WorldWideScience

Sample records for glass-former acetyl salicylic

  1. BNFL Report Glass Formers Characterization

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    2000-01-01

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input

  2. BNFL Report Glass Formers Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling.

  3. BNFL Report Glass Formers Characterization

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    2000-01-01

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling

  4. Acetyl salicylic acid–ZnAl layered double hydroxide functional nanohybrid for skin care application

    CSIR Research Space (South Africa)

    Mosangi, Damodar

    2016-10-01

    Full Text Available In this study, a pharmaceutically active ingredient, acetyl salicylic acid (ASA), was intercalated into ZnAl layered double hydroxide (LDH). The LDH–ASA nanohybrid material was characterized by XRD, FTIR, SEM, ICP-MS, TEM and TGA. Successful...

  5. Comparison of Catalysts Preyssler and Silica-Supported Nano Preyssler in the Synthesis of Acetyl Salicylic Acid

    OpenAIRE

    Nazari, H.; Ahmadpour, A.; Bamoharram, F. F.; Heravi, M. M.; Eslami, N.

    2012-01-01

    The extensive demand for cleaner environment is forcing chemical industry to use less hazardous materials. In this regard, heteropolyacids attracted considerable amount of interest due to the less toxic behavior in addition of possessing higher acidity. Heteropoly acids have been used as catalysts for the reaction of salicylic acid with acetic anhydride. The performance of different forms of heteropoly acids in the presence of acetic anhydride as acetylating agent for acetylation of salicylic...

  6. Inelastic neutron scattering from glass formers

    International Nuclear Information System (INIS)

    Buchenau, U.

    1997-01-01

    Neutron spectra below and above the glass transition temperature show a pronounced difference between strong and fragile glass formers in Angell's fragility scheme. The strong anharmonic increase of the inelastic scattering with increasing temperature in fragile substances is absent in the strongest glass former SiO 2 . That difference is reflected in the temperature dependence of Brillouin sound velocities above the glass transition. Coherent inelastic neutron scattering data indicate a mixture of sound waves and local modes at the low frequency boson peak. A relation between the fragility and the temperature dependence of the transverse hypersound velocity at the glass temperature is derived. (author)

  7. Granular packing as model glass formers

    International Nuclear Information System (INIS)

    Wang Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories. (paper)

  8. Comparison of Catalysts Preyssler and Silica-Supported Nano Preyssler in the Synthesis of Acetyl Salicylic Acid

    Directory of Open Access Journals (Sweden)

    H. Nazari

    2012-01-01

    Full Text Available The extensive demand for cleaner environment is forcing chemical industry to use less hazardous materials. In this regard, heteropolyacids attracted considerable amount of interest due to the less toxic behavior in addition of possessing higher acidity. Heteropoly acids have been used as catalysts for the reaction of salicylic acid with acetic anhydride. The performance of different forms of heteropoly acids in the presence of acetic anhydride as acetylating agent for acetylation of salicylic acid was compared. The best conditions were observed using Preyssler and Silica-supported Preyssler Nanoparticles as catalysts. The catalyst is recyclable and reusable.

  9. HSP-72 accelerated expression in mononuclear cells induced in vivo by acetyl salicylic acid can be reproduced in vitro when combined with H2O2.

    Directory of Open Access Journals (Sweden)

    Alvaro A Sandoval-Montiel

    Full Text Available BACKGROUND: Among NSAIDs acetyl salicylic acid remains as a valuable tool because of the variety of benefic prophylactic and therapeutic effects. Nevertheless, the molecular bases for these responses have not been complete understood. We explored the effect of acetyl salicylic acid on the heat shock response. RESULTS: Peripheral blood mononuclear cells from rats challenged with acetyl salicylic acid presented a faster kinetics of expression of HSP-72 messenger RNA and protein in response to in vitro heat shock. This effect reaches its maximum 2 h after treatment and disappeared after 5 h. On isolated peripheral blood mononuclear cells from untreated rats, incubation with acetyl salicylic acid was ineffective to produce priming, but this effect was mimicked when the cells were incubated with the combination of H2O2+ ASA. CONCLUSIONS: Administration of acetyl salicylic acid to rats alters HSP-72 expression mechanism in a way that it becomes more efficient in response to in vitro heat shock. The fact that in vitro acetyl salicylic acid alone did not induce this priming effect implies that in vivo other signals are required. Priming could be reproduces in vitro with the combination of acetyl salicylic acid+H2O2.

  10. Simultaneous Determination of Paracetamol, Acetyl Salicylic Acid, Mefenamic Acid and Cetirizine Dihydrochloride in the Pharmaceutical Dosage Form

    Directory of Open Access Journals (Sweden)

    Freddy H. Havaldar

    2010-01-01

    Full Text Available A simple, specific, accurate and economical isocratic reversed phase liquid chromatographic (RP-HPLC method was developed and subsequently validated for the determination of paracetamol, acetyl salicylic acid, mefenamic acid and cetirizine dihydrochloride. Separation was achieved with a Nucleodur 100 C–18 column having 250 × 4.6 mm i.d. with 5 µm particle size and disodium hydrogen phosphate buffer adjusted to pH 6.5 using diluted orthophosphoric acid and acetonitrile (60:40 v∕v as eluent at a constant flow rate of 1.0 mL per min. UV detection was performed at 220 nm. The retention time of acetyl salicylic acid, paracetamol, mefenamic acid and cetirizine dihydrochloride were 2.01 min, 2.92 min, 4.91 min and 10.2 min respectively. This method is simple, rapid and selective and can be used for routine analysis of analgesic and antipyretic drugs in pharmaceutical formulations. The proposed method was validated and successfully used for estimation of paracetamol, acetyl salicylic acid, mefenamic acid and cetirizine dihydrochloride in the pharmaceutical dosage form.

  11. Effect of particle shape of acetyl salicylic acid powders on gastric damages in rats.

    Science.gov (United States)

    Zolfaghari, M E; Dhepour, A R; Mousavi, N

    1997-01-01

    In this study the correlation between particle shape of acetyl salicylic acid (ASA) powders and gastric damage was studied. It is highly possible that different pharmaceutical particulate systems having different shape factors, cause different damages in contact with stomach walls. In this study five types of ASA powders in the same size range with different shape factors were chosen. From different shape factors, two important known as "elongation" and "sphericity" were selected and by means of "image analyser" were quantitatively calculated. The highest measured shape factor for elongation was 5.9 and for sphericity was 3.7, and the smallest shape factor for elongation was 1.4 and for sphericity was 1.4. For animal study, a suspension of each powder was orally administered by feeding needle, and drug was entered into the stomaches of fasting rats. After four hours, rats were killed and their stomaches were observed. Maximum number of ulcers were produced by particles with corrugated flat surfaces and the least damage was produced by particles with elongated bodies. Therefore, the most important factor resulting highly intensive ulcers in rat stomach, is flaky particles with corrugated shapes.

  12. Mucus reduction promotes acetyl salicylic acid-induced small intestinal mucosal injury in rats.

    Science.gov (United States)

    Suyama, Yosuke; Handa, Osamu; Naito, Yuji; Takayama, Shun; Mukai, Rieko; Ushiroda, Chihiro; Majima, Atsushi; Yasuda-Onozawa, Yuriko; Higashimura, Yasuki; Fukui, Akifumi; Dohi, Osamu; Okayama, Tetsuya; Yoshida, Naohisa; Katada, Kazuhiro; Kamada, Kazuhiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Konishi, Hideyuki; Itoh, Yoshito

    2018-03-25

    Acetyl salicylic acid (ASA) is a useful drug for the secondary prevention of cerebro-cardiovascular diseases, but it has adverse effects on the small intestinal mucosa. The pathogenesis and prophylaxis of ASA-induced small intestinal injury remain unclear. In this study, we focused on the intestinal mucus, as the gastrointestinal tract is covered by mucus, which exhibits protective effects against various gastrointestinal diseases. ASA was injected into the duodenum of rats, and small intestinal mucosal injury was evaluated using Evans blue dye. To investigate the importance of mucus, Polysorbate 80 (P80), an emulsifier, was used before ASA injection. In addition, rebamipide, a mucus secretion inducer in the small intestine, was used to suppress mucus reduction in the small intestine of P80-administered rats. The addition of P80 reduced the mucus and exacerbated the ASA-induced small intestinal mucosal injury. Rebamipide significantly suppressed P80-reduced small intestinal mucus and P80-increased intestinal mucosal lesions in ASA-injected rats, demonstrating that mucus is important for the protection against ASA-induced small intestinal mucosal injury. These results provide new insight into the mechanism of ASA-induced small intestinal mucosal injury. Mucus secretion-increasing therapy might be useful in preventing ASA-induced small intestinal mucosal injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Pharmacy record registration of acetyl salicylic acid (ASA) prescriptions in Quebec.

    Science.gov (United States)

    Guénette, Line; Sirois, Caroline

    2012-01-01

    To determine the extent of which acetyl salicylic acid (ASA) use is included in patients' pharmacy records. During an in-home interview, people aged ≥ 65 years were asked to report all of the medications they had used at least once, including over-the-counter drugs, during the preceding month. Researchers recorded information on the drug name, reason for its use, and whether a physician prescribed it. From the pharmacy records, the drug names, prescription fill dates, quantities supplied, and the numbers of days' supply were recorded. The level of agreement for ASA use across data sources was assessed using proportions of agreement and kappa coefficients. Of 193 individuals interviewed, 86 reported the use of ASA, including 76 ASA users (88.4%) who said it was prescribed by a physician. Pharmacy medication records indicated that there were 74 users of ASA. The proportion of agreement for ASA use was 93.8%, and kappa coefficient was 0.87 (95% confidence interval: 0.80-0.94). The sensitivity, specificity, and positive predictive value of the pharmacy data were all high. A large proportion of ASA use is documented in pharmacy records in Quebec. Thus, the information regarding ASA use in pharmacy records is reliable. This result may not be reproducible in other settings where pharmaceutical reimbursement rules are different.

  14. Density dependence of relaxation dynamics in glass formers, and ...

    Indian Academy of Sciences (India)

    Fragility, quantifying the rapidity of variation of relaxation times, is analysed for a series of model glass formers, which differ in the softness of their interparticle interactions. In an attempt to rationalize experimental observations in colloidal suspensions that softer interactions lead to stronger (less fragile) glassformers, we ...

  15. Density dependence of relaxation dynamics in glass formers, and ...

    Indian Academy of Sciences (India)

    Anshul D S Parmar

    Abstract. Fragility, quantifying the rapidity of variation of relaxation times, is analysed for a series of model glass formers, which differ in the softness of their interparticle interactions. In an attempt to rationalize experimental observations in colloidal suspensions that softer interactions lead to stronger (less fragile) glass.

  16. Quantifying the Effects of Prior Acetyl-Salicylic Acid on Sepsis-Related Deaths: An Individual Patient Data Meta-Analysis Using Propensity Matching

    NARCIS (Netherlands)

    Trauer, James; Muhi, Stephen; McBryde, Emma S.; Al Harbi, Shmeylan A.; Arabi, Yaseen M.; Boyle, Andrew J.; Cartin-Ceba, Rodrigo; Chen, Wei; Chen, Yung-Tai; Falcone, Marco; Gajic, Ognjen; Godsell, Jack; Gong, Michelle Ng; Kor, Daryl; Lösche, Wolfgang; McAuley, Daniel F.; O'Neal, Hollis R.; Osthoff, Michael; Otto, Gordon P.; Sossdorf, Maik; Tsai, Min-Juei; Valerio-Rojas, Juan C.; van der Poll, Tom; Violi, Francesco; Ware, Lorraine; Widmer, Andreas F.; Wiewel, Maryse A.; Winning, Johannes; Eisen, Damon P.

    2017-01-01

    Objective: The primary objective was to conduct a meta-analysis on published observational cohort data describing the association between acetyl-salicylic acid (aspirin) use prior to the onset of sepsis and mortality in hospitalized patients. Study Selection: Studies that reported mortality in

  17. Oral chemoprevention with acetyl salicylic Acid, vitamin d and calcium reduces the risk of tobacco carcinogen-induced bladder tumors in mice

    DEFF Research Database (Denmark)

    Pommergaard, Hans-Christian; Burcharth, J; Rosenberg, J

    2013-01-01

    , and diet with chemoprevention (acetyl salicylic acid, 1-alpha 25(0H)2-vitamin D3 and calcium). There were significantly fewer tumors (0 (0-0) vs. 0 (0-2), p = .045) and fewer animals with tumors (0/20 vs. 5/20, p = .045) in the chemoprevention group compared with controls. Thus, chemoprevention diet...

  18. Acetyl salicylic acid and 24-epibrassinolide attenuate decline in photosynthesis, chlorophyll contents and membrane thermo- stability in tomato (lycopersicon esculentum mill.) under heat stress

    International Nuclear Information System (INIS)

    Khan, A.R.; Hui, C.Z.; Ghazanfar, B.

    2015-01-01

    The effect of exogenous application of varying levels of 24-epibrassinolide (0.75, 1.5 and 3 micro M) and acetyl salicylic acid (0.25, 0.75 and 1.25 micro M) for induction of heat tolerance in terms of their effect on photosynthesis, chlorophyll content, membrane integrity and survival in four weeks old tomato (cultivar: Mei Jie Lo) seedlings under high temperature stress (46 degree C/4 h daily) for 21 days was investigated. The daily heat stress treatment had deleterious effects on seedlings but chemical treatments significantly reduced the magnitude of losses to different extents. 24-epibrassinolide (3 micro M) was over all the best treatment to improve survival (86.11%), photosynthesis (39.4%) and chlorophyll contents (26.12%) accompanied with initiation of flower buds and improved vegetative growth. Whereas acetyl salicylic acid (1.25 mM) best improved photosynthetic activity (40.6%) as compared to the untreated heat stressed control seedlings. Moreover, 3 micro M 24-epibrassinolide and 0.75 micro M acetyl salicylic acid reduced cell membrane injury to 8.3 and 6.9% respectively as compared with 22.4% in heat stressed control seedlings. However lower doses of acetyl salicylic acid (0.25 and 0.75 micro M) had slight (5.6 and 12.8%) inhibition effect on the photosynthesis than the heat stressed controls. Overall both acetyl salicylic acid and 24-epibrassinolide up regulated basal heat tolerance in tomato seedlings and studied concentrations demonstrated signature affect upon different parameters. Thus both chemical agents can be potential candidates for further investigations for exogenous application aiming at extension of tomato growth season in summer. (author)

  19. Pathways of Acetyl-CoA Metabolism Involved in the Reversal of Palmitate-Induced Glucose Production by Metformin and Salicylate.

    Science.gov (United States)

    Hayward, B; Molero, J C; Windmill, K; Sanigorski, A; Weir, J; McRae, N L; Aston-Mourney, K; Osborne, B; Liao, B; Walder, K R; Meikle, P J; Konstantopoulos, N; Schmitz-Peiffer, C

    2016-09-29

    The pathways through which fatty acids induce insulin resistance have been the subject of much research. We hypothesise that by focussing on the reversal of insulin resistance, novel insights can be made regarding the mechanisms by which insulin resistance can be overcome. Using global gene and lipid expression profiling, we aimed to identify biological pathways altered during the prevention of palmitate-induced glucose production in hepatocytes using metformin and sodium salicylate. FAO hepatoma cells were treated with palmitate (0.075 mM, 48 h) with or without metformin (0.25 mM) and sodium salicylate (2 mM) in the final 24 h of palmitate treatment, and effects on glucose production were determined. RNA microarray measurements followed by gene set enrichment analysis were performed to investigate pathway regulation. Lipidomic analysis and measurement of secreted bile acids and cholesterol were also performed. Reversal of palmitate-induced glucose production by metformin and sodium salicylate was characterised by co-ordinated down-regulated expression of pathways regulating acetyl-CoA to cholesterol and bile acid biosynthesis. All 20 enzymes that regulate the conversion of acetyl-CoA to cholesterol were reduced following metformin and sodium salicylate. Selected findings were confirmed using primary mouse hepatocytes. Although total intracellular levels of diacylglycerol, triacylglycerol and cholesterol esters increased with palmitate, these were not, however, further altered by metformin and sodium salicylate. 6 individual diacylglycerol, triacylglycerol and cholesterol ester species containing 18:0 and 18:1 side-chains were reduced by metformin and sodium salicylate. These results implicate acetyl-CoA metabolism and C18 lipid species as modulators of hepatic glucose production that could be targeted to improve glucose homeostasis. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Synthesis and Characterization of Two New Thiophene Acetyl Salicylic Acid Esters and their ortho- and para-effect on Anticancer Activity.

    Science.gov (United States)

    Unver, Hakan; Canturk, Zerrin

    2017-01-01

    The present study aimed to explore the cytotoxic effect of ortho- and para-positional isomers of thiophene acetyl salicylic acid esters against cancer and normal cell lines. Two new thiophene-2-acetic acid esters (2-((2-(thiophen-2-yl)acetyl)thio)benzoic acid and 4-((2-(thiophen-2- yl)acetyl)thio)benzoic acid) were synthesized and characterized by Elemental analysis, Fourier transform infrared spectroscopy, 1H-nuclear magnetic resonance (NMR), 13C-NMR and High-resolution mass spectroscopy. The compounds were tested for their in vitro cytotoxic activity against A549 and Caco2 tumor cell lines and CCD- 19Lu and CCD 841 CoN normal cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,4,diphenyltetrazolium bromide assay. 2-((2-(thiophene-2-yl)acetyl)thio)benzoic acid showed a higher activity with (IC50 = 239.88µM/mL) compared with a reference drug nearly as active as cyclophosphamide (IC50 = 257.11 µM/mL) on Caco2 cell line. Apoptosis was observed by flow cytometric analysis on Caco2 cells. Thus, positional isomerism is critical for the pharmacological properties of thiophene acetyl salicylic acid esters against colon cancer cell line compared with nonsmall cell lung cancer cell line. The ortho-isomer induced cell death and was much more potent than the para-isomer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Entropy Crisis, Defects and the Role of Competition in Monatomic Glass Formers

    OpenAIRE

    Gujrati, P. D.

    2007-01-01

    We establish the existence of an entropy crisis in monatomic glass formers. The work finally shows that the entropy crisis is ubiqutous in all supercooled liquids. We also study the roles of defects and energetic competition on the ideal glass.

  2. Glomus etunicatum root inoculation and foliar application of acetyl salicylic acid induced nacl tolerance by regulation of nacl and lenhx1 gene expression and improved photosynthetic performance in tomato seedlings

    International Nuclear Information System (INIS)

    Ghazanfar, B.; Chihui, C.; Liu, H.; Ahmad, I.; Khan, A.R.

    2016-01-01

    Salinity stress hampers plant growth and cause significant yield losses thus induction of salinity stress tolerance in crop plants is one of major goals of agriculture research. Arbuscular mycorhizae fungi Glomus etunicatum and acetyl salicylic acid were tested for induction of NaCl stress tolerance in tomato seedlings, cultivar No. 4. The seedlings were inoculated with Glomus etunicatum and exogenously sprayed with acetyl salicylic acid (0.30 mM) followed by salinity stress (150 mM). It was observed that both Glomus etunicatum and acetyl salicylic acid (singly or in combination) were significantly effective to minimize the injurious effects of salinity by improving root morphological parameters (length, diameter, surface area, volume and number of tips, nodes, bifurcations and connections), photosynthetic parameters (net photosynthesis Pn, stomatal conductance Gs) and chlorophyll contents compared to sole salinity treatment. The bio-inoculant Glomus etunicatum and chemical ameliorator acetyl salicylic acid also notably improved vegetative (fresh and dry weights) and reproductive growth (percent seedlings with flower buds and opened flowers, number of flower buds and opened flowers per seedling) of the plants as compared to the sole salinity treatment. The studied salt responsive genes (LeNHX1 and NaCl) were also regulated to different extents in seedling roots and leaves which was consistent with enhanced salinity stress tolerance. From these observations it is suggested that the individual or synergetic use of the AMF (Glomus etunicatum) and acetyl salicylic acid can be useful for tomato cultivation in the marginally salinity effected soils and warrants further investigations. (author)

  3. Evidence of a one-dimensional thermodynamic phase diagram for simple glass-formers

    DEFF Research Database (Denmark)

    Hansen, H. W.; Sanz, A.; Adrjanowicz, K.

    2018-01-01

    Glass formers show motional processes over an extremely broad range of timescales, covering more than ten orders of magnitude, meaning that a full understanding of the glass transition needs to comprise this tremendous range in timescales. Here we report simultaneous dielectric and neutron spectr...

  4. The Role of Dermcidin Isoform 2: A Two-Faceted Atherosclerotic Risk Factor for Coronary Artery Disease and the Effect of Acetyl Salicylic Acid on It

    Directory of Open Access Journals (Sweden)

    Rajeshwary Ghosh

    2012-01-01

    Full Text Available Hypertension and diabetes mellitus are considered to be two major atherosclerotic risk factors for coronary artery disease (CAD. A stress-induced protein identified to be dermcidin isoform 2 of Mr. 11 kDa from blood plasma of hypertensive persons when injected (0.1 μM in rabbits increased the systolic pressure by 77% and diastolic pressure by 45% over the controls within 2 h. Ingestion of acetyl salicylic acid (150 mg/70 kg by these subjects reduced systolic (130 mm Hg and diastolic pressures (80 mm Hg with reduction of plasma dermcidin level to normal ranges (9 nM. The protein was found to be a potent activator of platelet cyclooxygenase and inhibited insulin synthesis. Aspirin was found to reduce hypertension by reduction of plasma dermcidin level, neutralized the effect of cyclooxygenase, and restored the pancreatic insulin synthesis through NO synthesis. These results indicated that dermcidin could be a novel atherosclerotic risk factor for its hypertensive and diabetogenic effects.

  5. Mechanism of Acetyl Salicylic Acid (Aspirin Degradation under Solar Light in Presence of a TiO2-Polymeric Film Photocatalyst

    Directory of Open Access Journals (Sweden)

    Debjani Mukherjee

    2016-04-01

    Full Text Available Application of titanium dioxide (TiO2 as a photocatalyst has presented a promising avenue for the safe photocatalytic degradation of pollutants. Increasing levels of the release of pharmaceuticals in the environment and formation of the intermediates during their degradation may impose health and environmental risks and therefore require more attention. Photocatalytic degradation of acetylsalicylic acid (aspirin was carried out in the presence of the TiO2-filled polymeric film as a photocatalyst under solar light irradiation. The polymeric film incorporates TiO2 in the matrix, which acts as a photocatalyst under solar illumination and degrades the acetyl salicylic acid (ASA into a range of organic compounds before complete demineralization (formation of carbon dioxide and water as final products. Among the intermediates, acetic acid was found to be present in a larger amount compared to other organic acids. The qualitative/quantitative analyses of the intermediates resulted in the determination of the most probable reaction’s mechanism in the degradation process. The mechanism of degradation of acetylsalicylic acid and its reaction pathway were developed from liquid chromatography/mass spectroscopy (LC/MS, Fourier Transform Infra Red (FTIR and UV spectrophotometric analysis. It was found that hydroxyl groups were dominant in the degradation process compared to electrons and holes generated by TiO2. The total organic carbon (TOC analysis was also carried out to analyze the organic carbon content of the intermediates formed during the course of degradation.

  6. A fast ultra high pressure liquid chromatographic method for qualification and quantification of pharmaceutical combination preparations containing paracetamol, acetyl salicylic acid and/or antihistaminics.

    Science.gov (United States)

    Deconinck, E; Sacré, P Y; Baudewyns, S; Courselle, P; De Beer, J

    2011-09-10

    A fully validated UHPLC method for the identification and quantification of pharmaceutical preparations, containing paracetamol and/or acetyl salicylic acid, combined with anti-histaminics (phenylephrine, pheniramine maleate, diphenhydramine, promethazine) and/or other additives as quinine sulphate, caffeine or codeine phosphate, was developed. The proposed method uses a Waters Acquity BEH C18 column (2 mm × 100 mm, 1.7 μm) with a gradient using an ammonium acetate buffer pH 4.0 as aqueous phase and methanol as organic modifier. The obtained method was fully validated based on its measurement uncertainty (accuracy profile) and robustness tests. Calibration lines for all components were linear within the studied ranges. The relative bias and the relative standard deviations for all components were respectively smaller than 1.5% and 2%, the β-expectation tolerance limits did not exceed the acceptance limits of 10% and the relative expanded uncertainties were smaller than 5% for all of the considered components. A UHPLC method was obtained for the identification and quantification of these kind of pharmaceutical preparations, which will significantly reduce analysis times and workload for the laboratories charged with the quality control of these preparations. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers.

    Science.gov (United States)

    Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan

    2014-01-28

    We present results of molecular dynamics simulations for coarse-grained polymer brushes in a wide temperature range to investigate the factors that affect the glass transition in these systems. We focus on the influences of free surface, polymer-substrate interaction strength, grafting density, and chain length not only on the change of glass transition temperature Tg, but also the fragility D of the glass former. It is found that the confinement can enhance the dependence of the Tg on the cooling rate as compared to the bulk melt. Our layer-resolved analysis demonstrates that it is possible to control the glass transition temperature Tg of polymer brushes by tuning the polymer-substrate interaction strength, the grafting density, and the chain length. Moreover, we find quantitative differences in the influence range of the substrate and the free surface on the density and dynamics. This stresses the importance of long range cooperative motion in glass formers near the glass transition temperature. Furthermore, the string-like cooperative motion analysis demonstrates that there exists a close relation among glass transition temperature Tg, fragility D, and string length ⟨S⟩. The polymer brushes that possess larger string length ⟨S⟩ tend to have relatively higher Tg and smaller D. Our results suggest that confining a fragile glass former through forming polymer brushes changes not only the glass transition temperature Tg, but also the very nature of relaxation process.

  8. Evolution of the dynamic susceptibility of simple glass formers in the strongly supercooled regime

    International Nuclear Information System (INIS)

    Adichtchev, S; Blochowicz, T; Gainaru, C; Novikov, V N; Roessler, E A; Tschirwitz, C

    2003-01-01

    We discuss dielectric and light scattering susceptibility spectra of simple glass formers at temperatures above as well as below the critical temperature of the mode coupling theory (MCT). Close to T g the systems are characterized by the presence of a pronounced excess wing (type A glass formers). The data are analysed within a phenomenological approach, on the one hand, and within MCT, on the other. Among other work we present a complete interpolation of the dielectric data for glycerol (Lunkenheimer et al2000 Contemp. Phys. 41 15). The crossover temperature T x , defined by the emergence of the excess wing upon cooling, is extracted from the phenomenological analysis and found to agree well with the critical temperature T c , extracted from the MCT analysis at high temperatures. Below T x the evolution of the susceptibility is characterized by a universal appearance of the excess wing. No difference is observed for the non-fragile system with respect to fragile glass formers provided that the wing parameters are studied as a function of the correlation time τ α . Finally, a generalized scaling for the susceptibility minimum is proposed which is a phenomenological extension of that of MCT but now also includes the data below T c

  9. Role of Acetyl Salicylic Acid in Controlling the DOCA-Salt Induced Hypertension in Rats by Stimulating the Synthesis of r-Cortexin in the Kidney.

