obtained in early post-treatment MR imaging can stratify time-to-progression (TTP in glioblastoma.This study enrolled 60 glioblastoma patients with more than 5-mm-thick SCWEs as detected on contrast-enhanced MR imaging after concurrent chemoradiation therapy. Two independent readers categorized the shape and perfusion state of SCWEs as nodular or non-nodular and as having positive or negative perfusion compared with the contralateral grey matter on arterial spin labeling (ASL. The perfusion fraction on ASL within the contrast-enhancing lesion was calculated. The independent predictability of TTP was analyzed using the Kaplan-Meier method and Cox proportional hazards modelling.The perfusion fraction was higher in the non-progression group, significantly for reader 2 (P = 0.03 and borderline significantly for reader 1 (P = 0.08. A positive perfusion state and (P = 0.02 a higher perfusion fraction of the SCWE were found to become an independent predictor of longer TTP (P = 0.001 for reader 1 and P < 0.001 for reader 2. The contrast enhancement pattern did not become a TTP predictor.Assessment of perfusion in early post-treatment MR imaging can stratify TTP in patients with glioblastoma for adjuvant temozolomide therapy. Positive perfusion in SCWEs can become a predictor of a longer TTP.

  15. Profound blockage of CXCR4 signaling at multiple points using the synergy between plerixafor, mirtazapine, and clotrimazole as a new glioblastoma treatment adjunct.

    Science.gov (United States)

    Kast, Richard E

    2010-10-01

    CXCL12 signaling at CXCR4 is important in glioblastoma growth promotion as a migration-directing chemokine and as a mitosis-stimulating cytokine system. Recent developments in other areas of medicine may have made it now possible to comprehensively block glioblastoma's use of CXCL12 signaling. CXCL12 signaling at CXCR4 requires an active intermediate conductance Ca2+-activated K+ channel to function. Plerixafor (AMD3100) is a new small molecular weight inhibitor of CXCR4, FDA approved to aid in stem cell mobilization. Inhibition of CXCR4 by plerixafor is expected to inhibit particularly the glioblastoma stem cell population by inhibiting that sub-population's homing to the protective hypoxic niche. Histamine signals through the H1 receptor in glioblastoma cells to activate the intermediate conductance Ca2+-activated K+ channel also, thereby forming a potential bypass for inhibition of CXCR4-initiated signaling. The antidepressant mirtazapine is perhaps the most potent H1 antagonist in common clinical use. By inhibiting H1 stimulation of intermediate conductance Ca2+-activated K+ channels, it could prevent circumvention of CXCR4 inhibition by that path. The anti-fungal clotrimazole directly inhibits the intermediate conductance Ca2+- activated K+ channel at clinically achievable and well-tolerated doses. These three drugs used simultaneously are potential low morbidity paths to deeply inhibit CXCR4/CXCL12 signaling during cytotoxic glioblastoma treatment.

  16. Dormant glioblastoma cells acquire stem cell characteristics and are differentially affected by Temozolomide and AT101 treatment.

    Science.gov (United States)

    Adamski, Vivian; Hempelmann, Annika; Flüh, Charlotte; Lucius, Ralph; Synowitz, Michael; Hattermann, Kirsten; Held-Feindt, Janka

    2017-12-08

    Cellular dormancy is defined as a state in which cells enter quiescence driven by intrinsic or extrinsic factors, and striking parallels exist between the concept of cellular dormancy in malignancies and the cancer stem cell theory. We showed now that the proven dormancy markers insulin-like growth factor-binding protein 5, ephrin receptor A5 and histone cluster 1 H2B family member K were expressed in human glioblastomas in situ , were located in single tumor cells, and could be co-stained with each other and with the stem cell markers krüppel-like factor 4, octamer binding transcription factor 4 and sex determining region Y-box 2. Human non-stem glioblastoma cell lines and primary cultures were characterized by expression of individual, cell-type specific dormancy- and stemness-associated markers, which were (up)regulated and could be co-stained in a cell-type specific manner upon Temozolomide-induced dormancy in vitro . The induction patterns of dormancy- and stemness-associated markers were reflected by cell-type specific responses to Temozolomide-induced and combined Temozolomide/AT101-mediated cytotoxicity in different glioblastoma cell lines and primary cultures in vitro , and accompanied by higher self-renewal capacity and lower TMZ-sensitivity of Temozolomide-pretreated cells. We postulate that a better understanding of the dormant state of tumor cells is essential to further improve efficiency of treatment.

  17. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    Science.gov (United States)

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

  18. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  19. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    International Nuclear Information System (INIS)

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway

  20. Ion channels in glioblastoma.

    Science.gov (United States)

    Molenaar, Remco J

    2011-01-01

    Glioblastoma is the most common primary brain tumor with the most dismal prognosis. It is characterized by extensive invasion, migration, and angiogenesis. Median survival is only 15 months due to this behavior, rendering focal surgical resection ineffective and adequate radiotherapy impossible. At this moment, several ion channels have been implicated in glioblastoma proliferation, migration, and invasion. This paper summarizes studies on potassium, sodium, chloride, and calcium channels of glioblastoma. It provides an up-to-date overview of the literature that could ultimately lead to new therapeutic targets.

  1. Remodeling the Vascular Microenvironment of Glioblastoma with α-Particles.

    Science.gov (United States)

    Behling, Katja; Maguire, William F; Di Gialleonardo, Valentina; Heeb, Lukas E M; Hassan, Iman F; Veach, Darren R; Keshari, Kayvan R; Gutin, Philip H; Scheinberg, David A; McDevitt, Michael R

    2016-11-01

    Tumors escape antiangiogenic therapy by activation of proangiogenic signaling pathways. Bevacizumab is approved for the treatment of recurrent glioblastoma, but patients inevitably develop resistance to this angiogenic inhibitor. We previously investigated targeted α-particle therapy with 225 Ac-E4G10 as an antivascular approach and showed increased survival and tumor control in a high-grade transgenic orthotopic glioblastoma model. Here, we investigated changes in tumor vascular morphology and functionality caused by 225 Ac-E4G10. We investigated remodeling of the tumor microenvironment in transgenic Ntva glioblastoma mice using a therapeutic 7.4-kBq dose of 225 Ac-E4G10. Immunofluorescence and immunohistochemical analyses imaged morphologic changes in the tumor blood-brain barrier microenvironment. Multicolor flow cytometry quantified the endothelial progenitor cell population in the bone marrow. Diffusion-weighted MR imaged functional changes in the tumor vascular network. The mechanism of drug action is a combination of remodeling of the glioblastoma vascular microenvironment, relief of edema, and depletion of regulatory T and endothelial progenitor cells. The primary remodeling event is the reduction of both endothelial and perivascular cell populations. Tumor-associated edema and necrosis were lessened, resulting in increased perfusion and reduced diffusion. Pharmacologic uptake of dasatinib into tumor was enhanced after α-particle therapy. Targeted antivascular α-particle radiation remodels the glioblastoma vascular microenvironment via a multimodal mechanism of action and provides insight into the vascular architecture of platelet-derived growth factor-driven glioblastoma. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity.

    Science.gov (United States)

    Angelova, Assia L; Barf, Milena; Geletneky, Karsten; Unterberg, Andreas; Rommelaere, Jean

    2017-12-15

    Glioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation. Oncolytic viruses, including the autonomous protoparvovirus H-1 (H-1PV), show great promise as novel immunotherapeutic tools. In a first phase I/IIa clinical trial (ParvOryx01), H-1PV was safe and well tolerated when locally or systemically administered to recurrent glioblastoma patients. The virus was able to cross the blood-brain (tumor) barrier after intravenous infusion. Importantly, H-1PV treatment of glioblastoma patients was associated with immunogenic changes in the tumor microenvironment. Tumor infiltration with activated cytotoxic T cells, induction of cathepsin B and inducible nitric oxide (NO) synthase (iNOS) expression in tumor-associated microglia/macrophages (TAM), and accumulation of activated TAM in cluster of differentiation (CD) 40 ligand (CD40L)-positive glioblastoma regions was detected. These are the first-in-human observations of H-1PV capacity to switch the immunosuppressed tumor microenvironment towards immunogenicity. Based on this pilot study, we present a tentative model of H-1PV-mediated modulation of glioblastoma microenvironment and propose a combinatorial therapeutic approach taking advantage of H-1PV-induced microglia/macrophage activation for further (pre)clinical testing.

  3. The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir.

    Science.gov (United States)

    Kast, Richard E

    2015-04-09

    Based on reporting in the last several years, an impressive but dismal list of cytotoxic chemotherapies that fail to prolong the median overall survival of patients with glioblastoma has prompted the development of treatment protocols designed to interfere with growth-facilitating signaling systems by using non-cytotoxic, non-oncology drugs. Recent recognition of the pro-mobility stimulus, interleukin-18, as a driver of centrifugal glioblastoma cell migration allows potential treatment adjuncts with disulfiram and ritonavir. Disulfiram and ritonavir are well-tolerated, non-cytotoxic, non-oncology chemotherapeutic drugs that are marketed for the treatment of alcoholism and human immunodeficiency virus (HIV) infection, respectively. Both drugs exhibit an interleukin-18-inhibiting function. Given the favorable tolerability profile of disulfiram and ritonavir, the unlikely drug-drug interaction with temozolomide, and the poor prognosis of glioblastoma, trials of addition of disulfiram and ritonavir to current standard initial treatment of glioblastoma would be warranted.

  4. Utility of Glioblastoma Patient-Derived Orthotopic Xenografts in Drug Discovery and Personalized Therapy

    Directory of Open Access Journals (Sweden)

    Michele Patrizii

    2018-02-01

    Full Text Available Despite substantial effort and resources dedicated to drug discovery and development, new anticancer agents often fail in clinical trials. Among many reasons, the lack of reliable predictive preclinical cancer models is a fundamental one. For decades, immortalized cancer cell cultures have been used to lay the groundwork for cancer biology and the quest for therapeutic responses. However, cell lines do not usually recapitulate cancer heterogeneity or reveal therapeutic resistance cues. With the rapidly evolving exploration of cancer “omics,” the scientific community is increasingly investigating whether the employment of short-term patient-derived tumor cell cultures (two- and three-dimensional and/or patient-derived xenograft models might provide a more representative delineation of the cancer core and its therapeutic response. Patient-derived cancer models allow the integration of genomic with drug sensitivity data on a personalized basis and currently represent the ultimate approach for preclinical drug development and biomarker discovery. The proper use of these patient-derived cancer models might soon influence clinical outcomes and allow the implementation of tailored personalized therapy. When assessing drug efficacy for the treatment of glioblastoma multiforme (GBM, currently, the most reliable models are generated through direct injection of patient-derived cells or more frequently the isolation of glioblastoma cells endowed with stem-like features and orthotopically injecting these cells into the cerebrum of immunodeficient mice. Herein, we present the key strengths, weaknesses, and potential applications of cell- and animal-based models of GBM, highlighting our experience with the glioblastoma stem-like patient cell-derived xenograft model and its utility in drug discovery.

  5. Prediction of clinical course of glioblastomas by MRI during radiotherapy

    International Nuclear Information System (INIS)

    Leitzen, Christina; Schild, Hans H.; Bungart, Birgitta; Luetter, Christiana; Muedder, Thomas; Wilhelm-Buchstab, Timo; Schueller, Heinrich; Herrlinger, Ulrich

    2010-01-01

    Purpose: Determine the value of MR studies in patients undergoing radiotherapy for glioblastomas pre and during radiotherapy to predict the clinical course. Patients and Methods: MR follow-up studies were performed in 33 patients with glioblastomas before radiotherapy, after 30 Gy, after 60 Gy, and in the treatment follow-up. Findings on MR were categorized into: definite progress, questionable progress, status idem. Patients were followed clinically (median for 11 months). Results: After 30 Gy 23/33 (70%) of the MR examination showed status idem. 10/33 (30%) demonstrated definite (n = 6) or questionable (n = 4) progress. Further tumor progress was faster in these patients and patients succumb to their disease earlier (9 vs. 22 months). The 60 Gy study showed definite (n = 8) and questionable (n = 6) progress in 14/33 (42%) cases. All these tumors were progressing faster and were associated with a comparatively reduced life expectancy. Conclusion: MR follow-up studies after 30 Gy in patients undergoing radiotherapy for glioblastomas allow for prognostic appraisal, and potentially early modification of treatment. (orig.)

  6. Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Fabliha Ahmed Chowdhury

    2018-01-01

    Full Text Available Glioblastoma multiforme (GBM is one of the most devastating brain tumors with median survival of one year and presents unique challenges to therapy because of its aggressive behavior. Current treatment strategy involves surgery, radiotherapy, immunotherapy, and adjuvant chemotherapy even though optimal management requires a multidisciplinary approach and knowledge of potential complications from both the disease and its treatment. Thymoquinone (TQ, the main bioactive component of Nigella sativa L., has exhibited anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteract carcinogenesis, malignant growth, invasion, migration, and angiogenesis. TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells. Its potential to enter brain via nasal pathway due to volatile nature of TQ adds another advantage in overcoming blood-brain barrier. In this review, we summarized the potential role of TQ in different signaling pathways in GBM that have undergone treatment with standard therapeutic modalities or with TQ. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and clinical level to delineate its implied utility as novel therapeutics to combat the challenges for the treatment of GBM.

  7. Farnesylthiosalicylic acid-loaded lipid-polyethylene glycol-polymer hybrid nanoparticles for treatment of glioblastoma.

    Science.gov (United States)

    Kaffashi, Abbas; Lüle, Sevda; Bozdağ Pehlivan, Sibel; Sarısözen, Can; Vural, İmran; Koşucu, Hüsnü; Demir, Taner; Buğdaycı, Kadir Emre; Söylemezoğlu, Figen; Karlı Oğuz, Kader; Mut, Melike

    2017-08-01

    We aimed to develop lipid-polyethylene glycol (PEG)-polymer hybrid nanoparticles, which have high affinity to tumour tissue with active ingredient, a new generation antineoplastic drug, farnesylthiosalicylic acid (FTA) for treatment of glioblastoma. Farnesylthiosalicylic acid-loaded poly(lactic-co-glycolic acid)-1,2 distearoyl-glycerol-3-phospho-ethanolamine-N [methoxy (PEG)-2000] ammonium salt (PLGA-DSPE-PEG) with or without 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) hybrid nanoparticles has been prepared and evaluated for in-vitro characterization. Cytotoxicity of FTA-loaded nanoparticles along with its efficacy on rat glioma-2 (RG2) cells was also evaluated both in vitro (in comparison with non-malignant cell line, L929) and in vivo. Scanning electron microscopy studies showed that all formulations prepared had smooth surface and spherical in shape. FTA and FTA-loaded nanoparticles have cytotoxic activity against RG2 glioma cell lines in cell culture studies, which further increases with addition of DOTAP. Magnetic resonance imaging and histopathologic evaluation on RG2 tumour cells in rat glioma model (49 female Wistar rats, 250-300 g) comparing intravenous and intratumoral injections of the drug have been performed and FTA-loaded nanoparticles reduced tumour size significantly in in-vivo studies, with higher efficiency of intratumoral administration than intravenous route. Farnesylthiosalicylic acid-loaded PLGA-DSPE-PEG-DOTAP hybrid nanoparticles are proven to be effective against glioblastoma in both in-vitro and in-vivo experiments. © 2017 Royal Pharmaceutical Society.

  8. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma.

    Science.gov (United States)

    Luthra, Pratibha Mehta; Lal, Neetika

    2016-02-15

    GBM (Glioblastoma) is the most malignant human brain tumor with median survival of one year. The treatment involves surgery, radiotherapy and adjuvant chemotherapy mostly with the alkylation agents such as temozolomide (TMZ). Dietary polyphenol curcumin, isolated from the rhizome of the Curcuma longa (turmeric), has emerged as remarkable anti-cancer agent in the treatment of various peripheral cancers such as blood, lymphomas, multiple myeloma, melanoma as well as skin, lung, prostate, breast, ovarian, bladder, liver, gastrointestinal tract, pancreatic and colorectal epithelial cancers with a pleiotropic mode of action and also showed promise in alleviation of GBM. In this review, the mechanism of anticancer effect of curcumin in GBM has been discussed extensively. The clinical safety and pharmacokinetics of curcumin has been scrutinized to combat the challenges for the treatment of GBM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. The strong anti-glioblastoma capacity of the plasma-stimulated lysine-rich medium

    International Nuclear Information System (INIS)

    Yan, Dayun; Keidar, Michael; Nourmohammadi, Niki; Talbot, Annie; Sherman, Jonathan H

    2016-01-01

    Plasma-stimulated medium (PSM) shows a remarkable anti-cancer capacity as strong as the direct cold atmospheric plasma (CAP) treatment of cancer cells. PSM is able to effectively resist the growth of several cancer cell lines. To date, the sole approach to strengthen the anti-cancer capacity of PSM is extending the plasma treatment time. In this study, we demonstrated that the anti-glioblastoma capacity of PSM could be significantly increased by adding 20 mM lysine in Dulbecco’s modified Eagle’s medium (DMEM). This study provides clear evidence that the anti-glioblastoma capacity of PSM could be noticeably enhanced by modifying the composition of medium without increasing the CAP treatment time. (paper)

  10. A case showing effective radiotherapy for a radiation-induced glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Kimiko; Inamura, Takanori; Nakamizo, Akira; Ikezaki, Kiyonobu; Inoha, Satoshi; Nakamura, Kazumasa; Matsuzaki, Akinobu; Fukui, Masashi [Kyushu Univ., Fukuoka (Japan). Graduate School of Medical Sciences

    2001-07-01

    Radiation-induced glioblastoma is usually resistant to all treatments. We report a case with radiation-induced glioblastoma, in which radiotherapy was remarkably effective. A 14-year-old female with a history of acute lymphoblastic leukemia, at the age of 7, underwent 15 Gy of radiotherapy to the whole brain. She was admitted to our department due to the development of headache and nausea. Magnetic resonance imaging showed an irregularly enhanced mass in the left frontal lobe. Partial removal of the mass was performed and histological examination showed it to be glioblastoma with a high MIB-1 index. The patient underwent 40 Gy of local radiotherapy and chemotherapy with ACNU and Interferon-{beta} for 2 years. The residual tumor disappeared after the radiotherapy, and her status is still ''complete remission'', 29 months after the onset. (author)

  11. Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion

    DEFF Research Database (Denmark)

    Wierzbicki, Mateusz; Jaworski, Slawomir; Kutwin, Marta

    2017-01-01

    The highly invasive nature of glioblastoma is one of the most significant problems regarding the treatment of this tumor. Diamond nanoparticles (ND), graphite nanoparticles (NG), and graphene oxide nanoplatelets (nGO) have been explored for their biomedical applications, especially for drug...... that nanoparticles could be used in biomedical applications as a low toxicity active compound for glioblastoma treatment....

  12. Clinical results of boron neutron capture therapy (BNCT) for glioblastoma

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H.

    2011-01-01

    The purpose of this study was to evaluate the clinical outcome of BSH-based intra-operative BNCT (IO-BNCT) and BSH and BPA-based non-operative BNCT (NO-BNCT). We have treated 23 glioblastoma patients with BNCT without any additional chemotherapy since 1998. The median survival time (MST) of BNCT was 19.5 months, and 2-year, 3-year and 5-year survival rates were 26.1%, 17.4% and 5.8%, respectively. This clinical result of BNCT in patients with GBM is superior to that of single treatment of conventional radiotherapy compared with historical data of conventional treatment. - Highlights: ► In this study, we evaluate the clinical outcome of boron neutron capture therapy (BNCT) for malignant brain tumors. ► We have treated 23 glioblastoma (GBM) patients with BNCT without any additional chemotherapy. ► Clinical results of BNCT in patients with GBM are superior to that of single treatment of conventional radiotherapy compared with historical data of conventional treatment.

  13. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence

    Science.gov (United States)

    Auffinger, Brenda; Spencer, Drew; Pytel, Peter; Ahmed, Atique U.; Lesniak, Maciej S.

    2016-01-01

    Glioma stem cells (GSCs) constitute a slow-dividing, small population within a heterogeneous glioblastoma. They are able to self-renew, recapitulate a whole tumor, and differentiate into other specific GBM subpopulations. Therefore, they have been held responsible for malignant relapse after primary standard therapy and the poor prognosis of recurrent GBM. The failure of current therapies to eliminate specific GSC subpopulations has been considered a major factor contributing to the inevitable recurrence in GBM patients following treatment. Here, we discuss the molecular mechanisms of chemoresistance of GSCs and the reasons why complete eradication of GSCs is so difficult to achieve. We will also describe the targeted therapies currently available towards GSCs and possible mechanisms to overcome such chemoresistance and avoid therapeutic relapse. PMID:26027432

  14. Advanced case of glioblastoma multiforme and pregnancy. An ethical dilemma.

    Science.gov (United States)

    Al-Rasheedy, Intisar M; Al-Hameed, Fahad M

    2015-10-01

    Glioblastoma multiforme (GBM) is the most common and malignant form of the glial tumors. Advanced and treated GBM is rarely associated with pregnancy for many reasons. Glioblastoma multiforme presenting during pregnancy carries unique challenges to the patient, baby, family, and health care providers. We describe an unusual case of advanced GBM that was treated with maximum doses of chemotherapy and radiations, and she became pregnant and presented at eighteenth weeks of gestation. Her medical management was associated with a significant ethical dilemma. We managed to deliver the baby safely through cesarean section at week 28 despite the critical condition of the mother. Unfortunately, the mother died 2 weeks post delivery. We concluded that although recurrent and treated GBM is rarely associated with pregnancy and carries dismal prognosis, but if it occurs, it can still be carried, and a multidisciplinary team work is the key for successful outcome.

  15. The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma

    NARCIS (Netherlands)

    van Roosmalen, Ingrid A. M.; Dos Reis, Carlos R; Setroikromo, Rita; Yuvaraj, Saravanan; Joseph, Justin V.; Tepper, Pieter G.; Kruyt, Frank A. E.; Quax, Wim J.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related

  16. Assessment and treatment relevance in elderly glioblastoma patients.

    Science.gov (United States)

    Bauchet, Luc; Zouaoui, Sonia; Darlix, Amélie; Menjot de Champfleur, Nicolas; Ferreira, Ernestine; Fabbro, Michel; Kerr, Christine; Taillandier, Luc

    2014-11-01

    Glioblastoma (GBM) is the most common malignant primary brain tumor. Its incidence continues to increase in the elderly because the older segment of the population is growing faster than any other age group. Most clinical studies exclude elderly patients, and "standards of care" do not exist for GBM patients aged >70 years. We review epidemiology, tumor biology/molecular factors, prognostic factors (clinical, imaging data, therapeutics), and their assessments as well as classic and specific endpoints plus recent and ongoing clinical trials for elderly GBM patients. This work includes perspectives and personal opinions on this topic. Although there are no standards of care for elderly GBM patients, we can hypothesize that (i) Karnofsky performance status (KPS), probably after steroid treatment, is one of the most important clinical factors for determining our oncological strategy; (ii) resection is superior to biopsy, at least in selected patients (depending on location of the tumor and associated comorbidities); (iii) specific schedules of radiotherapy yield a modest but significant improvement; (iv) temozolomide has an acceptable tolerance, even when KPS life and toxicity measures) will aid clinicians in determining the balance of potential benefits and risks of each oncological strategy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. ABCB1, ABCG2, and PTEN determine the response of glioblastoma to temozolomide and ABT-888 therapy

    NARCIS (Netherlands)

    Lin, Fan; de Gooijer, Mark C; Roig, Eloy Moreno; Buil, Levi C M; Christner, Susan M; Beumer, Jan H; Würdinger, Thomas; Beijnen, Jos H|info:eu-repo/dai/nl/071919570; van Tellingen, Olaf

    2014-01-01

    PURPOSE: Little is known about the optimal clinical use of ABT-888 (veliparib) for treatment of glioblastoma. ABT-888 is a PARP inhibitor undergoing extensive clinical evaluation in glioblastoma, because it may synergize with the standard-of-care temozolomide (TMZ). We have elucidated important

  18. MicroRNA involvement in glioblastoma pathogenesis

    International Nuclear Information System (INIS)

    Novakova, Jana; Slaby, Ondrej; Vyzula, Rostislav; Michalek, Jaroslav

    2009-01-01

    MicroRNAs are endogenously expressed regulatory noncoding RNAs. Altered expression levels of several microRNAs have been observed in glioblastomas. Functions and direct mRNA targets for these microRNAs have been relatively well studied over the last years. According to these data, it is now evident, that impairment of microRNA regulatory network is one of the key mechanisms in glioblastoma pathogenesis. MicroRNA deregulation is involved in processes such as cell proliferation, apoptosis, cell cycle regulation, invasion, glioma stem cell behavior, and angiogenesis. In this review, we summarize the current knowledge of miRNA functions in glioblastoma with an emphasis on its significance in glioblastoma oncogenic signaling and its potential to serve as a disease biomarker and a novel therapeutic target in oncology.

  19. Deregulation of a STAT3-IL8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness

    Science.gov (United States)

    de la Iglesia, Núria; Konopka, Genevieve; Lim, Kah Leong; Nutt, Catherine L.; Bromberg, Jacqueline F.; Frank, David A.; Mischel, Paul S.; Louis, David N.; Bonni, Azad

    2009-01-01

    Inactivation of the tumor suppressor PTEN is recognized as a major event in the pathogenesis of the brain tumor glioblastoma. However, the mechanisms by which PTEN loss specifically impacts the malignant behavior of glioblastoma cells including their proliferation and propensity for invasiveness remain poorly understood. Genetic studies suggest that the transcription factor STAT3 harbors a PTEN-regulated tumor suppressive function in mouse astrocytes. Here, we report that STAT3 plays a critical tumor suppressive role in PTEN-deficient human glioblastoma cells. Endogenous STAT3 signaling is specifically inhibited in PTEN-deficient glioblastoma cells. Strikingly, reactivation of STAT3 in PTEN-deficient glioblastoma cells inhibits their proliferation, invasiveness, and ability to spread on myelin. We also identify the chemokine IL8 as a novel target gene of STAT3 in human glioblastoma cells. Activated STAT3 occupies the endogenous IL8 promoter and directly represses IL8 transcription. Consistent with these results, IL8 is upregulated in PTEN-deficient human glioblastoma tumors. Importantly, IL8 repression mediates STAT3-inhibition of glioblastoma cell proliferation, invasiveness, and spreading on myelin. Collectively, our findings uncover a novel link between STAT3 and IL8 whose deregulation plays a key role in the malignant behavior of PTEN-deficient glioblastoma cells. These studies suggest that STAT3 activation or IL8 inhibition may have potential in patient-tailored treatment of PTEN-deficient brain tumors. PMID:18524891

  20. Integration method of 3D MR spectroscopy into treatment planning system for glioblastoma IMRT dose painting with integrated simultaneous boost

    International Nuclear Information System (INIS)

    Ken, Soléakhéna; Cassol, Emmanuelle; Delannes, Martine; Celsis, Pierre; Cohen-Jonathan, Elizabeth Moyal; Laprie, Anne; Vieillevigne, Laure; Franceries, Xavier; Simon, Luc; Supper, Caroline; Lotterie, Jean-Albert; Filleron, Thomas; Lubrano, Vincent; Berry, Isabelle

    2013-01-01

    To integrate 3D MR spectroscopy imaging (MRSI) in the treatment planning system (TPS) for glioblastoma dose painting to guide simultaneous integrated boost (SIB) in intensity-modulated radiation therapy (IMRT). For sixteen glioblastoma patients, we have simulated three types of dosimetry plans, one conventional plan of 60-Gy in 3D conformational radiotherapy (3D-CRT), one 60-Gy plan in IMRT and one 72-Gy plan in SIB-IMRT. All sixteen MRSI metabolic maps were integrated into TPS, using normalization with color-space conversion and threshold-based segmentation. The fusion between the metabolic maps and the planning CT scans were assessed. Dosimetry comparisons were performed between the different plans of 60-Gy 3D-CRT, 60-Gy IMRT and 72-Gy SIB-IMRT, the last plan was targeted on MRSI abnormalities and contrast enhancement (CE). Fusion assessment was performed for 160 transformations. It resulted in maximum differences <1.00 mm for translation parameters and ≤1.15° for rotation. Dosimetry plans of 72-Gy SIB-IMRT and 60-Gy IMRT showed a significantly decreased maximum dose to the brainstem (44.00 and 44.30 vs. 57.01 Gy) and decreased high dose-volumes to normal brain (19 and 20 vs. 23% and 7 and 7 vs. 12%) compared to 60-Gy 3D-CRT (p < 0.05). Delivering standard doses to conventional target and higher doses to new target volumes characterized by MRSI and CE is now possible and does not increase dose to organs at risk. MRSI and CE abnormalities are now integrated for glioblastoma SIB-IMRT, concomitant with temozolomide, in an ongoing multi-institutional phase-III clinical trial. Our method of MR spectroscopy maps integration to TPS is robust and reliable; integration to neuronavigation systems with this method could also improve glioblastoma resection or guide biopsies

  1. Overexpression of endothelin B receptor in glioblastoma: a prognostic marker and therapeutic target?

    KAUST Repository

    Vasaikar, Suhas

    2018-02-06

    BackgroundGlioblastoma (GBM) is the most common malignant brain tumor with median survival of 12-15 months. Owing to uncertainty in clinical outcome, additional prognostic marker(s) apart from existing markers are needed. Since overexpression of endothelin B receptor (ETBR) has been demonstrated in gliomas, we aimed to test whether ETBR is a useful prognostic marker in GBM and examine if the clinically available endothelin receptor antagonists (ERA) could be useful in the disease treatment.MethodsData from The Cancer Genome Atlas and the Gene Expression Omnibus database were analyzed to assess ETBR expression. For survival analysis, glioblastoma samples from 25 Swedish patients were immunostained for ETBR, and the findings were correlated with clinical history. The druggability of ETBR was assessed by protein-protein interaction network analysis. ERAs were analyzed for toxicity in in vitro assays with GBM and breast cancer cells.ResultsBy bioinformatics analysis, ETBR was found to be upregulated in glioblastoma patients, and its expression levels were correlated with reduced survival. ETBR interacts with key proteins involved in cancer pathogenesis, suggesting it as a druggable target. In vitro viability assays showed that ERAs may hold promise to treat glioblastoma and breast cancer.ConclusionsETBR is overexpressed in glioblastoma and other cancers and may be a prognostic marker in glioblastoma. ERAs may be useful for treating cancer patients.

  2. Molecular and cellular heterogeneity: the hallmark of glioblastoma.

    Science.gov (United States)

    Aum, Diane J; Kim, David H; Beaumont, Thomas L; Leuthardt, Eric C; Dunn, Gavin P; Kim, Albert H

    2014-12-01

    There has been increasing awareness that glioblastoma, which may seem histopathologically similar across many tumors, actually represents a group of molecularly distinct tumors. Emerging evidence suggests that cells even within the same tumor exhibit wide-ranging molecular diversity. Parallel to the discoveries of molecular heterogeneity among tumors and their individual cells, intense investigation of the cellular biology of glioblastoma has revealed that not all cancer cells within a given tumor behave the same. The identification of a subpopulation of brain tumor cells termed "glioblastoma cancer stem cells" or "tumor-initiating cells" has implications for the management of glioblastoma. This focused review will therefore summarize emerging concepts on the molecular and cellular heterogeneity of glioblastoma and emphasize that we should begin to consider each individual glioblastoma to be an ensemble of molecularly distinct subclones that reflect a spectrum of dynamic cell states.

  3. Blocking epithelial-to-mesenchymal transition in glioblastoma with a sextet of repurposed drugs: the EIS regimen.

    Science.gov (United States)

    Kast, Richard E; Skuli, Nicolas; Karpel-Massler, Georg; Frosina, Guido; Ryken, Timothy; Halatsch, Marc-Eric

    2017-09-22

    This paper outlines a treatment protocol to run alongside of standard current treatment of glioblastoma- resection, temozolomide and radiation. The epithelial to mesenchymal transition (EMT) inhibiting sextet, EIS Regimen, uses the ancillary attributes of six older medicines to impede EMT during glioblastoma. EMT is an actively motile, therapy-resisting, low proliferation, transient state that is an integral feature of cancers' lethality generally and of glioblastoma specifically. It is believed to be during the EMT state that glioblastoma's centrifugal migration occurs. EMT is also a feature of untreated glioblastoma but is enhanced by chemotherapy, by radiation and by surgical trauma. EIS Regimen uses the antifungal drug itraconazole to block Hedgehog signaling, the antidiabetes drug metformin to block AMP kinase (AMPK), the analgesic drug naproxen to block Rac1, the anti-fibrosis drug pirfenidone to block transforming growth factor-beta (TGF-beta), the psychiatric drug quetiapine to block receptor activator NFkB ligand (RANKL) and the antibiotic rifampin to block Wnt- all by their previously established ancillary attributes. All these systems have been identified as triggers of EMT and worthy targets to inhibit. The EIS Regimen drugs have a good safety profile when used individually. They are not expected to have any new side effects when combined. Further studies of the EIS Regimen are needed.

  4. Clinical implications of in silico mathematical modeling for glioblastoma: a critical review.

    Science.gov (United States)

    Protopapa, Maria; Zygogianni, Anna; Stamatakos, Georgios S; Antypas, Christos; Armpilia, Christina; Uzunoglu, Nikolaos K; Kouloulias, Vassilis

    2018-01-01

    Glioblastoma remains a clinical challenge in spite of years of extensive research. Novel approaches are needed in order to integrate the existing knowledge. This is the potential role of mathematical oncology. This paper reviews mathematical models on glioblastoma from the clinical doctor's point of view, with focus on 3D modeling approaches of radiation response of in vivo glioblastomas based on contemporary imaging techniques. As these models aim to provide a clinically useful tool in the era of personalized medicine, the integration of the latest advances in molecular and imaging science and in clinical practice by the in silico models is crucial for their clinical relevance. Our aim is to indicate areas of GBM research that have not yet been addressed by in silico models and to point out evidence that has come up from in silico experiments, which may be worth considering in the clinic. This review examines how close these models have come in predicting the outcome of treatment protocols and in shaping the future of radiotherapy treatments.

  5. Improved survival for elderly married glioblastoma patients. Better treatment delivery, less toxicity, and fewer disease complications

    International Nuclear Information System (INIS)

    Putz, Florian; Goerig, Nicole; Knippen, Stefan; Gryc, Thomas; Semrau, Sabine; Lettmaier, Sebastian; Fietkau, Rainer; Putz, Tobias; Eyuepoglu, Ilker; Roessler, Karl

    2016-01-01

    Marital status is a well-described prognostic factor in patients with gliomas but the observed survival difference is unexplained in the available population-based studies. A series of 57 elderly glioblastoma patients (≥70 years) were analyzed retrospectively. Patients received radiotherapy or chemoradiation with temozolomide. The prognostic significance of marital status was assessed. Disease complications, toxicity, and treatment delivery were evaluated in detail. Overall survival was significantly higher in married than in unmarried patients (median, 7.9 vs. 4.0 months; p = 0.006). The prognostic significance of marital status was preserved in the multivariate analysis (HR, 0.41; p = 0.011). Married patients could receive significantly higher daily temozolomide doses (mean, 53.7 mg/m"2 vs. 33.1 mg/m"2; p = 0.020), were more likely to receive maintenance temozolomide (45.7 % vs. 11.8 %; p = 0.016), and had to be hospitalized less frequently during radiotherapy (55.0 % vs. 88.2 %; p = 0.016). Of the patients receiving temozolomide, married patients showed significantly lower rates of hematologic and liver toxicity. Most complications were infectious or neurologic in nature. Complications of any grade were more frequent in unmarried patients (58.8 % vs. 30.0 %; p = 0.041) with the incidence of grade 3-5 complications being particularly elevated (47.1 % vs. 15.0 %; p = 0.004). We found poorer treatment delivery as well as an unexpected severe increase in toxicity and disease complications in elderly unmarried glioblastoma patients. Marital status may be an important predictive factor for clinical decision-making and should be addressed in further studies. (orig.) [de

  6. A study of concurrent radiochemotherapy with paclitaxel in glioblastoma multiforme

    International Nuclear Information System (INIS)

    Julka, P.K.; Awasthy, B.S.; Rath, G.K.; Agarwal, S.; Varna, T.; Mahapatra, A.K.; Singh, R.

    2000-01-01

    Despite advances in neurosurgery and radiotherapy, the prognosis of patients with glioblastoma multiforme remains poor. Reports in the literature about the radiosensitizing properties of paclitaxel stimulated the authors to conduct a study using paclitaxel concurrently with radiation in a group of 18 patients who had residual disease postoperatively. Paclitaxel was delivered weekly as an intravenous infusion in a dose of 60 mg/m 2 along with radiation to the primary lesion. A total of 108 cycles of paclitaxel was given. All the patients tolerated the treatment well. The main side effects were haematological, and neuropathy which was self-limiting. The overall 1-year survival rate was 70%, with 12 patients alive at 13 months. The median survival has not yet been reached although it is more than 13 months. Thus, paclitaxel can be safely delivered concomitantly with radiation in patients with glioblastoma multiforme. Larger, randomized trials are required to establish the comparative efficacy of paclitaxel as a radiosensitizer in glioblastoma multiforme. Copyright (1999) Blackwell Science Pty Ltd

  7. Treatment outcome and prognostic factors of adult glioblastoma multiforme.

    Science.gov (United States)

    Ahmadloo, Niloofar; Kani, Amir-Abbas; Mohammadianpanah, Mohammad; Nasrolahi, Hamid; Omidvari, Shapour; Mosalaei, Ahmad; Ansari, Mansour

    2013-03-01

    This study aimed to report the characteristics, prognostic factors and treatment outcome of 223 patients with glioblastoma multiforme (GBM). This retrospective study was carried out by reviewing the medical records of 223 adult patients diagnosed at a tertiary academic hospital between 1990 and 2008. Patients' follow up ranged from 1 to 69 months (median 11 months). Surgery was attempted in all patients in whom complete resection in 15 patients (7%), subtotal resection in 77 patients (34%), partial resection in 73 patients (33%) and biopsy alone in 58 patients (26%) were done. In addition, we performed a literature review of PubMed to find out and analyze major related series. In all, we collected and analyzed the data of 33 major series including more than 11,000 patients with GBM. There were 141 men and 82 women. The median progression free- and overall survival were 6 (95% CI=5.711-8.289) and 11 (95% CI=9.304-12.696) months respectively. In univariate analysis for overall survival, age (P=0.003), tumor size (P<0.013), performance status (P<0.001), the extent of surgical resection (P=0.009), dose of radiation (P<0.001), and adjuvant chemotherapy (P<0.001) were prognostic factors. However, in multivariate analysis, only radiation dose, extent of surgical resection, and adjuvant chemotherapy were independent prognostic factors for overall survival. The prognosis of adult patients with GBM remains poor; however, complete surgical resection and adjuvant treatments improve progression-free and overall survival. Copyright © 2012. Production and hosting by Elsevier B.V.

  8. Treatment outcome and prognostic factors of adult glioblastoma multiforme

    International Nuclear Information System (INIS)

    Ahmadloo, N.; Mohammadianpanah, M.; Nasrolahi, H.; Omidvari, Sh.; Ansari, M.; Kani, A.A.; Mosalaei, A.

    2013-01-01

    Introduction: This study aimed to report the characteristics, prognostic factors and treatment outcome of 223 patients with glioblastoma multiforme (GBM). Subjects and method: This retrospective study was carried out by reviewing the medical records of 223 adult patients diagnosed at a tertiary academic hospital between 1990 and 2008. Patients’ follow up ranged from 1 to 69 months (median 11 months). Surgery was attempted in all patients in whom complete resection in 15 patients (7%), subtotal resection in 77 patients (34%), partial resection in 73 patients (33%) and biopsy alone in 58 patients (26%) were done. In addition, we performed a literature review of Pub Med to find out and analyze major related series. In all, we collected and analyzed the data of 33 major series including more than 11,000 patients with GB M. Results: There were 141 men and 82 women. The median progression free- and overall survival were 6 (95% Cl = 5.711-8.289) and 11 (95% Cl = 9.304-12.696) months respectively. In univariate analysis for overall survival, age (P = 0.003), tumor size (P < 0.013), performance status (P < 0.001), the extent of surgical resection (P - 0.009), dose of radiation (P < 0.001), and adjuvant chemotherapy (P < 0.001) were prognostic factors. However, in multivariate analysis, only radiation dose, extent of surgical resection, and adjuvant chemotherapy were independent prognostic factors for overall survival. Conclusion: The prognosis of adult patients with GBM remains poor; however, complete surgical resection and adjuvant treatments improve progression-free and overall survival

  9. CAR T-Cell Therapies in Glioblastoma: A First Look.

    Science.gov (United States)

    Migliorini, Denis; Dietrich, Pierre-Yves; Stupp, Roger; Linette, Gerald P; Posey, Avery D; June, Carl H

    2018-02-01

    Glioblastoma is an aggressive malignancy with a poor prognosis. The current standard of care for newly diagnosed glioblastoma patients includes surgery to the extent, temozolomide combined with radiotherapy, and alternating electric fields therapy. After recurrence, there is no standard therapy and survival is less than 9 months. Recurrent glioblastoma offers a unique opportunity to investigate new treatment approaches in a malignancy known for remarkable genetic heterogeneity, an immunosuppressive microenvironment, and a partially permissive anatomic blood-brain barrier. Results from three first-in-man chimeric antigen receptor (CAR) T-cell trials targeting IL13Rα2, Her2/CMV, and EGFRvIII have recently been reported. Each one of these trials addresses important questions, such as T-cell trafficking to CNS, engraftment and persistence, tumor microenvironment remodeling, and monitoring of glioma response to CAR T cells. Objective radiologic responses have been reported. Here, we discuss and summarize the results of these trials and suggest opportunities for the field. Clin Cancer Res; 24(3); 535-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Nanoparticles for hyperthermic therapy: synthesis strategies and applications in glioblastoma

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Noorden, Cornelis J. F.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and most aggressive malignant primary brain tumor in humans. Current GBM treatment includes surgery, radiation therapy, and chemotherapy, sometimes supplemented with novel therapies. Despite recent advances, survival of GBM patients remains poor.

  11. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis.

    Science.gov (United States)

    Cui, Qi; Yang, Su; Ye, Peng; Tian, E; Sun, Guoqiang; Zhou, Jiehua; Sun, Guihua; Liu, Xiaoxuan; Chen, Chao; Murai, Kiyohito; Zhao, Chunnian; Azizian, Krist T; Yang, Lu; Warden, Charles; Wu, Xiwei; D'Apuzzo, Massimo; Brown, Christine; Badie, Behnam; Peng, Ling; Riggs, Arthur D; Rossi, John J; Shi, Yanhong

    2016-02-03

    Glioblastomas have been proposed to be maintained by highly tumorigenic glioblastoma stem cells (GSCs) that are resistant to current therapy. Therefore, targeting GSCs is critical for developing effective therapies for glioblastoma. In this study, we identify the regulatory cascade of the nuclear receptor TLX and the DNA hydroxylase Ten eleven translocation 3 (TET3) as a target for human GSCs. We show that knockdown of TLX expression inhibits human GSC tumorigenicity in mice. Treatment of human GSC-grafted mice with viral vector-delivered TLX shRNA or nanovector-delivered TLX siRNA inhibits tumour development and prolongs survival. Moreover, we identify TET3 as a potent tumour suppressor downstream of TLX to regulate the growth and self-renewal in GSCs. This study identifies the TLX-TET3 axis as a potential therapeutic target for glioblastoma.

  12. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress

    International Nuclear Information System (INIS)

    Liu, Yingying; Fang, Shanshan; Sun, Qiushi; Liu, Bo

    2016-01-01

    Glioblastoma is one of the most vascular brain tumour and highly resistant to current therapy. Targeting both glioblastoma cells and angiogenesis may present an effective therapeutic strategy for glioblastoma. In our work, we show that an anthelmintic drug, ivermectin, is active against glioblastoma cells in vitro and in vivo, and also targets angiogenesis. Ivermectin significantly inhibits growth and anchorage-independent colony formation in U87 and T98G glioblastoma cells. It induces apoptosis in these cells through a caspase-dependent manner. Ivermectin significantly suppresses the growth of two independent glioblastoma xenograft mouse models. In addition, ivermectin effectively targets angiogenesis through inhibiting capillary network formation, proliferation and survival in human brain microvascular endothelial cell (HBMEC). Mechanistically, ivermectin decreases mitochondrial respiration, membrane potential, ATP levels and increases mitochondrial superoxide in U87, T98G and HBMEC cells exposed to ivermectin. The inhibitory effects of ivermectin are significantly reversed in mitochondria-deficient cells or cells treated with antioxidants, further confirming that ivermectin acts through mitochondrial respiration inhibition and induction of oxidative stress. Importantly, we show that ivermectin suppresses phosphorylation of Akt, mTOR and ribosomal S6 in glioblastoma and HBMEC cells, suggesting its inhibitory role in deactivating Akt/mTOR pathway. Altogether, our work demonstrates that ivermectin is a useful addition to the treatment armamentarium for glioblastoma. Our work also highlights the therapeutic value of targeting mitochondrial metabolism in glioblastoma. - Highlights: • Ivermectin is effective in glioblastoma cells in vitro and in vivo. • Ivermectin inhibits angiogenesis. • Ivermectin induces mitochondrial dysfunction and oxidative stress. • Ivermectin deactivates Akt/mTOR signaling pathway.

  13. Development of bioactive materials for glioblastoma therapy

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-09-01

    Full Text Available Glioblastoma is the most common and deadly human brain cancers. Unique barriers hinder the drug delivering pathway due to the individual position of glioblastoma, including blood-brain barrier and blood-brain tumor barrier. Numerous bioactive materials have been exploited and applied as the transvascular delivery carriers of therapeutic drugs. They promote site-specific accumulation and long term release of the encapsulated drugs at the tumor sites and reduce side effects with systemic delivery. And the delivery systems exhibit a certain extent of anti-glioblastoma effect and extend the median survival time. However, few of them step into the clinical trials. In this review, we will investigate the recent studies of bioactive materials for glioblastoma chemotherapy, including the inorganic materials, lipids and polymers. These bioactive materials construct diverse delivery vehicles to trigger tumor sites in brain intravenously. Herein, we exploit their functionality in drug delivery and discuss the deficiency for the featured tumors, to provide guidance for establishing optimized therapeutic drug formulation for anti-glioblastoma therapy and pave the way for clinical application.

  14. Giant cell glioblastoma in childhood - clinical case from our practice and literature survey

    International Nuclear Information System (INIS)

    Marinova, L.; Hristozova, I.; Minkin, K.; Mihaylova, I.; Katzarov, D.

    2015-01-01

    We present a rare clinical case of brain tumor in childhood - giant cells glioblastoma- The disease was diagnosed in July 2014. Following an evidently total tumor excision, a course of chemotherapy with Vincristine, Vepesid and Cisplatine was applied followed by external beam radiotherapy of total dose 56 Gy. After 4 courses of chemotherapy (Vepesid, Cisplatine and Cyclophosphamide), on the regular MRI - performed in January 2015, local tumor recurrence was discovered requiring re-operation. A local progression of the disease was manifested after 6 courses chemotherapy (Temodal 100 mg 1 tablet daily for 5 days monthly) with increased intracranial pressure, followed by exitus letalis of the patient, 12 months after the diagnosis being made. A rarely met pathology subtype of giant cells glioblastoma in childhood was discussed, its typical MRI image, unfavorable prognosis and manifested radio- and chemo-resistance. Despite the complex treatment including total tumor excision, postoperative radiotherapy with radical irradiation dose and adjuvant chemotherapy the risk of local recurrences and tumor progression is high. With the help of this rarely diagnosed aggressive brain tumor in childhood, we present the need of optimization of the multidisciplinary treatment approach. (authors) Key words: Giant Cell Glioblastoma. Childhood. Surgery. Radiotherapy. Chemotherapy. Complex Treatment

  15. PCDH10 is required for the tumorigenicity of glioblastoma cells

    International Nuclear Information System (INIS)

    Echizen, Kanae; Nakada, Mitsutoshi; Hayashi, Tomoatsu; Sabit, Hemragul; Furuta, Takuya; Nakai, Miyuki; Koyama-Nasu, Ryo; Nishimura, Yukiko; Taniue, Kenzui; Morishita, Yasuyuki; Hirano, Shinji; Terai, Kenta; Todo, Tomoki; Ino, Yasushi; Mukasa, Akitake; Takayanagi, Shunsaku; Ohtani, Ryohei; Saito, Nobuhito; Akiyama, Tetsu

    2014-01-01

    Highlights: • PCDH10 is required for the proliferation, survival and self-renewal of glioblastoma cells. • PCDH10 is required for glioblastoma cell migration and invasion. • PCDH10 is required for the tumorigenicity of glioblastoma cells. • PCDH10 may be a promising target for the therapy of glioblastoma. - Abstract: Protocadherin10 (PCDH10)/OL-protocadherin is a cadherin-related transmembrane protein that has multiple roles in the brain, including facilitating specific cell–cell connections, cell migration and axon guidance. It has recently been reported that PCDH10 functions as a tumor suppressor and that its overexpression inhibits proliferation or invasion of multiple tumor cells. However, the function of PCDH10 in glioblastoma cells has not been elucidated. In contrast to previous reports on other tumors, we show here that suppression of the expression of PCDH10 by RNA interference (RNAi) induces the growth arrest and apoptosis of glioblastoma cells in vitro. Furthermore, we demonstrate that knockdown of PCDH10 inhibits the growth of glioblastoma cells xenografted into immunocompromised mice. These results suggest that PCDH10 is required for the proliferation and tumorigenicity of glioblastoma cells. We speculate that PCDH10 may be a promising target for the therapy of glioblastoma

  16. Modeling microenvironmental regulation of glioblastoma stem cells: a biomaterials perspective

    Science.gov (United States)

    Heffernan, John M.; Sirianni, Rachael W.

    2018-02-01

    Following diagnosis of a glioblastoma (GBM) brain tumor, surgical resection, chemotherapy and radiation together yield a median patient survival of only 15 months. Importantly, standard treatments fail to address the dynamic regulation of the brain tumor microenvironment that actively supports tumor progression and treatment resistance. It is becoming increasingly recognized that specialized niches within the tumor microenvironment maintain a population of highly malignant glioblastoma stem-like cells (GSCs). GSCs are resistant to traditional chemotherapy and radiation therapy, suggesting that they may be responsible for the near universal rates of tumor recurrence and associated morbidity in GBM. Thus, disrupting microenvironmental support for GSCs could be critical to developing more effective GBM therapies. Three-dimensional (3D) culture models of the tumor microenvironment are powerful tools for identifying key biochemical and biophysical inputs that impact malignant behaviors. Such systems have been used effectively to identify conditions that regulate GSC proliferation, invasion, stem-specific phenotypes, and treatment resistance. Considering the significant role that GSC microenvironments play in regulating this tumorigenic sub-population, these models may be essential for uncovering mechanisms that limit GSCs malignancy.

  17. Radiotherapy plus concomitant adjuvant temozolomide for glioblastoma: Japanese mono-institutional results.

    Directory of Open Access Journals (Sweden)

    Takahiro Oike

    Full Text Available This study was conducted to investigate the feasibility and survival benefits of combined treatment with radiotherapy and temozolomide (TMZ, which has been covered by the national health insurance in Japanese patients with glioblastoma since September 2006. Between September 2006 and December 2011, 47 patients with newly diagnosed and histologically confirmed glioblastoma received radiotherapy for 60 Gy in 30 fractions. Among them, 45 patients (TMZ group received concomitant TMZ (75 mg/m(2/day, every day and adjuvant TMZ (200 mg/m(2/day, 5 days during each 28-days. All 36 of the glioblastoma patients receiving radiotherapy between January 1988 and August 2006 were analyzed as historical controls (control group. All patients were followed for at least 1 year or until they died. The median survival was 15.8 months in the TMZ group and 12.0 months in the control group after a median follow-up of 14.0 months. The hazard ratio for death in the TMZ group relative to the control group was 0.52 (P<0.01; the 2-year survival rate was 27.7% in the TMZ group and 14.6% in the control group. Hematologic toxicity of grade 3 and higher was observed in 20.4% in the TMZ group. Multivariate analysis showed that extent of surgery had the strongest impact on survival (P<0.01, while the use of TMZ had the second largest impact on survival (P = 0.035. The results indicate that combined treatment with radiotherapy and TMZ has a significant survival benefit for Japanese patients with newly diagnosed glioblastoma with slightly higher toxicities than previously reported.

  18. Coordination of glioblastoma cell motility by PKCι

    Directory of Open Access Journals (Sweden)

    Baldwin R Mitchell

    2010-09-01

    Full Text Available Abstract Background Glioblastoma is one of the deadliest forms of cancer, in part because of its highly invasive nature. The tumor suppressor PTEN is frequently mutated in glioblastoma and is known to contribute to the invasive phenotype. However the downstream events that promote invasion are not fully understood. PTEN loss leads to activation of the atypical protein kinase C, PKCι. We have previously shown that PKCι is required for glioblastoma cell invasion, primarily by enhancing cell motility. Here we have used time-lapse videomicroscopy to more precisely define the role of PKCι in glioblastoma. Results Glioblastoma cells in which PKCι was either depleted by shRNA or inhibited pharmacologically were unable to coordinate the formation of a single leading edge lamellipod. Instead, some cells generated multiple small, short-lived protrusions while others generated a diffuse leading edge that formed around the entire circumference of the cell. Confocal microscopy showed that this behavior was associated with altered behavior of the cytoskeletal protein Lgl, which is known to be inactivated by PKCι phosphorylation. Lgl in control cells localized to the lamellipod leading edge and did not associate with its binding partner non-muscle myosin II, consistent with it being in an inactive state. In PKCι-depleted cells, Lgl was concentrated at multiple sites at the periphery of the cell and remained in association with non-muscle myosin II. Videomicroscopy also identified a novel role for PKCι in the cell cycle. Cells in which PKCι was either depleted by shRNA or inhibited pharmacologically entered mitosis normally, but showed marked delays in completing mitosis. Conclusions PKCι promotes glioblastoma motility by coordinating the formation of a single leading edge lamellipod and has a role in remodeling the cytoskeleton at the lamellipod leading edge, promoting the dissociation of Lgl from non-muscle myosin II. In addition PKCι is required

  19. Toward a noncytotoxic glioblastoma therapy: blocking MCP-1 with the MTZ Regimen

    Directory of Open Access Journals (Sweden)

    Salacz ME

    2016-04-01

    Full Text Available Michael E Salacz,1,2 Richard E Kast,3 Najmaldin Saki,4 Ansgar Brüning,5 Georg Karpel-Massler,6 Marc-Eric Halatsch6 1Department of Internal Medicine, 2Department of Neurosurgery, University of Kansas, Kansas City, KS, USA; 3IIAIGC Study Center, Burlington, VT, USA; 4Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; 5Molecular Biology Laboratory, University Hospital Munich, Munich, Germany; 6Department of Neurosurgery, University of Ulm, Ulm, Germany Abstract: To improve the prognosis of glioblastoma, we developed an adjuvant treatment directed to a neglected aspect of glioblastoma growth, the contribution of nonmalignant monocyte lineage cells (MLCs (monocyte, macrophage, microglia, dendritic cells that infiltrated a main tumor mass. These nonmalignant cells contribute to glioblastoma growth and tumor homeostasis. MLCs comprise of approximately 10%–30% of glioblastoma by volume. After integration into the tumor mass, these become polarized toward an M2 immunosuppressive, pro-angiogenic phenotype that promotes continued tumor growth. Glioblastoma cells initiate and promote this process by synthesizing 13 kDa MCP-1 that attracts circulating monocytes to the tumor. Infiltrating monocytes, after polarizing toward an M2 phenotype, synthesize more MCP-1, forming an amplification loop. Three noncytotoxic drugs, an antibiotic – minocycline, an antihypertensive drug – telmisartan, and a bisphosphonate – zoledronic acid, have ancillary attributes of MCP-1 synthesis inhibition and could be re-purposed, singly or in combination, to inhibit or reverse MLC-mediated immunosuppression, angiogenesis, and other growth-enhancing aspects. Minocycline, telmisartan, and zoledronic acid – the MTZ Regimen – have low-toxicity profiles and could be added to standard radiotherapy and temozolomide. Re-purposing older drugs has advantages of established safety and low

  20. Second Generation Amphiphilic Poly-Lysine Dendrons Inhibit Glioblastoma Cell Proliferation without Toxicity for Neurons or Astrocytes.

    Directory of Open Access Journals (Sweden)

    Jolanta Janiszewska

    Full Text Available Glioblastomas are the most common malignant primary brain tumours in adults and one of the most aggressive and difficult-to-treat cancers. No effective treatment exits actually for this tumour and new therapeutic approaches are needed for this disease. One possible innovative approach involves the nanoparticle-mediated specific delivery of drugs and/or genetic material to glioblastoma cells where they can provide therapeutic benefits. In the present work, we have synthesised and characterised several second generation amphiphilic polylysine dendrons to be used as siRNA carriers. We have found that, in addition to their siRNA binding properties, these new compounds inhibit the proliferation of two glioblastoma cell lines while being nontoxic for non-tumoural central nervous system cells like neurons and glia, cell types that share the anatomical space with glioblastoma cells during the course of the disease. The selective toxicity of these nanoparticles to glioblastoma cells, as compared to neurons and glial cells, involves mitochondrial depolarisation and reactive oxygen species production. This selective toxicity, together with the ability to complex and release siRNA, suggests that these new polylysine dendrons might offer a scaffold in the development of future nanoparticles designed to restrict the proliferation of glioblastoma cells.

  1. Phase II trial of upfront bevacizumab and temozolomide for unresectable or multifocal glioblastoma

    International Nuclear Information System (INIS)

    Lou, Emil; Peters, Katherine B; Sumrall, Ashley L; Desjardins, Annick; Reardon, David A; Lipp, Eric S; Herndon, James E II; Coan, April; Bailey, Leighann; Turner, Scott; Friedman, Henry S; Vredenburgh, James J

    2013-01-01

    Patients with unresectable glioblastomas have a poor prognosis, with median survival of 6–10 months. We conducted a phase II trial of upfront 5-day temozolomide (TMZ) and bevacizumab (BV) in patients with newly diagnosed unresectable or multifocal glioblastoma. Patients received up to four cycles of TMZ at 200 mg/m 2 on days 1–5, and BV at 10 mg/kg on days 1 and 15 of a 28-day cycle. Brain magnetic resonance imaging (MRI) was performed monthly. Therapy was continued as long as there was no tumor progression, grade 4 nonhematologic toxicity, or recurrent grade 4 hematologic toxicity after dose reduction. The primary end point was best tumor response as measured on MRI. Forty-one patients were accrued over 12 months; 39 had a full set of MRI scans available for evaluation. Assessment for best radiographic responses was as follows: partial responses in 24.4%, stable disease in 68.3%, and progressive disease in 2.4%. Treatment-related toxicities included seven grade 4 toxicities and one grade 5 toxicity (myocardial infarction). From this study, it was concluded that an upfront regimen of TMZ and BV for unresectable glioblastoma was well tolerated and provided a significant level of disease stabilization. Therapeutic toxicities were consistent with those seen in the adjuvant setting using these agents. The upfront approach to treatment of glioblastoma in the unresectable population warrants further investigation in randomized controlled phase III trials

  2. Glioblastoma multiforme of the pineal region: case report Glioblastoma multiforme de região pineal: relato de caso

    Directory of Open Access Journals (Sweden)

    Emerson Leandro Gasparetto

    2003-06-01

    Full Text Available PURPOSE: pineal region tumors are uncommon, and comprise more frequently three categories: germ cell, parenchymal cell and glial tumors. Most pineal gliomas are low-grade astrocytomas. Glioblastoma multiforme, the most aggressive and common brain tumor, is extremely rare at this location with only few cases reported. CASE DESCRIPTION: a 29-year-old woman with a two month history of headache, nuchal pain, fever, nausea and seizures and physical examination showing nuchal rigidity, generalized hypotony, hypotrophy and hyper-reflexia, Babinski sign and left VI cranial par palsy. CT scan examination revealed a ill-defined hypodense lesion at the pineal region with heterogeneous contrast enhancement. MRI showed a lesion at the pineal region infiltrating the right thalamic region. The patient underwent a right craniotomy with partial resection of the mass. The histological examination of paraffin-embedded material defined the diagnosis of glioblastoma multiforme. Post-operative radiotherapy was indicated but the patient refused the treatment and died two months afterwards. CONCLUSION: in spite of its rarity at this location, glioblastoma multiforme should be considered in the differential diagnosis of aggressive lesions at the pineal region.OBJETIVO: Os tumores da região pineal são incomuns e podem ser divididos em três categorias de acordo com a sua origem: células germinativas, células do parênquima e células gliais. Em sua maioria, os gliomas de pineal são astrocitomas de baixo grau, sendo que o seu correspondente maligno, glioblastoma multiforme, é o mais comum e agressivo tumor encefálico e é extremamente raro nesta localização, com apenas alguns casos relatados na literatura. CASO: Mulher com 29 anos apresentando há 2 meses cefaléia, nucalgia, febre, náuseas e crises convulsivas. O exame físico mostrou rigidez de nuca, hipotonia, hipotrofia e hiperreflexia generalizadas, sinal de Babinski e paralisia do VI nervo craniano. A

  3. Ebselen abrogates TNFα induced pro‐inflammatory response in glioblastoma

    OpenAIRE

    Tewari, Richa; Sharma, Vivek; Koul, Nitin; Ghosh, Abhishek; Joseph, Christy; Hossain Sk, Ugir; Sen, Ellora

    2008-01-01

    We investigated the pro‐inflammatory response mediated by TNFα in glioblastoma and whether treatment with organoselenium Ebselen (2‐phenyl‐1,2‐benzisoselenazol‐3[2H]one) can affect TNFα induced inflammatory response. Exposure to TNFα increased the expression of pro‐inflammatory mediator interleukin IL‐6, IL‐8, monocyte chemoattractant protein‐1 (MCP‐1) and cyclooxygenase (COX‐2). Treatment with Ebselen abrogated TNFα induced increase in pro‐inflammatory mediators. Ebselen not only abrogated T...

  4. Glioblastoma multiforme of the cerebellum: description of three cases.

    Science.gov (United States)

    Luccarelli, G

    1980-01-01

    Only 43 cases of glioblastoma multiforme of the cerebellum have been reported in the literature. This report is based on the findings of 3 cerebellar glioblastomas in a review of 1,206 consecutive confirmed cases of glioblastoma operated on between 1947 and 1977 at the Istituto Neurologico of Milan, giving an incidence of 0.24%. Clinical features are similar to those of any other fast-growing subtentorial tumour. Neuroradiological studies, including CAT, are of little help in predicting the exact nature of these tumours before surgery. A correct diagnosis can be reached only by microscopic examination. Histological patterns appear in no way to differ from those of cerebral glioblastoma. The biological behaviour of these tumours is in all respects identical to that of glioblastoma of cerebral hemispheres.

  5. Improved survival for elderly married glioblastoma patients : Better treatment delivery, less toxicity, and fewer disease complications.

    Science.gov (United States)

    Putz, Florian; Putz, Tobias; Goerig, Nicole; Knippen, Stefan; Gryc, Thomas; Eyüpoglu, Ilker; Rössler, Karl; Semrau, Sabine; Lettmaier, Sebastian; Fietkau, Rainer

    2016-11-01

    Marital status is a well-described prognostic factor in patients with gliomas but the observed survival difference is unexplained in the available population-based studies. A series of 57 elderly glioblastoma patients (≥70 years) were analyzed retrospectively. Patients received radiotherapy or chemoradiation with temozolomide. The prognostic significance of marital status was assessed. Disease complications, toxicity, and treatment delivery were evaluated in detail. Overall survival was significantly higher in married than in unmarried patients (median, 7.9 vs. 4.0 months; p = 0.006). The prognostic significance of marital status was preserved in the multivariate analysis (HR, 0.41; p = 0.011). Married patients could receive significantly higher daily temozolomide doses (mean, 53.7 mg/m² vs. 33.1 mg/m²; p = 0.020), were more likely to receive maintenance temozolomide (45.7 % vs. 11.8 %; p = 0.016), and had to be hospitalized less frequently during radiotherapy (55.0 % vs. 88.2 %; p = 0.016). Of the patients receiving temozolomide, married patients showed significantly lower rates of hematologic and liver toxicity. Most complications were infectious or neurologic in nature. Complications of any grade were more frequent in unmarried patients (58.8 % vs. 30.0 %; p = 0.041) with the incidence of grade 3-5 complications being particularly elevated (47.1 % vs. 15.0 %; p = 0.004). We found poorer treatment delivery as well as an unexpected severe increase in toxicity and disease complications in elderly unmarried glioblastoma patients. Marital status may be an important predictive factor for clinical decision-making and should be addressed in further studies.

  6. Reasons for Treatment Changes in Patients With Moderate to Severe Psoriasis.

    Science.gov (United States)

    Anderson, Kathryn L; Feldman, Steven R

    2015-01-01

    Psoriasis treatment involves multiple treatment arms. Treatment choice depends on many factors and may change, due to the chronicity of psoriasis. The purpose of our study is to explore reasons for treatment changes in patients with moderate to severe psoriasis. Ten charts of patients with moderate to severe psoriasis were reviewed. The medication changes and reasons for change were extracted. A "treatment change" was defined as switching between medication classes, adding or removing a medication class, or switching medications within the oral or biologic medication class. Seventy-seven treatment changes were identified. On average, 1 treatment change occurred per year of follow-up. The most common reason for treatment change was inadequate disease control. Inadequate disease control with current therapy is the most common reason a physician changes treatment for moderate to severe psoriasis. More efficacious treatments or ways to improve efficacy may help improve the long-term outcomes of psoriasis. © The Author(s) 2015.

  7. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    International Nuclear Information System (INIS)

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-01-01

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin

  8. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yichen, E-mail: jeff200064017@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Wang, Ping, E-mail: pingwang8000@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Zhao, Wei, E-mail: 15669746@qq.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Yao, Yilong, E-mail: yaoyilong_322@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Liu, Xiaobai, E-mail: paganizonda1991@qq.com [The 96th Class, 7-year Program, China Medical University, Shenyang, Liaoning Province 110001 (China); Ma, Jun, E-mail: majun_724@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Xue, Yixue, E-mail: xueyixue888@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Liu, Yunhui, E-mail: liuyh@sj-hospital.org [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China)

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.