    Science.gov (United States)

    Maji, Uttam Kumar; Jana, Pradipta; Chatterjee, Mitali; Karmakar, Sanmay; Saha, Arup; Ghosh, Tamal Kanti

    2018-03-01

    Hypertension is a metabolic disease which is caused by vasoconstriction and that results into elevated blood pressure. A chronic hypertensive condition affects and even damages to various systems in the body. Presence of renal cortexin (r-cortexin), an antihypertensive protein, which is released from the kidney cortex controls the blood pressure. The effect of r-cortexin was mediated through nitric oxide (NO), a universal vasodilating agent. In our study, acetyl salicylic acid (aspirin), a well-known activator of the endothelial nitric oxide synthase (eNOS) induced r-cortexin synthesis. The hypertensive rat model was prepared by injecting deoxy corticosterone acetate (DOCA). Synthesis of r-cortexin was measured by the anti-r-cortexin antibody which was raised in adult white Wister albino rat model. NO level was determined by using methemoglobin method and later confirmed by chemiluminescence method. Change in blood pressure was determined indirectly by using NIBP monitoring system. Aspirin increased the r-cortexin expression from 64.36 ± 12.6 nM to 216.7 ± 21.31 nM in DOCA induced hypertensive rats. The mechanism was proved with the findings of increased level of NO from 0.4 to 1.9 µM. The DOCA induced blood pressure was also decreased from 139.39 ± 7.36 mm of Hg to 116.57 ± 6.89 mm of Hg in case of systolic blood pressure and in case of diastolic pressure from 110.41 ± 7 mm of Hg to 86.4 ± 2.76 mm of Hg that are quite approximate. So, from this study it has been found that aspirin induces the r-cortexin synthesis in kidney cortex through the activation of eNOS in DOCA induced hypertensive rats.

  10. Glass transition and density fluctuations in the fragile glass former orthoterphenyl

    International Nuclear Information System (INIS)

    Monaco, G.; Fioretto, D.; Comez, L.; Ruocco, G.

    2001-01-01

    High-resolution Brillouin light scattering is used to measure the dynamic structure factor of the fragile glass former orthoterphenyl (OTP) in a wide temperature range around the glass transition region and up to the boiling point. The whole set of spectra is described in terms of a phenomenological generalized hydrodynamic model. In the supercooled phase, we show the contemporary existence of the structural process, whose main features come out to be consistent with the results obtained with other spectroscopies, and of a secondary, activated process, which occurs on the 10 -11 s time scale and has a low activation energy (E a f =0.28 kcal/mol). This latter process, which is also present in the glassy phase and seems to be insensitive to the glass transition, is attributed to the coupling between the density modes and intramolecular degrees of freedom. In the normal liquid phase, the two processes merge together, and the resulting characteristic time is no longer consistent with those derived with other spectroscopies. The analysis points to the conclusion that, for what concerns the long-wavelength density fluctuations in fragile glass formers such as OTP, the universal dynamical features related to the glass transition come out clearly only in the supercooled phase and at frequencies lower than ∼10 6 Hz

  11. High-frequency dynamics of the glass former dibutylphthalate under pressure

    International Nuclear Information System (INIS)

    Mermet, A.; Krisch, M.; Duval, E.; Polian, A.

    2002-01-01

    The high-frequency dynamics of a fragile molecular glass former (dibutylphthalate) was studied through inelastic x-ray scattering (IXS), as a function of pressure and temperature. The mesoscopic structural arrest associated with the glass transition process was tracked by following upon cooling the inelastic excitations at fixed Q points in the dispersion curves, at ambient pressure and 2 kbar. The application of pressure to this system induces an offset between the macroscopic glass transition temperature T g and the mesoscopic glass transition temperature, as determined from IXS. The concomitant fragility decrease of dibutylphthalate under pressure unveils that the stronger the glass former is, the more its mesoscopic dynamics differ from the macroscopic regime. This trend is interpreted as the signature of a nanoscopic inhomogeneous elastic network. Further aspects of this system are obtained when studying the temperature dependence of its nonergodicity factor f Q (T). The chemical specificity of the molecule is suggested to be responsible for the nonobservation of a critical temperature T c in dibutylphthalate up to ∼300 K

  12. Density-temperature scaling of the fragility in a model glass-former

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Sengupta, Shiladitya; Sastry, Srikanth

    2013-01-01

    . Such a scaling, referred to as density-temperature (DT) scaling, is exact for liquids with inverse power law (IPL) interactions but has also been found to be approximately valid in many non-IPL liquids. We have analyzed the consequences of DT scaling on the density dependence of the fragility in a model glass......Dynamical quantities e.g. diffusivity and relaxation time for some glass-formers may depend on density and temperature through a specific combination, rather than independently, allowing the representation of data over ranges of density and temperature as a function of a single scaling variable......-former. We find the density dependence of kinetic fragility to be weak, and show that it can be understood in terms of DT scaling and deviations of DT scaling at low densities. We also show that the Adam-Gibbs relation exhibits DT scaling and the scaling exponent computed from the density dependence...

  13. Numerical detection of the Gardner transition in a mean-field glass former.

    Science.gov (United States)

    Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Rainone, Corrado; Seoane, Beatriz; Zamponi, Francesco

    2015-07-01

    Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.

  14. Dynamic Properties of Glass-Formers Governed by the Frequency Dispersion of the Structural α-Relaxation: Examples from Prilocaine.

    Science.gov (United States)

    Wojnarowska, Z; Rams-Baron, M; Knapik, J; Ngai, K L; Kruk, D; Paluch, M

    2015-10-01

    General and fundamental properties of glass-formers of various chemical bonding and physical structures have been found in the recent past. These important findings should be key to gain basic understanding of the dynamics at all time scales leading to glass transition. However, the entirety of these general properties has not been found in a single glass-former. For others to appreciate the importance of these properties, they need to collect the supporting experimental data from different glass-formers scattered over many publications. This hurdle may account for the current lack of universal recognition of the importance of these general properties by the research community. In this paper we present experimental studies of the dynamic processes over a broad range of time scales of a single glass-former, prilocaine. Practically the entire collection of fundamental properties has been found in this system. The advance should heighten the awareness of the importance of these properties in anyone's effort to solve the glass transition problem.

  15. Molecular dissipation phenomena of nanoscopic friction in the heterogeneous relaxation regime of a glass former.

    Science.gov (United States)

    Sills, Scott; Gray, Tomoko; Overney, René M

    2005-10-01

    Nanoscale sliding friction involving a polystyrene melt near its glass transition temperature Tg (373 K) exhibited dissipation phenomena that provide insight into the underlying molecular relaxation processes. A dissipative length scale that shows significant parallelism with the size of cooperatively rearranging regions (CRRs) could be experimentally deduced from friction-velocity isotherms, combined with dielectric loss analysis. Upon cooling to approximately 10 K above Tg, the dissipation length Xd grew from a segmental scale of approximately 3 A to 2.1 nm, following a power-law relationship with the reduced temperature Xd approximately TR-phi. The resulting phi=1.89+/-0.08 is consistent with growth predictions for the length scale of CRRs in the heterogeneous regime of fragile glass formers. Deviations from the power-law behavior closer to Tg suggest that long-range processes, e.g., the normal mode or ultraslow Fischer modes, may couple with the alpha relaxation, leading to energy dissipation in domains of tens of nanometers.

  16. Configurational entropy of polar glass formers and the effect of electric field on glass transition.

    Science.gov (United States)

    Matyushov, Dmitry V

    2016-07-21

    A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ρ(γ)/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data for excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.

  17. Effects of water contamination on the supercooled dynamics of a hydrogen-bonded model glass former.

    Science.gov (United States)

    Sjöström, Johan; Bergman, Rikard; Wadell, Carl; Moberg, Tobias; Swenson, Jan; Mattsson, Johan

    2011-03-03

    Broad-band dielectric spectroscopy is a commonly used tool in the study of glass-forming liquids. The high sensitivity of the technique together with the wide range of probed time scales makes it a powerful method for investigating the relaxation spectra of liquids. One particularly important class of glass-forming liquids that is often studied using this technique consists of liquids dominated by hydrogen (H) bond interactions. When investigating such liquids, particular caution has to be taken during sample preparation due to their often highly hygroscopic nature. Water can easily be absorbed from the atmosphere, and dielectric spectroscopy is a very sensitive probe of such contamination due to the large dipole moment of water. Our knowledge concerning the effects of small quantities of water on the dielectric properties of these commonly investigated liquids is limited. We here demonstrate the effects due to the presence of small amounts of water on the dielectric response of a typical H-bonded model glass former, tripropylene glycol. We show how the relaxation processes present in the pure liquid are affected by addition of water, and we find that a characteristic water induced relaxation response is observed for water contents as low as 0.15 wt%. We stress the importance of careful purification of hygroscopic liquids before experiments and quantify what the effects are if such procedures are not undertaken. © 2011 American Chemical Society

  18. Raman and DSC studies of fragility in tellurium-zinc oxide glass formers

    International Nuclear Information System (INIS)

    Stavrou, Elissaios; Kripotou, Sotiria; Raptis, Constantine; Turrell, Sylvia; Syassen, Karl

    2011-01-01

    Raman scattering and differential scanning calorimetry (DSC) measurements have been carried out in four mixed (TeO 2 ) 1-x (ZnO) x (x = 0.1, 0.2, 0.3, 0.4) glasses at high temperatures (Raman and DSC through the glass transition) and high pressures (Raman) with the aim of determining the fragility of these glass forming oxides. Four different criteria, corresponding to four parameters, were applied to assess the fragility of the glasses. From the DSC studies, we have obtained the fragility parameter m which corresponds to the slopes of Arrhenius (lnQ vs. 1/T g , were Q is the heating rate) plots, and the glass transition width ΔT g . Also, from the low-frequency Raman scattering, and in particular the boson peak intensity of the glasses at T g , we have estimated the fragility ratio r R (T g ) = I min /I max whose value serves as another (empirical) fragility criterion. Finally, from high pressure Raman measurements on the glasses, we have estimated the Grueneisen parameter γ T for each glass, which constitutes the fourth fragility parameter adopted in this work. Considering the four parameters ΔT g , m, r (T g ) and γ T and the generally accepted (empirical) fragility criteria, we conclude that the mixed tellurium-zinc oxides constitute strong-to-intermediate glass formers (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Evolution of dynamic susceptibility in molecular glass formers-a critical assessment

    International Nuclear Information System (INIS)

    Brodin, A; Gainaru, C; Porokhonskyy, V; Roessler, E A

    2007-01-01

    Dielectric, depolarized light scattering (LS) and optical Kerr effect (OKE) data are critically discussed in an attempt to achieve a common interpretation of the evolution of dynamic susceptibility in molecular glass formers at temperatures down to the glass transition T g . The so-called intermediate power-law, observed in OKE data below a certain temperature T x , is identified with the excess wing, long since known from dielectric spectroscopy, with a temperature-independent exponent. This is in contrast with several recent analyses that concluded a considerable temperature dependence of spectral shapes. We introduce a new approach to disentangle α-peak and excess wing contributions in the dielectric spectra, which allows for frequency-temperature superposition (FTS) of the α-process at all temperatures above T g . From the LS spectra we conclude, in particular, that FTS holds even at temperatures well above the melting point, i.e. in normal equilibrium liquids. Attempting to correlate the fragility and stretching, our conclusions are opposite to those made previously. Specifically, we observe that a high fragility is associated with a less stretched relaxation function

  20. Characterization of Simulant LAW Envelope A, B, and C with Glass Formers

    International Nuclear Information System (INIS)

    Hansen, E.K.

    2000-01-01

    The River Protection Project-Waste Treatment Plant (RPP-WPT) pretreatment and immobilization processes being developed by the DOE Office of River Protection will decontaminate High Level Waste (HLW) Envelopes A and B supernates using crossflow filtration followed by cesium and technetium ion exchange. Envelope C will undergo Sr/TRU precipitation prior to filtration to remove chelated actinides. The decontaminated supernates, now called low activity waste (LAW), will be concentrated through the LAW Melter Feed Evaporator. The concentrated LAW Melter Feed will be mixed with glass forming minerals and chemicals in an in the LAW Melter Feed Preparation Tank. The resulting slurry is then transferred to a Melter Feed Tank from which it is fed to one of the joule-heated, refractory-lined melters. Characterization of the melter feed slurry is required to complete the design of the RPP-WPT slurry feed systems. This report discusses the results obtained from the task, ''Bench Scale Mixing - Characterization of Simulant LAW Envelope A (AN105), B (AZ101), and C (AN107) With Glass Formers''. This task characterized the physical and chemical properties (rheology, particle size, weight percent soluble and insoluble solids, and chemical composition) of simulated LAW Melter feeds made from the different envelopes mentioned above. The goal of this task was to provide data for the design of the RPP-WPT Melter feed system

  1. Reexamination of the evolution of the dynamic susceptibility of the glass former glycerol.

    Science.gov (United States)

    Adichtchev, S; Blochowicz, T; Tschirwitz, C; Novikov, V N; Rössler, E A

    2003-07-01

    The dielectric data of glycerol compiled by Lunkenheimer et al. [Contemp. Phys. 41, 15 (2000)] are reanalyzed within a phenomenological approach on the one hand, and within mode coupling theory (MCT), on the other. We present a complete interpolation of the dielectric data covering 17 decades in frequencies. The crossover temperature extracted from the phenomenological analysis of the slow response at low temperatures and defined by the emergence of the excess wing upon cooling agrees well with the critical temperature extracted from a MCT analysis of the dynamics at high temperatures including data that were not used in the first MCT analysis of glycerol by Lunkenheimer et al. [Phys. Rev. Lett. 77, 318 (1996)]. The crossover temperature is found to be T(c)=288+/-3 K, which is significantly higher than previously reported. Extracting the nonergodicity parameter f, the characteristic anomaly is only found when 1-f is inspected, since f is very close to 1. No difference for the evolution of the dynamic susceptibility is observed for the nonfragile system glycerol with respect to fragile glass formers provided that the evolution of the dynamics is studied as a function of the correlation time tau(alpha).

  2. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model

    International Nuclear Information System (INIS)

    Ngai, K. L.

    2015-01-01

    Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ 1 (f), the frequency dispersion of the third-order dielectric susceptibility, χ 3 (f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ 1 (f) and χ 3 (f) is the characteristic of the many-body relaxation

  3. Salicylate effects on a monolayer culture of gastric mucous cells from adult rats.

    OpenAIRE

    Ota, S; Razandi, M; Sekhon, S; Krause, W J; Terano, A; Hiraishi, H; Ivey, K J

    1988-01-01

    Aspirin, acetyl salicylic acid, damages gastric mucosal cells. This effect is considered related to its inhibition of prostaglandin synthesis. On the other hand, sodium salicylate has been reported to be cytoprotective against drug damage to gastric mucosa in vivo. One reason for this difference is that salicylic acid, unlike acetyl salicylic acid does not inhibit prostaglandin synthesis by gastric mucosa in vivo. Previous studies on tissue culture cells from our laboratory have required gast...

  4. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model

    Energy Technology Data Exchange (ETDEWEB)

    Ngai, K. L. [CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy and Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)

    2015-03-21

    Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ{sub 1}(f), the frequency dispersion of the third-order dielectric susceptibility, χ{sub 3}(f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ{sub 1}(f) and χ{sub 3}(f) is the characteristic of the many

  5. Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers

    International Nuclear Information System (INIS)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2014-01-01

    Molecular dynamics simulations are used to study the structural and dynamic properties of calcium aluminosilicate, (CaO-Al 2 O 3 ) 1−x (SiO 2 ) x , glass formers along three joins, namely, R = 1, 1.57, and 3, in which the silica content x can vary from 0 to 1. For all compositions, we determined the glass-transition temperature, the abundances of the non-bridging oxygen, triclusters, and AlO 5 structural units, as well as the fragility from the temperature evolution of the α-relaxation times. We clearly evidence the role played by the non-bridging oxygen linked either to Al atoms or Si atoms in the evolution of the glass-transition temperature as well as of the fragility as a function of silica content along the three joins

  6. Salicylate Hepatitis

    African Journals Online (AJOL)

    1974-04-09

    Apr 9, 1974 ... process appeared to be under control, the patient's fever disappeared and the sedimentation rate began to fall. Three weeks later (while still on 10 g salicylates a day) the patient suddenly developed a temperature of 39,5°<; and complained of anorexia and nausea. A maculopapular diffuse skin rash was ...

  7. Experimental evidence of high pressure decoupling between charge transport and structural dynamics in a protic ionic glass-former.

    Science.gov (United States)

    Wojnarowska, Z; Rams-Baron, M; Knapik-Kowalczuk, J; Połatyńska, A; Pochylski, M; Gapinski, J; Patkowski, A; Wlodarczyk, P; Paluch, M

    2017-08-01

    In this paper the relaxation dynamics of ionic glass-former acebutolol hydrochloride (ACB-HCl) is studied as a function of temperature and pressure by using dynamic light scattering and broadband dielectric spectroscopy. These unique experimental data provide the first direct evidence that the decoupling between the charge transport and structural relaxation exists in proton conductors over a wide T-P thermodynamic space, with the time scale of structural relaxation being constant at the liquid-glass transition (τ α  = 1000 s). We demonstrate that the enhanced proton transport, being a combination of intermolecular H + hopping between cation and anion as well as tautomerization process within amide moiety of ACB molecule, results in a breakdown of the Stokes-Einstein relation at ambient and elevated pressure with the fractional exponent k being pressure dependent. The dT g /dP coefficient, stretching exponent β KWW and dynamic modulus E a /ΔV # were found to be the same regardless of the relaxation processes studied. This is in contrast to the apparent activation volume parameter that is different when charge transport and structural dynamics are considered. These experimental results together with theoretical considerations create new ideas to design efficient proton conductors for potential electrochemical applications.

  8. Molecular glass formers in hard and soft confinement probed by {sup 31}P and {sup 2}H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Daniel; Gradmann, Sabine; Roessler, Ernst [Experimentalphysik II, Universitaet Bayreuth (Germany)

    2010-07-01

    Low molecular glass formers confined in nanoporous silica matrices (hard confinement) are investigated by different {sup 31}P and {sup 2}H NMR methods such as spin-lattice-, spin-spin relaxation, line-shape and stimulated echo decay. Decreasing the radius of the pores pronounced dynamic heterogeneities are observed. For example, the correlation function revealed by the stimulated echo exhibits a quasi-logarithmic decay in contrast to Kohlrausch decay in the bulk. As shown by 2D spectra the dynamic heterogeneities are transient in time, i.e., we observe exchange between slow and fast molecules. The effects are explained by assuming dynamics being inhomogeneous in space; that is the dynamics given by a correlation time {tau}(r) depend on the distance r from the confining wall. Similar NMR features are found for low molecular additives dissolved in polymer matrices (soft confinement). The additive dynamics are decoupled from those of the polymer, and liquid-like additive dynamics are revealed below T{sub g}, i.e., in a solid polymer matrix. Again, strongly stretched correlation functions are observed.

  9. Preservação in vitro da batata com ácido acetilsalicílico e duas fontes de carboidrato In vitro storage of potato under acetyl salicylic acid and two carbohydrate sources

    Directory of Open Access Journals (Sweden)

    Gerson Renan de Luces Fortes

    2001-10-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito de carboidratos e do ácido acetilsalicílico (AAS na preservação in vitro da batata (Solanum tuberosum L., cultivar Macaca. Brotações de 1,5 a 2,0 cm de comprimento foram transferidas para meio de MS, acrescido de mio-inositol (100 mg L-1 e ágar (6 g L-1. Testaram-se duas fontes de carboidrato, sacarose e manitol (87,6 mM, e cinco concentrações de AAS (0, 30, 60, 90 e 120 mg L-1. O delineamento foi em blocos casualizados com quatro repetições por tratamento e cada repetição formada por oito tubos de ensaio com uma brotação. O material foi mantido à temperatura de 25±2ºC, fotoperíodo de 16 horas e radiação de 19 miE m-2 s-1. O crescimento e o número de gemas nas hastes foram avaliados por três meses. Passados nove meses, a sobrevivência e o número de microtubérculos também foram avaliados. O uso de manitol, associado às concentrações a partir de 30 mg L-1 de AAS, proporcionou menor crescimento e formação de gemas nas hastes. No meio suplementado com sacarose, a sobrevivência e o número de microtubérculos foram maiores, independentemente das concentrações de AAS utilizadas, após nove meses de cultivo.The aim of this work was to evaluate the effect of carbohydrates and acetyl salicylic acid (ASA during the in vitro storage of potato (Solanum tuberosum L., cultivar Macaca. Stems derived from in vitro cultures were cut into 1.5 to 2.0 cm segments and inoculated in a MS medium supplemented with myo-inositol (100 mg L-1 and agar (6 g L-1. Sucrose and mannitol 87.6 mM and five ASA concentrations (0, 30, 60, 90 and 120 mg L-1 were tested. The stems were cultured on 10 mL medium in test tubes (20 x 150 mm and incubated in a growth chamber at 25±2ºC, 16 hour photoperiod and 19 muE m-2 s-1 radiation. The growth and the bud number formed in the stems for a period of three months were evaluated. Nine months later the survival percentage and the number of microtubers formed

  10. Methyl salicylate overdose

    Science.gov (United States)

    Methyl salicylate (oil of wintergreen) is a chemical that smells like wintergreen. It is used in many over-the- ... ache creams. It is related to aspirin. Methyl salicylate overdose occurs when someone swallows a dangerous amount ...

  11. Non-polymeric asymmetric binary glass-formers. I. Main relaxations studied by dielectric, 2H NMR, and 31P NMR spectroscopy

    Science.gov (United States)

    Pötzschner, B.; Mohamed, F.; Bächer, C.; Wagner, E.; Lichtinger, A.; Minikejew, R.; Kreger, K.; Schmidt, H.-W.; Rössler, E. A.

    2017-04-01

    In Paper I of this series of two papers we study the main relaxations of a binary glass former made of the low-Tg component tripropyl phosphate (TPP, Tg = 134 K) and of a specially synthesized (deuterated) spirobichroman derivative (SBC, Tg = 356 K) as the non-polymeric high-Tg component for the full concentration range. A large Tg contrast of the neat components is put into effect. Dielectric spectroscopy and different techniques of 2H nuclear magnetic resonance (NMR) as well as of 31P NMR spectroscopy allow to selectively probe the dynamics of the components. For all concentrations, two well separated liquid-like processes are identified. The faster α2-process associated with the low-Tg component TPP shows pronounced dynamic heterogeneities reflected by quasi-logarithmic correlation functions at low TPP concentrations. The slower α1-process involves the reorientation of the high-Tg component SBC. Its correlation function is Kohlrausch-like as in neat glass formers. The corresponding time constants and consequently their glass transition temperatures Tg1 and Tg2 differ more the lower the TPP concentration is. Plasticizer and anti-plasticizer effect, respectively, is observed. At low temperatures a situation arises that the TPP molecules isotropically reorient in an arrested SBC matrix (Tg2 TPP gets arrested too. We find indications that a fraction of the TPP molecule takes part in the slower α1-process of the high-Tg component. All the features known from polymer-plasticizer systems are rediscovered in this non-polymeric highly asymmetric binary mixture. In Paper II [B. Pötzschner et al., J. Chem. Phys. 146, 164504 (2017)] we study the secondary (β-) relaxations of the mixtures.

  12. Salicylic Acid Topical

    Science.gov (United States)

    ... the package label for more information.Apply a small amount of the salicylic acid product to one or two small areas you want to treat for 3 days ... know that children and teenagers who have chicken pox or the flu should not use topical salicylic ...

  13. Allergic contact dermatitis from ethylhexyl salicylate and other salicylates

    DEFF Research Database (Denmark)

    Mortz, Charlotte G; Thormann, Henrik; Goossens, An

    2010-01-01

    Allergic contact dermatitis (ACD) from salicylates present in topical products is uncommon. Most publications about ACD from salicylates are case reports describing only a few patients. Cross-reactivity between salicylates is not commonly reported. This article describes allergic contact dermatitis...

  14. Synthesis of isotopically labelled salicylates

    International Nuclear Information System (INIS)

    Hawkins, D.R.; Pryor, R.W.

    1981-01-01

    [ 13 C-carboxyl]Salicylic acid has been prepared by carbonation of 2-benzyloxybromobenzene followed by reductive debenzylation. Deuterium and tritium labelled salicylic acid and 2 H 2 / 13 C-salicylic acid were prepared by reduction of the 3,5-dibromo derivatives using Raney Ni-Al. Deuterium labelled salicylic acid containing up to four deuterium atoms was prepared by catalytic exchange with Raney Ni-Al in 5% NaOD/D 2 O. (author)

  15. Composition Dependence of the Na(+) Ion Conductivity in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] Mixed Glass Former Glasses: A Structural Interpretation of a Negative Mixed Glass Former Effect.

    Science.gov (United States)

    Martin, Steve W; Bischoff, Christian; Schuller, Katherine

    2015-12-24

    A negative mixed glass former effect (MGFE) in the Na(+) ion conductivity of glass has been found in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] glasses where the Na(+) ion conductivity is significantly smaller for all of the ternary glasses than either of the binary end-member glasses. The minimum conductivity of ∼0.4 × 10(-6) (Ω cm)(-1) at 25 °C occurs for the x = 0.7 glass. Prior to this observation, the alkali ion conductivity of sulfide glasses at constant alkali concentration, but variable ratio of one glass former for another (x) ternary mixed glass former (MGF) glasses, has always produced a positive MGFE in the alkali ion conductivity; that is, the ternary glasses have always had higher ion conductivities that either of the end-member binary glasses. While the Na(+) ion conductivity exhibits a single global minimum value, the conductivity activation energy exhibits a bimodal double maximum at x ≈ 0.4 and x ≈ 0.7. The modified Christensen-Martin-Anderson-Stuart (CMAS) model of the activation energies reveals the origin of the negative MGFE to be due to an increase in the dielectric stiffness (a decrease in relative dielectric permittivity) of these glasses. When coupled with an increase in the average Na(+) ion jump distance and a slight increase in the mechanical stiffness of the glass, this causes the activation energy to go through maximum values and thereby produce the negative MGFE. The double maximum in the conductivity activation energy is coincident with double maximums in CMAS calculated strain, ΔES, and Coulombic, ΔEC, activation energies. In these ternary glasses, the increase in the dielectric stiffness of the glass arises from a negative deviation of the limiting high frequency dielectric permittivity as compared to the binary end-member glasses. While the CMAS calculated total activation energies ΔEact = ΔES + ΔEC are found to reproduce the overall shape of the composition dependence of the measured ΔEact values, they are consistently

  16. Non-polymeric asymmetric binary glass-formers. II. Secondary relaxation studied by dielectric, 2H NMR, and 31P NMR spectroscopy

    Science.gov (United States)

    Pötzschner, B.; Mohamed, F.; Bächer, C.; Wagner, E.; Lichtinger, A.; Bock, D.; Kreger, K.; Schmidt, H.-W.; Rössler, E. A.

    2017-04-01

    We investigate the secondary (β-) relaxations of an asymmetric binary glass former consisting of a spirobichroman derivative (SBC; Tg = 356 K) as the high-Tg component and the low-Tg component tripropyl phosphate (TPP; Tg = 134 K). The main relaxations are studied in Paper I [B. Pötzschner et al., J. Chem. Phys. 146, 164503 (2017)]. A high Tg contrast of ΔTg = 222 K is put into effect in a non-polymeric system. Component-selective studies are carried out by combining results from dielectric spectroscopy (DS) for mass concentrations cTPP ≥ 60% and those from different methods of 2H and 31P NMR spectroscopy. In the case of NMR, the full concentration range (10% ≤ cTPP ≤ 100%) is covered. The neat components exhibit a β-relaxation (β1 (SBC) and β2 (TPP)). The latter is rediscovered by DS in the mixtures for all concentrations with unchanged time constants. NMR spectroscopy identifies the β-relaxations as being alike to those in neat glasses. A spatially highly restricted motion with angular displacement below ±10° encompassing all molecules is involved. In the low temperature range, where TPP shows the typical 31P NMR echo spectra of the β2-process, very similar spectral features are observed for the (deuterated) SBC component by 2H NMR, in addition to its "own" β1-process observed at high temperatures. Apparently, the small TPP molecules enslave the large SBC molecules to perform a common hindered reorientation. The temperature dependence of the spin-lattice relaxation time of both components is the same and reveals an angular displacement of the SBC molecules somewhat smaller than that of TPP, though the time constants τβ2 are the same. Furthermore, T1(T) of TPP in the temperature region of the β2-process is absolutely the same as in the mixture TPP/polystyrene investigated previously. It appears that the manifestations of the β-process introduced by one component are essentially independent of the second component. Finally, at cTPP ≤ 20% one

  17. Short range structural models of the glass transition temperatures and densities of 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former glasses.

    Science.gov (United States)

    Bischoff, Christian; Schuller, Katherine; Martin, Steve W

    2014-04-03

    The 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former (MGF) glass system exhibits a nonlinear and nonadditive negative change in the Na(+) ion conductivity as one glass former, PS5/2, is exchanged for the other, GeS2. This behavior, known as the mixed glass former effect (MGFE), is also manifest in a negative deviation from the linear interpolation of the glass transition temperatures (T(g)) of the binary end-member glasses, x = 0 and x = 1. Interestingly, the composition dependence of the densities of these ternary MGF glasses reveals a slightly positive MGFE deviation from a linear interpolation of the densities of the binary end-member glasses, x = 0 and x = 1. From our previous studies of the structures of these glasses using IR, Raman, and NMR spectroscopies, we find that a disproportionation reaction occurs between PS7/2(4-) and GeS3(2-) units into PS4(3-) and GeS5/2(1-) units. This disproportionation combined with the formation of Ge4S10(4-) anions from GeS5/2(1-) groups leads to the negative MGFE in T(g). A best-fit model of the T(g)s of these glasses was developed to quantify the amount of GeS5/2(1-) units that form Ge4S10(4-) molecular anions in the ternary glasses (∼ 5-10%). This refined structural model was used to develop a short-range structural model of the molar volumes, which shows that the slight densification of the ternary glasses is due to the improved packing efficiency of the germanium sulfide species.

  18. IR, Raman, and NMR studies of the short-range structures of 0.5Na2S + 0.5[xGeS2 + (1-x)PS(5/2)] mixed glass-former glasses.

    Science.gov (United States)

    Bischoff, Christian; Schuller, Katherine; Dunlap, Nathan; Martin, Steve W

    2014-02-20

    A nonlinear and nonadditive composition-dependent change of the ionic conductivity in mixed glass-former (MGF) glasses when one glass former, such as PS(5/2), is replaced by a second glass former, such as GeS2, at constant alkali modifier concentrations, such as Na2S, is known as the mixed glass-former effect (MGFE). Alkali ion conducting glasses are of particular interest for use as solid electrolytes in alkali-based all-solid-state batteries because sulfide amorphous materials have significantly higher alkali ion conductivities than their oxide glass counterparts. In this study of the ternary MGF system Na2S + GeS2 + PS(5/2), we report the careful structural characterization of these glasses using a combination of vibrational, infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Our measurements of the 0.5Na2S + 0.5[xGeS2 + (1-x)PS(5/2)] MGF system show that this glass system exhibits a strongly negative MGFE and non-Arrhenius ionic conductivities. While this negative MGFE in the Na(+) ion conductivity makes these glasses less attractive for use in solid-state Na batteries, the structural origin of this effect is important to better understand the mechanisms of ion conduction in the glassy state. For these reasons, we have examined the structures of ternary 0.5Na2S + 0.5[xGeS2 + (1-x)PS(5/2)] glasses using Raman, IR, and (31)P MAS NMR spectroscopies. In these studies, it is found that the substitution of PS(5/2) by GeS2, that is, increasing x, leads to unequal sharing of the Na(+) in these glasses. Thus, in all MGF compositions, phosphorus groups are associated with a disproportionately larger fraction, f(Na(P)) > 0.5(1 - x), of the Na(+) ions while the germanium groups are found to be Na(+)-deficient relative to the total amount of Na(+) present in the glass, that is, f(Na(Ge)) structural model is developed for these glasses and is based on the germanium and phosphorus SRO groups in these glasses as a first step in understanding the unique

  19. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity

    Science.gov (United States)

    Ford, Rebecca J.; Fullerton, Morgan D.; Pinkosky, Stephen L.; Day, Emily A.; Scott, John W.; Oakhill, Jonathan S.; Bujak, Adam L.; Smith, Brennan K.; Crane, Justin D.; Blumer, Regje M.; Marcinko, Katarina; Kemp, Bruce E.; Gerstein, Hertzel C.; Steinberg, Gregory R.

    2017-01-01

    Metformin is the mainstay therapy for type 2 diabetes (T2D) and many patients also take salicylate-based drugs [i.e., aspirin (ASA)] for cardioprotection. Metformin and salicylate both increase AMP-activated protein kinase (AMPK) activity but by distinct mechanisms, with metformin altering cellular adenylate charge (increasing AMP) and salicylate interacting directly at the AMPK β1 drug-binding site. AMPK activation by both drugs results in phosphorylation of ACC (acetyl-CoA carboxylase; P-ACC) and inhibition of acetyl-CoA carboxylase (ACC), the rate limiting enzyme controlling fatty acid synthesis (lipogenesis). We find doses of metformin and salicylate used clinically synergistically activate AMPK in vitro and in vivo, resulting in reduced liver lipogenesis, lower liver lipid levels and improved insulin sensitivity in mice. Synergism occurs in cell-free assays and is specific for the AMPK β1 subunit. These effects are also observed in primary human hepatocytes and patients with dysglycaemia exhibit additional improvements in a marker of insulin resistance (proinsulin) when treated with ASA and metformin compared with either drug alone. These data indicate that metformin–salicylate combination therapy may be efficacious for the treatment of non-alcoholic fatty liver disease (NAFLD) and T2D. PMID:25742316

  20. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity.

    Science.gov (United States)

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-05-31

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs.

  1. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity

    Science.gov (United States)

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-01-01

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs. DOI: http://dx.doi.org/10.7554/eLife.11156.001 PMID:27244239

  2. Salicylate toxicity model of tinnitus

    Science.gov (United States)

    Stolzberg, Daniel; Salvi, Richard J.; Allman, Brian L.

    2012-01-01

    Salicylate, the active component of the common drug aspirin, has mild analgesic, antipyretic, and anti-inflammatory effects at moderate doses. At higher doses, however, salicylate temporarily induces moderate hearing loss and the perception of a high-pitch ringing in humans and animals. This phantom perception of sound known as tinnitus is qualitatively similar to the persistent subjective tinnitus induced by high-level noise exposure, ototoxic drugs, or aging, which affects ∼14% of the general population. For over a quarter century, auditory scientists have used the salicylate toxicity model to investigate candidate biochemical and neurophysiological mechanisms underlying phantom sound perception. In this review, we summarize some of the intriguing biochemical and physiological effects associated with salicylate-induced tinnitus, some of which occur in the periphery and others in the central nervous system. The relevance and general utility of the salicylate toxicity model in understanding phantom sound perception in general are discussed. PMID:22557950

  3. Salicylate toxicity model of tinnitus

    Directory of Open Access Journals (Sweden)

    Daniel eStolzberg

    2012-04-01

    Full Text Available Salicylate, the active component of the common drug aspirin, has mild analgesic, antipyretic, and anti-inflammatory effects at moderate doses. At higher doses, however, salicylate temporarily induces moderate hearing loss and the perception of a high-pitch ringing in humans and animals. This phantom perception of sound known as tinnitus is qualitatively similar to the persistent subjective tinnitus induced by high-level noise exposure, ototoxic drugs or aging which affects ~14% of the general population. For over a quarter century, auditory scientists have used the salicylate toxicity model to investigate candidate biochemical and neurophysiological mechanisms underlying phantom sound perception. In this review, we summarize some of the intriguing biochemical and physiological effects associated with salicylate-induced tinnitus, some of which occur in the periphery and others in the central nervous system. The relevance and general utility of the salicylate toxicity model in understanding phantom sound perception in general are discussed.

  4. Hypocalcemic action of the several types of salicylic acid analogues.

    Science.gov (United States)

    Kato, Y; Nishishita, K; Sakai, H; Tatsumi, M; Yamamoto, K

    1989-02-01

    The present study was performed to see the structure-activity relationships on the aspirin-induced hypocalcemia. Several kinds of salicylic acid (SA) analogues administered orally with a stomach tube. In general, the drugs were suspended in the 2% CMC solution. At the scheduled times after the treatment, 60 microliters of the blood was collected to determine the level of calcium. Aspirin, sodium salt of o-hydroxybenzoic acid (Na-salicylate), sodium salt of m- and p-hydroxybenzoic acid (HBA), 2,5-dihydroxybenzoic acid (DHBA), PAS sodium dihydrate (PAS-Na), salicylamide (SAM) and 2% CMC control were used. Hypocalcemia was induced by aspirin and Na-salicylate but not by m- and p-HBA-Na. In addition, DHBA and PAS caused hypocalcemia when they were administered intravenously but not orally. These results suggest that the carboxyl group must be adjacent to the hydroxyl group on the benzene ring to induce this type of hypocalcemia and that the SA structure would be able to induce hypocalcemia, even in the presence of the additional third substituent on the same ring. On the comparison between aspirin-DL lysine (water soluble aspirin) and SA-DL lysine, SA-DL lysine, which is not an inhibitor of PG synthetase, was more effective on the hypocalcemic action than ASP-DL lysine. The phenomenon was observed at the stage especially immediately after intravenous injection, when the acetyl group may be more responsible to acetylate the PG synthetase in the aspirin-DL lysine group. The present results seems to be consistent with the previous hypothesis that PGs are not involved in the process of aspirin-induced hypocalcemia in the rat.

  5. 21 CFR 556.590 - Salicylic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salicylic acid. 556.590 Section 556.590 Food and... Residues of New Animal Drugs § 556.590 Salicylic acid. A tolerance of zero is established for residues of salicylic acid in milk from dairy animals. ...

  6. Overall Content of Salicylic Acid and Salicylates in Food Available on the European Market.

    Science.gov (United States)

    Kęszycka, Paulina K; Szkop, Michał; Gajewska, Danuta

    2017-12-20

    The study aimed to determine the salicylates content in 112 products available on the European market. Quantitative determination of free and conjugated forms of salicylic acid in food was performed using reversed-phase high-performance liquid chromatography with fluorescence detection. The salicylates contents ranged from 0 to 1675.79 (μg/100 g). The results of this study confirm the presence of salicylates in food products, as well as a broad content diversity of these compounds depending on the species, variety, and method of processing the food items. The results can be very helpful for nutritionists and dieticians in planning low-salicylates or high-salicylates diets.

  7. The highly fragile glass former Decalin

    International Nuclear Information System (INIS)

    Eibl, Stefan

    2009-01-01

    Systems exhibiting the glass transition can be classified by fragility. In this work we studied structural and dynamical aspects of highly fragile C 10 H 18 Decalin. Trans Decalin is locked into a pseudo-flat centrosymmetric conformation, while cis Decalin interchanges dynamically between chiral, pseudo-spherical ground states. On investigation of the phase behaviour trans Decalin was found to crystallise rapidly and cleanly; its crystal structure could be determined. From the crystal structure the dynamics of crystalline trans Decalin could be calculated using ab-initio lattice energy calculations and compared to measurements. Using neutron diffraction and molecular dynamics simulations the amorphous structure of Decalin was investigated. The difference in structure to the common molecular liquid Cumene is significant. The features of the amorphous structure of sphere-like cis Decalin show strong resemblance to the ones of Argon and metallic glasses. The dynamics of Decalin were investigated in the slightly supercooled liquid range. Using neutron scattering and optical spectroscopy, data was collected for a wide spectral range and several temperatures. The data suggests high fragility for the generic Decalin mixture, which is in agreement with the reported results. By contrast to previous estimations, an extrapolation of our data indicates cis Decalin to be only slightly less fragile than the generic mixture. Finally a lower limit to the four point susceptibility function χ 4 could be calculated and the number of correlated molecules determined. The evolution of this value as a function of T g /T and relaxation time are in agreement with literature. (author) [fr

  8. [scpA the new salicylate hydroxylase gene localized on salicylate/caprolactam degradation plasmids].

    Science.gov (United States)

    Panov, A V; Volkova, O V; Puntus, I F; Esikova, T Z; Kosheleva, I A; Boronin, A M

    2013-01-01

    Both caprolactam and salicylate biodegradation by Pseudomonas salicylate/caprolactam degraders is controlled by large conjugative plasmids (SAL/CAP). Some of these plasmids determined to be the members of IncP-7 group. The new salicylate 1-hydroxylase gene (scpA) on SAL/CAP-plasmids has been detected and partially sequenced. Gene scpA was equally related to closest homologs nahG (NAH7), salA (P. reinekei MT1) and nahU (pND6-1), but identity of scpA to these genes did not exceed 72-74%. Synthesis of salicylate 1-hydroxylase ScpA was not induced by salicylate. This enzyme had wide substrate specificity and exhibited highest specific activity with 4-methylsalicylate and nonsubstituted salicylate. Besides pseudomonad's salicylate degradative conjugative plasmids without "classical" nah2-operon and harboring only salicylate 1-hydroxylase gene nahU have been firstly described.

  9. Extracorporeal Treatment for Salicylate Poisoning

    DEFF Research Database (Denmark)

    Juurlink, David N; Gosselin, Sophie; Kielstein, Jan T

    2015-01-01

    in poisoning. We conducted a systematic literature review followed by data extraction and summarized findings, following a predetermined format. The entire work group voted by a 2-round modified Delphi method to reach consensus on voting statements, using a RAND/UCLA Appropriateness Method to quantify......STUDY OBJECTIVE: Salicylate poisoning is a challenging clinical entity associated with substantial morbidity and mortality. The indications for extracorporeal treatments such as hemodialysis are poorly defined. We present a systematic review of the literature along with evidence- and consensus......-based recommendations on the use of extracorporeal treatment in salicylate poisoning. METHODS: The Extracorporeal Treatments in Poisoning (EXTRIP) Workgroup is a multidisciplinary group with international representation whose aim is to provide evidence-based recommendations on the use of extracorporeal treatments...

  10. The effect of radiation on some salicylates. 1. Steady state studies

    International Nuclear Information System (INIS)

    Paz, L.R. de la.

    1975-01-01

    This work was undertaken to obtain more quantitative information on the extent and nature of the degradation of some salicylates by ionizing radiation, especially gamma rays, and to gather data that could assist in the evaluation of the use of radiation for sterilization of this group of compounds which are extensively used as antipyretics, analgesics and anti-rheumatics. Salicylamide is not only a common medicinal, but also a model for the study of the effect of radiation on biological systems. A 3200 Ci Co-60 facility was used. Three salicylates were subjected to solid phase irradiation, namely: salicylamide, phenylsalicylate, and acetyl salicylic acid (aspirin). These compounds were purified by repeated recrystallization from water, methanol and benzene, respectively, until a constant melting point was obtained. Irradiation in the solid phase was made in doses from 2.5 to 240 Krad. Irradiation in the liquid phase (solution) was carried out in doses, ranging from 2000 to as high as 270,000 rad depending on the reactivity of the solution. The degradation products were separated by thin layer chromatography using Kieselgel F254 and SIF with fluorescence scintillator (Riedel-de Haen). The products were visualized with a Camag UV Universal lamp. Irradiation of the three salicylates showed very little decomposition even at doses very much higher than those required for radiation sterilization. Salicylamide appears to be the most stable giving an initial G(-salicylamide)-0.50. For both phenylsalicylate and acetylsalicylic acid only the G values at 150 Mrad were obtained as the amounts degraded at lower doses were too low for the sensitivity of the diffused reflectance method used. A G(-phenylsalicylate)-2 and G(-acetylsalicylate)-1.2 were obtained by this method. Salicylic acid is formed when aspirin is irradiated. It is concluded that this acid is one of the degradation products. Barring any toxic property of the minute substances formed, solid phase sterilization is

  11. Synthesis and some spectral properties of diphenylsilicon salicylate ...

    African Journals Online (AJOL)

    Synthesis and some spectral properties of diphenylsilicon salicylate and a comparision of the antifungal efficacy of diphenylsilicon chloride, acetate and salicylate and diphenyltin chloride, acetate and salicylate on Candida albicans.

  12. Synthesis of Ethyl Salicylate Using Household Chemicals

    Science.gov (United States)

    Solomon, Sally; Hur, Chinhyu; Lee, Alan; Smith, Kurt

    1996-02-01

    Ethyl salicylate is synthesized, isolated, and characterized in a three-step process using simple equipment and household chemicals. First, acetylsalicylic acid is extracted from aspirin tablets with isopropyl alcohol, then hydrolyzed to salicylic acid with muriatic acid, and finally, the salicylic acid is esterified using ethanol and a boric acid catalyst. The experiment can be directed towards high school or university level students who have sufficient background in organic chemistry to recognize the structures and reactions that are involved.

  13. Salicylic acid inhibits UV- and Cis-Pt-induced human immunodeficiency virus expression

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Panozzo, J.; Libertin, C.R.; Schreck, S.; South Carolina Univ., Columbia, SC

    1994-01-01

    Previous studies have shown that exposure of HeLa cells stably transfected with a human immunodeficiency virus-long terminal repeat-chloramphenicol acetyl transferase (HIV-LTR-CAT) construct to UV light-induced expression from the HIV LTR. By culturing the cells with salicylic acid we demonstrated dose-dependent repression of this induced HIV expression. Repression was evident if salicylic acid was administered 2 h before, at the same time as, or up to 6 h after exposure to the DNA-damaging agent. The kinetics were similar for UV- and for cis-Pt-induced HIV expression, and induction was dependent on the UV dose or cis-Pt concentration added to the culture. These results suggest a role for the prostaglandins or the cyclooxygenase pathway or both in HIV induction mediated by DNA-damaging agents

  14. Aspirin-Mediated Acetylation Protects Against Multiple Neurodegenerative Pathologies by Impeding Protein Aggregation.

    Science.gov (United States)

    Ayyadevara, Srinivas; Balasubramaniam, Meenakshisundaram; Kakraba, Samuel; Alla, Ramani; Mehta, Jawahar L; Shmookler Reis, Robert J

    2017-12-10

    Many progressive neurological disorders, including Alzheimer's disease (AD), Huntington's disease, and Parkinson's disease (PD), are characterized by accumulation of insoluble protein aggregates. In prospective trials, the cyclooxygenase inhibitor aspirin (acetylsalicylic acid) reduced the risk of AD and PD, as well as cardiovascular events and many late-onset cancers. Considering the role played by protein hyperphosphorylation in aggregation and neurodegenerative diseases, and aspirin's known ability to donate acetyl groups, we asked whether aspirin might reduce both phosphorylation and aggregation by acetylating protein targets. Aspirin was substantially more effective than salicylate in reducing or delaying aggregation in human neuroblastoma cells grown in vitro, and in Caenorhabditis elegans models of human neurodegenerative diseases in vivo. Aspirin acetylates many proteins, while reducing phosphorylation, suggesting that acetylation may oppose phosphorylation. Surprisingly, acetylated proteins were largely excluded from compact aggregates. Molecular-dynamic simulations indicate that acetylation of amyloid peptide energetically disfavors its association into dimers and octamers, and oligomers that do form are less compact and stable than those comprising unacetylated peptides. Hyperphosphorylation predisposes certain proteins to aggregate (e.g., tau, α-synuclein, and transactive response DNA-binding protein 43 [TDP-43]), and it is a critical pathogenic marker in both cardiovascular and neurodegenerative diseases. We present novel evidence that acetylated proteins are underrepresented in protein aggregates, and that aggregation varies inversely with acetylation propensity after diverse genetic and pharmacologic interventions. These results are consistent with the hypothesis that aspirin inhibits protein aggregation and the ensuing toxicity of aggregates through its acetyl-donating activity. This mechanism may contribute to the neuro-protective, cardio

  15. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Weinert, Brian Tate; Iesmantavicius, Vytautas; Moustafa, Tarek

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation...

  16. Relationship of Melatonin and Salicylic Acid in Biotic/Abiotic Plant Stress Responses

    OpenAIRE

    Josefa Hernández-Ruiz; Marino B. Arnao

    2018-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) was discovered in plants in 1995, while salicylic acid was the name given to the active ingredient of willow in 1838. From a physiological point of view, these two molecules present in plants have never been compared, even though they have a great number of similarities, as we shall see in this work. Both molecules have biosynthesis pathways that share a common precursor and both play a relevant role in the physiology of plants, especially in aspects r...

  17. 21 CFR 862.3830 - Salicylate test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Salicylate test system. 862.3830 Section 862.3830....3830 Salicylate test system. (a) Identification. A salicylate test system is a device intended to measure salicylates, a class of analgesic, antipyretic and anti-inflammatory drugs that includes aspirin...

  18. Modern Intermittent Haemodialysis (IHD) is an Effective Method of Removing Salicylate in Chronic Topical Salicylate Toxicity.

    Science.gov (United States)

    Wong, Anselm; Mac, Kathy; Aneman, Anders; Wong, Jeffrey; Chan, Betty S

    2016-03-01

    There are limited data on modern intermittent hemodialysis (IHD) efficacy on salicylate elimination from topical poisoning. A 54-year-old male sought treatment for dyspnea but was then diagnosed with salicylate toxicity from topical application of Dencorub Extra Strength Heat Gel® for 1 week. Each tube contained 100 g with 26 % methylsalicylate (26 g). Laboratory workup was remarkable for an elevated anion gap of 30 and salicylate concentration of 78.7 mg/dL [5.7 mmol/L (N Salicylate concentrations fell rapidly following initiation of hemodialysis with no rebound observed. Modern high flux IHD is an effective method of removing salicylates in the treatment of chronic topical poisoning.

  19. Polarography of uranium(VI)-salicylic acid system

    International Nuclear Information System (INIS)

    Salah, El-Maraghy B.

    1980-01-01

    Uranium(VI)-salicylic acid system has been studied polarographically in perchloric acid medium. Varying concentrations of HClO 4 and salicylic acid have been used. The nature of the polarographic waves is irreversible. (author)

  20. Salicylate-spectrophotometric determination of inorganic monochloramine

    International Nuclear Information System (INIS)

    Tao Hui; Chen Zhonglin; Li Xing; Yang Yanling; Li Guibai

    2008-01-01

    On the basis of classical Berthelot reaction, a simple salicylate-spectrophotometric method was developed for quantitative determination of inorganic monochloramine in water samples. With the catalysis of disodium pentacyanonitrosylferrate(III), inorganic monochloramine reacts with salicylate in equimolar to produce indophenol compound which has an intense absorption at 703 nm. Parameters that influence method performance, such as pH, dosage of salicylate and nitroprussiate and reaction time, were modified to enhance the method performance. By using this method, inorganic monochloramine can be distinguished from organic chloramines and other inorganic chlorine species, such as free chlorine, dichloramine, and trichloramine. The molar absorptivities of the final products formed by these compounds are below ±3% of inorganic monochloramine, because of the α-N in them have only one exchangeable hydrogen atom, and cannot react with salicylate to produce the indophenol compound. The upper concentrations of typical ions that do not interfere with the inorganic monochloramine determination are also tested to be much higher than that mostly encountered in actual water treatment. Case study demonstrates that the results obtained from this method are lower than DPD-titrimetric method because the organic chloramines formed by chlorination of organic nitrogenous compounds give no response in the newly established method. And the result measured by salicylate-spectrophotometric method is coincident with theoretical calculation

  1. Acetyl salicylic acid induced-urticaria and/or angioedema in atopic children.

    Science.gov (United States)

    Botey, J; Navarro, C; Aulesa, C; Marín, A; Eseverri, J L

    1988-01-01

    From the report of Hirschberg, only 3 years after aspirin synthesis, there have been numerous works dedicated to showing the different types of adverse reactions found following aspirin administration. However, there are few publications on the process of urticaria and/or acute angioedema induced by ASA and few reported cases were found in children. Thus, we present 6 atopic children with urticaria and/or angioedema related with ASA. A carefully detailed history, oral provocation with ASA, oral provocation with other NSAI and HBDT with ASA were done to all of them. The oral provocation with ASA was positive in 5 of the 6 cases. The provocations with the rest of the NSAI and tartrazine and sodium benzoate were negative in all of the patients. The HBDT was positive in 5 of the cases. In conclusion, we insist that aspirin intolerance is not infrequent in infancy and it is not rare to see urticaria and or angioedema, in spite of the fact that asthmatics, atopics or non atopics, usually present as bronchospasm. We also believe that the HBDT can be a method of diagnosis used in these cases.

  2. [Prevention of preeclampsia with low-dose acetyl salicylic acid: critical assessment].

    Science.gov (United States)

    Verrotti, C; Fieni, S; Gualdi, M; Cavatorta, E

    1999-01-01

    The Authors present a critical review of the published literature about the effect of low dose of acido acetilsalicilico on prevention and treatment of preeclampic. Beginning from the effects of low daily dose of acido acetilsalicilico on the pregnancy, the Authors present the published datas from 1970 until today, and suggest the present directions for use of acido acetilsalicilico in pregnancy.

  3. Iron(III) and aluminium(III) complexes with substituted salicyl-aldehydes and salicylic acids.

    Science.gov (United States)

    Nurchi, Valeria M; Crespo-Alonso, Miriam; Toso, Leonardo; Lachowicz, Joanna I; Crisponi, Guido; Alberti, Giancarla; Biesuz, Raffaela; Domínguez-Martín, Alicia; Niclós-Gutíerrez, Juan; González-Pérez, Josefa M; Zoroddu, M Antonietta

    2013-11-01

    The chelating properties toward iron(III) and aluminium(III) of variously substituted salicyl-aldehydes and salicylic acids have been evaluated, together with the effect of methoxy and nitro substituents in ortho and para position with respect to the phenolic group. The protonation and iron and aluminium complex formation equilibria have been studied by potentiometry, UV-visible spectrophotometry and (1)H NMR spectroscopy. The overall results highlight that salicyl-aldehydes present good chelating properties toward iron(III), with pFe ranging from 14.2 with nitro to 15.7 with methoxy substituent, being ineffective toward aluminium; the pFe values for salicylic acids are generally lower than those for salicyl-aldehydes, and about 4 units higher than the corresponding pAl values. The effect of the two substituents on the chelating properties of the ligands can be rationalized in terms of the Swain-Lupton treatment which accounts for the field and resonance effects. The structural characterization of the 1:2 iron complex with p-nitro salicylic acid shows that iron(III) ion exhibits an octahedral surrounding where two salicylate chelating ligands supply two O-phenolate and two O-carboxylate donor atoms in a roughly equatorial plane. The trans-apical sites are occupied by two aqua ligands. © 2013.

  4. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS

    Directory of Open Access Journals (Sweden)

    Zhi-hong Huang

    2015-01-01

    Full Text Available Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA and graphitized carbon blacks (GCB, the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite.

  5. Acetyl-Phosphate Is a Critical Determinant of Lysine Acetylation in E. coli

    DEFF Research Database (Denmark)

    Weinert, Brian T; Iesmantavicius, Vytautas; Wagner, Sebastian A

    2013-01-01

    Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells...... acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low...

  6. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions

    DEFF Research Database (Denmark)

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas

    2015-01-01

    or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue...... of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation...... sites, and greater sensitivity of SIRT3-targeted sites to chemical acetylation in vitro and fasting-induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low-level nonenzymatic protein lesion and that SIRT3...

  7. Spectrophotometric determination of tungsten with salicylic acid

    International Nuclear Information System (INIS)

    Goncalves, Z.C.

    1976-10-01

    The method comprises the complexation of tungsten with salicylic acid in concentrated sulphuric acid yielding a reddish color. The maximum absorbance of the complex lies within 410-420 nm, 420 nm being the chosen wavelenght. The final concentration of salicylic acid is 0,080 g/ml. The sensitivity is 0,13 μg W(%T) -1 ml -1 . Titanium, vanadium, rhenium, niobium and molybdenum interferes and must be separated, titanium being the strongest interferent. The separation procedures, advantages of the process, stoichiometric relations and equilibrium constant are discussed. (Author) [pt

  8. Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis.