  9. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-06-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells. Methods We used quantitative RT-PCR to assess microRNA expression in high-grade astrocytomas and adult mouse neural stem cells. To assess the function of candidate microRNAs in high-grade astrocytomas, we transfected miR mimics to cultured-mouse neural stem cells, -mouse oligodendroglioma-derived stem cells, -human glioblastoma multiforme-derived stem cells and -glioblastoma multiforme cell lines. Cellular differentiation was assessed by immunostaining, and cellular proliferation was determined using fluorescence-activated cell sorting. Results Our studies revealed that expression levels of microRNA-124 and microRNA-137 were significantly decreased in anaplastic astrocytomas (World Health Organization grade III and glioblastoma multiforme (World Health Organization grade IV relative to non-neoplastic brain tissue (P erbB tumors and cluster of differentiation 133+ human glioblastoma multiforme-derived stem cells (SF6969. Transfection of microRNA-124 or microRNA-137 also induced G1 cell cycle arrest in U251 and SF6969 glioblastoma multiforme cells, which was associated with decreased expression of cyclin-dependent kinase 6 and phosphorylated retinoblastoma (pSer 807/811 proteins. Conclusion microRNA-124 and microRNA-137 induce differentiation of adult mouse neural stem cells, mouse

  10. Concurrent bevacizumab and temozolomide alter the patterns of failure in radiation treatment of glioblastoma multiforme

    International Nuclear Information System (INIS)

    Shields, Lisa BE; Kadner, Robert; Vitaz, Todd W; Spalding, Aaron C

    2013-01-01

    We investigated the pattern of failure in glioblastoma multiforma (GBM) patients treated with concurrent radiation, bevacizumab (BEV), and temozolomide (TMZ). Previous studies demonstrated a predominantly in-field pattern of failure for GBM patients not treated with concurrent BEV. We reviewed the treatment of 23 patients with GBM who received 30 fractions of simultaneous integrated boost IMRT. PTV60 received 2 Gy daily to the tumor bed or residual tumor while PTV54 received 1.8 Gy daily to the surrounding edema. Concurrent TMZ (75 mg/m 2 ) daily and BEV (10 mg/kg every 2 weeks) were given during radiation therapy. One month after RT completion, adjuvant TMZ (150 mg/m 2 × 5 days) and BEV were delivered monthly until progression or 12 months total. With a median follow-up of 12 months, the median disease-free and overall survival were not reached. Four patients discontinued therapy due to toxicity for the following reasons: bone marrow suppression (2), craniotomy wound infection (1), and pulmonary embolus (1). Five patients had grade 2 or 3 hypertension managed by oral medications. Of the 12 patients with tumor recurrence, 7 suffered distant failure with either subependymal (5/12; 41%) or deep white matter (2/12; 17%) spread detected on T2 FLAIR sequences. Five of 12 patients (41%) with a recurrence demonstrated evidence of GAD enhancement. The patterns of failure did not correlate with extent of resection or number of adjuvant cycles. Treatment of GBM patients with concurrent radiation, BEV, and TMZ was well tolerated in the current study. The majority of patients experienced an out-of-field pattern of failure with radiation, BEV, and TMZ which has not been previously reported. Further investigation is warranted to determine whether BEV alters the underlying tumor biology to improve survival. These data may indicate that the currently used clinical target volume thought to represent microscopic disease for radiation may not be appropriate in combination with TMZ

  11. Amnesia due to bilateral hippocampal glioblastoma

    International Nuclear Information System (INIS)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K.

    1989-01-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.)

  12. Intravoxel Incoherent Motion Metrics as Potential Biomarkers for Survival in Glioblastoma.

    Directory of Open Access Journals (Sweden)

    Josep Puig

    Full Text Available Intravoxel incoherent motion (IVIM is an MRI technique with potential applications in measuring brain tumor perfusion, but its clinical impact remains to be determined. We assessed the usefulness of IVIM-metrics in predicting survival in newly diagnosed glioblastoma.Fifteen patients with glioblastoma underwent MRI including spin-echo echo-planar DWI using 13 b-values ranging from 0 to 1000 s/mm2. Parametric maps for diffusion coefficient (D, pseudodiffusion coefficient (D*, and perfusion fraction (f were generated for contrast-enhancing regions (CER and non-enhancing regions (NCER. Regions of interest were manually drawn in regions of maximum f and on the corresponding dynamic susceptibility contrast images. Prognostic factors were evaluated by Kaplan-Meier survival and Cox proportional hazards analyses.We found that fCER and D*CER correlated with rCBFCER. The best cutoffs for 6-month survival were fCER>9.86% and D*CER>21.712 x10-3mm2/s (100% sensitivity, 71.4% specificity, 100% and 80% positive predictive values, and 80% and 100% negative predictive values; AUC:0.893 and 0.857, respectively. Treatment yielded the highest hazard ratio (5.484; 95% CI: 1.162-25.88; AUC: 0.723; P = 0.031; fCER combined with treatment predicted survival with 100% accuracy.The IVIM-metrics fCER and D*CER are promising biomarkers of 6-month survival in newly diagnosed glioblastoma.

  13. Phenylbutyrate Sensitizes Human Glioblastoma Cells Lacking Wild-Type P53 Function to Ionizing Radiation

    International Nuclear Information System (INIS)

    Lopez, Carlos A.; Feng, Felix Y.; Herman, Joseph M.; Nyati, Mukesh K.; Lawrence, Theodore S.; Ljungman, Mats

    2007-01-01

    Purpose: Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. Methods and Materials: Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. Results: Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G 1 arrest, increase in sub-G 1 fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios (± SE) of 1.5 (± 0.2) and 1.3 (± 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. Conclusions: Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53

  14. The Role of Protein Kinase CK2 in Glioblastoma Development

    OpenAIRE

    Ji, Haitao; Lu, Zhimin

    2013-01-01

    Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor in adults, and its response to current therapies is limited. Protein kinase CK2 is overexpressed in GBM and regulates GBM cell survival, proliferation, and migration and brain tumorigenesis. Targeting CK2 for GBM treatment may benefit GBM patients.

  15. Repopulation capacity during fractionated irradiation of squamous cell carcinomas and glioblastomas in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Budach, Wilfried; Gioioso, Danielle; Taghian, Alphonse; Stuschke, Martin; Suit, Herman D

    1997-10-01

    Purpose: Determination of clonogenic cell proliferation of three highly malignant squamous cell carcinomas (SCC) and two glioblastoma cell lines during a 20-day course of fractionated irradiation under in vitro conditions. Methods and Materials: Tumor cells in exponential growth phase were plated in 24-well plastic flasks and irradiated 24 h after plating with 250 kV x-rays at room temperature. Six fractions with single doses between 0.6 and 9 Gy were administered in 1.67, 5, 10, 15, and 20 days. Colony growth was monitored for at least 60 days after completion of irradiation. Wells with confluent colonies were considered as 'recurrences' and wells without colonies as 'controlled'. The dose required to control 50% of irradiated wells (WCD{sub 50}) was estimated by a logistic regression for the different overall treatment times. The effective doubling time of clonogenic cells (T{sub eff}) was determined by a direct fit using the maximum likelihood method. Results: The increase of WCD{sub 50} within 18.3 days was highly significant for all tumor cell lines accounting for 7.9 and 12.0 Gy in the two glioblastoma cell lines and for 12.7, 14.0, and 21.7 Gy in the three SCC cell lines. The corresponding T{sub eff}s were 4.4 and 2.0 days for glioblastoma cell lines and 2.4, 4.2, and 1.8 days for SCC cell lines. Population doubling times (PDT) of untreated tumor cells ranged from 1.0 to 1.9 days, showing no correlation with T{sub eff}s. T{sub eff} was significantly longer than PDT in three of five tumor cell lines. No significant differences were observed comparing glioblastomas and SCC. Increase of WCD{sub 50} with time did not correlate with T{sub eff} but with T{sub eff}* InSF2 (surviving fraction at 2 Gy). Conclusion: The intrinsic ability of SCC and glioblastoma cells to repopulate during fractionated irradiation could be demonstrated. Repopulation induced dose loss per day depends on T{sub eff} and intrinsic radiation sensitivity. Proliferation during treatment was

  16. Expression of DNA mismatch repair proteins MLH1, MSH2, and MSH6 in recurrent glioblastoma.

    Science.gov (United States)

    Stark, Andreas M; Doukas, Alexander; Hugo, Heinz-Herrmann; Hedderich, Jürgen; Hattermann, Kirsten; Maximilian Mehdorn, H; Held-Feindt, Janka

    2015-02-01

    Methylated O6-methylguanin-DNA-methytransferase (MGMT) promoter methylation is associated with survival in patients with glioblastoma. Current evidence suggests that further mismatch repair genes play a pivotal role in the tumor response to treatment. Candidate genes are MLH1, MSH2, and MSH6. Formerly, we found evidence of prognostic impact of MLH1 and MSH6 immunohistochemical expression in a small series of patients with initial glioblastoma. Two hundred and eleven patients were included who underwent macroscopically total removal of primary glioblastoma and at least one re-craniotomy for recurrence. Immunohistochemical staining was performed on paraffin-embedded specimens of initial tumors with specific antibodies against MLH1, MSH2, and MSH6. RESULTS were compared to the Ki67 proliferation index and patient survival. Additionally, fresh frozen samples from 16 paired initial and recurrent specimens were examined using real-time reverse transcription polymerase chain reaction (RT-PCR) with specific primers against MLH1, MSH2, and MSH6. RESULTS were compared to MGMT status and survival. (1) Immunohistochemical expression of MSH6 was significantly associated with the Ki67 proliferation index (PMLH1, MLH2, and MSH6 over treatment combined with lacking MGMT methylation. In another two patients, decreased MLH1, MSH2, and MSH6 expression was observed in combination with MGMT promoter methylation. Our data indicate that there may be glioblastoma patient subgroups characterized by MMR-expression changes beyond MGMT promoter methylation. The immunohistochemical expression of MLH1, MSH2, and MSH6 in initial glioblastoma is not associated with patient survival.

  17. Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Eke, Iris; Storch, Katja; Kaestner, Ina; Vehlow, Anne [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Faethe, Christina; Mueller-Klieser, Wolfgang [Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz (Germany); Taucher-Scholz, Gisela [Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt (Germany); Temme, Achim; Schackert, Gabriele [Section of Experimental Neurosurgery/Tumor Immunology, Department of Neurosurgery, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Cordes, Nils, E-mail: Nils.Cordes@Oncoray.de [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Department of Radiation Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany)

    2012-11-15

    Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg, {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.

  18. PI3K and Bcl-2 inhibition primes glioblastoma cells to apoptosis through downregulation of Mcl-1 and Phospho-BAD.

    Science.gov (United States)

    Pareja, Fresia; Macleod, David; Shu, Chang; Crary, John F; Canoll, Peter D; Ross, Alonzo H; Siegelin, Markus D

    2014-07-01

    Glioblastoma multiforme (GBM) is a highly malignant human brain neoplasm with limited therapeutic options. GBMs display a deregulated apoptotic pathway with high levels of the antiapoptotic Bcl-2 family of proteins and overt activity of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Therefore, combined interference of the PI3K pathway and the Bcl-2 family of proteins is a reasonable therapeutic strategy. ABT-263 (Navitoclax), an orally available small-molecule Bcl-2 inhibitor, and GDC-0941, a PI3K inhibitor, were used to treat established glioblastoma and glioblastoma neurosphere cells, alone or in combination. Although GDC-0941 alone had a modest effect on cell viability, treatment with ABT-263 displayed a marked reduction of cell viability and induction of apoptotic cell death. Moreover, combinatorial therapy using ABT-263 and GDC-0941 showed an enhanced effect, with a further decrease in cellular viability. Furthermore, combination treatment abrogated the ability of stem cell-like glioma cells to form neurospheres. ABT-263 and GDC-0941, in combination, resulted in a consistent and significant increase of Annexin V positive cells and loss of mitochondrial membrane potential compared with either monotherapy. The combination treatment led to enhanced cleavage of both initiator and effector caspases. Mechanistically, GDC-0941 depleted pAKT (Serine 473) levels and suppressed Mcl-1 protein levels, lowering the threshold for the cytotoxic actions of ABT-263. GDC-0941 decreased Mcl-1 in a posttranslational manner and significantly decreased the half-life of Mcl-1 protein. Ectopic expression of human Mcl-1 mitigated apoptotic cell death induced by the drug combination. Furthermore, GDC-0941 modulated the phosphorylation status of BAD, thereby further enhancing ABT-263-mediated cell death. Combination therapy with ABT-263 and GDC-0941 has novel therapeutic potential by specifically targeting aberrantly active, deregulated pathways in GBM, overcoming

  19. Shift of microRNA profile upon orthotopic xenografting of glioblastoma spheroid cultures

    DEFF Research Database (Denmark)

    Halle, Bo; Thomassen, Mads; Venkatesan, Ranga

    2016-01-01

    Glioblastomas always recur despite surgery, radiotherapy and chemotherapy. A key player in the therapeutic resistance may be immature tumor cells with stem-like properties (TSCs) escaping conventional treatment. A group of promising molecular targets are microRNAs (miRs). miRs are small non-codin...... therapeutic targets for anti-miRs to identify novel treatment options for GBM patients....

  20. The impact of bevacizumab treatment on survival and quality of life in newly diagnosed glioblastoma patients

    International Nuclear Information System (INIS)

    Poulsen, Hans Skovgaard; Urup, Thomas; Michaelsen, Signe Regner; Staberg, Mikkel; Villingshøj, Mette; Lassen, Ulrik

    2014-01-01

    Glioblastoma multiforme (GBM) remains one of the most devastating tumors, and patients have a median survival of 15 months despite aggressive local and systemic therapy, including maximal surgical resection, radiation therapy, and concomitant and adjuvant temozolomide. The purpose of antineoplastic treatment is therefore to prolong life, with a maintenance or improvement of quality of life. GBM is a highly vascular tumor and overexpresses the vascular endothelial growth factor A, which promotes angiogenesis. Preclinical data have suggested that anti-angiogenic treatment efficiently inhibits tumor growth. Bevacizumab is a humanized monoclonal antibody against vascular endothelial growth factor A, and treatment has shown impressive response rates in recurrent GBM. In addition, it has been shown that response is correlated to prolonged survival and improved quality of life. Several investigations in newly diagnosed GBM patients have been performed during recent years to test the hypothesis that newly diagnosed GBM patients should be treated with standard multimodality treatment, in combination with bevacizumab, in order to prolong life and maintain or improve quality of life. The results of these studies along with relevant preclinical data will be described, and pitfalls in clinical and paraclinical endpoints will be discussed

  1. Prospective study evaluating the radiosensitizing effect of reduced doses of temozolomide in the treatment of Egyptian patients with glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Gaber M

    2013-10-01

    Full Text Available May Gaber, Hanan Selim, Tamer El-NahasDepartment of Clinical Oncology, Cairo University, Cairo, EgyptPurpose: In view of the documented toxicity of continuous daily radiosensitizer doses of temozolomide concomitant with radiation in the treatment of glioblastoma multiforme, we aimed to compare it with a different schedule of abbreviated radiosensitizer dosing.Patients and methods: This was a randomized prospective study comparing toxicity and survival in 60 Egyptian patients with glioblastoma multiforme. Patients in arm I received temozolomide at a dose of 75 mg/m2 daily with radiotherapy for 42 days, starting 4 weeks after surgery and reaching to a total radiation dose of 60 Gy/30 Fractions/6 weeks, while patients in arm II received temozolomide at a dose of 75 mg/m2 concomitantly with the same radiotherapy schedule daily in the first and last weeks of the same radiotherapy program.Results: Common grade 1–2 adverse events were malaise in 28 patients (46.7%, followed by alopecia (40% and nausea (26.7%. Grade 3–4 convulsion and decreased level of consciousness was seen in only four patients who were all from arm I. The median progression-free survival (PFS for the entire study population was 10.6 months (95% confidence interval [CI] 7.3–14, and PFS at 12 months was 32%. The median PFS in arm I was 8.8 months (95% CI 5.9–11.7 and in arm II 11.5 months (95% CI 8.9–14.2, and PFS at 12 months for both arms was 32% and 30% respectively (P=0.571. The median overall survival (OS of the whole group of patients was 14.2 months (95% CI 13–15.5, and OS was 70% at 12 months and 25% at 18 months. The median OS for patients in arm I was 12.3 months (95% CI 7.7–16.9, whereas in arm II it was 14.3 months (95% CI 14–14.7 (P=0.83.Conclusion: Reduced radiosensitizer dosing of temozolomide concomitant with radiotherapy in glioblastoma multiforme exhibited comparable efficacy with a classic continuous daily schedule, though with better tolerability

  2. Aplastic anemia as a cause of death in a patient with glioblastoma multiforme treated with temozolomide

    International Nuclear Information System (INIS)

    Kopecky, Jindrich; Priester, Peter; Slovacek, Ladislav; Petera, Jiri; Macingova, Zuzana; Kopecky, Otakar

    2010-01-01

    Background: Standard treatment of glioblastoma multiforme consists of postoperative radiochemotherapy with temozolomide, followed by a 6-month chemotherapy. Serious hematologic complications are rarely reported. Case Report and Results: The authors present the case of a 61-year-old female patient with glioblastoma multiforme treated with external-beam radiation therapy and concomitant temozolomide. After completion of treatment, the patient developed symptoms of serious aplastic anemia that eventually led to death due to prolonged neutro- and thrombocytopenia followed by infectious complications. Conclusion: Lethal complications following temozolomide are, per se, extremely rare, however, a total of four other cases of aplastic anemia have been reported in the literature so far. (orig.)

  3. Aplastic anemia as a cause of death in a patient with glioblastoma multiforme treated with temozolomide

    Energy Technology Data Exchange (ETDEWEB)

    Kopecky, Jindrich; Priester, Peter; Slovacek, Ladislav; Petera, Jiri; Macingova, Zuzana [Dept. of Clinical Oncology and Radiotherapy, Charles Univ. Hospital and Faculty of Medicine in Hradec Kralove (Czech Republic); Kopecky, Otakar [Clinical Oncology, Regional Hospital Nachod (Czech Republic)

    2010-08-15

    Background: Standard treatment of glioblastoma multiforme consists of postoperative radiochemotherapy with temozolomide, followed by a 6-month chemotherapy. Serious hematologic complications are rarely reported. Case Report and Results: The authors present the case of a 61-year-old female patient with glioblastoma multiforme treated with external-beam radiation therapy and concomitant temozolomide. After completion of treatment, the patient developed symptoms of serious aplastic anemia that eventually led to death due to prolonged neutro- and thrombocytopenia followed by infectious complications. Conclusion: Lethal complications following temozolomide are, per se, extremely rare, however, a total of four other cases of aplastic anemia have been reported in the literature so far. (orig.)

  4. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells

    Science.gov (United States)

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; de Oliveira, Daniela Mara; Marti, Luciana C.; Cabral, Francisco Romero; de Souza, Jean Gabriel; Boufleur, Pamela; Malheiros, Suzana M.F.; de Paiva Neto, Manuel A.; da Cruz, Edgard Ferreira; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2016-01-01

    Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types. PMID:27244897

  5. An Update in the Use of Antibodies to Treat Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Norma Y. Hernández-Pedro

    2013-01-01

    Full Text Available Glioblastoma is a deadly brain disease and modest improvement in survival has been made. At initial diagnosis, treatment consists of maximum safe surgical resection, followed by temozolomide and chemoirradiation or adjuvant temozolomide alone. However, these treatments do not improve the prognosis and survival of patients. New treatment strategies are being sought according to the biology of tumors. The epidermal growth factor receptor has been considered as the hallmark in glioma tumors; thereby, some antibodies have been designed to bind to this receptor and block the downstream signaling pathways. Also, it is known that vascularization plays an important role in supplying new vessels to the tumor; therefore, new therapy has been guided to inhibit angiogenic growth factors in order to limit tumor growth. An innovative strategy in the treatment of glial tumors is the use of toxins produced by bacteria, which may be coupled to specific carrier-ligands and used for tumoral targeting. These carrier-ligands provide tumor-selective properties by the recognition of a cell-surface receptor on the tumor cells and promote their binding of the toxin-carrier complex prior to entry into the cell. Here, we reviewed some strategies to improve the management and treatment of glioblastoma and focused on the use of antibodies.

  6. Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma.

    Science.gov (United States)

    Jung, Narae; Kwon, Ho Jeong; Jung, Hye Jin

    2018-01-01

    Glioblastoma stem cell targeted therapies have become a powerful strategy for the treatment of this deadliest brain tumor. We demonstrate for the first time that downregulation of mitochondrial ubiquinol-cytochrome c reductase binding protein (UQCRB) inhibits the cancer stem cell-like properties in human glioblastoma cells. The synthetic small molecules targeting UQCRB significantly suppressed not only the self-renewal capacity such as growth and neurosphere formation, but also the metastatic potential such as migration and invasion of glioblastoma stem‑like cells (GSCs) derived from U87MG and U373MG at subtoxic concentrations. Notably, the UQCRB inhibitors repressed c‑Met-mediated downstream signal transduction and hypoxia‑inducible factor‑1α (HIF‑1α) activation, thereby reducing the expression levels of GSC markers including CD133, Nanog, Oct4 and Sox2 in the GSCs. Furthermore, the UQCRB inhibitors decreased mitochondrial ROS generation and mitochondrial membrane potential in the GSCs, indicating that they regulate the mitochondrial function in GSCs. Indeed, the knockdown of UQCRB gene by UQCRB siRNA significantly inhibited the cancer stem cell-like phenotypes as well as the expression of stemness markers by blocking mitochondrial ROS/HIF‑1α/c‑Met pathway in U87MG GSCs. These findings suggest that UQCRB and its inhibitors could be a new therapeutic target and lead compounds for eliminating cancer stem cells in glioblastoma.

  7. Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma.

    Directory of Open Access Journals (Sweden)

    Maria Kärrlander

    Full Text Available Extensive angiogenesis, formation of new capillaries from pre-existing blood vessels, is an important feature of malignant glioma. Several antiangiogenic drugs targeting vascular endothelial growth factor (VEGF or its receptors are currently in clinical trials as therapy for high-grade glioma and bevacizumab was recently approved by the FDA for treatment of recurrent glioblastoma. However, the modest efficacy of these drugs and emerging problems with anti-VEGF treatment resistance welcome the development of alternative antiangiogenic therapies. One potential candidate is histidine-rich glycoprotein (HRG, a plasma protein with antiangiogenic properties that can inhibit endothelial cell adhesion and migration. We have used the RCAS/TV-A mouse model for gliomas to investigate the effect of HRG on brain tumor development. Tumors were induced with platelet-derived growth factor-B (PDGF-B, in the presence or absence of HRG. We found that HRG had little effect on tumor incidence but could significantly inhibit the development of malignant glioma and completely prevent the occurrence of grade IV tumors (glioblastoma.

  8. A potential non-invasive glioblastoma treatment: Nose-to-brain delivery of farnesylthiosalicylic acid incorporated hybrid nanoparticles.

    Science.gov (United States)

    Sekerdag, Emine; Lüle, Sevda; Bozdağ Pehlivan, Sibel; Öztürk, Naile; Kara, Aslı; Kaffashi, Abbas; Vural, Imran; Işıkay, Ilkay; Yavuz, Burҫin; Oguz, Kader Karlı; Söylemezoğlu, Figen; Gürsoy-Özdemir, Yasemin; Mut, Melike

    2017-09-10

    New drug delivery systems are highly needed in research and clinical area to effectively treat gliomas by reaching a high antineoplastic drug concentration at the target site without damaging healthy tissues. Intranasal (IN) administration, an alternative route for non-invasive drug delivery to the brain, bypasses the blood-brain-barrier (BBB) and eliminates systemic side effects. This study evaluated the antitumor efficacy of farnesylthiosalicylic acid (FTA) loaded (lipid-cationic) lipid-PEG-PLGA hybrid nanoparticles (HNPs) after IN application in rats. FTA loaded HNPs were prepared, characterized and evaluated for cytotoxicity. Rat glioma 2 (RG2) cells were implanted unilaterally into the right striatum of female Wistar rats. 10days later, glioma bearing rats received either no treatment, or 5 repeated doses of 500μM freshly prepared FTA loaded HNPs via IN or intravenous (IV) application. Pre-treatment and post-treatment tumor sizes were determined with MRI. After a treatment period of 5days, IN applied FTA loaded HNPs achieved a significant decrease of 55.7% in tumor area, equal to IV applied FTA loaded HNPs. Herewith, we showed the potential utility of IN application of FTA loaded HNPs as a non-invasive approach in glioblastoma treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers.

    Directory of Open Access Journals (Sweden)

    Stefanie Wohlfart

    Full Text Available BACKGROUND: Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid (PLGA nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery after their intravenous injection. In the present study the anti-tumour efficacy of the surfactant-coated doxorubicin-loaded PLGA nanoparticles against rat glioblastoma 101/8 was investigated using histological and immunohistochemical methods. METHODOLOGY: The particles were prepared by a high-pressure solvent evaporation technique using 1% polyvinylalcohol (PLGA/PVA or human serum albumin (PLGA/HSA as stabilizers. Additionally, lecithin-containing PLGA/HSA particles (Dox-Lecithin-PLGA/HSA were prepared. For evaluation of the antitumour efficacy the glioblastoma-bearing rats were treated intravenously with the doxorubicin-loaded nanoparticles coated with poloxamer 188 using the following treatment regimen: 3 × 2.5 mg/kg on day 2, 5 and 8 after tumour implantation; doxorubicin and poloxamer 188 solutions were used as controls. On day 18, the rats were sacrificed and the antitumour effect was determined by measurement of tumour size, necrotic areas, proliferation index, and expression of GFAP and VEGF as well as Isolectin B4, a marker for the vessel density. CONCLUSION: The results reveal a considerable anti-tumour effect of the doxorubicin-loaded nanoparticles. The overall best results were observed for Dox-Lecithin-PLGA/HSA. These data demonstrate that the poloxamer 188-coated PLGA nanoparticles enable delivery of doxorubicin across the blood-brain barrier in the therapeutically effective concentrations.

  10. Reasons for dropout from drug abuse treatment: symptoms, personality, and motivation.

    Science.gov (United States)

    Ball, Samuel A; Carroll, Kathleen M; Canning-Ball, Monica; Rounsaville, Bruce J

    2006-02-01

    Previous research has identified risk factors for early attrition from substance abuse treatment, but has not assessed reasons for dropout from the client's perspective. Interview and self-report assessment data were collected from 24 clients who prematurely terminated outpatient treatment to evaluate their subjective reasons for dropping out and the association of these reasons with demographic and clinical variables. Items from scales indicating problems with client motivation or conflicts with program staff were the most commonly endorsed. The severity of participant's symptoms and logistical problems interfering with appointments were less commonly reported as reasons for dropping out. Demographic, substance abuse, and motivational stage indicators were infrequently associated with subjective reasons for dropout. In contrast, indicators of maladaptive personality functioning were strongly associated with many reasons for dropping out, especially concerns about privacy and boundary issues within the program. Results from this preliminary evaluation will guide the development of an instrument and intervention focused on dropout risk factors and treatment reengagement.

  11. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria); DeVaney, Trevor [Institute of Biophysics, Medical University of Graz (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz (Austria); Raynham, Tony; Ireson, Christopher [Cancer Research Technology Ltd, London (United Kingdom); Sattler, Wolfgang, E-mail: wolfgang.sattler@medunigraz.at [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria)

    2013-08-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun{sup S73} phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  12. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    International Nuclear Information System (INIS)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea; DeVaney, Trevor; Zimmer, Andreas; Raynham, Tony; Ireson, Christopher; Sattler, Wolfgang

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun S73 phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  13. Appearance vs. health reasons for seeking treatment among obese patients with binge eating disorder.

    Science.gov (United States)

    Reas, Deborah L; Masheb, Robin M; Grilo, Carlos M

    2004-05-01

    This study examined reasons for seeking treatment reported by obese patients diagnosed with binge eating disorder (BED). Participants were 248 adults (58 men and 190 women) who met DSM criteria for BED. Participants were recruited through advertisements for treatment studies looking for persons who wanted to "stop binge eating and lose weight." Patients' reasons for seeking treatment were examined with respect to demography (gender and age), obesity (BMI and age of onset), features of eating disorders, and associated psychological functioning (depression and self-esteem). Of the 248 participants, 64% reported health concerns and 36% reported appearance concerns as their primary reason for seeking treatment. Reasons for seeking treatment did not differ significantly by gender. Patients seeking treatment because of appearance-related reasons had lower BMIs than those reporting health-related reasons (34.8 vs. 38.5, respectively), but they reported greater body dissatisfaction, more features of eating disorders, and lower self-esteem. Reasons that prompt treatment seeking among obese individuals with BED reflect meaningful patient characteristics and, therefore, warrant assessment and consideration during treatment planning. Further research is needed to determine whether reasons for treatment seeking among different obese patient groups affect treatment outcomes. Copyright 2004 NAASO

  14. Age groups related glioblastoma study based on radiomics approach.

    Science.gov (United States)

    Li, Zeju; Wang, Yuanyuan; Yu, Jinhua; Guo, Yi; Zhang, Qi

    2017-12-01

    Glioblastoma is the most aggressive malignant brain tumor with poor prognosis. Radiomics is a newly emerging and promising technique to reveal the complex relationships between high-throughput medical image features and deep information of disease including pathology, biomarkers and genomics. An approach was developed to investigate the internal relationship between magnetic resonance imaging (MRI) features and the age-related origins of glioblastomas based on a quantitative radiomics method. A fully automatic image segmentation method was applied to segment the tumor regions from three dimensional MRI images. 555 features were then extracted from the image data. By analyzing large numbers of quantitative image features, some predictive and prognostic information could be obtained by the radiomics approach. 96 patients diagnosed with glioblastoma pathologically have been divided into two age groups (age groups (T test, p age difference (T test, p= .006). In conclusion, glioblastoma in different age groups present different radiomics-feature patterns with statistical significance, which indicates that glioblastoma in different age groups should have different pathologic, protein, or genic origins.

  15. Radiotherapy Results of Brain Astrocytoma and Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Choi, Doo Ho; Kim, Il Han; Ha, Sung Whan; Chi, Je Geun

    1988-01-01

    A retrospective analysis was performed on 49 patients with astrocytoma of glioblastoma multiforme of brain who received postoperative radiotherapy in the period between February 1979 and December 1985. Fourteen patients had grade I astrocytoma, 11 patients grade II, 14 patients grade III, and 10 patients glioblastoma multiforme. Three year actuarial survival rates were 85.7%, 44.6% and 23.1% for grade I, II, and III astrocytomas, respectively. One and 2 year actuarial survival rates for patients with glioblastoma multiforme were 54.5% and 27.3%, respectively. Histologic grade, age, extent of operation and tumor location were revealed to be prognosticators

  16. Novel strategies in glioblastoma surgery aim at safe, super-maximum resection in conjunction with local therapies

    NARCIS (Netherlands)

    J.G. Wolbers (John)

    2014-01-01

    textabstractThe biggest challenge in neuro-oncology is the treatment of glioblastoma, which exhibits poor prognosis and is increasing in incidence in an increasing aging population. Diverse treatment strategies aim at maximum cytoreduction and ensuring good quality of life. We discuss multimodal

  17. Clinico-pathological studies of CSF dissemination of glioblastoma and medulloblastoma

    International Nuclear Information System (INIS)

    Kato, Kyozo; Yoshida, Jun; Kageyama, Naoki

    1986-01-01

    Clinico-pathological findings of CSF dissemination which was diagnosed on CT scan, were studied on 13 cases of glioblastoma and 9 cases of medulloblastoma. The type of CSF dissemination and the prognosis of patients were both different between glioblastoma and medulloblastoma. In the former, the dissemination was predominantly in ventricular walls and in the latter, in basal cisterns. The mean survival time after the diagnosis of dissemination is 6 months of glioblastoma as compared with 13 months of medulloblastoma. The Pathological studies show that subependymal and/or subpial infiltration of tumor cells, and thickness of arachnoid membrane by marked mesodermal reaction were demonstrated in cases of glioblastoma. On the contrary, tumor cells of medulloblastoma grow markedly in the subarachnoid space and/or on the ependymal layers. From these pathological findings of CSF dissemination, it will be resulted that the prognosis of glioblastoma is much more poor that of medulloblastoma. (author)

  18. Inhibition of glioblastoma tumorspheres by combined treatment with 2-deoxyglucose and metformin.

    Science.gov (United States)

    Kim, Eui Hyun; Lee, Ji-Hyun; Oh, Yoonjee; Koh, Ilkyoo; Shim, Jin-Kyoung; Park, Junseong; Choi, Junjeong; Yun, Mijin; Jeon, Jeong Yong; Huh, Yong Min; Chang, Jong Hee; Kim, Sun Ho; Kim, Kyung-Sup; Cheong, Jae-Ho; Kim, Pilnam; Kang, Seok-Gu

    2017-02-01

    Deprivation of tumor bioenergetics by inhibition of multiple energy pathways has been suggested as an effective therapeutic approach for various human tumors. However, this idea has not been evaluated in glioblastoma (GBM). We hypothesized that dual inhibition of glycolysis and oxidative phosphorylation could effectively suppress GBM tumorspheres (TS). Effects of 2-deoxyglucose (2DG) and metformin, alone and in combination, on GBM-TS were evaluated. Viability, cellular energy metabolism status, stemness, invasive properties, and GBM-TS transcriptomes were examined. In vivo efficacy was tested in a mouse orthotopic xenograft model. GBM-TS viability was decreased by the combination of 2DG and metformin. ATP assay and PET showed that cellular energy metabolism was also decreased by this combination. Sphere formation, expression of stemness-related proteins, and invasive capacity of GBM-TS were also significantly suppressed by combined treatment with 2DG and metformin. A transcriptome analysis showed that the expression levels of stemness- and epithelial mesenchymal transition-related genes were also significantly downregulated by combination of 2DG and metformin. Combination treatment also prolonged survival of tumor-bearing mice and decreased invasiveness of GBM-TS. The combination of 2DG and metformin effectively decreased the stemness and invasive properties of GBM-TS and showed a potential survival benefit in a mouse orthotopic xenograft model. Our findings suggest that targeting TS-forming cells by this dual inhibition of cellular bioenergetics warrants expedited clinical evaluation for the treatment of GBM. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  19. Active CREB1 promotes a malignant TGFβ2 autocrine loop in glioblastoma.

    Science.gov (United States)

    Rodón, Laura; Gonzàlez-Juncà, Alba; Inda, María del Mar; Sala-Hojman, Ada; Martínez-Sáez, Elena; Seoane, Joan

    2014-10-01

    In advanced cancer, including glioblastoma, the TGFβ pathway acts as an oncogenic factor. Some tumors exhibit aberrantly high TGFβ activity, and the mechanisms underlying this phenomenon are not well understood. We have observed that TGFβ can induce TGFβ2, generating an autocrine loop leading to aberrantly high levels of TGFβ2. We identified cAMP-responsive element-binding protein 1 (CREB1) as the critical mediator of the induction of TGFβ2 by TGFβ. CREB1 binds to the TGFB2 gene promoter in cooperation with SMAD3 and is required for TGFβ to activate transcription. Moreover, the PI3K-AKT and RSK pathways regulate the TGFβ2 autocrine loop through CREB1. The levels of CREB1 and active phosphorylated CREB1 correlate with TGFβ2 in glioblastoma. In addition, using patient-derived in vivo models of glioblastoma, we found that CREB1 levels determine the expression of TGFβ2. Our results show that CREB1 can be considered a biomarker to stratify patients for anti-TGFβ treatments and a therapeutic target in glioblastoma. TGFβ is considered a promising therapeutic target, and several clinical trials using TGFβ inhibitors are generating encouraging results. Here, we discerned the molecular mechanisms responsible for the aberrantly high levels of TGFβ2 found in certain tumors, and we propose biomarkers to predict the clinical response to anti-TGFβ therapies. ©2014 American Association for Cancer Research.

  20. Survival benefit of surgery in recurrent glioblastoma multiforme.

    Science.gov (United States)

    Choudry, Usama Khalid; Khan, Saad Akhtar; Shamim, Muhammad Shahzad

    2017-12-01

    There is an ongoing debate regarding role of surgery for recurrent glioblastoma multiforme (GBM). Older literature hinted at only modest survival benefits with surgery and a high rate of morbidity. However, more recent literature suggests better survival that may be attributed to better surgical techniques and better options in adjuvant treatment. Herein the authors review recent literature with regards to the possible role of surgery in recurrent GBM and also look into the key factors impacting second surgery. .

  1. The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Hoejklint Poulsen, Sidsel [The Finsen Center, Rigshospitalet, Department of Radiation Biology, Copenhagen (Denmark); Center of Diagnostic Investigation, Rigshospitalet, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen (Denmark); Urup, Thomas; Grunnet, Kirsten; Skovgaard Poulsen, Hans [The Finsen Center, Rigshospitalet, Department of Radiation Biology, Copenhagen (Denmark); The Finsen Center, Rigshospitalet, Department of Oncology, Copenhagen (Denmark); Jarle Christensen, Ib [University of Copenhagen, Hvidovre Hospital, Laboratory of Gastroenterology, Copenhagen (Denmark); Larsen, Vibeke Andree [Center of Diagnostic Investigation, Rigshospitalet, Department of Radiology, Copenhagen (Denmark); Lundemann Jensen, Michael; Munck af Rosenschoeld, Per [The Finsen Center, Rigshospitalet, Department of Oncology, Copenhagen (Denmark); The Finsen Center, Rigshospitalet, Section of Radiotherapy, Copenhagen (Denmark); Law, Ian [Center of Diagnostic Investigation, Rigshospitalet, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen (Denmark)

    2017-03-15

    Glioblastoma patients show a great variability in progression free survival (PFS) and overall survival (OS). To gain additional pretherapeutic information, we explored the potential of O-(2-{sup 18}F-fluoroethyl)-L-tyrosine (FET) PET as an independent prognostic biomarker. We retrospectively analyzed 146 consecutively treated, newly diagnosed glioblastoma patients. All patients were treated with temozolomide and radiation therapy (RT). CT/MR and FET PET scans were obtained postoperatively for RT planning. We used Cox proportional hazards models with OS and PFS as endpoints, to test the prognostic value of FET PET biological tumor volume (BTV). Median follow-up time was 14 months, and median OS and PFS were 16.5 and 6.5 months, respectively. In the multivariate analysis, increasing BTV (HR = 1.17, P < 0.001), poor performance status (HR = 2.35, P < 0.001), O(6)-methylguanine-DNA methyltransferase protein status (HR = 1.61, P = 0.024) and higher age (HR = 1.32, P = 0.013) were independent prognostic factors of poor OS. For poor PFS, only increasing BTV (HR = 1.18; P = 0.002) was prognostic. A prognostic index for OS was created based on the identified prognostic factors. Large BTV on FET PET is an independent prognostic factor of poor OS and PFS in glioblastoma patients. With the introduction of FET PET, we obtain a prognostic index that can help in glioblastoma treatment planning. (orig.)

  2. Long-Term Survival after Gamma Knife Radiosurgery in a Case of Recurrent Glioblastoma Multiforme: A Case Report and Review of the Literature

    Science.gov (United States)

    Thumma, Sudheer R.; Elaimy, Ameer L.; Daines, Nathan; Mackay, Alexander R.; Lamoreaux, Wayne T.; Fairbanks, Robert K.; Demakas, John J.; Cooke, Barton S.; Lee, Christopher M.

    2012-01-01

    The management of recurrent glioblastoma is highly challenging, and treatment outcomes remain uniformly poor. Glioblastoma is a highly infiltrative tumor, and complete surgical resection of all microscopic extensions cannot be achieved at the time of initial diagnosis, and hence local recurrence is observed in most patients. Gamma Knife radiosurgery has been used to treat these tumor recurrences for select cases and has been successful in prolonging the median survival by 8–12 months on average for select cases. We present the unique case of a 63-year-old male with multiple sequential recurrences of glioblastoma after initial standard treatment with surgery followed by concomitant external beam radiation therapy and chemotherapy (temozolomide). The patient was followed clinically as well as with surveillance MRI scans at every 2-3-month intervals. The patient underwent Gamma Knife radiosurgery three times for 3 separate tumor recurrences, and the patient survived for seven years following the initial diagnosis with this aggressive treatment. The median survival in patients with recurrent glioblastoma is usually 8–12 months after recurrence, and this unique case illustrates that aggressive local therapy can lead to long-term survivors in select situations. We advocate that each patient treatment at the time of recurrence should be tailored to each clinical situation and desire for quality of life and improved longevity. PMID:22548078

  3. Circulating endothelial cells and procoagulant microparticles in patients with glioblastoma: prognostic value.

    Directory of Open Access Journals (Sweden)

    Gaspar Reynés

    Full Text Available AIM: Circulating endothelial cells and microparticles are prognostic factors in cancer. However, their prognostic and predictive value in patients with glioblastoma is unclear. The objective of this study was to investigate the potential prognostic value of circulating endothelial cells and microparticles in patients with newly diagnosed glioblastoma treated with standard radiotherapy and concomitant temozolomide. In addition, we have analyzed the methylation status of the MGMT promoter. METHODS: Peripheral blood samples were obtained before and at the end of the concomitant treatment. Blood samples from healthy volunteers were also obtained as controls. Endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Microparticles were quantified by flow cytometry. Microparticle-mediated procoagulant activity was measured by endogen thrombin generation and by phospholipid-dependent clotting time. Methylation status of MGMT promoter was determined by multiplex ligation-dependent probe amplification. RESULTS: Pretreatment levels of circulating endothelial cells and microparticles were higher in patients than in controls (p<0.001. After treatment, levels of microparticles and thrombin generation decreased, and phospholipid-dependent clotting time increased significantly. A high pretreatment endothelial cell count, corresponding to the 99(th percentile in controls, was associated with poor overall survival. MGMT promoter methylation was present in 27% of tumor samples and was associated to a higher overall survival (66 weeks vs 30 weeks, p<0.004. CONCLUSION: Levels of circulating endothelial cells may have prognostic value in patients with glioblastoma.

  4. Glioblastoma as differential diagnosis of autoimmune encephalitis.

    Science.gov (United States)

    Vogrig, Alberto; Joubert, Bastien; Ducray, Francois; Thomas, Laure; Izquierdo, Cristina; Decaestecker, Kévin; Martinaud, Olivier; Gerardin, Emmanuel; Grand, Sylvie; Honnorat, Jérome

    2018-03-01

    To identify the clinical and radiological features that should raise suspicion for the autoimmune encephalitis (AE)-like presentation of glioblastoma. This is an observational, retrospective case series of patients referred to the French National Reference Center on Paraneoplastic Neurological Diseases for suspected AE (possible, probable or definite, using the 2016 criteria) who later received a final diagnosis of glioblastoma according to 2016 WHO criteria. An extensive literature search was also conducted for similar existing cases. Between 2014 and 2016, 306 patients were referred to our center for suspected AE. Six of these patients (2%) later developed pathologically confirmed glioblastoma. Thirteen patients (9 male) were included for analysis (6 from the present series and 7 from the literature); median age was 63. Initially, a diagnosis of AE was clinically suspected based on: working memory deficits (77%), seizures (62%) (including status epilepticus in 23%), and psychiatric symptoms (46%). Initial brain MRI was not in favor of a typical glioblastoma pattern and showed bilateral (54%) or unilateral selective limbic involvement. Five patients exhibited initial slight contrast enhancement. A clear inflammatory CSF was present in five patients and three from the literature showed autoantibody positivity (NMDAR, VGKC, GluRepsilon2). Median delay between suspicions of AE to GBM diagnosis was 3 months (range 1.5-24) and one patient from the literature was diagnosed post-mortem. An alternative diagnosis of glioblastoma should be considered in patients presenting initially as AE, especially in patients who do not fulfill the criteria for definite AE and in those with a poor clinical evolution despite initial improvement.

  5. Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM).

    Science.gov (United States)

    Demeure, Kevin; Fack, Fred; Duriez, Elodie; Tiemann, Katja; Bernard, Amandine; Golebiewska, Anna; Bougnaud, Sébastien; Bjerkvig, Rolf; Domon, Bruno; Niclou, Simone P

    2016-02-01

    Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future

  6. Drop-out from a drug treatment clinic and associated reasons.

    Science.gov (United States)

    Hoseinie, Leila; Gholami, Zhaleh; Shadloo, Behrang; Mokri, Azarakhsh; Amin-Esmaeili, Masoumeh; Rahimi-Movaghar, Afarin

    2017-05-01

    The aim of this study was to assess drop-out rates and associated reasons among patients at the Iranian National Center for Addiction Studies (INCAS) clinic. In a one-year period (April 2014 to March 2015), all patients with drug dependence who had been referred for treatment and attended for a first assessment were included in this study (N=242). Those who received treatment were followed until March 2016. Survival analysis showed that 70.2% had dropped out from treatment. Log rank test showed that treatment drop-out rates differed between the different approaches used (P < 0.001), with the lowest slope inbuprenorphine maintenance treatment and the highest in the detoxification programme. Drop-out rates within the first three months was 62% (SE= 0.05) and 82.4% (SE=0.03) for opioids and stimulants dependence, respectively. Analyses were performed using SPSS (Version 21.0) and STATA software, (version 13.0). From the patients' perspective, motivational inconsistencies were considered as the main reason for not starting or leaving treatment. The findings of this study could give service providers a better grasp of drop-out rates and the associated reasons.

  7. Repurposing phenformin for the targeting of glioma stem cells and the treatment of glioblastoma

    Science.gov (United States)

    Jiang, Wei; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Brodie, Ziv; Mikkelsen, Tom; Poisson, Laila; Shackelford, David B.; Brodie, Chaya

    2016-01-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor with poor prognosis. Here, we studied the effects of phenformin, a mitochondrial complex I inhibitor and more potent chemical analog of the diabetes drug metformin on the inhibition of cell growth and induction of apoptosis of glioma stem cells (GSCs) using both in vitro and in vivo models. Phenformin inhibited the self-renewal of GSCs, decreased the expression of stemness and mesenchymal markers and increased the expression of miR-124, 137 and let-7. Silencing of let-7 abrogated phenformin effects on the self-renewal of GSCs via a pathway associated with inhibition of H19 and HMGA2 expression. Moreover, we demonstrate that phenformin inhibited tumor growth and prolonged the overall survival of mice orthotopically transplanted with GSCs. Combined treatments of phenformin and temozolomide exerted an increased antitumor effect on GSCs in vitro and in vivo. In addition, dichloroacetate, an inhibitor of the glycolysis enzyme pyruvate dehydrogenase kinase, that decreases lactic acidosis induced by biguanides, enhanced phenformin effects on the induction of cell death in GSCs and prolonged the survival of xenograft-bearing mice. Our results demonstrate for the first time that phenformin targets GSCs and can be efficiently combined with current therapies for GBM treatment and GSC eradication. PMID:27486821

  8. Clinical Neuropathology practice news 1-2014: Pyrosequencing meets clinical and analytical performance criteria for routine testing of MGMT promoter methylation status in glioblastoma

    Science.gov (United States)

    Preusser, Matthias; Berghoff, Anna S.; Manzl, Claudia; Filipits, Martin; Weinhäusel, Andreas; Pulverer, Walter; Dieckmann, Karin; Widhalm, Georg; Wöhrer, Adelheid; Knosp, Engelbert; Marosi, Christine; Hainfellner, Johannes A.

    2014-01-01

    Testing of the MGMT promoter methylation status in glioblastoma is relevant for clinical decision making and research applications. Two recent and independent phase III therapy trials confirmed a prognostic and predictive value of the MGMT promoter methylation status in elderly glioblastoma patients. Several methods for MGMT promoter methylation testing have been proposed, but seem to be of limited test reliability. Therefore, and also due to feasibility reasons, translation of MGMT methylation testing into routine use has been protracted so far. Pyrosequencing after prior DNA bisulfite modification has emerged as a reliable, accurate, fast and easy-to-use method for MGMT promoter methylation testing in tumor tissues (including formalin-fixed and paraffin-embedded samples). We performed an intra- and inter-laboratory ring trial which demonstrates a high analytical performance of this technique. Thus, pyrosequencing-based assessment of MGMT promoter methylation status in glioblastoma meets the criteria of high analytical test performance and can be recommended for clinical application, provided that strict quality control is performed. Our article summarizes clinical indications, practical instructions and open issues for MGMT promoter methylation testing in glioblastoma using pyrosequencing. PMID:24359605

  9. A novel prognostic six-CpG signature in glioblastomas

    OpenAIRE

    Yin , An-An; Lu , Nan; Etcheverry , Amandine; Aubry , Marc; Barnholtz-Sloan , Jill; Zhang , Lu-Hua; Mosser , Jean; Zhang , Wei; Zhang , Xiang; Liu , Yu-He; He , Ya-Long

    2018-01-01

    International audience; Aims: We aimed to identify a clinically useful biomarker using DNA methylation-based information to optimize individual treatment of patients with glioblastoma (GBM). Methods: A six-CpG panel was identified by incorporating genome-wide DNA methylation data and clinical information of three distinct discovery sets and was combined using a risk-score model. Different validation sets of GBMs and lower-grade gliomas and different statistical methods were implemented for pr...

  10. The small molecule, LLL12, inhibits STAT3 phosphorylation and induces apoptosis in medulloblastoma and glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Sarah Ball

    Full Text Available Tumors of the central nervous system represent a major source of cancer-related deaths, with medulloblastoma and glioblastoma being the most common malignant brain tumors in children and adults respectively. While significant advances in treatment have been made, with the 5-year survival rate for medulloblastoma at 70-80%, treating patients under 3 years of age still poses a problem due to the deleterious effects of radiation on the developing brain, and the median survival for patients with glioblastoma is only 15 months. The transcription factor, STAT3, has been found constitutively activated in a wide variety of cancers and in recent years it has become an attractive therapeutic target. We designed a non-peptide small molecule STAT3 inhibitor, LLL12, using structure-based design. LLL12 was able to inhibit STAT3 phosphorylation, decrease cell viability and induce apoptosis in medulloblastoma and glioblastoma cell lines with elevated levels of p-STAT3 (Y705. IC(50 values for LLL12 were found to be between 1.07 µM and 5.98 µM in the five cell lines expressing phosphorylated STAT3. STAT3 target genes were found to be downregulated and a decrease in STAT3 DNA binding was observed following LLL12 treatment, indicating that LLL12 is an effective STAT3 inhibitor. LLL12 was also able to inhibit colony formation, wound healing and decreased IL-6 and LIF secretion. Our results suggest that LLL12 is a potent STAT3 inhibitor and that it may be a potential therapeutic treatment for medulloblastoma and glioblastoma.

  11. Synchronous glioblastoma and medulloblastoma in a child with mismatch repair mutation.

    Science.gov (United States)

    Amayiri, Nisreen; Al-Hussaini, Maysa; Swaidan, Maisa; Jaradat, Imad; Qandeel, Monther; Tabori, Uri; Hawkins, Cynthia; Musharbash, Awni; Alsaad, Khulood; Bouffet, Eric

    2016-03-01

    Synchronous primary malignant brain tumors are rare. We present a 5-year-old boy with synchronous glioblastoma and medulloblastoma. Both tumor samples had positive p53 stain and loss of PMS2 and MLH1 stains. The child had multiple café au lait spots and a significant family history of cancer. After subtotal resection of both tumors, he received craniospinal radiation with concomitant temozolomide followed by chemotherapy, alternating cycles of cisplatin/lomustine/vincristine with temozolomide. Then, he started maintenance treatment with cis-retinoic acid (100 mg/m(2)/day for 21 days). He remained asymptomatic for 34 months despite a follow-up brain MRI consistent with glioblastoma relapse 9 months before his death. Cis-retinoic acid may have contributed to prolong survival in this child with a probable biallelic mismatch repair syndrome.

  12. Cerebellar giant cell glioblastoma multiforme in an adult

    Directory of Open Access Journals (Sweden)

    Sudhansu Sekhar Mishra

    2014-01-01

    Full Text Available Cerebellar glioblastoma multiforme (GBM is a rare tumor that accounts for only 1% of all cases of GBM and its giant cell variant is even much rarely encountered in adults. A case of cerebellar giant cell GBM managed at our institution reporting its clinical presentation, radiological and histological findings, and treatment instituted is described. In conjunction, a literature review, including particular issues, clinical data, advances in imaging studies, pathological characteristics, treatment options, and the behavior of such malignant tumor is presented. It is very important for the neurosurgeon to make the differential diagnosis between the cerebellar GBM, and other diseases such as metastasis, anaplastic astrocytomas, and cerebellar infarct because their treatment modalities, prognosis, and outcome are different.

  13. Radiation induced glioblastoma. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Naoki; Kayama, Takamasa; Sakurada, Kaori; Saino, Makoto; Kuroki, Akira [Yamagata Univ. (Japan). School of Medicine

    2000-05-01

    We report a surgical case of a 54-year-old woman with a radiation induced glioblastoma. At the age of 34, the patient was diagnosed to have a non-functioning pituitary adenoma. It was partially removed followed by 50 Gy focal irradiation with a 5 x 5 cm lateral opposed field. Twenty years later, she suffered from rapidly increasing symptoms such as aphasia and right hemiparesis. MRI showed a large mass lesion in the left temporal lobe as well as small mass lesions in the brain stem and the right medial temporal lobe. These lesions situated within the irradiated field. Magnetic resonance spectroscopy revealed relatively high lactate signal and decreased N-acetyl aspartate, choline, creatine and phosphocreatine signals. Increased lactate signal meant anaerobic metabolism that suggested the existence of a rapidly growing malignant tumor. Thus, we planned surgical removal of the left temporal lesion with the diagnosis of a radiation induced malignant glioma. The histological examination revealed a glioblastoma with radiation necrosis. MIB-1 staining index was 65%. Postoperatively, her symptoms improved, but she died from pneumonia 1 month after the surgery. A autopsy was obtained. The lesion of the left temporal lobe was found to have continuity to the lesion in the midbrain, the pons and the right temporal lobe as well. High MIB-1 staining index suggested that a radiation induced glioblastoma had high proliferative potential comparing with a de novo and secondary glioblastoma. (author)

  14. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  15. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    International Nuclear Information System (INIS)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-jun; Yoshida, Takeshi; Funa, Keiko

    2016-01-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  16. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Erik; Zhai, Qiwei [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Zeng, Zhao-jun [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078 (China); Yoshida, Takeshi [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Funa, Keiko, E-mail: keiko.funa@gu.se [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden)

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  17. Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study.

    Directory of Open Access Journals (Sweden)

    Kuo-Chen Wei

    Full Text Available The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI-monitored focused ultrasound (FUS-induced blood-brain barrier (BBB disruption to enhance Temozolomide (TMZ delivery for improving Glioblastoma Multiforme (GBM treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF and plasma by LC-MS\\MS. The effects of treatment on tumor progression (by MRI, animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment.

  18. Reason analysis and preventive treatment countermeasure of impaired vision after LASIK

    Directory of Open Access Journals (Sweden)

    Zhang-Bing Mu

    2015-02-01

    Full Text Available AIM: To analyze the reasons of impaired vision after LASIK and explore its preventive treatment measures preliminarily. METHODS: In this retrospective study, 175 eyes of 134 patients whose vision was decreased after LASIK were included. The constituent ratio of every reason was counted and uncorrected visual acuity(UCVAbetween pre-treatment and post-treatment were compared by paired t-test respectively. RESULTS: The overall incidence of impaired vision after LASIK was 1.86%. The constituent ratio of regression was 51.43% and UCVA increased from 0.61±0.22 to 0.90±0.38(t=8.00, Pt=20.00, Pt=8.14, Pt=6.33, Pt=2.53, P0.05after treatment. The constituent ratio of fundus lesions and diffuse lamellar keratitis(DLKwas 2.86% and UCVA all increased by different degrees after treatment. CONCLUSION: The reasons of impaired vision after LASIK are many and varied. These cases could recover their vision by discovery and treatment in time, and the appropriate preventive measures were essential.

  19. A prospective PET study of patients with glioblastoma multiforme

    DEFF Research Database (Denmark)

    Andersen, Preben B.; Blinkenberg, M; Lassen, U

    2006-01-01

    OBJECTIVE: To study the post-surgical metabolic and structural cerebral changes in patients with glioblastoma multiforme (GBM). MATERIALS AND METHODS: We examined ten patients prospectively with newly diagnosed GBM. All patients were primarily treated with surgery, followed by chemotherapy...... compared with structural imaging in the prospective evaluation of GBM. We found a difference in metabolic increase and tumor growth between the two treatment regimens, although this finding has limited relevance due to the design of the study....

  20. Amnesia due to bilateral hippocampal glioblastoma. MRI finding

    Energy Technology Data Exchange (ETDEWEB)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K. (Miyazaki Medical Coll., Kiyotake (Japan). Dept. of Neurosurgery)

    1989-11-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.).

  1. SOX9-mediated upregulation of LGR5 is important for glioblastoma tumorigenicity

    International Nuclear Information System (INIS)

    Hiraoka, Koji; Hayashi, Tomoatsu; Kaneko, Ryusuke; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Kawasaki, Yoshihiro; Akiyama, Tetsu

    2015-01-01

    LGR5 plays an important role in the self-renewal of stem cells and is used as a marker identifying self-renewing stem cells in small intestine and hair follicles. Moreover, LGR5 has been reported to be overexpressed in several cancers. SOX9 is a transcription factor that plays a key role in development, differentiation and lineage commitment in various tissues. It has also been reported that SOX9 is overexpressed in a variety of cancers and contributes to their malignant phenotype. Here we show that LGR5 is required for the tumorigenicity of glioblastoma cells. We further show that SOX9 is upregulated in glioblastoma cells and directly enhances the expression of LGR5. We also demonstrate that knockdown of SOX9 suppresses the proliferation and tumorigenicity of glioblastoma cells. These results suggest that SOX9-mediated transcriptional regulation of LGR5 is critical for the tumorigenicity of glioblastoma cells. We speculate that the SOX9-LGR5 pathway could be a potentially promising target for the therapy of glioblastoma. - Highlights: • LGR5 is required for the tumorigenicity of glioblastoma cells. • SOX9 directly enhances the expression of LGR5. • SOX9 is required for the tumorigenicity of glioblastoma cells

  2. SOX9-mediated upregulation of LGR5 is important for glioblastoma tumorigenicity

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Koji; Hayashi, Tomoatsu; Kaneko, Ryusuke; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Kawasaki, Yoshihiro; Akiyama, Tetsu, E-mail: akiyama@iam.u-tokyo.ac.jp

    2015-05-01

    LGR5 plays an important role in the self-renewal of stem cells and is used as a marker identifying self-renewing stem cells in small intestine and hair follicles. Moreover, LGR5 has been reported to be overexpressed in several cancers. SOX9 is a transcription factor that plays a key role in development, differentiation and lineage commitment in various tissues. It has also been reported that SOX9 is overexpressed in a variety of cancers and contributes to their malignant phenotype. Here we show that LGR5 is required for the tumorigenicity of glioblastoma cells. We further show that SOX9 is upregulated in glioblastoma cells and directly enhances the expression of LGR5. We also demonstrate that knockdown of SOX9 suppresses the proliferation and tumorigenicity of glioblastoma cells. These results suggest that SOX9-mediated transcriptional regulation of LGR5 is critical for the tumorigenicity of glioblastoma cells. We speculate that the SOX9-LGR5 pathway could be a potentially promising target for the therapy of glioblastoma. - Highlights: • LGR5 is required for the tumorigenicity of glioblastoma cells. • SOX9 directly enhances the expression of LGR5. • SOX9 is required for the tumorigenicity of glioblastoma cells.

  3. Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma.

    Science.gov (United States)

    Cai, H; Liu, X; Zheng, J; Xue, Y; Ma, J; Li, Z; Xi, Z; Li, Z; Bao, M; Liu, Y

    2017-01-19

    Angiogenesis is one of the critical biological elements affecting the development and progression of cancer. Long non-coding RNAs (lncRNAs) are important regulators and aberrantly expressed in various types of human cancer. Our previous studies indicated that lncRNA taurine upregulated 1 (TUG1) implicated in the regulation of blood-tumor barrier permeability; however, its role in glioblastoma angiogenesis still unclear. Here we demonstrated that TUG1 was up-expressed in human glioblastoma tissues and glioblastoma cell lines. Knockdown of TUG1 remarkably suppressed tumor-induced endothelial cell proliferation, migration and tube formation as well as reducing spheroid-based angiogenesis ability in vitro, which are the critical steps for tumor angiogenesis. Besides, knockdown of TUG1 significantly increased the expression of mircroRNA-299 (miR-299), which was down-expressed in glioblastoma tissues and glioblastoma cell lines. Bioinformatics analysis and luciferase reporter assay revealed that TUG1 influenced tumor angiogenesis via directly binding to the miR-299 and there was a reciprocal repression between TUG1 and miR-299 in the same RNA-induced silencing complex. Moreover, knockdown of TUG1 reduced the expression of vascular endothelial growth factor A (VEGFA), which was defined as a functional downstream target of miR-299. In addition, knockdown of TUG1, shown in the in vivo studies, has effects on suppressing tumor growth, reducing tumor microvessel density and decreasing the VEGFA expression by upregulating miR-299 in xenograft glioblastoma model. Overall, the results demonstrated that TUG1 enhances tumor-induced angiogenesis and VEGF expression through inhibiting miR-299. Also, the inhibition of TUG1 could provide a novel therapeutic target for glioblastoma treatment.

  4. β-Arrestin 1 has an essential role in neurokinin-1 receptor-mediated glioblastoma cell proliferation and G2/M phase transition.

    Science.gov (United States)

    Zhang, Yi-Xin; Li, Xiao-Fang; Yuan, Guo-Qiang; Hu, Hui; Song, Xiao-Yun; Li, Jing-Yi; Miao, Xiao-Kang; Zhou, Tian-Xiong; Yang, Wen-Le; Zhang, Xiao-Wei; Mou, Ling-Yun; Wang, Rui

    2017-05-26

    Glioblastoma is the most common malignant brain tumor and has a poor prognosis. Tachykinin receptor neurokinin-1 (NK1R) is a promising target in glioblastoma therapy because of its overexpression in human glioblastoma. NK1R agonists promote glioblastoma cell growth, whereas NK1R antagonists efficiently inhibit cell growth both in vitro and in vivo However, the molecular mechanisms involved in these effects are incompletely understood. β-Arrestins (ARRBs) serve as scaffold proteins and adapters to mediate intracellular signal transduction. Here we show that the ARRB1-mediated signaling pathway is essential for NK1-mediated glioblastoma cell proliferation. ARRB1 knockdown significantly inhibited NK1-mediated glioblastoma cell proliferation and induced G 2 /M phase cell cycle arrest. ARRB1 knockdown cells showed remarkable down-regulation of CDC25C/CDK1/cyclin B1 activity. We also demonstrated that ARRB1 mediated prolonged phosphorylation of ERK1/2 and Akt in glioblastoma cells induced by NK1R activation. ERK1/2 and Akt phosphorylation are involved in regulating CDC25C/CDK1/cyclin B1 activity. The lack of long-term ERK1/2 and Akt activation in ARRB1 knockdown cells was at least partly responsible for the delayed cell cycle progression and proliferation. Moreover, we found that ARRB1-mediated ERK1/2 and Akt phosphorylation regulated the transcriptional activity of both NF-κB and AP-1, which were involved in cyclin B1 expression. ARRB1 deficiency increased the sensitivity of glioblastoma cells to the treatment of NK1R antagonists. Taken together, our results suggest that ARRB1 plays an essential role in NK1R-mediated cell proliferation and G 2 /M transition in glioblastoma cells. Interference with ARRB1-mediated signaling via NK1R may have potential significance for therapeutic strategies targeting glioblastoma. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models

    Science.gov (United States)

    Piao, Yuji; Park, Soon Young; Henry, Verlene; Smith, Bryan D.; Tiao, Ningyi; Flynn, Daniel L.

    2016-01-01

    Background Glioblastoma highly expresses the proto-oncogene MET in the setting of resistance to bevacizumab. MET engagement by hepatocyte growth factor (HGF) results in receptor dimerization and autophosphorylation mediating tumor growth, invasion, and metastasis. Evasive revascularization and the recruitment of TIE2-expressing macrophages (TEMs) are also triggered by anti-VEGF therapy. Methods We investigated the activity of altiratinib (a novel balanced inhibitor of MET/TIE2/VEGFR2) against human glioblastoma stem cell lines in vitro and in vivo using xenograft mouse models. The biological activity of altiratinib was assessed in vitro by testing the expression of HGF-stimulated MET phosphorylation as well as cell viability after altiratinib treatment. Tumor volume, stem cell and mesenchymal marker levels, microvessel density, and TIE2-expressing monocyte infiltration were evaluated in vivo following treatment with a control, bevacizumab alone, bevacizumab combined with altiratinib, or altiratinib alone. Results In vitro, HGF-stimulated MET phosphorylation was completely suppressed by altiratinib in GSC17 and GSC267, and altiratinib markedly inhibited cell viability in several glioblastoma stem cell lines. More importantly, in multiple xenograft mouse models, altiratinib combined with bevacizumab dramatically reduced tumor volume, invasiveness, mesenchymal marker expression, microvessel density, and TIE2-expressing monocyte infiltration compared with bevacizumab alone. Furthermore, in the GSC17 xenograft model, altiratinib combined with bevacizumab significantly prolonged survival compared with bevacizumab alone. Conclusions Together, these data suggest that altiratinib may suppress tumor growth, invasiveness, angiogenesis, and myeloid cell infiltration in glioblastoma. Thus, altiratinib administered alone or in combination with bevacizumab may overcome resistance to bevacizumab and prolong survival in patients with glioblastoma. PMID:26965451

  6. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene.

    Directory of Open Access Journals (Sweden)

    Rebecca L Skalsky

    Full Text Available Glioblastoma is a highly aggressive malignant tumor involving glial cells in the human brain. We used high-throughput sequencing to comprehensively profile the small RNAs expressed in glioblastoma and non-tumor brain tissues. MicroRNAs (miRNAs made up the large majority of small RNAs, and we identified over 400 different cellular pre-miRNAs. No known viral miRNAs were detected in any of the samples analyzed. Cluster analysis revealed several miRNAs that were significantly down-regulated in glioblastomas, including miR-128, miR-124, miR-7, miR-139, miR-95, and miR-873. Post-transcriptional editing was observed for several miRNAs, including the miR-376 family, miR-411, miR-381, and miR-379. Using the deep sequencing information, we designed a lentiviral vector expressing a cell suicide gene, the herpes simplex virus thymidine kinase (HSV-TK gene, under the regulation of a miRNA, miR-128, that was found to be enriched in non-tumor brain tissue yet down-regulated in glioblastomas, Glioblastoma cells transduced with this vector were selectively killed when cultured in the presence of ganciclovir. Using an in vitro model to recapitulate expression of brain-enriched miRNAs, we demonstrated that neuronally differentiated SH-SY5Y cells transduced with the miRNA-regulated HSV-TK vector are protected from killing by expression of endogenous miR-128. Together, these results provide an in-depth analysis of miRNA dysregulation in glioblastoma and demonstrate the potential utility of these data in the design of miRNA-regulated therapies for the treatment of brain cancers.

  7. Long-term Survival of Six Patients with Glioblastoma Multiforme: Case Series and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Shapour Omidvari

    2012-04-01

    Full Text Available The median overall survival in glioblastoma multiforme is usually less than one year. Long-term survival is rare and is seen in only 3%-6% of GBM patients. The present study reports the characteristics and treatment outcomes of six cases of glioblastoma multiforme with long-term survival. A literature review is also presented.Between 1990 and 2008, 217 glioblastoma multiforme patients have been treated at our center of which six cases (four males survived for three years or longer. The mean age of the six cases was 25.7 years. All patients received postoperative radiotherapy with a mean dose of 55 gray and four patients received nitrosourea-based chemotherapy.Patients' mean survival was 5.2 years. The results of this study and review of the literature have indicated that long-term (more than three years survival is exceptional and mainly observed in younger patients with good performance status and following complete surgical tumor resection.

  8. PARPi-FL - a Fluorescent PARP1 Inhibitor for Glioblastoma Imaging

    Directory of Open Access Journals (Sweden)

    Christopher P. Irwin

    2014-05-01

    Full Text Available New intravital optical imaging technologies have revolutionized our understanding of mammalian biology and continue to evolve rapidly. However, there are only a limited number of imaging probes available to date. In this study, we investigated in mouse models of glioblastoma whether a fluorescent small molecule inhibitor of the DNA repair enzyme PARP1, PARPi-FL, can be used as an imaging agent to detect glioblastomas in vivo. We demonstrated that PARPi-FL has appropriate biophysical properties, low toxicity at concentrations used for imaging, high stability in vivo, and accumulates selectively in glioblastomas due to high PARP1 expression. Importantly, subcutaneous and orthotopic glioblastoma xenografts were imaged with high contrast clearly defining tumor tissue from normal surrounding tissue. This research represents a step toward exploring and developing PARPi-FL as an optical intraoperative imaging agent for PARP1 in the clinic.

  9. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    Science.gov (United States)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. Copyright © 2016. Published by Elsevier Inc.

  10. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    International Nuclear Information System (INIS)

    Sara, V.; Prisell, Per; Sjoegren, Barbro; Enberg, Goesta

    1986-01-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of 125 1-IGF-2 but not 125 1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. (author)

  11. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Sara, V; Prisell, P; Sjoegren, B; Persson, L; Boethius, J; Enberg, G

    1986-09-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of /sup 125/1-IGF-2 but not /sup 125/1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. 14 refs.

  12. Anticancer potential and mechanism of action of mango ginger (Curcuma amada Roxb.) supercritical CO₂ extract in human glioblastoma cells.

    Science.gov (United States)

    Ramachandran, Cheppail; Lollett, Ivonne V; Escalon, Enrique; Quirin, Karl-Werner; Melnick, Steven J

    2015-04-01

    Mango ginger (Curcuma amada Roxb.) is among the less-investigated species of Curcuma for anticancer properties. We have investigated the anticancer potential and the mechanism of action of a supercritical CO2 extract of mango ginger (CA) in the U-87MG human glioblastoma cell line. CA demonstrated higher cytotoxicity than temozolomide, etoposide, curcumin, and turmeric force with IC50, IC75, and IC90 values of 4.92 μg/mL, 12.87 μg/mL, and 21.30 μg/mL, respectively. Inhibitory concentration values of CA for normal embryonic mouse hypothalamus cell line (mHypoE-N1) is significantly higher than glioblastoma cell line, indicating the specificity of CA against brain tumor cells. CompuSyn analysis indicates that CA acts synergistically with temozolomide and etoposide for the cytotoxicity with combination index values of <1. CA treatment also induces apoptosis in glioblastoma cells in a dose-dependent manner and downregulates genes associated with apoptosis, cell proliferation, telomerase activity, oncogenesis, and drug resistance in glioblastoma cells. © The Author(s) 2014.

  13. A miR-21 inhibitor enhances apoptosis and reduces G2-M accumulation induced by ionizing radiation in human glioblastoma U251 cells

    International Nuclear Information System (INIS)

    Li, Yi; Li, Qiang; Asai, Akio; Kawamoto, Keiji; Zhao Shiguang; Zhen Yunbo; Teng Lei

    2011-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that take part in diverse biological processes by suppressing target gene expression. Elevated expression of miR-21 has been reported in many types of human cancers. Radiotherapy is a standard adjuvant treatment for patients with glioblastoma. However, the resistance of glioblastoma cells to radiation limits the success of this treatment. In this study, we found that miR-21 expression was upregulated in response to ionizing radiation (IR) in U251 cells, which suggested that miR-21 could be involved in the response of U251 cells to radiation. We showed that a miR-21 inhibitor enhanced IR-induced glioblastoma cell growth arrest and increased the level of apoptosis, which was probably caused by abrogation of the G 2 -M arrest induced by IR. Further research demonstrated that the miR-21 inhibitor induced the upregulation of Cdc25A. Taken together, these findings suggest that miR-21 inhibitor can increase IR-induced growth arrest and apoptosis in U251 glioblastoma cells, at least in part by abrogating G 2 -M arrest, and that Cdc25A is a potential target of miR-21. (author)

  14. EGFR and EGFRvIII Promote Angiogenesis and Cell Invasion in Glioblastoma: Combination Therapies for an Effective Treatment

    Directory of Open Access Journals (Sweden)

    Stefanie Keller

    2017-06-01

    Full Text Available Epidermal growth factor receptor (EGFR and the mutant EGFRvIII are major focal points in current concepts of targeted cancer therapy for glioblastoma multiforme (GBM, the most malignant primary brain tumor. The receptors participate in the key processes of tumor cell invasion and tumor-related angiogenesis and their upregulation correlates with the poor prognosis of glioma patients. Glioma cell invasion and increased angiogenesis share mechanisms of the degradation of the extracellular matrix (ECM through upregulation of ECM-degrading proteases as well as the activation of aberrant signaling pathways. This review describes the role of EGFR and EGFRvIII in those mechanisms which might offer new combined therapeutic approaches targeting EGFR or EGFRvIII together with drug treatments against proteases of the ECM or downstream signaling to increase the inhibitory effects of mono-therapies.

  15. The effects of antiepileptic drugs on the growth of glioblastoma cell lines

    OpenAIRE

    Lee, Ching-Yi; Lai, Hung-Yi; Chiu, Angela; Chan, She-Hung; Hsiao, Ling-Ping; Lee, Shih-Tseng

    2016-01-01

    To determine the effects of antiepileptic drug compounds on glioblastoma cellular growth, we exposed glioblastoma cell lines to select antiepileptic drugs. The effects of selected antiepileptic drugs on glioblastoma cells were measured by MTT assay. For compounds showing significant inhibition, cell cycle analysis was performed. Statistical analysis was performed using SPSS. The antiepileptic compounds selected for screening included carbamazepine, ethosuximide, gabapentin, lamotrigine, levet...

  16. Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative component of glioblastomas.

    Science.gov (United States)

    Montcel, Bruno; Mahieu-Williame, Laurent; Armoiry, Xavier; Meyronet, David; Guyotat, Jacques

    2013-04-01

    5-ALA-induced protoporphyrin IX (PpIX) fluorescence enables to guiding in intra-operative surgical glioma resection. However at present, it has yet to be shown that this method is able to identify infiltrative component of glioma. In extracted tumor tissues we measured a two-peaked emission in low grade gliomas and in the infiltrative component of glioblastomas due to multiple photochemical states of PpIX. The second emission peak appearing at 620 nm (shifted by 14 nm from the main peak at 634 nm) limits the sensibility of current methods to measured PpIX concentration. We propose new measured parameters, by taking into consideration the two-peaked emission, to overcome these limitations in sensitivity. These parameters clearly distinguish the solid component of glioblastomas from low grade gliomas and infiltrative component of glioblastomas.

  17. Dopamine signaling: target in glioblastoma

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk

    2014-01-01

    Roč. 5, č. 5 (2014), 1116-1117 ISSN 1949-2553 Institutional support: RVO:68378050 Keywords : Dopamine signaling * glioblastoma * MAPK Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.359, year: 2014

  18. Glioblastoma with Oligodendroglioma Component (GBMO in an adolescent: a case report

    Directory of Open Access Journals (Sweden)

    Amanda Lopes Maia Rodrigues

    2018-06-01

    Full Text Available Background:Glioblastoma with oligodendroglioma component (GBMO is a recently classified subtype of glioblastoma, which carries different clinical and prognostic outcomes, being frequently misdiagnosed. Both glioblastoma and GBMO are mainly seen in older ages, such as the 5th and 6th decades of life, being an extremely rare occurrence in children or adolescents and more frequent in male patients.  Case report: A 15-year-old girl, presented with history of daily headache, not relieved by painkillers, vomiting, blurred vision and strabismus. Magnetic resonance imaging of the brain revealed expansive tumour on left temporo-occipital lobe. Patient was submitted to intracranial exeresis, along with histopathological examination: glial neoplasm with areas of pleomorphism, hyperchromatism, anaplasia, foci of oligodendroglial component, perinuclear halo and ramified capillaries, resembling oligodendroglioma, necrosis and intense mitotic activity. The immunohistochemical analysis revealed positive Glial Fibrillary Acidic Protein (GFAP, synaptophysin, Ki-67 (MindBomb E3 ubiquitin protein ligase 1 – MIB-1and hyperexpression of Epidermal Growth Factor Receptor (EGFR, indicating GBMO. Subsequently, Fluorescence in situ Hybridization (FISH showed 1p/19q codeletion and Isocitrate Dehydrogenase 1 (IDH 1 mutation, suggesting an oligodendroglioma component. Tumour resection was total and symptoms disappeared. Afterwards, she started adjuvant oral chemotherapy with temozolomide. Treatment was completed nine months after the diagnosis, with no greater symptoms or complications and complete remission.  Conclusion: GBMO must be considered as a possible diagnosis when confronted with a malignant glioma with oligodendroglial tumour component, independent of age or genre. Necrosis upon histopathological examination has a strong relation to shorter median overall survival. IDH mutation and 1p/19q codeletion should be analyzed by immunohistochemistry

  19. Glioblastoma familiar

    Directory of Open Access Journals (Sweden)

    Walter O. Arruda

    1995-06-01

    Full Text Available The authors describe a family with three members affected by glioblastoma. The proband patient, a 7 year-old girl, developed a rare complication, a pulmonary metastasis. Chromosomal analysis of her peripheral blood lymphocytes showed a normal karyotype (46, XX, without structural abnormalities. Cytogenetic study of the tumor cells disclosed several abnormalities: 46, XX, 7q - / 46, XX, -2, 4p-, 7p-, +15/ 46, XX. Some aspects about genetics of glial neoplasms are discussed.

  20. Live attenuated measles virus vaccine therapy for locally established malignant glioblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Al-Shammari AM

    2014-05-01

    , and 120 hours of infection compared with control cells. This study concludes that live attenuated MV Schwarz vaccine induces the oncolytic effect in Iraqi tumor cell line ANGM5 and in the rhabdomyosarcoma cell line through syncytia in tumor cells, which is one of the causes of cell death. The MV vaccine strain has the ability to insert its hemagglutinin protein into the tumor cell surface, leading to modification of the antigenic surface of tumor cells that may induce an antitumor immune response, MV vaccine strain induced cell killing by direct cytolysis and apoptosis induction. These antitumor features may indicate the use of MV in the treatment of glioblastoma.Keywords: virotherapy, glioblastoma multiforme

  1. Phase II open-label study of nintedanib in patients with recurrent glioblastoma multiforme

    DEFF Research Database (Denmark)

    Muhic, Aida; Poulsen, Hans Skovgaard; Mau-Sørensen, Paul Morten

    2013-01-01

    glioblastoma multiforme (GBM) who had previously failed radiotherapy plus temozolomide as first-line therapy (STUPP), or the same regimen with subsequent bevacizumab-based therapy as second-line treatment (BEV). Patients with a performance status of 0-1, histologically proven GBM, and measurable disease (by...... GBM who had failed 1-2 prior lines of therapy....

  2. Prognostic factors in glioblastoma multiforme. 10 years experience of a single institution

    International Nuclear Information System (INIS)

    Hulshof, M.C.C.M.; Schimmel, E.C.; Gonzalez, D.G.; Koot, R.W.; Bosch, D.A.; Dekker, F.

    2001-01-01

    Background: To analyze prognostic factors in patients with a glioblastoma multiforme treated in an academic institute over the last 10 years. Patients and method: From 1988 to 1998, 198 patients with pathologically confirmed glioblastoma multiforme were analyzed. Five radiation schedules were used mainly based on pretreatment selection criteria: 1. 60 Gy in 30 fractions followed by an interstitial iridium-192 (Ir-192) boost for selected patients with a good performance and a small circumscribed tumor, 2. 66 Gy in 33 fractions for good performance patients, 3. 40 Gy in eight fractions or 4. 28 Gy in four fractions for poor prognostic patients and 5. no irradiation. Results: Median survival was 16 months, 7 months, 5.6 months, 6.6 months and 1.8 months for the groups treated with Ir-192, 66 Gy, 40 Gy, 28 Gy and the group without treatment, respectively. No significant improvement in survival was encountered over the last 10 years. At multivariate analysis patients treated with a hypofractionated scheme showed a similar survival probability and duration of palliative effect compared to the conventionally fractionated group. The poor prognostic groups receiving radiotherapy had a highly significant better survival compared to the no-treatment group. Patients treated with an Ir-192 boost had a better median survival compared to a historical group matched on selection criteria but without boost treatment (16 vs 9.7 months, n.s.). However, survival at 2 years was similar. Analysis on pretreatment characteristics at multivariate analysis revealed age, neurological performance, addition of radiotherapy, total resection, tumor size post surgery and deterioration before start of radiotherapy (borderline) as significant prognostic factors for survival. Conclusion: Despite technical developments in surgery and radiotherapy over the last 10 years, survival of patients with a glioblastoma multiforme has not improved in our institution. The analysis of prognostic factors

  3. Can Immunotherapy Succeed in Glioblastoma?

    Science.gov (United States)

    Researchers are hopeful that, for the deadly brain cancer glioblastoma, immunotherapy might succeed where other therapies have not. As this Cancer Currents post reports, different immunotherapy approaches are being tested in clinical trials.

  4. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas.

    Science.gov (United States)

    Li, Jie; Taich, Zachary J; Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C

    2014-09-15

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (pCIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients.

  5. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI.

    Science.gov (United States)

    Wang, S; Martinez-Lage, M; Sakai, Y; Chawla, S; Kim, S G; Alonso-Basanta, M; Lustig, R A; Brem, S; Mohan, S; Wolf, R L; Desai, A; Poptani, H

    2016-01-01

    Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from

  6. Primary care: constipation and encopresis treatment strategies and reasons to refer.

    Science.gov (United States)

    Philichi, Lisa; Yuwono, Melawati

    2010-01-01

    The purpose of the study was to assess constipation and encopresis treatment strategies of primary care providers and determine reasons to refer to a pediatric gastroenterology specialist. A closed-ended questionnaire was mailed to a convenience sampling of 237 pediatric primary care providers. Ninety-one questionnaires were returned with a 38% response rate: 74 (81%) pediatricians and 17 (19%) nurse practitioners. The majority of responders recommended pharmacologic treatment and diet changes. Many providers (73%) estimated a 75%-100% success rate when managing constipation, whereas 19% providers estimated a greater than 80% success rate with encopresis patients. The number one reason to refer was unresponsiveness to treatment (71%), followed by parents want a second opinion (15%), rule out organic cause (9%), and management is too time-consuming (5%). Both primary care providers and pediatric gastroenterologists use medication strategies, but diet recommendations are not the same. Unresponsiveness to treatment is the main reason for referral. If better management can occur in the primary care setting, costly specialty services may be avoided and possibly reduce healthcare costs.

  7. The response of human glioblastoma in culture to radiation

    International Nuclear Information System (INIS)

    Masuda, Koji; Aramaki, Ryoji; Takagi, Tosuke

    1980-01-01

    Cells from two human glioblastoma multiforme and one mouse glioma were grown in tissue cultures and their X-ray survival curve parameters were determined under oxygenated and hypoxic conditions. These were compared with the survival parameters for mouse fibroblasts (L5) and established cell lines from human carcinoma coli (HeLa S3) irradiated under identical conditions. There was no significant difference in response among the cell lines used. Repair of potentially lethal damage for human glioblastoma and HeLa S3 was assessed by the increase in survival which occurred as the cells were held in density inhibited stationary phase. The magnitude of repair of potentially lethal damage (slope modifying factors) for the glioblastoma and HeLa were 1.9 and 1.1, respectively. (author)

  8. Inhibition of NF-κB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL Combination Therapy.

    Directory of Open Access Journals (Sweden)

    Pi Chu Liu

    Full Text Available Glioblastoma is a common malignant brain tumor and it is refractory to therapy because it usually contains a mixture of cell types. The tumor necrosis factor-related apoptosis inducing ligand (TRAIL has been shown to induce apoptosis in a range of tumor cell types. Previously, we found that two human glioblastoma cell lines are resistant to TRAIL, while lovastatin sensitizes these glioblastoma cells to TRAIL-induced cell death. In this study, we investigated the mechanisms underlying the TRAIL-induced apoptosis in human glioblastoma cell lines by lovastatin. Furthermore, we have confirmed the anti-tumor effect of combination therapy with lovastatin and TRAIL in the subcutaneous brain tumor model. We showed that lovastatin significantly up-regulated the expression of death receptor 5 (DR5 in glioblastoma cell lines as well as in tumor-bearing mice with peri-tumoral administration of lovastatin. Further study in glioblastoma cell lines suggested that lovastatin treatment could inhibit NF-κB and Erk/MAPK pathways but activates JNK pathway. These results suggest that lovastatin sensitizes TRAIL-induced apoptosis by up-regulation of DR5 level via NF-κB inactivation, but also directly induces apoptosis by dysregulation of MAPK pathway. Our in vivo study showed that local peri-tumoral co-injection of lovastatin and TRAIL substantially reduced tumor growth compared with single injection of lovastatin or TRAIL in subcutaneous nude mice model. This study suggests that combined treatment of lovastatin and TRAIL is a promising therapeutic strategy to TRAIL-resistant glioblastoma.

  9. HAX-1 Protects Glioblastoma Cells from Apoptosis through the Akt1 Pathway

    Directory of Open Access Journals (Sweden)

    Xin Deng

    2017-12-01

    Full Text Available Glioblastoma is the most common malignant tumor in central nervous system (CNS, and it is still insurmountable and has a poor prognosis. The proliferation and survival mechanism of glioma cells needs to be explored further for the development of glioma treatment. Hematopoietic-substrate-1 associated protein X-1 (HAX-1 has been reported as an anti-apoptosis protein that plays an important role in several malignant tumors. However, the effect and mechanism of HAX-1 in glioblastomas remains unknown. This study aimed to investigate the effect of HAX-1 in glioblastoma cells and explore the mechanism. The results of clone formation and Edu proliferation assay showed slower multiplication in HAX-1 knock-out cells. Flow cytometry showed cell cycle arrest mainly in G0/G1 phase. Apoptosis due to oxidative stress was increased after HAX-1 was knocked out. Western-blot assay exhibited that the levels of p21, Bax, and p53 proteins were significantly raised, and that the activation of the caspase cascade was enhanced in the absence of HAX-1. The degradation rate and ubiquitination of p53 declined because of the decrease in phosphorylation of proteins MDM2 and Akt1. Co-immunoprecipitation (Co-IP and immunefluorescent co-localization assays were performed to test the influence of HAX-1 on the interaction between Akt1 and Hsp90, which is crucial for the activity of Akt1. In conclusion, this novel study suggested that HAX-1 could affect the Akt1 pathway through Hsp90. The knock-out of HAX-1 leads to the inactivity of the Ak1t/MDM2 axis, which leads to increased levels of p53, and finally generates cell cycle arrest and results in the apoptosis of glioblastoma cells.

  10. Key concepts in glioblastoma therapy

    DEFF Research Database (Denmark)

    Bartek, Jiri; Ng, Kimberly; Bartek, Jiri

    2012-01-01

    principles that drive the formulation of therapeutic strategies in glioblastoma. Specifically, the concepts of tumour heterogeneity, oncogene addiction, non-oncogene addiction, tumour initiating cells, tumour microenvironment, non-coding sequences and DNA damage response will be reviewed....

  11. Activation of p53 by nutlin-3a induces apoptosis and cellular senescence in human glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Ruth Villalonga-Planells

    2011-04-01

    Full Text Available Glioblastoma multiforme (GBM is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.

  12. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    International Nuclear Information System (INIS)

    Jhanwar-Uniyal, Meena; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj

    2015-01-01

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM

  13. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Jhanwar-Uniyal, Meena, E-mail: meena_jhanwar@nymc.edu; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj [Department of Neurosurgery, New York Medical College, Valhalla, NY 10595 (United States)

    2015-03-25

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM.

  14. Rapid progression of gliomatosis cerebri to secondary glioblastoma, factors that affects the progression rate: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Yu, In Kyu; Kim, Seung Min; Kim, Joo Heon; Lee, Seung Hoon; Lee, Seung Yeon [Eulji University Hospital, Daejeon (Korea, Republic of)

    2017-03-15

    Glioblastomas may develop de novo or through progression from low-grade or anaplastic astrocytomas. The term 'primary glioblastoma' refers to a glioblastoma that lacks a precursor lesion and has a clinical history of less than three months. On the other hand, the term 'secondary glioblastoma' indicates that the glioblastoma has progressed from a low-grade tumor after a long latency period and often manifests in younger patients. These subtypes of glioblastoma develop via different genetic pathways, and they differ in prognosis and response to therapy. Thus, differential diagnosis of these subtypes and prediction of the factors that affect the progression from low-grade diffuse astrocytoma to secondary glioblastoma would be clinically very important. We present a rare case of secondary glioblastoma, which developed only three months after the follow up imaging evaluations, with a history of low grade glioma, and present the factors that cause rapid progression.

  15. Volumetric Spectroscopic Imaging of Glioblastoma Multiforme Radiation Treatment Volumes

    Energy Technology Data Exchange (ETDEWEB)

    Parra, N. Andres [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Maudsley, Andrew A. [Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Gupta, Rakesh K. [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Ishkanian, Fazilat; Huang, Kris [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Walker, Gail R. [Biostatistics and Bioinformatics Core Resource, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (United States); Padgett, Kyle [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Roy, Bhaswati [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Panoff, Joseph; Markoe, Arnold [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Stoyanova, Radka, E-mail: RStoyanova@med.miami.edu [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States)

    2014-10-01

    Purpose: Magnetic resonance (MR) imaging and computed tomography (CT) are used almost exclusively in radiation therapy planning of glioblastoma multiforme (GBM), despite their well-recognized limitations. MR spectroscopic imaging (MRSI) can identify biochemical patterns associated with normal brain and tumor, predominantly by observation of choline (Cho) and N-acetylaspartate (NAA) distributions. In this study, volumetric 3-dimensional MRSI was used to map these compounds over a wide region of the brain and to evaluate metabolite-defined treatment targets (metabolic tumor volumes [MTV]). Methods and Materials: Volumetric MRSI with effective voxel size of ∼1.0 mL and standard clinical MR images were obtained from 19 GBM patients. Gross tumor volumes and edema were manually outlined, and clinical target volumes (CTVs) receiving 46 and 60 Gy were defined (CTV{sub 46} and CTV{sub 60}, respectively). MTV{sub Cho} and MTV{sub NAA} were constructed based on volumes with high Cho and low NAA relative to values estimated from normal-appearing tissue. Results: The MRSI coverage of the brain was between 70% and 76%. The MTV{sub NAA} were almost entirely contained within the edema, and the correlation between the 2 volumes was significant (r=0.68, P=.001). In contrast, a considerable fraction of MTV{sub Cho} was outside of the edema (median, 33%) and for some patients it was also outside of the CTV{sub 46} and CTV{sub 60}. These untreated volumes were greater than 10% for 7 patients (37%) in the study, and on average more than one-third (34.3%) of the MTV{sub Cho} for these patients were outside of CTV{sub 60}. Conclusions: This study demonstrates the potential usefulness of whole-brain MRSI for radiation therapy planning of GBM and revealed that areas of metabolically active tumor are not covered by standard RT volumes. The described integration of MTV into the RT system will pave the way to future clinical trials investigating outcomes in patients treated based on

  16. Radiotherapy and chemotherapy with or without carbogen and nicotinamide in inoperable biopsy-proven glioblastoma multiforme

    International Nuclear Information System (INIS)

    Simon, Jean-Marc; Noeel, Georges; Chiras, Jacques; Khe, H.-X.; Delattre, Jean-Yves; Baillet, Francois; Mazeron, Jean-Jacques

    2003-01-01

    Background: Nicotinamide and carbogen have been shown to enhance the radiation effect in tumour models. Purpose: Prospective evaluation of the toxicity and efficacy of carbogen and nicotinamide with external beam radiotherapy in the management of inoperable glioblastoma. Patients and methods: From April 1995 to December 1997, 33 patients with inoperable biopsy-proven glioblastoma multiforme (GBM) were enrolled in a phase II trial, to undergo radiotherapy (59.4 Gy in 1.8 Gy/fraction), intra-arterial cerebral chemotherapy (ACNU 100 mg/m 2 , three cycles), carbogen breathing (15 l/min), and nicotinamide (85 mg/kg). This experimental group was compared to a control group of 38 patients with inoperable GBM treated with radiotherapy and three cycles of nitrosourea-based chemotherapy from January 1990 to March 1995, in our institution. Results: In the experimental group, carbogen breathing was well tolerated, but only 51.5% of patients completed daily nicotinamide over the 6.5-week treatment period. Nausea and vomiting were the most frequent side effects of nicotinamide. No significant difference in overall survival was observed among the two treatment groups: median survival times were 36.7 and 35.3 weeks for patients treated with carbogen and nicotinamide, and for those treated in the control group, respectively. Conclusion: The association of carbogen and nicotinamide with radiotherapy is feasible, but tolerable only in 51.5% of patients with GBM. Carbogen and nicotinamide did not appear to modify the evolution of glioblastoma

  17. Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells

    Science.gov (United States)

    Mueller, Nikola S.; Krumsiek, Jan; Theis, Fabian J.; Böhm, Christian; Meyer-Bäse, Anke

    2011-06-01

    Advances in high-throughput measurements of biological specimens necessitate the development of biologically driven computational techniques. To understand the molecular level of many human diseases, such as cancer, lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations. The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance biomedical research on novel gene therapies.

  18. Comparison of 18F-FET and 18F-FLT small animal PET for the assessment of anti-VEGF treatment response in an orthotopic model of glioblastoma

    International Nuclear Information System (INIS)

    Nedergaard, Mette Kjoelhede; Michaelsen, Signe Regner; Perryman, Lara; Erler, Janine; Poulsen, Hans Skovgaard; Stockhausen, Marie-Thérése; Lassen, Ulrik; Kjaer, Andreas

    2016-01-01

    Background: The radiolabeled amino acid O-(2- 18 F-fluoroethyl)-L-tyrosine (FET) and thymidine analogue 3′-deoxy-3′- 18 F-fluorothymidine (FLT) are widely used for positron emission tomography (PET) brain tumor imaging; however, comparative studies are scarce. The aim of this study therefore was to compare FLT and FET PET for the assessment of anti-VEGF response in glioblastoma xenografts. Methods: Xenografts with confirmed intracranial glioblastoma were treated with anti-VEGF therapy (B20-4.1) or saline as control. Weekly bioluminescence imaging (BLI), FLT and FET PET/CT were used to follow treatment response. Tracer uptake of FLT and FET was quantified using maximum standardized uptake (SUV max ) values and tumor-to-background ratios (TBRs). Survival, the Ki67 proliferation index and micro-vessel density (MVD) were evaluated. Results: In contrast to FLT TBRs, FET TBRs were significantly lower as early as one week after treatment initiation in the anti-VEGF group as compared to the control group. Following two weeks of treatment, both FLT and FET TBRs were significantly lower in the anti-VEGF group. In contrast, no significant difference between the treatment groups was detected using BLI. Furthermore, we found a significantly lower MVD in the anti-VEGF group as compared to the control group. However, we found no difference in the Ki67 proliferation index or mean survival time. Conclusion: FET appears to be a more sensitive tracer than FLT to measure early response to anti-VEGF therapy with PET. Advances in knowledge and implications for patient care FET PET appears to be an early predictor of anti-VEGF efficacy. Confirmation of these results in clinical studies is needed.

  19. TIC10/ONC201 synergizes with Bcl-2/Bcl-xL inhibition in glioblastoma by suppression of Mcl-1 and its binding partners in vitro and in vivo.

    Science.gov (United States)

    Karpel-Massler, Georg; Bâ, Maïmouna; Shu, Chang; Halatsch, Marc-Eric; Westhoff, Mike-Andrew; Bruce, Jeffrey N; Canoll, Peter; Siegelin, Markus D

    2015-11-03

    Glioblastoma is the most frequent primary brain tumor in adults. Current therapeutic options are sparse and the prognosis of patients suffering from this disease is grim. Abundance in intratumoral heterogeneity among different deregulated signaling pathways is a hallmark of glioblastoma and likely accounts for its recurrence and resistance to treatment. Glioblastomas harbor a plethora of deregulated pathways driving tumor formation and growth. In this study, we show that TIC10/ONC201, a promising compound that is currently in planned clinical development, along with Bcl-2/Bcl-xL inhibition by ABT263 yields a strong synergistic antiproliferative effect on pediatric, adult, proneural glioblastoma and glioma stem-like cells. On the molecular level, treatment with TIC10/ONC201 results in a posttranslational decrease of the anti-apoptotic Bcl-2 family member, myeloid cell leukemia 1 (Mcl-1), through modulation of the chaperone Bag3 and the deubiquitinase Usp9X. Consistently, the combination treatment of TIC10/ONC201 and ABT263 required the presence of functional BAX and BAK to drive intrinsic apoptosis, but is surprisingly independent of the extrinsic apoptotic pathway. Moreover, the expression of Noxa protein was required for efficient apoptosis induction by TIC10/ONC201 and ABT263. Importantly, the drug combination of TIC10/ONC201 and the BH3-mimetic, ABT263, led to a regression of tumors in vivo, without any notable toxicity and side effects. Overall, TIC10/ONC201 along with Bcl-2/Bcl-xL inhibition holds significant promise as a novel potential approach for the treatment of recalcitrant tumors such as glioblastoma.

  20. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype

    Science.gov (United States)

    Gabrusiewicz, Konrad; Rodriguez, Benjamin; Wei, Jun; Hashimoto, Yuuri; Healy, Luke M.; Maiti, Sourindra N.; Wang, Qianghu; Elakkad, Ahmed; Liebelt, Brandon D.; Yaghi, Nasser K.; Ezhilarasan, Ravesanker; Huang, Neal; Weinberg, Jeffrey S.; Prabhu, Sujit S.; Rao, Ganesh; Sawaya, Raymond; Langford, Lauren A.; Bruner, Janet M.; Fuller, Gregory N.; Bar-Or, Amit; Li, Wei; Colen, Rivka R.; Curran, Michael A.; Bhat, Krishna P.; Antel, Jack P.; Cooper, Laurence J.; Sulman, Erik P.; Heimberger, Amy B.

    2016-01-01

    Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b+ cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages. PMID:26973881

  1. High-resolution blood-pool-contrast-enhanced MR angiography in glioblastoma: tumor-associated neovascularization as a biomarker for patient survival. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Puig, Josep; Blasco, Gerard; Remollo, Sebastian; Hernandez, David; Pedraza, Salvador [Hospital Universitari Dr Josep Trueta, Research Unit of Diagnostic Imaging Institute (IDI), Department of Radiology [Girona Biomedical Research Institute] IDIBGI, Girona (Spain); Daunis-i-Estadella, Josep; Mateu, Gloria [University of Girona, Department of Computer Science, Applied Mathematics and Statistics, Girona (Spain); Alberich-Bayarri, Angel [La Fe Polytechnics and University Hospital, Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia (Spain); Essig, Marco [University of Manitoba, Department of Radiology, Winnipeg (Canada); Jain, Rajan [NYU School of Medicine, Division of Neuroradiology, Department of Radiology, New York, NY (United States); Puigdemont, Montserrat [Hospital Universitari Dr Josep Trueta, Catalan Institute of Oncology (ICO), Hospital Cancer Registry, Girona (Spain); Sanchez-Gonzalez, Javier [Philips Healthcare Iberica, Madrid (Spain); Wintermark, Max [Stanford University, Department of Radiology, Neuroradiology Division, Palo Alto, CA (United States)

    2016-01-15

    The objective of the study was to determine whether tumor-associated neovascularization on high-resolution gadofosveset-enhanced magnetic resonance angiography (MRA) is a useful biomarker for predicting survival in patients with newly diagnosed glioblastomas. Before treatment, 35 patients (25 men; mean age, 64 ± 14 years) with glioblastoma underwent MRI including first-pass dynamic susceptibility contrast (DSC) perfusion and post-contrast T1WI sequences with gadobutrol (0.1 mmol/kg) and, 48 h later, high-resolution MRA with gadofosveset (0.03 mmol/kg). Volumes of interest for contrast-enhancing lesion (CEL), non-CEL, and contralateral normal-appearing white matter were obtained, and DSC perfusion and DWI parameters were evaluated. Prognostic factors were assessed by Kaplan-Meier survival and Cox proportional hazards model. Eighteen (51.42 %) glioblastomas were hypervascular on high-resolution MRA. Hypervascular glioblastomas were associated with higher CEL volume and lower Karnofsky score. Median survival rates for patients with hypovascular and hypervascular glioblastomas treated with surgery, radiotherapy, and chemotherapy were 15 and 9.75 months, respectively (P < 0.001). Tumor-associated neovascularization was the best predictor of survival at 5.25 months (AUC = 0.794, 81.2 % sensitivity, 77.8 % specificity, 76.5 % positive predictive value, 82.4 % negative predictive value) and yielded the highest hazard ratio (P < 0.001). Tumor-associated neovascularization detected on high-resolution blood-pool-contrast-enhanced MRA of newly diagnosed glioblastoma seems to be a useful biomarker that correlates with worse survival. (orig.)

  2. Toxicity after radiochemotherapy for glioblastoma using temozolomide - a retrospective evaluation

    International Nuclear Information System (INIS)

    Niewald, Marcus; Berdel, Christian; Fleckenstein, Jochen; Licht, Norbert; Ketter, Ralf; Rübe, Christian

    2011-01-01

    Retrospective evaluation of toxicity and results after radiochemotherapy for glioblastoma. 46 patients with histopathologically proven glioblastoma received simultaneous radiochemotherapy (RCT). The mean age at the beginning of therapy was 59 years, the mean Karnofsky performance index 80%. 44 patients had been operated on before radiotherapy, two had not. A total dose of 60 Gy was applied in daily single fractions of 2.0 Gy within six weeks, 75 mg/m 2 /day Temozolomide were given orally during the whole radiotherapy period. A local progression could be diagnosed in 34/46 patients (70%). The median survival time amounted to 13.6 months resulting in one-year and two-year survival probabilities of 48% and 8%, respectively. Radiotherapy could be applied completely in 89% of the patients. Chemotherapy could be completed according to schedule only in 56.5%, the main reason being blood toxicity (50% of the interruptions). Most of those patients suffered from leucopenia and/or thrombopenia grade III and IV CTC (Common toxicity criteria). Further reasons were an unfavourable general health status or a rise of liver enzymes. The mean duration of thrombopenia and leucopenia amounted to 64 and 20 days. In two patients, blood cell counts remained abnormal until death. In two patients we noticed a rise of liver enzymes. In one of these in the healing phase of hepatitis a rise of ASAT and ALAT CTC grade IV was diagnosed. These values normalized after termination of temozolomide medication. One patient died of pneumonia during therapy. Our survival data were well within the range taken from the literature. However, we noticed a considerable frequency and intensity of side effects to bone marrow and liver. These lead to the recommendations that regular examinations of blood cell count and liver enzymes should be performed during therapy and temozolomide should not be applied or application should be terminated according to the criteria given by the manufacturer

  3. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    International Nuclear Information System (INIS)

    Schuuring, Janneke; Bussink, Johan; Bernsen, Hans; Peeters, Wenny; Kogel, Albert J. van der

    2005-01-01

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, when combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone

  4. Combination Treatment with PPARγ Ligand and Its Specific Inhibitor GW9662 Downregulates BIS and 14-3-3 Gamma, Inhibiting Stem-Like Properties in Glioblastoma Cells.

    Science.gov (United States)

    Im, Chang-Nim

    2017-01-01

    PPAR γ is a nuclear receptor that regulates differentiation and proliferation and is highly expressed in many cancer cells. Its synthetic ligands, such as rosiglitazone and ciglitazone, and its inhibitor GW9662, were shown to induce cellular differentiation, inhibit proliferation, and lead to apoptosis. Glioblastoma is a common brain tumor with poor survival prospects. Recently, glioblastoma stem cells (GSCs) have been examined as a potential target for anticancer therapy; however, little is known about the combined effect of various agents on GSCs. In this study, we found that cotreatment with PPAR γ ligands and GW9662 inhibited stem-like properties in GSC-like spheres, which significantly express SOX2. In addition, this treatment decreased the activation of STAT3 and AKT and decreased the amounts of 14-3-3 gamma and BIS proteins. Moreover, combined administration of small-interfering RNA (siRNA) transfection with PPAR γ ligands induced downregulation of SOX2 and MMP2 activity together with inhibition of sphere-forming activity regardless of poly(ADP-ribose) polymerase (PARP) cleavage. Taken together, our findings suggest that a combination therapy using PPAR γ ligands and its inhibitor could be a potential therapeutic strategy targeting GSCs.

  5. Combination Treatment with PPARγ Ligand and Its Specific Inhibitor GW9662 Downregulates BIS and 14-3-3 Gamma, Inhibiting Stem-Like Properties in Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Chang-Nim Im

    2017-01-01

    Full Text Available PPARγ is a nuclear receptor that regulates differentiation and proliferation and is highly expressed in many cancer cells. Its synthetic ligands, such as rosiglitazone and ciglitazone, and its inhibitor GW9662, were shown to induce cellular differentiation, inhibit proliferation, and lead to apoptosis. Glioblastoma is a common brain tumor with poor survival prospects. Recently, glioblastoma stem cells (GSCs have been examined as a potential target for anticancer therapy; however, little is known about the combined effect of various agents on GSCs. In this study, we found that cotreatment with PPARγ ligands and GW9662 inhibited stem-like properties in GSC-like spheres, which significantly express SOX2. In addition, this treatment decreased the activation of STAT3 and AKT and decreased the amounts of 14-3-3 gamma and BIS proteins. Moreover, combined administration of small-interfering RNA (siRNA transfection with PPARγ ligands induced downregulation of SOX2 and MMP2 activity together with inhibition of sphere-forming activity regardless of poly(ADP-ribose polymerase (PARP cleavage. Taken together, our findings suggest that a combination therapy using PPARγ ligands and its inhibitor could be a potential therapeutic strategy targeting GSCs.

  6. CCR 20th Anniversary Commentary: Bevacizumab in the Treatment of Glioblastoma--The Progress and the Limitations.

    Science.gov (United States)

    Mar, Nataliya; Desjardins, Annick; Vredenburgh, James J

    2015-10-01

    Vredenburgh and colleagues conducted the first phase II study of bevacizumab plus irinotecan in recurrent malignant glioma, confirming the safety and efficacy of bevacizumab. This study, which was published in the February 15, 2007, issue of Clinical Cancer Research, was a stepping stone for subsequent research, leading to regulatory approval of bevacizumab for recurrent glioblastoma. ©2015 American Association for Cancer Research.

  7. Enhanced tumor control of human Glioblastoma Multiforme xenografts with the concomitant use of radiotherapy and an attenuated herpes simplex-1 virus (ASTRO research fellowship)

    International Nuclear Information System (INIS)

    Song, Paul Y.; Sibley, Gregory S.; Advani, Sunil; Hallahan, Dennis; Hyland, John; Kufe, Donald W.; Chou, Joany; Roizman, Bernard; Weichselbaum, Ralph R.

    1996-01-01

    Purpose: Glioblastoma Multiforme remains one of the most incurable of human tumors. The current treatment outcomes are dismal. There are several recent reports which suggest that some human glioblastoma xenografts implanted in the brains of athymic mice may be potentially cured with the use of an attenuated herpes simplex-1 virus alone. We have chosen a replication competent, non-neurovirulent HSV-1 mutant, designated R3616 to determine whether there is an interactive cell killing and enhanced tumor control with radiotherapy in the treatment of a human glioblastoma xenograft. Materials and Methods: In vivo, 1 mm 3 pieces of U-87 human glioblastoma cell line xenografts were implanted into the right hind limb of athymic mice and grown to > 200 mm 3 . A total of 112 mice were then equally distributed within four treatment arms (see chart below) based upon tumor volume. Xenografts selected to receive virus as part of the therapy were inoculated with three injections of 2 x 10 7 plaque forming units (PFU) of R3616 virus given on day 1, 2, and 3 for a total dose of 6 x 10 7 PFU. R3616 is a non-neurovirulent HSV-1 mutant created by the deletion of the γ 34.5 gene. Local field irradiation was delivered on day 2 (20 Gy) and day 3 (25 Gy). The mice were then followed for 60 days during which time the xenografts were measured twice weekly. A clinically non-palpable tumor (< 10% original volume) was scored as a cure. In addition percent-fractional tumor volume (FTV) and mean tumor volume (MTV) were calculated for each group. Results: Conclusion: While our tumor control with R3616 alone is similar to that reported in the literature, we have seen significantly enhanced tumor control and cell killing with the addition of RT suggesting a synergistic interaction between an oncolytic virus and radiation in the treatment of human glioblastoma multiforme xenografts

  8. Analysis of fractional anisotropy facilitates differentiation of glioblastoma and brain metastases in a clinical setting

    Energy Technology Data Exchange (ETDEWEB)

    Bette, Stefanie, E-mail: stefanie.bette@tum.de [Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Huber, Thomas; Wiestler, Benedikt; Boeckh-Behrens, Tobias [Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Gempt, Jens; Ringel, Florian; Meyer, Bernhard [Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Zimmer, Claus; Kirschke, Jan S. [Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany)

    2016-12-15

    Purpose: Differentiating glioblastoma from brain metastases is important for therapy planning. Diffusion tensor imaging (DTI) was described as a promising tool, however with conflicting results. Aim: of this study was to analyze the clinical utility of DTI for the differentiation of brain metastases and glioblastoma. Methods: 294 patients (165 glioblastoma, 129 brain metastases) with preoperative DTI were included in this retrospective study. Fractional anisotropy (FA) was measured via regions of interest (ROIs) in the contrast-enhancing tumor, the necrosis and the FLAIR-hyperintense non-enhancing peritumoral region (NEPTR). Two neuroradiologists classified patient cases as glioblastoma or brain metastases without and with knowledge of FA values. Results: Glioblastoma showed significantly higher FA{sub contrast} (median glioblastoma = 0.33, metastases = 0.23; P < 0.001) whereas no significant difference was observed for FA{sub NEPTR} (0.21 vs. 0.22; P = 0.28) and for FA{sub necrosis} (0.17 vs. 0.18, P = 0.37). FA improved diagnostic accuracy of the neuroradiologists significantly from an AUC of 0.84/0.85 (Reader1/Reader2) to 0.89/0.92. Conclusions: Glioblastoma show significantly higher FA values in the contrast enhancing tumor part than brain metastases. Implementation of a ROI-based measurement of FA values and FA color maps in clinical routine helps to differentiate between glioblastoma and brain metastases.

  9. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma

    DEFF Research Database (Denmark)

    Sehested, Astrid Marie

    2016-01-01

    Pediatric glioblastoma is one of the most common and most deadly brain tumors in childhood. Using an integrative genetic analysis of 53 pediatric glioblastomas and five in vitro model systems, we identified previously unidentified gene fusions involving the MET oncogene in ∼10% of cases. These MET...

  10. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Garcia, Estefania; Saceda, Miguel [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Garcia-Morales, Pilar [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Ferragut, Jose A. [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Martinez-Lacaci, Isabel, E-mail: imlacaci@umh.es [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad AECC de Investigacion Traslacional en Cancer, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia (Spain)

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  11. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Araceli Gutiérrez-Rodríguez

    2017-01-01

    Full Text Available Progesterone-induced blocking factor (PIBF is a progesterone (P4 regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM blocked this effect. PIBF (100 ng/mL increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h and U251 (24 and 48 h cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells.

  12. P16.30 4th ventricle glioblastoma

    Science.gov (United States)

    Unal, E.; Isik, S.; Gurbuz, M.; Kilic, K.

    2017-01-01

    Abstract Introduction: We present the 2nd case ever known in English literature describing a glioblastoma of the fourth ventricle originating from cerebellar peduncle. CASE DESCIPTION: A 66 years old woman was admitted to hospital with dizziness and nausea for four months. An MRI scan showed fourth ventricle mass. First impression was an ependymoma due to MRI scan characteristics. Results: A surgery was performed and histopathology revealed Grade IV glial tumor. Radiotherapy was done. CONCLUSION: This report suggests that GBM can mimic every tumor in the CNS. Surgery is the best option for these tumors not only for aggressive behaviour of glioblastoma but also to prevent hydrocephalus and associated symptoms.

  13. Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A.

    Science.gov (United States)

    Pitre, Aaron; Davis, Nathan; Paul, Madhumita; Orr, A Wayne; Skalli, Omar

    2012-04-01

    The intermediate filament protein synemin is present in astrocyte progenitors and glioblastoma cells but not in mature astrocytes. Here we demonstrate a role for synemin in enhancing glioblastoma cell proliferation and clonogenic survival, as synemin RNA interference decreased both behaviors by inducing G1 arrest along with Rb hypophosphorylation and increased protein levels of the G1/S inhibitors p21(Cip1) and p27(Kip1). Akt involvement was demonstrated by decreased phosphorylation of its substrate, p21(Cip1), and reduced Akt catalytic activity and phosphorylation at essential activation sites. Synemin silencing, however, did not affect the activities of PDPK1 and mTOR complex 2, which directly phosphorylate Akt activation sites, but instead enhanced the activity of the major regulator of Akt dephosphorylation, protein phosphatase type 2A (PP2A). This was accompanied by changes in PP2A subcellular distribution resulting in increased physical interactions between PP2A and Akt, as shown by proximity ligation assays (PLAs). PLAs and immunoprecipitation experiments further revealed that synemin and PP2A form a protein complex. In addition, treatment of synemin-silenced cells with the PP2A inhibitor cantharidic acid resulted in proliferation and pAkt and pRb levels similar to those of controls. Collectively these results indicate that synemin positively regulates glioblastoma cell proliferation by helping sequester PP2A away from Akt, thereby favoring Akt activation.

  14. Marital status, treatment, and survival in patients with glioblastoma multiforme: a population based study.

    Science.gov (United States)

    Chang, Susan M; Barker, Fred G

    2005-11-01

    Social factors influence cancer treatment choices, potentially affecting patient survival. In the current study, the authors studied the interrelations between marital status, treatment received, and survival in patients with glioblastoma multiforme (GM), using population-based data. The data source was the Surveillance, Epidemiology, and End Results (SEER) Public Use Database, 1988-2001, 2004 release, all registries. Multivariate logistic, ordinal, and Cox regression analyses adjusted for demographic and clinical variables were used. Of 10,987 patients with GM, 67% were married, 31% were unmarried, and 2% were of unknown marital status. Tumors were slightly larger at the time of diagnosis in unmarried patients (49% of unmarried patients had tumors larger than 45 mm vs. 45% of married patients; P = 0.004, multivariate analysis). Unmarried patients were less likely to undergo surgical resection (vs. biopsy; 75% of unmarried patients vs. 78% of married patients) and were less likely to receive postoperative radiation therapy (RT) (70% of unmarried patients vs. 79% of married patients). On multivariate analysis, the odds ratio (OR) for resection (vs. biopsy) in unmarried patients was 0.88 (95% confidence interval [95% CI], 0.79-0.98; P = 0.02), and the OR for RT in unmarried patients was 0.69 (95% CI, 0.62-0.77; P Unmarried patients more often refused both surgical resection and RT. Unmarried patients who underwent surgical resection and RT were found to have a shorter survival than similarly treated married patients (hazard ratio for unmarried patients, 1.10; P = 0.003). Unmarried patients with GM presented with larger tumors, were less likely to undergo both surgical resection and postoperative RT, and had a shorter survival after diagnosis when compared with married patients, even after adjustment for treatment and other prognostic factors. (c) 2005 American Cancer Society.

  15. Transcriptional changes induced by bevacizumab combination therapy in responding and non-responding recurrent glioblastoma patients

    DEFF Research Database (Denmark)

    Urup, Thomas; Staunstrup, Line Maersk; Michaelsen, Signe Regner

    2017-01-01

    Background: Bevacizumab combined with chemotherapy produces clinical durable response in 25-30% of recurrent glioblastoma patients. This group of patients has shown improved survival and quality of life. The aim of this study was to investigate changes in gene expression associated with response...... and resistance to bevacizumab combination therapy.Methods: Recurrent glioblastoma patients who had biomarker-accessible tumor tissue surgically removed both before bevacizumab treatment and at time of progression were included. Patients were grouped into responders (n = 7) and non-responders (n = 14). Gene...... expression profiling of formalin-fixed paraffin-embedded tumor tissue was performed using RNA-sequencing.Results: By comparing pretreatment samples of responders with those of non-responders no significant difference was observed. In a paired comparison analysis of pre- and posttreatment samples of non...

  16. Effectiveness of maximal safe resection for glioblastoma including elderly and low karnofsky performance status patients. Retrospective review at a single institute

    International Nuclear Information System (INIS)

    Uzuka, Takeo; Takahashi, Hideaki; Aoki, Hiroshi; Natsumeda, Manabu; Fujii, Yukihiko

    2012-01-01

    Elderly and low Karnofsky performance status (KPS) patients have been excluded from most prospective trials. This retrospective study investigated glioblastoma treatment outcomes, including those of elderly and low KPS patients, and analyzed the prognostic factors using the medical records of 107 consecutive patients, 59 men and 48 women aged from 21 to 85 years (median 65 years), with newly diagnosed glioblastoma treated at our institute. There were 71 high-risk patients with age >70 years and/or KPS 6 -methylguanine-deoxyribonucleic acid methyltransferase-negative (p=0.027), and more than subtotal removal (p=0.003) were significant prognostic factors. The median postoperative KPS score tended to be better than the preoperative score, even in the high-risk group. We recommend maximal safe resection for glioblastoma patients, even those with advanced age and/or with low KPS scores. (author)

  17. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Science.gov (United States)

    Nitta, Masayuki; Kozono, David; Kennedy, Richard; Stommel, Jayne; Ng, Kimberly; Zinn, Pascal O; Kushwaha, Deepa; Kesari, Santosh; Inda, Maria-del-Mar; Wykosky, Jill; Furnari, Frank; Hoadley, Katherine A; Chin, Lynda; DePinho, Ronald A; Cavenee, Webster K; D'Andrea, Alan; Chen, Clark C

    2010-05-24

    Despite the critical role of Epidermal Growth Factor Receptor (EGFR) in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER) genes required for the repair of Reactive Oxygen Species (ROS)-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1). Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  18. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Directory of Open Access Journals (Sweden)

    Masayuki Nitta

    Full Text Available Despite the critical role of Epidermal Growth Factor Receptor (EGFR in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER genes required for the repair of Reactive Oxygen Species (ROS-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1. Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  19. Extracts of Artocarpus communis Induce Mitochondria-Associated Apoptosis via Pro-oxidative Activity in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Chiang-Wen Lee

    2018-05-01

    Full Text Available Glioblastoma multiforme (GBM is an extremely aggressive and devastating malignant tumor in the central nervous system. Its incidence is increasing and the prognosis is poor. Artocarpin is a natural prenylated flavonoid with various anti-inflammatory and anti-tumor properties. Studies have shown that artocarpin is associated with cell death of primary glioblastoma cells. However, the in vivo effects and the cellular and molecular mechanisms modulating the anticancer activities of artocarpin remain unknown. In this study, we demonstrated that treating the glioblastoma cell lines U87 and U118 cells with artocarpin induced apoptosis. Artocarpin-induced apoptosis is associated with caspase activation and poly (ADP-ribose polymerase (PARP cleavage and is mediated by the mitochondrial pathway. This is associated with mitochondrial depolarization, mitochondrial-derived reactive oxidative species (ROS production, cytochrome c release, Bad and Bax upregulations, and Bcl-2 downregulation. Artocarpin induced NADPH oxidase/ROS generation plays an important role in the mitochondrial pathway activation. Furthermore, we found artocarpin-induced ROS production in mitochondria is associated with Akt- and ERK1/2 activation. After treatment with artocarpin, ROS causes PI3K/Akt/ERK1/2-induced cell death of these tumor cells. These observations were further verified by the results from the implantation of both U87 and U118 cells into in vivo mouse. In conclusion, our findings suggest that artocarpin induces mitochondria-associated apoptosis of glioma cells, suggesting that artocarpine can be a potential chemotherapeutic agent for future GBM treatment.

  20. Comparison of vitamins K1, K2 and K3 effects on growth of rat glioma and human glioblastoma multiforme cells in vitro.

    Science.gov (United States)

    Oztopçu, Pinar; Kabadere, Selda; Mercangoz, Ayşe; Uyar, Ruhi

    2004-09-01

    Glioblastoma multiforme is characterized as highly invasive and rapidly growing astrocytomas, and scientists have sought for efficient treatment against malignant gliomas for a long time. Therefore, we compared the respond of rat glioma (C6) and glioblastoma multiforme cells derived from two patients to vitamins K1, K2 and K3. The cells were exposed to 100, 250, 500, 750 and 1000 microM of vitamins K1 and K2, and 1, 10, 25, 50, 75 and 100 microM of vitamin K3 for 24 hours in an incubator atmosphere of 5% CO2, 37 degrees C and 100% humidity. Cell viability was estimated by MTT assay. Vitamin K1 showed no growth effect on all the glioma cells examined. Vitamin K2 did not cause any change in number of C6, however induced growth inhibition in a dose-dependent manner on glioblastoma multiforme. The IC50 values of vitamin K2 were 960 microM and 970 microM for glioblastoma multiforme, respectively. Vitamin K3 had also growth inhibitory effect in a dose-dependent manner on both C6 and glioblastoma multiforme. The IC50 values were 41 microM, 24 microM and 23 microM for vitamin K3, respectively. We concluded that vitamin K3 is more effective than vitamin K2 for inhibition of cancer cell growth, and might have an alternative value as an anticancer drug against glioblastoma multiforme.

  1. Short-term irradiation of the glioblastoma with high-dosed fractions

    International Nuclear Information System (INIS)

    Hinkelbein, W.; Bruggmoser, G.; Schmidt, M.; Wannenmacher, M.

    1984-01-01

    Compared to surgery alone, postoperative radiotherapy leads with glioblastomas (grade IV gliomas) to a significant improvement of the therapeutic results. The prolongation of survival time, however, is to a large extent compensated by the therapy itself (it normally implicates hospitalisation). Therefore, we tested the efficiency of rapid course irradiation with high fractions. 70 patients were treated daily with individual fractions of 3.5 Gy, 4 to 6 fractions per week. The entire dose amounted to 31.5 to 38.5 Gy. The average survival time was 33.5 weeks corresponding to the survival time known from the combined surgical and radiotherapeutical treatment of glioblastomas. An effective increase in therapy-free survival time seems possible, especially when the entire focal dose does not exceed 35 Gy. It is remarkable that the patients with the maximum exposure did not have the longest survival times and rates. Living conditions for the patients were similar to those with conventional fractioning, or even better. Rapid course irradiation with high fractions and a limited total dose (35 Gy) presently is - apart from the accelerated superfractioning - a successful measure to prolong the therapyfree survival time for patients with grade IV gliomas. (orig.) [de

  2. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    International Nuclear Information System (INIS)

    Li, Xuesong; Gong, Xuhai; Chen, Jing; Zhang, Jinghui; Sun, Jiahang; Guo, Mian

    2015-01-01

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2

  3. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuesong; Gong, Xuhai [Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001 (China); Chen, Jing [Department of Neurology, Daqing Longnan Hospital, Daqing, Heilongjiang, 163001 China (China); Zhang, Jinghui [Department of Cardiology, The Fourth Hospital of Harbin City, Harbin, Heilongjiang 150026 (China); Sun, Jiahang [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China); Guo, Mian, E-mail: guomian_hyd@163.com [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China)

    2015-05-08

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.

  4. Combined stereotactic biopsy and stepping-source interstitial irradiation of glioblastoma multiforme.

    Science.gov (United States)

    Brehmer, Stefanie; Guthier, Christian V; Clausen, Sven; Schneider, Frank; Schulte, Dirk-Michael; Benker, Matthias; Bludau, Frederic; Glatting, Gerhard; Marx, Alexander; Schmiedek, Peter; Hesser, Jürgen; Wenz, Frederik; Giordano, Frank A

    2018-04-01

    Patients diagnosed with glioblastoma multiforme receiving stereotactic biopsy only either due to tumor localization or impaired clinical status face a devastating prognosis with very short survival times. One strategy to provide an initial cytoreductive and palliative therapy at the time of the stereotactic biopsy is interstitial irradiation through the pre-defined trajectory of the biopsy channel. We designed a novel treatment planning system and evaluated the treatment potential of a fixed-source and a stepping-source algorithm for interstitial radiosurgery on non-spherical glioblastoma in direct adjacency to risk structures. Using both setups, we show that radiation doses delivered to 100% of the gross tumor volume shifts from sub-therapeutic (10-12 Gy) to sterilizing single doses (25-30 Gy) when using the stepping source algorithm due to improved sparing of organs-at-risk. Specifically, the maximum doses at the brain stem were 100% of the PTV dose when a fixed central source and 38% when a stepping-source algorithm was used. We also demonstrated precision of intracranial target points and stability of superficial and deep trajectories using both a phantom and a body donor study. Our setup now for the first time provides a basis for a clinical proof-of-concept trial and may widen palliation options for patients with limited life expectancy that should not undergo time-consuming therapies.

  5. Hemolytic anemia in two patients with glioblastoma multiforme: A possible interaction between vorinostat and dapsone.

    Science.gov (United States)

    Lewis, Jennifer A; Petty, William J; Harmon, Michele; Peacock, James E; Valente, Kari; Owen, John; Pirmohamed, Munir; Lesser, Glenn J

    2015-06-01

    Patients undergoing treatment for glioblastoma multiforme are routinely placed on prophylactic treatment for Pneumocystis jirovecii pneumonia because of significant therapy-induced lymphopenia. In patients with sulfa allergies, dapsone prophylaxis is often used due to its efficacy, long half-life, cost effectiveness, and general safety at low doses. However, dapsone may uncommonly induce a hemolytic anemia, particularly in patients deficient of glucose-6-phosphate dehydrogenase. This hemolysis is thought to be a result of oxidative stress on red blood cells induced by dapsone metabolites which produce reactive oxygen species that disrupt the red blood cell membrane and promote splenic sequestration. A single case report of dapsone-induced hemolytic anemia in a patient with glioblastoma multiforme has been reported. We present two patients with glioblastoma multiforme who developed severe hemolytic anemia shortly after initiating therapy with vorinostat, a pan-active histone deacetylase inhibitor, while on prophylactic dapsone. There are several potential mechanisms by which histone deacetylase inhibition may alter dapsone metabolism including changes in hepatic acetylation or N-glucuronidation leading to an increase in the bioavailability of dapsone's hematotoxic metabolites. In addition, vorinostat may lead to increased hemolysis through inhibition of heat shock protein-90, a chaperone protein that maintains the integrity of the red blood cell membrane cytoskeleton. The potential interaction between dapsone and vorinostat may have important clinical implications as more than 10 clinical trials evaluating drug combinations with vorinostat in patients with malignant glioma are either ongoing or planned in North America. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. MiRNA expression patterns predict survival in glioblastoma

    International Nuclear Information System (INIS)

    Niyazi, Maximilian; Belka, Claus; Zehentmayr, Franz; Niemöller, Olivier M; Eigenbrod, Sabina; Kretzschmar, Hans; Osthoff, Klaus-Schulze; Tonn, Jörg-Christian; Atkinson, Mike; Mörtl, Simone

    2011-01-01

    In order to define new prognostic subgroups in patients with glioblastoma a miRNA screen (> 1000 miRNAs) from paraffin tissues followed by a bio-mathematical analysis was performed. 35 glioblastoma patients treated between 7/2005 - 8/2008 at a single institution with surgery and postoperative radio(chemo)therapy were included in this retrospective analysis. For microarray analysis the febit biochip 'Geniom ® Biochip MPEA homo-sapiens' was used. Total RNA was isolated from FFPE tissue sections and 1100 different miRNAs were analyzed. It was possible to define a distinct miRNA expression pattern allowing for a separation of distinct prognostic subgroups. The defined miRNA pattern was significantly associated with early death versus long-term survival (split at 450 days) (p = 0.01). The pattern and the prognostic power were both independent of the MGMT status. At present, this is the first dataset defining a prognostic role of miRNA expression patterns in patients with glioblastoma. Having defined such a pattern, a prospective validation of this observation is required

  7. Hippocampal sparing radiotherapy for glioblastoma patients: a planning study using volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Hofmaier, Jan; Kantz, Steffi; Söhn, Matthias; Dohm, Oliver S.; Bächle, Stefan; Alber, Markus; Parodi, Katia; Belka, Claus; Niyazi, Maximilian

    2016-01-01

    The purpose of this study is to investigate the potential to reduce exposure of the contralateral hippocampus in radiotherapy for glioblastoma using volumetric modulated arc therapy (VMAT). Datasets of 27 patients who had received 3D conformal radiotherapy (3D-CRT) for glioblastoma with a prescribed dose of 60Gy in fractions of 2Gy were included in this planning study. VMAT plans were optimized with the aim to reduce the dose to the contralateral hippocampus as much as possible without compromising other parameters. Hippocampal dose and treatment parameters were compared to the 3D-CRT plans using the Wilcoxon signed-rank test. The influence of tumour location and PTV size on the hippocampal dose was investigated with the Mann–Whitney-U-test and Spearman’s rank correlation coefficient. The median reduction of the contralateral hippocampus generalized equivalent uniform dose (gEUD) with VMAT was 36 % compared to the original 3D-CRT plans (p < 0.05). Other dose parameters were maintained or improved. The median V30Gy brain could be reduced by 17.9 % (p < 0.05). For VMAT, a parietal and a non-temporal tumour localisation as well as a larger PTV size were predictors for a higher hippocampal dose (p < 0.05). Using VMAT, a substantial reduction of the radiotherapy dose to the contralateral hippocampus for patients with glioblastoma is feasible without compromising other treatment parameters. For larger PTV sizes, less sparing can be achieved. Whether this approach is able to preserve the neurocognitive status without compromising the oncological outcome needs to be investigated in the setting of prospective clinical trials

  8. Glioblastomas with Oligodendroglial Component ? Common Origin of the Different Histological Parts and Genetic Subclassification

    OpenAIRE

    Klink, Barbara; Schlingelhof, Ben; Klink, Martin; Stout-Weider, Karen; Patt, Stephan; Schrock, Evelin

    2010-01-01

    Background: Glioblastomas are the most common and most malignant brain tumors in adults. A small subgroup of glioblastomas contains areas with histological features of oligodendroglial differentiation (GBMO). Our objective was to genetically characterize the oligodendroglial and the astrocytic parts of GBMOs and correlate morphologic and genetic features with clinical data. Methods: The oligodendroglial and the ?classic? glioblastoma parts of 13 GBMO were analyzed separately by interphase flu...

  9. Inhibition of AKT signaling by supercritical CO2 extract of mango ginger (Curcuma amada Roxb.) in human glioblastoma cells.

    Science.gov (United States)

    Ramachandran, Cheppail; Portalatin, Gilda; Quirin, Karl-W; Escalon, Enrique; Khatib, Ziad; Melnick, Steven J

    2015-12-01

    Mango ginger (Curcuma amada Roxb.) is a less-investigated herb for anticancer properties than other related Curcuma species. AKT (a serine/threonine protein kinase B, originally identified as an oncogene in the transforming retrovirus AKT8) plays a central role in the development and promotion of cancer. In this investigation, we have analyzed the effect of supercritical CO2 extract of mango ginger (CA) on the genetic pathways associated with AKT signaling in human glioblastoma cells. The inhibitory effect of supercritical CO2 extract of mango ginger (Curcuma amada) on AKT signaling was investigated in U-87MG glioblastoma cells. CA was highly cytotoxic to glioblastoma cell line (IC50=4.92±0.81 µg/mL) compared to mHypoE-N1 normal mouse hypothalamus cell line (IC50=40.57±0.06 µg/mL). CA inhibits AKT (protein Kinase B) and adenosine monophophate -activated protein kinase α (AMPKα) phosphorylation significantly in a dose-dependent manner. The cell migration which is necessary for invasion and metastasis was also inhibited by CA treatment, with about 43% reduction at 20 µg/mL concentration. Analysis of mRNA and protein expression of genes associated with apoptosis, cell proliferation and angiogenesis showed that CA modulates expression of genes associated with apoptosis (Bax, Bcl-2, Bcl-X, BNIP3, caspase-3, mutant p53 and p21), cell proliferation (Ki67) and angiogenesis vascular endothelial growth factor (VEGF). Additionally, heat shock protein 90 (HSP90) and AMPKα genes interacting with the AKT signaling pathway were also downregulated by CA treatment. These results indicate the molecular targets and mechanisms underlying the anticancer effect of CA in human glioblastoma cells.

  10. Reasons for non-compliance to treatment among patients with ...

    African Journals Online (AJOL)

    Other reasons were respondents' different belief systems, poor insight about their illness, ineffectivity of some medication, dislike for injections, lack of continuity of care and family support, non-involvement of patients in their own management. Social stigma, objection by a particular religious group to treatment and ...