    Science.gov (United States)

    O'Brien, Andrew J; Villani, Linda A; Broadfield, Lindsay A; Houde, Vanessa P; Galic, Sandra; Blandino, Giovanni; Kemp, Bruce E; Tsakiridis, Theodoros; Muti, Paola; Steinberg, Gregory R

    2015-07-15

    Aspirin, the pro-drug of salicylate, is associated with reduced incidence of death from cancers of the colon, lung and prostate and is commonly prescribed in combination with metformin in individuals with type 2 diabetes. Salicylate activates the AMP-activated protein kinase (AMPK) by binding at the A-769662 drug binding site on the AMPK β1-subunit, a mechanism that is distinct from metformin which disrupts the adenylate charge of the cell. A hallmark of many cancers is high rates of fatty acid synthesis and AMPK inhibits this pathway through phosphorylation of acetyl-CoA carboxylase (ACC). It is currently unknown whether targeting the AMPK-ACC-lipogenic pathway using salicylate and/or metformin may be effective for inhibiting cancer cell survival. Salicylate suppresses clonogenic survival of prostate and lung cancer cells at therapeutic concentrations achievable following the ingestion of aspirin (Salicylate concentrations of 1 mM increased the phosphorylation of ACC and suppressed de novo lipogenesis and these effects were enhanced with the addition of clinical concentrations of metformin (100 μM) and eliminated in mouse embryonic fibroblasts (MEFs) deficient in AMPK β1. Supplementation of media with fatty acids and/or cholesterol reverses the suppressive effects of salicylate and metformin on cell survival indicating the inhibition of de novo lipogenesis is probably important. Pre-clinical studies evaluating the use of salicylate based drugs alone and in combination with metformin to inhibit de novo lipogenesis and the survival of prostate and lung cancers are warranted. © 2015 Authors; published by Portland Press Limited.

  9. Infrared spectra of hydrogen-bonded salicylic acid and its derivatives : Salicylic acid and acetylsalicylic acid

    Science.gov (United States)

    Wójcik, Marek J.

    1981-11-01

    Infrared spectra of hydrogen-bonded salicylic acid, O-deutero-salicylic acid and acetylsalicylic acid crystals have been studied experimentally and theoretically. Interpretation of these spectra was based on the Witkowski-Maréchal model. Semi-quantitative agreement between experimental and theoretical spectra can be achieved with the simplest form of this model, with values of interaction parameters transferable for equivalent intermolecular hydrogen bonds.

  10. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.).

    Science.gov (United States)

    Gondor, Orsolya Kinga; Pál, Magda; Darkó, Éva; Janda, Tibor; Szalai, Gabriella

    2016-01-01

    The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms.

  11. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L..

    Directory of Open Access Journals (Sweden)

    Orsolya Kinga Gondor

    Full Text Available The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms.

  12. Salicylate degradation by the fungal plant pathogen Sclerotinia sclerotiorum.

    Science.gov (United States)

    Penn, Cory D; Daniel, Steven L

    2013-08-01

    The fungal plant pathogen Sclerotinia sclerotiorum was studied to determine its ability to degrade salicylate, an important defense-signaling molecule in plants. S. sclerotiorum D-E7 was grown at 25 °C in an undefined medium (50 ml) containing minerals, 0.1% soytone, 50 mM MES buffer (pH 6.5), 25 mM glucose, and 1 mM salicylate. Glucose, oxalate, and salicylate concentrations were monitored by HPLC. S. sclerotiorum D-E7 was found to be active in salicylate degradation. However, salicylate alone was not growth supportive and, at higher levels (10 mM), inhibited glucose-dependent growth. Biomass formation (130 mg [dry wt] of mycelium per 50 ml of undefined medium), oxalate concentrations (~10 mM), and culture acidification (final culture pH approximated 5) were essentially the same in cultures grown with or without salicylate (1 mM). Time-course analyses revealed that salicylate degradation and glucose consumption were complete after 7 days of incubation and was concomitant with growth. Trace amounts of catechol, a known intermediate of salicylate metabolism, were detected during salicylate degradation. Overall, these results indicated that S. sclerotiorum has the ability to degrade salicylate and that the presence of low levels of salicylate did not affect growth or oxalate production by S. sclerotiorum.

  13. Magical mystery tour: Salicylic acid signalling

    Czech Academy of Sciences Publication Activity Database

    Janda, Martin; Ruelland, E.

    2015-01-01

    Roč. 114, Special Issue (2015), s. 117-128 ISSN 0098-8472 R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional support: RVO:61389030 Keywords : Salicylic acid (SA) * NPR1 * SA overaccumulating mutants Subject RIV: ED - Physiology Impact factor: 3.712, year: 2015

  14. Salicylic acid-independent plant defence pathways

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Loon, L.C. van

    1999-01-01

    Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are

  15. Salicylic acid electrooxidation. A surface film formation

    Energy Technology Data Exchange (ETDEWEB)

    Baturova, M.D.; Vedenjapin, A.; Baturova, M.M. [N.D. Zelinsky Inst. of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Weichgrebe, D.; Danilova, E.; Rosenwinkel, K.H. [Univ. of Hannover, Inst. of Water Quality and Waste Management Hannover (Germany); Skundin, A. [A.N. Frumkin Inst. of Electrochemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2003-07-01

    A possibility to use electrochemical treatment for salicylic acid (SA) removal from waste water was studied. It was found that SA can be oxidized at platinum anode with formation of harmless products. Features of anodic process, in particular, formation of solid film on anode surface as well as properties of the film were investigated. (orig.)

  16. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  17. Relationship of Melatonin and Salicylic Acid in Biotic/Abiotic Plant Stress Responses

    Directory of Open Access Journals (Sweden)

    Josefa Hernández-Ruiz

    2018-03-01

    Full Text Available Melatonin (N-acetyl-5-methoxytryptamine was discovered in plants in 1995, while salicylic acid was the name given to the active ingredient of willow in 1838. From a physiological point of view, these two molecules present in plants have never been compared, even though they have a great number of similarities, as we shall see in this work. Both molecules have biosynthesis pathways that share a common precursor and both play a relevant role in the physiology of plants, especially in aspects related to biotic and abiotic stress. They have also been described as biostimulants of photosynthetic processes and productivity enhancers in agricultural crops. We review the coincident aspects of both molecules, and propose an action model, by which the relationship between these molecules and other agents and plant hormones can be studied.

  18. Dyes, preservatives and salicylates in the induction of food intolerance and/or hypersensitivity in children.

    Science.gov (United States)

    Ibero, M; Eseverri, J L; Barroso, C; Botey, J

    1982-01-01

    We present 25 patients, aged between 18 and 153 months, with clinical symptoms suggestive of allergy to food antigens. After undergoing exhaustive studies (including case histories, cutaneous tests for reactions to food antigen, peripheral eosinophils, secretory and humoral immunity, determination of total IgE and of specific RAST, exclusion-provocation diets) and without being able to identify an offender, patients were submitted to oral provocation with different food additives (tartrazine, sunset yellow FCF, new coccine, erythrosine, sodium benzoate, 4-methyl hydroxybenzoate and acetylsalicylic acid) after 48 hours of exclusion from their diets of dyes, preservatives and salicylates. The results obtained reflect, at a global level, 57.89% of positivities for dyes, 34.21% for the benzoates and 7.81% for acetyl-salicylic acid. The low incidence of crossed intolerance phenomena should be emphasized (32% of the patients). The disparity of our results with those of other authors could be due to the age of our patients, the clinical patterns they present and the dietary habits of different countries and regions.

  19. Acetylation of woody lignocellulose: significance and regulation

    Directory of Open Access Journals (Sweden)

    Prashant Mohan-Anupama Pawar

    2013-05-01

    Full Text Available Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides, is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose towards improved saccharification. In this review we: 1 summarize literature on lignocellulose acetylation in different tree species, 2 present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, 3 describe plant proteins involved in lignocellulose O-acetylation, 4 give examples of microbial enzymes capable to de-acetylate lignocellulose, and 5 discuss prospects for exploiting these enzymes in planta to modify xylan acetylation.

  20. Inhibition of glycation of albumin and hemoglobin by acetylation in vitro and in vivo.

    Science.gov (United States)

    Rendell, M; Nierenberg, J; Brannan, C; Valentine, J L; Stephen, P M; Dodds, S; Mercer, P; Smith, P K; Walder, J

    1986-10-01

    Aspirin (acetylsalicylic acid or ASA) is known to inhibit glycosylation (glycation) of albumin in vitro. The mechanism has been presumed to be acetylation, but this has never been validated. The new affinity aminophenylboronic acid procedure for determination of glycosylated albumin was used to demonstrate inhibition of glycosylation by aspirin. ASA, but not salicylic acid, inhibited glycation. The inhibition of glycation by equimolar acetic anhydride was greater than that by ASA. Pretreatment of albumin with ASA in the absence of glucose demonstrated that inhibition was extremely rapid, occurring in a matter of minutes. However, the inhibition by ASA could not be prevented by massive acceleration of glycation induced by borohydride reduction. Glycation of hemoglobin was also inhibited by ASA, but the dose requirement was considerably higher. Various analogues of ASA were evaluated for inhibition of glycation. Only acetyl-5-ethylsalicylic acid was more effective than ASA in inhibiting albumin glycation. None of these agents was more potent than ASA in inhibiting glycation of hemoglobin. ASA was fed to diabetic rats in a long-term experiment. Glycohemoglobin and glycoalbumin levels were decreased by ASA administration. We conclude that ASA inhibits glycation by a very rapid acetylation process. This process is apparently quite selective in terms of the protein involved, presumably because of the local environment of affected lysine groups. The phenomenon can be produced in vivo by administration of ASA.

  1. Vapor Pressure of Methyl Salicylate and n-Hexadecane

    Science.gov (United States)

    2014-01-01

    VAPOR PRESSURE OF METHYL SALICYLATE AND N-HEXADECANE ECBC-TR-1184 David E. Tevault Leonard C. Buettner...REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2000-Dec 2001 4. TITLE AND SUBTITLE Vapor Pressure of Methyl Salicylate and n-Hexadecane 5a...ABSTRACT Vapor pressure data are reported for O-hydroxybenzoic acid, methyl ester, more commonly known as methyl salicylate (MeS), and n-hexadecane in

  2. Non-enzymatic N-acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S-acetylated Thiol Intermediate Sensitive to Glyoxalase II

    Directory of Open Access Journals (Sweden)

    Andrew M. James

    2017-02-01

    Full Text Available Summary: Acetyl coenzyme A (AcCoA, a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3 reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysine on mitochondrial proteins and synthetic peptides. The frequent occurrence of an S-acetyl intermediate before lysine N-acetylation suggests that proximity to a thioester is a key determinant of lysine susceptibility to acetylation. The thioesterase glyoxalase II (Glo2 can limit protein S-acetylation, thereby preventing subsequent lysine N-acetylation. This suggests that the hitherto obscure role of Glo2 in mitochondria is to act upstream of Sirt3 in minimizing protein N-acetylation, thus limiting protein dysfunction when AcCoA accumulates. : James et al. show that the non-enzymatic N-acetylation of lysine residues in mitochondrial proteins frequently occurs via a proximal S-acetylated thiol intermediate. Glutathione equilibrates with this intermediate, allowing the thioesterase glyoxalase II to limit protein lysine N-acetylation. These findings expand our understanding of how protein acetylation arises. Keywords: AcetylCoA, lysine acetylation, glyoxalase

  3. Acute salicylate poisoning: risk factors for severe outcome.

    Science.gov (United States)

    Shively, Rachel M; Hoffman, Robert S; Manini, Alex F

    2017-03-01

    Salicylate poisoning remains a significant public health threat with more than 20,000 exposures reported annually in the United States. We aimed to establish early predictors of severe in-hospital outcomes in Emergency Department patients presenting with acute salicylate poisoning. This was a secondary data analysis of adult salicylate overdoses from a prospective cohort study of acute drug overdoses at two urban university teaching hospitals from 2009 to 2013. Patients were included based on confirmed salicylate ingestion and enrolled consecutively. Demographics, clinical parameters, treatment and disposition were collected from the medical record. Severe outcome was defined as a composite occurrence of acidemia (pH salicylate concentration 28.1 mg/dL (SD 26.6), and 20.8% classified as severe outcome. Univariate analysis indicated that age, respiratory rate, lactate, coma, and the presence of co-ingestions were significantly associated with severe outcome, while initial salicylate concentration alone had no association. However, when adjusted for salicylate concentration, only age (OR 1.13; 95% CI 1.02-1.26) and respiratory rate (OR 1.29; 95% CI 1.02-1.63) were independent predictors. Additionally, lactate showed excellent test characteristics to predict severe outcome, with an optimal cutpoint of 2.25 mmol/L (78% sensitivity, 67% specificity). In adult Emergency Department patients with acute salicylate poisoning, independent predictors of severe outcome were older age and increased respiratory rate, as well as initial serum lactate, while initial salicylate concentration alone was not predictive.

  4. Analysis of acetylated wood by electron microscopy

    NARCIS (Netherlands)

    Sander, C.; Beckers, E.P.J.; Militz, H.; Veenendaal, van W.

    2003-01-01

    The properties of acetylated solid wood were investigated earlier, in particular the anti-shrink efficiency and the resistance against decay. This study focuses on the possible changes and damage to the wood structure due to an acetylation process leading to weight per cent gains of up to 20%.

  5. The Acetylation of Starch by Reactive Extrusion

    NARCIS (Netherlands)

    Graaf, Robbert A. de; Broekroelofs, Annet; Janssen, Léon P.B.M.

    1998-01-01

    Potato starch has been acetylated in a counter rotating twin screw extruder using vinylacetate and sodium hydroxide. The desired starch acetylation reaction is accompanied by an undesired parallel base catalysed hydrolysis reaction of vinylacetate and a consecutive hydrolysis reaction of the

  6. 21 CFR 172.828 - Acetylated monoglycerides.

    Science.gov (United States)

    2010-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.828 Acetylated monoglycerides. The food additive acetylated... Reichert-Meissl value of 75-200 and an acid value of less than 6. (c) The food additive is used at a level...

  7. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    Directory of Open Access Journals (Sweden)

    Muhammad Idham Darussalam Mardjan

    2012-02-01

    Full Text Available Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-hydroxybenzoate in 87% yield. The acid-catalyzed-acetylation of the product using acetic anhydride gave methyl 4-acetoxybenzoate in 75% yield. Furthermore, solvent-free Fries rearrangement of methyl 4-acetoxybenzoate in the presence of AlCl3 produced 3-acetyl-4-hydroxybenzoic acid as the acetophenone derivatives in 67% yield. Then, Claisen-Schmidt condensation of the acetophenone and benzaldehyde derivatives of p-anisaldehyde and veratraldehyde in basic condition gave 2'-hydroxychalcone-5'-carboxylic acid derivatives  in 81 and 71 % yield, respectively. Finally, the ring closure reaction of the chalcone yielded the corresponding flavanone-6-carboxylic acids in 67 and 59% yield, respectively.

  8. Morphine deteriorates spatial memory in sodium salicylate treated rats.

    Science.gov (United States)

    Sadegh, Mehdi; Fathollahi, Yaghoub; Naghdi, Nasser; Semnanian, Saeed

    2013-03-15

    Tolerance and cross-tolerance for the effects of morphine (M) and sodium salicylate on nociception and learning were examined. The anti-nociceptive effects were measured by using the classic tail flick (TF) and hot plate (HP) tests and learning was measured with the Morris water maze (MWM). Tolerance or cross-tolerance was induced by daily injection (i.p.) of morphine sulfate (10mg/kg for 7 days) or sodium salicylate (300 mg/kg for 6 days). The injection of sodium salicylate increased both TF and HP latencies. This anti-nociceptive effect was progressively decreased across six injections and tolerance to sodium salicylate was developed. When M was injected to sodium salicylate-tolerant rats, a weakened anti-nociceptive effect was seen, indicating cross-tolerance to M. Acute treatment with M also increased TF latency. This anti-nociceptive effect was successively decreased across seven injections and tolerance to M was developed. When sodium salicylate was injected to M-tolerant rats, a diminished anti-nociceptive effect was seen, indicating cross-tolerance to sodium salicylate. Acute M impaired water maze performance, while chronic M and sodium salicylate had no effects on MWM performance. However, when M was injected to rats that had received sodium salicylate after each training trial for 7 days, these rats spent less time in target quadrant as compared to M and saline groups. It is concluded that chronic sodium salicylate induces tolerance to anti-nociceptive effects of M and vice versa. Also chronic salicylate may produce lasting metaplastic changes in brain mechanisms behind spatial learning and memory, which can be visualized in cross-sensitization to morphine. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  9. Acetylation-mediated suppression of transcription-independent memory: bidirectional modulation of memory by acetylation.

    Directory of Open Access Journals (Sweden)

    Katja Merschbaecher

    Full Text Available Learning induced changes in protein acetylation, mediated by histone acetyl transferases (HATs, and the antagonistic histone deacetylases (HDACs play a critical role in memory formation. The status of histone acetylation affects the interaction between the transcription-complex and DNA and thus regulates transcription-dependent processes required for long-term memory (LTM. While the majority of studies report on the role of elevated acetylation in memory facilitation, we address the impact of both, increased and decreased acetylation on formation of appetitive olfactory memory in honeybees. We show that learning-induced changes in the acetylation of histone H3 at aminoacid-positions H3K9 and H3K18 exhibit distinct and different dynamics depending on the training strength. A strong training that induces LTM leads to an immediate increase in acetylation at H3K18 that stays elevated for hours. A weak training, not sufficient to trigger LTM, causes an initial increase in acetylation at H3K18, followed by a strong reduction in acetylation at H3K18 below the control group level. Acetylation at position H3K9 is not affected by associative conditioning, indicating specific learning-induced actions on the acetylation machinery. Elevating acetylation levels by blocking HDACs after conditioning leads to an improved memory. While memory after strong training is enhanced for at least 2 days, the enhancement after weak training is restricted to 1 day. Reducing acetylation levels by blocking HAT activity after strong training leads to a suppression of transcription-dependent LTM. The memory suppression is also observed in case of weak training, which does not require transcription processes. Thus, our findings demonstrate that acetylation-mediated processes act as bidirectional regulators of memory formation that facilitate or suppress memory independent of its transcription-requirement.

  10. Direct Ring Fission of Salicylate by a Salicylate 1,2-Dioxygenase Activity from Pseudaminobacter salicylatoxidans

    Science.gov (United States)

    Hintner, Jan-Peter; Lechner, Christa; Riegert, Ulrich; Kuhm, Andrea Elisabeth; Storm, Thomas; Reemtsma, Thorsten; Stolz, Andreas

    2001-01-01

    In cell extracts of Pseudaminobacter salicylatoxidans strain BN12, an enzymatic activity was detected which converted salicylate in an oxygen-dependent but NAD(P)H-independent reaction to a product with an absorbance maximum at 283 nm. This metabolite was isolated, purified, and identified by mass spectrometry and 1H and 13C nuclear magnetic resonance spectroscopy as 2-oxohepta-3,5-dienedioic acid. This metabolite could be formed only by direct ring fission of salicylate by a 1,2-dioxygenase reaction. Cell extracts from P. salicylatoxidans also oxidized 5-aminosalicylate, 3-, 4-, and 5-chlorosalicylate, 3-, 4-, and 5-methylsalicylate, 3- and 5-hydroxysalicylate (gentisate), and 1-hydroxy-2-naphthoate. The dioxygenase was purified and shown to consist of four identical subunits with a molecular weight of about 45,000. The purified enzyme showed higher catalytic constants with gentisate or 1-hydroxy-2-naphthoate than with salicylate. It was therefore concluded that P. salicylatoxidans synthesized a gentisate 1,2-dioxygenase with an extraordinary substrate range, which also allowed the oxidation of salicylate. PMID:11698383

  11. A pulse radiolysis study of salicylic acid and 5-sulpho-salicylic acid in aqueous solutions

    International Nuclear Information System (INIS)

    Kishore, Kamal; Mukherjee, T.

    2006-01-01

    Reactions of H, OH, e aq - and some one-electron oxidants have been studied with salicylic acid and 5-sulpho-salicylic acid in aqueous solutions. Rate constants for the reaction of e aq - with these compounds were of the order of 10 9 dm 3 mol -1 s -1 and this reaction led to the formation of reducing radicals which could transfer electron to methyl viologen. Other one-electron reductants were not able to reduce these compounds. OH radicals reacted with these compounds by addition pathway with very high rate constants (>10 10 dm 3 mol -1 s -1 ) while O - radical anions could oxidize these molecules to give phenoxyl type of radicals. Amongst the one-electron oxidants, only N 3 radicals and SO 4 - radicals could oxidize salicylic acid while 5-sulpho-salicylic acid could be oxidized only by SO 4 - radicals indicating that while one-electron reduction potential for semi-oxidized SA may be o1 for N 3 ? radical), it is more than 1.33V vs. NHE for semi-oxidized SSA species

  12. Salicylate poisoning in children: report of three cases | Musumba ...

    African Journals Online (AJOL)

    To raise clinicians' awareness of chronic (therapeutic) salicylate poisoning as a common cause of admission in paediatric patients presenting to hospital with respiratory distress (a clinical manifestation of metabolic acidosis) and a history of 'over the counter' treatment with salicylate (Aspirin). We present two complex cases ...

  13. Therapeutic Efficacy of Methyl Salicylate Phonophoresis in the ...

    African Journals Online (AJOL)

    is widely reported in the literature, whereas very limited studies have been done with non-steroidal anti-inflammatory drugs particularly, methyl salicylate 15% in the management of musculoskeletal injuries(MSIs) sustained during sports. This study was therefore, designed to investigate the efficacy of methyl salicylate ...

  14. Acetylation of rice straw for thermoplastic applications.

    Science.gov (United States)

    Zhang, Guangzhi; Huang, Kai; Jiang, Xue; Huang, Dan; Yang, Yiqi

    2013-07-01

    An inexpensive and biodegradable thermoplastic was developed through acetylation of rice straw (RS) with acetic anhydride. Acetylation conditions were optimized. The structure and properties of acetylated RS were characterized by fourier transform infrared (FTIR), solid-state (13)C NMR spectroscopy, X-ray diffractometer (XRD), scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results showed that acetylation of RS has successfully taken place, and comparing with raw RS, the degree of crystallinity decreased and the decomposition rate was slow. The acetylated RS has got thermoplasticity when weight ratio of RS and acetic anhydride was 1:3, using sulphuric acid (9% to RS) as catalyst in glacial acetic acid 35°C for 12h, and the dosage of solvent was 9 times RS, in which weight percent gain (WPG) of the modified RS powder was 35.5% and its percent acetyl content was 36.1%. The acetylated RS could be formed into transparent thin films with different amount of plasticizer diethyl phthalate (DEP) using tape casting technology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Acetyl Fentanyl Toxicity: Two Case Reports.

    Science.gov (United States)

    Fort, Chelsea; Curtis, Byron; Nichols, Clay; Niblo, Cheryl

    2016-11-01

    Acetyl fentanyl is an illicit fentanyl analog recently appearing in forensic casework. A quantitative method was created for measuring acetyl fentanyl in various biological matrices acquired post-mortem due to recent positive screening results in casework. Initial detection by immunoassay and standard gas chromatography mass spectrometry (GC/MS) methods have been previously reported for acetyl fentanyl and are examined further here. A Selective Ion Monitoring (SIM) method was created using a GC/MS for quantitation. In two separate cases, acetyl fentanyl was found to be in similar concentrations to those previously reported and ruled to be the cause of death. Acetyl fentanyl concentrations were determined in blood samples, liver, brain, vitreous humor, and urine. Individual 1 had acetyl fentanyl concentrations as follows: heart blood-285 ng/mL, femoral blood-192 ng/mL, liver-1,100 ng/g, brain-620 ng/g, and urine-3,420 ng/mL. Individual 2 had acetyl fentanyl concentrations as follows: heart blood-210 ng/mL, femoral blood-255 ng/mL, urine-2,720 ng/mL and vitreous humor-140 ng/mL. Experimental conditions for screening and quantitation are provided, using immunoassay and GC/MS methods. Due to the recent emergence of acetyl fentanyl, more data will need to be generated to fully differentiate recreational and fatal concentrations of acetyl fentanyl to assist toxicologists accurately understanding its physiological impact. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Salicylate removal by charcoal heamoperfusion in experimental intoxication in dogs

    International Nuclear Information System (INIS)

    Brookings, C.H.; Ramsey, J.D.

    1975-01-01

    The removal of salicylate by extracorporeal circulation of blood through a column of encapsulated charcoal (haemoperfusion) has been studied experimentally in intoxicated dogs (greyhounds). The average time taken to reduce the whole blood salicylate level to one-half of the initial equilibrium level in 30 kg dogs was 2 hrs. A half-life of 3 hrs is predicted for salicylate removal by haemoperfusion in a 70 kg man and this rate of removal is shown to be comparable to that reported for haemodialysis. No unacceptable adverse physiological, biochemical, or haematological effects were found to result from haemoperfusion. The possible use of this technique in the management of severe salicylate poisoning in man is discussed. Haemoperfusion is foreseen as providing a method of rapid removal of salicylate in circumstances where forced diuresis is contra-indicated or inadequate and haemodialysis is not readily available. (orig.) [de

  17. Histone acetylation: molecular mnemonics on the chromatin.

    Science.gov (United States)

    Gräff, Johannes; Tsai, Li-Huei

    2013-02-01

    Long-lasting memories require specific gene expression programmes that are, in part, orchestrated by epigenetic mechanisms. Of the epigenetic modifications identified in cognitive processes, histone acetylation has spurred considerable interest. Whereas increments in histone acetylation have consistently been shown to favour learning and memory, a lack thereof has been causally implicated in cognitive impairments in neurodevelopmental disorders, neurodegeneration and ageing. As histone acetylation and cognitive functions can be pharmacologically restored by histone deacetylase inhibitors, this epigenetic modification might constitute a molecular memory aid on the chromatin and, by extension, a new template for therapeutic interventions against cognitive frailty.

  18. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate

    Science.gov (United States)

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-met...

  19. p53 Acetylation: Regulation and Consequences

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Sara M. [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Quelle, Dawn E., E-mail: dawn-quelle@uiowa.edu [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States)

    2014-12-23

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  20. Amygdala hyperactivity and tonotopic shift after salicylate exposure.