  11. Autopsy findings in a long-term survivor with glioblastoma multiforme. Case report

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Shozo; Endo, Yuzo; Takada, Koji; Usui, Masaaki; Hara, Mitsuru [Toranomon Hospital, Tokyo (Japan); Hirose, Takanori

    1998-02-01

    Autopsy detected no tumor tissues in a patient who died 6.5 years after the diagnosis of glioblastoma multiforme. A 54-year-old male developed left hemiparesis one month prior to admission. Computed tomography demonstrated a cystic lesion in the right frontal region with irregular ring-like enhancement. The tumor was extensively removed together with the surrounding tissues followed by irradiation (whole brain 32.4 Gy, local 28.8 Gy), and intravenous administration of interferon-{beta}. Histological examination confirmed the diagnosis of glioblastoma multiform. He died of accidental head trauma 6.5 years after surgery. Autopsy of the brain detected no evidence of glioblastoma multiform. The only findings were cerebral edema and hematoma caused by head trauma, as well as histological changes due to radiation damage. This case apparently confirms the histological disappearance of tumor tissue in a long-term survivor with glioblastoma multiform. (author)

  12. Autopsy findings in a long-term survivor with glioblastoma multiforme. Case report

    International Nuclear Information System (INIS)

    Yamada, Shozo; Endo, Yuzo; Takada, Koji; Usui, Masaaki; Hara, Mitsuru; Hirose, Takanori.

    1998-01-01

    Autopsy detected no tumor tissues in a patient who died 6.5 years after the diagnosis of glioblastoma multiforme. A 54-year-old male developed left hemiparesis one month prior to admission. Computed tomography demonstrated a cystic lesion in the right frontal region with irregular ring-like enhancement. The tumor was extensively removed together with the surrounding tissues followed by irradiation (whole brain 32.4 Gy, local 28.8 Gy), and intravenous administration of interferon-β. Histological examination confirmed the diagnosis of glioblastoma multiform. He died of accidental head trauma 6.5 years after surgery. Autopsy of the brain detected no evidence of glioblastoma multiform. The only findings were cerebral edema and hematoma caused by head trauma, as well as histological changes due to radiation damage. This case apparently confirms the histological disappearance of tumor tissue in a long-term survivor with glioblastoma multiform. (author)

  13. EG-10LONG NON-CODING RNAs IN GLIOBLASTOMA

    Science.gov (United States)

    Pastori, Chiara; Kapranov, Philipp; Penas, Clara; Laurent, Georges St.; Ayad, Nagi; Wahlestedt, Claes

    2014-01-01

    Glioblastoma (GBM) is the most common, aggressive and incurable primary brain tumor in adults. Genome studies have confirmed that GBM is extremely heterogeneous with many genetically different subgroups. Consequently, there is much current interest in epigenetic drugs that may be active across genetically distinct tumors. In support of this, some epigenetic drugs has recently shown efficacy against several cancers including glioblastoma. Much recent interest has also been devoted to long non-coding RNAs (lncRNAs), which can modulate gene expression regulating chromatin architecture, in part through the interaction with epigenetic protein machineries. To date, however, only a few lncRNAs have been studied in human cancer. We therefore embarked on a comprehensive genomic and functional analysis of lncRNAs in GBM. Using the Helicos Single Molecule Sequencing platform glioblastoma samples were sequenced resulting in the identification of hundreds of dysregulated lncRNAs. Among these the lncRNA HOTAIR was found massively increased in GBM. This observation parallels findings in other cancers where HOTAIR's increased expression has been linked to poor prognosis due to metastatic events. Interestingly, here we show that in glioblastoma HOTAIR does not promote metastasis, but instead sustains the ability of these cells to proliferate. In fact, we demonstrate that HOTAIR knockdown in GBM strongly impairs cell proliferation and induces apoptosis in vitro and in vivo. Further, we implicate HOTAIR in the mechanism of action of certain epigenetic drugs. In summary, long noncoding RNAs (newly discovered epigenomic factors) play a vital role in GBM and deserve attention as entirely novel drug targets as well as biomarkers.

  14. Treatment results of glioblastoma during the last 30 years in a single institute

    International Nuclear Information System (INIS)

    Kumabe, Toshihiro; Saito, Ryuta; Kanamori, Masayuki

    2013-01-01

    Treatment results of glioblastoma (GB) during the last 30 years in Tohoku University were analyzed to identify any improvements in patient outcome in all 332 histologically proven cases of newly diagnosed GB treated consecutively in our department between 1982 and 2011. These 30 years was divided into 5 treatment eras, Group 1 (1982-1988, without preoperative evaluation by magnetic resonance [MR] imaging, n=46), Group 2 (1989-1996, with preoperative MR imaging, n=41), Group 3 (1997-1999, additionally underwent intraoperative functional brain mapping and neuronavigation system, n=38), Group 4 (2000-August 2006, underwent 30 Gy of whole brain radiation followed by 30 Gy of extended local accelerated hyperfractionated radiation therapy, n=96), and Group 5 (September 2006-2011, adjuvant usage of temozolomide [TMZ], n=111). Overall survival (OS) was calculated from the date of surgery to the death from any cause. The median survival time/2-year OS/5-year OS of Groups 1 to 5 were 10.7 months/10.9%/0%, 17.3 months/26.2%/6.9%, 15.9 months/23.7%/5.3%, 20.1 months/34.8%/15.5%, and 20.9 months/45.5%/19.7%. The prognosis for patients with GB improved significantly after the introduction of MR imaging. Younger GB, defined as patients aged below 60 years, or total tumor resection with all ages in Group 5 had 5-year OS of 31.0% and 30.1%, respectively. The prognosis of GB was improved significantly after the introduction of TMZ for elderly GB, recursive partitioning analysis class 5, or totally resected GB. Introduction of MR imaging and TMZ, and total resection of the tumor were important in the improvement of outcome for patients with GB. (author)

  15. Micro RNAs as molecular markers of glioblastoma multiform

    Energy Technology Data Exchange (ETDEWEB)

    Farace, M G [Department Experimental Medicine and Biochemical Sciences, University of Tor Vergata, Rome (Italy); Finocchiaro, G [Istituto Neurologico Besta, Milan (Italy); Ricci Vitiani, L [Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanita, Rome (Italy)

    2009-07-01

    The aim of this project was to unravel the role that miR-221 and miR-222, of which we had already demonstrated the specific differential expression in glioblastoma multiforme compared to normal brain, play in the control of cell proliferation, with the ultimate goal to provide new insights in the molecular basis of cancer. The results of our research allowed to identify an important molecular target for miRNA-221 and miR-222, highly expressed in glioblastoma multiforme tissues and cell lines, and to precisely recognize the mRNA regions responsible for this regulation.

  16. Micro RNAs as molecular markers of glioblastoma multiform

    International Nuclear Information System (INIS)

    Farace, M.G.; Finocchiaro, G.; Ricci Vitiani, L.

    2009-01-01

    The aim of this project was to unravel the role that miR-221 and miR-222, of which we had already demonstrated the specific differential expression in glioblastoma multiforme compared to normal brain, play in the control of cell proliferation, with the ultimate goal to provide new insights in the molecular basis of cancer. The results of our research allowed to identify an important molecular target for miRNA-221 and miR-222, highly expressed in glioblastoma multiforme tissues and cell lines, and to precisely recognize the mRNA regions responsible for this regulation

  17. Racial/ethnic differences in perceived reasons for mental health treatment in US adolescents with major depression.

    Science.gov (United States)

    Cummings, Janet R; Case, Brady G; Ji, Xu; Chae, David H; Druss, Benjamin G

    2014-09-01

    Racial/ethnic differences in the course of treatment for a major depressive episode (MDE) among adolescents may arise, in part, from variation in the perceived rationale for treatment. We examined racial/ethnic differences in the perceived reasons for receiving mental health (MH) treatment among adolescents with an MDE. A total of 2,789 adolescent participants who experienced an MDE and received MH treatment in the past year were drawn from the 2005 to 2008 National Survey on Drug Use and Health. Adolescents reported the settings in which they received care and reasons for their most recent visit to each setting. Distributions of specific depressive symptoms were compared across racial/ethnic groups. Racial/ethnic differences in endorsing each of 11 possible reasons for receiving treatment were examined using weighted probit regressions adjusted for sociodemographic characteristics, health and mental health status, treatment setting, and survey year. Despite similar depressive symptom profiles, Hispanic adolescents were more likely than whites to endorse "breaking rules" or getting into physical fights as reasons for MH treatment. Black adolescents were more likely than white adolescents to endorse "problems at school" but less likely to endorse "felt very afraid or tense" or "eating problems" as reasons for treatment. Asian adolescents were more likely to endorse "problems with people other than friends or family" but less likely than whites to endorse "suicidal thoughts/attempt" and "felt depressed" as reasons for treatment. Racial/ethnic minority participants were more likely than white participants to endorse externalizing or interpersonal problems and less likely to endorse internalizing problems as reasons for MH treatment. Understanding racial/ethnic differences in the patient's perceived treatment rationale can offer opportunities to enhance outcomes for depression among diverse populations. Copyright © 2014 American Academy of Child and Adolescent

  18. Investigating Ceria Nanocrystals Uptake by Glioblastoma Multiforme Cells and its Related Effects: An Electron Microscopy Study

    KAUST Repository

    Aloufi, Bader

    2017-01-22

    Cerium oxide nanoparticles have been utilized widely nowadays in cancer research. It has been suggested by many studies that these nanoparticles are capable of having dual antioxidant behavior in healthy and cancer microenvironment; where in physiological condition, they act as antioxidant and do not affect the healthy cells, while in tumor-like condition; they act as an oxidase, and result in a selective killing for the cancer cells. In this experiment, the interaction of nanoceria with glioblastoma and healthy astrocyte cells was examined, and further correlated with the in vitro cytotoxic effects of various nanoceria concentrations (100 and 300 µg/ml) and exposure times (12, 24, and 48 hours). Electron microscopes were used to investigate the cellular-NPs interactions, and to examine the related cytotoxic effects in combination with trypan blue and propidium iodide viability assays. Our data suggest the following results. First, the two cell lines demonstrated capability of taken up the ceria through endocytosis pathway, where the NPs were recognized engulfed by double membrane vesicles at various regions over the cellular cytoplasm. Secondly, cerium oxide nanoparticles were found to affect the glioblastoma cells, but not so severely the corresponding healthy astrocytes at the various concentrations and incubation times, as revealed by the viability assays and the electron microscopy analysis. Thirdly, the viability of the glioblastoma cells after the treatment displayed a declined trend when increasing the ceria concentrations, but did not show such dependency with regard to the different time points. In all cases, the healthy astrocyte cells showed slight alterations in mitochondrial shape which did not influence their viability. Among the various nanoceria concentrations and exposure times, the most efficient dose of treatment was found to be with a concentration of 300 µg/ml at a time point of 24-hour, where higher reduction on the viability of

  19. Glioblastoma with spinal seeding

    International Nuclear Information System (INIS)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C.; Czech, T.; Diekmann, K.; Birner, P.; Hainfellner, J.A.; Prayer, D.

    2004-01-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  20. Glioblastoma with spinal seeding

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C. [Clinical Div. of Oncology, Dept. of Medicine I, Univ. of Vienna (Austria); Czech, T. [Dept. of Neurosurgery, Univ. of Vienna (Austria); Diekmann, K. [Dept. of Radiooncology, Univ. of Vienna (Austria); Birner, P.; Hainfellner, J.A. [Clinical Inst. for Neurology, Univ. of Vienna (Austria); Prayer, D. [Dept. of Neuroradiology, Univ. of Vienna (Austria)

    2004-07-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  1. Anticancer activity of 7-epiclusianone, a benzophenone from Garcinia brasiliensis, in glioblastoma.

    Science.gov (United States)

    Sales, Leilane; Pezuk, Julia Alejandra; Borges, Kleiton Silva; Brassesco, María Sol; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga; dos Santos, Marcelo Henrique; Ionta, Marisa; de Oliveira, Jaqueline Carvalho

    2015-10-30

    Glioblastoma is the most common tumor of the central nervous system and one of the hardest tumors to treat. Consequently, the search for novel therapeutic options is imperative. 7-epiclusianone, a tetraprenylated benzophenone isolated from the epicarp of the native plant Garcinia brasiliensis, exhibits a range of biological activities but its prospect anticancer activity is underexplored. Thus, the aim of the present study was to evaluate the influence of 7-epiclusianone on proliferation, clonogenic capacity, cell cycle progression and induction of apoptosis in two glioblastoma cell lines (U251MG and U138MG). Cell viability was measured by the MTS assay; for the clonogenic assay, colonies were stained with Giemsa and counted by direct visual inspection; For cell cycle analysis, cells were stained with propidium iodide and analyzed by cytometry; Cyclin A expression was determined by immunoblotting; Apoptotic cell death was determined by annexin V fluorescein isothiocyanate labeling and Caspase-3 activity in living cells. Viability of both cell lines was drastically inhibited; moreover, the colony formation capacity was significantly reduced, demonstrating long-term effects even after removal of the drug. 7-epiclusianone treatment at low concentrations also altered cell cycle progression, decreased the S and G2/M populations and at higher concentrations increased the number of cells at sub-G1, in concordance with the increase of apoptotic cells. The present study demonstrates for the first time the anticancer potential of 7-epiclusianone against glioblastoma cells, thus meriting its further investigation as a potential therapeutic agent.

  2. Role of differentiation in glioblastoma invasion

    NARCIS (Netherlands)

    Vareecal Joseph, Justin

    2015-01-01

    Glioblastoma (GBM) is de meest agressieve hersentumor en diffuse infiltratie in het normale hersenweefsel is een van de hoofdoorzaken van een slechte prognose, aangezien volledige chirurgische verwijdering hierdoor vrijwel onmogelijk is. Het belangrijkste doel van het in dit proefschrift beschreven

  3. Quantitative probabilistic functional diffusion mapping in newly diagnosed glioblastoma treated with radiochemotherapy.

    Science.gov (United States)

    Ellingson, Benjamin M; Cloughesy, Timothy F; Lai, Albert; Nghiemphu, Phioanh L; Liau, Linda M; Pope, Whitney B

    2013-03-01

    Functional diffusion mapping (fDM) is a cancer imaging technique that uses voxel-wise changes in apparent diffusion coefficients (ADC) to evaluate response to treatment. Despite promising initial results, uncertainty in image registration remains the largest barrier to widespread clinical application. The current study introduces a probabilistic approach to fDM quantification to overcome some of these limitations. A total of 143 patients with newly diagnosed glioblastoma who were undergoing standard radiochemotherapy were enrolled in this retrospective study. Traditional and probabilistic fDMs were calculated using ADC maps acquired before and after therapy. Probabilistic fDMs were calculated by applying random, finite translational, and rotational perturbations to both pre-and posttherapy ADC maps, then repeating calculation of fDMs reflecting changes after treatment, resulting in probabilistic fDMs showing the voxel-wise probability of fDM classification. Probabilistic fDMs were then compared with traditional fDMs in their ability to predict progression-free survival (PFS) and overall survival (OS). Probabilistic fDMs applied to patients with newly diagnosed glioblastoma treated with radiochemotherapy demonstrated shortened PFS and OS among patients with a large volume of tumor with decreasing ADC evaluated at the posttreatment time with respect to the baseline scans. Alternatively, patients with a large volume of tumor with increasing ADC evaluated at the posttreatment time with respect to baseline scans were more likely to progress later and live longer. Probabilistic fDMs performed better than traditional fDMs at predicting 12-month PFS and 24-month OS with use of receiver-operator characteristic analysis. Univariate log-rank analysis on Kaplan-Meier data also revealed that probabilistic fDMs could better separate patients on the basis of PFS and OS, compared with traditional fDMs. Results suggest that probabilistic fDMs are a more predictive biomarker in

  4. Endothelial trans-differentiation in glioblastoma recurring after radiotherapy.

    Science.gov (United States)

    De Pascalis, Ivana; Morgante, Liliana; Pacioni, Simone; D'Alessandris, Quintino Giorgio; Giannetti, Stefano; Martini, Maurizio; Ricci-Vitiani, Lucia; Malinverno, Matteo; Dejana, Elisabetta; Larocca, Luigi M; Pallini, Roberto

    2018-04-30

    We hypothesized that in glioblastoma recurring after radiotherapy, a condition whereby the brain endothelium undergoes radiation-induced senescence, tumor cells with endothelial phenotype may be relevant for tumor neovascularization. Matched glioblastoma samples obtained at primary surgery and at surgery for tumor recurrence after radiotherapy, all expressing epidermal growth factor receptor variant III (EGFRvIII), were assessed by a technique that combines fluorescent in situ hybridization (FISH) for the EGFR/CEP7 chromosomal probe with immunostaining for endothelial cells (CD31) and activated pericytes (α Smooth Muscle Actin). Five EGFRvIII-expressing paired primary/recurrent glioblastoma samples, in which the tumor cells showed EGFR/CEP7 amplification, were then assessed by CD31 and α Smooth Muscle Actin immunofluorescence. In glomeruloid bodies, the ratio between CD31+ cells with amplified EGFR/CEP7 signal and the total CD31+ cells was 0.23 ± 0.09 (mean ± sem) and 0.63 ± 0.07 in primary tumors and in recurrent ones, respectively (p < 0.002, Student-t test). In capillaries, the ratio of CD31+ cells with amplified EGFR/CEP7 over the total CD31+ cells lining the capillary lumen was 0.21 ± 0.06 (mean ± sem) and 0.42 ± 0.07 at primary surgery and at recurrence, respectively (p < 0.005, Student-t test). Expression of α Smooth Muscle Actin by cells with EGFR/CEP7 amplification was not observed. Then, in glioblastoma recurring after radiotherapy, where the brain endothelium suffers from radiation-induced cell senescence, tumor-derived endothelium plays a role in neo-vascularization.

  5. Prognostic value of plasma transforming growth factor-beta in patients with glioblastoma multiforme

    NARCIS (Netherlands)

    Hulshof, M. C.; Sminia, P.; Barten-van Rijbroek, A. D.; Gonzalez Gonzalez, D.

    2001-01-01

    We investigated whether the postoperative concentration of circulating transforming growth factor beta (TGF-beta) yields prognostic value in patients with glioblastoma multiforme (gbm). Blood was collected from 20 healthy volunteers and in 28 patients with mainly glioblastoma multiforme (gbm), both

  6. Location of subventricular zone recurrence and its radiation dose predicts survival in patients with glioblastoma.

    Science.gov (United States)

    Weinberg, Brent D; Boreta, Lauren; Braunstein, Steve; Cha, Soonmee

    2018-07-01

    Glioblastomas are aggressive brain tumors that frequently recur in the subventricular zone (SVZ) despite maximal treatment. The purpose of this study was to evaluate imaging patterns of subventricular progression and impact of recurrent subventricular tumor involvement and radiation dose to patient outcome. Retrospective review of 50 patients diagnosed with glioblastoma and treated with surgery, radiation, and concurrent temozolomide from January 2012 to June 2013 was performed. Tumors were classified based on location, size, and cortical and subventricular zone involvement. Survival was compared based on recurrence type, distance from the initial enhancing tumor (local ≤ 2 cm, distant > 2 cm), and the radiation dose at the recurrence site. Progression of enhancing subventricular tumor was common at both local (58%) and distant (42%) sites. Median survival was better after local SVZ recurrence than distant SVZ recurrence (8.7 vs. 4.3 months, p = 0.04). Radiation doses at local SVZ recurrence sites recurrence averaged 57.0 ± 4.0 Gy compared to 44.7 ± 6.7 Gy at distant SVZ recurrence sites (p = 0.008). Distant subventricular progression at a site receiving ≤ 45 Gy predicted worse subsequent survival (p = 0.05). Glioblastomas frequently recurred in the subventricular zone, and patient survival was worse when enhancing tumor occurred at sites that received lower radiation doses. This recurrent disease may represent disease undertreated at the time of diagnosis, and further study is needed to determine if improved treatment strategies, such as including the subventricular zone in radiation fields, could improve clinical outcomes.

  7. Young adults' reasons for dropout from residential substance use disorder treatment.

    Science.gov (United States)

    Nordheim, Kristoffer; Walderhaug, Espen; Alstadius, Ståle; Kern-Godal, Ann; Arnevik, Espen; Duckert, Fanny

    2018-01-01

    Dropout from substance use disorder treatment is usually investigated and understood from a perspective of quantitative patient-related factors. Patients' own perspectives (user perspective) are rarely reported. This study, therefore, aimed to explore patients' own understanding of their dropout from residential substance use disorder treatment. The participants were 15 males and females, aged 19-29 years, who had dropped out of residential substance use disorder treatment at the Department of Addiction Treatment, Oslo University Hospital, Norway. Qualitative methodology with semistructured interviews was used to explore how the participants described their dropout and their reasons for doing so. Thematic analysis was used as the framework for analyzing the data derived from the interviews. Dropout had different meanings for different participants. It was understood as a break from treatment, as an end to treatment, or as a means of reduced treatment intensity . Against that background, four main themes for dropout were found: drug craving , negative emotions , personal contact, and activity . Patient and treatment factors seem to interact when participants explore reasons for their dropout. A complex pattern of variables is involved. As remedies, participants suggested that substance use disorder treatment should provide more focus on drug craving and training to understand and tolerate emotional discomfort. They also wanted closer contact with the staff during treatment, more activities, and rigorous posttreatment follow-up. These findings from the user perspective have important implications for substance use disorder treatment, clinical and social work practice, management, and research.

  8. Mechanism of Anti-glioblastoma Effect of Temzolomide Involved in ROS-Mediated SIRT 1 Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-03-01

    Full Text Available Objective: To explore the new molecular mechanism of anti-tumor effect of temzolomide (TMZon glioblastoma cell strain. Methods: MTT methods and Hoechst 33342 staining method were applied to determine the effect of TMZ on the proliferation and apoptosis of glioblastoma cell strains U251 and SHG44, while flow cytometry was used to detect the impact of TMZ on cellular cycles. Additionally, DCFH-DA probe was adopted to test intracellular reactive oxygen species (ROS level while Real-time PCR and Western blot tests were applied to determine the influence of TMZ on SIRT1 expression. Results: TMZ in different concentrations added into glioblastoma cell strain for 72 h could concentration-dependently inhibit the proliferation of glioblastoma cells, 100 μmol/L of which could also block cells in phase G2/M and improve cellular apoptosis. In addition, TMZ could evidently increase intracellular ROS level so as to activate SIRT1. Conclusion: The mechanism of anti-tumor effect of TMZ on glioblastoma may be associated with ROS-induced SIRT1 pathway, providing theoretical basis for the clinical efficacy of TMZ.

  9. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zi-xuan [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Rao, Wei [Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Huan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Nan-ding [Department of Cardiology, Xi' an Traditional Chinese Medicine Hospital, Xi' an, 710032 (China); Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Zong-ren, E-mail: zongren@fmmu.edu.cn [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China)

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  10. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    International Nuclear Information System (INIS)

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-01-01

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion

  11. Visualizing molecular profiles of glioblastoma with GBM-BioDP.

    Directory of Open Access Journals (Sweden)

    Orieta Celiku

    Full Text Available Validation of clinical biomarkers and response to therapy is a challenging topic in cancer research. An important source of information for virtual validation is the datasets generated from multi-center cancer research projects such as The Cancer Genome Atlas project (TCGA. These data enable investigation of genetic and epigenetic changes responsible for cancer onset and progression, response to cancer therapies, and discovery of the molecular profiles of various cancers. However, these analyses often require bulk download of data and substantial bioinformatics expertise, which can be intimidating for investigators. Here, we report on the development of a new resource available to scientists: a data base called Glioblastoma Bio Discovery Portal (GBM-BioDP. GBM-BioDP is a free web-accessible resource that hosts a subset of the glioblastoma TCGA data and enables an intuitive query and interactive display of the resultant data. This resource provides visualization tools for the exploration of gene, miRNA, and protein expression, differential expression within the subtypes of GBM, and potential associations with clinical outcome, which are useful for virtual biological validation. The tool may also enable generation of hypotheses on how therapies impact GBM molecular profiles, which can help in personalization of treatment for optimal outcome. The resource can be accessed freely at http://gbm-biodp.nci.nih.gov (a tutorial is included.

  12. Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Mohsen Sisakht

    Full Text Available Abstract Glioblastoma is the most common malignant brain tumor representing with poor prognosis, therapy resistance and high metastasis rate. Increased expression and activity of matrix metalloproteinase-2, a member of matrix metalloproteinase family proteins, has been reported in many cancers including glioblastoma. Inhibition of matrix metalloproteinase-2 expression has resulted in reduced aggression of glioblastoma tumors in several reports. In the present study, we evaluated effect of bee venom on expression and activity of matrix metalloproteinase-2 as well as potential toxicity and apoptogenic properties of bee venom on glioblastoma cells. Human A172 glioblastoma cells were treated with increasing concentrations of bee venom. Then, cell viability, apoptosis, matrix metalloproteinase-2 expression, and matrix metalloproteinase-2 activity were measured using MMT assay, propidium iodide staining, real time-PCR, and zymography, respectively. The IC50 value of bee venom was 28.5 µg/ml in which it leads to decrease of cell viability and induction of apoptosis. Incubation with bee venom also decreased the expression of matrix metalloproteinase-2 in this cell line (p < 0.05. In zymography, there was a reverse correlation between bee venom concentration and total matrix metalloproteinase-2 activity. Induction of apoptosis as well as inhibition of matrix metalloproteinase-2 activity and expression can be suggested as molecular mechanisms involved in cytotoxic and antimetastatic effects of bee venom against glioblastoma cells.

  13. Subcutaneous tissue metastasis from glioblastoma multiforme: A case report and review of the literature.

    Science.gov (United States)

    Frade Porto, Natalia; Delgado Fernández, Juan; García Pallero, María de Los Ángeles; Penanes Cuesta, Juan Ramón; Pulido Rivas, Paloma; Gil Simoes, Ricardo

    2018-05-16

    Glioblastoma multiforme is the most common primary brain tumor, despite an aggressive clinical course, less than 2% of patients develop extraneural metastasis. We present a 72-year-old male diagnosed with a right temporal glioblastoma due to headache. He underwent total gross resection surgery and after that the patient was treated with adyuvant therapy. Five months after the patient returned with trigeminal neuralgia, and MRI showed an infratemporal cranial mass which infiltrates masticator space, the surrounding bone, the temporal muscle and superior cervical and parotid lymph nodes. The patient underwent a new surgery reaching partial resection of the temporal lesion. After that the patient continued suffering from disabling trigeminal neuralgia, that's why because of the bad clinical situation and the treatment failure we decided to restrict therapeutic efforts. The patient died 3 weeks after the diagnosis of extracranial metastasis. Copyright © 2018 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Daily Tracking of Glioblastoma Resection Cavity, Cerebral Edema, and Tumor Volume with MRI-Guided Radiation Therapy.

    Science.gov (United States)

    Mehta, Shahil; Gajjar, Shefali R; Padgett, Kyle R; Asher, David; Stoyanova, Radka; Ford, John C; Mellon, Eric A

    2018-03-19

    Radiation therapy (RT) plays a critical role in the treatment of glioblastoma. Studies of brain imaging during RT for glioblastoma have demonstrated changes in the brain during RT. However, frequent or daily utilization of standalone magnetic resonance imaging (MRI) scans during RT have limited feasibility. The recent release of the tri-cobalt-60 MRI-guided RT (MR-IGRT) device (ViewRay MRIdian, Cleveland, OH) allows for daily brain MRI for the RT setup. Daily MRI of three postoperative patients undergoing RT and temozolomide for glioblastoma over a six-week course allowed for the identification of changes to the cavity, edema, and visible tumor on a daily basis. The volumes and dimensions of the resection cavities, edema, and T2-hyperintense tumor were measured. A general trend of daily decreases in cavity measurements was observed in all patients. For the one patient with edema, a trend of daily increases followed by a trend of daily decreases were observed. These results suggest that daily MRI could be used for onboard resimulation and adaptive RT for future fluctuations in the sizes of brain tumors, cavities, or cystic components. This could improve tumor targeting and reduce RT of healthy brain tissue.

  15. Early neuroimaging findings of glioblastoma mimicking non-neoplastic cerebral lesion.

    Science.gov (United States)

    Jung, Tae-Young; Jung, Shin

    2007-09-01

    A 54-year-old man and a 63-year-old woman presented with glioblastoma manifesting as seizure and headache, respectively. Magnetic resonance imaging of the two patients revealed hypointense area on T(1)-weighted imaging, and hyperintense area on T(2)-weighted and diffusion-weighted imaging, with no enhancement after gadolinium administration. Both patients underwent conservative therapy under diagnoses of non-neoplastic cerebral lesion. Six months later, they suffered aggravated symptoms and new neurological deficits. Follow-up magnetic resonance imaging revealed hypointense area on diffusion-weighted imaging and ring enhancement on T(1)-weighted imaging with gadolinium at the site of the previously detected lesions. The tumors showed growth pattern of superficial origin. The large enhanced masses were totally removed through craniotomy under neuronavigator guidance. The histological diagnoses were glioblastoma. Glioblastoma may mimic non-neoplastic conditions on neuroimaging in the early stages. Close follow up of such patients is essential.

  16. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo.

    Science.gov (United States)

    Chakrabarti, Mrinmay; Ray, Swapan K

    2016-03-01

    Glioblastoma is the deadliest brain tumor in humans. High systemic toxicity of conventional chemotherapies prompted the search for natural compounds for controlling glioblastoma. The natural flavonoids luteolin (LUT) and silibinin (SIL) have anti-tumor activities. LUT inhibits autophagy, cell proliferation, metastasis, and angiogenesis and induces apoptosis; while SIL activates caspase-8 cascades to induce apoptosis. However, synergistic anti-tumor effects of LUT and SIL in glioblastoma remain unknown. Overexpression of tumor suppressor microRNA (miR) could enhance the anti-tumor effects of LUT and SIL. Here, we showed that 20 µM LUT and 50 µM SIL worked synergistically for inhibiting growth of two different human glioblastoma U87MG (wild-type p53) and T98G (mutant p53) cell lines and natural combination therapy was more effective than conventional chemotherapy (10 µM BCNU or 100 µM TMZ). Combination of LUT and SIL caused inhibition of growth of glioblastoma cells due to induction of significant amounts of apoptosis and complete inhibition of invasion and migration. Further, combination of LUT and SIL inhibited rapamycin (RAPA)-induced autophagy, a survival mechanism, with suppression of PKCα and promotion of apoptosis through down regulation of iNOS and significant increase in expression of the tumor suppressor miR-7-1-3p in glioblastoma cells. Our in vivo studies confirmed that overexpression of miR-7-1-3p augmented anti-tumor activities of LUT and SIL in RAPA pre-treated both U87MG and T98G tumors. In conclusion, our results clearly demonstrated that overexpression of miR-7-1-3p augmented the anti-tumor activities of LUT and SIL to inhibit autophagy and induce apoptosis for controlling growth of different human glioblastomas in vivo.

  17. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Veselska, Renata; Kuglik, Petr; Cejpek, Pavel; Svachova, Hana; Neradil, Jakub; Loja, Tomas; Relichova, Jirina

    2006-01-01

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  18. Recurrent glioblastoma: Current patterns of care in an Australian population.

    Science.gov (United States)

    Parakh, Sagun; Thursfield, Vicky; Cher, Lawrence; Dally, Michael; Drummond, Katharine; Murphy, Michael; Rosenthal, Mark A; Gan, Hui K

    2016-02-01

    This retrospective population-based survey examined current patterns of care for patients with recurrent glioblastoma (rGBM) who had previously undergone surgery and post-operative therapy at original diagnosis. The patients were identified from the Victorian Cancer Registry (VCR) from 2006 to 2008. Patient demographics, tumour characteristics and oncological management were extracted using a standardised survey by the treating clinicians/VCR staff and results analysed by the VCR. Kaplan-Meier estimates of overall survival (OS) at diagnosis and progression were calculated. A total of 95 patients (48%) received treatment for first recurrence; craniotomy and post-operative treatment (38), craniotomy only (34) and non-surgical treatment (23). Patients receiving treatment at first progression had a higher median OS than those who did not (7 versus 3 months, ppattern of care survey of treatment for rGBM in an era where post-operative "Stupp" chemo-radiation is standard. First and second line therapy for rGBM is common and associated with significant benefit. Treatment generally includes re-resection and/or systemic therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Impact of oligodendroglial component in glioblastoma (GBM-O): Is the outcome favourable than glioblastoma?

    Science.gov (United States)

    Goda, Jayant S; Lewis, Shirley; Agarwal, Aditi; Epari, Sridhar; Churi, Shraddha; Padmavati, A; Gupta, Tejpal; Shetty, Prakash; Moiyadi, Aliasgar; Jalali, Rakesh

    2015-08-01

    Prognosis of patients with glioblastoma with oligodendroglial component (GBM-O) is not well defined. We report our experience of patients of GBM-O treated at our center. Between January 2007 and August 2013, out of 817 consecutive patients with glioblastoma (GBM), 74 patients with GBM-O were identified in our prospectively maintained database. An experienced neuropathologist revaluated the histopathology of all these 74 patients and the diagnosis of GBM-O was eventually confirmed in 57 patients. Patients were uniformly treated with maximal safe resection followed by focal radiotherapy with concurrent and adjuvant temozolamide (TMZ). At a median follow up of 16 months, median overall survival (OS) and progression free survival (PFS) of the entire cohort was 23 months and 13 months respectively. Near total excision was performed in 30/57 (52.6%). On univariate analysis, age GBM-O patients with a similarly treated cohort of 105 GBM patients during the same period revealed significantly better median OS in favour of GBM-O (p = 0.01). Our experience suggests patients with GBM-O have a more favourable clinical outcome as compared to GBM. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The interventional effect of new drugs combined with the Stupp protocol on glioblastoma: A network meta-analysis.

    Science.gov (United States)

    Li, Mei; Song, Xiangqi; Zhu, Jun; Fu, Aijun; Li, Jianmin; Chen, Tong

    2017-08-01

    New therapeutic agents in combination with the standard Stupp protocol (a protocol about the temozolomide combined with radiotherapy treatment with glioblastoma was research by Stupp R in 2005) were assessed to evaluate whether they were superior to the Stupp protocol alone, to determine the optimum treatment regimen for patients with newly diagnosed glioblastoma. We implemented a search strategy to identify studies in the following databases: PubMed, Cochrane Library, EMBASE, CNKI, CBM, Wanfang, and VIP, and assessed the quality of extracted data from the trials included. Statistical software was used to perform network meta-analysis. The use of novel therapeutic agents in combination with the Stupp protocol were all shown to be superior than the Stupp protocol alone for the treatment of newly diagnosed glioblastoma, ranked as follows: cilengitide 2000mg/5/week, bevacizumab in combination with irinotecan, nimotuzumab, bevacizumab, cilengitide 2000mg/2/week, cytokine-induced killer cell immunotherapy, and the Stupp protocol. In terms of serious adverse effects, the intervention group showed a 29% increase in the incidence of adverse events compared with the control group (patients treated only with Stupp protocol) with a statistically significant difference (RR=1.29; 95%CI 1.17-1.43; P<0.001). The most common adverse events were thrombocytopenia, lymphopenia, neutropenia, pneumonia, nausea, and vomiting, none of which were significantly different between the groups except for neutropenia, pneumonia, and embolism. All intervention drugs evaluated in our study were superior to the Stupp protocol alone when used in combination with it. However, we could not conclusively confirm whether cilengitide 2000mg/5/week was the optimum regime, as only one trial using this protocol was included in our study. Copyright © 2017. Published by Elsevier B.V.

  1. Pattern of Failure After Limited Margin Radiotherapy and Temozolomide for Glioblastoma

    International Nuclear Information System (INIS)

    McDonald, Mark W.; Shu, Hui-Kuo G.; Curran, Walter J.; Crocker, Ian R.

    2011-01-01

    Purpose: To evaluate the pattern of failure after limited margin radiotherapy for glioblastoma. Methods and Materials: We analyzed 62 consecutive patients with newly diagnosed glioblastoma treated between 2006 and 2008 with standard fractionation to a total dose of 60Gy with concurrent temozolomide (97%) or arsenic trioxide (3%). The initial clinical target volume included postoperative T2 abnormality with a median margin of 0.7cm. The boost clinical target volume included residual T1-enhancing tumor and resection cavity with a median margin of 0.5cm. Planning target volumes added a 0.3- or 0.5-cm margin to clinical target volumes. The total boost planning target volume (PTV boost ) margin was 1cm or less in 92% of patients. The volume of recurrent tumor (new T1 enhancement) was categorized by the percent within the 60-Gy isodose line as central (>95%), infield (81-95%), marginal (20-80%), or distant ( boost with a 2.5-cm margin were created for each patient. Results: With a median follow-up of 12 months, radiographic tumor progression developed in 43 of 62 patients. Imaging was available for analysis in 41: 38 (93%) had central or infield failure, 2 (5%) had marginal failure, and 1 (2%) had distant failure relative to the 60-Gy isodose line. The treated PTV boost (median, 140cm 3 ) was, on average, 70% less than the PTV boost with a 2.5-cm margin (median, 477cm 3 ) (p boost margin of 1cm or less did not appear to increase the risk of marginal and/or distant tumor failures compared with other published series. With careful radiation planning and delivery, it appears that treatment margins for glioblastoma can be reduced.

  2. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins

    NARCIS (Netherlands)

    Hira, Vashendriya V. V.; Wormer, Jill R.; Kakar, Hala; Breznik, Barbara; van der Swaan, Britt; Hulsbos, Renske; Tigchelaar, Wikky; Tonar, Zbynek; Khurshed, Mohammed; Molenaar, Remco J.; van Noorden, Cornelis J. F.

    2018-01-01

    In glioblastoma, a fraction of malignant cells consists of therapy-resistant glioblastoma stem cells (GSCs) residing in protective niches that recapitulate hematopoietic stem cell (HSC) niches in bone marrow. We have previously shown that HSC niche proteins stromal cell-derived factor-1α (SDF-1α),

  3. Postoperative extracranial metastasis from glioblastoma: a case report and review of the literature.

    Science.gov (United States)

    Wu, Wenjiao; Zhong, Dequan; Zhao, Zhan; Wang, Wentao; Li, Jun; Zhang, Wei

    2017-12-29

    Glioblastoma is the most common primary malignant brain tumor. Extraneural metastases are rarely reported in the literature. We report a case of a 38-year-old patient who was diagnosed with glioblastoma in 2015. Four months after surgery, local relapse was found and the patient received a second surgery. After another 4 months, we found a hard mass in the right posterior neck when she admitted to our department for fourth cycle of adjuvant chemotherapy. Immunohistochemical investigation supported the diagnosis of glioblastoma metastases to the neck after resection of the right neck mass. A few days later, spinal vertebral magnetic resonance imaging (MRI) confirmed multiple metastases in the thoracic, lumbar, sacral, and bilateral iliac bones. Glioblastoma is the most common primary malignant brain tumor. Whole tumor resection and early radiotherapy and chemotherapy can delay recurrence and prolong survival. Extracranial metastases are extremely rare. We report this case with the aim of bringing attention to extracranial metastasis of brain glioma.

  4. Targeting and Therapy of Glioblastoma in a Mouse Model Using Exosomes Derived From Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Liya Zhu

    2018-04-01

    expression of effluc in U87/MG/F cells, with the bioluminescence activity of U87/MG/F cells increasing with an increase in cell number. NTA and DLS results indicated that the size of NK-Exo was ~100 nm, and the western blot results confirmed that NK-Exo expressed exosome markers CD63 and Alix. We confirmed the in vitro cytotoxic effects of NK-Exo on U87/MG/F cells by performing BLI, and the killing effect on U87/MG and U87MG/F cells was measured by CCK-8 and MTT assays (p < 0.001. ELISA results indicated that NK-Exo contained tumor necrosis factor-α and granzyme B. In vivo NK-Exo treatment inhibited tumor growth compared to in control mice (p < 0.001, and pretreatment of xenograft mice with dextran sulfate 2 h before NK-Exo treatment increased the antitumor effect of NK-Exo (p < 0.01 compared to in control and NK-Exo-alone-treated mice.ConclusionNK-Exo targeted and exerted antitumor effects on glioblastoma cells both in vitro and in vivo, suggesting their utility in treating incurable glioblastoma.

  5. Glioblastomas vs. lymphomas. More diagnostic certainty by using susceptibility-weighted imaging (SWI)

    Energy Technology Data Exchange (ETDEWEB)

    Peters, S.; Knoess, N.; Wodarg, F.; Cnyrim, C.; Jansen, O. [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Inst. fuer Neuroradiologie

    2012-08-15

    Purpose: It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Material and Methods: Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Results: Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Conclusion: Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. (orig.)

  6. Glioblastomas vs. lymphomas: more diagnostic certainty by using susceptibility-weighted imaging (SWI).

    Science.gov (United States)

    Peters, S; Knöß, N; Wodarg, F; Cnyrim, C; Jansen, O

    2012-08-01

    It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Glioblastomas vs. lymphomas. More diagnostic certainty by using susceptibility-weighted imaging (SWI)

    International Nuclear Information System (INIS)

    Peters, S.; Knoess, N.; Wodarg, F.; Cnyrim, C.; Jansen, O.

    2012-01-01

    Purpose: It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Material and Methods: Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Results: Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Conclusion: Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. (orig.)

  8. Angiogenic Gene Signature Derived from Subtype Specific Cell Models Segregate Proneural and Mesenchymal Glioblastoma

    Directory of Open Access Journals (Sweden)

    Aman Sharma

    2017-07-01

    Full Text Available Intertumoral molecular heterogeneity in glioblastoma identifies four major subtypes based on expression of molecular markers. Among them, the two clinically interrelated subtypes, proneural and mesenchymal, are the most aggressive with proneural liable for conversion to mesenchymal upon therapy. Using two patient-derived novel primary cell culture models (MTA10 and KW10, we developed a minimal but unique four-gene signature comprising genes vascular endothelial growth factor A (VEGF-A, vascular endothelial growth factor B (VEGF-B and angiopoietin 1 (ANG1, angiopoietin 2 (ANG2 that effectively segregated the proneural (MTA10 and mesenchymal (KW10 glioblastoma subtypes. The cell culture preclassified as mesenchymal showed elevated expression of genes VEGF-A, VEGF-B and ANG1, ANG2 as compared to the other cell culture model that mimicked the proneural subtype. The differentially expressed genes in these two cell culture models were confirmed by us using TCGA and Verhaak databases and we refer to it as a minimal multigene signature (MMS. We validated this MMS on human glioblastoma tissue sections with the use of immunohistochemistry on preclassified (YKL-40 high or mesenchymal glioblastoma and OLIG2 high or proneural glioblastoma tumor samples (n = 30. MMS segregated mesenchymal and proneural subtypes with 83% efficiency using a simple histopathology scoring approach (p = 0.008 for ANG2 and p = 0.01 for ANG1. Furthermore, MMS expression negatively correlated with patient survival. Importantly, MMS staining demonstrated spatiotemporal heterogeneity within each subclass, adding further complexity to subtype identification in glioblastoma. In conclusion, we report a novel and simple sequencing-independent histopathology-based biomarker signature comprising genes VEGF-A, VEGF-B and ANG1, ANG2 for subtyping of proneural and mesenchymal glioblastoma.

  9. Optimizing cancer radiotheraphy with 2-deoxy-D-glucose. Dose escalation studies in patients with glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Gupta, J.P. [Dharmshila Cancer Hospital, New Delhi (India); Banerji, A.K. [Vidyasagar Inst. of Mental Health and Neurosciences, New Delhi (India); Dwarakanath, B.S.; Tripathi, R.P.; Mathew, T.L.; Ravindranath, T. [Institute of Nuclear Medicine and Allied Sciences, Delhi (India); Jain, V. [Wright State University, Dayton, OH (United States). Kettering Medical Center

    2005-08-01

    Background and purpose: Higher rates of glucose utilization and glycolysis generally correlate with poor prognosis in several types of malignant tumors. Own earlier studies on model systems demonstrated that the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DG) could enhance the efficacy of radiotherapy in a dose-dependent manner by selectively sensitizing cancer cells while protecting normal cells. Phase I/II clinical trials indicated that the combination of 2-DG, at an oral dose of 200 mg/kg body weight (BW), with large fractions of {gamma}-radiation was well tolerated in cerebral glioma patients. Since higher 2-DG doses are expected to improve the therapeutic gain, present studies were undertaken to examine the tolerance and safety of escalating 2-DG dose during combined treatment (2-DG + radiotherapy) in glioblastoma multiforme patients. Patients and methods: Untreated patients with histologically proven glioblastoma multiforme (WHO criteria) were included in the study. Seven weekly fractions of {sup 60}C {gamma}-rays (5 Gy/fraction) were delivered to the tumor volume (presurgical CT/MRI evaluation) plus 3 cm margin. Escalating 2-DG doses (200-250-300 mg/kg BW) were administered orally 30 min before irradiation after overnight fasting. Acute toxicity and tolerance were studied by monitoring the vital parameters and side effects. Late radiation damage and treatment responses were studied radiologically and clinically in surviving patients. Results: Transient side effects similar to hypoglycemia were observed in most of the patients. Tolerance and patient compliance to the combined treatment were very good up to a 2-DG dose of 250 mg/kg BW. However, at the higher dose of 300 mg/kg BW, two out of six patients were very restless and could not complete treatment, though significant changes in the vital parameters were not observed even at this dose. No significant damage to the normal brain tissue was observed during follow-up in seven out of ten patients who

  10. Fotemustine as second-line treatment for recurrent or progressive glioblastoma after concomitant and/or adjuvant temozolomide: a phase II trial of Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO).

    Science.gov (United States)

    Brandes, Alba A; Tosoni, A; Franceschi, E; Blatt, V; Santoro, A; Faedi, M; Amistà, P; Gardiman, M; Labianca, R; Bianchini, C; Ermani, M; Reni, M

    2009-09-01

    Standardized salvage treatment has not yet proved effective in glioblastoma multiforme (GBM) patients who receive prior standard radiotherapy plus concomitant and adjuvant temozolomide. Patients with progressive GBM after radiotherapy plus concomitant and/or adjuvant temozolomide received three-weekly doses (100-75 mg m(2)) of fotemustine followed, after a 5-week rest, by fotemustine (100 mg m(2)) every 3 weeks for nitrosourea activity. Moreover, this is the first study to evaluate correlation between MGMT promoter status and outcome of fotemustine for relapsing GBM previously treated with radiotherapy and temozolomide.

  11. Prognostic significance of IDH 1 mutation in patients with glioblastoma multiforme.

    Science.gov (United States)

    Khan, Inamullah; Waqas, Muhammad; Shamim, Muhammad Shahzad

    2017-05-01

    Focus of brain tumour research is shifting towards tumour genesis and genetics, and possible development of individualized treatment plans. Genetic analysis shows recurrent mutation in isocitrate dehydrogenase (IDH1) gene in most Glioblastoma multiforme (GBM) cells. In this review we evaluated the prognostic significance of IDH 1 mutation on the basis of published evidence. Multiple retrospective clinical analyses correlate the presence of IDH1 mutation in GBM with good prognostic outcomes compared to wild-type IDH1. A systematic review reported similar results. Based on the review of current literature IDH1 mutation is an independent factor for longer overall survival (OS) and progression free survival (PFS) in GBM patients when compared to wild-type IDH1. The prognostic significance opens up new avenues for treatment.

  12. Toxicity and efficacy of lomustine and bevacizumab in recurrent glioblastoma patients

    DEFF Research Database (Denmark)

    Jakobsen, J N; Urup, T; Grunnet, K

    2018-01-01

    The combination of lomustine and bevacizumab is a commonly used salvage treatment for recurrent glioblastoma (GBM). We investigated the toxicity and efficacy of lomustine plus bevacizumab (lom-bev) in a community-based patient cohort and made a comparison to another frequently used combination...... therapy consisting of irinotecan plus bevacizumab (iri-bev). Seventy patients with recurrent GBM were treated with lomustine 90 mg/m2 every 6 weeks and bevacizumab 10 mg/kg every 2 weeks. Toxicity was registered and compared to the toxicity observed in 219 recurrent GBM patients who had previously been......-bev is a well-tolerated treatment for recurrent GBM, although hematological toxicity may be a dose limiting factor. No significant differences between lom-bev and iri-bev were observed with regard to PFS or OS. The differences in toxicity profiles between lom-bev and iri-bev could guide treatment decision...

  13. Prognostic factors in glioblastoma multiforme. 10 years experience of a single institution

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, M C.C.M.; Schimmel, E C; Gonzalez, D G [Amsterdam Univ. (Netherlands). Dept. of Radiotherapy; Koot, R W; Bosch, D A [Amsterdam Univ. (Netherlands). Dept. of Neurosurgery; Dekker, F [Amsterdam Univ. (Netherlands). Dept. of Epidemiology

    2001-06-01

    Background: To analyze prognostic factors in patients with a glioblastoma multiforme treated in an academic institute over the last 10 years. Patients and method: From 1988 to 1998, 198 patients with pathologically confirmed glioblastoma multiforme were analyzed. Five radiation schedules were used mainly based on pretreatment selection criteria: 1. 60 Gy in 30 fractions followed by an interstitial iridium-192 (Ir-192) boost for selected patients with a good performance and a small circumscribed tumor, 2. 66 Gy in 33 fractions for good performance patients, 3. 40 Gy in eight fractions or 4. 28 Gy in four fractions for poor prognostic patients and 5. no irradiation. Results: Median survival was 16 months, 7 months, 5.6 months, 6.6 months and 1.8 months for the groups treated with Ir-192, 66 Gy, 40 Gy, 28 Gy and the group without treatment, respectively. No significant improvement in survival was encountered over the last 10 years. At multivariate analysis patients treated with a hypofractionated scheme showed a similar survival probability and duration of palliative effect compared to the conventionally fractionated group. The poor prognostic groups receiving radiotherapy had a highly significant better survival compared to the no-treatment group. Patients treated with an Ir-192 boost had a better median survival compared to a historical group matched on selection criteria but without boost treatment (16 vs 9.7 months, n.s.). However, survival at 2 years was similar. Analysis on pretreatment characteristics at multivariate analysis revealed age, neurological performance, addition of radiotherapy, total resection, tumor size post surgery and deterioration before start of radiotherapy (borderline) as significant prognostic factors for survival. Conclusion: Despite technical developments in surgery and radiotherapy over the last 10 years, survival of patients with a glioblastoma multiforme has not improved in our institution. The analysis of prognostic factors

  14. Downregulation of RND3/RhoE in glioblastoma patients promotes tumorigenesis through augmentation of notch transcriptional complex activity

    International Nuclear Information System (INIS)

    Liu, Baohui; Lin, Xi; Yang, Xiangsheng; Dong, Huimin; Yue, Xiaojing; Andrade, Kelsey C; Guo, Zhentao; Yang, Jian; Wu, Liquan; Zhu, Xiaonan; Zhang, Shenqi; Tian, Daofeng; Wang, Junmin; Cai, Qiang; Chen, Qizuan; Mao, Shanping; Chen, Qianxue; Chang, Jiang

    2015-01-01

    Activation of Notch signaling contributes to glioblastoma multiform (GBM) tumorigenesis. However, the molecular mechanism that promotes the Notch signaling augmentation during GBM genesis remains largely unknown. Identification of new factors that regulate Notch signaling is critical for tumor treatment. The expression levels of RND3 and its clinical implication were analyzed in GBM patients. Identification of RND3 as a novel factor in GBM genesis was demonstrated in vitro by cell experiments and in vivo by a GBM xenograft model. We found that RND3 expression was significantly decreased in human glioblastoma. The levels of RND3 expression were inversely correlated with Notch activity, tumor size, and tumor cell proliferation, and positively correlated with patient survival time. We demonstrated that RND3 functioned as an endogenous repressor of the Notch transcriptional complex. RND3 physically interacted with NICD, CSL, and MAML1, the Notch transcriptional complex factors, promoted NICD ubiquitination, and facilitated the degradation of these cofactor proteins. We further revealed that RND3 facilitated the binding of NICD to FBW7, a ubiquitin ligase, and consequently enhanced NICD protein degradation. Therefore, Notch transcriptional activity was inhibited. Forced expression of RND3 repressed Notch signaling, which led to the inhibition of glioblastoma cell proliferation in vitro and tumor growth in the xenograft mice in vivo. Downregulation of RND3, however, enhanced Notch signaling activity, and subsequently promoted glioma cell proliferation. Inhibition of Notch activity abolished RND3 deficiency-mediated GBM cell proliferation. We conclude that downregulation of RND3 is responsible for the enhancement of Notch activity that promotes glioblastoma genesis

  15. APNG as a prognostic marker in patients with glioblastoma

    DEFF Research Database (Denmark)

    Fosmark, Sigurd; Hellwege, Sofie; Dahlrot, Rikke H

    2017-01-01

    AIM: Expression of the base excision repair enzyme alkylpurine-DNA-N-glycosylase (APNG) has been correlated to temozolomide resistance. Our aim was to evaluate the prognostic value of APNG in a population-based cohort with 242 gliomas including 185 glioblastomas (GBMs). Cellular heterogeneity...... of GBMs was taken into account by excluding APNG expression in non-tumor cells from the analysis. METHODS: APNG expression was evaluated using automated image analysis and a novel quantitative immunohistochemical (IHC) assay (qIHC), where APNG protein expression was evaluated through countable dots. Non...... was an independent prognostic factor among patients with a methylated MGMT promoter. We expect that APNG qIHC can potentially identify GBM patients who will not benefit from treatment with temozolomide....

  16. The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view

    International Nuclear Information System (INIS)

    Basanta, David; Scott, Jacob G; Anderson, Alexander R A; Rockne, Russ; Swanson, Kristin R

    2011-01-01

    Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation may be used as a surrogate marker to distinguish between primary and secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints

  17. The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view

    Science.gov (United States)

    Basanta, David; Scott, Jacob G.; Rockne, Russ; Swanson, Kristin R.; Anderson, Alexander R. A.

    2011-02-01

    Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation may be used as a surrogate marker to distinguish between primary and secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints.

  18. Neuroimaging classification of progression patterns in glioblastoma: a systematic review.

    Science.gov (United States)

    Piper, Rory J; Senthil, Keerthi K; Yan, Jiun-Lin; Price, Stephen J

    2018-03-30

    Our primary objective was to report the current neuroimaging classification systems of spatial patterns of progression in glioblastoma. In addition, we aimed to report the terminology used to describe 'progression' and to assess the compliance with the Response Assessment in Neuro-Oncology (RANO) Criteria. We conducted a systematic review to identify all neuroimaging studies of glioblastoma that have employed a categorical classification system of spatial progression patterns. Our review was registered with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) registry. From the included 157 results, we identified 129 studies that used labels of spatial progression patterns that were not based on radiation volumes (Group 1) and 50 studies that used labels that were based on radiation volumes (Group 2). In Group 1, we found 113 individual labels and the most frequent were: local/localised (58%), distant/distal (51%), diffuse (20%), multifocal (15%) and subependymal/subventricular zone (15%). We identified 13 different labels used to refer to 'progression', of which the most frequent were 'recurrence' (99%) and 'progression' (92%). We identified that 37% (n = 33/90) of the studies published following the release of the RANO classification were adherent compliant with the RANO criteria. Our review reports significant heterogeneity in the published systems used to classify glioblastoma spatial progression patterns. Standardization of terminology and classification systems used in studying progression would increase the efficiency of our research in our attempts to more successfully treat glioblastoma.

  19. Limited role for extended maintenance temozolomide for newly diagnosed glioblastoma.

    Science.gov (United States)

    Gramatzki, Dorothee; Kickingereder, Philipp; Hentschel, Bettina; Felsberg, Jörg; Herrlinger, Ulrich; Schackert, Gabriele; Tonn, Jörg-Christian; Westphal, Manfred; Sabel, Michael; Schlegel, Uwe; Wick, Wolfgang; Pietsch, Torsten; Reifenberger, Guido; Loeffler, Markus; Bendszus, Martin; Weller, Michael

    2017-04-11

    To explore an association with survival of modifying the current standard of care for patients with newly diagnosed glioblastoma of surgery followed by radiotherapy plus concurrent and 6 cycles of maintenance temozolomide chemotherapy (TMZ/RT → TMZ) by extending TMZ beyond 6 cycles. The German Glioma Network cohort was screened for patients with newly diagnosed glioblastoma who received TMZ/RT → TMZ and completed ≥6 cycles of maintenance chemotherapy without progression. Associations of clinical patient characteristics, molecular markers, and residual tumor determined by magnetic resonance imaging after 6 cycles of TMZ with progression-free survival (PFS) and overall survival (OS) were analyzed with the log-rank test. Multivariate analyses using the Cox proportional hazards model were performed to assess associations of prolonged TMZ use with outcome. Sixty-one of 142 identified patients received at least 7 maintenance TMZ cycles (median 11, range 7-20). Patients with extended maintenance TMZ treatment had better PFS (20.5 months, 95% confidence interval [CI] 17.7-23.3, vs 17.2 months, 95% CI 10.2-24.2, p = 0.035) but not OS (32.6 months, 95% CI 28.9-36.4, vs 33.2 months, 95% CI 25.3-41.0, p = 0.126). However, there was no significant association of prolonged TMZ chemotherapy with PFS (hazard ratio [HR] = 0.8, 95% CI 0.4-1.6, p = 0.559) or OS (HR = 1.6, 95% CI 0.8-3.3, p = 0.218) adjusted for age, extent of resection, Karnofsky performance score, presence of residual tumor, O 6 -methylguanine DNA methyltransferase (MGMT) promoter methylation status, or isocitrate dehydrogenase ( IDH ) mutation status. These data may not support the practice of prolonging maintenance TMZ chemotherapy beyond 6 cycles. This study provides Class III evidence that in patients with newly diagnosed glioblastoma, prolonged TMZ chemotherapy does not significantly increase PFS or OS. © 2017 American Academy of Neurology.

  20. New perspective for GdNCT. Gd-DTPA reaches the nucleus of glioblastoma cells in culture and in vivo

    International Nuclear Information System (INIS)

    Stasio, G. de; Gilbert, B.; Frazer, B.H.

    2000-01-01

    We investigated the prospects of gadolinium as a neutron capture therapy agent by combining three independent techniques to study the uptake of Gd-DTPA in vitro, in cultured glioblastoma cells, and in vivo, in the glioblastoma tissue sections after injection of Gd-DTPA and tumor extraction. We show that gadolinium not only penetrates the plasma membrane of glioblastoma cells grown in culture, but we also observe a statistically significant higher concentration of Gd in the nucleus relative to the cytoplasm. For the in vivo experiments, Gd-DTPA was administered to 6 glioblastoma patients before neurosurgery. The extracted bioptic tissue was then analyzed with spectromictroscopy, showing Gd localized in the nuclei of glioblastoma cells in 5 patients out of the 6 analyzed. (author)

  1. Glioblastoma Inhibition by Cell Surface Immunoglobulin Protein EWI-2, In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Tatiana V. Kolesnikova

    2009-01-01

    Full Text Available EWI-2, a cell surface IgSF protein, is highly expressed in normal human brain but is considerably diminished in glioblastoma tumors and cell lines. Moreover, loss of EWI-2 expression correlated with a shorter survival time in human glioma patients, suggesting that EWI-2 might be a natural inhibitor of glioblastoma. In support of this idea, EWI-2 expression significantly impaired both ectopic and orthotopic tumor growth in nude mice in vivo. In vitro assays provided clues regarding EWI-2 functions. Expression of EWI-2 in T98G and/or U87-MG malignant glioblastoma cell lines failed to alter two-dimensional cell proliferation but inhibited glioblastoma colony formation in soft agar and caused diminished cell motility and invasion. At the biochemical level, EWI-2 markedly affects the organization of four molecules (tetraspanin proteins CD9 and CD81 and matrix metalloproteinases MMP-2 and MT1-MMP, which play key roles in the biology of astrocytes and gliomas. EWI-2 causes CD9 and CD81 to become more associated with each other, whereas CD81 and other tetraspanins become less associated with MMP-2 and MT1-MMP. We propose that EWI-2 inhibition of glioblastoma growth in vivo is at least partly explained by the capability of EWI-2 to inhibit growth and/or invasion in vitro. Underlying these functional effects, EWI-2 causes a substantial molecular reorganization of multiple molecules (CD81, CD9, MMP-2, and MT1-MMP known to affect proliferation and/or invasion of astrocytes and/or glioblastomas.

  2. Development and validation of a prognostic model for recurrent glioblastoma patients treated with bevacizumab and irinotecan

    DEFF Research Database (Denmark)

    Urup, Thomas; Dahlrot, Rikke Hedegaard; Grunnet, Kirsten

    2016-01-01

    Background Predictive markers and prognostic models are required in order to individualize treatment of recurrent glioblastoma (GBM) patients. Here, we sought to identify clinical factors able to predict response and survival in recurrent GBM patients treated with bevacizumab (BEV) and irinotecan....... Material and methods A total of 219 recurrent GBM patients treated with BEV plus irinotecan according to a previously published treatment protocol were included in the initial population. Prognostic models were generated by means of multivariate logistic and Cox regression analysis. Results In multivariate...

  3. The Somatic Genomic Landscape of Glioblastoma

    Science.gov (United States)

    Brennan, Cameron W.; Verhaak, Roel G.W.; McKenna, Aaron; Campos, Benito; Noushmehr, Houtan; Salama, Sofie R.; Zheng, Siyuan; Chakravarty, Debyani; Sanborn, J. Zachary; Berman, Samuel H.; Beroukhim, Rameen; Bernard, Brady; Wu, Chang-Jiun; Genovese, Giannicola; Shmulevich, Ilya; Barnholtz-Sloan, Jill; Zou, Lihua; Vegesna, Rahulsimham; Shukla, Sachet A.; Ciriello, Giovanni; Yung, WK; Zhang, Wei; Sougnez, Carrie; Mikkelsen, Tom; Aldape, Kenneth; Bigner, Darell D.; Van Meir, Erwin G.; Prados, Michael; Sloan, Andrew; Black, Keith L.; Eschbacher, Jennifer; Finocchiaro, Gaetano; Friedman, William; Andrews, David W.; Guha, Abhijit; Iacocca, Mary; O’Neill, Brian P.; Foltz, Greg; Myers, Jerome; Weisenberger, Daniel J.; Penny, Robert; Kucherlapati, Raju; Perou, Charles M.; Hayes, D. Neil; Gibbs, Richard; Marra, Marco; Mills, Gordon B.; Lander, Eric; Spellman, Paul; Wilson, Richard; Sander, Chris; Weinstein, John; Meyerson, Matthew; Gabriel, Stacey; Laird, Peter W.; Haussler, David; Getz, Gad; Chin, Lynda

    2013-01-01

    We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer. PMID:24120142

  4. IDH1-associated primary glioblastoma in young adults displays differential patterns of tumour and vascular morphology.

    Directory of Open Access Journals (Sweden)

    Sergey Popov

    Full Text Available Glioblastoma is a highly aggressive tumour with marked heterogeneity at the morphological level in both the tumour cells and the associated highly prominent vasculature. As we begin to develop an increased biological insight into the underlying processes driving the disease, fewer attempts have thus far been made to understand these phenotypic differences. We sought to address this by carefully assessing the morphological characteristics of both the tumour cells and the associated vasculature, relating these observations to the IDH1/MGMT status, with a particular focus on the early onset population of young adults who develop primary glioblastoma. 276 primary glioblastoma specimens were classified into their predominant cell morphological type (fibrillary, gemistocytic, giant cell, small cell, oligodendroglial, sarcomatous, and assessed for specific tumour (cellularity, necrosis, palisades and vascular features (glomeruloid structures, arcades, pericyte proliferation. IDH1 positive glioblastomas were associated with a younger age at diagnosis, better clinical outcome, prominent oligodendroglial and small cell tumour cell morphology, pallisading necrosis and glomeruloid vascular proliferation in the absence of arcade-like structures. These features widen the phenotype of IDH1 mutation-positive primary glioblastoma in young adults and provide correlative evidence for a functional role of mutant IDH1 in the differential nature of neo-angiogenesis in different subtypes of glioblastoma.

  5. Combined Modality Approaches in the Management of Adult Glioblastoma

    International Nuclear Information System (INIS)

    Shirazi, Haider A.; Grimm, Sean; Raizer, Jeffrey; Mehta, Minesh P.

    2011-01-01

    Over the past two decades, management of newly diagnosed glioblastoma has undergone significant evolution. While surgery has long been a mainstay of management for this disease, and while radiotherapy has a proven survival role, initial efforts at radiotherapy dose escalation, use of radiosurgery, brachytherapy, and altered fractionation did not improve patient survival. Recently, multiple modality therapy integrating maximal safe resection, postoperative radiation, and new systemic therapies have resulted in improved patient outcomes compared with older regimens utilizing surgery and postoperative radiation alone. Numerous trials are currently underway investigating the combination of surgery, radiation, and systemic therapy with targeted agents to find ways to further improve outcomes for adults with glioblastoma.

  6. Combined Modality Approaches in the Management of Adult Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, Haider A. [Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL (United States); Grimm, Sean; Raizer, Jeffrey [Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL (United States); Mehta, Minesh P., E-mail: mmehta@nmff.org [Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL (United States)

    2011-10-28

    Over the past two decades, management of newly diagnosed glioblastoma has undergone significant evolution. While surgery has long been a mainstay of management for this disease, and while radiotherapy has a proven survival role, initial efforts at radiotherapy dose escalation, use of radiosurgery, brachytherapy, and altered fractionation did not improve patient survival. Recently, multiple modality therapy integrating maximal safe resection, postoperative radiation, and new systemic therapies have resulted in improved patient outcomes compared with older regimens utilizing surgery and postoperative radiation alone. Numerous trials are currently underway investigating the combination of surgery, radiation, and systemic therapy with targeted agents to find ways to further improve outcomes for adults with glioblastoma.

  7. Analysis of Electronic Densities and Integrated Doses in Multiform Glioblastomas Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Baron-Aznar, C.; Moreno-Jimenez, S.; Celis, M. A.; Ballesteros-Zebadua, P.; Larraga-Gutierrez, J. M.

    2008-01-01

    Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScan(c) software, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed

  8. CAR T Cell Therapy for Glioblastoma: Recent Clinical Advances and Future Challenges.

    Science.gov (United States)

    Bagley, Stephen J; Desai, Arati S; Linette, Gerald P; June, Carl H; O'Rourke, Donald M

    2018-03-02

    In patients with certain hematologic malignancies, the use of autologous T cells genetically modified to express chimeric antigen receptors (CARs) has led to unprecedented clinical responses. Although progress in solid tumors has been elusive, recent clinical studies have demonstrated the feasibility and safety of CAR T cell therapy for glioblastoma. In addition, despite formidable barriers to T cell localization and effector function in glioblastoma, signs of efficacy have been observed in select patients. In this review, we begin with a discussion of established obstacles to systemic therapy in glioblastoma and how these may be overcome by CAR T cells. We continue with a summary of previously published CAR T cell trials in GBM, and end by outlining the key therapeutic challenges associated with the use of CAR T cells in this disease.

  9. MGMT, GATA6, CD81, DR4, and CASP8 gene promoter methylation in glioblastoma

    Directory of Open Access Journals (Sweden)

    Skiriute Daina

    2012-06-01

    Full Text Available Abstract Background Methylation of promoter region is the major mechanism affecting gene expression in tumors. Recent methylome studies of brain tumors revealed a list of new epigenetically modified genes. Our aim was to study promoter methylation of newly identified epigenetically silenced genes together with already known epigenetic markers and evaluate its separate and concomitant role in glioblastoma genesis and patient outcome. Methods The methylation status of MGMT, CD81, GATA6, DR4, and CASP8 in 76 patients with primary glioblastomas was investigated. Methylation-specific PCR reaction was performed using bisulfite treated DNA. Evaluating glioblastoma patient survival time after operation, patient data and gene methylation effect on survival was estimated using survival analysis. Results The overwhelming majority (97.3% of tumors were methylated in at least one of five genes tested. In glioblastoma specimens gene methylation was observed as follows: MGMT in 51.3%, GATA6 in 68.4%, CD81 in 46.1%, DR4 in 41.3% and CASP8 in 56.8% of tumors. Methylation of MGMT was associated with younger patient age (p CASP8 with older (p MGMT methylation was significantly more frequent event in patient group who survived longer than 36 months after operation (p CASP8 was more frequent in patients who survived shorter than 36 months (p MGMT, GATA6 and CASP8 as independent predictors for glioblastoma patient outcome (p MGMT and GATA6 were independent predictors for patient survival in younger patients’ group, while there were no significant associations observed in older patients’ group when adjusted for therapy. Conclusions High methylation frequency of tested genes shows heterogeneity of glioblastoma epigenome and the importance of MGMT, GATA6 and CASP8 genes methylation in glioblastoma patient outcome.

  10. Glioblastoma after radiotherapy for craniopharyngioma: case report

    International Nuclear Information System (INIS)

    Ushio, Y.; Arita, N.; Yoshimine, T.; Nagatani, M.; Mogami, H.

    1987-01-01

    A 6-year-old girl developed a glioblastoma in the basal ganglia and brain stem 5 years after surgical excision and local irradiation (5460 cGy) for craniopharyngioma. Clinical and histological details are presented, and the literature on radiation-induced gliomas is reviewed

  11. Fenofibrate induces ketone body production in melanoma and glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Maja M Grabacka

    2016-02-01

    Full Text Available Ketone bodies (beta-hydroxybutyrate, bHB, acetoacetate are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of nontransformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and down-regulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic therapeutic approaches against glioblastoma.

  12. Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas

    NARCIS (Netherlands)

    Kaaijk, P.; Troost, D.; Sminia, P.; Hulshof, M. C.; van der Kracht, A. H.; Leenstra, S.; Bosch, D. A.

    1997-01-01

    The aim of this study was to examine the effect of radiation on glioblastoma, using an organotypic multicellular spheroid (OMS) model. Most glioblastoma cell lines are, in contrast to glioblastomas in vivo, relatively radiosensitive. This limits the value of using cell lines for studying the

  13. Strong adverse prognostic impact of hyperglycemic episodes during adjuvant chemoradiotherapy of glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Arnulf; Vaupel, Peter; Stockinger, Marcus; Schmidberger, Heinz [University Medical Center, Department of Radiooncology and Radiotherapy, Mainz (Germany); Struss, Hans-Garlich [University Medical Center, Department of Laboratory Medicine, Mainz (Germany); Giese, Alf [University Medical Center, Department of Neurosurgery, Mainz (Germany)

    2014-10-15

    In comparison to normal brain tissue, glioblastomas exhibit significantly increased glucose uptake. Brain edema is a common complication during adjuvant chemoradiotherapy, leading to a requirement for glucocorticoid treatment. Glucocorticoid treatment frequently causes considerable deregulation of blood glucose levels. Therefore, episodes of hyperglycemia may contribute to radio- and/or chemoresistance. This study comprises a retrospective analysis of the influence of hyperglycemic episodes (HEs) during adjuvant therapy on the overall survival of 106 glioblastoma multiforme patients. The occurrence of one or more deregulated blood glucose value(s) > 10 mM is associated with a reduction in median overall survival from 16.7 to 8.8 months. A significantly poorer overall survival of patients with hyperglycemia could also be detected in subgroup analyses of patients with complete tumor resection and complete treatment according to the EORTC 22891/26891 trial protocol, as well as in a multivariate Cox proportional hazards analysis. A history of diabetes mellitus had no influence on prognosis. Our data suggest that the observed negative impact of elevated blood glucose levels on overall survival may not solely be explained by the patients' poorer general condition; the elevated blood glucose concentration itself may play a pathogenetic role. This could be due to increased activity of antioxidant systems, elevated expression of DNA damage response proteins and protection of hypoxic tumor cells against apoptosis combined with hypoxia-mediated radioresistance. A possible prognostic impact of elevated blood glucose levels during the period of adjuvant (chemo-) radiotherapy of glioblastoma should be evaluated in a prospective clinical trial. (orig.) [German] Glioblastome zeigen im Vergleich mit normalem Gehirngewebe eine deutlich vermehrte Glukoseaufnahme. Im Rahmen der adjuvanten Radio(chemo)therapie von Glioblastomen treten vielfach Hirnoedeme auf, die eine

  14. miR-29b and miR-125a Regulate Podoplanin and Suppress Invasion in Glioblastoma

    Science.gov (United States)

    Cortez, Maria Angelica; Nicoloso, Milena Sabrina; Shimizu, Masayoshi; Rossi, Simona; Gopisetty, Gopal; Molina, Jennifer R.; Carlotti, Carlos; Tirapelli, Daniela; Neder, Luciano; Brassesco, Maria Sol; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga; Georgescu, Maria-Magdalena; Zhang, Wei; Puduvalli, Vinay; Calin, George Adrian

    2017-01-01

    Glioblastoma is the most frequent and malignant brain tumor, characterized by an elevated capacity for cellular proliferation and invasion. Recently, it was demonstrated that podoplanin membrane sialo-glycoprotein encoded by PDPN gene is over-expressed and related to cellular invasion in astrocytic tumors; however the mechanisms of regulation are still unknown. MicroRNAs are noncoding RNAs that regulate gene expression and several biological processes and diseases, including cancer. Nevertheless, their roles in invasion, proliferation, and apoptosis of glioblastoma are not completely understood. In this study, we focused on miR-29b and miR-125a, which were predicted to regulate PDPN, and demonstrated that these microRNAs directly target the 3′ untranslated region of PDPN and inhibit invasion, apoptosis, and proliferation of glioblastomas. Furthermore, we report that miR-29b and miR-125a are downregulated in glioblastomas and also in CD133-positive cells. Taken together, these results suggest that miR-29b and miR-125a represent potential therapeutic targets in glioblastoma. PMID:20665731

  15. Refusal of medical treatment in the pediatric emergency service: analysis of reasons and aspects.

    Science.gov (United States)

    Gündüz, Ramiz Coşkun; Halil, Halit; Gürsoy, Cüneyt; Çifci, Atilla; Özgün, Seher; Kodaman, Tuğba; Sönmez, Mehtap

    2014-01-01

    Refusal of treatment for acutely ill children is still an important problem in the emergency service. When families refuse medical treatment for their acutely ill children, healthcare professionals may attempt to provide information and negotiate with the family concerning treatment refusal and its possible adverse outcomes, and request consent for refusal of medical treatment. There is insufficient data about refusal of treatment in our country. The purpose of this study was to analyze the causes of treatment refusal in the pediatric emergency service. We collected data recorded on informed consent forms. During a 2-year-study period, 215 patients refused treatment recommended by acute health care professionals. The majorty of patients were in the 0-2 year age group. Hospitalization was the type of treatment most commonly refused; restrictions regarding family members staying with their children during hospitalization and admission to another hospital were the major reasons for refusal of treatment. Clarifying the reasons for treatment refusal may help us to overcome deficiencies, improve conditions, resolve problems and build confidence between healthcare providers and service users, increasing users' satisfaction in the future.

  16. Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma: Single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging

    Directory of Open Access Journals (Sweden)

    Tomas Kazda

    2016-01-01

    Full Text Available The accurate identification of glioblastoma progression remains an unmet clinical need. The aim of this prospective single-institutional study is to determine and validate thresholds for the main metabolite concentrations obtained by MR spectroscopy (MRS and the values of the apparent diffusion coefficient (ADC to enable distinguishing tumor recurrence from pseudoprogression. Thirty-nine patients after the standard treatment of a glioblastoma underwent advanced imaging by MRS and ADC at the time of suspected recurrence — median time to progression was 6.7 months. The highest significant sensitivity and specificity to call the glioblastoma recurrence was observed for the total choline (tCho to total N-acetylaspartate (tNAA concentration ratio with the threshold ≥1.3 (sensitivity 100.0% and specificity 94.7%. The ADCmean value higher than 1313 × 10−6 mm2/s was associated with the pseudoprogression (sensitivity 98.3%, specificity 100.0%. The combination of MRS focused on the tCho/tNAA concentration ratio and the ADCmean value represents imaging methods applicable to early non-invasive differentiation between a glioblastoma recurrence and a pseudoprogression. However, the institutional definition and validation of thresholds for differential diagnostics is needed for the elimination of setup errors before implementation of these multimodal imaging techniques into clinical practice, as well as into clinical trials.

  17. Combined EGFR- and notch inhibition display additive inhibitory effect on glioblastoma cell viability and glioblastoma-induced endothelial cell sprouting in vitro

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Michaelsen, Signe Regner; Olsen, Louise Stobbe

    2016-01-01

    BACKGROUND: For Glioblastoma (GBM) patients, a number of anti-neoplastic strategies using specifically targeting drugs have been tested; however, the effects on survival have been limited. One explanation could be treatment resistance due to redundant signaling pathways, which substantiates...... the need for combination therapies. In GBM, both the epidermal growth factor receptor (EGFR) and the notch signaling pathways are often deregulated and linked to cellular growth, invasion and angiogenesis. Several studies have confirmed cross-talk and co-dependence of these pathways. Therefore, this study....... In order to determine angiogenic processes, we used an endothelial spheroid sprouting assay. For assessment of secreted VEGF from GBM cells we performed a VEGF-quantikine ELISA. RESULTS: GBM cells were confirmed to express EGFR and Notch and to have the capacity to induce endothelial cell sprouting...

  18. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    Science.gov (United States)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  19. Dexamethasone-mediated inhibition of Glioblastoma neurosphere dispersal in an ex vivo organotypic neural assay

    Science.gov (United States)

    Meleis, Ahmed M.; Mahtabfar, Aria; Danish, Shabbar

    2017-01-01

    Glioblastoma is highly aggressive. Early dispersal of the primary tumor renders localized therapy ineffective. Recurrence always occurs and leads to patient death. Prior studies have shown that dispersal of Glioblastoma can be significantly reduced by Dexamethasone (Dex), a drug currently used to control brain tumor related edema. However, due to high doses and significant side effects, treatment is tapered and discontinued as soon as edema has resolved. Prior analyses of the dispersal inhibitory effects of Dex were performed on tissue culture plastic, or polystyrene filters seeded with normal human astrocytes, conditions which inherently differ from the parenchymal architecture of neuronal tissue. The aim of this study was to utilize an ex-vivo model to examine Dex-mediated inhibition of tumor cell migration from low-passage, human Glioblastoma neurospheres on multiple substrates including mouse retina, and slices of mouse, pig, and human brain. We also determined the lowest possible Dex dose that can inhibit dispersal. Analysis by Two-Factor ANOVA shows that for GBM-2 and GBM-3, Dex treatment significantly reduces dispersal on all tissue types. However, the magnitude of the effect appears to be tissue-type specific. Moreover, there does not appear to be a difference in Dex-mediated inhibition of dispersal between mouse retina, mouse brain and human brain. To estimate the lowest possible dose at which Dex can inhibit dispersal, LogEC50 values were compared by Extra Sum-of-Squares F-test. We show that it is possible to achieve 50% reduction in dispersal with Dex doses ranging from 3.8 x10-8M to 8.0x10-9M for GBM-2, and 4.3x10-8M to 1.8x10-9M for GBM-3, on mouse retina and brain slices, respectively. These doses are 3-30-fold lower than those used to control edema. This study extends our previous in vitro data and identifies the mouse retina as a potential substrate for in vivo studies of GBM dispersal. PMID:29040322

  20. Dexamethasone-mediated inhibition of Glioblastoma neurosphere dispersal in an ex vivo organotypic neural assay.

    Directory of Open Access Journals (Sweden)

    Ahmed M Meleis

    Full Text Available Glioblastoma is highly aggressive. Early dispersal of the primary tumor renders localized therapy ineffective. Recurrence always occurs and leads to patient death. Prior studies have shown that dispersal of Glioblastoma can be significantly reduced by Dexamethasone (Dex, a drug currently used to control brain tumor related edema. However, due to high doses and significant side effects, treatment is tapered and discontinued as soon as edema has resolved. Prior analyses of the dispersal inhibitory effects of Dex were performed on tissue culture plastic, or polystyrene filters seeded with normal human astrocytes, conditions which inherently differ from the parenchymal architecture of neuronal tissue. The aim of this study was to utilize an ex-vivo model to examine Dex-mediated inhibition of tumor cell migration from low-passage, human Glioblastoma neurospheres on multiple substrates including mouse retina, and slices of mouse, pig, and human brain. We also determined the lowest possible Dex dose that can inhibit dispersal. Analysis by Two-Factor ANOVA shows that for GBM-2 and GBM-3, Dex treatment significantly reduces dispersal on all tissue types. However, the magnitude of the effect appears to be tissue-type specific. Moreover, there does not appear to be a difference in Dex-mediated inhibition of dispersal between mouse retina, mouse brain and human brain. To estimate the lowest possible dose at which Dex can inhibit dispersal, LogEC50 values were compared by Extra Sum-of-Squares F-test. We show that it is possible to achieve 50% reduction in dispersal with Dex doses ranging from 3.8 x10-8M to 8.0x10-9M for GBM-2, and 4.3x10-8M to 1.8x10-9M for GBM-3, on mouse retina and brain slices, respectively. These doses are 3-30-fold lower than those used to control edema. This study extends our previous in vitro data and identifies the mouse retina as a potential substrate for in vivo studies of GBM dispersal.

  1. Leptomeningeal enhancement on preoperative brain MRI in patients with glioblastoma and its clinical impact.

    Science.gov (United States)

    Kim, Hakyoung; Lim, Do Hoon; Kim, Tae Gyu; Lee, Jung-Il; Nam, Do-Hyun; Seol, Ho Jun; Kong, Doo-Sik; Choi, Jung Won; Suh, Yeon-Lim; Kim, Sung Tae

    2018-02-23

    Leptomeningeal enhancement (LME) on preoperative brain magnetic resonance imaging (MRI) does not always indicate leptomeningeal seeding (LMS). With Stupp's regimen, authors have treated glioblastoma patients with LME on preoperative brain MRI but here we tried to find the clinical impact of LME. From 2005 to 2015, 290 patients with glioblastoma have been treated with Stupp's regimen at Samsung Medical Center. Among these, 33 patients showed LME on preoperative brain MRI. We compared the clinical outcomes between the patients with or without LME on preoperative brain MRI and analyzed the clinical results according to changes of LME at following MRI. The median survival was 23 months, and 2-year overall survival (OS) and disease-free survival (DFS) rate was 46.3% and 19.6%, respectively. Prognostic factors for OS and DFS were Karnofsky performance status, extent of resection and adjuvant chemotherapy. MGMT promoter methylation status was a significant prognostic factor for DFS. However, LME was not a significant prognostic factor for OS (P = 0.156) or DFS (P = 0.193). Among the 33 patients with LME on preoperative MRI, 21 (63.6%) showed persistent LME at the next MRI. A statistically significant difference in 2-year survival was evident between patients with and without persistent LME (OS, 17.3% and 70.1%, respectively, P = 0.044; DFS, 5.3% and 54.0%, respectively, P = 0.006). The most common pattern of failure was local recurrence. However, patients with persistent LME displayed a higher incidence of LMS than patients without LME. LME on preoperative brain MRI did not affect the clinical results in glioblastoma patients treated with the Stupp's regimen. However, persistence of LME was associated with poor survival and high possibility of LMS. For these patients, the postoperative adjuvant treatment should focus on palliative aim or more aggressive treatment scheme should be followed to overcome the disastrous results. © 2018 John Wiley & Sons Australia, Ltd.

  2. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Dittmann, Florian; Le, Matthieu; Shih, Helen A; Menze, Bjoern H; Ayache, Nicholas; Konukoglu, Ender

    2014-01-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher–Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  3. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis

    Science.gov (United States)

    Huang, Jia-Lin; Jiang, Gan; Song, Qing-Xiang; Gu, Xiao; Hu, Meng; Wang, Xiao-Lin; Song, Hua-Hua; Chen, Le-Pei; Lin, Ying-Ying; Jiang, Di; Chen, Jun; Feng, Jun-Feng; Qiu, Yong-Ming; Jiang, Ji-Yao; Jiang, Xin-Guo; Chen, Hong-Zhuan; Gao, Xiao-Ling

    2017-05-01

    Hyperactivated Ras regulates many oncogenic pathways in several malignant human cancers including glioblastoma and it is an attractive target for cancer therapies. Ras activation in cancer cells drives protein internalization via macropinocytosis as a key nutrient-gaining process. By utilizing this unique endocytosis pathway, here we create a biologically inspired nanostructure that can induce cancer cells to `drink drugs' for targeting activating transcription factor-5 (ATF5), an overexpressed anti-apoptotic transcription factor in glioblastoma. Apolipoprotein E3-reconstituted high-density lipoprotein is used to encapsulate the siRNA-loaded calcium phosphate core and facilitate it to penetrate the blood-brain barrier, thus targeting the glioblastoma cells in a macropinocytosis-dependent manner. The nanostructure carrying ATF5 siRNA exerts remarkable RNA-interfering efficiency, increases glioblastoma cell apoptosis and inhibits tumour cell growth both in vitro and in xenograft tumour models. This strategy of targeting the macropinocytosis caused by Ras activation provides a nanoparticle-based approach for precision therapy in glioblastoma and other Ras-activated cancers.

  4. Probing the Oncolytic and Chemosensitizing Effects of Dihydrotanshinone in an In Vitro Glioblastoma Model.

    Science.gov (United States)

    Kumar, Varun; Radin, Daniel; Leonardi, Donna

    2017-11-01

    Temozolomide is the primary chemotherapeutic agent used to treat glioblastoma. However, many tumors are initially resistant to or develop resistance to temozolomide, mainly due to high levels of O 6 -methylguanine DNA transferase (MGMT) which repairs DNA damage traditionally caused by temozolomide. Dihydrotanshinone (DHT) is extracted from Salvia miltiorrhiza, a Chinese medicinal plant, and has also been shown to have antiproliferative effects on various cancer cell lines. DHT has been to shown to induce apoptosis via induction endoplasmic reticulum stress, that can reportedly sensitize cells to temozolomide. MTS cellular proliferation assays or trypan blue viability assays were used to determine the effects of DHT/temozolomide combinatorial treatment. Enzyme-linked immunosorbent assay (ELISA) was used to determine effects on MGMT and P-glycoprotein levels after singular and combinatorial treatment. DHT had a synergistic oncolytic effect in a MGMT-deficient cell line and a sensitizing effect in a MGMT-expressing cell line. Cytotoxicity due to DHT was shown to be reactive oxygen species-dependent, while the combinatorial effect of DHT and temozolomide synergistically reduced MGMT and P-glycoprotein levels. DHT was shown to augment temozolomide efficacy, indicating that, since DHT can penetrate the blood-brain barrier, temozolomide in combination with DHT may represent a promising therapeutic option for glioblastoma. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. [Glioblastoma and nursing care in neurosurgery].

    Science.gov (United States)

    Lefort, Mathilde

    2017-02-01

    Nurses in neurosurgical departments play a critical role as they are involved in the first stages of the care pathway of patients with glioblastoma. Indeed, surgery enables a definitive histopathological diagnosis to be established and the size of the tumour to be significantly reduced, thereby improving the prognosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Honghai; Du, Bin [Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China); Jiang, Huili [Friendship Nephrology and Blood Purification Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China); Gao, Jun, E-mail: gaoj1666@126.com [Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China)

    2016-01-22

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  7. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway

    International Nuclear Information System (INIS)

    Peng, Honghai; Du, Bin; Jiang, Huili; Gao, Jun

    2016-01-01

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  8. Epidermal Growth Factor Receptor Variant III (EGFRvIII) Positivity in EGFR-Amplified Glioblastomas: Prognostic Role and Comparison between Primary and Recurrent Tumors.

    Science.gov (United States)

    Felsberg, Jörg; Hentschel, Bettina; Kaulich, Kerstin; Gramatzki, Dorothee; Zacher, Angela; Malzkorn, Bastian; Kamp, Marcel; Sabel, Michael; Simon, Matthias; Westphal, Manfred; Schackert, Gabriele; Tonn, Jörg C; Pietsch, Torsten; von Deimling, Andreas; Loeffler, Markus; Reifenberger, Guido; Weller, Michael

    2017-11-15

    Purpose: Approximately 40% of all glioblastomas have amplified the EGFR gene, and about half of these tumors express the EGFRvIII variant. The prognostic role of EGFRvIII in EGFR -amplified glioblastoma patients and changes in EGFRvIII expression in recurrent versus primary glioblastomas remain controversial, but such data are highly relevant for EGFRvIII-targeted therapies. Experimental Design: EGFR -amplified glioblastomas from 106 patients were assessed for EGFRvIII positivity. Changes in EGFR amplification and EGFRvIII status from primary to recurrent glioblastomas were evaluated in 40 patients with EGFR -amplified tumors and 33 patients with EGFR -nonamplified tumors. EGFR single-nucleotide variants (SNV) were assessed in 27 patients. Data were correlated with outcome and validated in 150 glioblastoma patients from The Cancer Genome Atlas (TCGA) consortium. Results: Sixty of 106 EGFR -amplified glioblastomas were EGFRvIII-positive (56.6%). EGFRvIII positivity was not associated with different progression-free or overall survival. EGFRvIII status was unchanged at recurrence in 35 of 40 patients with EGFR -amplified primary tumors (87.5%). Four patients lost and one patient gained EGFRvIII positivity at recurrence. None of 33 EGFR- nonamplified glioblastomas acquired EGFR amplification or EGFRvIII at recurrence. EGFR SNVs were frequent in EGFR -amplified tumors, but were not linked to survival. Conclusions: EGFRvIII and EGFR SNVs are not prognostic in EGFR -amplified glioblastoma patients. EGFR amplification is retained in recurrent glioblastomas. Most EGFRvIII-positive glioblastomas maintain EGFRvIII positivity at recurrence. However, EGFRvIII expression may change in a subset of patients at recurrence, thus repeated biopsy with reassessment of EGFRvIII status is recommended for patients with recurrent glioblastoma to receive EGFRvIII-targeting agents. Clin Cancer Res; 23(22); 6846-55. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Assessment of the proliferation status of glioblastoma cell and tumour tissue after nanoplatinum treatment

    DEFF Research Database (Denmark)

    Kutwin, Marta; Sawosz, Ewa; Jaworski, Slawomir

    2017-01-01

    nanoparticles (NP-Pt). The aim of the study was to evaluate and compare the antiproliferative properties of NP-Pt and cisplatin against U87 and U118 glioma cell lines and U87 tumour tissue. NP-Pt and cisplatin were incubated with U87 and U118 glioma cells or administered directly into glioma tumour tissue. Cell...... and the migration of cancer cells but also downregulated the level of PCNA protein expression in tumour tissue. Furthermore, NP-Pt caused oxidative DNA damage in tumour tissue to a higher degree than cisplatin. Consequently, NP-Pt can be considered as an effective inhibitor of glioblastoma tumour cell proliferation....... However, the mechanism of action and potential side effects need to be elucidated further...

  10. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls

    Directory of Open Access Journals (Sweden)

    Noerholm Mikkel

    2012-01-01

    Full Text Available Abstract Background RNA from exosomes and other microvesicles contain transcripts of tumour origin. In this study we sought to identify biomarkers of glioblastoma multiforme in microvesicle RNA from serum of affected patients. Methods Microvesicle RNA from serum from patients with de-novo primary glioblastoma multiforme (N = 9 and normal controls (N = 7 were analyzed by microarray analysis. Samples were collected according to protocols approved by the Institutional Review Board. Differential expressions were validated by qRT-PCR in a separate set of samples (N = 10 in both groups. Results Expression profiles of microvesicle RNA correctly separated individuals in two groups by unsupervised clustering. The most significant differences pertained to down-regulated genes (121 genes > 2-fold down in the glioblastoma multiforme patient microvesicle RNA, validated by qRT-PCR on several genes. Overall, yields of microvesicle RNA from patients was higher than from normal controls, but the additional RNA was primarily of size Conclusions Serum microvesicle RNA from patients with glioblastoma multiforme has significantly down-regulated levels of RNAs coding for ribosome production, compared to normal healthy controls, but a large overabundance of RNA of unknown origin with size

  11. Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature

    International Nuclear Information System (INIS)

    Inda, Maria-del-Mar; Bonavia, Rudy; Seoane, Joan

    2014-01-01

    Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM), the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape

  12. Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature

    Energy Technology Data Exchange (ETDEWEB)

    Inda, Maria-del-Mar, E-mail: mminda@vhio.net; Bonavia, Rudy [Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 119-129 Passeig Vall d’Hebron, Barcelona 08035 (Spain); Seoane, Joan [Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 119-129 Passeig Vall d’Hebron, Barcelona 08035 (Spain); Catalan Institution of Research and Advanced Studies (ICREA), Barcelona 08035 (Spain)

    2014-01-27

    Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM), the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape.

  13. Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature

    Directory of Open Access Journals (Sweden)

    Maria-del-Mar Inda

    2014-01-01

    Full Text Available Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM, the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape.

  14. Glioblastoma multiforme: a look inside its heterogeneous nature.

    Science.gov (United States)

    Inda, Maria-Del-Mar; Bonavia, Rudy; Seoane, Joan

    2014-01-27

    Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM), the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape.

  15. Quantitative Magnetization Transfer in Monitoring Glioblastoma (GBM) Response to Therapy.

    Science.gov (United States)

    Mehrabian, Hatef; Myrehaug, Sten; Soliman, Hany; Sahgal, Arjun; Stanisz, Greg J

    2018-02-06

    Quantitative magnetization transfer (qMT) was used as a biomarker to monitor glioblastoma (GBM) response to chemo-radiation and identify the earliest time-point qMT could differentiate progressors from non-progressors. Nineteen GBM patients were recruited and MRI-scanned before (Day 0 ), two weeks (Day 14 ), and four weeks (Day 28 ) into the treatment, and one month after the end of the treatment (Day 70 ). Comprehensive qMT data was acquired, and a two-pool MT model was fit to the data. Response was determined at 3-8 months following the end of chemo-radiation. The amount of magnetization transfer ([Formula: see text]) was significantly lower in GBM compared to normal appearing white matter (p GBM are more sensitive to treatment effects compared to clinically used metrics. qMT could assess tumor aggressiveness and identify early progressors even before the treatment. Changes in qMT parameters within the first 14 days of the treatment were capable of separating early progressors from non-progressors, making qMT a promising biomarker to guide adaptive radiotherapy for GBM.

  16. Changes in chromatin state reveal ARNT2 at a node of a tumorigenic transcription factor signature driving glioblastoma cell aggressiveness.

    Science.gov (United States)

    Bogeas, Alexandra; Morvan-Dubois, Ghislaine; El-Habr, Elias A; Lejeune, François-Xavier; Defrance, Matthieu; Narayanan, Ashwin; Kuranda, Klaudia; Burel-Vandenbos, Fanny; Sayd, Salwa; Delaunay, Virgile; Dubois, Luiz G; Parrinello, Hugues; Rialle, Stéphanie; Fabrega, Sylvie; Idbaih, Ahmed; Haiech, Jacques; Bièche, Ivan; Virolle, Thierry; Goodhardt, Michele; Chneiweiss, Hervé; Junier, Marie-Pierre

    2018-02-01

    Although a growing body of evidence indicates that phenotypic plasticity exhibited by glioblastoma cells plays a central role in tumor development and post-therapy recurrence, the master drivers of their aggressiveness remain elusive. Here we mapped the changes in active (H3K4me3) and repressive (H3K27me3) histone modifications accompanying the repression of glioblastoma stem-like cells tumorigenicity. Genes with changing histone marks delineated a network of transcription factors related to cancerous behavior, stem state, and neural development, highlighting a previously unsuspected association between repression of ARNT2 and loss of cell tumorigenicity. Immunohistochemistry confirmed ARNT2 expression in cell sub-populations within proliferative zones of patients' glioblastoma. Decreased ARNT2 expression was consistently observed in non-tumorigenic glioblastoma cells, compared to tumorigenic cells. Moreover, ARNT2 expression correlated with a tumorigenic molecular signature at both the tissue level within the tumor core and at the single cell level in the patients' tumors. We found that ARNT2 knockdown decreased the expression of SOX9, POU3F2 and OLIG2, transcription factors implicated in glioblastoma cell tumorigenicity, and repressed glioblastoma stem-like cell tumorigenic properties in vivo. Our results reveal ARNT2 as a pivotal component of the glioblastoma cell tumorigenic signature, located at a node of a transcription factor network controlling glioblastoma cell aggressiveness.

  17. [2,4-(13)C]β-hydroxybutyrate metabolism in astrocytes and C6 glioblastoma cells.

    Science.gov (United States)

    Eloqayli, Haytham; Melø, Torun M; Haukvik, Anne; Sonnewald, Ursula

    2011-08-01

    This study was undertaken to determine if the ketogenic diet could be useful for glioblastoma patients. The hypothesis tested was whether glioblastoma cells can metabolize ketone bodies. Cerebellar astrocytes and C6 glioblastoma cells were incubated in glutamine and serum free medium containing [2,4-(13)C]β-hydroxybutyrate (BHB) with and without glucose. Furthermore, C6 cells were incubated with [1-(13)C]glucose in the presence and absence of BHB. Cell extracts were analyzed by mass spectrometry and media by (1)H magnetic resonance spectroscopy and HPLC. Using [2,4-(13)C]BHB and [1-(13)C]glucose it could be shown that C6 cells, in analogy to astrocytes, had efficient mitochondrial activity, evidenced by (13)C labeling of glutamate, glutamine and aspartate. However, in the presence of glucose, astrocytes were able to produce and release glutamine, whereas this was not accomplished by the C6 cells, suggesting lack of anaplerosis in the latter. We hypothesize that glioblastoma cells kill neurons by not supplying the necessary glutamine, and by releasing glutamate.

  18. Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A

    OpenAIRE

    Pitre, Aaron; Davis, Nathan; Paul, Madhumita; Orr, A Wayne; Skalli, Omar

    2012-01-01

    The intermediate filament protein synemin is present in astrocyte progenitors and glioblastoma cells but not in mature astrocytes. Here we demonstrate a role for synemin in enhancing glioblastoma cell proliferation and clonogenic survival, as synemin RNA interference decreased both behaviors by inducing G1 arrest along with Rb hypophosphorylation and increased protein levels of the G1/S inhibitors p21Cip1 and p27Kip1. Akt involvement was demonstrated by decreased phosphorylation of its substr...

  19. Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Rattner Jerome B

    2009-12-01

    Full Text Available Abstract Background Primary cilia are non-motile sensory cytoplasmic organelles that have been implicated in signal transduction, cell to cell communication, left and right pattern embryonic development, sensation of fluid flow, regulation of calcium levels, mechanosensation, growth factor signaling and cell cycle progression. Defects in the formation and/or function of these structures underlie a variety of human diseases such as Alström, Bardet-Biedl, Joubert, Meckel-Gruber and oral-facial-digital type 1 syndromes. The expression and function of primary cilia in cancer cells has now become a focus of attention but has not been studied in astrocytomas/glioblastomas. To begin to address this issue, we compared the structure and expression of primary cilia in a normal human astrocyte cell line with five human astrocytoma/glioblastoma cell lines. Methods Cultured normal human astrocytes and five human astrocytoma/glioblastoma cell lines were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. Monospecific antibodies were used to detect primary cilia and map the relationship between the primary cilia region and sites of endocytosis. Results We show that expression of primary cilia in normal astrocytes is cell cycle related and the primary cilium extends through the cell within a unique structure which we show to be a site of endocytosis. Importantly, we document that in each of the five astrocytoma/glioblastoma cell lines fully formed primary cilia are either expressed at a very low level, are completely absent or have aberrant forms, due to incomplete ciliogenesis. Conclusions The recent discovery of the importance of primary cilia in a variety of cell functions raises the possibility that this structure may have a role in a variety of cancers. Our finding that the formation of the primary cilium is disrupted in cells derived from astrocytoma/glioblastoma tumors provides the first

  20. Incorporating Cancer Stem Cells in Radiation Therapy Treatment Response Modeling and the Implication in Glioblastoma Multiforme Treatment Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank; Kupelian, Patrick; Kaprealian, Tania; Selch, Michael; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu

    2015-03-15

    Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universal survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from

  1. Incorporating Cancer Stem Cells in Radiation Therapy Treatment Response Modeling and the Implication in Glioblastoma Multiforme Treatment Resistance

    International Nuclear Information System (INIS)

    Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank; Kupelian, Patrick; Kaprealian, Tania; Selch, Michael; Low, Daniel A.; Sheng, Ke

    2015-01-01

    Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universal survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from

  2. Hypofractionated Versus Standard Radiation Therapy With or Without Temozolomide for Older Glioblastoma Patients

    International Nuclear Information System (INIS)

    Arvold, Nils D.; Tanguturi, Shyam K.; Aizer, Ayal A.; Wen, Patrick Y.; Reardon, David A.; Lee, Eudocia Q.; Nayak, Lakshmi; Christianson, Laura W.; Horvath, Margaret C.; Dunn, Ian F.; Golby, Alexandra J.; Johnson, Mark D.; Claus, Elizabeth B.; Chiocca, E. Antonio; Ligon, Keith L.; Alexander, Brian M.

    2015-01-01

    Purpose: Older patients with newly diagnosed glioblastoma have poor outcomes, and optimal treatment is controversial. Hypofractionated radiation therapy (HRT) is frequently used but has not been compared to patients receiving standard fractionated radiation therapy (SRT) and temozolomide (TMZ). Methods and Materials: We conducted a retrospective analysis of patients ≥65 years of age who received radiation for the treatment of newly diagnosed glioblastoma from 1994 to 2013. The distribution of clinical covariates across various radiation regimens was analyzed for possible selection bias. Survival was calculated using the Kaplan-Meier method. Comparison of hypofractionated radiation (typically, 40 Gy/15 fractions) versus standard fractionation (typically, 60 Gy/30 fractions) in the setting of temozolomide was conducted using Cox regression and propensity score analysis. Results: Patients received SRT + TMZ (n=57), SRT (n=35), HRT + TMZ (n=34), or HRT (n=9). Patients receiving HRT were significantly older (median: 79 vs 69 years of age; P<.001) and had worse baseline performance status (P<.001) than those receiving SRT. On multivariate analysis, older age (adjusted hazard ratio [AHR]: 1.06; 95% confidence interval [CI]: 1.01-1.10, P=.01), lower Karnofsky performance status (AHR: 1.02; 95% CI: 1.01-1.03; P=.01), multifocal disease (AHR: 2.11; 95% CI: 1.23-3.61, P=.007), and radiation alone (vs SRT + TMZ; SRT: AHR: 1.72; 95% CI: 1.06-2.79; P=.03; HRT: AHR: 3.92; 95% CI: 1.44-10.60, P=.007) were associated with decreased overall survival. After propensity score adjustment, patients receiving HRT with TMZ had similar overall survival compared with those receiving SRT with TMZ (AHR: 1.10, 95% CI: 0.50-2.4, P=.82). Conclusions: With no randomized data demonstrating equivalence between HRT and SRT in the setting of TMZ for glioblastoma, significant selection bias exists in the implementation of HRT. Controlling for this bias, we observed similar overall

  3. Hypofractionated Versus Standard Radiation Therapy With or Without Temozolomide for Older Glioblastoma Patients

    Energy Technology Data Exchange (ETDEWEB)

    Arvold, Nils D. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, Massachusetts (United States); Tanguturi, Shyam K. [Harvard Radiation Oncology Program, Boston, Massachusetts (United States); Aizer, Ayal A. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, Massachusetts (United States); Wen, Patrick Y.; Reardon, David A.; Lee, Eudocia Q.; Nayak, Lakshmi [Center for Neuro-Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, Massachusetts (United States); Christianson, Laura W.; Horvath, Margaret C. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, Massachusetts (United States); Dunn, Ian F.; Golby, Alexandra J.; Johnson, Mark D. [Department of Neurosurgery, Dana-Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, Massachusetts (United States); Claus, Elizabeth B. [Department of Neurosurgery, Dana-Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, Massachusetts (United States); School of Public Health, Yale University, New Haven, Connecticut (United States); Chiocca, E. Antonio [Department of Neurosurgery, Dana-Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, Massachusetts (United States); Ligon, Keith L. [Department of Pathology, Dana-Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, Massachusetts (United States); Alexander, Brian M., E-mail: bmalexander@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, Massachusetts (United States)

    2015-06-01

    Purpose: Older patients with newly diagnosed glioblastoma have poor outcomes, and optimal treatment is controversial. Hypofractionated radiation therapy (HRT) is frequently used but has not been compared to patients receiving standard fractionated radiation therapy (SRT) and temozolomide (TMZ). Methods and Materials: We conducted a retrospective analysis of patients ≥65 years of age who received radiation for the treatment of newly diagnosed glioblastoma from 1994 to 2013. The distribution of clinical covariates across various radiation regimens was analyzed for possible selection bias. Survival was calculated using the Kaplan-Meier method. Comparison of hypofractionated radiation (typically, 40 Gy/15 fractions) versus standard fractionation (typically, 60 Gy/30 fractions) in the setting of temozolomide was conducted using Cox regression and propensity score analysis. Results: Patients received SRT + TMZ (n=57), SRT (n=35), HRT + TMZ (n=34), or HRT (n=9). Patients receiving HRT were significantly older (median: 79 vs 69 years of age; P<.001) and had worse baseline performance status (P<.001) than those receiving SRT. On multivariate analysis, older age (adjusted hazard ratio [AHR]: 1.06; 95% confidence interval [CI]: 1.01-1.10, P=.01), lower Karnofsky performance status (AHR: 1.02; 95% CI: 1.01-1.03; P=.01), multifocal disease (AHR: 2.11; 95% CI: 1.23-3.61, P=.007), and radiation alone (vs SRT + TMZ; SRT: AHR: 1.72; 95% CI: 1.06-2.79; P=.03; HRT: AHR: 3.92; 95% CI: 1.44-10.60, P=.007) were associated with decreased overall survival. After propensity score adjustment, patients receiving HRT with TMZ had similar overall survival compared with those receiving SRT with TMZ (AHR: 1.10, 95% CI: 0.50-2.4, P=.82). Conclusions: With no randomized data demonstrating equivalence between HRT and SRT in the setting of TMZ for glioblastoma, significant selection bias exists in the implementation of HRT. Controlling for this bias, we observed similar overall

  4. Glioblastoma update: molecular biology, diagnosis, treatment, response assessment, and translational clinical trials [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Frank Lieberman

    2017-10-01

    Full Text Available This is an exciting time in neuro-oncology. Discoveries elucidating the molecular mechanisms of oncogenesis and the molecular subtypes of glioblastoma multiforme (GBM have led to new diagnostic and classification schemes with more prognostic power than histology alone. Molecular profiling has become part of the standard neuropathological evaluation of GBM. Chemoradiation followed by adjuvant temozolomide remains the standard therapy for newly diagnosed GBM, but survival remains unsatisfactory. Patients with recurrent GBM continue to have a dismal prognosis, but neuro-oncology centers with active clinical trial programs are seeing a small but increasing cadre of patients with longer survival. Molecularly targeted therapeutics, personalized therapy based on molecular profiling of individual tumors, and immunotherapeutic strategies are all being evaluated and refined in clinical trials. Understanding of the molecular mechanisms of tumor-mediated immunosuppression, and specifically interactions between tumor cells and immune effector cells in the tumor microenvironment, has led to a new generation of immunotherapies, including vaccine and immunomodulatory strategies as well as T-cell-based treatments. Molecularly targeted therapies, chemoradiation, immunotherapies, and anti-angiogenic therapies have created the need to develop more reliable neuroimaging criteria for differentiating the effects of therapy from tumor progression and changes in blood–brain barrier physiology from treatment response. Translational clinical trials for patients with GBM now incorporate quantitative imaging using both magnetic resonance imaging and positron emission tomography techniques. This update presents a summary of the current standards for therapy for newly diagnosed and recurrent GBM and highlights promising translational research.

  5. Hypofractionated High-Dose Irradiation with Positron Emission Tomography Data for the Treatment of Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Kazuhiro Miwa

    2014-01-01

    Full Text Available This research paper presents clinical outcomes of hypofractionated high-dose irradiation by intensity-modulated radiation therapy (Hypo-IMRT with 11C-methionine positron emission tomography (MET-PET data for the treatment of glioblastoma multiforme (GBM. A total of 45 patients with GBM were treated with Hypo-IMRT after surgery. Gross tumor volume (GTV was defined as the area of enhanced lesion on MRI, including MET-PET avid region; clinical target volume (CTV was the area with 5 mm margin surrounding the GTV; planning target volume (PTV was the area with 15 mm margin surrounding the CTV, including MET-PET moderate region. Hypo-IMRT was performed in 8 fractions; planning the dose for GTV was escalated to 68 Gy and that for CTV was escalated to 56 Gy, while keeping the dose delivered to the PTV at 40 Gy. Concomitant and adjuvant TMZ chemotherapy was administered. At a median follow-up of 18.7 months, median overall survival (OS was 20.0 months, and median progression-free survival was 13.0 months. The 1- and 2-year OS rates were 71.2% and 26.3%, respectively. Adjuvant TMZ chemotherapy was significantly predictive of OS on multivariate analysis. Late toxicity included 7 cases of Grade 3-4 radiation necrosis. Hypo-IMRT with MET-PET data appeared to result in favorable survival outcomes for patients with GBM.

  6. Odds of death after glioblastoma diagnosis in the United States by chemotherapeutic era

    International Nuclear Information System (INIS)

    Wachtel, Mitchell S; Yang, Shengping

    2014-01-01

    Bevacizumab (BZM) and temozolomide (TMZ) have been shown to be beneficial in the treatment of patients with glioblastoma. We sought evidence for the benefit of BZM in the general patient population at large. The Surveillance, Epidemiology, and End Results SEER database was queried for patients diagnosed with glioblastoma between 2000 and 2009, divided into a pre-TMZ era (January 2000–June 2003), a transitional era (July 2003–March 2005), a TMZ era (April 2005–October 2007), and a BZM-TMZ era (November 2007–December 2009). Binomial logit regression analyzed odds of death, taking into account age at diagnosis, tumor size, gender, race, marital status, radiotherapy, and extensive surgery. Compared with the pre-TMZ era, odds of death were decreased in the TMZ era by 12% (97.5% CI [confidence interval] 3–20%) 6 months after diagnosis and 36% (30–42%) a year after diagnosis; corresponding values for BZM-TMZ were 31% (24–37%) and 50% (45–55%). For era comparisons, decreases in odds of death were larger at 12 than 6 months; the opposite was true for extensive surgery and radiotherapy (P < 0.025, Wald χ 2 test, for each analysis). For both 6 and 12 month comparisons, odds of death in the BZM-TMZ era were lower than in the TMZ era (P < 0.025, Wald χ 2 test, for each analysis). The results provide evidence that TMZ positively impacted survival of glioblastoma patients and that the addition of BZM further improved survival, this lends support to the addition of BZM to the chemotherapeutic armamentarium. Evaluation of odds of death is an attractive alternative to Cox regression when proportional hazards assumptions are violated and follow-up is good

  7. Small cell glioblastoma or small cell carcinoma

    DEFF Research Database (Denmark)

    Hilbrandt, Christine; Sathyadas, Sathya; Dahlrot, Rikke H

    2013-01-01

    was admitted to the hospital with left-sided loss of motor function. A MRI revealed a 6 cm tumor in the right temporoparietal area. The histology was consistent with both glioblastoma multiforme (GBM) and small cell lung carcinoma (SCLC) but IHC was suggestive of a SCLC metastasis. PET-CT revealed...

  8. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments.

    Science.gov (United States)

    Achyut, B R; Shankar, Adarsh; Iskander, A S M; Ara, Roxan; Knight, Robert A; Scicli, Alfonso G; Arbab, Ali S

    2016-01-01

    Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 10(6) GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer.

  9. Dynamic contrast-enhanced MR imaging in predicting progression of enhancing lesions persisting after standard treatment in glioblastoma patients: a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Roh-Eul; Choi, Hye Jeong; You, Sung-Hye; Kang, Koung Mi; Yun, Tae Jin; Kim, Ji-Hoon; Sohn, Chul-Ho [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Choi, Seung Hong [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University, Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul (Korea, Republic of); Seoul National University, School of Chemical and Biological Engineering, Seoul (Korea, Republic of); Kim, Tae Min [Seoul National University College of Medicine, Department of Internal Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Park, Chul-Kee [Seoul National University College of Medicine, Department of Neurosurgery, Biomedical Research Institute, Seoul (Korea, Republic of); Park, Sung-Hye; Won, Jae-Kyung [Seoul National University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Kim, Il Han [Seoul National University College of Medicine, Department of Radiation Oncology, Cancer Research Institute, Seoul (Korea, Republic of); Lee, Soon Tae [Seoul National University College of Medicine, Department of Neurology, Seoul (Korea, Republic of)

    2017-08-15

    To prospectively explore the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the progression of enhancing lesions persisting after standard treatment in patients with surgically resected glioblastoma (GBM). Forty-seven GBM patients, who underwent near-total tumorectomy followed by concurrent chemoradiation therapy (CCRT) with temozolomide (TMZ) between May 2014 and February 2016, were enrolled. Twenty-four patients were finally analyzed for measurable enhancing lesions persisting after standard treatment. DCE-MRI parameters were calculated at enhancing lesions. Mann-Whitney U tests and multivariable stepwise logistic regression were used to compare parameters between progression (n = 16) and non-progression (n = 8) groups. Mean K{sup trans} and v{sub e} were significantly lower in progression than in non-progression (P = 0.037 and P = 0.037, respectively). The 5th percentile of the cumulative K{sup trans} histogram was also significantly lower in the progression than in non-progression group (P = 0.017). Mean v{sub e} was the only independent predictor of progression (P = 0.007), with a sensitivity of 100%, specificity of 63%, and an overall accuracy of 88% at a cut-off value of 0.873. DCE-MRI may help predict the progression of enhancing lesions persisting after the completion of standard treatment in patients with surgically resected GBM, with mean v{sub e} serving as an independent predictor of progression. (orig.)

  10. Dynamic contrast-enhanced MR imaging in predicting progression of enhancing lesions persisting after standard treatment in glioblastoma patients: a prospective study

    International Nuclear Information System (INIS)

    Yoo, Roh-Eul; Choi, Hye Jeong; You, Sung-Hye; Kang, Koung Mi; Yun, Tae Jin; Kim, Ji-Hoon; Sohn, Chul-Ho; Choi, Seung Hong; Kim, Tae Min; Park, Chul-Kee; Park, Sung-Hye; Won, Jae-Kyung; Kim, Il Han; Lee, Soon Tae

    2017-01-01

    To prospectively explore the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the progression of enhancing lesions persisting after standard treatment in patients with surgically resected glioblastoma (GBM). Forty-seven GBM patients, who underwent near-total tumorectomy followed by concurrent chemoradiation therapy (CCRT) with temozolomide (TMZ) between May 2014 and February 2016, were enrolled. Twenty-four patients were finally analyzed for measurable enhancing lesions persisting after standard treatment. DCE-MRI parameters were calculated at enhancing lesions. Mann-Whitney U tests and multivariable stepwise logistic regression were used to compare parameters between progression (n = 16) and non-progression (n = 8) groups. Mean K trans and v e were significantly lower in progression than in non-progression (P = 0.037 and P = 0.037, respectively). The 5th percentile of the cumulative K trans histogram was also significantly lower in the progression than in non-progression group (P = 0.017). Mean v e was the only independent predictor of progression (P = 0.007), with a sensitivity of 100%, specificity of 63%, and an overall accuracy of 88% at a cut-off value of 0.873. DCE-MRI may help predict the progression of enhancing lesions persisting after the completion of standard treatment in patients with surgically resected GBM, with mean v e serving as an independent predictor of progression. (orig.)

  11. Bioactive form of resveratrol in glioblastoma cells and its safety for normal brain cells

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Shu

    2013-05-01

    Full Text Available ABSTRACTBackground: Resveratrol, a plant polyphenol existing in grapes and many other natural foods, possesses a wide range of biological activities including cancer prevention. It has been recognized that resveratrol is intracellularly biotransformed to different metabolites, but no direct evidence has been available to ascertain its bioactive form because of the difficulty to maintain resveratrol unmetabolized in vivo or in vitro. It would be therefore worthwhile to elucidate the potential therapeutic implications of resveratrol metabolism using a reliable resveratrol-sensitive cancer cells.Objective: To identify the real biological form of trans-resveratrol and to evaluate the safety of the effective anticancer dose of resveratrol for the normal brain cells.Methods: The samples were prepared from the condition media and cell lysates of human glioblastoma U251 cells, and were purified by solid phase extraction (SPE. The samples were subjected to high performance liquid chromatography (HPLC and liquid chromatography/tandem mass spectrometry (LC/MS analysis. According to the metabolite(s, trans-resveratrol was biotransformed in vitro by the method described elsewhere, and the resulting solution was used to treat U251 cells. Meanwhile, the responses of U251 and primarily cultured rat normal brain cells (glial cells and neurons to 100μM trans-resveratrol were evaluated by multiple experimental methods.Results: The results revealed that resveratrol monosulfate was the major metabolite in U251 cells. About half fraction of resveratrol monosulfate was prepared in vitro and this trans-resveratrol and resveratrol monosulfate mixture showed little inhibitory effect on U251 cells. It is also found that rat primary brain cells (PBCs not only resist 100μM but also tolerate as high as 200μM resveratrol treatment.Conclusions: Our study thus demonstrated that trans-resveratrol was the bioactive form in glioblastoma cells and, therefore, the biotransforming

  12. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    OpenAIRE

    Goffart, Nicolas; KROONEN, Jérôme

    2013-01-01

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays sti...

  13. Volumetric and MGMT parameters in glioblastoma patients: Survival analysis

    International Nuclear Information System (INIS)

    Iliadis, Georgios; Kotoula, Vassiliki; Chatzisotiriou, Athanasios; Televantou, Despina; Eleftheraki, Anastasia G; Lambaki, Sofia; Misailidou, Despina; Selviaridis, Panagiotis; Fountzilas, George

    2012-01-01

    In this study several tumor-related volumes were assessed by means of a computer-based application and a survival analysis was conducted to evaluate the prognostic significance of pre- and postoperative volumetric data in patients harboring glioblastomas. In addition, MGMT (O 6 -methylguanine methyltransferase) related parameters were compared with those of volumetry in order to observe possible relevance of this molecule in tumor development. We prospectively analyzed 65 patients suffering from glioblastoma (GBM) who underwent radiotherapy with concomitant adjuvant temozolomide. For the purpose of volumetry T1 and T2-weighted magnetic resonance (MR) sequences were used, acquired both pre- and postoperatively (pre-radiochemotherapy). The volumes measured on preoperative MR images were necrosis, enhancing tumor and edema (including the tumor) and on postoperative ones, net-enhancing tumor. Age, sex, performance status (PS) and type of operation were also included in the multivariate analysis. MGMT was assessed for promoter methylation with Multiplex Ligation-dependent Probe Amplification (MLPA), for RNA expression with real time PCR, and for protein expression with immunohistochemistry in a total of 44 cases with available histologic material. In the multivariate analysis a negative impact was shown for pre-radiochemotherapy net-enhancing tumor on the overall survival (OS) (p = 0.023) and for preoperative necrosis on progression-free survival (PFS) (p = 0.030). Furthermore, the multivariate analysis confirmed the importance of PS in PFS and OS of patients. MGMT promoter methylation was observed in 13/23 (43.5%) evaluable tumors; complete methylation was observed in 3/13 methylated tumors only. High rate of MGMT protein positivity (> 20% positive neoplastic nuclei) was inversely associated with pre-operative tumor necrosis (p = 0.021). Our findings implicate that volumetric parameters may have a significant role in the prognosis of GBM patients. Furthermore

  14. Phase II Pilot Study of Bevacizumab in Combination with Temozolomide and Regional Radiation Therapy for Up-Front Treatment of Patients With Newly Diagnosed Glioblastoma Multiforme: Interim Analysis of Safety and Tolerability

    International Nuclear Information System (INIS)

    Lai, Albert; Filka, Emese; McGibbon, Bruce; Nghiemphu, Phioanh Leia; Graham, Carrie; Yong, William H.; Mischel, Paul; Liau, Linda M.; Bergsneider, Marvin; Pope, Whitney; Selch, Michael; Cloughesy, Tim

    2008-01-01

    Purpose: To assess interim safety and tolerability of a 10-patient, Phase II pilot study using bevacizumab (BV) in combination with temozolomide (TMZ) and regional radiation therapy (RT) in the up-front treatment of patients with newly diagnosed glioblastoma. Methods and Materials: All patients received standard external beam regional RT of 60.0 Gy in 30 fractions started within 3 to 5 weeks after surgery. Concurrently TMZ was given daily at 75 mg/m 2 for 42 days during RT, and BV was given every 2 weeks at 10 mg/kg starting with the first day of RT/TMZ. After a 2-week interval upon completion of RT, the post-RT phase commenced with resumption of TMZ at 150 to 200 mg/m 2 for 5 days every 4 weeks and continuation of BV every 2 weeks. Results: For these 10 patients, toxicities were compiled until study discontinuation or up to ∼40 weeks from initial study treatment for those remaining on-study. In terms of serious immediate or delayed neurotoxicity, 1 patient developed presumed radiation-induced optic neuropathy. Among the toxicities that could be potentially treatment related, relatively high incidences of fatigue, myelotoxicity, wound breakdown, and deep venous thrombosis/pulmonary embolism were observed. Conclusion: The observed toxicities were acceptable to continue enrollment toward the overall target group of 70 patients. Preliminary efficacy analysis shows encouraging mean progression-free survival. At this time data are not sufficient to encourage routine off-label use of BV combined with TMZ/RT in the setting of newly diagnosed glioblastoma without longer follow-up, enrollment of additional patients, and thorough efficacy assessment

  15. Target-specific delivery of doxorubicin to human glioblastoma cell ...

    Indian Academy of Sciences (India)

    Abdullah Tahir Bayraç

    2018-01-29

    Jan 29, 2018 ... was previously selected for specific recognition of glioblastoma and represented many advantageous ... antigens, receptors or any 3-D structure on the target cells ..... both PSMA (?) and PSMA (-) prostate cancers.

  16. Comparison of (18)F-FET and (18)F-FLT small animal PET for the assessment of anti-VEGF treatment response in an orthotopic model of glioblastoma

    DEFF Research Database (Denmark)

    Nedergaard, Mette Kjoelhede; Michaelsen, Signe Regner; Perryman, Lara

    2016-01-01

    was to compare FLT and FET PET for the assessment of anti-VEGF response in glioblastoma xenografts. METHODS: Xenografts with confirmed intracranial glioblastoma were treated with anti-VEGF therapy (B20-4.1) or saline as control. Weekly bioluminescence imaging (BLI), FLT and FET PET/CT were used to follow....... Furthermore, we found a significantly lower MVD in the anti-VEGF group as compared to the control group. However, we found no difference in the Ki67 proliferation index or mean survival time. CONCLUSION: FET appears to be a more sensitive tracer than FLT to measure early response to anti-VEGF therapy with PET...

  17. An NAD+-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma.

    Science.gov (United States)

    Gujar, Amit D; Le, Son; Mao, Diane D; Dadey, David Y A; Turski, Alice; Sasaki, Yo; Aum, Diane; Luo, Jingqin; Dahiya, Sonika; Yuan, Liya; Rich, Keith M; Milbrandt, Jeffrey; Hallahan, Dennis E; Yano, Hiroko; Tran, David D; Kim, Albert H

    2016-12-20

    Accumulating evidence suggests cancer cells exhibit a dependency on metabolic pathways regulated by nicotinamide adenine dinucleotide (NAD + ). Nevertheless, how the regulation of this metabolic cofactor interfaces with signal transduction networks remains poorly understood in glioblastoma. Here, we report nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD + synthesis, is highly expressed in glioblastoma tumors and patient-derived glioblastoma stem-like cells (GSCs). High NAMPT expression in tumors correlates with decreased patient survival. Pharmacological and genetic inhibition of NAMPT decreased NAD + levels and GSC self-renewal capacity, and NAMPT knockdown inhibited the in vivo tumorigenicity of GSCs. Regulatory network analysis of RNA sequencing data using GSCs treated with NAMPT inhibitor identified transcription factor E2F2 as the center of a transcriptional hub in the NAD + -dependent network. Accordingly, we demonstrate E2F2 is required for GSC self-renewal. Downstream, E2F2 drives the transcription of members of the inhibitor of differentiation (ID) helix-loop-helix gene family. Finally, we find NAMPT mediates GSC radiation resistance. The identification of a NAMPT-E2F2-ID axis establishes a link between NAD + metabolism and a self-renewal transcriptional program in glioblastoma, with therapeutic implications for this formidable cancer.

  18. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls

    International Nuclear Information System (INIS)

    Noerholm, Mikkel; Balaj, Leonora; Limperg, Tobias; Salehi, Afshin; Zhu, Lin Dan; Hochberg, Fred H; Breakefield, Xandra O; Carter, Bob S; Skog, Johan

    2012-01-01

    RNA from exosomes and other microvesicles contain transcripts of tumour origin. In this study we sought to identify biomarkers of glioblastoma multiforme in microvesicle RNA from serum of affected patients. Microvesicle RNA from serum from patients with de-novo primary glioblastoma multiforme (N = 9) and normal controls (N = 7) were analyzed by microarray analysis. Samples were collected according to protocols approved by the Institutional Review Board. Differential expressions were validated by qRT-PCR in a separate set of samples (N = 10 in both groups). Expression profiles of microvesicle RNA correctly separated individuals in two groups by unsupervised clustering. The most significant differences pertained to down-regulated genes (121 genes > 2-fold down) in the glioblastoma multiforme patient microvesicle RNA, validated by qRT-PCR on several genes. Overall, yields of microvesicle RNA from patients was higher than from normal controls, but the additional RNA was primarily of size < 500 nt. Gene ontology of the down-regulated genes indicated these are coding for ribosomal proteins and genes related to ribosome production. Serum microvesicle RNA from patients with glioblastoma multiforme has significantly down-regulated levels of RNAs coding for ribosome production, compared to normal healthy controls, but a large overabundance of RNA of unknown origin with size < 500 nt

  19. Chemotherapeutic Drugs: DNA Damage and Repair in Glioblastoma.

    Science.gov (United States)

    Annovazzi, Laura; Mellai, Marta; Schiffer, Davide

    2017-05-26

    Despite improvements in therapeutic strategies, glioblastoma (GB) remains one of the most lethal cancers. The presence of the blood-brain barrier, the infiltrative nature of the tumor and several resistance mechanisms account for the failure of current treatments. Distinct DNA repair pathways can neutralize the cytotoxicity of chemo- and radio-therapeutic agents, driving resistance and tumor relapse. It seems that a subpopulation of stem-like cells, indicated as glioma stem cells (GSCs), is responsible for tumor initiation, maintenance and recurrence and they appear to be more resistant owing to their enhanced DNA repair capacity. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis and in the modulation of therapeutic treatment effects. In this review, we try to summarize the knowledge concerning the main molecular mechanisms involved in the removal of genotoxic lesions caused by alkylating agents, emphasizing the role of GSCs. Beside their increased DNA repair capacity in comparison with non-stem tumor cells, GSCs show a constitutive checkpoint expression that enables them to survive to treatments in a quiescent, non-proliferative state. The targeted inhibition of checkpoint/repair factors of DDR can contribute to eradicate the GSC population and can have a great potential therapeutic impact aiming at sensitizing malignant gliomas to treatments, improving the overall survival of patients.

  20. Variegated colors of pediatric glioblastoma multiforme: what to expect?

    Directory of Open Access Journals (Sweden)

    Vivek Immanuel

    2017-08-01

    Full Text Available Malignant gliomas account for 35-45% of primary brain tumors; among these glioblastoma multiforme (GBM is the most common adult brain tumor constituting approximately 85%. Its incidence is quite less in the pediatric population and treatment of these patients is particularly challenging. Exposure to ionizing radiation is the only environmental factor found to have any significant association with GBM. Several genetic alterations associated with GBM in adults have been well documented such as epidermal growth factor receptor amplification, overexpression of mouse double minute 2 homolog also known as E3 ubiquitin-protein ligase, Phosphatase and tensin homolog gene mutation, loss of heterozygosity of chromosome 10p and isocitrate dehydrogenase-1 mutation. However, data on genetic mutations in pediatric GBM is still lacking. Exophytic brain stem gliomas are rare tumors and are usually associated with a poor prognosis. The most effective treatment in achieving long-term survival in such patients, is surgical excision of the tumor and then chemoradiotherapy followed by adjuvant chemotherapy by temozolomide. This schedule is the standard treatment for GBM patients. In view of the rarity of pediatric GBM, we report here a case of pontine GBM in a 5-year-old girl.

  1. Glioblastomas with Oligodendroglial Component – Common Origin of the Different Histological Parts and Genetic Subclassification

    Directory of Open Access Journals (Sweden)

    Barbara Klink

    2010-01-01

    Full Text Available Background: Glioblastomas are the most common and most malignant brain tumors in adults. A small subgroup of glioblastomas contains areas with histological features of oligodendroglial differentiation (GBMO. Our objective was to genetically characterize the oligodendroglial and the astrocytic parts of GBMOs and correlate morphologic and genetic features with clinical data.

  2. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review.

    Science.gov (United States)

    Anjum, Komal; Shagufta, Bibi Ibtesam; Abbas, Syed Qamar; Patel, Seema; Khan, Ishrat; Shah, Sayed Asmat Ali; Akhter, Najeeb; Hassan, Syed Shams Ul

    2017-08-01

    Glioblastoma multiforme (GBM) is the deadliest form of heterogeneous brain cancer. It affects an enormous number of patients every year and the survival is approximately 8 to 15 months. GBM has driven by complex signaling pathways and considered as a most challenging to treat. Standard treatment of GBM includes surgery, radiation therapy, chemotherapy and also the combined treatment. This review article described inter and intra- tumor heterogeneity of GMB. In addition, recent chemotherapeutic agents, with their mechanism of action have been defined. FDA-approved drugs also been focused over here and most importantly highlighting some natural and synthetic and novel anti- glioma agents, that are the main focus of researchers nowadays. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. The regrowth kinetic of the surviving population is independent of acute and chronic responses to temozolomide in glioblastoma cell lines

    International Nuclear Information System (INIS)

    Silva, Andrew Oliveira; Dalsin, Eloisa; Onzi, Giovana Ravizzoni; Filippi-Chiela, Eduardo Cremonese; Lenz, Guido

    2016-01-01

    Chemotherapy acts on cancer cells by producing multiple effects on a cell population including cell cycle arrest, necrosis, apoptosis and senescence. However, often a subpopulation of cells survives and the behavior of this subpopulation, which is responsible for cancer recurrence, remains obscure. Here we investigated the in vitro short- and long-term responses of six glioblastoma cell lines to clinically relevant doses of temozolomide for 5 days followed by 23 days of recovery, mimicking the standard schedule used in glioblastoma patient for this drug. These cells presented different profiles of sensitivity to temozolomide with varying levels of cell cycle arrest, autophagy and senescence, followed by a regrowth of the surviving cells. The initial reduction in cell number and the subsequent regrowth was analyzed with four new parameters applied to Cumulative Population Doubling (CPD) curves that describe the overall sensitivity of the population and the characteristic of the regrowth: the relative end point CPD (RendCPD); the relative Area Under Curve (rAUC); the Relative Time to Cross a Threshold (RTCT); and the Relative Proliferation Rate (RPR). Surprisingly, the kinetics of regrowth were not predicted by the mechanisms activated after treatment nor by the acute or overall sensitivity. With this study we added new parameters that describe key responses of glioblastoma cell populations to temozolomide treatment. These parameters can also be applied to other cell types and treatments and will help to understand the behavior of the surviving cancer cells after treatment and shed light on studies of cancer resistance and recurrence. - Highlights: • Little is known about the behavior of the glioma cells surviving to TMZ. • The short- and long-term response of six glioma cells lines to TMZ varies considerably. • These glioma cells lines recovered proliferation after therapeutic levels of TMZ. • The growth velocity of the surviving cells was different from the

  4. The regrowth kinetic of the surviving population is independent of acute and chronic responses to temozolomide in glioblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Andrew Oliveira, E-mail: andrewbiomed@gmail.com [Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Dalsin, Eloisa, E-mail: dalsineloisa@gmail.com [Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Onzi, Giovana Ravizzoni, E-mail: gioonzi@gmail.com [Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Filippi-Chiela, Eduardo Cremonese, E-mail: eduardochiela@gmail.com [Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Lenz, Guido, E-mail: lenz@ufrgs.br [Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2016-11-01

    Chemotherapy acts on cancer cells by producing multiple effects on a cell population including cell cycle arrest, necrosis, apoptosis and senescence. However, often a subpopulation of cells survives and the behavior of this subpopulation, which is responsible for cancer recurrence, remains obscure. Here we investigated the in vitro short- and long-term responses of six glioblastoma cell lines to clinically relevant doses of temozolomide for 5 days followed by 23 days of recovery, mimicking the standard schedule used in glioblastoma patient for this drug. These cells presented different profiles of sensitivity to temozolomide with varying levels of cell cycle arrest, autophagy and senescence, followed by a regrowth of the surviving cells. The initial reduction in cell number and the subsequent regrowth was analyzed with four new parameters applied to Cumulative Population Doubling (CPD) curves that describe the overall sensitivity of the population and the characteristic of the regrowth: the relative end point CPD (RendCPD); the relative Area Under Curve (rAUC); the Relative Time to Cross a Threshold (RTCT); and the Relative Proliferation Rate (RPR). Surprisingly, the kinetics of regrowth were not predicted by the mechanisms activated after treatment nor by the acute or overall sensitivity. With this study we added new parameters that describe key responses of glioblastoma cell populations to temozolomide treatment. These parameters can also be applied to other cell types and treatments and will help to understand the behavior of the surviving cancer cells after treatment and shed light on studies of cancer resistance and recurrence. - Highlights: • Little is known about the behavior of the glioma cells surviving to TMZ. • The short- and long-term response of six glioma cells lines to TMZ varies considerably. • These glioma cells lines recovered proliferation after therapeutic levels of TMZ. • The growth velocity of the surviving cells was different from the

  5. Photodynamic therapy platform for glioblastoma and intrabronchial tumors

    Science.gov (United States)

    Orsila, Lasse; Alanko, Jukka-Pekka; Kaivosoja, Visa; Uibu, Toomas

    2018-02-01

    Photodynamic therapy (PDT) is bringing new, effective, and less invasive, possibilities for cancer treatment. ML7710 (Modulight Inc.) medical laser system offers a platform for performing PDT for multiple indications and drugs. Latest avenue is glioblastoma treatment with 5-Aminolevulinic acid (ALA-5) and 635-nm light, where clinical trials are about to begin. Preliminary work suggests major advantages in treatment control, including active in-situ feedback. ML7710 platform has already proven itself for clinical work with intrabronchial obstructive tumors. Preliminary result with 10 patients show that intrabronchial tumors, that strongly affect both the survival and the performance of the patient, can be significantly reduced with ML7710 operated at 665 nm and sodium chlorine E6 photosensitizer. The aim in most of the patients has been a palliative recanalization of the bronchial lumen in order to alleviate the symptoms such as breathlessness and hemoptysis. The illumination dose for the target area was 50-75 J/cm2. All the patients have received multimodality cancer treatment using other intrabronchial interventions, radiotherapy and chemotherapy as needed. In most of the patients, satisfactory treatment results were achieved and it was possible to restart chemotherapy in several patients. In one patient with local cancer a complete remission was established. PDT has also the advantage that it is possible to give PDT after a maximum dose of radiation therapy has already been used and fewer side effects if used in locally advanced intraluminar lung cancer.