    Science.gov (United States)

    Chen, Guang-Di; Manohar, Senthilvelan; Salvi, Richard

    2012-11-16

    The amygdala, important in forming and storing memories of aversive events, is believed to play a major role in debilitating tinnitus and hyperacusis. To explore this hypothesis, we recorded from the lateral amygdala (LA) and auditory cortex (AC) before and after treating rats with a dose of salicylate that induces tinnitus and hyperacusis-like behavior. Salicylate unexpectedly increased the amplitude of the local field potential (LFP) in the LA making it hyperactive to sounds≥60 dB SPL. Frequency receptive fields (FRFs) of multiunit (MU) clusters in the LA were also dramatically altered by salicylate. Neuronal activity at frequencies below 10 kHz and above 20 kHz was depressed at low intensities, but was greatly enhanced for stimuli between 10 and 20 kHz (frequencies near the pitch of the salicylate-induced tinnitus in the rat). These frequency-dependent changes caused the FRF of many LA neurons to migrate towards 10-20 kHz thereby amplifying activity from this region. To determine if salicylate-induced changes restricted to the LA would remotely affect neural activity in the AC, we used a micropipette to infuse salicylate (20 μl, 2.8 mM) into the amygdala. Local delivery of salicylate to the amygdala significantly increased the amplitude of the LFP recorded in the AC and selectively enhanced the neuronal activity of AC neurons at the mid-frequencies (10-20 kHz), frequencies associated with the tinnitus pitch. Taken together, these results indicate that systemic salicylate treatment can induce hyperactivity and tonotopic shift in the amygdala and infusion of salicylate into the amygdala can profoundly enhance sound-evoked activity in AC, changes likely to increase the perception and emotional salience of tinnitus and loud sounds. This article is part of a Special Issue entitled: Tinnitus Neuroscience. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Amygdala Hyperactivity and Tonotopic Shift after Salicylate Exposure

    Science.gov (United States)

    Chen, Guang-Di; Manohar, Senthilvelan; Salvi, Richard

    2017-01-01

    The amygdala, important in forming and storing memories of aversive events, is believed to play a major role in debilitating tinnitus and hyperacusis. To explore this hypothesis, we recorded from the lateral amygdala (LA) and auditory cortex (AC) before and after treating rats with a dose of salicylate that induces tinnitus and hyperacusis-like behavior. Salicylate unexpectedly increased the amplitude of the local field potential (LFP) in the LA making it hyperactive to sounds ≥60 dB SPL. Frequency receptive fields (FRF) of multiunit (MU) clusters in the LA were also dramatically altered by salicylate. Neuronal activity at frequencies below 10 kHz and above 20 kHz was depressed at low intensities, but was greatly enhanced for stimuli between 10 and 20 kHz (frequencies near the pitch of the salicylate-induced tinnitus in the rat). These frequency-dependent changes caused the FRF of many LA neurons to migrate towards 10-20 kHz thereby amplifying activity from this region. To determine if salicylate-induced changes restricted to the LA would remotely affect neural activity in the AC, we used a micropipette to infuse salicylate (20 µl, 2.8 mM) into the amygdala. Local delivery of salicylate to the amygdala significantly increased the amplitude of the LFP recorded in the AC and selectively enhanced the neuronal activity of AC neurons at the mid-frequencies (10-20 kHz), frequencies associated with the tinnitus pitch. Taken together, these results indicate that systemic salicylate treatment can induce hyperactivity and tonotopic shift in the amygdala and infusion of salicylate into the amygdala can profoundly enhance sound-evoked activity in AC, changes likely to increase the perception and emotional salience of tinnitus and loud sounds. PMID:22464181

  2. Bulk Mechanical Properties Testing of Metallic Marginal Glass Formers

    Directory of Open Access Journals (Sweden)

    Thien Q. Phan

    2016-01-01

    Full Text Available We developed a unique three-point bend testing apparatus to measure bulk mechanical properties of a model metallic glass alloy (SAM2X5 with nominal composition Fe49.7Cr17.1Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 prepared by spark plasma sintering. The relatively large sample sizes in the present work allowed for the preparation of test specimens with a macroscale cross section (in the millimeter range with well-controlled sample dimensions closer to standardized tests. Wire saw cutting allowed for a relatively sharp notch radius (3x smaller than previous studies and minimal sample damage. We determined that Young’s modulus and notch fracture toughness measured by our three-point bending apparatus are 230 GPa and 4.9 MPa·m1/2. Also, Vickers indentation and flexure testing provided consistent results for Young’s modulus. Indentation fracture toughness measured by Vickers indentation produced values at least 50% lower than by flexure. The microscale mechanical properties testing technique presented in this work and subsequent analyses are applicable to specimens of other compositions or ones prepared by other methods.

  3. Density dependence of relaxation dynamics in glass formers, and ...

    Indian Academy of Sciences (India)

    Anshul D S Parmar

    Within the framework of the Adam-Gibbs relation, by employing density temperature scaling for the analysis, we find that softer particles make more fragile glasses, as deduced from dynamical quantities, which is found to be consistent with the Adam-Gibbs fragility. Keywords. Glass; fragility; supercooled liquids etc. 1.

  4. A case of bilateral sudden hearing loss and tinnitus after salicylate intoxication.

    Science.gov (United States)

    Kim, Sang Min; Jo, Joon-Man; Baek, Moo Jin; Jung, Kyu Hwan

    2013-04-01

    Salicylate, the active ingredient of aspirin can cause sensorineural hearing loss and tinnitus when plasma concentrations reach a critical level. The ototoxic mechanisms of salicylate remain unclear but hearing and tinnitus usually recovers a few days after intoxication. There have been few reports of salicylate-induced ototoxicity in Korea, and the majority is caused by a low dose of aspirin. Herein, we report a case of sudden hearing loss and tinnitus after acute salicylate intoxication and review recent updates on salicylate ototoxicity.

  5. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase.

    Science.gov (United States)

    Fang, Yi; Bullock, Hannah; Lee, Sarah A; Sekar, Narendran; Eiteman, Mark A; Whitman, William B; Ramasamy, Ramaraja P

    2016-11-15

    Volatile organic compounds have been recognized as important marker chemicals to detect plant diseases caused by pathogens. Methyl salicylate has been identified as one of the most important volatile organic compounds released by plants during a biotic stress event such as fungal pathogen infection. Advanced detection of these marker chemicals could help in early identification of plant diseases and has huge significance for agricultural industry. This work describes the development of a novel bi-enzyme based electrochemical biosensor consisting of salicylate hydroxylase and tyrosinase enzymes immobilized on carbon nanotube modified electrodes. The amperometric detection using the bi-enzyme platform was realized through a series of cascade reactions that terminate in an electrochemical reduction reaction. Electrochemical measurements revealed that the sensitivity of the bi-enzyme sensor was 30.6±2.7µAcm(-2)µM(-1) and the limit of detection and limit of quantification were 13nM (1.80ppb) and 39nM (5.39ppb) respectively. Interference studies showed no significant interference from the other common plant volatile compounds. Synthetic analyte studies revealed that the bi-enzyme based biosensor can be used to reliably detect methyl salicylate released by unhealthy plants. Copyright © 2016. Published by Elsevier B.V.

  6. Synthesis, acute toxicity and anti-inflammatory effect of bornyl salicylate, a salicylic acid derivative.

    Science.gov (United States)

    Vasconcelos, Renata Marcia Costa; Leite, Fagner Carvalho; Leite, Jacqueline Alves; Rodrigues Mascarenhas, Sandra; Rodrigues, Luis Cezar; Piuvezam, Marcia Regina

    2012-12-01

    Bornyl salicylate (BS) is a salicylic derivative, obtained by sterification of salicylic acid and monoterpene (-)-borneol, and its topical use in inflammatory diseases was described in the early 20th century. It is also known that borneol presents neuroprotective, genoprotective and analgesic properties. The purpose of this study was to evaluate BS in experimental models of acute inflammation. The toxicity of BS was analyzed by measuring water and food intake, weight, mortality and weight of main organs. To assess its anti-inflammatory effect, BS-treated mice were challenged with carrageenan, prostaglandin E2 (PGE2), bradikynin (BK) or histamine (HIS)-induced paw edema, zymosan-induced peritonitis and vascular permeability induced by acetic acid. Nitric oxide (NO) production was analyzed in peritoneal macrophage cultures. There was no sign of acute toxicity of BS in male and female mice. Furthermore, treatment with BS was significantly (p acetic acid were also reduced in BS-treated animals. In vitro, BS (10 µg/mL) reduced NO production in LPS-stimulated macrophages. These data suggest that BS has an anti-inflammatory effect, which is related, at least in part, with decrease of mediators as PGE2, NO and pro-inflammatory cytokines. However, further studies should be done to explore its potential as an anti-inflammatory drug.

  7. Synthesis and antifungal activity of new salicylic acid derivatives

    Directory of Open Access Journals (Sweden)

    Wodnicka Alicja

    2017-03-01

    Full Text Available A simple one-step procedure for synthesis of 1-methoxy-1-oxoalkan-2-yl salicylates and 1-methoxy-1-oxoalkan-2-yl 2-[(1-methoxy-1-oxoalkan-2-yloxy]benzoates by reaction of salicylic acid with several methyl 2-bromoalkanoates was developed. The reactions were carried out in N,N-dimethylformamide (DMF in the presence of anhydrous potassium carbonate. Conditions for regioselective synthesis of target compounds were established. The developed procedure could be easily applied in the industrial production process. The new salicylic acid derivatives were obtained with satisfactory yields and were characterized by MS and 1H NMR spectra. The fungicidal activity of the prepared compounds was tested in vitro against seven species of plant pathogenic fungi. The best results were observed for 1-methoxy-1-oxoalkan-2-yl salicylates which showed moderate or good activity against Botrytis cinerea and Rhizoctonia solani.

  8. [Low salicylate diet and the possibility of nutrient deficiencies].

    Science.gov (United States)

    Szczuko, Małgorzata; Romaniuk, Rafał

    Unfavourable reactions of the body to consumed food and/or medicines are an increasing epidemiological problem. Intolerance to acetylsalicylic acid is connected to the intake of some drugs and food containing salicylic acid. People suffering from this intolerance have to follow an elimination diet limiting the intake of salicylates. The elimination diet can lead to deficiencies in nutrients, and therefore we decided to test whether a low salicylate diet of various calorie content (1500, 2000, 2500 kcal) can pose such a risk. Research material consisted of 30 diets (10 for each calorie content), prepared using nutrition software Dieta 5, recommended by the National Food and Nutrition Institute in Poland. Average nutrients’ contents were calculated and compared to current dietary standards for adults. A low salicylate diet supplying 1500 kcal is, both for males and females, the most deficient diet with respect to nutrients’ contents. In the case of women aged 19–30 insufficient intake can relate to such nutrients as: potassium, calcium, iodine, vitamin D, dietary fibre and alpha-linolenic acid. In women aged 31–65 it can additionally lead to magnesium deficiencies. In men aged 19–65 a low salicylate diet providing 1500 kcal may not cover daily requirements for nine nutrients: besides those mentioned above, also vitamins E and C. However, low salicylate 2000 kcal and 2500 kcal diets do not pose a greater risk with respect to nutrient deficiencies. Long-term use of a low salicylic 1500 kcal diet poses the greatest threat of nutrient deficiencies. Along with increasing the calorie content in a diet, the number of deficient nutrients decreases, but too high an energy intake may lead to subjects becoming overweight or obese. A low salicylate and low caloric diet requires consideration of additional supplementation.

  9. Syntheses and pyrolytic studies of salicylate derivatives of ...

    African Journals Online (AJOL)

    New salicylate derivatives of heteronucleic-μ-oxoisopropoxide [SnO2AlB(OPri)4] have been synthesized by the thermal condensation of μ-oxoisopropoxide and methyl/ethyl/phenyl/phenyl ethyl salicylates in different molar ratios (1:1-1:2) yielding the compounds of the type [SnO2AlB(OPri)4-n(RSAL)n] (where n is 1-2 and ...

  10. SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS

    Science.gov (United States)

    Cowan, G.A.

    1959-08-25

    The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.

  11. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    International Nuclear Information System (INIS)

    Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

    2013-01-01

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×10 9 , (1.07±0.07)×10 10 , (7.48±0.17)×10 9 , (7.31±0.29)×10 9 , (5.47±0.25)×10 9 , (6.94±0.10)×10 9 (M −1 s −1 ), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×10 9 , (8.98±0.27)×10 9 , (5.39±0.21)×10 9 , (4.33±0.17)×10 9 , (4.72±0.15)×10 9 , (1.42±0.02)×10 9 (M −1 s −1 ), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated. - Highlights: • Free radical chemistry of salicylic and 4 methyl salicylic acids is investigated. • The transient absorptions spectra for model compounds are measured. • Absolute bimolecular reaction rate constants for hydroxyl radical are determined. • Solvated electron reaction rate constants are calculated. • The use of salicylic acids as models for pharmaceuticals is explored

  12. Production of Nα-acetyl Tα1-HSA through in vitro acetylation by RimJ.

    Science.gov (United States)

    Chen, Jing; Li, Haibin; Wang, Tao; Sun, Shuyang; Liu, Jia; Chen, Jianhua

    2017-11-10

    Thymosin alpha 1 (Tα1) is an important immunomodulating agent with various clinical applications. The natural form of Tα1 is N α -acetylated, which was supposed to be related to in vivo stability of the hormone. In this study, fusion protein Tα1-HSA was constructed and expressed in Pichia pastoris . RimJ, a N α -acetyltransferase from E.coli , was also overexpressed and purified to homogeneity. In vitro acetylation of Tα1-HSA in the presence of RimJ and acetyl coenzyme A resulted in N α -acetyl Tα1-HSA. The N α -acetylation was determined by LC-MS/MS. Kinetic assay indicated that RimJ had a higher affinity to desacetyl Tα1 than to Tα1-HSA. Bioactivity assay revealed fully retained activity of Tα1 when the hormone was connected to the N-terminus of the fusion protein, while the activity was compromised in our previously constructed HSA-Tα1. With fully retained activity and N-terminal acetylation, N α -acetyl Tα1-HSA was expected to be a more promising pharmaceutical agent than Tα1.

  13. Non-enzymatic N-acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S-acetylated Thiol Intermediate Sensitive to Glyoxalase II.

    Science.gov (United States)

    James, Andrew M; Hoogewijs, Kurt; Logan, Angela; Hall, Andrew R; Ding, Shujing; Fearnley, Ian M; Murphy, Michael P

    2017-02-28

    Acetyl coenzyme A (AcCoA), a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3) reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysine on mitochondrial proteins and synthetic peptides. The frequent occurrence of an S-acetyl intermediate before lysine N-acetylation suggests that proximity to a thioester is a key determinant of lysine susceptibility to acetylation. The thioesterase glyoxalase II (Glo2) can limit protein S-acetylation, thereby preventing subsequent lysine N-acetylation. This suggests that the hitherto obscure role of Glo2 in mitochondria is to act upstream of Sirt3 in minimizing protein N-acetylation, thus limiting protein dysfunction when AcCoA accumulates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Nucleosome structure incorporated histone acetylation site prediction in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Chen; Liu, Hui; Li, Jiang; Deng, Youping; Shi, Tieliu

    2010-11-02

    Acetylation is a crucial post-translational modification for histones, and plays a key role in gene expression regulation. Due to limited data and lack of a clear acetylation consensus sequence, a few researches have focused on prediction of lysine acetylation sites. Several systematic prediction studies have been conducted for human and yeast, but less for Arabidopsis thaliana. Concerning the insufficient observation on acetylation site, we analyzed contributions of the peptide-alignment-based distance definition and 3D structure factors in acetylation prediction. We found that traditional structure contributes little to acetylation site prediction. Identified acetylation sites of histones in Arabidopsis thaliana are conserved and cross predictable with that of human by peptide based methods. However, the predicted specificity is overestimated, because of the existence of non-observed acetylable site. Here, by performing a complete exploration on the factors that affect the acetylability of lysines in histones, we focused on the relative position of lysine at nucleosome level, and defined a new structure feature to promote the performance in predicting the acetylability of all the histone lysines in A. thaliana. We found a new spacial correlated acetylation factor, and defined a ε-N spacial location based feature, which contains five core spacial ellipsoid wired areas. By incorporating the new feature, the performance of predicting the acetylability of all the histone lysines in A. Thaliana was promoted, in which the previous mispredicted acetylable lysines were corrected by comparing to the peptide-based prediction.

  15. [Milestones of cardivascular pharmacotherapy: salicylates and aspirin].

    Science.gov (United States)

    Jerie, P

    2006-01-01

    The analgesic and antipyretic effect of the bark of willow has been known in Egypt and Greece for canturies. The modem era of salicylates starts with a letter sent 1758 by Reverend Edward Stone to The Royal Society in London. He described "an account of the success of the bark of willow in the cure of agues". His report. erroneously attributed to Edmond Stone. was published five years later. The active ingredient of willow bark. "salicine". was first isolated 1828 by Joseph Buchner, then by Henri Leroux, and also prepared from the oil of wintergreen (Gaultheria) and meadowsweet (Spirea ulmaria) by J. W. Lowig 1833. and called "Spirsäure", which was already pure acetylsalicylic acid. It was also synthetised 1853 by Ch. Gerhardt and finally 1897 in Bayer's laboratoires by Felix Hoffman, who also demonstrated its antiinflammatory efficacy. After two years of clinical trials with low doses, Bayer's management decided to start the productions and launched Aspirin as an analgetic worldwide in summer 1899. The first ASPIRIN ERA bagun. A completely new epoch started when J. N. Vane and Priscilla Piner demonstrated 1971 that the main mechanism of action of aspirin-like drugs is the inhibition of prostaglandin synthesis. In later studies the potency to inhibit platelet aggregation with small doses of aspirin (30-125 mg) was demonstrated. The Physicians'Health Study 1988 confirmed this effect: aspirin significantly reduced the risk of both, fatal and non-fatal myocardial infarction. and is now used in primary and secondary prevention of atherosclerosis. However the idea was not new: The use of salicylates and aspirin was throughly discussed more than 50 years ago: Paul C. Gibson published 1949 a well-documented case report on efficacy of aspirin in patients with angina, and Kl. Weber and P. Klein in Prague used Gibson's mixture successfully for patients with acute myocardial infarction (1951). Recently, the efficacy and security, the interactions and side-effects of low

  16. Iron-regulated salicylate synthesis by Pseudomonas spp.

    Science.gov (United States)

    Visca, P; Ciervo, A; Sanfilippo, V; Orsi, N

    1993-09-01

    Two iron-regulated compounds have been found in acidified ethyl acetate extracts from culture supernatants of Pseudomonas aeruginosa and Pseudomonas cepacia type-strains. Synthesis of both compounds paralleled iron-deficient growth, and was repressed in the presence of 100 microM-FeCl3. Yields of these substances varied among different strains and attained maximum levels during stationary phase. Thin layer chromatographic analysis in five different solvent systems revealed that the slower-moving compound chromatographed as two distinct bands, and showed RF values and spectral properties similar to pyochelin. The faster-moving compound co-migrated as a single band with a standard of commercial salicylic acid in each of the chromatographic systems tested. Moreover, a molecule with an identical RF was also produced by Pseudomonas fluorescens CHA401, which is known to synthesize salicylic acid as the only siderophore during iron-limited growth. Spectrophotometric and spectrofluorometric titrations led to the identification of this iron-regulated compound as salicylic acid, in agreement with the structure deduced from 1H-NMR and mass spectroscopy. The identity of the P. cepacia siderophore azurechelin as salicylic acid was also conclusively demonstrated. Salicylic acid, like pyochelin and pyoverdin, promoted P. aeruginosa growth in an iron-depleted medium. These results are consistent with a putative siderophore activity for salicylic acid, i.e. azurechelin, as has been demonstrated for P. aeruginosa, P. fluorescens and P. cepacia. Thus, salicylic acid is likely to act as a siderophore in more than one species belonging to the genus Pseudomonas.

  17. Acetylation and oxygenation transformations catalyzed by silica ...

    African Journals Online (AJOL)

    Acetylation of alcohols in refluxing ethyl acetate, and oxidation of aniline and cyclohexanol with 34 % H2O2 in the presence of H3PW12O40 and its supported forms on SiO2 (20 %, 40 %, and 60 % by weight) as active solid acid catalysts were performed under mild reaction conditions with moderate to good yields and with ...

  18. Lysine acetylation of major Chlamydia trachomatis antigens

    Directory of Open Access Journals (Sweden)

    Jelena Mihailovic

    2016-03-01

    Our data show that important Ct antigens could be post-translationally modified by acetylation of lysine residues at multiple sites. Further studies are needed to investigate total acetylome of Ct and the impact PTMs might have on Ct biology and pathogenicity.

  19. Salicylic acid signaling in disease resistance.

    Science.gov (United States)

    Kumar, Dhirendra

    2014-11-01

    Salicylic acid (SA) is a key plant hormone that mediates host responses against microbial pathogens. Identification and characterization of SA-interacting/binding proteins is a topic which has always excited scientists studying microbial defense response in plants. It is likely that discovery of a true receptor for SA may greatly advance understanding of this important signaling pathway. SABP2 with its high affinity for SA was previously considered to be a SA receptor. Despite a great deal work we may still not have true a receptor for SA. It is also entirely possible that there may be more than one receptor for SA. This scenario is more likely given the diverse role of SA in various physiological processes in plants including, modulation of opening and closing of stomatal aperture, flowering, seedling germination, thermotolerance, photosynthesis, and drought tolerance. Recent identification of NPR3, NPR4 and NPR1 as potential SA receptors and α-ketoglutarate dehydrogenase (KGDHE2), several glutathione S transferases (GSTF) such as SA binding proteins have generated more interest in this field. Some of these SA binding proteins may have direct/indirect role in plant processes other than pathogen defense signaling. Development and use of new techniques with higher specificity to identify SA-interacting proteins have shown great promise and have resulted in the identification of several new SA interactors. This review focuses on SA interaction/binding proteins identified so far and their likely role in mediating plant defenses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. The Influence of Acetyl Salicylic Acid (Aspirin) and Acetaminophen on Clinical and Histologic Aspects of Orthodontic Tooth Movement

    Science.gov (United States)

    1988-05-01

    in the rate of tooth movement associated with orthodontic mechanics. Locally high concentrations of prostaglandins appear to accelerate orthodontic ...of this lipid family. :., t z, , understood but has neverthele’s Iej t,.. ,I nI,-al ramifications. 6f particular !ntor; ,’Jrr.ly I orthodontic ...inhibitors, on clinical and histologic aspects of orthodontic tooth movement. Clinical and histologic results revealed no statistical differences among

  1. Effect of acetyl salicylic acid (aspirin) and Prostaglandins on thyroid tissue and carbohydrate metabolism in liver of male albino rats

    International Nuclear Information System (INIS)

    Balasubramanian, A.; Ramakrishnan, S.

    1979-01-01

    Aspirin, both in chronic and acute doses, led to a considerable decrease in percentage uptake of labelled iodine (Na 131 I) and serum protein-bound iodine by the thyroid gland whereas prostaglandins (PGs) did not exhibit any significant effect on both the parameters. Simultaneous administration of aspirin and PGs caused a significant decrease in the two parameters, and on withdrawal of aspirin from the diet the two parameters were restored to normal levels, thus suggesting that the effect of aspirin on thyroid is direct and reversible. Aspirin, both in acute and chronic doses, effected decrease in glycogen levels, in vivo and in vitro incorporation of [U- 14 C] glucose into glycogen, and glycogen synthetase activity in the liver of both fed, and fasting, rat. Prostaglandins, on the other hand, resulted in a significant increase in the three parameters, thus enhancing the rate of liver glycogenesis. Normal levels were restored when both aspirin and PGs were given together. Withdrawal of aspirin also restored normal hepatic glycogenesis. Significant reduction in the activities of hepatic gluconeogenic enzymes, viz. glucose 6-phosphatase, fructose 1,6-diphosphatase, phosphopyruvate carboxylase, pyruvate carboxylase, aspartate aminotransferase and glutamate dehydrogenase was observed due to chronic and acute administration of aspirin and PGs were devoid of any significant effect on gluconeogenic enzymes, thus ruling out the mediation of PGs. (auth.)

  2. Determination of Isoniazid Acetylator Phenotype and its Clinical ...

    African Journals Online (AJOL)

    After a 2-month treatment of the TB patients, the sputum smear cultures were negative in about 81% independent of the acetylator or HIV status. Early side effects experienced were dominated by peripheral neuropathies mostly in slow and intermediate acetylators. Key words: Acetylator, isoniazid, phenotype, tuberculosis, ...

  3. Efficient acetylation of primary amines and amino acids in ...

    Indian Academy of Sciences (India)

    Abstract. Acetyl chloride is one of the most commonly available and cheap acylating agent but its high reactivity and concomitant instability in water precludes its use to carry out acetylation in aqueous medium. The present methodology illustrates the efficient acetylation of primary amines and amino acids in brine solution ...

  4. The growing landscape of lysine acetylation links metabolism and cell signalling

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Weinert, Brian Tate; Nishida, Yuya

    2014-01-01

    Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation...

  5. Trichoderma reesei CE16 acetyl esterase and its role in enzymatic degradation of acetylated hemicellulose

    DEFF Research Database (Denmark)

    Biely, Peter; Cziszarava, Maria; Agger, Jane W.

    2014-01-01

    Results The combined action of GH10 xylanase and acetylxylan esterases (AcXEs) leads to formation of neutral and acidic xylooligosaccharides with a few resistant acetyl groups mainly at their non-reducing ends. We show here that these acetyl groups serve as targets for TrCE16 AcE. The most...... as substrate of the TrCE16 esterase. Conclusion Concerted action of CtGH10 xylanase, an AcXE and TrCE16 AcE resulted in close to complete deacetylation of neutral xylooligosaccharides, whereas substitution with MeGlcA prevents removal of acetyl groups from only a small fraction of the aldouronic acids....... Experiments with diacetyl derivatives of methyl β-d-xylopyranoside confirmed that the best substrate of TrCE16 AcE is 3-O-acetylated Xylp residue followed by 4-O-acetylated Xylp residue with a free vicinal hydroxyl group. General significance This study shows that CE16 acetyl esterases are crucial enzymes...

  6. Preventive Effect of Salicylate and Pyridoxamine on Diabetic Nephropathy.

    Science.gov (United States)

    Abouzed, Tarek Kamal; Munesue, Seiichi; Harashima, Ai; Masuo, Yusuke; Kato, Yukio; Khailo, Khaled; Yamamoto, Hiroshi; Yamamoto, Yasuhiko

    2016-01-01

    Objective . Diabetic nephropathy is a life-threatening complication in patients with long-standing diabetes. Hemodynamic, inflammatory, and metabolic factors are considered as developmental factors for diabetic nephropathy. In this study, we evaluated whether pharmacological interventions with salicylate, compared to pyridoxamine, could prevent diabetic nephropathy in mice. Methods . Male mice overexpressing inducible nitric oxide synthase in pancreatic β -cells were employed as a diabetic model. Salicylate (3 g/kg diet) or pyridoxamine (1 g/L drinking water; ~200 mg/kg/day) was given for 16 weeks to assess the development of diabetic nephropathy. Treatment with long-acting insulin (Levemir 2 units/kg twice a day) was used as a control. Results . Although higher blood glucose levels were not significantly affected by pyridoxamine, early to late stage indices of nephropathy were attenuated, including kidney enlargement, albuminuria, and increased serum creatinine, glomerulosclerosis, and inflammatory and profibrotic gene expressions. Salicylate showed beneficial effects on diabetic nephropathy similar to those of pyridoxamine, which include lowering blood glucose levels and inhibiting macrophage infiltration into the kidneys. Attenuation of macrophage infiltration into the kidneys and upregulation of antiglycating enzyme glyoxalase 1 gene expression were found only in the salicylate treatment group. Conclusions . Treatment with salicylate and pyridoxamine could prevent the development of diabetic nephropathy in mice and, therefore, would be a potentially useful therapeutic strategy against kidney problems in patients with diabetes.

  7. [Prevalence of intolerance to salicylates in patients with nasal polyposis].

    Science.gov (United States)

    Castilla-Rodríguez, Jaisel Luz; Vargas-Camaño, María Eugenia; Rodríguez-Briceño, Rodrigo Alberto; Galicia-Tapia, Jorge; Castrejón-Vázquez, María Isabel

    2015-01-01

    Salicylates intolerance is related to alteration in the metabolism of arachidonic acid leading to increased leukotrienes. The condition may be manifested with respiratory, skin or systemic symptoms or associated with sinonasal polyposis. Salicylates are present in anti-inflammatory drugs, cosmetics products and food. To determine the prevalence of salicylates intolerance in patients with sinonasal polyposis presenting to Clinical Immunology and Allergy and Otolaryngology Service, CMN 20 Noviembre, Mexico City. An observational, descriptive, cross sectional study included patients with sinonasal polyposis. The sample size was 49 patients, and variables were compared using STATISTICA 8.0. The prevalence of sinonasal polyposis was 4% of the study group, predominantly in females; only 24% of the population had an ideal weight, the salicylates intolerance prevalence was 53%, and the Samter triad was 31%. Sinonasal polyposis has an inflammatory disease pattern. Its pathophysiology is not yet fully established and in this study was related to obesity and persistent sinusitis. The most feared complication recurrence is associated with salicylates intolerance. The study found a slight increase of recurrence in the group of intolerance, with no statistically significant difference, possibly related to the sample size.

  8. Preventive Effect of Salicylate and Pyridoxamine on Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Tarek Kamal Abouzed

    2016-01-01

    Full Text Available Objective. Diabetic nephropathy is a life-threatening complication in patients with long-standing diabetes. Hemodynamic, inflammatory, and metabolic factors are considered as developmental factors for diabetic nephropathy. In this study, we evaluated whether pharmacological interventions with salicylate, compared to pyridoxamine, could prevent diabetic nephropathy in mice. Methods. Male mice overexpressing inducible nitric oxide synthase in pancreatic β-cells were employed as a diabetic model. Salicylate (3 g/kg diet or pyridoxamine (1 g/L drinking water; ~200 mg/kg/day was given for 16 weeks to assess the development of diabetic nephropathy. Treatment with long-acting insulin (Levemir 2 units/kg twice a day was used as a control. Results. Although higher blood glucose levels were not significantly affected by pyridoxamine, early to late stage indices of nephropathy were attenuated, including kidney enlargement, albuminuria, and increased serum creatinine, glomerulosclerosis, and inflammatory and profibrotic gene expressions. Salicylate showed beneficial effects on diabetic nephropathy similar to those of pyridoxamine, which include lowering blood glucose levels and inhibiting macrophage infiltration into the kidneys. Attenuation of macrophage infiltration into the kidneys and upregulation of antiglycating enzyme glyoxalase 1 gene expression were found only in the salicylate treatment group. Conclusions. Treatment with salicylate and pyridoxamine could prevent the development of diabetic nephropathy in mice and, therefore, would be a potentially useful therapeutic strategy against kidney problems in patients with diabetes.

  9. The efficacy and pharmacokinetics of sodium salicylate in post-operative dental pain.

    OpenAIRE

    Seymour, R A; Rawlins, M D; Clothier, A

    1984-01-01

    Sodium salicylate, 537 mg and 1074 mg were compared in a double-blind cross-over study in 24 patients with post-operative pain following removal of impacted lower third molars. No significant analgesic effect was observed after either dose of sodium salicylate, either overall or at any time point during the 5 h investigation period. Peak plasma concentrations of salicylate after 537 mg were observed at 30 min after dosage, whereas peak plasma salicylate concentrations after 1074 mg sodium sal...

  10. Novel Pathway of Salicylate Degradation by Streptomyces sp. Strain WA46

    OpenAIRE

    Ishiyama, Daisuke; Vujaklija, Dusica; Davies, Julian

    2004-01-01

    A novel salicylate-degrading Streptomyces sp., strain WA46, was identified by UV fluorescence on solid minimal medium containing salicylate; trace amounts of gentisate were detected by high-pressure liquid chromatography when strain WA46 was grown with salicylate. PCR amplification of WA46 DNA with degenerate primers for gentisate 1,2-dioxygenase (GDO) genes produced an amplicon of the expected size. Sequential PCR with nested GDO primers was then used to identify a salicylate degradation gen...

  11. 40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Methyl salicylate; exemption from the... Exemptions From Tolerances § 180.1189 Methyl salicylate; exemption from the requirement of a tolerance. The biochemical pesticide methyl salicylate is exempt from the requirement of a tolerance for residues in or on...

  12. Determination of acetylsalicylic acid and salicylic acid in foods, using HPLC with fluorescence detection.

    NARCIS (Netherlands)

    Venema, D.P.; Hollman, P.C.H.; Janssen, P.L.T.M.K.; Katan, M.B.

    1996-01-01

    We developed a specific and sensitive HPLC method with fluorescence detection for the determination of free acetylsalicylic acid, free salicylic acid, and free salicylic acid plus salicylic acid after alkaline hydrolysis (free-plus-bound) in foods. Acetylsalicylic acid was detected after postcolumn

  13. Transparent plastic scintillators for neutron detection based on lithium salicylate

    Science.gov (United States)

    Mabe, Andrew N.; Glenn, Andrew M.; Carman, M. Leslie; Zaitseva, Natalia P.; Payne, Stephen A.

    2016-01-01

    Transparent plastic scintillators with pulse shape discrimination containing 6Li salicylate have been synthesized by bulk polymerization with a maximum 6Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported herein. Plastics containing 6Li salicylate exhibit higher light yields and permit a higher loading of 6Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Reduction in light yield and pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts.

  14. Bacterial persistence induced by salicylate via reactive oxygen species

    Science.gov (United States)

    Wang, Tiebin; El Meouche, Imane; Dunlop, Mary J.

    2017-01-01

    Persisters are phenotypic variants of regular cells that exist in a dormant state with low metabolic activity, allowing them to exhibit high tolerance to antibiotics. Despite increasing recognition of their role in chronic and recalcitrant infections, the mechanisms that induce persister formation are not fully understood. In this study, we find that salicylate can induce persister formation in Escherichia coli via generation of reactive oxygen species (ROS). Salicylate-induced ROS cause a decrease in the membrane potential, reduce metabolism and lead to an increase in persistence. These effects can be recovered by culturing cells in the presence of a ROS quencher or in an anaerobic environment. Our findings reveal that salicylate-induced oxidative stress can lead to persistence, suggesting that ROS, and their subsequent impact on membrane potential and metabolism, may play a broad role in persister formation. PMID:28281556

  15. Adhesives for Achieving Durable Bonds with Acetylated Wood

    Directory of Open Access Journals (Sweden)

    Charles R. Frihart

    2017-12-01

    Full Text Available Acetylation of wood imparts moisture durability, decay resistance, and dimensional stability to wood; however, making durable adhesive bonds with acetylated wood can be more difficult than with unmodified wood. The usual explanation is that the acetylated surface has fewer hydroxyl groups, resulting in a harder-to-wet surface and in fewer hydrogen bonds between wood and adhesive. This concept was evaluated using four different adhesives (resorcinol–formaldehyde, emulsion polymer isocyanate, epoxy, and melamine–formaldehyde with unmodified wood, acetylated wood, and acetylated wood that had been planed. Strikingly, acetylation did not hinder adhesive bonds with a waterborne resorcinol–formaldehyde adhesive that bonded equally well to both unmodified and acetylated yellow poplar. An epoxy adhesive bonded better to the acetylated wood than to the unmodified wood, in contrast to an emulsion polymer isocyanate, which gave less durable bonds to acetylated than to unmodified wood. Planing of the acetylated wood surface prior to bonding reduced bond durability for the epoxy adhesive and increased the amount of surface hydroxyl groups, as measured using X-ray photoelectron spectroscopic analysis of the trifluoroacetic anhydride-treated wood. These experiments showed that wood modification is useful in understanding wood-adhesive interactions, in addition to determining how to develop adhesives for acetylated woods.

  16. Role of the N-acetylation polymorphism in solithromycin metabolism.

    Science.gov (United States)

    Hein, David W; Doll, Mark A

    2017-06-01

    Solithromycin is a new macrolide antibiotic for the potential treatment of bacterial pneumonia. Solithromycin N-acetylation by human NAT1 and NAT2 was investigated following recombinant expression in yeast and in cryopreserved human hepatocytes from rapid, intermediate and slow acetylators. Solithromycin exhibited over twofold higher affinity for recombinant human NAT2 than NAT1. Apparent maximum velocities for the N-acetylation of solithromycin catalyzed by the NAT2 allozyme associated with rapid acetylators were significantly (p intermediate>slow acetylators) were exhibited in cryopreserved human hepatocytes in situ following incubation with 100 μM solithromycin. Solithromycin is N-acetylated by human NAT1 and NAT2 and the role of the NAT2 acetylation polymorphism on solithromycin metabolism may be concentration dependent.

  17. Stability testing of extemporaneous preparation of methyl salicylate ointment

    Directory of Open Access Journals (Sweden)

    H A Makeen

    2018-01-01

    Results: The shelf life (t90% of extemporaneously prepared methyl salicylate ointment was found to be 131 days at room temperature (25°C ± 5°C and 176 days in the refrigerator (2°C–8°C. Conclusion: The methyl salicylate present in extemporaneous ointment preparation is fairly stable at cool temperatures but shows faster degradation at higher temperature conditions. Therefore, it is recommended that an expiry date of 4 months can be safely mentioned when stored in cool.

  18. Tracing of salicylic acid additive during precipitation of zirconium

    International Nuclear Information System (INIS)

    Bharati Misra, U.; Gopala Krishna, K.; Narasimha Murty, B.; Yadav, R.B.

    2011-01-01

    This paper presents the results of experimental study carried out to know whether the salicylic acid used as an additive during the precipitation of zirconium using ammonium hydroxide solution goes into the filtrate, remains in the hydrated zirconia or gets distributed between the both under the ambient conditions of precipitation. Keeping its simplicity and amenability to adopt on a routine basis, spectrophotometric method has been chosen for the purpose among the many methods available and the problems associated in determining salicylic acid in the presence of zirconium and the medial measures to circumvent the same have been brought out in detail. (author)

  19. Enzymatic sequencing of partially acetylated chitosan oligomers.

    Science.gov (United States)

    Hamer, Stefanie Nicole; Moerschbacher, Bruno Maria; Kolkenbrock, Stephan

    2014-06-17

    Chitosan oligosaccharides have diverse biological activities with potentially valuable applications, for example, in the fields of medicine and agriculture. These functionalities are thought to depend on their degree of polymerization and acetylation, and possibly on specific patterns of acetylation. Chitosan oligomers with fully defined architecture are difficult to produce, and their complete analysis is demanding. Analysis is typically done using MS or NMR, requiring access to expensive infrastructure, and yielding unequivocal results only in the case of rather small oligomers. We here describe a simple and cost-efficient method for the sequencing of μg amounts of chitosan oligosaccharides which is based on the sequential action of two recombinant glycosidases, namely an exo-β-N-acetylhexosaminidase (GlcNAcase) from Bacillus subtilis 168 and an exo-β-d-glucosaminidase (GlcNase) from Thermococcus kodakarensis KOD1. Starting from the non-reducing end, GlcNAcase and GlcNase specifically remove N-acetyl glucosamine (A) and glucosamine (D) units, respectively. By the sequential addition and removal of these enzymes in an alternating way followed by analysis of the products using high-performance thin-layer chromatography, the sequence of chitosan oligosaccharides can be revealed. Importantly, both enzymes work under identical conditions so that no buffer exchange is required between steps, and the enzyme can be removed conveniently using simple ultra-filtration devices. As proof-of-principle, the method was used to sequence the product of enzymatic deacetylation of chitin pentamer using a recombinant chitin deacetylase from Vibrio cholerae which specifically removes the acetyl group from the second unit next to the non-reducing end of the substrate, yielding mono-deacetylated pentamer with the sequence ADAAA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fragrance material review on acetyl carene.

    Science.gov (United States)

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl carene when used as a fragrance ingredient is presented. Acetyl carene is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl carene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013A Toxicologic and dermatologic assessment of alkyl cyclic ketones when used as fragrance ingredients. (submitted for publication).) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013. Published by Elsevier Ltd.

  1. Effect of salicylic acid on the growth photosynthesis and carbohydrate metabolism in salt stressed maize plants

    International Nuclear Information System (INIS)

    Moussa, H.R.; Khodary, S.E.A.

    2003-01-01

    Aqueous solutions of salicylic acid as a spray to Na CI-treated corn (Zea mays L,) significantly increased the growth of shoots and roots as measured after seven days of treatment. Spraying of salicylic acid caused significant increases in the activity of both ribulose 1,5 bisphosphate carboxylase (rubisco) enzyme and photosynthetic pigments. Moreover, salicylic acid treatment induced high values of soluble carbohydrate fractions in salt stressed plants as compared with salicylic acid treated samples. These data suggest that salicylic acid might improve the growth pattern of NaCl-treated maize plants via increasing the rate of photosynthesis and carbohydrate metabolism

  2. The effect of sodium salicylate on cerebral blood flow and metabolism.

    OpenAIRE

    Pickard, J. D.; Rose, J. E.; Shaw, M. D.; Strathdee, A.

    1980-01-01

    1 The effect of intravenous sodium salicylate on cerebral oxygen consumption and cerebral blood flow and its response to hypercapnia was measured by the 133Xenon intracarotid injection technique in ten baboons. 2 After an initial peak, the plasma salicylate level maintained a stable value for 2 h of 1 mmol/l with 50 mg/kg sodium salicylate and 2.5 mmol/l with 200 mg/kg sodium salicylate. 3 Sodium salicylate (50 mg/kg) produced no change in baseline cerebral blood flow (CBF) or cerebral oxygen...

  3. Negative anion gap metabolic acidosis in salicylate overdose--a zebra!

    Science.gov (United States)

    Kaul, Viren; Imam, Syed Haider; Gambhir, Harvir Singh; Sangha, Arindam; Nandavaram, Sravanthi

    2013-10-01

    Salicylate poisoning classically results in an increased anion gap metabolic acidosis. We discuss a case of normal anion gap metabolic acidosis despite elevated serum salicylate concentration. This diagnostic dilemma stemmed from aberrant reading of salicylate ions by analyzer electrodes as chloride ions leading to falsely negative anion gap. On review, this phenomenon is found to be possible with a number of commonly used analyzers. In emergency department settings, high level of clinical suspicion for salicylate poisoning should be maintained, and metabolic acidosis with normal anion gap should not be used to rule out salicylate overdose. This can prevent significant avoidable morbidity and mortality.

  4. O-acetylation of Plant Cell Wall Polysaccharides

    Directory of Open Access Journals (Sweden)

    Sascha eGille

    2012-01-01

    Full Text Available Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA and the trichome birefringence-like (TBL proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation.From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of e.g. lignocellulosic based biofuel production.

  5. Studying the properties of the new class of organic scintillators-salicylic acid derivatives

    International Nuclear Information System (INIS)

    Mandzhukov, I.G.; Mandzhukova, B.V.; Bonchev, Ts.V.; Lazarova, G.I.

    1981-01-01

    Li, Na, K, Mg, Ca, Sr, Ba, La, Cd, Al, Sn, NH 4 salicylates are synthesized. Their relative scintillation efficiency during irradiation with α-particles of 5.156 MeV energy (sup(239)Pu) is determined. Scintillation efficiency of salicylates has been evaluated by comparing amplitude of scintillation pulse from salicylate with pulse amplitude from anthracene and other classical scintillators. Amplitude analysis has been conducted by standard methods. The analysis of the results obtained shows that sodium salicylate has the highest relative scintillation efficiency comparable with naphthalene efficiency. Salicylates of alkali Li and K metals as well as Ca and Cd salicylates have high relative scintillation efficiency. It is concluded that the investigated salicylates can be used for detection of (n, α), (n, p) and other reactions accompanying neutron capture not only during their reactions but by measuring activity induced in the scintillator [ru

  6. Simultaneous determination of salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic and benzoic acids in fruit, vegetables and derived beverages by SPME-LC-UV/DAD.

    Science.gov (United States)

    Aresta, Antonella; Zambonin, Carlo

    2016-03-20

    Salicylic and benzoic acid are phenolic acids occurring in plant cells, thus they can be present in fruit and vegetables at various levels. They possess anti-inflammatory and antimicrobial properties, however they may induce symptoms and health problems in a small percentage of the population. Therefore, a low phenolic acid diet may be of clinical benefit to such individuals. In order to achieve this goal, the concentration of these substances in different food and beverages should be assessed. The present work describes for the first time a new method, based on solid phase microextraction (polydimethylsiloxane-divinylbenzene fiber) coupled to liquid chromatography with UV diode array detection, for the simultaneous determination of salicylic acid, 3-methyl salicylic acid, 4-methyl salicylic acid, acetylsalicylic acid and benzoic acid in selected fruit, vegetables and beverages. All the aspects influencing fiber adsorption (time, temperature, pH, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analytes have been investigated. An isocratic separation was performed using an acetonitrile-phosphate buffer (pH 2.8; 2 mM) mixture (70:30, v/v) as the mobile phase. The estimated LOD and LOQ values (μg/mL) were in the range 0.002-0.028 and 0.007-0.095. The within-day and day-to-day precision values (RSD%) were between 4.7-6.1 and 6.6-9.4, respectively. The method has been successfully applied to the analysis of fava beans, blueberries, kiwi, tangerines, lemons, oranges and fruit juice (lemon and blueberry) samples. The major advantage of the method is that it only requires simple homogenization and/or centrifugation and dilution steps prior to SPME and injection in the LC system. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Sodium salicylate protects against rotenone-induced parkinsonism in rats.

    Science.gov (United States)

    Madathil, Sindhu K; Karuppagounder, Saravanan S; Mohanakumar, Kochupurackal P

    2013-08-01

    Complex I deficiency culminating in oxidative stress is proposed as one of the upstream mechanisms of nigral neuronal death in Parkinson's disease. We investigated whether sodium salicylate, an active metabolite of aspirin, could afford protection against rotenone-induced oxidative stress, neuronal degeneration, and behavioral dysfunction in rats, because it has the potential to accept a molecule each of hydroxyl radical (•OH) at the third or fifth position of its benzyl ring. Rotenone caused dose-dependent increase in •OH in isolated mitochondria from the cerebral cortex and time- (24-48 h) and dose-dependent (0.1-100 µM) increase in the substantia nigra and the striatum, ipsilateral to the side of rotenone infusion. Administration of sodium salicylate at 12-h intervals for 4 days showed dose-dependent (50-100 mg/kg, i.p) reductions in the levels of •OH in the nigra on the fifth day. These animals showed significant attenuation in rotenone-induced loss in striatal dopamine levels, number of nigral dopaminergic neurons, reduced and oxidized glutathione levels, and complex I activity loss, but superoxide dismutase activity was increased further. Amphetamine- or apomorphine-induced ipsilateral rotations in rotenone-treated rats were significantly reduced in rats treated with sodium salicylate. Our results indicate a direct role of •OH in mediating nigral neuronal death by rotenone and confirm the neuroprotective potential of salicylate in a rodent model of parkinsonism. Copyright © 2013 Wiley Periodicals, Inc.

  8. Transparent plastic scintillators for neutron detection based on lithium salicylate

    Energy Technology Data Exchange (ETDEWEB)

    Mabe, Andrew N., E-mail: mabe2@llnl.gov; Glenn, Andrew M.; Carman, M. Leslie; Zaitseva, Natalia P.; Payne, Stephen A.

    2016-01-11

    Transparent plastic scintillators with pulse shape discrimination containing {sup 6}Li salicylate have been synthesized by bulk polymerization with a maximum {sup 6}Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported herein. Plastics containing {sup 6}Li salicylate exhibit higher light yields and permit a higher loading of {sup 6}Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Reduction in light yield and pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts. - Highlights: • Plastic scintillator with 0.4% {sup 6}Li loading is reported using lithium salicylate. • Influence of lithium salts on the scintillation mechanism is explored. • New lithium-loaded scintillator provides improved light yield and reduced cost.

  9. Methyl salicylate production in tomato affects biotic interactions

    NARCIS (Netherlands)

    Ament, K.; Krasikov, V.; Allmann, S.; Rep, M.; Takken, F.L.W.; Schuurink, R.C.

    2010-01-01

    The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root-invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene

  10. Effects of salicylic acid on morphological and physiological ...

    African Journals Online (AJOL)

    To evaluate the effect of different levels of salicylic acid (SA) on yield and some morphological and physiological characteristics of sweet corn hybrids under water stress, this study was conducted in 2015 using split plots in the base of randomized complete block design with three replications. Treatments were included ...

  11. How salicylic acid takes transcriptional control over jasmonic acid signaling

    NARCIS (Netherlands)

    Caarls, Lotte|info:eu-repo/dai/nl/371746213; Pieterse, Corné M J|info:eu-repo/dai/nl/113115113; van Wees, Saskia C M|info:eu-repo/dai/nl/185445373

    2015-01-01

    Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA) are the major players. Extensive cross-communication between

  12. Thermodynamics of cosolvent action: phenacetin, salicylic acid and probenecid.

    Science.gov (United States)

    Peña, M A; Escalera, B; Reíllo, A; Sánchez, A B; Bustamante, P

    2009-03-01

    The solubility of phenacetin, salicylic acid, and probenecid in ethanol-water and ethanol-ethyl acetate mixtures at several temperatures (15-40 degrees C) was measured. The solubility profiles are related to medium polarity changes. The apparent thermodynamic magnitudes and enthalpy-entropy relationships are related to the cosolvent action. Salicylic acid and probenecid show a single peak against the solubility parameter delta(1) of both solvent mixtures, at 40% (delta(1) = 21.70 MPa(1/2)) and 30% (delta(1) = 20.91 MPa(1/2)) ethanol in ethyl acetate, respectively. Phenacetin displays two peaks at 60% ethanol in ethyl acetate (23.30 MPa(1/2)) and 90% ethanol in water (delta(1) = 28.64 MPa(1/2)). The apparent enthalpies of solution display a maximum at 30% (phenacetin and salicylic acid) and 40% (probenecid) ethanol in water, respectively. Two different mechanisms, entropy at low ethanol ratios, and enthalpy at high ethanol ratios control the solubility enhancement in the aqueous mixture. In the nonaqueous mixture (ethanol-ethyl acetate) enthalpy is the driving force throughout the whole solvent composition for salicylic acid and phenacetin. For probenecid, the dominant mechanism shifts from entropy to enthalpy as the ethanol in ethyl acetate concentration increases. The enthalpy-entropy compensation plots corroborate the different mechanisms involved in the solubility enhancement by cosolvents. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  13. Fluorescence characteristics of complex formation of europium(III)-salicylate

    International Nuclear Information System (INIS)

    Aoyagi, N.; Toraishi, T.; Hotokezaka, H.; Tanaka, S.; Geipel, G.; Nagasaki, S.

    2004-01-01

    The complexation of salicylate with Eu 3+ was studied by means of time-resolved laser induced fluorescence spectroscopy (TRLFS) using ultra-short pulses at a concentration of sodium salicylate of 1.00 x 10 -4 . Ionic media was kept constant at 0.1M NaClO 4 . pH was adjusted to 4.00. The concentration of Eu 3+ was varied from 1.98 x 10 -3 M to 1.31 x 10 -2 M. From the fluorescence lifetime analysis of the salicylate, we confirmed that a dynamic quenching process did not take place, while static quenching proceeded under the experimental conditions. The Stern Volmer plots indicated only the formation of a 1:1 complex, and the stability constant was assigned to be log β 1,1 = 2.08 ± 0.02. This agrees with reported values, which have been determined by other techniques. This result shows that the studies on complex formation can be safely investigated quantitatively by means of TRLFS from not only the luminescence of Eu 3+ but the fluorescence of salicylate. (orig.)

  14. Evaluation of the antifungal properties of nystatin-salicylic acid ...

    African Journals Online (AJOL)

    The in vitro antifungal activity of nystatin-salicylic acid combinations against clinical isolates of Candida albicans was investigated separately using the overlay inoculum susceptibility disc, the decimal assay for additively (DDA) and the rate of time kill methods. The minimum inhibitory concentrations (MIC) of the individual ...

  15. The Italian contributions to the history of salicylates

    Directory of Open Access Journals (Sweden)

    Giampiero Pasero

    2011-09-01

    Full Text Available It is well-known that the modern history of salicylates began in 1899 when the compound acetylsalicylic acid was registered and introduced commercially as “aspirin” by the Bayer Company of Germany. As a matter of fact, however, remedies made from willow bark had been used to treat fever and rheumatic complaints at least since 1763, when Edward Stone described their efficacy against malarian fever. A number of Italian scientists made significant contributions during the long period of research leading up to the synthesis of acetylsalicylic acid and its widespread use in rheumatic diseases. In this paper we will review the contributions of some of these researchers, beginning with Bartolomeo Rigatelli, who in 1824 used a willow bark extract as a therapeutic agent, denominating it “salino amarissimo antifebbrile” (very bitter antipyretic salt. In the same year, Francesco Fontana described this natural compound, giving it the name “salicina” (salicin. Two other Italian chemists added considerably to current knowledge of the salicylates: Raffaele Piria in 1838, while working as a research fellow in Paris, extracted the chemical compound salicylic acid, and Cesare Bertagnini in 1855 published a detailed description of the classic adverse event associated with salicylate overdoses – tinnitus – which he studied by deliberately ingesting excessive doses himself. Bertagnini and above all Piria also played conspicuous roles in the history of Italy during the period of the Italian Risorgimento, participating as volunteers in the crucial battle of Curtatone and Montanara during the first Italian War of Independence.

  16. Salicylate clearance, the resultant of protein binding and metabolism.

    Science.gov (United States)

    Furst, D E; Tozer, T N; Melmon, K L

    1979-09-01

    Steady-state plasma salicylate concentrations and protein binding were examined in 9 normal subjects to determine relationships among daily dose, total and unbound salicylate concentrations, and total and unbound clearances. Aspirin doses ranging from 0.66 to 4.0 mg/kg/hr were given to steady state. Free and total salicylate concentrations were measured with spectrophotometric, fluorimetric, and equilibrium dialysis techniques. Although unbound clearance decreased over the therapeutic range, total clearance was unchanged. The former is a consequence of saturable metabolism; the latter, of saturable plasma protein binding as well as saturable metabolism. The fraction unbound increased linearly with unbound concentration. Clearance determined at 1.8 mg/kg/hr was used to predict levels obtained at higher aspirin doses. Analysis of residuals was used to ascertain the accuracy of the prediction. The coefficient of variation from prediction among subjects was found to be +/- 14%. It is concluded that, in normal subjects, salicylate clearance changes relatively little over the therapeutic range because the increasing fraction unbound compensates for decreasing clearance of unbound drug.

  17. Competitive adsorption and photodegradation of salicylate and oxalate on goethite

    Czech Academy of Sciences Publication Activity Database

    Krýsa, J.; Jirkovský, Jaromír; Bajt, O.; Mailhot, G.

    2011-01-01

    Roč. 161, č. 1 (2011), s. 221-227 ISSN 0920-5861 R&D Projects: GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40400503 Keywords : goethite * oxalate * salicylate Subject RIV: CG - Electrochemistry Impact factor: 3.407, year: 2011

  18. Effect of foliar application of salicylic acid, hydrogen peroxide

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 2. Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associatedwith capsinoids synthesis in Capsicum annuum L. AY ZUNUN-PÉREZ T GUEVARA-FIGUEROA SN ...

  19. Reye's syndrome: salicylate and mitochondrial monoamine oxidase function

    International Nuclear Information System (INIS)

    Faraj, B.A.; Caplan, D.; Lolies, P.

    1986-01-01

    It has been suggested that aspirin is somehow linked with the onset of Reye's syndrome (RS). A general feature of Reye's syndrome is severe impairment of mitochondrial monoamine oxidase (MAO) function. The main objective of this investigation was to study the effect of salicylate on platelet mitochondrial MAO activity in three groups: group A (healthy children, n = 21) and group C (healthy adults, n = 10). Platelet MAO was measured by radio-enzymatic technique with 14 C-tyramine as a substrate. The results showed that salicyclate (10 mM) had a 20 to 60 percent inhibitory effect on platelet MAO function in only 1, 3 and 2 of the subjects in group A, B and C. Furthermore, there was an association between low enzyme activity and salicylate MAO inhibitory effect in these subjects. These preliminary findings suggest that salicylate may induce deterioration in mitochondrial function in susceptible individuals and that the assessment of salicylate MAO inhibitory effect may identify those who may be at risk to develop aspirin poisoning and Reye's syndrome

  20. Solubility of salicylic acid in pure alcohols at different temperatures

    International Nuclear Information System (INIS)

    Lim, Junhyuk; Jang, Sunghyun; Cho, Hye Kyoung; Shin, Moon Sam; Kim, Hwayong

    2013-01-01

    Highlights: ► Solubility data of salicylic acid in pure alkanols were measured. ► The experimental data were correlated with NRTL, UNIQUAC and Wilson models. ► The data are fit well with all three models for the six pure alcohols studied. ► Adjustable interaction parameters were suggested. - Abstract: This work focused on the experimental measurements and the numerical calculations of the solubility of salicylic acid in various alcohols. The solubility of salicylic acid in pure alcohols was determined using a (solid + liquid) equilibrium measurement apparatus at temperatures ranging from (278.15 to 318.15) K. Also, the melting temperature and fusion enthalpy of salicylic acid were determined by a differential scanning calorimeter (TA instrument Q100). The experimental results were correlated with the equation for solubility of a solid in a liquid with the nonrandom two liquid (NRTL), universal quasi-chemical (UNIQUAC) and Wilson models for liquid phase activity coefficients to validate the quality of the data taken. Adjustable interaction parameters were also provided. The experimental data fit appropriately with all three models for the pure alcohols studied.