  6. The suppression of manganese superoxide dismutase decreased the survival of human glioblastoma multiforme T98G cells

    Directory of Open Access Journals (Sweden)

    Novi S. Hardiany

    2017-05-01

    Full Text Available Background: Glioblastoma multiforme (GBM is a primary malignant brain tumor which has poor prognosis. High incidence of oxidative stress-based therapy resistance could be related to the high antioxidant status of GBM cells. Our previous study has reported that manganese superoxide dismutase (MnSOD antioxidant expression was significantly higher in high grade glioma than in low grade. The aim of this study was to analyze the impact of MnSOD suppression toward GBM cell survival.Methods: This study is an experimental study using human glioblastoma multiforme T98G cell line. Suppression of MnSOD expression was performed using in vitro transfection MnSOD-siRNA. The MnSOD expression was analyzed by measuring the mRNA using real time RT-PCR, protein using ELISA technique, and specific activity of enzyme using inhibition of xantine oxidase. Concentration of reactive oxygen species (ROS intracellular was determined by measuring superoxide radical and hydrogen peroxide. Cell survival was analyzed by measuring viability, proliferation, and cell apoptosis.Results: In vitro transfection of MnSOD-siRNA suppressed the mRNA, protein, and specific activity of MnSOD. This treatment significantly increased the concentration of superoxide radical; however, it did not influence the concentration of hydrogen peroxide. Moreover, viability MnSOD-suppressing cell significantly decreased, accompanied by increase of cell apoptosis without affecting cell proliferation.Conclusion: The suppression of MnSOD expression leads to decrease glioblastoma multiforme cell survival, which was associated to the increase of cell apoptotic.

  7. Reasons for non-adherence to obesity treatment in children and adolescents

    Directory of Open Access Journals (Sweden)

    Thaïs Florence D. Nogueira

    2013-09-01

    Full Text Available OBJECTIVE To analyze the reasons for non-adherence to follow-up at a specialized outpatient clinic for obese children and adolescents. METHODS Descriptive study of 41 patients, including information from medical records and phone recorded questionnaires which included two open questions and eight closed ones: reason for abandonment, financial and structural difficulties (distance and transport costs, relationship with professionals, obesity evolution, treatment continuity, knowledge of difficulties and obesity complications. RESULTS Among the interviewees, 29.3% reported that adherence to the program spent too much time and it was difficult to adjust consultations to patientsâ€(tm and parentsâ€(tm schedules. Other reasons were: childrenâ€(tms refusal to follow treatment (29.3%, dissatisfaction with the result (17.0%, treatment in another health service (12.2%, difficulty in schedule return (7.3% and delay in attendance (4.9%. All denied any relationship problems with professionals. Among the respondents, 85.4% said they are still overweight. They reported hurdles to appropriate nutrition and physical activity (financial difficulty, lack of parentsâ€(tm time, physical limitation and insecure neighborhood. Among the 33 respondents that reported difficulties with obesity, 78.8% had emotional disorders such as bullying, anxiety and irritability; 24.2% presented fatigue, 15.1% had difficulty in dressing up and 15.1% referred pain. The knowledge of the following complications prevailed: cardicac (97.6%, aesthetic (90.2%, psychological (90.2%, presence of obesity in adulthood (90.2%, diabetes (85.4% and cancer (31.4%. CONCLUSIONS According to the results, it is possible to create weight control public programs that are easier to access, encouraging appropriate nutrition and physical activities in order to achieve obesity prevention.

  8. Aptamer-conjugated dendrimer-modified quantum dots for glioblastoma cells imaging

    International Nuclear Information System (INIS)

    Li Zhiming; Huang Peng; He Rong; Bao Chenchen; Cui Daxiang; Zhang Xiaomin; Ren Qiushi

    2009-01-01

    Targeted quantum dots have shown potential as a platform for development of cancer imaging. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In present work, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified quantum dots were conjugated with DNA aptamer, GBI-10, can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. Aptamer-conjugated quantum dots can specifically target U251 human glioblastoma cells. High-performance aptamer-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as cancer imaging.

  9. Immunological targeting of cytomegalovirus for glioblastoma therapy

    OpenAIRE

    Nair, Smita K; Sampson, John H; Mitchell, Duane A

    2014-01-01

    Human cytomegalovirus (CMV) is purportedly present in glioblastoma (GBM) while absent from the normal brain, making CMV antigens potentially ideal immunological anti-GBM targets. We recently demonstrated that patient-derived CMV pp65-specific T cells are capable of recognizing and killing autologous GBM tumor cells. This data supports CMV antigen-directed immunotherapies against GBM.

  10. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma.

    Science.gov (United States)

    Tomaselli, Sara; Galeano, Federica; Alon, Shahar; Raho, Susanna; Galardi, Silvia; Polito, Vinicia Assunta; Presutti, Carlo; Vincenti, Sara; Eisenberg, Eli; Locatelli, Franco; Gallo, Angela

    2015-01-13

    ADAR enzymes convert adenosines to inosines within double-stranded RNAs, including microRNA (miRNA) precursors, with important consequences on miRNA retargeting and expression. ADAR2 activity is impaired in glioblastoma and its rescue has anti-tumoral effects. However, how ADAR2 activity may impact the miRNome and the progression of glioblastoma is not known. By integrating deep-sequencing and array approaches with bioinformatics analyses and molecular studies, we show that ADAR2 is essential to edit a small number of mature miRNAs and to significantly modulate the expression of about 90 miRNAs in glioblastoma cells. Specifically, the rescue of ADAR2 activity in cancer cells recovers the edited miRNA population lost in glioblastoma cell lines and tissues, and rebalances expression of onco-miRNAs and tumor suppressor miRNAs to the levels observed in normal human brain. We report that the major effect of ADAR2 is to reduce the expression of a large number of miRNAs, most of which act as onco-miRNAs. ADAR2 can edit miR-222/221 and miR-21 precursors and decrease the expression of the corresponding mature onco-miRNAs in vivo and in vitro, with important effects on cell proliferation and migration. Our findings disclose an additional layer of complexity in miRNome regulation and provide information to better understand the impact of ADAR2 editing enzyme in glioblastoma. We propose that ADAR2 is a key factor for maintaining edited-miRNA population and balancing the expression of several essential miRNAs involved in cancer.

  11. Improved survival for elderly married glioblastoma patients. Better treatment delivery, less toxicity, and fewer disease complications

    Energy Technology Data Exchange (ETDEWEB)

    Putz, Florian; Goerig, Nicole; Knippen, Stefan; Gryc, Thomas; Semrau, Sabine; Lettmaier, Sebastian; Fietkau, Rainer [Friedrich-Alexander-University Erlangen-Nuremberg, Department of Radiation Oncology, Erlangen (Germany); Putz, Tobias [University of Bamberg, Professorship of Demography, Bamberg (Germany); Eyuepoglu, Ilker; Roessler, Karl [Friedrich-Alexander-University Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany)

    2016-11-15

    Marital status is a well-described prognostic factor in patients with gliomas but the observed survival difference is unexplained in the available population-based studies. A series of 57 elderly glioblastoma patients (≥70 years) were analyzed retrospectively. Patients received radiotherapy or chemoradiation with temozolomide. The prognostic significance of marital status was assessed. Disease complications, toxicity, and treatment delivery were evaluated in detail. Overall survival was significantly higher in married than in unmarried patients (median, 7.9 vs. 4.0 months; p = 0.006). The prognostic significance of marital status was preserved in the multivariate analysis (HR, 0.41; p = 0.011). Married patients could receive significantly higher daily temozolomide doses (mean, 53.7 mg/m{sup 2} vs. 33.1 mg/m{sup 2}; p = 0.020), were more likely to receive maintenance temozolomide (45.7 % vs. 11.8 %; p = 0.016), and had to be hospitalized less frequently during radiotherapy (55.0 % vs. 88.2 %; p = 0.016). Of the patients receiving temozolomide, married patients showed significantly lower rates of hematologic and liver toxicity. Most complications were infectious or neurologic in nature. Complications of any grade were more frequent in unmarried patients (58.8 % vs. 30.0 %; p = 0.041) with the incidence of grade 3-5 complications being particularly elevated (47.1 % vs. 15.0 %; p = 0.004). We found poorer treatment delivery as well as an unexpected severe increase in toxicity and disease complications in elderly unmarried glioblastoma patients. Marital status may be an important predictive factor for clinical decision-making and should be addressed in further studies. (orig.) [German] Fuer verheiratete Patienten mit malignen Gliomen ist ein verbessertes Gesamtueberleben gut beschrieben. Die zugrunde liegenden Mechanismen konnten bislang jedoch in den verfuegbaren bevoelkerungsbezogenen Arbeiten nicht erklaert werden. Eine Serie von 57 aelteren Patienten mit

  12. Protective Effect of Gwakhyangjeonggisan Herbal Acupuncture Solution in Glioblastoma Cells: Microarray Analysis of Gene Expression

    Directory of Open Access Journals (Sweden)

    Hong-Seok Lee

    2005-12-01

    Full Text Available Objectives : Neurological disorders have been one of main therapeutic targets of acupuncture. The present study investigated the protective effects of Gwakhyangjeonggisan herbal acupuncture solution (GHAS. Methods : We performed 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay in glioblastoma cells, and did microarray analysis with cells exposed to reactive oxigen species (ROS of hydrogen peroxide by 8.0 k Human cDNA, with cut-off level of 2-fold changes in gene expression. Results : MTT assay showed protective effect of GHAS on the glioblastoma cells exposed to hydrogen peroxide. When glioblastoma cells were exposed to hydrogen peroxide, 24 genes were downregulated. When the cells were pretreated with GHAS before exposure to hydrogen peroxide, 46 genes were downregulated. Many of the genes downregulated by hydrogen peroxide stimulation were decreased in the amount of downregulation or reversed to upregulation. Conclusions : The gene expression changes observed in the present study are supposed to be related to the protective molecular mechanism of GHAS in the glioblastoma cells exposed to ROS stress.

  13. Genome-wide transcriptional profiling of human glioblastoma cells in response to ITE treatment.

    Science.gov (United States)

    Kang, Bo; Zhou, Yanwen; Zheng, Min; Wang, Ying-Jie

    2015-09-01

    A ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is recently revealed to play a key role in embryogenesis and tumorigenesis (Feng et al. [1], Safe et al. [2]) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song et al. [3]) is an endogenous AhR ligand that possesses anti-tumor activity. In order to gain insights into how ITE acts via the AhR in embryogenesis and tumorigenesis, we analyzed the genome-wide transcriptional profiles of the following three groups of cells: the human glioblastoma U87 parental cells, U87 tumor sphere cells treated with vehicle (DMSO) and U87 tumor sphere cells treated with ITE. Here, we provide the details of the sample gathering strategy and show the quality controls and the analyses associated with our gene array data deposited into the Gene Expression Omnibus (GEO) under the accession code of GSE67986.

  14. Synthetic miR-145 Mimic Enhances the Cytotoxic Effect of the Antiangiogenic Drug Sunitinib in Glioblastoma.

    Science.gov (United States)

    Liu, Hongwei; Liu, Zhixiong; Jiang, Bing; Huo, Lei; Liu, Jinfang; Lu, Jingchen

    2015-06-01

    Although aggressive therapeutic regimen has been applied in the treatment of Glioblastoma (GBM), the prognosis of patients with GBM remains poor. Preclinical studies have demonstrated the efficacy of Suntinib in GBM both in vitro and in vivo. In this study, we showed that the cytotoxicity was enhanced by transfection with miR-145 mimic. In addition, we suggested that the enhanced cytotoxicity of Sunitinib by miR-145 mimic was mediated by inhibition of both P-gp and Bcrp.

  15. Polyethylene glycol–polylactic acid nanoparticles modified with cysteine–arginine–glutamic acid–lysine–alanine fibrin-homing peptide for glioblastoma therapy by enhanced retention effect

    Directory of Open Access Journals (Sweden)

    Wu J

    2014-11-01

    Full Text Available Junzhu Wu,1,2,* Jingjing Zhao,1,3,* Bo Zhang,1 Yong Qian,1 Huile Gao,1 Yuan Yu,1 Yan Wei,1 Zhi Yang,1 Xinguo Jiang,1 Zhiqing Pang1 1Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 2School of Pharmacy, Dali University, Xiaguan, 3School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: For a nanoparticulate drug-delivery system, crucial challenges in brain-glioblastoma therapy are its poor penetration and retention in the glioblastoma parenchyma. As a prevailing component in the extracellular matrix of many solid tumors, fibrin plays a critical role in the maintenance of glioblastoma morphology and glioblastoma cell differentiation and proliferation. We developed a new drug-delivery system by conjugating polyethylene glycol–polylactic acid nanoparticles (NPs with cysteine–arginine–glutamic acid–lysine–alanine (CREKA; TNPs, a peptide with special affinity for fibrin, to mediate glioblastoma-homing and prolong NP retention at the tumor site. In vitro binding tests indicated that CREKA significantly enhanced specific binding of NPs with fibrin. In vivo fluorescence imaging of glioblastoma-bearing nude mice, ex vivo brain imaging, and glioblastoma distribution demonstrated that TNPs had higher accumulation and longer retention in the glioblastoma site over unmodified NPs. Furthermore, pharmacodynamic results showed that paclitaxel-loaded TNPs significantly prolonged the median survival time of intracranial U87 glioblastoma-bearing nude mice compared with controls, Taxol, and NPs. These findings suggested that TNPs were able to target the glioblastoma and enhance retention, which is a valuable strategy for tumor therapy. Keywords: CREKA peptide, nanoparticles, retention effect, paclitaxel, glioblastoma

  16. Radiological protection considerations during the treatment of glioblastoma patients by boron neutron capture therapy at the high flux reactor in Petten, The Netherlands

    International Nuclear Information System (INIS)

    Moss, R.L.; Rassow, J.; Finke, E.; Sauerwein, W.; Stecher-Rasmussen, F.

    2001-01-01

    A clinical trial of Boron Neutron Capture Therapy (BNCT) for glioblastoma patients has been in progress at the High Flux Reactor (HFR) at Petten since October 1997. The JRC (as licence holder of the HFR) must ensure that radiological protection measures are provided. The BNCT trial is a truly European trial, whereby the treatment takes place at a facility in the Netherlands under the responsibility of clinicians from Germany and patients are treated from several European countries. Consequently, radiological protection measures satisfy both German and Dutch laws. To respect both laws, a BNCT radioprotection committee was formed under the chairmanship of an independent radioprotection expert, with members representing all disciplines in the trial. A special nuance of BNCT is that the radiation is provided by a mixed neutron/gamma beam. The radiation dose to the patient is thus a complex mix due to neutrons, gammas and neutron capture in boron, nitrogen and hydrogen, which, amongst others, need to be correctly calculated in non-commercial and validated treatment planning codes. Furthermore, due to neutron activation, measurements on the patient are taken regularly after treatment. Further investigations along these lines include dose determination using TLDs and boron distribution measurements using on-line gamma ray spectroscopy. (author)

  17. Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma

    International Nuclear Information System (INIS)

    Nazem-Zadeh, Mohammad-Reza; Saksena, Sona; Babajani-Fermi, Abbas; Jiang, Quan; Soltanian-Zadeh, Hamid; Rosenblum, Mark; Mikkelsen, Tom; Jain, Rajan

    2012-01-01

    This paper presents a three-dimensional (3D) method for segmenting corpus callosum in normal subjects and brain cancer patients with glioblastoma. Nineteen patients with histologically confirmed treatment naïve glioblastoma and eleven normal control subjects underwent DTI on a 3T scanner. Based on the information inherent in diffusion tensors, a similarity measure was proposed and used in the proposed algorithm. In this algorithm, diffusion pattern of corpus callosum was used as prior information. Subsequently, corpus callosum was automatically divided into Witelson subdivisions. We simulated the potential rotation of corpus callosum under tumor pressure and studied the reproducibility of the proposed segmentation method in such cases. Dice coefficients, estimated to compare automatic and manual segmentation results for Witelson subdivisions, ranged from 94% to 98% for control subjects and from 81% to 95% for tumor patients, illustrating closeness of automatic and manual segmentations. Studying the effect of corpus callosum rotation by different Euler angles showed that although segmentation results were more sensitive to azimuth and elevation than skew, rotations caused by brain tumors do not have major effects on the segmentation results. The proposed method and similarity measure segment corpus callosum by propagating a hyper-surface inside the structure (resulting in high sensitivity), without penetrating into neighboring fiber bundles (resulting in high specificity)

  18. A Phase I Dose-Escalation Study (ISIDE-BT-1) of Accelerated IMRT With Temozolomide in Patients With Glioblastoma

    International Nuclear Information System (INIS)

    Morganti, Alessio G.; Balducci, Mario; Salvati, Maurizio; Esposito, Vincenzo; Romanelli, Pantaleo; Ferro, Marica; Calista, Franco; Digesu, Cinzia; Macchia, Gabriella; Ianiri, Massimo; Deodato, Francesco; Cilla, Savino; Piermattei, Angelo M.P.; Valentini, Vincenzo; Cellini, Numa; Cantore, Gian Paolo

    2010-01-01

    Purpose: To determine the maximum tolerated dose (MTD) of fractionated intensity-modulated radiotherapy (IMRT) with temozolomide (TMZ) in patients with glioblastoma. Methods and Materials: A Phase I clinical trial was performed. Eligible patients had surgically resected or biopsy-proven glioblastoma. Patients started TMZ (75 mg/day) during IMRT and continued for 1 year (150-200 mg/day, Days 1-5 every 28 days) or until disease progression. Clinical target volume 1 (CTV1) was the tumor bed ± enhancing lesion with a 10-mm margin; CTV2 was the area of perifocal edema with a 20-mm margin. Planning target volume 1 (PTV1) and PTV2 were defined as the corresponding CTV plus a 5-mm margin. IMRT was delivered in 25 fractions over 5 weeks. Only the dose for PTV1 was escalated (planned dose escalation: 60 Gy, 62.5 Gy, 65 Gy) while maintaining the dose for PTV2 (45 Gy, 1.8 Gy/fraction). Dose limiting toxicities (DLT) were defined as any treatment-related nonhematological adverse effects rated as Grade ≥3 or any hematological toxicity rated as ≥4 by Radiation Therapy Oncology Group (RTOG) criteria. Results: Nineteen consecutive glioblastoma were treated with step-and-shoot IMRT, planned with the inverse approach (dose to the PTV1: 7 patients, 60 Gy; 6 patients, 62.5 Gy; 6 patients, 65 Gy). Five coplanar beams were used to cover at least 95% of the target volume with the 95% isodose line. Median follow-up time was 23 months (range, 8-40 months). No patient experienced DLT. Grade 1-2 treatment-related neurologic and skin toxicity were common (11 and 19 patients, respectively). No Grade >2 late neurologic toxicities were noted. Conclusion: Accelerated IMRT to a dose of 65 Gy in 25 fractions is well tolerated with TMZ at a daily dose of 75 mg.

  19. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report.

    Science.gov (United States)

    Stummer, Walter; Beck, Tobias; Beyer, Wolfgang; Mehrkens, Jan Hendrik; Obermeier, Andreas; Etminan, Nima; Stepp, Herbert; Tonn, Jörg-Christian; Baumgartner, Reinhold; Herms, Jochen; Kreth, Friedrich Wilhelm

    2008-03-01

    Glioblastoma multiforme continues to be a devastating disease despite modest improvements in survival achieved at present, and there is an urgent need for innovative treatment concepts. Five-aminolevulinic acid (ALA) is a drug which induces protoporphyrin IX accumulation in malignant gliomas and has been explored for fluorescence-guided resections of these tumors. ALA is also under investigation as a photosensitizer. We report a case of a patient with prior left frontal glioblastoma multiforme treated by surgery, radiation and chemotherapy, who developed a remote lesion in the left insula, which was refractory to secondary treatments. In a compassionate use setting she was treated by oral application of ALA (20 mg/kg bodyweight), and stereotactic phototherapy achieved by positioning four laser diffusors using 3-dimensional irradiation planning, and a 633 nm diode laser. The lesion disappeared 24 h after therapy. Circumferential contrast enhancement was observed at 72 h, which disappeared in the course of subsequent months. Edema resolved completely. The patient is still free of recurrence 56 months after treatment, demonstrating an impressive and long-lasting response to this novel mode of therapy.

  20. Immunotherapy for glioblastoma: playing chess, not checkers.

    Science.gov (United States)

    Jackson, Christopher M; Lim, Michael

    2018-04-24

    Patients with glioblastoma (GBM) exhibit a complex state of immune dysfunction involving multiple mechanisms of local, regional, and systemic immune suppression and tolerance. These pathways are now being identified and their relative contributions explored. Delineating how these pathways are interrelated is paramount to effectively implementing immunotherapy for GBM. Copyright ©2018, American Association for Cancer Research.

  1. Glioblastoma and acute myeloid leukemia: malignancies with striking similarities.

    Science.gov (United States)

    Goethe, Eric; Carter, Bing Z; Rao, Ganesh; Pemmaraju, Naveen

    2018-01-01

    Acute myeloid leukemia (AML) and glioblastoma (GB) are two malignancies associated with high incidence of treatment refractoriness and generally, uniformly poor survival outcomes. While the former is a hematologic (i.e. a "liquid") malignancy and the latter a solid tumor, the two diseases share both clinical and biochemical characteristics. Both diseases exist predominantly in primary (de novo) forms, with only a small subset of each progressing from precursor disease states like the myelodysplastic syndromes or diffuse glioma. More importantly, the primary and secondary forms of each disease are characterized by common sets of mutations and gene expression abnormalities. The primary versions of AML and GB are characterized by aberrant RAS pathway, matrix metalloproteinase 9, and Bcl-2 expression, and their secondary counterparts share abnormalities in TP53, isocitrate dehydrogenase, ATRX, inhibitor of apoptosis proteins, and survivin that both influence the course of the diseases themselves and their progression from precursor disease. An understanding of these shared features is important, as it can be used to guide both the research about and treatment of each.

  2. Comparison between perfusion computed tomography and dynamic contrast-enhanced magnetic resonance imaging in assessing glioblastoma microvasculature

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhong Zheng, E-mail: jzz2397@163.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Shi, Wei, E-mail: sw740104@hotmail.com [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu (China); Shi, Jin Long, E-mail: shij_ns@163.com [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu (China); Shen, Dan Dan, E-mail: 1021121084@qq.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Gu, Hong Mei, E-mail: guhongmei71@163.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Zhou, Xue Jun, E-mail: 56516400@qq.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China)

    2017-02-15

    Purpose: Perfusion computed tomography (PCT) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provide independent measurements of biomarkers related to tumor perfusion. The aim of this study was to compare the two techniques in assessing glioblastoma microvasculature. Materials and methods: Twenty-five patients diagnosed with glioblastoma (14 males and 11 females; 51 ± 11 years old, ranging from 33 to 70 years) were includede in this prospective study. All patients underwent both PCT and DCE-MRI. Imaging was performed on a 256-slice CT scanner and a 3-T MRI system. PCT yielded permeability surface-area product (PS) using deconvolution physiological models; meanwhile, DCE-MRI determined volume transfer constant (K{sup trans}) using the Tofts-Kermode compartment model. All cases were submitted to surgical intervention, and CD105-microvascular density (CD105-MVD) was measured in each glioblastoma specimen. Then, Spearman’s correlation coefficients and Bland-Altman plots were obtained for PS, K{sup trans} and CD105-MVD. P < 0.05 was considered statistically significant. Results: Tumor PS and K{sup trans} values were correlated with CD105-MVD (r = 0.644, P < 0.001; r = 0.683, P < 0.001). In addition, PS was correlated with K{sup trans} in glioblastoma (r = 0.931, P < 0.001). Finally, Bland-Altman plots showed no significant differences between PS and K{sup trans} (P = 0.063). Conclusion: PCT and DCE-MRI measurements of glioblastoma perfusion biomarkers have similar results, suggesting that both techniques may have comparable utility. Therefore, PCT may serve as an alternative modality to DCE-MRI for the in vivo evaluation of glioblastoma microvasculature.

  3. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Directory of Open Access Journals (Sweden)

    Julia Pollak

    Full Text Available Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  4. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Science.gov (United States)

    Pollak, Julia; Rai, Karan G; Funk, Cory C; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D; Paddison, Patrick J; Ramirez, Jan-Marino; Rostomily, Robert C

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  5. Glioblastomas, astrocytomas and oligodendrogliomas linked to Lynch syndrome

    DEFF Research Database (Denmark)

    Therkildsen, C; Ladelund, S; Rambech, E

    2015-01-01

    .5%) in MSH2 gene mutation carriers compared to patients with mutations in MLH1 or MSH6. Glioblastomas predominated (56%), followed by astrocytomas (22%) and oligodendrogliomas (9%). MMR status was assessed in 10 tumors, eight of which showed MMR defects. None of these tumors showed immunohistochemical...

  6. Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods

    Directory of Open Access Journals (Sweden)

    Fernandez Cabada T

    2012-03-01

    Full Text Available Tamara Fernandez Cabada1,2,*, Cristina Sanchez Lopez de Pablo1,3,*, Alberto Martinez Serrano2, Francisco del Pozo Guerrero1,3, Jose Javier Serrano Olmedo1,3,*, Milagros Ramos Gomez1–3,* 1Centre for Biomedical Technology, Universidad Politecnica de Madrid, Madrid, Spain; 2Centre for Molecular Biology, "Severo Ochoa" Universidad Autonoma de Madrid, Madrid, Spain; 3Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-bbn, Zaragoza, Spain.*These authors contributed equally to this workBackground: Metallic nanorods are promising agents for a wide range of biomedical applications. In this study, we developed an optical hyperthermia method capable of inducing in vitro death of glioblastoma cells.Methods: The procedure used was based on irradiation of gold nanorods with a continuous wave laser. This kind of nanoparticle converts absorbed light into localized heat within a short period of time due to the surface plasmon resonance effect. The effectiveness of the method was determined by measuring changes in cell viability after laser irradiation of glioblastoma cells in the presence of gold nanorods.Results: Laser irradiation in the presence of gold nanorods induced a significant decrease in cell viability, while no decrease in cell viability was observed with laser irradiation or incubation with gold nanorods alone. The mechanism of cell death mediated by gold nanorods during photothermal ablation was analyzed, indicating that treatment compromised the integrity of the cell membrane instead of initiating the process of programmed cell death.Conclusion: The use of gold nanorods in hyperthermal therapies is very effective in eliminating glioblastoma cells, and therefore represents an important area of research for therapeutic development.Keywords: laser irradiation, photothermal therapy, surface plasmon resonance, cancer

  7. Pitfalls in the Neuroimaging of Glioblastoma in the Era of Antiangiogenic and Immuno/Targeted Therapy - Detecting Illusive Disease, Defining Response

    Directory of Open Access Journals (Sweden)

    Raymond Yi-Kun Huang

    2015-02-01

    Full Text Available Glioblastoma, the most common malignant primary brain tumor in adults is a devastating diagnosis with an average survival of 14-16 months using the current standard of care treatment. The determination of treatment response and clinical decision making is based on the accuracy of radiographic assessment. Notwithstanding, challenges exist in the neuroimaging evaluation of patients undergoing treatment for malignant glioma.Differentiating treatment response from tumor progression is problematic and currently combines long-term follow-up using standard MRI, with clinical status and corticosteroid-dependency assessments. In the clinical trial setting, treatment with gene therapy, vaccines, immunotherapy, and targeted biologicals similarly produces MRI changes mimicking disease progression. A neuroimaging method to clearly distinguish between pseudoprogression and tumor progression has unfortunately not been found to date. With the incorporation of antiangiogenic therapies, a further pitfall in imaging interpretation is pseudoresponse. The Macdonald Criteria that correlate tumor burden with contrast enhanced imaging proved insufficient and misleading in the context of rapid blood brain barrier normalization following antiangiogenic treatment that is not accompanied by expected survival benefit. Even improved criteria, such as the RANO criteria, that incorporate non-enhancing disease, clinical status, and need for corticosteroid use, fall short of definitively distinguishing tumor progression, pseudoresponse, and pseudoprogression.This review focuses on advanced imaging techniques including perfusion MRI, diffusion MRI, MR spectroscopy, and new PET imaging tracers. The relevant image analysis algorithms and interpretation methods of these promising techniques are discussed in the context of determining response and progression during treatment of glioblastoma both in the standard of care as well as clinical trial context.

  8. The Survey of Treatment Entry Pressures (STEP): identifying client's reasons for entering substance abuse treatment.

    Science.gov (United States)

    Dugosh, Karen Leggett; Festinger, David S; Lynch, Kevin G; Marlowe, Douglas B

    2014-10-01

    Systematically identifying reasons that clients enter substance abuse treatment may allow clinicians to immediately focus on issues of greatest relevance to the individual and enhance treatment engagement. We developed the Survey of Treatment Entry Pressures (STEP) to identify the specific factors that precipitated an individual's treatment entry. The instrument contains 121 items from 6 psychosocial domains (i.e., family, financial, social, medical, psychiatric, legal). The current study examined the STEP's psychometric properties. A total of 761 participants from various treatment settings and modalities completed the STEP prior to treatment admission and 4-7 days later. Analyses were performed to examine the instrument's psychometric properties including item response rates, test-retest reliability, internal consistency, and factor structure. The items displayed adequate test-retest reliability and internal consistency within each psychosocial domain. Generally, results from exploratory and confirmatory factor analyses support a 2-factor structure reflecting type of reinforcement schedule. The study provides preliminary support for the psychometric properties of the STEP. The STEP may provide a reliable way for clinicians to characterize and capitalize on a client's treatment motivation early on which may serve to improve treatment retention and therapeutic outcomes. © 2014 Wiley Periodicals, Inc.

  9. Expression Levels and Localizations of DVL3 and sFRP3 in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Anja Kafka

    2017-01-01

    Full Text Available The expression patterns of critical molecular components of Wnt signaling, sFRP3 and DVL3, were investigated in glioblastoma, the most aggressive form of primary brain tumors, with the aim to offer potential biomarkers. The protein expression levels and localizations in tumor tissue were revealed by immunohistochemistry and evaluated by the semiquantitative method and immunoreactivity score. Majority of glioblastomas had moderate expression levels for both DVL3 (52.4% and sFRP3 (52.3%. Strong expression levels were observed in 23.1% and 36.0% of samples, respectively. DVL3 was localized in cytoplasm in 97% of glioblastomas, of which 44% coexpressed the protein in the nucleus. sFRP3 subcellular distribution showed that it was localized in the cytoplasm in 94% of cases. Colocalization in the cytoplasm and nucleus was observed in 50% of samples. Wilcox test indicated that the domination of the strong signal is in connection with simultaneous localization of DVL3 protein in the cytoplasm and the nucleus. Patients with strong expression of DVL3 will significantly more often have the protein in the nucleus (P=6.33×10−5. No significant correlation between the two proteins was established, nor were their signal strengths correlated with epidemiological parameters. Our study contributes to better understanding of glioblastoma molecular profile.

  10. Technological Advances in the Treatment of Cancer: Combining Modalities to Optimize Outcomes.

    Science.gov (United States)

    Wong, Eric T; Toms, Steven A; Ahluwalia, Manmeet S

    2015-11-01

    The anticancer treatment modality tumor treating fields (TTFields; Optune, Novocure) use the lower frequency range of the electromagnetic spectrum to destroy tumor cells during mitosis. This treatment has been evaluated in several trials of patients with glioblastoma. In these patients, TTFields are delivered through 4 transducer arrays applied to the scalp. In a phase 3 clinical trial of patients with recurrent glioblastoma, TTFields were as effective as chemotherapy, and were associated with fewer and milder systemic toxicities. Data from a phase 3 trial in newly diagnosed glioblastoma suggested that the addition of TTFields to postoperative radiation therapy and chemotherapy represents an important advance in the management of newly diagnosed glioblastoma. Ongoing clinical trials are investigating the efficacy and safety of TTFields in other tumor types, including pancreatic cancer, mesothelioma, ovarian cancer, and non–small cell lung cancer. Other recent advances in the management of cancer have been seen with immunomodulatory therapy, including immune checkpoint inhibitors. Further study will be necessary to evaluate whether TTFields will enhance or impair other established and newly emerging therapies.

  11. Spinal Cord Glioblastoma Induced by Radiation Therapy of Nasopharyngeal Rhabdomyosarcoma with MRI Findings: Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Se Jin; Kim, In One [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2012-09-15

    Radiation-induced spinal cord gliomas are extremely rare. Since the first case was reported in 1980, only six additional cases have been reported.; The radiation-induced gliomas were related to the treatment of Hodgkin's lymphoma, thyroid cancer, and medullomyoblastoma, and to multiple chest fluoroscopic examinations in pulmonary tuberculosis patient. We report a case of radiation-induced spinal cord glioblastoma developed in a 17-year-old girl after a 13-year latency period following radiotherapy for nasopharyngeal rhabdomyosarcoma. MRI findings of our case are described.

  12. Validation of an amino-acid-based radionuclide therapy plus external beam radiotherapy in heterotopic glioblastoma models

    Energy Technology Data Exchange (ETDEWEB)

    Israel, Ina [Department of Nuclear Medicine, University of Wuerzburg, D-97080 Wuerzburg (Germany); Blass, Georg [Department of Radiotherapy and Radiooncology, Saarland University Medical Center, Homburg (Germany); Reiners, Christoph [Department of Nuclear Medicine, University of Wuerzburg, D-97080 Wuerzburg (Germany); Samnick, Samuel, E-mail: samnick_s@klinik.uni-wuerzburg.d [Department of Nuclear Medicine, University of Wuerzburg, D-97080 Wuerzburg (Germany)

    2011-05-15

    Background and purpose: Malignant gliomas represent a major therapeutic challenge because no efficient treatment is currently available. p-[{sup 131}I]iodo-L-phenylalanine ([{sup 131}I]IPA) is a glioma avid radiopharmaceutical that demonstrated antiproliferative and tumoricidal effects in gliomas. The present study validated the therapeutic efficiency of [{sup 131}I]IPA combined with external beam radiotherapy in experimental gliomas. Materials and methods: Glioma cells derived from the primary human A1207, T5135, Tx3868 and M059K glioblastoma cell lines or rat F98 glioma cell line were treated with various doses of [{sup 131}I]IPA, external photon irradiation (RT) or combined [{sup 131}I]IPA/RT treatment. Responsiveness of glioma cells to the different therapy modalities was investigated at 24, 48 and 72 h after treatments by trypan blue, WST-1 assay, propidium iodide and bisbenzimide staining as well as by clonogenic assay. In addition, the therapy-induced DNA damage and repair were evaluated using phosphorylated histone H2AX ({gamma}-H2AX). In vivo, the effectiveness of the combination treatment was validated in human Tx3868 and A1207 glioblastoma xenografts in CD1 nu/nu mice and RNU rats. Results: In vitro, the combination treatment resulted in a greater than additive increase in cytotoxic effect in glioma cell lines. Cell survival rate following a treatment with 1.0 {mu}Ci (37 kBq) of [{sup 131}I]IPA amounted to 70%{+-}15% and 60%{+-}10% after 48 and 72 h, respectively, and decreased under 20% after additional RT with 5 Gy. At higher RT doses, cell survival rate decreased below 5%. As a measure of DNA double-strand break, nuclear {gamma}-H2AX foci were determined as a function of time. Within 24 h, the number of {gamma}-H2AX foci per cell was significantly greater after combined modality compared with the individual treatments. In vivo, when combined with RT, the radionuclide therapy with [{sup 131}I]IPA resulted in an extended tumor growth delay, a reduction

  13. Reciprocal Supportive Interplay between Glioblastoma and Tumor-Associated Macrophages

    International Nuclear Information System (INIS)

    Zhou, Wenchao; Bao, Shideng

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive type of primary brain malignancy. Failures of the traditional therapies in treating GBMs raise the urgent requirement to develop new approaches with more responsive targets. The phenomenon of the high infiltration of tumor-associated macrophages (TAMs) into GBMs has been observed for a long time. Regardless of the limited knowledge about TAMs, the high percentage of supportive TAM in GBM tumor mass makes it possible to be a good target for GBM treatment. In this review, we discussed the unique features of TAMs in GBMs, including their origin, the tumor-supportive properties, the secreted cytokines, and the relevant mechanisms. In addition, we tried to interpret the current understandings about the interplay between GBM cancer cells and TAMs. Finally, the translational studies of targeting TAMs were also described

  14. Reciprocal Supportive Interplay between Glioblastoma and Tumor-Associated Macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenchao; Bao, Shideng, E-mail: baos@ccf.org [Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 (United States)

    2014-03-26

    Glioblastoma multiforme (GBM) is the most lethal and aggressive type of primary brain malignancy. Failures of the traditional therapies in treating GBMs raise the urgent requirement to develop new approaches with more responsive targets. The phenomenon of the high infiltration of tumor-associated macrophages (TAMs) into GBMs has been observed for a long time. Regardless of the limited knowledge about TAMs, the high percentage of supportive TAM in GBM tumor mass makes it possible to be a good target for GBM treatment. In this review, we discussed the unique features of TAMs in GBMs, including their origin, the tumor-supportive properties, the secreted cytokines, and the relevant mechanisms. In addition, we tried to interpret the current understandings about the interplay between GBM cancer cells and TAMs. Finally, the translational studies of targeting TAMs were also described.

  15. Glioblastoma multiforme after radiotherapy for acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Piatt, J.H. Jr.; Blue, J.M.; Schold, S.C. Jr.; Burger, P.C.

    1983-07-01

    A case of glioblastoma multiforme that occurred 14 years after radiotherapy for acromegaly is presented. The striking correspondence between the anatomy of the tumor and the geometry of the radiation ports is suggestive of a causal relationship. Previously reported cases of radiation-associated glioma are reviewed, and a brief appraisal of the evidence for induction of these lesions by radiation is presented. The differentiation of radiation-associated neoplasms from radionecrosis is also discussed.

  16. Glioblastoma multiforme after radiotherapy for acromegaly

    International Nuclear Information System (INIS)

    Piatt, J.H. Jr.; Blue, J.M.; Schold, S.C. Jr.; Burger, P.C.

    1983-01-01

    A case of glioblastoma multiforme that occurred 14 years after radiotherapy for acromegaly is presented. The striking correspondence between the anatomy of the tumor and the geometry of the radiation ports is suggestive of a causal relationship. Previously reported cases of radiation-associated glioma are reviewed, and a brief appraisal of the evidence for induction of these lesions by radiation is presented. The differentiation of radiation-associated neoplasms from radionecrosis is also discussed

  17. An Optimized Method for Manufacturing a Clinical Scale Dendritic Cell-Based Vaccine for the Treatment of Glioblastoma

    Science.gov (United States)

    Pogliani, Simona; Pellegatta, Serena; Antozzi, Carlo; Baggi, Fulvio; Gellera, Cinzia; Pollo, Bianca; Parati, Eugenio A.; Finocchiaro, Gaetano; Frigerio, Simona

    2012-01-01

    Immune-based treatments represent a promising new class of therapy designed to boost the immune system to specifically eradicate malignant cells. Immunotherapy may generate specific anti-tumor immune responses, and dendritic cells (DC), professional antigen-presenting cells, are widely used in experimental cancer immunotherapy. Several reports describe methods for the generation of mature, antigen-pulsed DC for clinical use. Improved quality and standardization are desirable to obtain GMP-compliant protocols. In this study we describe the generation of DC from 31 Glioblastoma (GB) patients starting from their monocytes isolated by immunomagnetic CD14 selection using the CliniMACS® device. Upon differentiation of CD14+ with IL-4 and GM-CSF, DC were induced to maturation with TNF-α, PGE2, IL-1β, and IL-6. Whole tumor lysate was obtained, for the first time, in a closed system using the semi-automated dissociator GentleMACS®. The yield of proteins improved by 130% compared to the manual dissociation method. Interestingly the Mean Fluorescence Intensity for CD83 increased significantly in DC pulsed with “new method” lysate compared to DC pulsed with “classical method” lysate. Our results indicate that immunomagnetic isolation of CD14+ monocytes using the CliniMACS® device and their pulsing with whole tumor lysate proteins is a suitable method for clinical-scale generation of high quality, functional DC under GMP-grade conditions. PMID:23284979

  18. Survey of reasons for discontinuation from in vitro fertilization treatment among couples attending infertility clinic

    Directory of Open Access Journals (Sweden)

    Grishma Kulkarni

    2014-01-01

    Full Text Available Background: With the increase in infertility burden, more and more couples are opting for in vitro fertilization (IVF. Despite the availability of various treatment options, the major concern that needs to be addressed is the reasons why such couples, initially motivated so strongly, drop out in fairly high numbers from IVF cycles. With this point of view the study was designed. AIM: The objective of this study was to explore the reasons why couples discontinue fertility treatment. Settings and Design: This retrospective study was carried out among couples in the age group of 20-40 years who opted for IVF at Tertiary care hospital and a private infertility center. Materials and Methods: Medical records for 3 years (2009-2012 were taken out and included in the study for analysis. Socio-demographic details along with indication for IVF and reasons for drop-separate IVF therapy were recorded on case record form and were analyzed. Results: Twenty-one percent of the patients had tubal pathology, thus making it the commonest female related factor for indication of IVF. Oligoasthenospermia (13% was the commonest cause of male related infertility factor. Financial burden was the primary cause for terminating treatment in majority of the IVF cases. Conclusions: Financial burden (62.5% was the commonest reason for drop out among couples from IVF cycle.

  19. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells.

    Science.gov (United States)

    Küçüktürkmen, Berrin; Devrim, Burcu; Saka, Ongun M; Yilmaz, Şükran; Arsoy, Taibe; Bozkir, Asuman

    2017-01-01

    Combination therapy using anticancer drugs and nucleic acid is a more promising strategy to overcome multidrug resistance in cancer and to enhance apoptosis. In this study, lipid-polymer hybrid nanoparticles (LPNs), which contain both pemetrexed and miR-21 antisense oligonucleotide (anti-miR-21), have been developed for treatment of glioblastoma, the most aggressive type of brain tumor. Prepared LPNs have been well characterized by particle size distribution and zeta potential measurements, determination of encapsulation efficiency, and in vitro release experiments. Morphology of LPNs was determined by transmission electron microscopy. LPNs had a hydrodynamic size below 100 nm and exhibited sustained release of pemetrexed up to 10 h. Encapsulation of pemetrexed in LPNs increased cellular uptake from 6% to 78%. Results of confocal microscopy analysis have shown that co-delivery of anti-miR-21 significantly improved accumulation of LPNs in the nucleus of U87MG cells. Nevertheless, more effective cytotoxicity results could not be obtained due to low concentration of anti-miR-21, loaded in LPNs. We expect that the effective drug delivery systems can be obtained with higher concentration of anti-miR-21 for the treatment of glioblastoma.

  20. Reasons for Schizophrenia Patients Remaining out of Treatment: Results from a Prospective Study in a Rural South Indian Community.

    Science.gov (United States)

    Kumar, Channaveerachari Naveen; Thirthalli, Jagadisha; Suresha, Kudumallige Krishnappa; Venkatesh, Basappa K; Kishorekumar, Kengeri V; Arunachala, Udupi; Gangadhar, Bangalore N

    2016-01-01

    A few studies have examined the factors associated with schizophrenia patients remaining untreated in India. We identified 184 schizophrenia patients in a rural community, offered the treatment with antipsychotics and followed them up in their Primary Health Centers for 1-year. Twenty-nine (15.8%) patients remained untreated at both the baseline and 1-year follow-up despite our best attempts to keep them under the treatment umbrella. They were interviewed in detail regarding the reasons for remaining untreated. This group was compared with another group of patients (n = 69) who had stopped the treatment at baseline but were successfully brought under the treatment umbrella throughout the 1-year follow-up period. The reasons for remaining untreated were (n; %): (a) Unsatisfactory improvement with previous treatment attempts (19; 65.5%), (b) poor bond between the patients and the families (6; 20.7%), (c) active symptoms not allowing any treatment efforts from the family members (6; 20.7%), (d) magico-religious beliefs about the illness and its treatment (4; 13.8%), (e) poor social support (3; 10.3%), (f) adverse effects of the medications (2; 6.9%), and (g) perception of recovery and cure (1; 3.4%). For many patients, a constellation of these reasons was responsible for them remaining untreated. In contrast, the common reasons for those who restarted medications to have stopped the treatment at some time were the lack of awareness, the need to continue medications (47; 68.1%), and the financial constraints (28; 40.6%). The predominant reason for schizophrenia patients not remaining on the treatment in this rural community was the families' lack of faith in antipsychotic treatment. Provision of comprehensive treatment package including medical, psychosocial and rehabilitative services, and sensitizing the community about benefits of the treatment may help in ensuring that all patients with psychosis receive the best care.

  1. Clinical implications of microRNAs in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Masahiro eMizoguchi

    2013-02-01

    Full Text Available Glioblastoma (GBM is one of the most common and dismal brain tumors in adults. Further elucidation of the molecular pathogenesis of GBM is mandatory to improve the overall survival of patients. A novel small non-coding RNA molecule, microRNA (miRNA, appears to represent one of the most attractive target molecules contributing to the pathogenesis of various types of tumors. Recent global analyses have revealed that several miRNAs are clinically implicated in GBM, with some reports indicating the association of miRNA dysregulation with acquired temozolomide (TMZ resistance. More recent studies have revealed that miRNAs could play a role in cancer stem cell (CSC properties, contributing to treatment resistance. In addition, greater impact might be expected from miRNA-targeted therapies based on tumor-derived exosomes that contain numerous functional miRNAs, which could be transferred between tumor cells and surrounding structures. Tumor-derived miRNAs are now considered to be a novel molecular mechanism promoting the progression of GBM. Establishment of miRNA-targeted therapies based on miRNA dysregulation of CSCs could provide effective therapeutic strategies for TMZ-resistant GBM. Recent progress has revealed that miRNAs are not only putative biological markers for diagnosis, but also one of the most promising targets for GBM treatment. Herein, we summarize the translational aspects of miRNAs in the diagnosis and treatment of GBM.

  2. Evaluation of Concurrent Radiation, Temozolomide and ABT-888 Treatment Followed by Maintenance Therapy with Temozolomide and ABT-888 in a Genetically Engineered Glioblastoma Mouse Model.

    Science.gov (United States)

    Lemasson, Benjamin; Wang, Hanxiao; Galbán, Stefanie; Li, Yinghua; Zhu, Yuan; Heist, Kevin A; Tsein, Christina; Chenevert, Thomas L; Rehemtulla, Alnawaz; Galbán, Craig J; Holland, Eric C; Ross, Brian D

    2016-02-01

    Despite the use of ionizing radiation (IR) and temozolomide (TMZ), outcome for glioblastoma (GBM) patients remains dismal. Poly (ADP-ribose) polymerase (PARP) is important in repair pathways for IR-induced DNA damage and TMZ-induced alkylation at N7-methylguanine and N3-methyldenine. However, optimized protocols for administration of PARP inhibitors have not been delineated. In this study, the PARP inhibitor ABT-888 was evaluated in combination with and compared to current standard-of-care in a genetically engineered mouse GBM model. Results demonstrated that concomitant TMZ/IR/ABT-888 with adjuvant TMZ/ABT-888 was more effective in inducing apoptosis and reducing proliferation with significant tumor growth delay and improved overall survival over concomitant TMZ/IR with adjuvant TMZ. Diffusion-weighted MRI, an early translatable response biomarker detected changes in tumors reflecting response at 1 day post TMZ/IR/ABT-888 treatment. This study provides strong scientific rationale for the development of an optimized dosing regimen for a PARP inhibitor with TMZ/IR for upfront treatment of GBM. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Evaluation of Concurrent Radiation, Temozolomide and ABT-888 Treatment Followed by Maintenance Therapy with Temozolomide and ABT-888 in a Genetically Engineered Glioblastoma Mouse Model

    Directory of Open Access Journals (Sweden)

    Benjamin Lemasson

    2016-02-01

    Full Text Available Despite the use of ionizing radiation (IR and temozolomide (TMZ, outcome for glioblastoma (GBM patients remains dismal. Poly (ADP-ribose polymerase (PARP is important in repair pathways for IR-induced DNA damage and TMZ-induced alkylation at N7-methylguanine and N3-methyldenine. However, optimized protocols for administration of PARP inhibitors have not been delineated. In this study, the PARP inhibitor ABT-888 was evaluated in combination with and compared to current standard-of-care in a genetically engineered mouse GBM model. Results demonstrated that concomitant TMZ/IR/ABT-888 with adjuvant TMZ/ABT-888 was more effective in inducing apoptosis and reducing proliferation with significant tumor growth delay and improved overall survival over concomitant TMZ/IR with adjuvant TMZ. Diffusion-weighted MRI, an early translatable response biomarker detected changes in tumors reflecting response at 1 day post TMZ/IR/ABT-888 treatment. This study provides strong scientific rationale for the development of an optimized dosing regimen for a PARP inhibitor with TMZ/IR for upfront treatment of GBM.

  4. Can high-dose fotemustine reverse MGMT resistance in glioblastoma multiforme?

    Science.gov (United States)

    Gallo, Chiara; Buonerba, Carlo; Di Lorenzo, Giuseppe; Romeo, Valeria; De Placido, Sabino; Marinelli, Alfredo

    2010-11-01

    Glioblastoma multiforme (GBM), the highest grade malignant glioma, is associated with a grim prognosis-median overall survival is in the range 12-15 months, despite optimum treatment. Surgery to the maximum possible extent, external beam radiotherapy, and systemic temozolomide chemotherapy are current standard treatments for newly diagnosed GBM, with intracerebral delivery of carmustine wafers (Gliadel). Unfortunately, the effectiveness of chemotherapy can be hampered by the DNA repair enzyme O6-methylguanine methyltransferase (MGMT), which confers resistance both to temozolomide and nitrosoureas, for example fotemustine and carmustine. MGMT activity can be measured by PCR and immunohistochemistry, with the former being the current validated technique. High-dose chemotherapy can deplete MGMT levels in GBM cells and has proved feasible in various trials on temozolomide, in both newly diagnosed and recurrent GBM. We here report the unique case of a GBM patient, with high MGMT expression by immunohistochemistry, who underwent an experimental, high-dose fotemustine schedule after surgery and radiotherapy. Although treatment caused two episodes of grade 3-4 thrombocytopenia, a complete response and survival of more than three years were achieved, with a 30% increase in dose intensity compared with the standard fotemustine schedule.

  5. Heterogenic expression of stem cell markers in patient-derived glioblastoma spheroid cultures exposed to long-term hypoxia

    DEFF Research Database (Denmark)

    Rosenberg, Tine; Aaberg-Jessen, Charlotte; Petterson, Stine Asferg

    2018-01-01

    AIM: To investigate the time profile of hypoxia and stem cell markers in glioblastoma spheroids of known molecular subtype. MATERIALS & METHODS: Patient-derived glioblastoma spheroids were cultured up to 7 days in either 2% or 21% oxygen. Levels of proliferation (Ki-67), hypoxia (HIF-1α, CA9...

  6. Glioblastoma stem-like cells give rise to tumour endothelium

    NARCIS (Netherlands)

    Wang, Rong; Chadalavada, Kalyani; Wilshire, Jennifer; Kowalik, Urszula; Hovinga, Koos E.; Geber, Adam; Fligelman, Boris; Leversha, Margaret; Brennan, Cameron; Tabar, Viviane

    2010-01-01

    Glioblastoma (GBM) is among the most aggressive of human cancers. A key feature of GBMs is the extensive network of abnormal vasculature characterized by glomeruloid structures and endothelial hyperplasia. Yet the mechanisms of angiogenesis and the origin of tumour endothelial cells remain poorly

  7. Amplification of the epidermal growth factor receptor gene in glioblastoma: an analysis of the relationship between genotype and phenotype by CISH method.

    Science.gov (United States)

    Miyanaga, Tomomi; Hirato, Junko; Nakazato, Yoichi

    2008-04-01

    We examined epidermal growth factor receptor (EGFR) overexpression and EGFR gene amplification using immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH) in 109 glioblastomas, including 98 primary glioblastomas and 11 secondary glioblastomas. EGFR overexpression and EGFR gene amplification were found in 33% and 24% of glioblastoma, respectively, and all of those cases were primary glioblastoma. Large ischemic necrosis was significantly more frequent in primary glioblastomas than in secondary glioblastomas (54% vs. 18%), but pseudopalisading necrosis was not (65% vs. 54%). EGFR gene amplification was detected significantly more frequently in cases with both types of necrosis. Although glioblastomas with EGFR gene amplification invariably exhibited EGFR overexpression at the level of the whole tumor, tumor cells with EGFR gene amplification did not always show EGFR overexpression at the level of individual tumor cells. Cases of "strong" EGFR overexpression on IHC could be regarded as having EGFR gene amplification, and cases without EGFR overexpression could not. Cases of "weak" EGFR overexpression should be tested with CISH to confirm the presence of EGFR gene amplification. We found that 54% of glioblastomas with EGFR gene amplification were composed of areas with and without EGFR gene amplification; however, there were no obvious differences in morphology between tumor cells with and without EGFR gene amplification. Although small cell architecture might be associated with EGFR gene amplification at the level of the whole tumor, it did not always suggest amplification of the EGFR gene at the level of individual tumor cells. In one case, it seemed to suggest that a clone with EGFR gene amplification may arise in pre-existing tumor tissue and extend into the surrounding area. In cases of overall EGFR amplification, CISH would be a useful tool to decide the tumor border in areas infiltrated by tumor cells.

  8. Glioblastoma pediátrico: estudo clínico patológico de 12 casos com imunoistoquímica para proteína p53 Pediatric glioblastoma: a clinicopathological study of 12 cases with p53 protein immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Leonora Zozula Blind Pope

    2007-12-01

    Full Text Available Glioblastoma é um dos tumores primários mais letais do sistema nervoso central (SNC. Apesar dos significativos progressos, há poucas análises em crianças. Com o objetivo de avaliar localização, idade, sexo, sobrevida e imunoistoquímica para proteína p53, foram coletados casos de glioblastomas pediátricos do "Banco de Tumores do SNC de Curitiba", durante 1987-2003 e do Hospital Municipal Jesus, Rio de Janeiro, de 1970 a 1988. Doze preencheram os critérios de inclusão. A idade variou até 12 anos (média 7, sendo sete do sexo feminino e cinco do masculino. A sobrevida média foi 7,9 meses. Localizavam-se em hemisférios cerebrais (58,4%, mesencéfalo e tronco (33,3% e um no cerebelo. A imunoistoquímica demonstrou p53 positivo em 9 (75%. Em conclusão, glioblastoma tem comportamento semelhante entre crianças e adultos, sendo nestas menos freqüentes. Acomete hemisférios cerebrais com maior freqüência que estruturas infratentoriais, mostrando alta sensitividade com a imunomarcação para proteína p53, sendo nestes casos mais agressivos, com menor sobrevida.Glioblastoma is one of the most lethal central nervous system (CNS primary tumor. Although significant progress, only few analysis have been made in pediatric glioblastoma, which are less common and have worse prognosis than in adults. To evaluate gender, site, age, survival, and immunohistochemistry to p53, we selected cases of pediatric glioblastoma of "CNS Tumors Database in Curitiba", 1987-2003 and of the Hospital Municipal Jesus, Rio de Janeiro, 1970-1988. Twelve tumors were included. The age ranged from up to 12 years (median 7. There were 7 females and 5 males. The median survival was 7.9 months. Location was: cerebral hemispheres (58.4%, mesencephalon and brainstem (33.3% and one case in the cerebellum. Immunostained to p53 in 9 (75% cases. In conclusion, glioblastoma behaves similarly in children and adults. It is rare in children, affects both cerebral hemispheres more

  9. Cerebral peritumoral oedema study: Does a single dynamic MR sequence assessing perfusion and permeability can help to differentiate glioblastoma from metastasis?

    International Nuclear Information System (INIS)

    Lehmann, Pierre; Saliou, Guillaume; Marco, Giovanni de; Monet, Pauline; Souraya, Stoquart-Elsankari; Bruniau, Alexis; Vallée, Jean Noel; Ducreux, Denis

    2012-01-01

    Our purpose was to differentiate glioblastoma from metastasis using a single dynamic MR sequence to assess perfusion and permeability parameters. 24 patients with glioblastoma or cerebral metastasis with peritumoral oedema were recruited and explored with a 3 T MR unit. Post processing used DPTools software. Regions of interest were drawn around contrast enhancement to assess relative cerebral blood volume and permeability parameters. Around the contrast enhancement Glioblastoma present high rCBV with modification of the permeability, metastasis present slight modified rCBV without modification of permeability. In conclusion, peritumoral T2 hypersignal exploration associating morphological MR and functional MR parameters can help to differentiate cerebral metastasis from glioblastoma.

  10. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response.

    Science.gov (United States)

    Hombach-Klonisch, Sabine; Mehrpour, Maryam; Shojaei, Shahla; Harlos, Craig; Pitz, Marshall; Hamai, Ahmed; Siemianowicz, Krzysztof; Likus, Wirginia; Wiechec, Emilia; Toyota, Brian D; Hoshyar, Reyhane; Seyfoori, Amir; Sepehri, Zahra; Ande, Sudharsana R; Khadem, Forough; Akbari, Mohsen; Gorman, Adrienne M; Samali, Afshin; Klonisch, Thomas; Ghavami, Saeid

    2018-04-01

    Despite advances in neurosurgical techniques and radio-/chemotherapy, the treatment of brain tumors remains a challenge. This is particularly true for the most frequent and fatal adult brain tumor, glioblastoma (GB). Upon diagnosis, the average survival time of GB patients remains only approximately 15months. The alkylating drug temozolomide (TMZ) is routinely used in brain tumor patients and induces apoptosis, autophagy and unfolded protein response (UPR). Here, we review these cellular mechanisms and their contributions to TMZ chemoresistance in brain tumors, with a particular emphasis on TMZ chemoresistance in glioma stem cells and GB. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Targeting and killing of glioblastoma with activated T cells armed with bispecific antibodies

    International Nuclear Information System (INIS)

    Zitron, Ian M; Thakur, Archana; Norkina, Oxana; Barger, Geoffrey R; Lum, Lawrence G; Mittal, Sandeep

    2013-01-01

    Since most glioblastomas express both wild-type EGFR and EGFRvIII as well as HER2/neu, they are excellent targets for activated T cells (ATC) armed with bispecific antibodies (BiAbs) that target EGFR and HER2. ATC were generated from PBMC activated for 14 days with anti-CD3 monoclonal antibody in the presence of interleukin-2 and armed with chemically heteroconjugated anti-CD3×anti-HER2/neu (HER2Bi) and/or anti-CD3×anti-EGFR (EGFRBi). HER2Bi- and/or EGFRBi-armed ATC were examined for in vitro cytotoxicity using MTT and 51 Cr-release assays against malignant glioma lines (U87MG, U118MG, and U251MG) and primary glioblastoma lines. EGFRBi-armed ATC killed up to 85% of U87, U118, and U251 targets at effector:target ratios (E:T) ranging from 1:1 to 25:1. Engagement of tumor by EGFRBi-armed ATC induced Th1 and Th2 cytokine secretion by armed ATC. HER2Bi-armed ATC exhibited comparable cytotoxicity against U118 and U251, but did not kill HER2-negative U87 cells. HER2Bi- or EGFRBi-armed ATC exhibited 50—80% cytotoxicity against four primary glioblastoma lines as well as a temozolomide (TMZ)-resistant variant of U251. Both CD133– and CD133+ subpopulations were killed by armed ATC. Targeting both HER2Bi and EGFRBi simultaneously showed enhanced efficacy than arming with a single BiAb. Armed ATC maintained effectiveness after irradiation and in the presence of TMZ at a therapeutic concentration and were capable of killing multiple targets. High-grade gliomas are suitable for specific targeting by armed ATC. These data, together with additional animal studies, may provide the preclinical support for the use of armed ATC as a valuable addition to current treatment regimens

  12. Alcohol use disorder severity and reported reasons not to seek treatment: a cross-sectional study in European primary care practices.

    Science.gov (United States)

    Probst, Charlotte; Manthey, Jakob; Martinez, Alicia; Rehm, Jürgen

    2015-08-12

    Alcohol use disorders are among the mental disorders with the lowest treatment rates. Increasing the treatment rates requires insight on the reasons why patients do not seek treatment. This study examined self-reported reasons for not seeking treatment and their association with alcohol use disorder severity among primary health care patients diagnosed with an alcohol use disorder. Alcohol use disorders, health service utilization, and reasons for not seeking treatment were assessed via interviews on regionally representative samples of primary care patients from 6 European countries (Italy, Germany, Hungary, Latvia, Poland and Spain, total N = 9,098). Additionally, general practitioners had to fill in a questionnaire assessing their patients' alcohol use and alcohol use disorders. A multinomial logistic regression was performed to investigate the association between reasons for not seeking treatment and alcohol use disorder severity. Of 1,008 patients diagnosed with an alcohol use disorder (via general practitioner or patient interview) in the past 12 months, the majority (N = 810) did not receive treatment and 251 of those gave a reason for not seeking treatment. The most frequent reason was 'lack of problem awareness' (55.3% of those who responded), the second most common response was 'stigma or shame' (28.6%), followed by 'encounter barriers' (22.8%) and 'cope alone' (20.9%). The results indicated lower probabilities of reporting 'denial' and higher probabilities to report 'encounter barriers' as alcohol use disorders severity increases. However, both trends were discontinued for patients with severe alcohol use disorders. Particularly at lower levels of alcohol use disorder severity, a lack of problem awareness prevents patients from seeking treatment. Routinely alcohol consumption monitoring in primary care practices could help primary and secondary prevention of alcohol use disorders and increase treatment coverage.

  13. An individual patient data meta-analysis on characteristics, treatments and outcomes of the glioblastoma/gliosarcoma patients with central nervous system metastases reported in literature until 2013

    DEFF Research Database (Denmark)

    Pietschmann, Sophie; von Bueren, André O; Henke, Guido

    2014-01-01

    Dissemination of high-grade gliomas (WHO IV) has been investigated poorly so far. We conducted an extensive analysis of the characteristics, treatments and outcomes of the glioblastoma multiforme (GBM)/gliosarcoma (GS) patients with central nervous system (CNS) metastases reported in literature...... until April 2013. PubMed and Web of Science searches for peer-reviewed articles pertaining to GBM/GS patients with metastatic disease were conducted using predefined keywords. Additionally, we performed hand search following the references from the selected papers. Cases in which the metastases...... exclusively occurred outside the CNS were excluded. 110 publications reporting on 189 patients were eligible. There was a significant increase in the number of reported cases over the last decades. We calculated a median overall survival from diagnosis of metastasis (from initial diagnosis of GBM/GS) of 3...

  14. PARP Inhibition Restores Extrinsic Apoptotic Sensitivity in Glioblastoma

    Science.gov (United States)

    Karpel-Massler, Georg; Pareja, Fresia; Aimé, Pascaline; Shu, Chang; Chau, Lily; Westhoff, Mike-Andrew; Halatsch, Marc-Eric; Crary, John F.; Canoll, Peter; Siegelin, Markus D.

    2014-01-01

    Background Resistance to apoptosis is a paramount issue in the treatment of Glioblastoma (GBM). We show that targeting PARP by the small molecule inhibitors, Olaparib (AZD-2281) or PJ34, reduces proliferation and lowers the apoptotic threshold of GBM cells in vitro and in vivo. Methods The sensitizing effects of PARP inhibition on TRAIL-mediated apoptosis and potential toxicity were analyzed using viability assays and flow cytometry in established GBM cell lines, low-passage neurospheres and astrocytes in vitro. Molecular analyses included western blots and gene silencing. In vivo, effects on tumor growth were examined in a murine subcutaneous xenograft model. Results The combination treatment of PARP inhibitors and TRAIL led to an increased cell death with activation of caspases and inhibition of formation of neurospheres when compared to single-agent treatment. Mechanistically, pharmacological PARP inhibition elicited a nuclear stress response with up-regulation of down-stream DNA-stress response proteins, e.g., CCAAT enhancer binding protein (C/EBP) homology protein (CHOP). Furthermore, Olaparib and PJ34 increased protein levels of DR5 in a concentration and time-dependent manner. In turn, siRNA-mediated suppression of DR5 mitigated the effects of TRAIL/PARP inhibitor-mediated apoptosis. In addition, suppression of PARP-1 levels enhanced TRAIL-mediated apoptosis in malignant glioma cells. Treatment of human astrocytes with the combination of TRAIL/PARP inhibitors did not cause toxicity. Finally, the combination treatment of TRAIL and PJ34 significantly reduced tumor growth in vivo when compared to treatment with each agent alone. Conclusions PARP inhibition represents a promising avenue to overcome apoptotic resistance in GBM. PMID:25531448

  15. Role of Intra-operative MRI (iMRI) in Improving Extent of Resection and Survival in Patients with Glioblastoma Multiforme.