  1. Mathematical modelling of zirconium salicylate solvent extraction process

    International Nuclear Information System (INIS)

    Smirnova, N.S.; Evseev, A.M.; Fadeeva, V.I.; Kochetkova, S.K.

    1979-01-01

    Mathematical modelling of equilibrium multicomponent physicochemical system at the extraction of zirconium salicylates by chloroform is carried out from HCl aqueous solutions at pH 0.5-4.7. Adequate models, comprising different molecular forms, corresponding to equilibrium phase composition are built

  2. Ameliorative impact of salicylic acid on growth of Abelmoschus ...

    African Journals Online (AJOL)

    The objective of the present study was to protect the growth of Abelmoschus esculentus var. Clemson spineless (okro) using salicylic acid (SA) in soil subjected to aluminium (Al) toxicity and Al chelated with -1 ethylenediaminetetraacetic acid (EDTA). Okro plants were grown in soil contaminated with Al (1.5g kg-1 ) in the ...

  3. Evaluation of Some Starches as Disintegrants in Sodium Salicylate ...

    African Journals Online (AJOL)

    The disintegrant properties of official maize and potato starches and locally produced cassava starch in sodium salicylate tablet formulations were studied. The disintegrants were added intragranularly in each batch. Concentration range of 5 % to 15 % w/w of each disintegrant was used. In vitro dissolution profile, uniformity ...

  4. Influence of Salicylic Acid on the Antimicrobial Potential of Stevia ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of salicylic acid (SA) on the antimicrobial profile of Stevia leaf extracts against soybean seed-borne pathogens. Methods: Stevia seeds were planted in a greenhouse and SA foliar applied after six weeks on the whole plant at concentrations of 0 and 0.1 g L-1. The extracts of the plant leaf ...

  5. INCORPORATION OF SALICYLATES INTO POLY(L-LACTIDE)

    NARCIS (Netherlands)

    SUPER, H; GRIJPMA, DW; PENNINGS, AJ

    Recent studies have indicated that complications like swelling and inflammation of the surrounding tissue may occur in the late stage of the in vivo degradation of semi-crystalline PLLA bone fixation devices. Incorporation of an anti-inflammatory drug, like a salicylate, in the poly(L-lactide) chain

  6. Does foliar application of salicylic acid protects nitrate reductase and ...

    African Journals Online (AJOL)

    The present study was conducted to assess whether exogenous applied salicylic acid (SA) as a foliar spray could ameliorate the adverse effects of virus infection in two maize cultivars (maize cv. sabaini and maize cv. Nab El-gamal). The plants were grown under normal field conditions for two weeks in sand clay soil, and ...

  7. Does foliar application of salicylic acid protects nitrate reductase and ...

    African Journals Online (AJOL)

    SAM

    2014-06-04

    Jun 4, 2014 ... interferes with tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism. Plant Cell 9:547-557. Dat JF, Lopez DH, Foyer CH, Scott IM (1998). Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings.

  8. Effects of salicylic acid on monoterpene production and antioxidant ...

    African Journals Online (AJOL)

    Salicylic acid (SA) plays important roles in plant defense responses. However, little is available about its effects on monoterpene responses. Therefore, monoterpene contents and antioxidant systems were measured three days after foliar application of SA with different concentrations in Houttuynia cordata. SA at low ...

  9. Salicylate activity. 1. Protection of plants from paraquat injury.

    Science.gov (United States)

    Silverman, F Paul; Petracek, Peter D; Fledderman, Christina M; Ju, Zhiguo; Heiman, Daniel F; Warrior, Prem

    2005-12-14

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium; methylviologen) is a widely used, nonselective contact herbicide that rapidly stimulates free radical generation. It has been found that the addition of sodium salicylate (sodium 2-hydroxybenzoate; NaSA) to paraquat spray solutions significantly decreased herbicidal activity. This protection was observed in tobacco (Nicotiana tabacum) regardless of whether NaSA was foliar-applied along with or prior to paraquat application or NaSA was soil-applied prior to paraquat application. Because salicylic acid (SA) is an inducer of systemic acquired resistance (SAR) to plant disease, paraquat protection by three SAR inducers (acibenzolar-S-methyl, harpin, and probenazole) and selected salicylate derivatives was assessed. Twenty-two of 24 compounds tested decreased herbicidal activity when foliar-applied with paraquat. Protection from paraquat was greatest with 5-chlorosalicylate, and no protection was observed with benzoic acid. NaSA decreased paraquat activity on npr1-2, an Arabidopsis mutant that is compromised in NaSA-induced SAR, and on ein2-1, an ethylene-insensitive Arabidopsis mutant. Thus, salicylate protection from paraquat is independent of disease resistance and ethylene perception. This suggests the existence of an NaSA-mediated pathway capable of protecting plants from reactive oxygen stress.

  10. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution

    International Nuclear Information System (INIS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

    2014-01-01

    Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV–vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved. - Highlights: • In OH induced reactions of salicylates first products are hydroxylated derivatives. • With prolonged irradiation dihydroxy derivatives also form. • In aerated solutions the one-electron oxidant OH induces 3–4 oxidations. • Toxicity first increases and then decreases with dose mainly due to H 2 O 2 formation. • The toxicity in tap water is smaller than in pure water

  11. Salicylic Acid Alters Antioxidant and Phenolics Metabolism in ...

    African Journals Online (AJOL)

    Key words: Antioxidant enzymes; Catharanthus roseus; indole alkaloids; phenolic metabolism; salicylic acid; salinity stress. Abbreviations: CAT - catalase; Chl - chlorophyll; Car - carotenoids; DTNB - 5,5-dithiobis-2-nitrobenzoic acid; GR - glutathione reductase; GST - Glutathione-S-transferase; H2O2 - hydrogen peroxide; ...

  12. Impact of salicylic acid on antioxidants, biomass and osmotic ...

    African Journals Online (AJOL)

    USER

    2013-08-14

    Aug 14, 2013 ... Ameliorative impact of salicylic acid (SA) on Vigna unguiculata L. (cowpea) cultivar IT93k-452-1 during water deficit stress ... vitamin B12 in DVS plants and 40% increase in vitamin C in DRS plants and SA (3 mM) further increased the latter by 14%. ..... Acta 76: 55-61. Bates LS, Waldren RP, Tear ID (1973).

  13. Protein acetylation involved in streptomycin biosynthesis in Streptomyces griseus.

    Science.gov (United States)

    Ishigaki, Yuji; Akanuma, Genki; Yoshida, Minoru; Horinouchi, Sueharu; Kosono, Saori; Ohnishi, Yasuo

    2017-02-23

    Protein acetylation, the reversible addition of an acetyl group to lysine residues, is a protein post-translational modification ubiquitous in living cells. Although the involvement of protein acetylation in the regulation of primary metabolism has been revealed, the function of protein acetylation is largely unknown in secondary metabolism. Here, we characterized protein acetylation in Streptomyces griseus, a streptomycin producer. Protein acetylation was induced in the stationary and sporulation phases in liquid and solid cultures, respectively, in S. griseus. By comprehensive acetylome analysis, we identified 134 acetylated proteins with 162 specific acetylated sites. Acetylation was found in proteins related to primary metabolism and translation, as in other bacteria. However, StrM, a deoxysugar epimerase involved in streptomycin biosynthesis, was identified as a highly acetylated protein by 2-DE-based proteomic analysis. The Lys70 residue, which is critical for the enzymatic activity of StrM, was the major acetylation site. Thus, acetylation of Lys70 was presumed to abolish enzymatic activity of StrM. In accordance with this notion, an S. griseus mutant producing the acetylation-mimic K70Q StrM hardly produced streptomycin, though the K70Q mutation apparently decreased the stability of StrM. A putative lysine acetyltransferase (KAT) SGR1683 in S. griseus, as well as the Escherichia coli KAT YfiQ, acetylated Lys70 of StrM in vitro. Furthermore, absolute quantification analysis estimated that 13% of StrM molecules were acetylated in mycelium grown in solid culture for 3days. These results indicate that StrM acetylation is of biological significance. We propose that StrM acetylation functions as a limiter of streptomycin biosynthesis in S. griseus. Protein acetylation has been extensively studied not only in eukaryotes, but also in prokaryotes. The acetylome has been analyzed in more than 14 bacterial species. Here, by comprehensive acetylome analysis, we showed

  14. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Jan, E-mail: jan.svensson@ki.se [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Bergman, Ann-Charlotte [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Adamson, Ulf [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Blombaeck, Margareta [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Wallen, Hakan; Joerneskog, Gun [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Fibrinogen was incubated in vitro with glucose or aspirin. Black-Right-Pointing-Pointer Acetylations and glycations were found at twelve lysine sites by mass spectrometry. Black-Right-Pointing-Pointer The labeling by aspirin and glucose occurred dose-dependently. Black-Right-Pointing-Pointer No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent - a phenomenon called 'aspirin resistance'. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to 'aspirin resistance' in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5-10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the {alpha}-chain: {alpha}K191, {alpha}K208, {alpha}K224, {alpha}K429, {alpha}K457, {alpha}K539, {alpha}K562, in the {beta}-chain: {beta}K233, and in the {gamma}-chain: {gamma}K170 and {gamma}K273. Glycations were found at {beta}K133 and {gamma}K75, alternatively {gamma}K85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [{sup 14}C-acetyl]salicylic acid and [{sup 14}C]glucose, a labeling of 0.013-0.084 and 0.12-0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9-100 {mu}M aspirin) and physiologically (2-8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of

  15. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    International Nuclear Information System (INIS)

    Svensson, Jan; Bergman, Ann-Charlotte; Adamson, Ulf; Blombäck, Margareta; Wallén, Håkan; Jörneskog, Gun

    2012-01-01

    Highlights: ► Fibrinogen was incubated in vitro with glucose or aspirin. ► Acetylations and glycations were found at twelve lysine sites by mass spectrometry. ► The labeling by aspirin and glucose occurred dose-dependently. ► No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent – a phenomenon called “aspirin resistance”. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to “aspirin resistance” in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5–10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the α-chain: αK191, αK208, αK224, αK429, αK457, αK539, αK562, in the β-chain: βK233, and in the γ-chain: γK170 and γK273. Glycations were found at βK133 and γK75, alternatively γK85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [ 14 C-acetyl]salicylic acid and [ 14 C]glucose, a labeling of 0.013–0.084 and 0.12–0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9–100 μM aspirin) and physiologically (2–8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of fibrinogen. This may mechanistically explain why aspirin facilitates fibrin degradation. We find no support for the idea that glycation of fibrin(ogen) interferes with acetylation of

  16. Fragrance material review on acetyl cedrene.

    Science.gov (United States)

    Scognamiglio, J; Letizia, C S; Politano, V T; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl cedrene when used as a fragrance ingredient is presented. Acetyl cedrene is a member of the fragrance structural group Alkyl Cyclic Ketones. The generic formula for this group can be represented as (R1)(R2)CO. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl cedrene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. Submitted with this manuscript.) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013. Published by Elsevier Ltd.

  17. The chronic treatment in vivo of salicylate or morphine alters excitatory effects of subsequent salicylate or morphine tests in vitro in hippocampus area CA1.

    Science.gov (United States)

    Sadegh, Mehdi; Fathollahi, Yaghoub; Semnanian, Saeed

    2013-12-05

    The current practical tests were designed to study in vitro interactions in the field potential between salicylate and morphine analgesics in the hippocampus area CA1 taken from morphine-(7 days) or salicylate (6 days)-treated rats. For this, morphine or salicylate was applied in vitro to the hippocampal slices derived from chronically drug-treated or saline-injected rats and drug-induced changes in evoked field potentials of area CA1 were evaluated. Chronic treatment in vivo of morphine or salicylate had no impact on baseline field EPSP and population spikes (PS) but a leftward shift in fEPSP/PS (E/S) curves and an increase in paired pulse ratio at 10 ms IPI were seen. Acute in vitro salicylate produced a durable PS potentiation in morphine-treated group, whereas an increase in PS of all groups was observed after long-term exposure to in vitro salicylate. Acute in vitro morphine caused a stable PS potentiation in control and salicylate treated groups, but not in morphine treated group. A potentiated fEPSP and a greater PS potentiation in salicylate treated group were observed after long-term exposure to in vitro morphine. It is concluded that the chronic treatment in vivo of salicylate or morphine incites lasting changes in the CA1 circuitry, which alters excitatory effects of subsequent salicylate or morphine tests in vitro in a way that an increase in reactivity or tolerance to the acute salicylate or morphine administration was observed. © 2013 Elsevier B.V. All rights reserved.

  18. Predominance of N-acetyl transferase 2 slow acetylator alleles in ...

    African Journals Online (AJOL)

    Blood was spotted on filter paper prior to drug administration for DNA extraction by chelex method. Standard nested PCR followed by restriction enzyme analysis with KpnI, TaqI, and BamHI for detection of polymorphisms in the NAT2 was performed. Allelic frequencies and acetylator phenotypes were compared between ...

  19. Structural determinants of the catalytic inhibition of human topoisomerase IIα by salicylate analogs and salicylate-based drugs.

    Science.gov (United States)

    Bau, Jason T; Kurz, Ebba U

    2014-06-15

    We previously identified salicylate as a novel catalytic inhibitor of human DNA topoisomerase II (topo II; EC 5.99.1.3) that preferentially targets the alpha isoform by interfering with topo II-mediated DNA cleavage. Many pharmaceuticals and compounds found in foods are salicylate-based. We have now investigated whether these are also catalytic inhibitors of topo II and the structural determinants modulating these effects. We have determined that a number of hydroxylated benzoic acids attenuate doxorubicin-induced DNA damage signaling mediated by the ATM protein kinase and inhibit topo II decatenation activity in vitro with varying potencies. Based on the chemical structures of these and other derivatives, we identified unique properties influencing topo II inhibition, including the importance of substitutions at the 2'- and 5'-positions. We extended our findings to a number of salicylate-based pharmaceuticals including sulfasalazine and diflunisal and found that both were effective at attenuating doxorubicin-induced DNA damage signaling, topo II DNA decatenation and they blocked stabilization of doxorubicin-induced topo II cleavable complexes in cells. In a manner similar to salicylate, we determined that these agents inhibit topo II-mediated DNA cleavage. This was accompanied by a concomitant decrease in topo II-mediated ATP-hydrolysis. Taken together, these findings reveal a novel function for the broader class of salicylate-related compounds and highlight the need for additional studies into whether they may impact the efficacy of chemotherapy regimens that include topo II poisons. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    International Nuclear Information System (INIS)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin

    2012-01-01

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 μM SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: ► Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions ► Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia ► Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia ► Salicylic acid does not influence any of the investigated parameters under hypoxia

  1. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  2. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate.

    Science.gov (United States)

    Tieman, Denise; Zeigler, Michelle; Schmelz, Eric; Taylor, Mark G; Rushing, Sarah; Jones, Jeffrey B; Klee, Harry J

    2010-04-01

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-methyltransferases. In order to elaborate the mechanism of MeSA synthesis in tomato, we screened a set of O-methyltransferases for activity against multiple substrates. An enzyme that specifically catalyzes methylation of SA, SlSAMT, as well as enzymes that act upon jasmonic acid and indole-3-acetic acid were identified. Analyses of transgenic over- and under-producing lines validated the function of SlSAMT in vivo. The SlSAMT gene was mapped to a position near the bottom of chromosome 9. Analysis of MeSA emissions from an introgression population derived from a cross with Solanum pennellii revealed a quantitative trait locus (QTL) linked to higher fruit methyl salicylate emissions. The higher MeSA emissions associate with significantly higher SpSAMT expression, consistent with SAMT gene expression being rate limiting for ripening-associated MeSA emissions. Transgenic plants that constitutively over-produce MeSA exhibited only slightly delayed symptom development following infection with the disease-causing bacterial pathogen, Xanthomonas campestris pv. vesicatoria (Xcv). Unexpectedly, pathogen-challenged leaves accumulated significantly higher levels of SA as well as glycosylated forms of SA and MeSA, indicating a disruption in control of the SA-related metabolite pool. Taken together, the results indicate that SlSAMT is critical for methyl salicylate synthesis and methyl salicylate, in turn, likely has an important role in controlling SA synthesis.

  3. Differential patterns of histone acetylation in inflammatory bowel diseases

    Directory of Open Access Journals (Sweden)

    Adcock Ian M

    2011-01-01

    Full Text Available Abstract Post-translational modifications of histones, particularly acetylation, are associated with the regulation of inflammatory gene expression. We used two animal models of inflammation of the bowel and biopsy samples from patients with Crohn's disease (CD to study the expression of acetylated histones (H 3 and 4 in inflamed mucosa. Acetylation of histone H4 was significantly elevated in the inflamed mucosa in the trinitrobenzene sulfonic acid model of colitis particularly on lysine residues (K 8 and 12 in contrast to non-inflamed tissue. In addition, acetylated H4 was localised to inflamed tissue and to Peyer's patches (PP in dextran sulfate sodium (DSS-treated rat models. Within the PP, H3 acetylation was detected in the mantle zone whereas H4 acetylation was seen in both the periphery and the germinal centre. Finally, acetylation of H4 was significantly upregulated in inflamed biopsies and PP from patients with CD. Enhanced acetylation of H4K5 and K16 was seen in the PP. These results demonstrate that histone acetylation is associated with inflammation and may provide a novel therapeutic target for mucosal inflammation.

  4. Solvent-Free Synthesis of Some1-Acetyl Pyrazoles

    Energy Technology Data Exchange (ETDEWEB)

    Thirunarayanan, Ganesamoorthy [Annamalai Univ., Tamil Nadu (India); Sekar, Krishnamoorthy Guna [National College, Tiruchirappalli (India)

    2013-10-15

    Some N-acetyl pyrazoles including 1-(3-(3,4-dichlorophenyl)-5-(substituted phenyl)-4,5-dihydro-{sup 1}H-pyrazole-1-yl) ethanones have been synthesised by solvent free cyclization cum acetylation of chalcones like substituted styryl 3,4-dichlorophenyl ketones using hydrazine hydrate and acetic anhydride in presence of catalytic amount of fly-ash: H{sub 2}SO{sub 4} catalyst. The yield of these N-acetyl pyrazole derivatives are more than 75%. The synthesised N-acetyl pyrazoline derivatives were characterized by their physical constants and spectral data.

  5. 37 Routine testing of salicylate levels in overdose patients: still needed?

    Science.gov (United States)

    Hardy, Elaine; Toro, Clare; Dorrian, Susan; Salanke, Umesh

    2017-12-01

    Overdose is a common presentation in Emergency Departments (EDs) across the UK. Salicylate poisoning is potentially fatal; however it is becoming increasingly uncommon in the UK. This may be due to restriction of pack sizes in over the counter medicines as well as the use of aspirin as an analgesic being superseded by other NSAIDs, particularly ibuprofen.In conjunction with clinical features of salicylate toxicity, measurement of plasma salicylate concentration can help guide management. Many EDs routinely test for salicylate levels in all cases of overdose, and yet this may not be necessary as recommended by the NPIS.This study aims to assess the cost implication of over testing for salicylate in overdose patients, as well as the prevalence of salicylate poisoning in three EDs in the West Midlands. A multicentre retrospective case note study was undertaken from January 2016 to March 2017. Data were collected from 3 EDs in the West Midlands. Cases of overdose where salicylate levels were requested were identified in conjunction with biochemistry departments, and information gathered regarding age, gender, nature of overdose, patient weight, GCS, clinical features of salicylate toxicity and plasma salicylate concentration. Across the three centres, 4296 requests were made for salicylate levels during the study period. Of those samples, just 115 detected any salicylate at all (2.7%). The majority of these samples had levels just over limit of detection.This is in keeping with the previous observation that salicylate poisoning is uncommon.Of the 4296 samples sent, 3651 were not indicated, i.e., no clinical features, patient alert, and denied aspirin overdose.With the cost of plasma salicylate concentration analysis being £4.58 (average over the 3 sites) there is a potential cost saving of £16 721 per year. Salicylate poisoning appears to be uncommon among patients presenting with overdose.Results show that it is likely that EDs are over testing for salicylate

  6. GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement

    Science.gov (United States)

    Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei

    2011-01-01

    Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of γ-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433

  7. [Properties of unrelated salicylate hydroxylases in bacteria of the genus pseudomon].

    Science.gov (United States)

    Puntus, T F; Vlasova, E P; Sokolov, A P; Zaharchenko, N S; Funtikova, T V

    2015-01-01

    The unrelated salicylate hydroxylases NahG and NahU of the strains Pseudomonasfluorescens 142 NF and P. Putida BS3701 were extracted and purified by ion-exchange and hydrophobic and gel permeation chromatography. The extracted enzymes differed in kinetic and catalyst performance during salicylate hydrolysis. For NahU salicylate hydroxylase, Km and Vmax were found to be higher (3.1 +/- 0.6 microM and 7.7 +/- 0.4 microM/min, respectively) than for NahG salicylate hydroxylase (1.3 +/- 0.1 microM and 4.7 +/- 0.1 microM/min, respectively). The activity of both enzymes toward substituted salicylates was higher in cases where the substituent groups were in para position than in cases with those in meta position. The activity toward substituted salicylates with substituent groups in meta position was different. The activity of salicylate hydroxylase NahG was higher toward salicylates with substituent groups in position 3; salicylate hydroxylase NahU activity was higher toward those with substituent groups in position 5. This suggests a difference in the spatial configuration of active sites in extracted unrelated salicylate hydroxylases.

  8. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis

    DEFF Research Database (Denmark)

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double......, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development...

  9. Pharmacokinetics of salicylate in rabbits with acute kidney failure

    International Nuclear Information System (INIS)

    Laznicek, M.; Melicharova, L.; Kvetina, J.; Laznickova, A.

    1989-01-01

    Changes in the pharmacokinetics and metabolism of sodium salicylate were studied in rabbits with acute renal failure induced by intravenous administration of uranyl nitrate hexahydrate in a dose of 0.2 mg kg -1 . 14 C-labelled salicylic acid, 99m Tc-complex and 125 I-hippuran were used to study the metabolism. The 99m Tc and 125 I activities were measured with a Tesla gamma counter or beta-gamma spectrometer NE 8312. The 14 C activity was measured using beta spectrometer Rack beta 1219. The 99m Tc activity was determined immediately after the experiment, the 14 C activity was determined after 4 days. The drug concentration was determined by comparing the activities of the sample and the standard activities. (J.J.). 6 figs., 1 tab., 18 refs

  10. Spectrophotometric study of lanthanoid complexes with antipyrine and salicylic acid

    International Nuclear Information System (INIS)

    Tishchenko, M.A.; Gerasimenko, G.I.; Poluehktov, N.S.

    1981-01-01

    The extraction-spectrophotometric method has been used to study lanthanoid ion complexing (Pr, Nd, Ho and Er) with antipyrine (Ant) and salicylic acid (Sal). The component relationship in different-ligand compounds Ln:Aut:Sal=2:3:6 and solvate number equal to 5 are determined; molar extinction coefficients of binary and different-ligand compounds are calculated. Oscillator strengths of absorption bands corresponding to supersensitive transitions of neodymium, holmium, erbium and some most intensive praseodymium bands are calculated. The study of IR spectra of investigated compounds allows to conclude on formation of coordination bonds of the central atom with the antipyrine molecule through the oxygen of the carbonyl group as well as on carboxyl group hydrogen substitution for metal and formation of coordination bond with OH group in salicylic acid molecules [ru

  11. "Phase diagrams of Lecithin-based microemulsions containing Sodium Salicylate "

    Directory of Open Access Journals (Sweden)

    "Aboofazeli R

    2000-08-01

    Full Text Available Partial phase diagrams were constructed at 25°C to investigate the phase behaviour of systems composed of soybean lecithin, water, sodium salicylate, alcohol and isopropyl myristate. The lecithins used were the commercially available soy bean lecithins, namely E200 and E170 (phosphatidyl choline purities greater than 95% and 68-72% respectively. The cosurfactants employed were n-propanol, 2-propanol and n-butanol and these were used at lecithin/alcohol weight ratios (Km of 1:1 and 1.5:1. At a given Km, the aqueous phase consisted of a 2% w/w sodium salicylate solution. Phase diagrams showed the area of existence of a stable isotropic region along the surfactant/oil axis (i.e., reverse microemulsion area. The extension of the microemulsion domain was influenced by the purity of surfactant, the lecithin/alcohol weight ratios and the kind of the alcohol.

  12. Scandium and zirconium ion complexing with salicylic acid

    International Nuclear Information System (INIS)

    Fadeeva, V.I.; Kochetkova, S.K.

    1979-01-01

    A study has been made of the extraction of complexes containing scandium and zirconium compounds and salicylic acid by using benzene, nitrobenzene, chloroform and isoamyl alcohol. It is shown that in the metal concentration range 10 -5 -10 -3 mole/l scandium forms mononuclear complexes composed of Sc(HSal) 3 (pH 2 (pH>4), zirconium - polynuclear complexes Zrsub(x)(OH)sub(y)(HSal)sub(n), where the x:n ratio varies from 0.5 to 1.5. Stability constants have been calculated for the salicylate scandium complexes in aqueous solution, equal to β 1 =(3+-1)x10 2 ; β 2 =(5.0+-0.6)x10 4 ; β 3 =(5.3+-0.3)x10 6

  13. Influencing of resorption and side-effects of salicylic acid by complexing with β-cyclodextrin

    International Nuclear Information System (INIS)

    Szejtli, J.; Gerloczy, A.; Sebestyen, G.; Fonagy, A.

    1981-01-01

    After oral administration of 14 C-labelled salicylic acid and its β-cyclodextrin complex to rats, the radioactivity level of the blood reached its maximum during the first 2 h. The blood level obtained with the complex is somewhat but not significantly lower than with free acid. Since the resorption of cyclodextrin is a considerably slower process, it is very likely that the resorption of salicylic acid takes place in the form of free acid after dissociation of the complex. The urinary excretion cumulative curves showed that the free salicylic acid was completely excreted, while about 10% of the salicylic acid administered in the form of complex is lost. The cyclodextrin complex formation increased the pK values of all hydroxybenzoic acids. Direct observations revealed that complex formation decreased the stomach-irritating effect of salicylic acid. The ratio of radioactivity was nearly the same in the organs of animals treated by both free salicylic and cyclodextrin complex. (author)

  14. Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst

    International Nuclear Information System (INIS)

    Nageswara Rao, A.; Sivasankar, B.; Sadasivam, V.

    2009-01-01

    The photocatalytic degradation of salicylic acid was studied by a batch process using ZnO as the catalyst on irradiation with UV light. The effect of process parameters such as pH, catalyst loading and initial concentration of salicylic acid on the extent of degradation was investigated. The degradation of salicylic acid was found to be effective in the neutral pH range. The optimum catalyst loading was observed at 2.0 g/L. The process followed first order kinetics and the apparent rate constant decreased with increase in the initial concentration of salicylic acid. The mechanism for the degradation of salicylic acid could be explained on the basis of Langmuir-Hinshelwood mechanism. The complete mineralization of salicylic acid was observed in the presence of ZnO photocatalyst. The ZnO was found to be quite stable and undergoes photocorrosion only to a negligible extent.