    Science.gov (United States)

    Khan, Inamullah; Waqas, Muhammad; Shamim, Muhammad Shahzad

    2017-07-01

    Multiple intraoperative aids have been introduced to improve the extent of resection (EOR) in Glioblastoma Multiforme (GBM) patients, avoiding any new neurological deficits. Intraoperative MRI (iMRI) has been debated for its utility and cost for nearly two decades in neurosurgical literature. Review of literature suggests improved EOR in GBM patients who underwent iMRI assisted surgical resections leading to higher overall survival (OS) and progression free survival (PFS). iMRI provides real time intraoperative imaging with reasonable quality. Higher risk for new postoperative deficits with increased EOR is not reported in any study using iMRI. The level of evidence regarding prognostic benefits of iMRI is still of low quality..

  16. Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma.

    Science.gov (United States)

    Young, Jonathan D; Cai, Chunhui; Lu, Xinghua

    2017-10-03

    One approach to improving the personalized treatment of cancer is to understand the cellular signaling transduction pathways that cause cancer at the level of the individual patient. In this study, we used unsupervised deep learning to learn the hierarchical structure within cancer gene expression data. Deep learning is a group of machine learning algorithms that use multiple layers of hidden units to capture hierarchically related, alternative representations of the input data. We hypothesize that this hierarchical structure learned by deep learning will be related to the cellular signaling system. Robust deep learning model selection identified a network architecture that is biologically plausible. Our model selection results indicated that the 1st hidden layer of our deep learning model should contain about 1300 hidden units to most effectively capture the covariance structure of the input data. This agrees with the estimated number of human transcription factors, which is approximately 1400. This result lends support to our hypothesis that the 1st hidden layer of a deep learning model trained on gene expression data may represent signals related to transcription factor activation. Using the 3rd hidden layer representation of each tumor as learned by our unsupervised deep learning model, we performed consensus clustering on all tumor samples-leading to the discovery of clusters of glioblastoma multiforme with differential survival. One of these clusters contained all of the glioblastoma samples with G-CIMP, a known methylation phenotype driven by the IDH1 mutation and associated with favorable prognosis, suggesting that the hidden units in the 3rd hidden layer representations captured a methylation signal without explicitly using methylation data as input. We also found differentially expressed genes and well-known mutations (NF1, IDH1, EGFR) that were uniquely correlated with each of these clusters. Exploring these unique genes and mutations will allow us to

  17. ERGO: A pilot study of ketogenic diet in recurrent glioblastoma

    Science.gov (United States)

    RIEGER, JOHANNES; BÄHR, OLIVER; MAURER, GABRIELE D.; HATTINGEN, ELKE; FRANZ, KEA; BRUCKER, DANIEL; WALENTA, STEFAN; KÄMMERER, ULRIKE; COY, JOHANNES F.; WELLER, MICHAEL; STEINBACH, JOACHIM P.

    2014-01-01

    Limiting dietary carbohydrates inhibits glioma growth in preclinical models. Therefore, the ERGO trial (NCT00575146) examined feasibility of a ketogenic diet in 20 patients with recurrent glioblastoma. Patients were put on a low-carbohydrate, ketogenic diet containing plant oils. Feasibility was the primary endpoint, secondary endpoints included the percentage of patients reaching urinary ketosis, progression-free survival (PFS) and overall survival. The effects of a ketogenic diet alone or in combination with bevacizumab was also explored in an orthotopic U87MG glioblastoma model in nude mice. Three patients (15%) discontinued the diet for poor tolerability. No serious adverse events attributed to the diet were observed. Urine ketosis was achieved at least once in 12 of 13 (92%) evaluable patients. One patient achieved a minor response and two patients had stable disease after 6 weeks. Median PFS of all patients was 5 (range, 3–13) weeks, median survival from enrollment was 32 weeks. The trial allowed to continue the diet beyond progression. Six of 7 (86%) patients treated with bevacizumab and diet experienced an objective response, and median PFS on bevacizumab was 20.1 (range, 12–124) weeks, for a PFS at 6 months of 43%. In the mouse glioma model, ketogenic diet alone had no effect on median survival, but increased that of bevacizumab-treated mice from 52 to 58 days (pketogenic diet is feasible and safe but probably has no significant clinical activity when used as single agent in recurrent glioma. Further clinical trials are necessary to clarify whether calorie restriction or the combination with other therapeutic modalities, such as radiotherapy or anti-angiogenic treatments, could enhance the efficacy of the ketogenic diet. PMID:24728273

  18. TCGA Workshop: Genomics and Biology of Glioblastoma Multiforme (GBM) - TCGA

    Science.gov (United States)

    The National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI) held a workshop entitled, “Genomics and Biology of Glioblastoma Multiforme (GBM),” to review the initial GBM data from the TCGA pilot project.

  19. Stem Cell Niches in Glioblastoma: A Neuropathological View

    Directory of Open Access Journals (Sweden)

    Davide Schiffer

    2014-01-01

    Full Text Available Glioblastoma (GBM stem cells (GSCs, responsible for tumor growth, recurrence, and resistance to therapies, are considered the real therapeutic target, if they had no molecular mechanisms of resistance, in comparison with the mass of more differentiated cells which are insensitive to therapies just because of being differentiated and nonproliferating. GSCs occur in tumor niches where both stemness status and angiogenesis are conditioned by the microenvironment. In both perivascular and perinecrotic niches, hypoxia plays a fundamental role. Fifteen glioblastomas have been studied by immunohistochemistry and immunofluorescence for stemness and differentiation antigens. It has been found that circumscribed necroses develop inside hyperproliferating areas that are characterized by high expression of stemness antigens. Necrosis developed inside them because of the imbalance between the proliferation of tumor cells and endothelial cells; it reduces the number of GSCs to a thin ring around the former hyperproliferating area. The perinecrotic GSCs are nothing else that the survivors remnants of those populating hyperproliferating areas. In the tumor, GSCs coincide with malignant areas so that the need to detect where they are located is not so urgent.

  20. Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival

    Directory of Open Access Journals (Sweden)

    Southey Bruce R

    2011-06-01

    Full Text Available Abstract Background Glioblastoma is a complex multifactorial disorder that has swift and devastating consequences. Few genes have been consistently identified as prognostic biomarkers of glioblastoma survival. The goal of this study was to identify general and clinical-dependent biomarker genes and biological processes of three complementary events: lifetime, overall and progression-free glioblastoma survival. Methods A novel analytical strategy was developed to identify general associations between the biomarkers and glioblastoma, and associations that depend on cohort groups, such as race, gender, and therapy. Gene network inference, cross-validation and functional analyses further supported the identified biomarkers. Results A total of 61, 47 and 60 gene expression profiles were significantly associated with lifetime, overall, and progression-free survival, respectively. The vast majority of these genes have been previously reported to be associated with glioblastoma (35, 24, and 35 genes, respectively or with other cancers (10, 19, and 15 genes, respectively and the rest (16, 4, and 10 genes, respectively are novel associations. Pik3r1, E2f3, Akr1c3, Csf1, Jag2, Plcg1, Rpl37a, Sod2, Topors, Hras, Mdm2, Camk2g, Fstl1, Il13ra1, Mtap and Tp53 were associated with multiple survival events. Most genes (from 90 to 96% were associated with survival in a general or cohort-independent manner and thus the same trend is observed across all clinical levels studied. The most extreme associations between profiles and survival were observed for Syne1, Pdcd4, Ighg1, Tgfa, Pla2g7, and Paics. Several genes were found to have a cohort-dependent association with survival and these associations are the basis for individualized prognostic and gene-based therapies. C2, Egfr, Prkcb, Igf2bp3, and Gdf10 had gender-dependent associations; Sox10, Rps20, Rab31, and Vav3 had race-dependent associations; Chi3l1, Prkcb, Polr2d, and Apool had therapy-dependent associations

  1. [F-18]-fluorodeoxyglucose positron emission tomography for targeting radiation dose escalation for patients with glioblastoma multiforme: Clinical outcomes and patterns of failure

    International Nuclear Information System (INIS)

    Douglas, James G.; Stelzer, Keith J.; Mankoff, David A.; Tralins, Kevin S.; Krohn, Kenneth A.; Muzi, Mark; Silbergeld, Daniel L.; Rostomily, Robert C.; Scharnhorst, Jeffrey B.S.; Spence, Alexander M.

    2006-01-01

    Purpose: [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging for brain tumors has been shown to identify areas of active disease. Radiation dose escalation in the treatment of glioblastoma multiforme may lead to improved disease control. Based on these premises, we initiated a prospective study of FDG-PET for the treatment planning of radiation dose escalation for the treatment of glioblastoma multiforme. Methods and Materials: Forty patients were enrolled. Patients were treated with standard conformal fractionated radiotherapy with volumes defined by MRI imaging. When patients reached a dose of 45-50.4 Gy, they underwent FDG-PET imaging for boost target delineation, for an additional 20 Gy (2 Gy per fraction) to a total dose of 79.4 Gy (n = 30). Results: The estimated 1-year and 2-year overall survival (OS) for the entire group was 70% and 17%, respectively, with a median overall survival of 70 weeks. The estimated 1-year and 2-year progression-free survival (PFS) was 18% and 3%, respectively, with a median of 24 weeks. No significant improvements in OS or PFS were observed for the study group in comparison to institutional historical controls. Conclusions: Radiation dose escalation to 79.4 Gy based on FDG-PET imaging demonstrated no improvement in OS or PFS. This study establishes the feasibility of integrating PET metabolic imaging into radiotherapy treatment planning

  2. Treatment of newly diagnosed glioblastoma multiforme with carmustine, cisplatin and etoposide followed by radiotherapy. A phase II study

    DEFF Research Database (Denmark)

    Lassen, U; Kristjansen, P E; Wagner, A

    1999-01-01

    fractions. Twenty-nine patients with newly diagnosed glioblastoma multiforme (GBM), mean age 50 (27-66) and performance status (PS) 0-2 were included. Using the Macdonald criteria 33% had partial remission (PR), 41% stable disease (SD) and 26% progressive disease (PD) after chemotherapy. After additional...... (6.0-9.1) and median survival was 11.4 months (10.1-12.7). We conclude that this regimen is effective and feasible in patients with GBM. The short course pre-irradiatory chemotherapy may be less cumbersome than adjuvant chemotherapy and the regimen may be even more active in grade III gliomas....

  3. Identification of RIP1 as a critical mediator of Smac mimetic-mediated sensitization of glioblastoma cells for Drozitumab-induced apoptosis.

    Science.gov (United States)

    Cristofanon, S; Abhari, B A; Krueger, M; Tchoghandjian, A; Momma, S; Calaminus, C; Vucic, D; Pichler, B J; Fulda, S

    2015-04-16

    This study aims at evaluating the combination of the tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL)-receptor 2 (TRAIL-R2)-specific antibody Drozitumab and the Smac mimetic BV6 in preclinical glioblastoma models. To this end, the effect of BV6 and/or Drozitumab on apoptosis induction and signaling pathways was analyzed in glioblastoma cell lines, primary glioblastoma cultures and glioblastoma stem-like cells. Here, we report that BV6 and Drozitumab synergistically induce apoptosis and reduce colony formation in several glioblastoma cell lines (combination indextrigger the formation of a cytosolic receptor-interacting protein (RIP) 1/Fas-associated via death domain (FADD)/caspase-8-containing complex and subsequent activation of caspase-8 and -3. BV6- and Drozitumab-induced apoptosis is blocked by the caspase inhibitor zVAD.fmk, pointing to caspase-dependent apoptosis. RNA interference-mediated silencing of RIP1 almost completely abolishes the BV6-conferred sensitization to Drozitumab-induced apoptosis, indicating that the synergism critically depends on RIP1 expression. In contrast, both necrostatin-1, a RIP1 kinase inhibitor, and Enbrel, a TNFα-blocking antibody, do not interfere with BV6/Drozitumab-induced apoptosis, demonstrating that apoptosis occurs independently of RIP1 kinase activity or an autocrine TNFα loop. In conclusion, the rational combination of BV6 and Drozitumab presents a promising approach to trigger apoptosis in glioblastoma, which warrants further investigation.

  4. Multifuntional Nanotherapeutics for the Combinatorial Drug and Gene Therapy in the Treatment of Glioblastoma Multiforme

    Science.gov (United States)

    Hourigan, Breanne

    Glioblastoma multiforme (GBM), a grade IV glioma, is the most common primary brain tumor, affecting about 3 out of 100,000 persons per year in the United States. GBM accounts for about 80% of primary malignant brain tumors, and is also the most aggressive of malignant brain tumors. With exhaustive treatment, survival only averages between 12 and 15 months, with a 2-year survival rate less than 25%. New therapeutic strategies are necessary to improve the outcomes of this disease. Chemotherapy with temozolomide (TMZ), a DNA alkylating agent, is used as a first-line of treatment for GBM. However, GBM tumors develop resistance to TMZ over time due to increased expression of O6-methylguanine-DNA methyltransferase (MGMT), a gene responsible for DNA repair. We previously developed cationic, amphiphilic copolymer poly(lactide-co-glycolide)-g-polyethylenimine (PgP) and demonstrated its utility for nucleic acid delivery. Here, we examine the ability of PgP polyplexes to overcome TMZ resistance and improve therapeutic efficacy through combination drug and gene therapy for GBM treatment. In this study, we evaluated the ability of PgP to deliver siRNA targeting to MGMT (siMGMT), a gene responsible for drug resistance in GBM. Our results demonstrated that PgP effectively forms stable complex with siRNA and protects siRNAs from heparin competition assay, serum- and ribonuclease-mediated degradation, confirming the potential of the polyplex for in vivo delivery. Results from MTT assays showed that PgP/siRNA polyplexes exhibited minimal cytotoxicity compared to untreated cells when incubated with T98G human GBM cells. We also demonstrated that PgP/siMGMT polyplexes mediate knockdown of MGMT protein as well as a significant ˜56% and ˜68% knockdown of MGMT mRNA in T98G GBM cells compared to cells treated with PgP complexed with non-targeting siRNA (siNT) at a 60:1 and 80:1 nitrogen:phosphate (N:P) ratio, respectively. Further, co-incubation of PgP/siMGMT polyplexes with TMZ

  5. Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cell line.

    Science.gov (United States)

    Vassbotn, F S; Ostman, A; Langeland, N; Holmsen, H; Westermark, B; Heldin, C H; Nistér, M

    1994-02-01

    Human glioblastoma cells (A172) were found to concomitantly express PDGF-BB and PDGF beta-receptors. The receptors were constitutively autophosphorylated in the absence of exogenous ligand, suggesting the presence of an autocrine PDGF pathway. Neutralizing PDGF antibodies as well as suramin inhibited the autonomous PDGF receptor tyrosine kinase activity and resulted in up-regulation of receptor protein. The interruption of the autocrine loop by the PDGF antibodies reversed the transformed phenotype of the glioblastoma cell, as determined by (1) diminished DNA synthesis, (2) inhibition of tumor colony growth, and (3) reversion of the transformed morphology of the tumor cells. The PDGF antibodies showed no effect on the DNA synthesis of another glioblastoma cells line (U-343MGa 31L) or on Ki-ras-transformed fibroblasts. The present study demonstrates an endogenously activated PDGF pathway in a spontaneous human glioblastoma cell line. Furthermore, we provide evidence that the autocrine PDGF pathway drives the transformed phenotype of the tumor cells, a process that can be blocked by extracellular antagonists.

  6. Adhesion signaling promotes protease‑driven polyploidization of glioblastoma cells.

    Science.gov (United States)

    Mercapide, Javier; Lorico, Aurelio

    2014-11-01

    An increase in ploidy (polyploidization) causes genomic instability in cancer. However, the determinants for the increased DNA content of cancer cells have not yet been fully elucidated. In the present study, we investigated whether adhesion induces polyploidization in human U87MG glioblastoma cells. For this purpose, we employed expression vectors that reported transcriptional activation by signaling networks implicated in cancer. Signaling activation induced by intercellular integrin binding elicited both extracellular signal‑regulated kinase (ERK) and Notch target transcription. Upon the prolonged activation of both ERK and Notch target transcription induced by integrin binding to adhesion protein, cell cultures accumulated polyploid cells, as determined by cell DNA content distribution analysis and the quantification of polynucleated cells. This linked the transcriptional activation induced by integrin adhesion to the increased frequency of polyploidization. Accordingly, the inhibition of signaling decreased the extent of polyploidization mediated by protease‑driven intracellular invasion. Therefore, the findings of this study indicate that integrin adhesion induces polyploidization through the stimulation of glioblastoma cell invasiveness.

  7. Sinomenine Hydrochloride Inhibits the Metastasis of Human Glioblastoma Cells by Suppressing the Expression of Matrix Metalloproteinase-2/-9 and Reversing the Endogenous and Exogenous Epithelial-Mesenchymal Transition.

    Science.gov (United States)

    Jiang, Yumao; Jiao, Yue; Liu, Yang; Zhang, Meiyu; Wang, Zhiguo; Li, Yujuan; Li, Tao; Zhao, Xiaoliang; Wang, Danqiao

    2018-03-14

    As shown in our previous study, sinomenine hydrochloride (SH), the major bioactive alkaloid isolated from Sinomenium acutum Rehd. et Wils. (Fam. Menispermaceae ), initiates the autophagy-mediated death of human glioblastoma cells by generating reactive oxygen species and activating the autophagy-lysosome pathway. However, its effects on the migration and invasion of human glioblastoma cells have not yet been elucidated. Therefore, human glioblastoma U87 and SF767 cells were treated with SH (0.125 and 0.25 mM) for 24 h, and cell migration and invasion were assessed using scratch wound healing, migration and invasion assays. SH promoted G0/G1 phase arrest, inhibited the migration and invasion of the two cell lines, suppressed the activation of nuclear factor kappa B (NFκB) and the expression of matrix metalloproteinase (MMP)-2/-9, triggered endoplasmic reticulum (ER) stress, reversed the exogenous epithelial-mesenchymal transition (EMT) induced by the inflammatory microenvironment and the endogenous EMT. Additionally, NFκB p65 overexpression blocked the SH-mediated inhibitory effects on MMP-2/-9 expression and cell invasion. SH-induced autophagy was reduced in CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) or autophagy-related 5 (ATG5)-silenced human glioblastoma cells and cells treated with 4-phenylbutyric acid (4-PBA) or 3-methyladenine (3-MA), as shown by the decreased levels of the microtubule-associated protein light chain 3B (LC3B)-II and autophagic vacuoles (AVs) stained with monodansylcadaverine (MDC), respectively. Moreover, knockdown of CHOP or ATG5 and treatment with 4-PBA or 3-MA abolished the SH-mediated inhibition of mesenchymal markers (vimentin, Snail and Slug) expression and cell invasion, respectively. Importantly, SH also regulated the above related pathways in nude mice. Based on these findings, SH inhibited cell proliferation by inducing cell cycle arrest, and attenuated the metastasis of U87 and SF767 cells by suppressing MMP

  8. Sinomenine Hydrochloride Inhibits the Metastasis of Human Glioblastoma Cells by Suppressing the Expression of Matrix Metalloproteinase-2/-9 and Reversing the Endogenous and Exogenous Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Yumao Jiang

    2018-03-01

    Full Text Available As shown in our previous study, sinomenine hydrochloride (SH, the major bioactive alkaloid isolated from Sinomenium acutum Rehd. et Wils. (Fam. Menispermaceae, initiates the autophagy-mediated death of human glioblastoma cells by generating reactive oxygen species and activating the autophagy-lysosome pathway. However, its effects on the migration and invasion of human glioblastoma cells have not yet been elucidated. Therefore, human glioblastoma U87 and SF767 cells were treated with SH (0.125 and 0.25 mM for 24 h, and cell migration and invasion were assessed using scratch wound healing, migration and invasion assays. SH promoted G0/G1 phase arrest, inhibited the migration and invasion of the two cell lines, suppressed the activation of nuclear factor kappa B (NFκB and the expression of matrix metalloproteinase (MMP-2/-9, triggered endoplasmic reticulum (ER stress, reversed the exogenous epithelial-mesenchymal transition (EMT induced by the inflammatory microenvironment and the endogenous EMT. Additionally, NFκB p65 overexpression blocked the SH-mediated inhibitory effects on MMP-2/-9 expression and cell invasion. SH-induced autophagy was reduced in CCAAT/enhancer binding protein (C/EBP homologous protein (CHOP or autophagy-related 5 (ATG5-silenced human glioblastoma cells and cells treated with 4-phenylbutyric acid (4-PBA or 3-methyladenine (3-MA, as shown by the decreased levels of the microtubule-associated protein light chain 3B (LC3B-II and autophagic vacuoles (AVs stained with monodansylcadaverine (MDC, respectively. Moreover, knockdown of CHOP or ATG5 and treatment with 4-PBA or 3-MA abolished the SH-mediated inhibition of mesenchymal markers (vimentin, Snail and Slug expression and cell invasion, respectively. Importantly, SH also regulated the above related pathways in nude mice. Based on these findings, SH inhibited cell proliferation by inducing cell cycle arrest, and attenuated the metastasis of U87 and SF767 cells by suppressing

  9. Antigenic and Genotypic Similarity between Primary Glioblastomas and Their Derived Neurospheres

    Directory of Open Access Journals (Sweden)

    Valentina Caldera

    2011-01-01

    Full Text Available Formation of neurospheres (NS in cultures of glioblastomas (GBMs, with self-renewal, clonogenic capacities, and tumorigenicity following transplantation into immunodeficient mice, may denounce the existence of brain tumor stem cells (BTSCs in vivo. In sixteen cell lines from resected primary glioblastomas, NS showed the same genetic alterations as primary tumors and the expression of stemness antigens. Adherent cells (AC, after adding 10% of fetal bovine serum (FBS to the culture, were genetically different from NS and prevailingly expressed differentiation antigens. NS developed from a highly malignant tumor phenotype with proliferation, circumscribed necrosis, and high vessel density. Beside originating from transformed neural stem cells (NSCs, BTSCs may be contained within or correspond to dedifferentiated cells after mutation accumulation, which reacquire the expression of stemness antigens.

  10. Novel strategies in glioblastoma surgery aim at safe, supra-maximum resection in conjunction with local therapies.

    Science.gov (United States)

    Wolbers, John G

    2014-01-01

    The biggest challenge in neuro-oncology is the treatment of glioblastoma, which exhibits poor prognosis and is increasing in incidence in an increasing aging population. Diverse treatment strategies aim at maximum cytoreduction and ensuring good quality of life. We discuss multimodal neuronavigation, supra-maximum tumor resection, and the postoperative treatment gap. Multimodal neuronavigation allows the integration of preoperative anatomic and functional data with intraoperative information. This approach includes functional magnetic resonance imaging (MRI) and diffusion tensor imaging in preplanning and ultrasound, computed tomography (CT), MRI and direct (sub)cortical stimulation during surgery. The practice of awake craniotomy decreases postoperative neurologic deficits, and an extensive supra-maximum resection appears to be feasible, even in eloquent areas of the brain. Intraoperative MRI- and fluorescence-guided surgery assist in achieving this goal of supra-maximum resection and have been the subject of an increasing number of reports. Photodynamic therapy and local chemotherapy are properly positioned to bridge the gap between surgery and chemoradiotherapy. The photosensitizer used in fluorescence-guided surgery persists in the remaining peripheral tumor extensions. Additionally, blinded randomized clinical trials showed firm evidence of extra cytoreduction by local chemotherapy in the tumor cavity. The cutting-edge promise is gene therapy although both the delivery and efficacy of the numerous transgenes remain under investigation. Issues such as the choice of (cell) vector, the choice of therapeutic transgene, the optimal route of administration, and biosafety need to be addressed in a systematic way. In this selective review, we present various evidence and promises to improve survival of glioblastoma patients by supra-maximum cytoreduction via local procedures while minimizing the risk of new neurologic deficit.

  11. Integration of gene expression and methylation to unravel biological networks in glioblastoma patients.

    Science.gov (United States)

    Gadaleta, Francesco; Bessonov, Kyrylo; Van Steen, Kristel

    2017-02-01

    The vast amount of heterogeneous omics data, encompassing a broad range of biomolecular information, requires novel methods of analysis, including those that integrate the available levels of information. In this work, we describe Regression2Net, a computational approach that is able to integrate gene expression and genomic or methylation data in two steps. First, penalized regressions are used to build Expression-Expression (EEnet) and Expression-Genomic or Expression-Methylation (EMnet) networks. Second, network theory is used to highlight important communities of genes. When applying our approach, Regression2Net to gene expression and methylation profiles for individuals with glioblastoma multiforme, we identified, respectively, 284 and 447 potentially interesting genes in relation to glioblastoma pathology. These genes showed at least one connection in the integrated networks ANDnet and XORnet derived from aforementioned EEnet and EMnet networks. Although the edges in ANDnet occur in both EEnet and EMnet, the edges in XORnet occur in EMnet but not in EEnet. In-depth biological analysis of connected genes in ANDnet and XORnet revealed genes that are related to energy metabolism, cell cycle control (AATF), immune system response, and several cancer types. Importantly, we observed significant overrepresentation of cancer-related pathways including glioma, especially in the XORnet network, suggesting a nonignorable role of methylation in glioblastoma multiforma. In the ANDnet, we furthermore identified potential glioma suppressor genes ACCN3 and ACCN4 linked to the NBPF1 neuroblastoma breakpoint family, as well as numerous ABC transporter genes (ABCA1, ABCB1) suggesting drug resistance of glioblastoma tumors. © 2016 WILEY PERIODICALS, INC.

  12. Multifaceted role of galectin-3 on human glioblastoma cell motility

    International Nuclear Information System (INIS)

    Debray, Charles; Vereecken, Pierre; Belot, Nathalie; Teillard, Peggy; Brion, Jean-Pierre; Pandolfo, Massimo; Pochet, Roland

    2004-01-01

    Astrocytic tumors' aggressiveness results from an imbalance between cell proliferation and cell death favoring growth, but also from the propensity of tumor cells to detach from the primary tumor site, migrate, and invade the surrounding parenchyma. Astrocytic tumor progression is known to be associated with an increased expression of galectin-3. We investigated in cell culture how galectin-3 expression affects astrocytoma cell motility. Galectin-3 deficient cells were obtained by stable transfection of the U373 glioblastoma cell line with a specific expression antisense plasmid. Cultured galectin-3 deficient glioblastoma cells showed increased motility potential on laminin and modifications in the cytoskeleton reorganization. In addition, c-DNA microarrays and quantitative immunofluorescence analysis showed that galectin-3 deficient U373 cells have an increased expression of integrins-α6 and -β1, proteins known to be implicated in the regulation of cell adhesion

  13. Microenvironment involved in FPR1 expression by human glioblastomas

    NARCIS (Netherlands)

    Boer, J. C.; van Marion, D. M S; Joseph, J. V.; Kliphuis, N. M.; Timmer-Bosscha, H.; van Strijp, J. A G; de Vries, E. G E; den Dunnen, W. F A; Kruyt, F. A E; Walenkamp, A. M E

    2015-01-01

    Formyl peptide receptor 1 (FPR1) activity in U87 glioblastoma (GBM) cells contributes to tumor cell motility. The present study aimed to evaluate the FPR1 expression in human GBM, the possibility to elicit agonist induced FPR1 activation of GBM cells and inhibit this activation with chemotaxis

  14. Microenvironment involved in FPR1 expression by human glioblastomas

    NARCIS (Netherlands)

    Boer, J. C.; van Marion, D. M. S.; Vareecal Joseph, J.; Kliphuis, N. M.; Timmer-Bosscha, H.; van Strijp, J. A. G.; de Vries, E. G. E.; den Dunnen, W. F. A.; Kruyt, F. A. E.; Walenkamp, A. M. E.

    Formyl peptide receptor 1 (FPR1) activity in U87 glioblastoma (GBM) cells contributes to tumor cell motility. The present study aimed to evaluate the FPR1 expression in human GBM, the possibility to elicit agonist induced FPR1 activation of GBM cells and inhibit this activation with chemotaxis

  15. Impact of anemia prevention by recombinant human erythropoietin on the sensitivity of xenografted glioblastomas to fractionated irradiation

    International Nuclear Information System (INIS)

    Stueben, G.; Poettgen, C.; Knuehmann, K.; Sack, H.; Stuschke, M.; Thews, O.; Vaupel, P.

    2003-01-01

    Background: Pronounced oxygen deficiency in tumors which might be caused by a diminished oxygen transport capacity of the blood (e.g., in anemia) reduces the efficacy of ionizing radiation. The aim of this study was to analyze whether anemia prevention by recombinant human erythropoietin (rHuEPO) affects the radiosensitivity of human glioblastoma xenografts during fractionated irradiation. Material and Methods: Anemia was induced by total body irradiation (TBI, 2 x 4 Gy) of mice prior to tumor implantation into the subcutis of the hind leg. In one experimental group, the development of anemia was prevented by rHuEPO (750 U/kg s.c.) given three times weekly starting 10 days prior to TBI. 13 days after tumor implantation (tumor volume approx. 40 mm 3 ), fractionated irradiation (4 x 7 Gy, one daily fraction) of the glioblastomas was performed resulting in a growth delay with subsequent regrowth of the tumors. Results: Compared to nonanemic control animals (hemoglobin concentration cHb = 14.7 g/dl), the growth delay in anemic mice (cHb = 9.9 g/dl) was significantly shorter (49 ± 5 days vs. 79 ± 4 days to reach four times the initial tumor volume) upon fractionated radiation. The prevention of anemia by rHuEPO treatment (cHb = 13.3 g/dl) resulted in a significantly prolonged growth delay (61 ± 5 days) compared to the anemia group, even though the growth inhibition found in control animals was not completely achieved. Conclusions: These data indicate that moderate anemia significantly reduces the efficacy of radiotherapy. Prevention of anemia with rHuEPO partially restores the radiosensitivity of xenografted glioblastomas to fractionated irradiation. (orig.)

  16. The use of hypofractionated intensity-modulated irradiation in the treatment of glioblastoma multiforme: preliminary results of a prospective trial.

    Science.gov (United States)

    Sultanem, Khalil; Patrocinio, Horacio; Lambert, Christine; Corns, Robert; Leblanc, Richard; Parker, William; Shenouda, George; Souhami, Luis

    2004-01-01

    Despite major advances in treatment modalities, the prognosis of patients with glioblastoma multiforme (GBM) remains poor. Exploring hypofractionated regimens to replace the standard 6-week radiotherapy schedule is an attractive strategy as an attempt to prevent accelerated tumor cell repopulation. There is equally interest in dose escalation to the gross tumor volume where the majority of failures occur. We report our preliminary results using hypofractionated intensity-modulated accelerated radiotherapy regimen in the treatment of patients with GBM. Between July 1998 and December 2001, 25 patients with histologically proven diagnosis of GBM, Karnofsky performance status > or =60, and a postoperative tumor volume step-and-shoot technique), 60 Gy in 20 daily fractions of 3 Gy each were given to the GTV, whereas the planning target volume received a minimum of 40 Gy in 20 fractions of 2 Gy each at its periphery. Treatments were delivered over a 4-week period using 5 daily fractions per week. Dose was prescribed at the isocenter (ICRU point). Three beam angles were used in all of the cases. Treatments were well tolerated. Acute toxicity was limited to increased brain edema during radiotherapy in 2 patients who were on tapering doses of corticosteroids. This was corrected by increasing the steroid dose. At a median follow-up of 8.8 months, no late toxicity was observed. One patient experienced visual loss at 9 months after completion of treatment. MRI suggested nonspecific changes to the optic chiasm. On review of the treatment plan, the total dose to the optic chiasm was confirmed to be equal to or less than 40 Gy in 20 fractions. When Radiation Therapy Oncology Group recursive partitioning analysis was used, 10 patients were class III-IV, and 15 patients were class V-VI. To date, 21 patients have had clinical and/or radiologic evidence of disease progression, and 16 patients have died. The median survival was 9.5 months (range: 2.8-22.9 months), the 1-year survival

  17. ATM and p53 combined analysis predicts survival in glioblastoma multiforme patients: A clinicopathologic study.

    Science.gov (United States)

    Romano, Francesco Jacopo; Guadagno, Elia; Solari, Domenico; Borrelli, Giorgio; Pignatiello, Sara; Cappabianca, Paolo; Del Basso De Caro, Marialaura

    2018-06-01

    Glioblastoma is one of the most malignant cancers, with a distinguishing dismal prognosis: surgery followed by chemo- and radiotherapy represents the current standard of care, and chemo- and radioresistance underlie disease recurrence and short overall survival of patients suffering from this malignancy. ATM is a kinase activated by autophosphorylation upon DNA doublestrand breaks arising from errors during replication, byproducts of metabolism, chemotherapy or ionizing radiations; TP53 is one of the most popular tumor suppressor, with a preeminent role in DNA damage response and repair. To study the effects of the immunohistochemical expression of p-ATM and p53 in glioblastoma patients, 21 cases were retrospectively examined. In normal brain tissue, p-ATM was expressed only in neurons; conversely, in tumors cells, the protein showed a variable cytoplasmic expression (score: +,++,+++), with being completely undetectable in three cases. Statistical analysis revealed that high p-ATM score (++/+++) strongly correlated to shorter survival (P = 0.022). No difference in overall survival was registered between p53 normally expressed (NE) and overexpressed (OE) glioblastoma patients (P = 0.669). Survival analysis performed on the results from combined assessment of the two proteins showed that patients with NE p53 /low pATM score had longer overall survival than the NE p53/ high pATM score counterpart. Cox-regression analysis confirmed this finding (HR = 0.025; CI 95% = 0.002-0.284; P = 0.003). Our study outlined the immunohistochemical expression of p-ATM/p53 in glioblastomas and provided data on their possible prognostic/predictive of response role. A "non-oncogene addiction" to ATM for NEp53 glioblastoma could be postulated, strengthening the rationale for development of ATM inhibiting drugs. © 2018 Wiley Periodicals, Inc.

  18. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[{sup 18}F]fluoroethyl)-l-tyrosine PET

    Energy Technology Data Exchange (ETDEWEB)

    Galldiks, Norbert [University of Cologne, Department of Neurology, Cologne (Germany); Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); University of Cologne, Center of Integrated Oncology (CIO), Cologne (Germany); Dunkl, Veronika; Fink, Gereon R. [University of Cologne, Department of Neurology, Cologne (Germany); Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); Stoffels, Gabriele [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); Hutterer, Markus; Hau, Peter [University of Regensburg, Department of Neurology and Wilhelm Sander-NeuroOncology Unit, Regensburg (Germany); Rapp, Marion; Sabel, Michael [Heinrich Heine University Duesseldorf, Department of Neurosurgery, Duesseldorf (Germany); Reifenberger, Guido [Heinrich Heine University Duesseldorf, Department of Neuropathology, Duesseldorf (Germany); Kebir, Sied [University of Bonn, Department of Neurology, Bonn (Germany); Dorn, Franziska [University of Cologne, Department of Neuroradiology, Cologne (Germany); Blau, Tobias [University of Cologne, Department of Neuropathology, Cologne (Germany); Herrlinger, Ulrich [University of Cologne, Center of Integrated Oncology (CIO), Cologne (Germany); University of Bonn, Department of Neurology, Bonn (Germany); Ruge, Maximilian I. [University of Cologne, Center of Integrated Oncology (CIO), Cologne (Germany); University of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); Kocher, Martin [University of Cologne, Center of Integrated Oncology (CIO), Cologne (Germany); University of Cologne, Department of Radiation Oncology, Cologne (Germany); Goldbrunner, Roland [University of Cologne, Center of Integrated Oncology (CIO), Cologne (Germany); University of Cologne, Department of Neurosurgery, Cologne (Germany); Drzezga, Alexander; Schmidt, Matthias [University of Cologne, Department of Nuclear Medicine, Cologne (Germany); Langen, Karl-Josef [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); University of Aachen, Department of Nuclear Medicine, Aachen (Germany)

    2015-04-01

    The follow-up of glioblastoma patients after radiochemotherapy with conventional MRI can be difficult since reactive alterations to the blood-brain barrier with contrast enhancement may mimic tumour progression (i.e. pseudoprogression, PsP). The aim of this study was to assess the clinical value of O-(2-{sup 18}F-fluoroethyl)-l-tyrosine ({sup 18}F-FET) PET in the differentiation of PsP and early tumour progression (EP) after radiochemotherapy of glioblastoma. A group of 22 glioblastoma patients with new contrast-enhancing lesions or lesions showing increased enhancement (>25 %) on standard MRI within the first 12 weeks after completion of radiochemotherapy with concomitant temozolomide (median 7 weeks) were additionally examined using amino acid PET with {sup 18}F-FET. Maximum and mean tumour-to-brain ratios (TBR{sub max}, TBR{sub mean}) were determined. {sup 18}F-FET uptake kinetic parameters (i.e. patterns of time-activity curves, TAC) were also evaluated. Classification as PsP or EP was based on the clinical course (no treatment change at least for 6 months), follow-up MR imaging and/or histopathological findings. Imaging results were also related to overall survival (OS). PsP was confirmed in 11 of the 22 patients. In patients with PsP, {sup 18}F-FET uptake was significantly lower than in patients with EP (TBR{sub max} 1.9 ± 0.4 vs. 2.8 ± 0.5, TBR{sub mean} 1.8 ± 0.2 vs. 2.3 ± 0.3; both P < 0.001) and presence of MGMT promoter methylation was significantly more frequent (P = 0.05). Furthermore, a TAC type II or III was more frequently present in patients with EP (P = 0.04). Receiver operating characteristic analysis showed that the optimal {sup 18}F-FET TBR{sub max} cut-off value for identifying PsP was 2.3 (sensitivity 100 %, specificity 91 %, accuracy 96 %, AUC 0.94 ± 0.06; P < 0.001). Univariate survival analysis showed that a TBR{sub max} <2.3 predicted a significantly longer OS (median OS 23 vs. 12 months; P = 0.046). {sup 18}F-FET PET may facilitate

  19. Mesothelin as a novel biomarker and immunotherapeutic target in human glioblastoma

    DEFF Research Database (Denmark)

    Liu, Zhenjiang; Rao, Martin; Poiret, Thomas

    2017-01-01

    Glioblastoma multiforme (GBM) presents the most malignant form of glioma, with a 5-year survival rate below 3% despite standard therapy. Novel immune-based therapies in improving treatment outcomes in GBM are therefore warranted. Several molecularly defined targets have been identified mediating...... anti-GBM cellular immune responses. Mesothelin is a tumor-associated antigen (TAA) which is expressed in several solid tumors with different histology. Here, we report the immunological significance of mesothelin in human malignant glioma. Expression of mature, surface-bound mesothelin protein...... was found to bein human GBM defined by immunofluorescence microscopy, and on freshly isolated, single cell suspension of GBM tumor cells and GBM tumor cell lines, determined by based on flow cytometric analysis. Peripheral blood (PB) from patients with GBM, stimulated with mesothelin peptides and IL-2, IL...

  20. [RITA combined with temozolomide inhibits the proliferation of human glioblastoma U87 cells].

    Science.gov (United States)

    He, Xiao-Yan; Feng, Xiao-Li; Song, Xin-Pei; Zeng, Huan-Chao; Cao, Zhong-Xu; Xiao, Wei-Wei; Zhang, Bao; Wu, Qing-Hua

    2016-10-20

    To observe the effect of RITA, a small molecule that targets p53, combined with temozolomide (TMZ) on proliferation, colony formation and apoptosis of human glioblastoma U87 cells and explore the underlying mechanism. Cultured U87 cells were treated with RITA (1, 5, 10, 20 µmol/L), TMZ, or RITA+TMZ (half dose) for 24, 48 or 72 h. MTS assay were used to detect the cell proliferation, and the cell proliferation rate and inhibitory rate were calculated. The effect of combined treatments was evaluated by the q value. The expressions of p53, p21 and other apoptosis-associated genes were detected by qRT-PCR and Western blotting; cell apoptosis was assayed using flow cytometry with Annexin V/PI double staining; colony formation of the cells was detected with crystal violet staining. MTS assay showed that RITA at the 4 doses more potently inhibited U87 cell viability than TMZ at 72 h (P=0.000) with inhibitory rates of 25.94%-41.38% and 3.84%-8.20%, respectively. RITA combined with TMZ caused a more significant inhibition of U87 cells (29.21%-52.11%) than RITA (PRITA+TMZ for 48 h resulted in q values exceeding 1.2 and showed an obvious synergistic effect of the drugs. Both RITA and TMZ, especially the latter, significantly increased the expressions of p53, p21, puma, and other apoptosis-associated genes to accelerate apoptosis and inhibit the growth and colony formation of U87 cells, and the effect was more obvious with a combined treatment. RITA inhibits the growth of human glioblastoma cells and enhance their sensitivity to TMZ by up-regulating p53 expression, and when combined, RITA and TMZ show a synergistic effect to cause a stronger cell inhibition.

  1. Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9

    NARCIS (Netherlands)

    Vareecal Joseph, Justin; van Roosmalen, Ingrid A. M.; Busschers, Ellen; Tomar, Tushar; Conroy, Siobhan; Eggens-Meijer, Ellie; Fajardo, Natalia Penaranda; Pore, Milind M.; Balasubramaniyan, Veerakumar; Wagemakers, Michiel; Copray, Sjef; den Dunnen, Wilfred F. A.; Kruyt, Frank A. E.

    2015-01-01

    Glioblastoma (GBM) is a highly infiltrative brain tumor in which cells with properties of stem cells, called glioblastoma stem cells (GSCs), have been identified. In general, the dominant view is that GSCs are responsible for the initiation, progression, invasion and recurrence of this tumor. In

  2. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma

    Directory of Open Access Journals (Sweden)

    Lu Lizhi

    2006-12-01

    Full Text Available Abstract Background Recently, a small population of cancer stem cells in adult and pediatric brain tumors has been identified. Some evidence has suggested that CD133 is a marker for a subset of leukemia and glioblastoma cancer stem cells. Especially, CD133 positive cells isolated from human glioblastoma may initiate tumors and represent novel targets for therapeutics. The gene expression and the drug resistance property of CD133 positive cancer stem cells, however, are still unknown. Results In this study, by FACS analysis we determined the percentage of CD133 positive cells in three primary cultured cell lines established from glioblastoma patients 10.2%, 69.7% and 27.5%, respectively. We also determined the average mRNA levels of markers associated with neural precursors. For example, CD90, CD44, CXCR4, Nestin, Msi1 and MELK mRNA on CD133 positive cells increased to 15.6, 5.7, 337.8, 21.4, 84 and 1351 times, respectively, compared to autologous CD133 negative cells derived from cell line No. 66. Additionally, CD133 positive cells express higher levels of BCRP1 and MGMT mRNA, as well as higher mRNA levels of genes that inhibit apoptosis. Furthermore, CD133 positive cells were significantly resistant to chemotherapeutic agents including temozolomide, carboplatin, paclitaxel (Taxol and etoposide (VP16 compared to autologous CD133 negative cells. Finally, CD133 expression was significantly higher in recurrent GBM tissue obtained from five patients as compared to their respective newly diagnosed tumors. Conclusion Our study for the first time provided evidence that CD133 positive cancer stem cells display strong capability on tumor's resistance to chemotherapy. This resistance is probably contributed by the CD133 positive cell with higher expression of on BCRP1 and MGMT, as well as the anti-apoptosis protein and inhibitors of apoptosis protein families. Future treatment should target this small population of CD133 positive cancer stem cells in

  3. Glioblastoma and ABO blood groups: further evidence of an association between the distribution of blood group antigens and brain tumours.

    Science.gov (United States)

    Allouh, Mohammed Z; Al Barbarawi, Mohammed M; Hiasat, Mohammad Y; Al-Qaralleh, Mohammed A; Ababneh, Emad I

    2017-10-01

    Glioblastoma is a highly malignant brain tumour that usually leads to death. Several studies have reported a link between the distribution of ABO blood group antigens and a risk of developing specific types of cancer, although no consensus has been reached. This study aims to investigate the relationship between the distribution of ABO blood group antigens and the incidence of glioblastoma. The study cohort consisted of 115 glioblastoma patients who were diagnosed at King Abdullah University Hospital, Jordan, between 2004 and 2015. Three different patient populations made up three control groups and these were selected from among patients at the same institution between 2014 and 2015 as follows: 3,847 healthy blood donors, 654 accidental trauma patients admitted to the Departments of Neurosurgery and Orthopaedics, and 230 age- and sex-matched control subjects recruited blindly from the Departments of Paediatrics and Internal Medicine. There was a significant association between the distribution of ABO blood group antigens and the incidence of glioblastoma. Post hoc residual analysis revealed that individuals with group A had a higher than expected chance of developing glioblastoma, while individuals with group O had a lower than expected chance. Furthermore, individuals with group A were found to be at a 1.62- to 2.28-fold increased risk of developing glioblastoma compared to individuals with group O. In the present study, we demonstrate that, in Jordan, individuals with group A have an increased risk of developing glioblastoma, while individuals with group O have a reduced risk. These findings suggest that the distribution of ABO blood group antigens is associated with a risk of brain tumours and may play an important role in their development. However, further clinical and experimental investigations are required to confirm this association.

  4. Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties

    Directory of Open Access Journals (Sweden)

    Chang-Nim Im

    2017-02-01

    Full Text Available Heat shock factor 1 (HSF1, a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2 interacting cell death suppressor (BIS. HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs. In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY-box 2 (SOX2 expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2 activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose polymerase (PARP cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment.

  5. Heterogenic expression of stem cell markers in patient-derived glioblastoma spheroid cultures exposed to long-term hypoxia

    DEFF Research Database (Denmark)

    Rosenberg, Tine; Aaberg-Jessen, Charlotte; Petterson, Stine Asferg

    2018-01-01

    AIM: To investigate the time profile of hypoxia and stem cell markers in glioblastoma spheroids of known molecular subtype. MATERIALS & METHODS: Patient-derived glioblastoma spheroids were cultured up to 7 days in either 2% or 21% oxygen. Levels of proliferation (Ki-67), hypoxia (HIF-1α, CA9...... and VEGF) and stem cell markers (CD133, nestin and musashi-1) were investigated by immunohistochemistry. RESULTS: Hypoxia markers as well as CD133 and partially nestin increased in long-term hypoxia. The proliferation rate and spheroid size were highest in normoxia. CONCLUSION: We found differences...... in hypoxia and stem cell marker profiles between the patient-derived glioblastoma cultures. This heterogeneity should be taken into consideration in development of future therapeutic strategies....

  6. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred

    2008-11-25

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of (10)B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  7. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Ciofani Gianni

    2008-01-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  8. Imatinib in combination with hydroxyurea versus hydroxyurea alone as oral therapy in patients with progressive pretreated glioblastoma resistant to standard dose temozolomide

    DEFF Research Database (Denmark)

    Dresemann, G.; Weller, M.; Ostenfeld-Rosenthal, Ann Maria

    2010-01-01

    A randomized, multicenter, open-label, phase 3 study of patients with progressive, recurrent glioblastoma multiforme (GBM) for whom front-line therapy had failed was conducted. This study was designed to determine whether combination therapy with imatinib and hydroxyurea (HU) has superior antitumor...... activity compared with HU monotherapy in the treatment of recurrent GBM. The target population consisted of patients with confirmed recurrent GBM and an Eastern Cooperative Oncology Group performance status of 0-2 who had completed previous treatment comprising surgical resection, irradiation therapy...

  9. A role for the transcription factor HEY1 in glioblastoma

    DEFF Research Database (Denmark)

    Hulleman, Esther; Quarto, Micaela; Vernell, Richard

    2009-01-01

    Glioblastoma multiforme (GBM), the highest-grade glioma, is the most frequent tumour of the brain with a very poor prognosis and limited therapeutic options. Although little is known about the molecular mechanisms that underlie glioblastoma formation, a number of signal transduction routes......, such as the Notch and Ras signalling pathways, seem to play an important role in the formation of GBM. In the present study, we show by in situ hybridization on primary tumour material that the transcription factor HEY1, a target of the Notch signalling pathway, is specifically upregulated in glioma...... and that expression of HEY1 in GBM correlates with tumour-grade and survival. In addition, we show by chromatin immunoprecipitations, luciferase assays and Northern blot experiments that HEY1 is a bona fide target of the E2F family of transcription factors, connecting the Ras and Notch signalling pathways. Finally...

  10. Presentation of Two Cases with Early Extracranial Metastases from Glioblastoma and Review of the Literature

    DEFF Research Database (Denmark)

    Johansen, Maria Dinche; Rochat, Per; Law, Ian

    2016-01-01

    Extracranial metastases from glioblastoma are rare. We report two patients with extracranial metastases from glioblastoma. Case 1 concerns a 59-year-old woman with multiple metastases that spread early in the course of disease. What makes this case unusual is that the tumor had grown into the fal...... and extensive bleeding during acute surgery with tumor removal, which might have induced extracranial seeding. The cases presented might have hematogenous spreading in common as an explanation to extracranial metastases from GBM....

  11. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  12. ERGO: a pilot study of ketogenic diet in recurrent glioblastoma.

    Science.gov (United States)

    Rieger, Johannes; Bähr, Oliver; Maurer, Gabriele D; Hattingen, Elke; Franz, Kea; Brucker, Daniel; Walenta, Stefan; Kämmerer, Ulrike; Coy, Johannes F; Weller, Michael; Steinbach, Joachim P

    2014-06-01

    Limiting dietary carbohydrates inhibits glioma growth in preclinical models. Therefore, the ERGO trial (NCT00575146) examined feasibility of a ketogenic diet in 20 patients with recurrent glioblastoma. Patients were put on a low-carbohydrate, ketogenic diet containing plant oils. Feasibility was the primary endpoint, secondary endpoints included the percentage of patients reaching urinary ketosis, progression-free survival (PFS) and overall survival. The effects of a ketogenic diet alone or in combination with bevacizumab was also explored in an orthotopic U87MG glioblastoma model in nude mice. Three patients (15%) discontinued the diet for poor tolerability. No serious adverse events attributed to the diet were observed. Urine ketosis was achieved at least once in 12 of 13 (92%) evaluable patients. One patient achieved a minor response and two patients had stable disease after 6 weeks. Median PFS of all patients was 5 (range, 3-13) weeks, median survival from enrollment was 32 weeks. The trial allowed to continue the diet beyond progression. Six of 7 (86%) patients treated with bevacizumab and diet experienced an objective response, and median PFS on bevacizumab was 20.1 (range, 12-124) weeks, for a PFS at 6 months of 43%. In the mouse glioma model, ketogenic diet alone had no effect on median survival, but increased that of bevacizumab-treated mice from 52 to 58 days (pketogenic diet is feasible and safe but probably has no significant clinical activity when used as single agent in recurrent glioma. Further clinical trials are necessary to clarify whether calorie restriction or the combination with other therapeutic modalities, such as radiotherapy or anti-angiogenic treatments, could enhance the efficacy of the ketogenic diet.

  13. Demonstration of brachytherapy boost dose-response relationships in glioblastoma multiforme

    International Nuclear Information System (INIS)

    Sneed, Penny K.; Lamborn, Kathleen R.; Larson, David A.; Prados, Michael D.; Malec, Mary K.; McDermott, Michael W.; Weaver, Keith A.; Phillips, Theodore L.; Wara, William M.; Gutin, Philip H.

    1996-01-01

    Purpose: To evaluate brachytherapy dose-response relationships in adults with glioblastoma undergoing temporary 125 I implant boost after external beam radiotherapy. Methods and Materials: Since June 1987, orthogonal radiographs using a fiducial marker box have been used to verify brain implant source positions and generate dose-volume histograms at the University of California, San Francisco. For adults who underwent brachytherapy boost for glioblastoma from June 1987 through December 1992, tumor volumes were reoutlined to ensure consistency and dose-volume histograms were recalculated. Univariate and multivariate analyses of various patient and treatment parameters were performed evaluating for influence of dose on freedom from local failure (FFLF) and actuarial survival. Results: Of 102 implant boosts, 5 were excluded because computer plans were unavailable. For the remaining 97 patients, analyses with adjustment for known prognostic factors (age, KPS, extent of initial surgical resection) and prognostic factors identified on univariate testing (adjuvant chemotherapy) showed that higher minimum brachytherapy tumor dose was strongly associated with improved FFLF (p = 0.001). A quadratic relationship was found between total biological effective dose and survival, with a trend toward optimal survival probability at 47 Gy minimum brachytherapy tumor dose (corresponding to about 65 Gy to 95% of the tumor volume); survival decreased with lower or higher doses. Two patients expired and one requires hospice care because of brain necrosis after brachytherapy doses > 63 Gy to 95% of the tumor volume with 60 Gy to > 18 cm 3 of normal brain. Conclusion: Although higher minimum brachytherapy tumor dose was strongly associated with better local control, a brachytherapy boost dose > 50-60 Gy may result in life-threatening necrosis. We recommend careful conformation of the prescription isodose line to the contrast enhancing tumor volume, delivery of a minimum brachytherapy

  14. Exploratory analysis of the copy number alterations in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Pablo Freire

    Full Text Available The Cancer Genome Atlas project (TCGA has initiated the analysis of multiple samples of a variety of tumor types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise.Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions. Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser software application was developed and is made public to provide a user-friendly graphical interface in which the reported results can be reproduced. The application source code and stand alone executable are available at (http://code.google.com/p/cancergenome and (http://bioinformaticstation.org, respectively.The most important known copy number alterations for glioblastoma were correctly recovered using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors were also detected. A detailed map of aberrant regions is provided.

  15. Exploratory analysis of the copy number alterations in glioblastoma multiforme.

    Science.gov (United States)

    Freire, Pablo; Vilela, Marco; Deus, Helena; Kim, Yong-Wan; Koul, Dimpy; Colman, Howard; Aldape, Kenneth D; Bogler, Oliver; Yung, W K Alfred; Coombes, Kevin; Mills, Gordon B; Vasconcelos, Ana T; Almeida, Jonas S

    2008-01-01

    The Cancer Genome Atlas project (TCGA) has initiated the analysis of multiple samples of a variety of tumor types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise. Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions. Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser software application was developed and is made public to provide a user-friendly graphical interface in which the reported results can be reproduced. The application source code and stand alone executable are available at (http://code.google.com/p/cancergenome) and (http://bioinformaticstation.org), respectively. The most important known copy number alterations for glioblastoma were correctly recovered using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors were also detected. A detailed map of aberrant regions is provided.

  16. Arsenic trioxide sensitizes glioblastoma to a myc inhibitor.

    Directory of Open Access Journals (Sweden)

    Yayoi Yoshimura

    Full Text Available Glioblastoma multiforme (GBM is associated with high mortality due to infiltrative growth and recurrence. Median survival of the patients is less than 15 months, increasing requirements for new therapies. We found that both arsenic trioxide and 10058F4, an inhibitor of Myc, induced differentiation of cancer stem-like cells (CSC of GBM and that arsenic trioxide drastically enhanced the anti-proliferative effect of 10058F4 but not apoptotic effects. EGFR-driven genetically engineered GBM mouse model showed that this cooperative effect is higher in EGFRvIII-expressing INK4a/Arf-/- neural stem cells (NSCs than in control wild type NSCs. In addition, treatment of GBM CSC xenografts with arsenic trioxide and 10058F4 resulted in significant decrease in tumor growth and increased differentiation with concomitant decrease of proneural and mesenchymal GBM CSCs in vivo. Our study was the first to evaluate arsenic trioxide and 10058F4 interaction in GBM CSC differentiation and to assess new opportunities for arsenic trioxide and 10058F4 combination as a promising approach for future differentiation therapy of GBM.

  17. Bcl-w Enhances Mesenchymal Changes and Invasiveness of Glioblastoma Cells by Inducing Nuclear Accumulation of β-Catenin

    Science.gov (United States)

    Lee, Woo Sang; Woo, Eun Young; Kwon, Junhye; Park, Myung-Jin; Lee, Jae-Seon; Han, Young-Hoon; Bae, In Hwa

    2013-01-01

    Bcl-w a pro-survival member of the Bcl-2 protein family, is expressed in a variety of cancer types, including gastric and colorectal adenocarcinomas, as well as glioblastoma multiforme (GBM), the most common and lethal brain tumor type. Previously, we demonstrated that Bcl-w is upregulated in gastric cancer cells, particularly those displaying infiltrative morphology. These reports propose that Bcl-w is strongly associated with aggressive characteristic, such as invasive or mesenchymal phenotype of GBM. However, there is no information from studies of the role of Bcl-w in GBM. In the current study, we showed that Bcl-w is upregulated in human glioblastoma multiforme (WHO grade IV) tissues, compared with normal and glioma (WHO grade III) tissues. Bcl-w promotes the mesenchymal traits of glioblastoma cells by inducing vimentin expression via activation of transcription factors, β-catenin, Twist1 and Snail in glioblastoma U251 cells. Moreover, Bcl-w induces invasiveness by promoting MMP-2 and FAK activation via the PI3K-p-Akt-p-GSK3β-β-catenin pathway. We further confirmed that Bcl-w has the capacity to induce invasiveness in several human cancer cell lines. In particular, Bcl-w-stimulated β-catenin is translocated into the nucleus as a transcription factor and promotes the expression of target genes, such as mesenchymal markers or MMPs, thereby increasing mesenchymal traits and invasiveness. Our findings collectively indicate that Bcl-w functions as a positive regulator of invasiveness by inducing mesenchymal changes and that trigger their aggressiveness of glioblastoma cells. PMID:23826359

  18. The use of positron emission tomography in BNCT treatment planning for metastatic malignant melanoma and glioblastoma multiforme

    International Nuclear Information System (INIS)

    Kabalka, G.; Nichols, T.; Smith, G.; Miller, L.; Kahn, M.

    2000-01-01

    Positron emission tomography (PET) evaluations of six glioblastoma multiforme (GBM) and one metastatic melanoma (MM) patient have been carried out utilizing fluorine-18 labeled p-boronophenylalanine. Four of the GBM patients were imaged both prior to and post BNCT. In one GBM patient, biopsy derived boron distribution data compared favorably to the PET derived data. The PET data have been used as input to dosimetry calculations and the results vary from those obtained using current protocols. In addition, PET images of the thorax would indicate that the utility of PET for staging tumors for BNCT may extend beyond the brain. However, higher than anticipated levels of activity in the lungs (as also seen in salivary glands) indicate the more effective BNCT agents will be required. (author)

  19. Targeting Homologous Recombination by Pharmacological Inhibitors Enhances the Killing Response of Glioblastoma Cells Treated with Alkylating Drugs.

    Science.gov (United States)

    Berte, Nancy; Piée-Staffa, Andrea; Piecha, Nadine; Wang, Mengwan; Borgmann, Kerstin; Kaina, Bernd; Nikolova, Teodora

    2016-11-01

    Malignant gliomas exhibit a high level of intrinsic and acquired drug resistance and have a dismal prognosis. First- and second-line therapeutics for glioblastomas are alkylating agents, including the chloroethylating nitrosoureas (CNU) lomustine, nimustine, fotemustine, and carmustine. These agents target the tumor DNA, forming O 6 -chloroethylguanine adducts and secondary DNA interstrand cross-links (ICL). These cross-links are supposed to be converted into DNA double-strand breaks, which trigger cell death pathways. Here, we show that lomustine (CCNU) with moderately toxic doses induces ICLs in glioblastoma cells, inhibits DNA replication fork movement, and provokes the formation of DSBs and chromosomal aberrations. Since homologous recombination (HR) is involved in the repair of DSBs formed in response to CNUs, we elucidated whether pharmacologic inhibitors of HR might have impact on these endpoints and enhance the killing effect. We show that the Rad51 inhibitors RI-1 and B02 greatly ameliorate DSBs, chromosomal changes, and the level of apoptosis and necrosis. We also show that an inhibitor of MRE11, mirin, which blocks the formation of the MRN complex and thus the recognition of DSBs, has a sensitizing effect on these endpoints as well. In a glioma xenograft model, the Rad51 inhibitor RI-1 clearly enhanced the effect of CCNU on tumor growth. The data suggest that pharmacologic inhibition of HR, for example by RI-1, is a reasonable strategy for enhancing the anticancer effect of CNUs. Mol Cancer Ther; 15(11); 2665-78. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice.

    Directory of Open Access Journals (Sweden)

    Alexei Shir

    2006-01-01

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most lethal form of brain cancer. With the available treatments, survival does not exceed 12-14 mo from the time of diagnosis. We describe a novel strategy to selectively induce the death of glioblastoma cells and other cancer cells that over-express the EGF receptor. Using a non-viral delivery vector that homes to the EGF receptor, we target synthetic anti-proliferative dsRNA (polyinosine-cytosine [poly IC], a strong activator of apoptosis, selectively to cancer cells. METHODS AND FINDINGS: Poly IC was delivered by means of a non-viral vector: 25kDa polyethylenimine-polyethyleneglycol-EGF (PEI25-PEG-EGF. EGFR-targeted poly IC induced rapid apoptosis in the target cells in vitro and in vivo. Expression of several cytokines and "bystander killing" of untransfected tumor cells was detected in vitro and in vivo. Intra-tumoral delivery of the EGFR-targeted poly IC induced the complete regression of pre-established intracranial tumors in nude mice, with no obvious adverse toxic effects on normal brain tissue. A year after treatment completion the treated mice remain cancer-free and healthy. Similarly, non-viral delivery of poly IC completely eliminated pre-established breast cancer and adenocarcinoma xenografts derived from EGFR over-expressing cancer cell lines, suggesting that the strategy is applicable to other EGFR-over-expressing tumors. CONCLUSION: The strategy described has yielded an effective treatment of EGFR over-expressing GBM in an animal model. If this strategy is translated successfully to the clinical setting, it may actually offer help to GBM patients. Moreover the elimination of two additional EGFR over-expressing cancers in vivo suggests that in principle this strategy can be applied to treat other tumors that over-express EGFR.

  1. Prognosis value of the COX-2 expression on radiotherapy efficiency and on survival without progression of patients reached by an unoperative glioblastoma; Valeur pronostique de l'expression de COX-2 sur l'efficacite de la radiotherapie et sur la survie sans progression des patients atteints d'un glioblastome inoperable

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.M.; Mazeron, J.J. [Groupe Hospitalier de la Pitie-Salepetriere, APHP, Service de Radiotherapie Oncologique, 75 - Paris (France); Mokhtari, K. [Groupe Hospitalier de la Pitie-Salepetriere, APHP, Lab. de Neuropathologie, 75 - Paris (France); Genestie, C. [Groupe Hospitalier de la Pitie-Salepetriere, APHP, Lab. d' Anatomie Pathologique, 75 - Paris (France); Bissery, A. [Groupe Hospitalier de la Pitie-Salepetriere, APHP, Dept. de biostatistiques et d' Anformation Medicale, 75 - Paris (France); Jaillon, P. [Hopital Saint-Antoine, Service de Pharmacologie, 75 - Paris (France)

    2006-11-15

    The expression of COX-2 is a prediction factor of the lack of response to the radiotherapy of glioblastomas and a less good survival rate without tumor progression, aside other known prognosis factors. These results suggest a selective treatment by an anti-COX-2 could have a radiosensitizer contribution during the radiotherapy of glioblastomas. (N.C.)

  2. A kinome-wide RNAi screen in Drosophila Glia reveals that the RIO kinases mediate cell proliferation and survival through TORC2-Akt signaling in glioblastoma.

    Directory of Open Access Journals (Sweden)

    Renee D Read

    Full Text Available Glioblastoma, the most common primary malignant brain tumor, is incurable with current therapies. Genetic and molecular analyses demonstrate that glioblastomas frequently display mutations that activate receptor tyrosine kinase (RTK and Pi-3 kinase (PI3K signaling pathways. In Drosophila melanogaster, activation of RTK and PI3K pathways in glial progenitor cells creates malignant neoplastic glial tumors that display many features of human glioblastoma. In both human and Drosophila, activation of the RTK and PI3K pathways stimulates Akt signaling along with other as-yet-unknown changes that drive oncogenesis. We used this Drosophila glioblastoma model to perform a kinome-wide genetic screen for new genes required for RTK- and PI3K-dependent neoplastic transformation. Human orthologs of novel kinases uncovered by these screens were functionally assessed in mammalian glioblastoma models and human tumors. Our results revealed that the atypical kinases RIOK1 and RIOK2 are overexpressed in glioblastoma cells in an Akt-dependent manner. Moreover, we found that overexpressed RIOK2 formed a complex with RIOK1, mTor, and mTor-complex-2 components, and that overexpressed RIOK2 upregulated Akt signaling and promoted tumorigenesis in murine astrocytes. Conversely, reduced expression of RIOK1 or RIOK2 disrupted Akt signaling and caused cell cycle exit, apoptosis, and chemosensitivity in glioblastoma cells by inducing p53 activity through the RpL11-dependent ribosomal stress checkpoint. These results imply that, in glioblastoma cells, constitutive Akt signaling drives RIO kinase overexpression, which creates a feedforward loop that promotes and maintains oncogenic Akt activity through stimulation of mTor signaling. Further study of the RIO kinases as well as other kinases identified in our Drosophila screen may reveal new insights into defects underlying glioblastoma and related cancers and may reveal new therapeutic opportunities for these cancers.

  3. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo

    DEFF Research Database (Denmark)

    Grodzik, Marta; Sawosz, Ewa; Wierzbicki, Mateusz

    2011-01-01

    The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chrioallantoic membrane of chicken embryo and after 7 days of incubati...

  4. Protein Kinase CK2 Content in GL261 Mouse Glioblastoma.

    Science.gov (United States)

    Ferrer-Font, Laura; Alcaraz, Estefania; Plana, Maria; Candiota, Ana Paula; Itarte, Emilio; Arús, Carles

    2016-07-01

    Glioblastoma (GBM) is the most prevalent and aggressive human glial tumour with a median survival of 14-15 months. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment. Unfortunately, chemoresistence always ensues with concomitant tumour regrowth. Protein kinase CK2 (CK2) contributes to tumour development, proliferation, and suppression of apoptosis in cancer and it is overexpressed in human GBM. Targeting CK2 in GBM treatment may benefit patients. With this translational perspective in mind, we have studied the CK2 expression level by Western blot analysis in a preclinical model of GBM: GL261 cells growing orthotopically in C57BL/6 mice. The expression level of the CK2 catalytic subunit (CK2α) was higher in tumour (about 4-fold) and in contralateral brain parenchyma (more than 2-fold) than in normal brain parenchyma (p < 0.05). In contrast, no significant changes were found in CK2 regulatory subunit (CK2β) expression, suggesting an increased unbalance of CK2α/CK2β in GL261 tumours with respect to normal brain parenchyma, in agreement with a differential role of these two subunits in tumours.

  5. Intracranial AAV-IFN-β gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model.

    Science.gov (United States)

    GuhaSarkar, Dwijit; Neiswender, James; Su, Qin; Gao, Guangping; Sena-Esteves, Miguel

    2017-02-01

    The highly invasive property of glioblastoma (GBM) cells and genetic heterogeneity are largely responsible for tumor recurrence after the current standard-of-care treatment and thus a direct cause of death. Previously, we have shown that intracranial interferon-beta (IFN-β) gene therapy by locally administered adeno-associated viral vectors (AAV) successfully treats noninvasive orthotopic glioblastoma models. Here, we extend these findings by testing this approach in invasive human GBM xenograft and syngeneic mouse models. First, we show that a single intracranial injection of AAV encoding human IFN-β eliminates invasive human GBM8 tumors and promotes long-term survival. Next, we screened five AAV-IFN-β vectors with different promoters to drive safe expression of mouse IFN-β in the brain in the context of syngeneic GL261 tumors. Two AAV-IFN-β vectors were excluded due to safety concerns, but therapeutic studies with the other three vectors showed extensive tumor cell death, activation of microglia surrounding the tumors, and a 56% increase in median survival of the animals treated with AAV/P2-Int-mIFN-β vector. We also assessed the therapeutic effect of combining AAV-IFN-β therapy with temozolomide (TMZ). As TMZ affects DNA replication, an event that is crucial for second-strand DNA synthesis of single-stranded AAV vectors before active transcription, we tested two TMZ treatment regimens. Treatment with TMZ prior to AAV-IFN-β abrogated any benefit from the latter, while the reverse order of treatment doubled the median survival compared to controls. These studies demonstrate the therapeutic potential of intracranial AAV-IFN-β therapy in a highly migratory GBM model as well as in a syngeneic mouse model and that combination with TMZ is likely to enhance its antitumor potency. © 2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  6. Clinical outcome of an alternative fotemustine schedule in elderly patients with recurrent glioblastoma: a mono-institutional retrospective study.

    Science.gov (United States)

    Lombardi, Giuseppe; Bellu, Luisa; Pambuku, Ardi; Della Puppa, Alessandro; Fiduccia, Pasquale; Farina, Miriam; D'Avella, Domenico; Zagonel, Vittorina

    2016-07-01

    The optimal treatment of recurrent glioblastoma (GBM) in elderly patients is unclear. Fotemustine (FTM) is a third-generation nitrosourea showing efficacy in gliomas and it has been used with different schedules in adult patients. We performed, for the first time anywhere, a mono-institutional retrospective study to analyze the clinical outcome of an alternative fotemustine schedule in elderly patients with recurrent GBM. Retrospectively, we analyzed all GBM patients 65 years or older previously treated with the combination of radiation therapy and temozolomide (TMZ), receiving an alternative FTM schedule as second-line treatment at our Oncological Center from October 2011 to October 2014 with an ECOG PS ≤ 2. FTM was administrated at 80 mg/m(2) every 2 weeks for five consecutive administrations (induction phase), and then every 4 weeks at 80 mg/m(2) as maintenance. We enrolled 44 patients, 33 males and 11 females; average age was 70 years. ECOG PS was 0-1 in 80 % of the patients. 38 patients relapsed during temozolomide (TMZ) therapy. MGMT methylation status was analyzed in 34 patients and MGMT was methylated in 53 % of the patients. The median progression free survival (PFS) and overall survival (OS) from FTM treatment was 4.1 months (95 % CI 3.1-5.2) and 7 months (95 % CI 5.2-8.4), respectively. Patients with MGMT methylated status and patients who relapsed after completing TMZ therapy had a longer PFS and OS from the beginning of FTM. Thrombocytopenia was the most frequent grade 3-4 haematological toxicity (9 %). The alternative schedule of FTM may be an active and safe treatment for elderly patients with recurrent glioblastoma, especially patients with methylated MGMT and who relapsed after completing temozolomide therapy.

  7. MTR-18 Predictive Biomarkers Of Bevacizumab Response In Recurrent Glioblastoma Patients

    DEFF Research Database (Denmark)

    Urup, Thomas; Michaelsen, Signe Regner; Olsen, Lars Rønn

    2015-01-01

    Bevacizumab (BEV) plus chemotherapy has shown activity in recurrent glioblastoma (GBM). However, the prognosis varies and only one third of patients have a durable clinical response to BEV combination therapy. Recent findings from a randomized phase-3 study (AVAglio) indicate that patients...... with the proneural GBM subtype have a survival benefit when treated with BEV in combination with standard treatment. However, no validated biomarkers able to predict BEV response have been identified and the biology reflecting a clinical BEV response is poorly understood. The primary objective of this study...... was to evaluate the predictive and prognostic value of GBM subtypes in recurrent GBM patients treated with BEV therapy. The secondary objective was to identify biomarkers able to predict response to BEV therapy in recurrent GBM patients. METHODS: A total of 90 recurrent GBM patients treated with BEV combination...

  8. P53-dependent antiproliferative and pro-apoptotic effects of trichostatin A (TSA) in glioblastoma cells.

    Science.gov (United States)

    Bajbouj, K; Mawrin, C; Hartig, R; Schulze-Luehrmann, J; Wilisch-Neumann, A; Roessner, A; Schneider-Stock, R

    2012-05-01

    Glioblastomas are known to be highly chemoresistant, but HDAC inhibitors (HDACi) have been shown to be of therapeutic relevance for this aggressive tumor type. We treated U87 glioblastoma cells with trichostatin A (TSA) to define potential epigenetic targets for HDACi-mediated antitumor effects. Using a cDNA array analysis covering 96 cell cycle genes, cyclin-dependent kinase inhibitor p21(WAF1) was identified as the major player in TSA-induced cell cycle arrest. TSA slightly inhibited proliferation and viability of U87 cells, cumulating in a G1/S cell cycle arrest. This effect was accompanied by a significant up-regulation of p53 and its transcriptional target p21(WAF1) and by down-regulation of key G1/S regulators, such as cdk4, cdk6, and cyclin D1. Nevertheless, TSA did not induce apoptosis in U87 cells. As expected, TSA promoted the accumulation of total acetylated histones H3 and H4 and a decrease in endogenous HDAC activity. Characterizing the chromatin modulation around the p21(WAF1) promoter after TSA treatment using chromatin immunoprecipitation, we found (1) a release of HDAC1, (2) an increase of acetylated H4 binding, and (3) enhanced recruitment of p53. p53-depleted U87 cells showed an abrogation of the G1/S arrest and re-entered the cell cycle. Immunofluorescence staining revealed that TSA induced the nuclear translocation of p21(WAF1) verifying a cell cycle arrest. On the other hand, a significant portion of p21(WAF1) was present in the cytoplasmic compartment causing apoptosis resistance. Furthermore, TSA-treated p53-mutant cell line U138 failed to show an induction in p21(WAF1), showed a deficient G2/M checkpoint, and underwent mitotic catastrophe. We suggest that HDAC inhibition in combination with other clinically used drugs may be considered an effective strategy to overcome chemoresistance in glioblastoma cells.

  9. Evaluating vacquinol-1 in rats carrying glioblastoma models RG2 and NS1.

    Science.gov (United States)

    Ahlstedt, Jonatan; Förnvik, Karolina; Zolfaghari, Shaian; Kwak, Dongoh; Hammarström, Lars G J; Ernfors, Patrik; Salford, Leif G; Redebrandt, Henrietta Nittby

    2018-02-02

    Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor, and available experimental and routine therapies result in limited survival benefits. A vulnerability of GBM cells to catastrophic vacuolization and cell death, a process termed methuosis, induced by Vacquinol-1 (VQ-1) has been described earlier. In the present study, we investigate the efficacy of VQ-1 treatment in two syngeneic rat GBM models, RG2 and NS1. VQ-1 treatment affected growth of both RG2 and NS1 cells in vitro . Intracranially, significant reduction in RG2 tumor size was observed, although no effect was seen on overall survival. No survival advantage or effect on tumor size was seen in animals carrying the NS1 models compared to untreated controls. Furthermore, immunological staining of FOXP3, CD4 and CD8 showed no marked difference in immune cell infiltrate in tumor environment following treatment. Taken together, a survival advantage of VQ-1 treatment alone could not be demonstrated here, even though some effect upon tumor size was seen. Staining for immune cell markers did not indicate that VQ-1 either reduced or increased host anti-tumor immune response.

  10. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma

    Directory of Open Access Journals (Sweden)

    Spyros Darmanis

    2017-10-01

    Full Text Available Summary: Glioblastoma (GBM is the most common primary brain cancer in adults and is notoriously difficult to treat because of its diffuse nature. We performed single-cell RNA sequencing (RNA-seq on 3,589 cells in a cohort of four patients. We obtained cells from the tumor core as well as surrounding peripheral tissue. Our analysis revealed cellular variation in the tumor’s genome and transcriptome. We were also able to identify infiltrating neoplastic cells in regions peripheral to the core lesions. Despite the existence of significant heterogeneity among neoplastic cells, we found that infiltrating GBM cells share a consistent gene signature between patients, suggesting a common mechanism of infiltration. Additionally, in investigating the immunological response to the tumors, we found transcriptionally distinct myeloid cell populations residing in the tumor core and the surrounding peritumoral space. Our data provide a detailed dissection of GBM cell types, revealing an abundance of information about tumor formation and migration. : Darmanis et al. perform single-cell transcriptomic analyses of neoplastic and stromal cells within and proximal to primary glioblastomas. The authors describe a population of neoplastic-infiltrating glioblastoma cells as well as a putative role of tumor-infiltrating immune cells in supporting tumor growth. Keywords: single cell, RNA-seq, glioma, glioblastoma, GBM, brain, heterogeneity, infiltrating, diffuse, checkpoint

  11. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report

    Directory of Open Access Journals (Sweden)

    Servadei Franco

    2010-04-01

    Full Text Available Abstract Background Management of glioblastoma multiforme (GBM has been difficult using standard therapy (radiation with temozolomide chemotherapy. The ketogenic diet is used commonly to treat refractory epilepsy in children and, when administered in restricted amounts, can also target energy metabolism in brain tumors. We report the case of a 65-year-old woman who presented with progressive memory loss, chronic headaches, nausea, and a right hemisphere multi-centric tumor seen with magnetic resonance imaging (MRI. Following incomplete surgical resection, the patient was diagnosed with glioblastoma multiforme expressing hypermethylation of the MGMT gene promoter. Methods Prior to initiation of the standard therapy, the patient conducted water-only therapeutic fasting and a restricted 4:1 (fat: carbohydrate + protein ketogenic diet that delivered about 600 kcal/day. The patient also received the restricted ketogenic diet concomitantly during the standard treatment period. The diet was supplemented with vitamins and minerals. Steroid medication (dexamethasone was removed during the course of the treatment. The patient was followed using MRI and positron emission tomography with fluoro-deoxy-glucose (FDG-PET. Results After two months treatment, the patient's body weight was reduced by about 20% and no discernable brain tumor tissue was detected using either FDG-PET or MRI imaging. Biomarker changes showed reduced levels of blood glucose and elevated levels of urinary ketones. MRI evidence of tumor recurrence was found 10 weeks after suspension of strict diet therapy. Conclusion This is the first report of confirmed GBM treated with standard therapy together with a restricted ketogenic diet. As rapid regression of GBM is rare in older patients following incomplete surgical resection and standard therapy alone, the response observed in this case could result in part from the action of the calorie restricted ketogenic diet. Further studies are needed

  12. Perceptions of Harm and Reasons for Misuse of Prescription Opioid Drugs and Reasons for Not Seeking Treatment for Physical or Emotional Pain Among a Sample of College Students.

    Science.gov (United States)

    Kenne, Deric R; Hamilton, Kelsey; Birmingham, Lauren; Oglesby, Willie H; Fischbein, Rebecca L; Delahanty, Douglas L

    2017-01-02

    Since the early 1990s, the United States has seen a significant increase in the prevalence of prescription opioid misuse. Despite benefits prescription opioids provide, misuse can be fatal. The current study was designed to investigate the prevalence of prescription opioid misuse, perceived harm of misuse, and reasons for misuse for physical or emotional pain instead of seeking professional medical or mental health treatment. Survey data were collected in the fall of 2013 via an online survey to a random sample of 668 students from a public Midwestern university. Lifetime prevalence of prescription opioid misuse was 9.5%. Misusers of prescription opioid drugs generally reported lower ratings of perceived harm as compared to individuals not reporting misuse of prescription opioid drugs. Primary reasons for misuse of prescription opioid drugs was to relieve pain (33.9%), "to feel good/get high" (23.2%) and experimentation (21.4%). Lifetime misuse of a prescription opioid drug for physical or emotional pain was reported by 8.1% and 2.2% of respondents, respectively. Primary reasons for misuse for physical pain included because pain was temporary, immediate relief was needed, and no health insurance/financial resources. Primary reasons for misuse for emotional pain included not wanting others to find out, embarrassment and fear. Conclusions/Importance: Reasons for misuse of prescription opioid drugs vary by type of prescription opioid drug. Reasons for not seeking treatment that ultimately lead to misuse, vary by type of pain being treated and may be important considerations in the effort to stem the misuse of prescription opioid drugs among college students.

  13. Pluronic-based micelle encapsulation potentiates myricetin-induced cytotoxicity in human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Tang XJ

    2016-10-01

    Full Text Available Xiang-Jun Tang,1,* Kuan-Ming Huang,1,* Hui Gui,1,* Jun-Jie Wang,2 Jun-Ti Lu,1 Long-Jun Dai,1,3 Li Zhang,1 Gang Wang2 1Department of Neurosurgery, TaiHe Hospital, Hubei University of Medicine, Shiyan, 2Department of Pharmaceutics, Shanghai Eighth People’s Hospital, Jiangsu University, Shanghai, People’s Republic of China; 3Department of Surgery, University of British Columbia, Vancouver, BC, Canada *These authors contributed equally to this work Abstract: As one of the natural herbal flavonoids, myricetin has attracted much research interest, mainly owing to its remarkable anticancer properties and negligible side effects. It holds great potential to be developed as an ideal anticancer drug through improving its bioavailability. This study was performed to investigate the effects of Pluronic-based micelle encapsulation on myricetin-induced cytotoxicity and the mechanisms underlying its anticancer properties in human glioblastoma cells. Cell viability was assessed using a methylthiazol tetrazolium assay and a real-time cell analyzer. Immunoblotting and quantitative reverse transcriptase polymerase chain reaction techniques were used for determining the expression levels of related molecules in protein and mRNA. The results indicated that myricetin-induced cytotoxicity was highly potentiated by the encapsulation of myricetin. Mitochondrial apoptotic pathway was demonstrated to be involved in myricetin-induced glioblastoma cell death. The epidermal growth factor receptor (EGFR/PI3K/Akt pathway located in the plasma membrane and cytosol and the RAS-ERK pathway located in mitochondria served as upstream and downstream targets, respectively, in myricetin-induced apoptosis. MiR-21 inhibitors interrupted the expression of EGFR, p-Akt, and K-Ras in the same fashion as myricetin-loaded mixed micelles (MYR-MCs and miR-21 expression were dose-dependently inhibited by MYR-MCs, indicating the interaction of miR-21 with MYR-MCs. This study provided evidence

  14. MRI and the diagnosis of glioblastomas

    International Nuclear Information System (INIS)

    Bowe, S.

    2002-01-01

    This paper is based on an oral presentation given at the Sydney conference in February 2000. Two cases will be presented to demonstrate the use of this imaging modality in the diagnosis of glioblastomas, MRI has superior soft tissue imaging abilities making it ideal for imaging the brain. Conventional MRI is good for evaluating oedema and haemorrhage and offers high resolution without associated bone artefacts. However, as with all imaging modalities there are some disadvantages. Patients with pacemakers, certain types of metallic clips, or claustrophobia may not be suitable for an MRI scan. Copyright (2002) Australian Institute of Radiography

  15. Early MRI changes in glioblastoma in the period between surgery and adjuvant therapy.

    Science.gov (United States)

    Farace, Paolo; Amelio, Dante; Ricciardi, Giuseppe K; Zoccatelli, Giada; Magon, Stefano; Pizzini, Francesca; Alessandrini, Franco; Sbarbati, Andrea; Amichetti, Maurizio; Beltramello, Alberto

    2013-01-01

    To investigate the increase in MRI contrast enhancement (CE) occurring in glioblastoma during the period between surgery and initiation of chemo-radiotherapy, thirty-seven patients with newly diagnosed glioblastoma were analyzed by early post-operative magnetic resonance (EPMR) imaging within three days of surgery and by pre-adjuvant magnetic resonance (PAMR) examination before adjuvant therapy. Areas of new CE were investigated by use of EPMR diffusion-weighted imaging and PAMR perfusion imaging (by arterial spin-labeling). PAMR was acquired, on average, 29.9 days later than EPMR (range 20-37 days). During this period an increased area of CE was observed for 17/37 patients. For 3/17 patients these regions were confined to areas of reduced EPMR diffusion, suggesting postsurgical infarct. For the other 14/17 patients, these areas suggested progression. For 11/17 patients the co-occurrence of hyperperfusion in PAMR perfusion suggested progression. PAMR perfusion and EPMR diffusion did not give consistent results for 3/17 patients for whom small new areas of CE were observed, presumably because of the poor spatial resolution of perfusion imaging. Before initiation of adjuvant therapy, areas of new CE of resected glioblastomas are frequently observed. Most of these suggest tumor progression, according to EPMR diffusion and PAMR perfusion criteria.

  16. EGFR Amplification and IDH Mutations in Glioblastoma Patients of the Northeast of Morocco

    Directory of Open Access Journals (Sweden)

    Nadia Senhaji

    2017-01-01

    Full Text Available Glioblastomas are the most frequent and aggressive primary brain tumors which are expressing various evolutions, aggressiveness, and prognosis. Thus, the 2007 World Health Organization classification based solely on the histological criteria is no longer sufficient. It should be complemented by molecular analysis for a true histomolecular classification. The new 2016 WHO classification of tumors of the central nervous system uses molecular parameters in addition to histology to reclassify these tumors and reduce the interobserver variability. The aim of this study is to determine the prevalence of IDH mutations and EGFR amplifications in the population of the northeast region of Morocco and then to compare the results with other studies. Methods. IDH1 codon 132 and IDH2 codon 172 were directly sequenced and the amplification of exon 20 of EGFR gene was investigated by qPCR in 65 glioblastoma tumors diagnosed at the University Hospital of Fez between 2010 and 2014. Results. The R132H IDH1 mutation was observed in 8 of 65 tumor samples (12.31%. No mutation of IDH2 was detected. EGFR amplification was identified in 17 cases (26.15%. Conclusion. A systematic search of both histological and molecular markers should be requisite for a good diagnosis and a better management of glioblastomas.

  17. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    International Nuclear Information System (INIS)

    Djuzenova, Cholpon S.; Fiedler, Vanessa; Memmel, Simon; Katzer, Astrid; Hartmann, Susanne; Krohne, Georg; Zimmermann, Heiko; Scholz, Claus-Jürgen; Polat, Bülent; Flentje, Michael

    2015-01-01

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed

  18. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    Energy Technology Data Exchange (ETDEWEB)

    Djuzenova, Cholpon S., E-mail: djuzenova_t@ukw.de [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Fiedler, Vanessa [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Memmel, Simon [Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Biozentrum Am Hubland, 97070 Würzburg (Germany); Katzer, Astrid; Hartmann, Susanne [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Krohne, Georg [Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, 97070 Würzburg (Germany); Zimmermann, Heiko [Hauptabteilung Biophysik and Kryotechnologie, Fraunhofer-Institut für Biomedizinische Technik, Lehrstuhl für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Ensheimer Strasse 48, 66386 St. Ingbert (Germany); Scholz, Claus-Jürgen [Interdisciplinary Center for Clinical Research, University Hospital, Versbacher Strasse 7, 97078 Würzburg (Germany); Polat, Bülent; Flentje, Michael [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); and others

    2015-01-15

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.

  19. Defining Glioblastoma Resectability Through the Wisdom of the Crowd: A Proof-of-Principle Study.

    Science.gov (United States)

    Sonabend, Adam M; Zacharia, Brad E; Cloney, Michael B; Sonabend, Aarón; Showers, Christopher; Ebiana, Victoria; Nazarian, Matthew; Swanson, Kristin R; Baldock, Anne; Brem, Henry; Bruce, Jeffrey N; Butler, William; Cahill, Daniel P; Carter, Bob; Orringer, Daniel A; Roberts, David W; Sagher, Oren; Sanai, Nader; Schwartz, Theodore H; Silbergeld, Daniel L; Sisti, Michael B; Thompson, Reid C; Waziri, Allen E; McKhann, Guy

    2017-04-01

    Extent of resection (EOR) correlates with glioblastoma outcomes. Resectability and EOR depend on anatomical, clinical, and surgeon factors. Resectability likely influences outcome in and of itself, but an accurate measurement of resectability remains elusive. An understanding of resectability and the factors that influence it may provide a means to control a confounder in clinical trials and provide reference for decision making. To provide proof of concept of the use of the collective wisdom of experienced brain tumor surgeons in assessing glioblastoma resectability. We surveyed 13 academic tumor neurosurgeons nationwide to assess the resectability of newly diagnosed glioblastoma. Participants reviewed 20 cases, including digital imaging and communications in medicine-formatted pre- and postoperative magnetic resonance images and clinical vignettes. The selected cases involved a variety of anatomical locations and a range of EOR. Participants were asked about surgical goal, eg, gross total resection, subtotal resection (STR), or biopsy, and rationale for their decision. We calculated a "resectability index" for each lesion by pooling responses from all 13 surgeons. Neurosurgeons' individual surgical goals varied significantly ( P = .015), but the resectability index calculated from the surgeons' pooled responses was strongly correlated with the percentage of contrast-enhancing residual tumor ( R = 0.817, P < .001). The collective STR goal predicted intraoperative decision of intentional STR documented on operative notes ( P < .01) and nonresectable residual ( P < .01), but not resectable residual. In this pilot study, we demonstrate the feasibility of measuring the resectability of glioblastoma through crowdsourcing. This tool could be used to quantify resectability, a potential confounder in neuro-oncology clinical trials. Copyright © 2016 by the Congress of Neurological Surgeons

  20. Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme

    DEFF Research Database (Denmark)

    Kutwin, Marta; Sawosz, Ewa; Jaworski, Slawomir

    2017-01-01

    a harmful influence on viability of U87 glioblastoma multiforme (GBM) cells, but also showed genotoxic properties as well as a pro-apoptotic effect on cancer cells. It was found that NP-Pt decreased the weight and volume of U87 GBM tumor tissue and caused pathomorphological changes in the ultrastructure...

  1. HLA class I is most tightly linked to levels of tapasin compared with other antigen-processing proteins in glioblastoma.

    Science.gov (United States)

    Thuring, Camilla; Follin, Elna; Geironson, Linda; Freyhult, Eva; Junghans, Victoria; Harndahl, Mikkel; Buus, Søren; Paulsson, Kajsa M

    2015-09-15

    Tumour cells can evade the immune system by dysregulation of human leukocyte antigens (HLA-I). Low quantity and/or altered quality of HLA-I cell surface expression is the result of either HLA-I alterations or dysregulations of proteins of the antigen-processing machinery (APM). Tapasin is an APM protein dedicated to the maturation of HLA-I and dysregulation of tapasin has been linked to higher malignancy in several different tumours. We studied the expression of APM components and HLA-I, as well as HLA-I tapasin-dependency profiles in glioblastoma tissues and corresponding cell lines. Tapasin displayed the strongest correlation to HLA-I heavy chain but also clustered with β2-microglobulin, transporter associated with antigen processing (TAP) and LMP. Moreover, tapasin also correlated to survival of glioblastoma patients. Some APM components, for example, TAP1/TAP2 and LMP2/LMP7, showed variable but coordinated expression, whereas ERAP1/ERAP2 displayed an imbalanced expression pattern. Furthermore, analysis of HLA-I profiles revealed variable tapasin dependence of HLA-I allomorphs in glioblastoma patients. Expression of APM proteins is highly variable between glioblastomas. Tapasin stands out as the APM component strongest correlated to HLA-I expression and we proved that HLA-I profiles in glioblastoma patients include tapasin-dependent allomorphs. The level of tapasin was also correlated with patient survival time. Our results support the need for individualisation of immunotherapy protocols.

  2. Two distinct tumor phenotypes isolated from glioblastomas show different MRS characteristics

    Czech Academy of Sciences Publication Activity Database

    Thorsen, F.; Jirák, D.; Wang, J.; Syková, Eva; Bjerkvig, R.; Enger, P.O.; van der Kogel, A.; Hájek, M.

    2008-01-01

    Roč. 21, č. 8 (2008), s. 830-838 ISSN 0952-3480 Grant - others:EU(NO) LSHC-CT-2004-504743 Institutional research plan: CEZ:AV0Z50390512 Keywords : Glioblastoma * Proton MRS * Creatine Subject RIV: FH - Neurology Impact factor: 4.329, year: 2008

  3. A phase 2 study of the first imipridone ONC201, a selective DRD2 antagonist for oncology, administered every three weeks in recurrent glioblastoma.

    Science.gov (United States)

    Arrillaga-Romany, Isabel; Chi, Andrew S; Allen, Joshua E; Oster, Wolfgang; Wen, Patrick Y; Batchelor, Tracy T

    2017-10-03

    ONC201 is an oral, small molecule selective antagonist of the G protein-coupled receptor DRD2 that causes p53-independent apoptosis in tumor cells via integrated stress response activation and Akt/ERK inactivation. We performed a Phase II study that enrolled 17 patients with recurrent, bevacizumab-naïve, IDH1/2 WT glioblastoma who received 625mg ONC201 every three weeks. Median OS was 41.6 weeks with OS6 of 71% and OS9 of 53%. Seven of 17 patients are alive. PFS6 was 11.8% with two patients remaining on study who continue to receive ONC201 for >12 months. One of these patients had a durable objective response with a secondary glioblastoma possessing a H3.3 K27M mutation, exhibiting regression by 85% in one lesion and 76% in the second lesion. The second patient who continues to receive ONC201 for >12 months remains disease-free after enrolling on this trial following a re-resection. No drug-related SAEs or treatment discontinuation due to toxicity occurred. Plasma PK at 2 hours post-dose was 2.6 ug/mL, serum prolactin induction was observed as a surrogate marker of target engagement, and DRD2 was expressed in all evaluated archival tumor specimens. In summary, ONC201 is well tolerated and may have single agent activity in recurrent glioblastoma patients.

  4. Automatic multi-modal MR tissue classification for the assessment of response to bevacizumab in patients with glioblastoma

    International Nuclear Information System (INIS)

    Liberman, Gilad; Louzoun, Yoram; Aizenstein, Orna; Blumenthal, Deborah T.; Bokstein, Felix; Palmon, Mika; Corn, Benjamin W.; Ben Bashat, Dafna

    2013-01-01

    Background: Current methods for evaluation of treatment response in glioblastoma are inaccurate, limited and time-consuming. This study aimed to develop a multi-modal MRI automatic classification method to improve accuracy and efficiency of treatment response assessment in patients with recurrent glioblastoma (GB). Materials and methods: A modification of the k-Nearest-Neighbors (kNN) classification method was developed and applied to 59 longitudinal MR data sets of 13 patients with recurrent GB undergoing bevacizumab (anti-angiogenic) therapy. Changes in the enhancing tumor volume were assessed using the proposed method and compared with Macdonald's criteria and with manual volumetric measurements. The edema-like area was further subclassified into peri- and non-peri-tumoral edema, using both the kNN method and an unsupervised method, to monitor longitudinal changes. Results: Automatic classification using the modified kNN method was applicable in all scans, even when the tumors were infiltrative with unclear borders. The enhancing tumor volume obtained using the automatic method was highly correlated with manual measurements (N = 33, r = 0.96, p < 0.0001), while standard radiographic assessment based on Macdonald's criteria matched manual delineation and automatic results in only 68% of cases. A graded pattern of tumor infiltration within the edema-like area was revealed by both automatic methods, showing high agreement. All classification results were confirmed by a senior neuro-radiologist and validated using MR spectroscopy. Conclusion: This study emphasizes the important role of automatic tools based on a multi-modal view of the tissue in monitoring therapy response in patients with high grade gliomas specifically under anti-angiogenic therapy

  5. Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kye Jin; Kim, Ho Sung; Park, Ji Eun; Shim, Woo Hyun; Kim, Sang Joon [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Smith, Seth A. [Vanderbilt University Institute of Imaging Science, Vanderbilt University, Department of Radiology and Radiological Sciences, Nashville, TN (United States)

    2016-12-15

    To determine the added value of amide proton transfer (APT) imaging to conventional and perfusion MRI for differentiating tumour progression (TP) from the treatment-related effect (TE) in patients with post-treatment glioblastomas. Sixty-five consecutive patients with enlarging contrast-enhancing lesions following concurrent chemoradiotherapy were assessed using contrast-enhanced T1-weighted MRI (CE-T1WI), 90th percentile histogram parameters of normalized cerebral blood volume (nCBV90) and APT asymmetry value (APT90). Diagnostic performance was determined using the area under the receiver operating characteristic curve (AUC) and cross validations. There were statistically significant differences in the mean APT90 between the TP and the TE groups (3.87-4.01 % vs. 1.38-1.41 %; P <.001). Compared with CE-T1WI alone, the addition of APT90 to CE-T1WI significantly improved cross-validated AUC from 0.58-0.74 to 0.89-0.91 for differentiating TP from TE. The combination of CE-T1WI, nCBV90 and APT90 resulted in greater diagnostic accuracy for differentiating TP from TE than the combination of CE-T1WI and nCBV90 (cross-validated AUC, 0.95-0.97 vs. 0.84-0.91). The inter-reader agreement between the expert and trainee was excellent for the measurements of APT90 (intraclass correlation coefficient, 0.94). Adding APT imaging to conventional and perfusion MRI improves the diagnostic performance for differentiating TP from TE. (orig.)

  6. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Capala, J.; Diaz, A.Z.; Chadha, M.

    1997-01-01

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains

  7. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  8. Initial care and outcome of glioblastoma multiforme patients in 2 diverse health care scenarios in Brazil: does public versus private health care matter?.

    Science.gov (United States)

    Loureiro, Luiz Victor Maia; Pontes, Lucíola de Barros; Callegaro-Filho, Donato; Koch, Ludmila de Oliveira; Weltman, Eduardo; Victor, Elivane da Silva; Santos, Adrialdo José; Borges, Lia Raquel Rodrigues; Segreto, Roberto Araújo; Malheiros, Suzana Maria Fleury

    2014-07-01

    The aim of this study was to describe the epidemiological and survival features of patients with glioblastoma multiforme treated in 2 health care scenarios--public and private--in Brazil. We retrospectively analyzed clinical, treatment, and outcome characteristics of glioblastoma multiforme patients from 2003 to 2011 at 2 institutions. The median age of the 171 patients (117 public and 54 private) was 59.3 years (range, 18-84). The median survival for patients treated in private institutions was 17.4 months (95% confidence interval, 11.1-23.7) compared with 7.1 months (95% confidence interval, 3.8-10.4) for patients treated in public institutions (P public setting (median of 64 days for the public hospital and 31 days for the private institution; P = .003). The patients at the private hospital received radiotherapy concurrent with chemotherapy in 59.3% of cases; at the public hospital, only 21.4% (P Brazil is critical.

  9. Operability of glioblastomas: "sins of action" versus "sins of non-action".

    Science.gov (United States)

    Ferroli, Paolo; Schiariti, Marco; Finocchiaro, Gaetano; Salmaggi, Andrea; Castiglione, Melina; Acerbi, Francesco; Tringali, Giovanni; Farinotti, Mariangela; Broggi, Morgan; Roberto, Cordella; Maccagnano, Elio; Broggi, Giovanni

    2013-12-01

    Despite prognosis of glioblastomas is still poor, mounting evidence suggests that more extensive surgical resections are associated with longer life expectancy. However, the surgical indications, at present, are far from uniform and the concept of operability is extremely surgeon-dependant. The results of glioblastoma resection in 104 patients operated on between March 2005 and April 2011 were reviewed with the aim to shed some light on the limits between 'sins of action' (operating upon complex tumors causing a permanent severe deficit) and 'sins of non-action' (considering inoperable tumors that can be resected with good results). Fifty-five patients (54.4 %) (Group 1) presented with a 'disputable' surgical indication because of one or more of the following clinico-radiological aspects: involvement of motor and language areas (39.4 %), deep location (7.7 %), corpus callosum infiltration (13.4 %), or major vessels encasement (8.6 %). Forty-six (42.5 %) patients (Group 2) presented with an 'indisputable' surgical indication (readily accessible tumors in non-eloquent areas). Overall mortality was 2.9 %. The mean overall survival was 19.8 months and not significantly different in the two Groups (20.4 Group 2 and 19.5 months for Group 1; p = 0.7). Patients with GTR and <72 years had a longer survival (p = 0.004 and 0.03, respectively). Seventy patients (69.3 %) showed an uneventful post-operative course, without statistical significance difference between Group 1 and 2. The gross total removal of glioblastoma with many complexities (Group 1) was found to be feasible with acceptable mortality, morbidity and long-term survival rates.

  10. Glioblastoma: single institutional experience with 48 patients treated with surgery, radiotherapy and chemotherapy; Glioblastoma: experiencia uni-institucional com 48 pacientes tratados com cirurgia, radioterapia e quimioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Potamianos, Carina Fernandes; Souza, Paulo Gustavo Cavalcanti de; Dias, Rodrigo Souza; Giordani, Adelmo Jose; Segreto, Helena Regina Comodo; Segreto, Roberto Araujo [Universidade Federal de Sao Paulo (UNIFESP/EPM), Sao Paulo SP, (Brazil). Setor de Radioterapia], e-mail: segreto.dmed@epm.br; Malheiros, Suzana Maria Fleury [Universidade Federal de Sao Paulo (UNIFESP/EPM), Sao Paulo, SP (Brazil). Dept. de Neurologia-Neurocirurgia

    2009-01-15

    Objective: to identify prognostic factors and evaluate the clinical outcome of patients with glioblastoma treated with surgery and radiotherapy combined or not with chemotherapy. Material and method: in this retrospective study, 48 patients with glioblastoma were treated between 1997 and 2007. All patients were classified according the recursive partitioning analysis (RPA) criteria. Results: the majority of patients were female, with 50 years of age or above. Performance status of 70 or greater were found in 70.8% of cases, and RPA classes V and VI prevailed. Seventy-two percent of patients were submitted to partial resection and 27.1% to total or subtotal resection. Chemotherapy was administered in 47.9% of patients and doses between 50 and 60 Gy were delivered in 72.9%. The median overall survival was 52 weeks. Conclusion: our data show an overall survival that approaches the related in others reports and were dependent of factors such as chemotherapy, dose of radiation and Karnofsky performance status. (author)

  11. Use of ERC-1671 Vaccine in a Patient with Recurrent Glioblastoma Multiforme after Progression during Bevacizumab Therapy: First Published Report.

    Science.gov (United States)

    Bota, Daniela A; Alexandru-Abrams, Daniela; Pretto, Chrystel; Hofman, Florence M; Chen, Thomas C; Fu, Beverly; Carrillo, Jose A; Schijns, Virgil Ejc; Stathopoulos, Apostolos

    2015-01-01

    Glioblastoma multiforme is a highy aggressive tumor that recurs despite resection, focal beam radiation, and temozolamide chemotherapy. ERC-1671 is an experimental treatment strategy that uses the patient's own immune system to attack the tumor cells. The authors report preliminary data on the first human administration of ERC-1671 vaccination under a single-patient, compassionate-use protocol. The patient survived for ten months after the vaccine administration without any other adjuvant therapy and died of complications related to his previous chemotherapies.

  12. Sellar and supra-sellar glioblastoma masquerading as a pituitary macroadenoma.

    Science.gov (United States)

    Mahta, Ali; Buhl, Ralf; Huang, Hongguang; Jansen, Olav; Kesari, Santosh; Ulmer, Stephan

    2013-04-01

    A few number of suprasellar gliomas have been reported thus far of which, some of them developed several years after radiation therapy for pituitary adenomas or craniopharyngiomas. Herein, we report a case of sellar glioblastoma with suprasellar extension with no prior radiation history who mimicked clinical and radiologic findings of a pituitary macroadenoma.

  13. Dorsally exophytic glioblastoma arising from the medulla oblongata in an adult presenting as 4th ventricular mass

    Science.gov (United States)

    Das, Kuntal Kanti; Bettaswamy, Guru Prasad; Mehrotra, Anant; Jaiswal, Sushila; Jaiswal, Awadhesh Kumar; Behari, Sanjay

    2017-01-01

    Brainstem gliomas are relatively rare in adults (medulla oblongata in a 55-year-old lady who presented with a 4th ventricular mass, and present a brief review of the literature. Till now, six cases of glioblastoma arising from the medulla oblongata have been reported. So, ours is the seventh such report. To the best of our knowledge, it also happens to be the sixth reported case of dorsally exophytic brainstem glioblastoma till date. PMID:28484537

  14. Kinome-wide shRNA Screen Identifies the Receptor Tyrosine Kinase AXL as a Key Regulator for Mesenchymal Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Peng Cheng

    2015-05-01

    Full Text Available Glioblastoma is a highly lethal cancer for which novel therapeutics are urgently needed. Two distinct subtypes of glioblastoma stem-like cells (GSCs were recently identified: mesenchymal (MES and proneural (PN. To identify mechanisms to target the more aggressive MES GSCs, we combined transcriptomic expression analysis and kinome-wide short hairpin RNA screening of MES and PN GSCs. In comparison to PN GSCs, we found significant upregulation and phosphorylation of the receptor tyrosine kinase AXL in MES GSCs. Knockdown of AXL significantly decreased MES GSC self-renewal capacity in vitro and inhibited the growth of glioblastoma patient-derived xenografts. Moreover, inhibition of AXL with shRNA or pharmacologic inhibitors also increased cell death significantly more in MES GSCs. Clinically, AXL expression was elevated in the MES GBM subtype and significantly correlated with poor prognosis in multiple cancers. In conclusion, we identified AXL as a potential molecular target for novel approaches to treat glioblastoma and other solid cancers.

  15. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl‑2 family proteins.

    Science.gov (United States)

    Ji, Chen-Chen; Tang, Hai-Feng; Hu, Yi-Yang; Zhang, Yun; Zheng, Min-Hua; Qin, Hong-Yan; Li, San-Zhong; Wang, Xiao-Yang; Fei, Zhou; Cheng, Guang

    2016-07-01

    Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor, and is associated with a poor prognosis. Saponin 6, derived from Anemone taipaiensis, exerts potent cytotoxic effects against the human hepatocellular carcinoma HepG2 cell line and the human promyelocytic leukemia HL‑60 cell line; however, the effects of saponin 6 on glioblastoma remain unknown. The present study aimed to evaluate the effects of saponin 6 on human U87 malignant glioblastoma (U87 MG) cells. The current study revealed that saponin 6 induced U87 MG cell death in a dose‑ and time‑dependent manner, with a half maximal inhibitory concentration (IC50) value of 2.83 µM after treatment for 48 h. However, saponin 6 was needed to be used at a lesser potency in HT‑22 cells, with an IC50 value of 6.24 µM. Cell apoptosis was assessed by flow cytometry using Annexin V‑fluorescein isothiocyanate/propidium iodide double staining. DNA fragmentation and alterations in nuclear morphology were examined by terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling and transmission electron microscopy, respectively. The present study demonstrated that treatment with saponin 6 induced cell apoptosis in U87 MG cells, and resulted in DNA fragmentation and nuclear morphological alterations typical of apoptosis. In addition, flow cytometric analysis revealed that saponin 6 was able to induce cell cycle arrest. The present study also demonstrated that saponin 6‑induced apoptosis of U87 MG cells was attributed to increases in the protein expression levels of Fas, Fas ligand, and cleaved caspase‑3, ‑8 and ‑9, and decreases in the levels of B‑cell lymphoma 2. The current study indicated that saponin 6 may exhibit selective cytotoxicity toward U87 MG cells by activating apoptosis via the extrinsic and intrinsic pathways. Therefore, saponin 6 derived from A. taipaiensis may possess therapeutic potential for the treatment of GBM.

  16. Management of glioblastoma at safety-net hospitals.

    Science.gov (United States)

    Brandel, Michael G; Rennert, Robert C; Lopez Ramos, Christian; Santiago-Dieppa, David R; Steinberg, Jeffrey A; Sarkar, Reith R; Wali, Arvin R; Pannell, J Scott; Murphy, James D; Khalessi, Alexander A

    2018-04-24

    Safety-net hospitals (SNHs) provide disproportionate care for underserved patients. Prior studies have identified poor outcomes, increased costs, and reduced access to certain complex, elective surgeries at SNHs. However, it is unknown whether similar patterns exist for the management of glioblastoma (GBM). We sought to determine if patients treated at HBHs receive equitable care for GBM, and if safety-net burden status impacts post-treatment survival. The National Cancer Database was queried for GBM patients diagnosed between 2010 and 2015. Safety-net burden was defined as the proportion of Medicaid and uninsured patients treated at each hospital, and stratified as low (LBH), medium (MBH), and high-burden (HBH) hospitals. The impact of safety-net burden on the receipt of any treatment, trimodality therapy, gross total resection (GTR), radiation, or chemotherapy was investigated. Secondary outcomes included post-treatment 30-day mortality, 90-day mortality, and overall survival. Univariate and multivariate analyses were utilized. Overall, 40,082 GBM patients at 1202 hospitals (352 LBHs, 553 MBHs, and 297 HBHs) were identified. Patients treated at HBHs were significantly less likely to receive trimodality therapy (OR = 0.75, p < 0.001), GTR (OR = 0.84, p < 0.001), radiation (OR = 0.73, p < 0.001), and chemotherapy (OR = 0.78, p < 0.001) than those treated at LBHs. Patients treated at HBHs had significantly increased 30-day (OR = 1.25, p = 0.031) and 90-day mortality (OR = 1.24, p = 0.001), and reduced overall survival (HR = 1.05, p = 0.039). GBM patients treated at SNHs are less likely to receive standard-of-care therapies and have increased short- and long-term mortality. Additional research is needed to evaluate barriers to providing equitable care for GBM patients at SNHs.

  17. GPR56/ADGRG1 Inhibits Mesenchymal Differentiation and Radioresistance in Glioblastoma

    NARCIS (Netherlands)

    Moreno, Marta; Pedrosa, Leire; Pare, Laia; Pineda, Estela; Bejarano, Leire; Martinez, Josefina; Balasubramaniyan, Veerakumar; Ezhilarasan, Ravesanker; Kallarackal, Naveen; Kim, Sung-Hak; Wang, Jia; Audia, Alessandra; Conroy, Siobhan; Marin, Mercedes; Ribalta, Teresa; Pujol, Teresa; Herreros, Antoni; Tortosa, Avelina; Mira, Helena; Alonso, Marta M.; Gomez-Manzano, Candelaria; Graus, Francesc; Sulman, Erik P.; Piao, Xianhua; Nakano, Ichiro; Prat, Aleix; Bhat, Krishna P.; de la Iglesia, Nuria

    2017-01-01

    A mesenchymal transition occurs both during the natural evolution of glioblastoma (GBM) and in response to therapy. Here, we report that the adhesion G-protein-coupled receptor, GPR56/ADGRG1, inhibits GBM mesenchymal differentiation and radioresistance. GPR56 is enriched in proneural and

  18. Antiangiogenic Therapies and Extracranial Metastasis in Glioblastoma: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Mohamed H. Khattab

    2015-01-01

    Full Text Available We present a case report of a patient with glioblastoma multiforme (GBM complicated by extracranial metastasis (ECM whose survival of nearly four years surpassed the anticipated life expectancy given numerous negative prognostic factors including EGFRvIII-mutation, unmethylated MGMT promoter status, and ECM. Interestingly, while this patient suffered from locally aggressive disease with multiple intracranial recurrences, the proximal cause of death was progressive extracranial disease and complications related to pulmonary metastases. Herein, we review potential mechanisms of ECM with an emphasis upon glioblastoma molecular and genetic profiles and the potential implications of targeted agents such as bevacizumab.

  19. Autonomy and reason: treatment choice in breast cancer.

    Science.gov (United States)

    Twomey, Mary

    2012-10-01

    The practice of offering choice to those women with breast cancer for whom either breast conserving surgery or mastectomy would be equally beneficial has come to be seen as an important aspect of medical care. As well as improving satisfaction with treatment, this is seen as satisfying the ethical principle of respect for autonomy. A number of studies, however, show that women are not always comfortable with such choice, preferring to leave treatment decisions to their surgeons. A question then arises as to the extent that these women can be seen as autonomous or as exercising autonomy. This paper argues, however, that the understanding of autonomy which is applied in current approaches to breast cancer care does not adequately support the exercise of autonomy, and that the clinical context of care means that women are not able to engage in the kind of reasoning that might promote the exercise of autonomy. Where respect for autonomy is limited to informed consent and choice, there is a danger that women's interests are overlooked in those aspects of their care where choice is not appropriate, with very real, long-term consequences for some women. Promoting the exercise of autonomy, it is argued, needs to go beyond the conception of autonomy as rational individuals making their own decisions, and clinicians need to work with an understanding of autonomy as relational in order to better involve women in their care. © 2012 Blackwell Publishing Ltd.

  20. Molecular Characteristics in MRI-classified Group 1 Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    William E Haskins

    2013-07-01

    Full Text Available Glioblastoma multiforme (GBM is a clinically and pathologically heterogeneous brain tumor. Previous study of MRI-classified GBM has revealed a spatial relationship between Group 1 GBM (GBM1 and the subventricular zone (SVZ. The SVZ is an adult neural stem cell niche and is also suspected to be the origin of a subtype of brain tumor. The intimate contact between GBM1 and the SVZ raises the possibility that tumor cells in GBM1 may be most related to SVZ cells. In support of this notion, we found that neural stem cell and neuroblast markers are highly expressed in GBM1. Additionally, we identified molecular characteristics in this type of GBM that include up-regulation of metabolic enzymes, ribosomal proteins, heat shock proteins, and c-Myc oncoprotein. As GBM1 often recurs at great distances from the initial lesion, the rewiring of metabolism and ribosomal biogenesis may facilitate cancer cells’ growth and survival during tumor migration. Taken together, combined our findings and MRI-based classification of GBM1 would offer better prediction and treatment for this multifocal GBM.

  1. Saponin B, a novel cytostatic compound purified from Anemone taipaiensis, induces apoptosis in a human glioblastoma cell line.

    Science.gov (United States)

    Wang, Yuangang; Tang, Haifeng; Zhang, Yun; Li, Juan; Li, Bo; Gao, Zhenhui; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou

    2013-11-01

    Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors. Saponin B, a novel compound isolated from the medicinal plant, Anemone taipaiensis, has been found to have a strong time- and dose-dependent cytostatic effect on human glioma cells and to suppress the growth of U87MG GBM cells. In this study, we investigated whether saponin B induces the apoptosis of glioblastoma cells and examined the underlying mechanism(s) of action of saponin B. Saponin B significantly suppressed U87MG cell proliferation. Flow cytometric analysis of DNA in the U87MG cells confirmed that saponin B blocked the cell cycle at the S phase. Furthermore, treatment of the U87MG cells with saponin B induced chromatin condensation and led to the formation of apoptotic bodies, as observed under a fluorescence microscope, and Annexin V/PI assay further suggested that phosphatidylserine (PS) externalization was apparent at higher drug concentrations. Treatment with saponin B activated the receptor-mediated pathway of apoptosis, as western blot analysis revealed the activation of Fas-l. Saponin B increased the Bax and caspase-3 ratio and decreased the protein expression of Bcl-2. The results from the present study demonstrate that the novel compound, saponin B, effectively induces the apoptosis of GBM cells and inhibits glioma cell growth and survival. Therefore, saponin B may be a potential candidate for the development of novel cancer therapeutics with antitumor activity against gliomas.

  2. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  3. Connection between cell phone use, p53 gene expression in different zones of glioblastoma multiforme and survival prognoses

    Directory of Open Access Journals (Sweden)

    Reza Akhavan-Sigari

    2014-08-01

    Full Text Available The aim of this paper is to investigate p53 gene expression in the central and peripheral zones of glioblastoma multiforme using a real-time reverse transcription polymerase chain reaction (RT-PCR technique in patients who use cell phones ≥3 hours a day and determine its relationship to clinicopathological findings and overall survival. Sixty-three patients (38 males and 25 females, diagnosed with glioblastoma multiforme (GBM, underwent tumor resection between 2008 and 2011. Patient ages ranged from 25 to 88 years, with a mean age of 55. The levels of expression of p53 in the central and peripheral zone of the GBM were quantified by RT-PCR. Data on p53 gene expression from the central and peripheral zone, the related malignancy and the clinicopatholagical findings (age, gender, tumor location and size, as well as overall survival, were analyzed. Forty-one out of 63 patients (65% with the highest level of cell phone use (≥3 hours/day had higher mutant type p53 expression in the peripheral zone of the glioblastoma; the difference was statistically significant (P=0.034. Results from the present study on the use of mobile phones for ≥3 hours a day show a consistent pattern of increased risk for the mutant type of p53 gene expression in the peripheral zone of the glioblastoma, and that this increase was significantly correlated with shorter overall survival time. The risk was not higher for ipsilateral exposure. We found that the mutant type of p53 gene expression in the peripheral zone of the glioblastoma was increased in 65% of patients using cell phones ≥3 hours a day.

  4. MiR-338-3p regulates neuronal maturation and suppresses glioblastoma proliferation.

    Directory of Open Access Journals (Sweden)

    James R Howe

    Full Text Available Neurogenesis is a highly-regulated process occurring in the dentate gyrus that has been linked to learning, memory, and antidepressant efficacy. MicroRNAs (miRNAs have been previously shown to play an important role in the regulation of neuronal development and neurogenesis in the dentate gyrus via modulation of gene expression. However, this mode of regulation is both incompletely described in the literature thus far and highly multifactorial. In this study, we designed sensors and detected relative levels of expression of 10 different miRNAs and found miR-338-3p was most highly expressed in the dentate gyrus. Comparison of miR-338-3p expression with neuronal markers of maturity indicates miR-338-3p is expressed most highly in the mature neuron. We also designed a viral "sponge" to knock down in vivo expression of miR-338-3p. When miR-338-3p is knocked down, neurons sprout multiple primary dendrites that branch off of the soma in a disorganized manner, cellular proliferation is upregulated, and neoplasms form spontaneously in vivo. Additionally, miR-338-3p overexpression in glioblastoma cell lines slows their proliferation in vitro. Further, low miR-338-3p expression is associated with increased mortality and disease progression in patients with glioblastoma. These data identify miR-338-3p as a clinically relevant tumor suppressor in glioblastoma.

  5. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection

    Science.gov (United States)

    Korbecki, Jan; Gutowska, Izabela; Kojder, Ireneusz; Jeżewski, Dariusz; Goschorska, Marta; Łukomska, Agnieszka; Lubkowska, Anna; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2018-01-01

    Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the ‘hallmarks of cancer’ in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme. PMID:29467963

  6. Quantification of Tumor Vessels in Glioblastoma Patients Using Time-of-Flight Angiography at 7 Tesla: A Feasibility Study

    Science.gov (United States)

    Radbruch, Alexander; Eidel, Oliver; Wiestler, Benedikt; Paech, Daniel; Burth, Sina; Kickingereder, Philipp; Nowosielski, Martha; Bäumer, Philipp; Wick, Wolfgang; Schlemmer, Heinz-Peter; Bendszus, Martin; Ladd, Mark; Nagel, Armin Michael; Heiland, Sabine

    2014-01-01

    Purpose To analyze if tumor vessels can be visualized, segmented and quantified in glioblastoma patients with time of flight (ToF) angiography at 7 Tesla and multiscale vessel enhancement filtering. Materials and Methods Twelve patients with newly diagnosed glioblastoma were examined with ToF angiography (TR = 15 ms, TE = 4.8 ms, flip angle = 15°, FOV = 160×210 mm2, voxel size: 0.31×0.31×0.40 mm3) on a whole-body 7 T MR system. A volume of interest (VOI) was placed within the border of the contrast enhancing part on T1-weighted images of the glioblastoma and a reference VOI was placed in the non-affected contralateral white matter. Automated segmentation and quantification of vessels within the two VOIs was achieved using multiscale vessel enhancement filtering in ImageJ. Results Tumor vessels were clearly visible in all patients. When comparing tumor and the reference VOI, total vessel surface (45.3±13.9 mm2 vs. 29.0±21.0 mm2 (pTesla MRI enables characterization and quantification of the internal vascular morphology of glioblastoma and may be used for the evaluation of therapy response within future studies. PMID:25415327

  7. Orthotopic Patient-Derived Glioblastoma Xenografts in Mice.

    Science.gov (United States)

    Xu, Zhongye; Kader, Michael; Sen, Rajeev; Placantonakis, Dimitris G

    2018-01-01

    Patient-derived xenografts (PDX) provide in vivo glioblastoma (GBM) models that recapitulate actual tumors. Orthotopic tumor xenografts within the mouse brain are obtained by injection of GBM stem-like cells derived from fresh surgical specimens. These xenografts reproduce GBM's histologic complexity and hallmark biological behaviors, such as brain invasion, angiogenesis, and resistance to therapy. This method has become essential for analyzing mechanisms of tumorigenesis and testing the therapeutic effect of candidate agents in the preclinical setting. Here, we describe a protocol for establishing orthotopic tumor xenografts in the mouse brain with human GBM cells.

  8. Phase II, two-arm RTOG trial (94-11) of bischloroethyl-nitrosourea plus accelerated hyperfractionated radiotherapy (64.0 or 70.4 Gy) based on tumor volume (> 20 or ≤ 20 cm2, respectively) in the treatment of newly-diagnosed radiosurgery-ineligible glioblastoma multiforme patients

    International Nuclear Information System (INIS)

    Coughlin, C.; Scott, C.; Langer, C.; Coia, L.; Curran, W.; Rubin, P.

    2000-01-01

    Purpose: To compare survivorship, and acute and delayed toxicities following radiation therapy (RT) of radiosurgery-ineligible glioblastoma multiforme (GBM) patients treated with tumor volume-influenced, high-dose accelerated, hyperfractionated RT plus bischloroethyl-nitrosourea (BCNU), using prior RTOG malignant glioblastoma patients as historical controls. Methods and Materials: One hundred four of 108 patients accrued from June 1994 through May 1995 from 26 institutions were analyzable. Patients were histologically confirmed with GBM, and previously untreated. Treatment assignment (52 patients/arm) was based on tumor mass (TM), defined as the product of the maximum diameter and greatest perpendicular dimension of the titanium-gadolinium-enhanced postoperative MRI: Arm A, 64 Gy, TM > 20 cm 2 ; or Arm B, 70.4 Gy, TM ≤ 20 cm 2 . Both Arms A and B received BCNU (80 mg/m 2 , under hyperhydration) days 1-3, 56-58, then 4 cycles, each 8 weeks, for a total of 6 treatment series. Results: During the 24 months immediately post-treatment, the overall median survival was 9.1 months in Arm A (64 Gy) and 11.0 months in Arm B (70.4 Gy). Median survival in recursive partitioning analysis (RPA) Class III/IV was 10.4 months in Arm A and 12.2 months in Arm B, while RPA Class V/VI was 7.6 months in Arm A and 6.1 months in Arm B. There were no grade 4 neurological toxicities in Arm A; 2 grade 4 neurological toxicities were observed in Arm B (1 motor deficit, 1 necrosis at 157 days post-treatment). Conclusion: This strategy of high-dose, accelerated hyperfractionated radiotherapy shortens overall RT treatment times while allowing dose escalation, and it provides the potential for combination with currently available, as well as newer, chemotherapy agents. Survival is comparable with previously published RTOG data, and toxicities are within acceptable limits.

  9. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Meyer, Morten; Petterson, Stine Asferg

    2016-01-01

    AIMS: Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking...... invasion and tumor stemness into account. METHODS: Glioblastoma stem cell-like containing spheroid (GSS) cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains...... of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models. RESULTS: We observed a pronounced invasion into brain slice...

  10. Evaluation of the 18 kDa translocator protein (TSPO) as a target for molecular imaging and therapy of glioblastoma in an experimental rat model

    International Nuclear Information System (INIS)

    Awde, Ali Reda

    2012-01-01

    In France alone, there are 3000 new cases of glioblastoma multiform (GBM) per year and therefore GBM is the most common and aggressive form of the primary tumor in the central nervous system (CNS). The clinical prognosis for glioblastoma patients is extremely poor with a median survival period that rarely exceeds 15 months post-diagnosis. Since the study performed by Stupp and colleagues in 2005, the standard treatment for newly diagnosed glioblastoma consists of surgical removal of the tumor, followed by radiotherapy and concomitant chemotherapy with temozolomide. The 18 kDa Translocator Protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR) is a mitochondrial membrane protein known to be implicated in cholesterol transport, protein import, transport of porphyrin, cell proliferation and apoptosis through its interaction with VDAC (Voltage-Dependent Anion Channel) in the mitochondrial permeability transition pore (PTPM). Previous studies have reported overexpression of TSPO in brain tumors, suggesting that this protein may represent a molecular target for the therapy of GBM. In particular, Erucyl-phospho-homo-choline (ErPC3, erufosine), an alkyl-phosphocholine, seems to be a promising agent in the treatment of glioblastoma. Previous studies have reported its ability to induce apoptosis in otherwise highly apoptosis resistant glioma cell lines and ErPC3 induced apoptosis seems to require the presence TSPO. [ 18 F]DPA-714, a new TSPO radioligand for positron emission tomography (PET) imaging, was developed at the CEA and validated in different models of neuro-inflammation. The hypotheses underlying this thesis are: 1) that the overexpression of TSPO in GBM can be detected by PET imaging using [ 18 F]DPA-714 and 2) that the targeting of TSPO, via specific ligands or via ErPC3, can induce apoptosis in GBM. The objectives of the thesis were: 1) to evaluate the expression of TSPO in a panel of rodent and human glioma cell lines and 2) to

  11. Systemically administered AAV9-sTRAIL combats invasive glioblastoma in a patient-derived orthotopic xenograft model

    Directory of Open Access Journals (Sweden)

    Matheus HW Crommentuijn

    2016-01-01

    Full Text Available Adeno-associated virus (AAV vectors expressing tumoricidal genes injected directly into brain tumors have shown some promise, however, invasive tumor cells are relatively unaffected. Systemic injection of AAV9 vectors provides widespread delivery to the brain and potentially the tumor/microenvironment. Here we assessed AAV9 for potential glioblastoma therapy using two different promoters driving the expression of the secreted anti-cancer agent sTRAIL as a transgene model; the ubiquitously active chicken β-actin (CBA promoter and the neuron-specific enolase (NSE promoter to restrict expression in brain. Intravenous injection of AAV9 vectors encoding a bioluminescent reporter showed similar distribution patterns, although the NSE promoter yielded 100-fold lower expression in the abdomen (liver, with the brain-to-liver expression ratio remaining the same. The main cell types targeted by the CBA promoter were astrocytes, neurons and endothelial cells, while expression by NSE promoter mostly occurred in neurons. Intravenous administration of either AAV9-CBA-sTRAIL or AAV9-NSE-sTRAIL vectors to mice bearing intracranial patient-derived glioblastoma xenografts led to a slower tumor growth and significantly increased survival, with the CBA promoter having higher efficacy. To our knowledge, this is the first report showing the potential of systemic injection of AAV9 vector encoding a therapeutic gene for the treatment of brain tumors.

  12. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.

    Science.gov (United States)

    Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel

    2006-09-01

    The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.

  13. Microtubule-severing ATPase spastin in glioblastoma: increased expression in human glioblastoma cell lines and inverse roles in cell motility and proliferation

    Czech Academy of Sciences Publication Activity Database

    Dráberová, Eduarda; Vinopal, Stanislav; Morfini, G.; Liu, P. S.; Sládková, Vladimíra; Sulimenko, Tetyana; Burns, M.R.; Solowska, J.; Kulandaivel, K.; De Chadarévian, J.P.; Legido, A.; Mork, S.J.; Janáček, Jiří; Baas, P.; Dráber, Pavel; Katsetos, C.D.

    2011-01-01

    Roč. 70, č. 9 (2011), s. 811-826 ISSN 0022-3069 R&D Projects: GA ČR GAP302/10/1701; GA ČR GA204/09/1777; GA ČR(CZ) GD204/09/H084; GA AV ČR KAN200520701; GA MŠk LC545 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50110509 Keywords : spastin * glioblastoma * cell motility Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.258, year: 2011

  14. Interference with PSMB4 Expression Exerts an Anti-Tumor Effect by Decreasing the Invasion and Proliferation of Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chen Cheng

    2018-01-01

    matrix metallopeptidase 9 in vivo. Conclusion: PSMB4 inhibition in combination with TMZ may exert an anti-tumor effect by decreasing cell proliferation and invasion as well as by promoting apoptosis in human glioblastoma cells. This research may improve the therapeutic efficacy of glioblastoma treatment.

  15. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture

    OpenAIRE

    Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya; Stella, Nephi

    2017-01-01

    Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mo...

  16. Glioblastomas with oligodendroglial component - common origin of the different histological parts and genetic subclassification.

    Science.gov (United States)

    Klink, Barbara; Schlingelhof, Ben; Klink, Martin; Stout-Weider, Karen; Patt, Stephan; Schrock, Evelin

    2010-01-01

    Glioblastomas are the most common and most malignant brain tumors in adults. A small subgroup of glioblastomas contains areas with histological features of oligodendroglial differentiation (GBMO). Our objective was to genetically characterize the oligodendroglial and the astrocytic parts of GBMOs and correlate morphologic and genetic features with clinical data. The oligodendroglial and the "classic" glioblastoma parts of 13 GBMO were analyzed separately by interphase fluorescence in situ hybridization (FISH) on paraffin sections using a custom probe set (regions 1p, 1q, 7q, 10q, 17p, 19q, cen18, 21q) and by comparative genomic hybridization (CGH) of microdissected paraffin embedded tumor tissue. We identified four distinct genetic subtypes in 13 GBMOs: an "astrocytic" subtype (9/13) characterized by +7/-10; an "oligodendroglial" subtype with -1p/-19q (1/13); an "intermediate" subtype showing +7/-1p (1/13), and an "other" subtype having none of the former aberrations typical for gliomas (2/13). The different histological tumor parts of GBMO revealed common genetic changes in all tumors and showed additional aberrations specific for each part. Our findings demonstrate the monoclonal origin of GBMO followed by the development of the astrocytic and oligodendroglial components. The diagnostic determination of the genetic signatures may allow for a better prognostication of the patients.

  17. Glioblastoma treated with postoperative radio-chemotherapy: Prognostic value of apparent diffusion coefficient at MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Fumiyuki; Sugiyama, Kazuhiko [Department of Neurosurgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan); Ohtaki, Megu [Department of Environmetrics and Biometrics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Takeshima, Yukio [Department of Pathology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Abe, Nobukazu; Akiyama, Yuji; Takaba, Junko [Department of Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Amatya, Vishwa Jeet [Department of Pathology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Saito, Taiichi; Kajiwara, Yoshinori; Hanaya, Ryosuke [Department of Neurosurgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan); Kurisu, Kaoru [Department of Neurosurgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan)], E-mail: kuka422@hiroshima-u.ac.jp

    2010-03-15

    Purpose: To retrospectively evaluate whether the mean, minimum, and maximum apparent diffusion coefficient (ADC) of glioblastomas obtained from pretreatment MR images is of prognostic value in patients with glioblastoma. Materials and methods: The institutional review board approved our study and waived the requirement for informed patient consent. Between February 1998 and January 2006, 33 patients (24 males, 9 females; age range 10-76 years) with supratentorial glioblastoma underwent pretreatment magnetic resonance (MR) imaging. The values of the mean, minimum, and maximum ADC (ADC{sub mean}, ADC{sub MIN}, and ADC{sub MAX}, respectively) of each tumor were preoperatively determined from several regions of interest defined in the tumors. After surgical intervention, all patients underwent irradiation and chemotherapy performed according to our hospital protocol. The patient age, symptom duration, Karnofsky performance scale score, extent of surgery, and ADC were assessed using factor analysis of overall survival. Prognostic factors were evaluated using Kaplan-Meier survival curves, the log-rank test, and multiple regression analysis with the Cox proportional hazards model. Results: Likelihood ratio tests confirmed that ADC{sub MIN} was the strongest among the three prognostic factors. Total surgical removal was the most important predictive factor for overall survival (P < 0.01). ADC{sub MIN} was also statistically correlated with overall survival (P < 0.05) and could be used to classify patients into different prognostic groups. Interestingly, ADC{sub MIN} was also the strongest prognostic factor (P < 0.01) in the group of patients in whom total tumor removal was not possible. Conclusion: The ADC{sub MIN} value obtained from pretreatment MR images is a useful clinical prognostic biomarker in patients with glioblastoma.

  18. Extracellular sphingosine-1-phosphate: a novel actor in human glioblastoma stem cell survival.

    Directory of Open Access Journals (Sweden)

    Elena Riccitelli

    Full Text Available Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs, a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ, and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source

  19. Antitumor action of temozolomide, ritonavir and aprepitant against human glioma cells.

    Science.gov (United States)

    Kast, Richard E; Ramiro, Susana; Lladó, Sandra; Toro, Salvador; Coveñas, Rafael; Muñoz, Miguel

    2016-02-01

    In the effort to find better treatments for glioblastoma we tested several currently marketed non-chemotherapy drugs for their ability to enhance the standard cytotoxic drug currently used to treat glioblastoma- temozolomide. We tested four antiviral drugs- acyclovir, cidofovir, maraviroc, ritonavir, and an anti-emetic, aprepitant. We found no cytotoxicity of cidofovir and discussed possible reasons for discrepancy from previous findings of others. We also found no cytotoxicity from acyclovir or maraviroc also in contradistinction to predictions. Cytotoxicity to glioma cell line GAMG for temozolomide alone was 14%, aprepitant alone 7%, ritonavir alone 14%, while temozolomide + aprepitant was 19%, temozolomide + ritonavir 34%, ritonavir + aprepitant 64 %, and all three, temozolomide + ritonavir + aprepitant 78%. We conclude that a remarkable synergy exists between aprepitant and ritonavir. Given the long clinical experience with these two well-tolerated drugs in treating non-cancer conditions, and the current median survival of glioblastoma of 2 years, a trial is warranted of adding these two simple drugs to current standard treatment with temozolomide.

  20. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Rebecca; Zeino, Maen [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Frewert, Simon [Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken (Germany); Efferth, Thomas, E-mail: efferth@uni-mainz.de [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany)

    2014-11-15

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.