  15. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    International Nuclear Information System (INIS)

    Celik, Z. Ceylan; Can, B.Z.; Kocakerim, M. Muhtar

    2008-01-01

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid

  16. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.372 N-Acetyl-L-methionine. The food additive N-acetyl-L... in paragraph (d) of this section. The minimum amount of the additive to achieve the desired effect...

  17. Influence of acetylation on the physicochemical properties of ...

    African Journals Online (AJOL)

    oni josiah

    Freeze-thaw stability of gels from composited starches was greatly enhanced as lower volume of exudate was generated from the acetylated starches in all the freeze-thaw cycles. The findings in this study have the potential of creating awareness among the food industry with respect to acetylated starch production from both.

  18. Influence of acetylation on the physicochemical properties of ...

    African Journals Online (AJOL)

    The study investigates the effect of acetylation on the physicochemical properties of composited starches from sweet potato and water yam. Starch was respectively isolated from both sources, dried and subjected to acetylation at different combination. The result shows that the modified starches were of low percentage of ...

  19. Discovery and characterization of Ku acetylation in Mycobacterium smegmatis.

    Science.gov (United States)

    Zhou, Ying; Chen, Tao; Zhou, Lin; Fleming, Joy; Deng, Jiaoyu; Wang, Xude; Wang, Liwei; Wang, Yingying; Zhang, Xiaoli; Wei, Wenjing; Bi, Lijun

    2015-03-01

    Lysine acetylation is an important post-translational modification and is known to regulate many eukaryotic cellular processes. Little, however, is known about acetylated proteins in prokaryotes. Here, using immunoblotting, mass spectrometry and mutagenesis studies, we investigate the acetylation dynamics of the DNA repair protein Ku and its relationship with the deacetylase protein Sir2 and the non-homologous end joining (NHEJ) pathway in Mycobacterium smegmatis. We report that acetylation of Ku increases with growth, while NHEJ activity decreases, providing support for the hypothesis that acetylation of Ku may be involved in the DNA damage response in bacteria. Ku has multiple lysine sites. Our results indicate that K29 is an important acetylation site and that deficiency of Sir2 or mutation of K29 affects the quantity of Ku and its acetylation dynamics. Our findings expand knowledge of acetylation targets in prokaryotes and indicate a new direction for further research on bacterial DNA repair mechanisms. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. The kinetics of the acetylation of gelatinised potato starch

    NARCIS (Netherlands)

    de Graaf, R.A.; Broekroelofs, G.A.; Janssen, L.P.B.M.; Beenackers, A.A C M

    1995-01-01

    The reaction rates, in the base-catalysed acetylation of gelatinised aqueous starch (4 wt%), by vinylacetate (ViAc), were investigated in a semibatch reactor at temperatures ranging from 20 to 50 degrees C. The desired starch acetylation reaction is accompanied by an undesired parallel

  1. Efficient acetylation of primary amines and amino acids in ...

    Indian Academy of Sciences (India)

    The present methodology illustrates the efficient acetylation of primary amines and amino acids in brine solution by means of acetyl chloride under weakly basic condition in the presence of sodium acetate and/or triethyl amine followed by trituration with aqueous saturated bicarbonate solution. This effort represents the first ...

  2. Efficient acetylation of primary amines and amino acids in ...

    Indian Academy of Sciences (India)

    This effort represents the first efficient use of this most reactive but cheap acetylating agent to acetylate amines in excellent yields in aqueous medium. This is a potentially useful green chemical transformation where reaction takes place in environment-friendly brine solution leading to easy work-up and isolation of the ...

  3. Chloride and Salicylate Influence Prestin-dependent Specific Membrane Capacitance

    Science.gov (United States)

    Santos-Sacchi, Joseph; Song, Lei

    2014-01-01

    The outer hair cell is electromotile, its membrane motor identified as the protein SLC26a5 (prestin). An area motor model, based on two-state Boltzmann statistics, was developed about two decades ago and derives from the observation that outer hair cell surface area is voltage-dependent. Indeed, aside from the nonlinear capacitance imparted by the voltage sensor charge movement of prestin, linear capacitance (Clin) also displays voltage dependence as motors move between expanded and compact states. Naturally, motor surface area changes alter membrane capacitance. Unit linear motor capacitance fluctuation (δCsa) is on the order of 140 zeptofarads. A recent three-state model of prestin provides an alternative view, suggesting that voltage-dependent linear capacitance changes are not real but only apparent because the two component Boltzmann functions shift their midpoint voltages (Vh) in opposite directions during treatment with salicylate, a known competitor of required chloride binding. We show here using manipulations of nonlinear capacitance with both salicylate and chloride that an enhanced area motor model, including augmented δCsa by salicylate, can accurately account for our novel findings. We also show that although the three-state model implicitly avoids measuring voltage-dependent motor capacitance, it registers δCsa effects as a byproduct of its assessment of Clin, which increases during salicylate treatment as motors are locked in the expanded state. The area motor model, in contrast, captures the characteristics of the voltage dependence of δCsa, leading to a better understanding of prestin. PMID:24554714

  4. Nitric oxide and salicylic acid signaling in plant defense

    OpenAIRE

    Klessig, Daniel F.; Durner, Jörg; Noad, Robert; Navarre, Duroy A.; Wendehenne, David; Kumar, Dhirendra; Zhou, Jun Ma; Shah, Jyoti; Zhang, Shuqun; Kachroo, Pradeep; Trifa, Youssef; Pontier, Dominique; Lam, Eric; Silva, Herman

    2000-01-01

    Salicylic acid (SA) plays a critical signaling role in the activation of plant defense responses after pathogen attack. We have identified several potential components of the SA signaling pathway, including (i) the H2O2-scavenging enzymes catalase and ascorbate peroxidase, (ii) a high affinity SA-binding protein (SABP2), (iii) a SA-inducible protein kinase (SIPK), (iv) NPR1, an ankyrin repeat-containing protein that exhibits limited homology to IκBα and is requ...

  5. Review of salicylate-induced hearing loss, neurotoxicity, tinnitus and neuropathophysiology.

    Science.gov (United States)

    Sheppard, A; Hayes, S H; Chen, G-D; Ralli, M; Salvi, R

    2014-04-01

    Salicylate's ototoxic properties have been well established, inducing tinnitus and a sensory hearing loss when administered in high doses. Peripherally, acute dosing of salicylate causes frequency dependent reductions in DPOAEs and CAP amplitudes in low (20 kHz) frequencies more than mid frequencies (10-20 kHz), which interestingly corresponds to the pitch of behaviourally-matched salicylate-induced tinnitus. Chronic salicylate dosing affects the peripheral system by causing a compensatory temporary enhancement in DPOAE amplitudes and up-regulation of prestin mRNA and protein expression. Despite salicylate's antioxidant properties, cultured cochlea studies indicate it also impairs spiral ganglion neurons (SGNs) by paradoxically causing an upsurge of superoxide radicals leading to apoptosis. Centrally, salicylate alters γ-aminobutyric acid (GABA) and serotonin mediated neurotransmission in the central nervous system (CNS), which results in classical and non-classical auditory regions showing hyperactivity after salicylate administration. In the auditory cortex (AC) and lateral amygdala (LA), neuron characteristic frequencies (CF) shift upward and downward to mid frequencies (10-20 kHz) altering tonotopy following salicylate administration. Additionally, current source density (CSD) analysis showed enhanced current flow into the supergranular layer of the auditory cortex after a high systemic dose of salicylate. In humans, auditory perception changes following salicylate or aspirin, including decreased word discrimination and temporal integration ability. The results of previous studies have partially identified the mechanisms that are involved in salicylate-induced tinnitus and hearing loss, however to date some interactions remain convoluted. This review discusses current knowledge of salicylate ototoxicity and interactions.

  6. Suppression of inducible cyclooxygenase 2 gene transcription by aspirin and sodium salicylate

    OpenAIRE

    Xu, Xiao-Ming; Sansores-Garcia, Leticia; Chen, Xian-Ming; Matijevic-Aleksic, Nevenka; Du, Min; Wu, Kenneth K.

    1999-01-01

    The pharmacological action of salicylate cannot be explained by its inhibition of cyclooxygenase (COX) activity. In this report, the effects of aspirin and sodium salicylate on COX-2 expressions in human umbilical vein endothelial cells and foreskin fibroblasts were evaluated. Aspirin and sodium salicylate at therapeutic concentrations equipotently blocked COX-2 mRNA and protein levels induced by interleukin-1β and phorbol 12-myristate 13-acetate. The suppressing effect was more pronounced in...

  7. Salicylate Food Intolerance and Aspirin Hypersensitivity in Nasal Polyposis.

    Science.gov (United States)

    Esmaeilzedeh, Hossein; Esmaeilzadeh, Elmira; Faramarzi, Mohammad; Nabavi, Mohammad; Farhadi, Mohammad

    2017-03-01

    A clear association between allergy and nasal polyposis (NP) is not determined and the role of food intolerance in patients with NP is not investigated by oral food challenge (OFC). To investigate the relation of salicylate food intolerance and atopy in patients with NP according to recurrence and aspirin sensitivity. A cross sectional multicenter study was done in two tertiary centers for allergy in Iran. Adult patients with NP were selected for the study that had been referred to allergy clinics. The oral aspirin challenge (OAC) test was performed to identify aspirin exacerbated respiratory disease (AERD) and the OFC test was used to investigate food intolerance. Atopic evaluation was performed by skin-prick tests, nasal smear and blood eosinophil count as well as serum total IgE. One hundred and nineteen Iranian patients (female to male ratio 1.05) with NP were enrolled (mean age, 38 ± 11 years). Recurrence of nasal polyposis was 64.7%. OAC was performed in all cases; 43.79% cases had aspirin hypersensitivity. In addition, OFC tests determined that 69.9% of patients had salicylate food allergy. Salicylate food intolerance was significantly higher in NP cases with AERD than in aspirin tolerant patients (pfood intolerance was associated with AERD in nasal polyposis.

  8. Superficial chemical peeling with salicylic acid in facial dermatoses

    International Nuclear Information System (INIS)

    Bari, A.U.; Iqbal, Z.; Rahman, S.B.

    2007-01-01

    To determine the effectiveness of salicylic acid chemical peeling in common dermatological conditions affecting face in people with predominant Fitzpatrick skin type IV and V. A total of 167 patients of either gender, aged between 13 to 60 years, having some facial dermatoses (melasma, acne vulgaris, postinflammatory hyperpigmentations, freckles, fine lines and wrinkles, post-inflammatory scars, actinic keratoses, and plane facial warts) were included. A series of eight weekly hospital based peeling sessions was conducted in all patients under standardized conditions with 30% salicylic acid. Clinical improvement in different disorders was evaluated by change in MASI score, decrease in the size of affected area and % reduction in lesions count. McNemar test was applied for data analysis. Majority of the patients showed moderate to excellent response. There was 35% to 63% improvement (p< 0.05) in all dermatoses. Significant side effects, as feared in Asian skins were not observed. Chemical peeling with salicylic acid is an effective and safe treatment modality in many superficial facial dermatoses. (author)

  9. Antemortem stress regulates protein acetylation and glycolysis in postmortem muscle.

    Science.gov (United States)

    Li, Zhongwen; Li, Xin; Wang, Zhenyu; Shen, Qingwu W; Zhang, Dequan

    2016-07-01

    Although exhaustive research has established that preslaughter stress is a major factor contributing to pale, soft, exudative (PSE) meat, questions remain regarding the biochemistry of postmortem glycolysis. In this study, the influence of preslaughter stress on protein acetylation in relationship to glycolysis was studied. The data show that antemortem swimming significantly enhanced glycolysis and the total acetylated proteins in postmortem longissimus dorsi (LD) muscle of mice. Inhibition of protein acetylation by histone acetyltransferase (HAT) inhibitors eliminated stress induced increase in glycolysis. Inversely, antemortem injection of histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and nicotinamide (NAM), further increased protein acetylation early postmortem and the glycolysis. These data provide new insight into the biochemistry of postmortem glycolysis by showing that protein acetylation regulates glycolysis, which may participate in the regulation of preslaughter stress on glycolysis in postmortem muscle. Copyright © 2016. Published by Elsevier Ltd.

  10. Unchanged acetylation of isoniazid by alcohol intake

    DEFF Research Database (Denmark)

    Wilcke, J T R; Døssing, M; Angelo, H R

    2004-01-01

    no impact on the conversion of INH to its metabolite acetylisoniazid, which is catalysed by the enzyme N-acetyltranferase. Accordingly, a metabolic effect of acute alcohol intake on INH metabolism probably contributes little to the therapeutic failure of anti-tuberculosis treatment among alcoholics.......SETTING: In 10 healthy subjects, the influence of acute alcohol intake on the pharmacokinetics of isoniazid (INH) was studied. OBJECTIVE: To test the hypothesis that alcohol increases the conversion of INH by acetylation into its metabolite acetylisoniazid. DESIGN: In a crossover design, an oral...... dose of 300 mg INH was administered on 2 separate days, 14 days apart, with or without alcohol to a serum alcohol of about 21 mmol/l (1 g/l) maintained for 12 h. RESULTS: Neither the metabolism of INH nor that of acetylisoniazid was changed by acute alcohol intake. CONCLUSION: Acute alcohol intake has...

  11. Unchanged acetylation of isoniazid by alcohol intake

    DEFF Research Database (Denmark)

    Wilcke, J T R; Døssing, M; Angelo, H R

    2004-01-01

    SETTING: In 10 healthy subjects, the influence of acute alcohol intake on the pharmacokinetics of isoniazid (INH) was studied. OBJECTIVE: To test the hypothesis that alcohol increases the conversion of INH by acetylation into its metabolite acetylisoniazid. DESIGN: In a crossover design, an oral...... dose of 300 mg INH was administered on 2 separate days, 14 days apart, with or without alcohol to a serum alcohol of about 21 mmol/l (1 g/l) maintained for 12 h. RESULTS: Neither the metabolism of INH nor that of acetylisoniazid was changed by acute alcohol intake. CONCLUSION: Acute alcohol intake has...... no impact on the conversion of INH to its metabolite acetylisoniazid, which is catalysed by the enzyme N-acetyltranferase. Accordingly, a metabolic effect of acute alcohol intake on INH metabolism probably contributes little to the therapeutic failure of anti-tuberculosis treatment among alcoholics....

  12. The biology of lysine acetylation integrates transcriptional programming and metabolism

    Directory of Open Access Journals (Sweden)

    Mujtaba Shiraz

    2011-03-01

    Full Text Available Abstract The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT, there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylated proteins with human diseases. These findings not only support lysine acetylation as a widespread cellular phenomenon, but also impel questions to clarify the underlying molecular and cellular mechanisms governing target selectivity by KATs. Present challenges are to understand the molecular basis for the overlapping roles of KAT-containing co-activators, to differentiate between global versus dynamic acetylation marks, and to elucidate the physiological roles of acetylated proteins in biochemical pathways. In addition to discussing the cellular 'acetylome', a focus of this work is to present the widespread and dynamic nature of lysine acetylation and highlight the nexus that exists between epigenetic-directed transcriptional regulation and metabolism.

  13. Salicylate induces reactive oxygen species and reduces UVC susceptibility in Staphylococcus aureus.

    Science.gov (United States)

    Cai, Jia-Yi; Wang, Yuan-Yuan; Ma, Kai; Hou, Yong-Na; Yao, Guo-Dong; Hayashi, Toshihiko; Itoh, Kikuji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2018-03-13

    Present study demonstrates that growth of Staphylococcus aureus in the presence of salicylate reduces ultraviolet C (UVC)-induced cell death and increases the generation of reactive oxygen species (ROS). In addition, compounds that scavenge ROS (N-acetylcysteine, glutathione, catalase and superoxide dismutase) reverse the increased UVC survival induced by growth in the presence of salicylate, while ROS donors (tert-butylhydroperoxide, H2O2, and NaClO) enhance survival of salicylate challenged cultures. Collectively these findings suggest that ROS production induced by growth in the presence of salicylate protects S. aureus from UVC-induced cell death.

  14. Effect of certain variables on the tumor and tissue distribution of tracers. Salicylates and vasoactive drugs

    International Nuclear Information System (INIS)

    Halpern, S.E.; Hagan, P.; Stern, P.; Gordon, R.; Dabbs, J.

    1981-01-01

    Attempts were made to increase the viable tumor concentration of 54Mn and 67Ga in a rat hepatoma model by administering rat angiotensin, tolazoline, and salicylates. Salicylates increased the tumor concentrations of 54Mn and improved 65Mn viable tumor/background ratios. 67Ga was not affected by the salicylates. The salicylate effect appeared to be mediated by intracellular mechanisms rather than alterations in plasma protein binding. Rat angiotensin slightly increased the concentrations of 67Ga in the tumors but not enough to suggest that it would be useful clinically. Tolazoline did not increase tumor uptake of the tracers

  15. Mechanistic Evaluation of Hydration Effects on the Human Epidermal Permeation of Salicylate Esters.

    Science.gov (United States)

    Yousef, Shereen; Mohammed, Yousuf; Namjoshi, Sarika; Grice, Jeffrey; Sakran, Wedad; Roberts, Michael

    2017-01-01

    We sought to understand when and how hydration enhances the percutaneous absorption of salicylate esters. Human epidermal membrane fluxes and stratum corneum solubilities of neat and diluted solutions of three esters were determined under hydrated and dehydrated conditions. Hydration doubled the human epidermal flux seen for methyl and ethyl salicylate under dehydrated conditions and increased the flux of neat glycol salicylate 10-fold. Mechanistic analyses showed that this hydration-induced enhancement arises mainly from an increase in the stratum corneum diffusivity of the three esters. Further, we showed that unlike methyl and ethyl salicylate, glycol salicylate is hygroscopic and the ∼10-fold hydration-induced flux enhancement seen with neat glycol salicylate may be due to its ability to hydrate the stratum corneum to a greater extent. The hydration-induced enhancements in in vitro epidermal flux seen here for glycol and ethyl salicylate were similar to those reported for their percutaneous absorption rates in a comparable in vivo study, whilst somewhat higher enhancement was seen for methyl salicylate in vivo. This may be explained by a physiologically induced self enhancement of neat methyl salicylate absorption in vivo which is not applicable in vitro.

  16. High doses of salicylate reduces glycinergic inhibition in the dorsal cochlear nucleus of the rat.

    Science.gov (United States)

    Zugaib, João; Ceballos, Cesar C; Leão, Ricardo M

    2016-02-01

    High doses of salicylate induce reversible tinnitus in experimental animals and humans, and is a common tinnitus model. Salicylate probably acts centrally and induces hyperactivity in specific auditory brainstem areas like the dorsal cochlear nucleus (DCN). However, little is known about the effect of high doses of salicylate in synapses and neurons of the DCN. Here we investigated the effects of salicylate on the excitability and evoked and spontaneous neurotransmission in the main neurons (fusiform, cartwheel and tuberculoventral) and synapses of the DCN using whole cell recordings in slices containing the DCN. For this, we incubate the slices for at least 1 h in solution with 1.4 mM salicylate, and recorded action potentials and evoked and spontaneous synaptic currents in fusiform, cartwheel (CW) and putative tuberculoventral (TBV) neurons. We found that incubation with salicylate did not affect the firing of fusiform and TBV neurons, but decreased the spontaneous firing of cartwheel neurons, without affecting AP threshold or complex spikes. Evoked and spontaneous glutamatergic neurotransmission on the fusiform and CW neurons cells was unaffected by salicylate and evoked glycinergic neurotransmission on fusiform neurons was also unchanged by salicylate. On the other hand spontaneous glycinergic transmission on fusiform neurons was reduced in the presence of salicylate. We conclude that high doses of salicylate produces a decreased inhibitor drive on DCN fusiform neurons by reducing the spontaneous firing of cartwheel neurons, but this effect is not able to increase the excitability of fusiform neurons. So, the mechanisms of salicylate-induced tinnitus are probably more complex than simple changes in the neuronal firing and basal synaptic transmission in the DCN. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The association of hemodialysis and survival in intubated salicylate-poisoned patients.

    Science.gov (United States)

    McCabe, Daniel J; Lu, Jenny J

    2017-06-01

    Salicylate poisonings are common due to their multiple uses and wide availability. The variation of presenting symptoms contributes to inconsistent treatments in the emergency department. Patients with severe salicylate overdose require a high minute ventilation. Early in the course of an overdose, a patient will require hyperventilation. If they become too fatigued to compensate, mechanical ventilation may be needed. It can be impossible to recreate such a high minute ventilation with mechanical ventilation. This places patients at a high risk for decompensation and death. Hemodialysis is an effective elimination technique for salicylate overdose and should be considered early. All salicylate cases reported to the Illinois Poison Center were reviewed from 2003-2014. All intubated patients with a salicylate level >50mg/dl were included for analysis. Survival was compared to measured serum salicylate level and the administration of hemodialysis. 56 Cases were identified with an overall survival rate of 73.2% in patients with a serum salicylate level >50mg/dl. When patients did not receive hemodialysis, a peak salicylate level >50mg/dl had a 56% survival rate and 0% survival when the level was >80mg/dl. In the patients who received hemodialysis, a peak salicylate level >50mg/dl had a 83.9% survival rate and 83.3% survival when the level was >80mg/dl. Survival was decreased in these patients if hemodialysis was not performed. Mortality increases with the measured serum salicylate level. Timely hemodialysis for intubated salicylate overdose patients decreases mortality. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Investigation of salicylate hepatic responses in comparison with chemical analogues of the drug.

    Science.gov (United States)

    Cameron, Amy R; Logie, Lisa; Patel, Kashyap; Bacon, Sandra; Forteath, Calum; Harthill, Jean; Roberts, Adam; Sutherland, Calum; Stewart, Derek; Viollet, Benoit; Sakamoto, Kei; McDougall, Gordon; Foretz, Marc; Rena, Graham

    2016-08-01

    Anti-hyperglycaemic effects of the hydroxybenzoic acid salicylate might stem from effects of the drug on mitochondrial uncoupling, activation of AMP-activated protein kinase, and inhibition of NF-κB signalling. Here, we have gauged the contribution of these effects to control of hepatocyte glucose production, comparing salicylate with inactive hydroxybenzoic acid analogues of the drug. In rat H4IIE hepatoma cells, salicylate was the only drug tested that activated AMPK. Salicylate also reduced mTOR signalling, but this property was observed widely among the analogues. In a sub-panel of analogues, salicylate alone reduced promoter activity of the key gluconeogenic enzyme glucose 6-phosphatase and suppressed basal glucose production in mouse primary hepatocytes. Both salicylate and 2,6 dihydroxybenzoic acid suppressed TNFα-induced IκB degradation, and in genetic knockout experiments, we found that the effect of salicylate on IκB degradation was AMPK-independent. Previous data also identified AMPK-independent regulation of glucose but we found that direct inhibition of neither NF-κB nor mTOR signalling suppressed glucose production, suggesting that other factors besides these cell signalling pathways may need to be considered to account for this response to salicylate. We found, for example, that H4IIE cells were exquisitely sensitive to uncoupling with modest doses of salicylate, which occurred on a similar time course to another anti-hyperglycaemic uncoupling agent 2,4-dinitrophenol, while there was no discernible effect at all of two salicylate analogues which are not anti-hyperglycaemic. This finding supports much earlier literature suggesting that salicylates exert anti-hyperglycaemic effects at least in part through uncoupling. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Postharvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage.

    Science.gov (United States)

    Zhang, Youzuo; Zhang, Meiling; Yang, Huqing

    2015-05-01

    The effect of salicylic acid with and without chitosan, or a chitosan-g-salicylic acid complex, on chilling injury and post-harvest quality of cucumber stored at 2 °C for 12 days plus 2 days at 20 °C was investigated. The results showed the chitosan-g-salicylic acid coating inhibited chilling injury better than salicylic acid alone or with chitosan. Chitosan-g-salicylic acid also reduced weight loss and respiration rate, limited increases in malondialdehyde content and electrolyte leakage, and maintained higher total soluble solids, chlorophyll and ascorbic acid content. Furthermore, this coating increased the endogenous salicylic acid concentrations and antioxidant enzyme activities including superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase in cucumber during storage. Our study suggests that chitosan-g-salicylic acid alleviated chilling injury in cucumber through sustained-release of salicylic acid and the higher antioxidant enzymes concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Predicting post-translational lysine acetylation using support vector machines

    DEFF Research Database (Denmark)

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram

    2010-01-01

    Lysine acetylation is a post-translational protein modification and a primary regulatory mechanism that controls many cell signaling processes. Lysine acetylation sites are recognized by acetyltransferases and deacetylases through sequence patterns (motifs). Recently, we used high-resolution mass...... spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  1. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I

    DEFF Research Database (Denmark)

    Frahm, Jennifer L; Li, Lei O; Grevengoed, Trisha J

    2011-01-01

    Long chain acyl-CoA synthetase 1 (ACSL1) contributes 50 to 90% of total ACSL activity in liver, adipose tissue, and heart and appears to direct the use of long chain fatty acids for energy. Although the functional importance of ACSL1 is becoming clear, little is understood about its post...... and acetylated amino acids by mass spectrometry. We then compared these results to the post-translational modifications observed in vivo in liver and brown adipose tissue after mice were fasted or exposed to a cold environment. We identified universal N-terminal acetylation, 15 acetylated lysines, and 25...

  2. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation.

    Science.gov (United States)

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid; Band, Vimla

    2016-10-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442-29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Salicylate inhibits thrombopoiesis in rat megakaryocytes by changing the membrane micro-architecture.

    Science.gov (United States)

    Kazama, Itsuro; Baba, Asuka; Endo, Yasuhiro; Toyama, Hiroaki; Ejima, Yutaka; Matsubara, Mitsunobu; Tachi, Masahiro

    2015-01-01

    Salicylate causes drug-induced immune thrombocytopenia. However, some clinical studies indicate the presence of additional mechanisms in the drug-induced thrombocytopenia, by which the platelet production from megakaryocytes may directly be affected. Since salicylate is amphiphilic and preferentially partitioned into the lipid bilayers of the plasma membrane, it can induce some structural changes in the megakaryocyte membrane surface and thus affect the process of thrombopoiesis. Employing the standard patch-clamp whole-cell recording technique, we examined the effects of salicylate on the membrane capacitance in rat megakaryocytes. Taking electron microscopic imaging of the cellular surface, we also examined the effects of salicylate on the membrane micro-architecture of megakaryocytes. Salicylate significantly decreased the membrane capacitance of megakaryocytes, indicating the decreased number of invaginated plasma membranes, which was not detected by the fluorescent imaging technique. As shown by electron microscopy, salicylate actually halted the process of pro-platelet formation in megakaryocytes. This study demonstrated for the first time that salicylate inhibits the process of thrombopoiesis in megakaryocytes, as detected by the decrease in the membrane capacitance. Salicylate-induced changes in the membrane micro-architecture are thought to be responsible for its effects. © 2015 S. Karger AG, Basel.

  4. Sodium salicylate reduced insulin resistance in the retina of a type 2 diabetic rat model.

    Science.gov (United States)

    Jiang, Youde; Thakran, Shalini; Bheemreddy, Rajini; Coppess, William; Walker, Robert J; Steinle, Jena J

    2015-01-01

    Sodium salicylate has been reported to reduce markers of diabetic retinopathy in a type 1 rat model. Because rates of type 2 diabetes are on the rise, we wanted to determine whether salicylate could improve insulin resistance in a type 2 rat model, as well as improve retinal function. We treated lean and obese BBZDR/Wor type 2 diabetic rats with salicylate in their chow for 2 months. Prior to salicylate treatment, rats underwent an electroretinogram to measure retinal function. After 2 months of treatment, rats underwent an additional electroretinogram prior to sacrifice. In addition to the animal model, we also treated retinal endothelial cells (REC) and rat Müller cells with salicylate and performed the same analyses as done for the rat retinal lysates. To investigate the role of salicylate in insulin signaling, we measured TNFα and caspase 3 levels by ELISA, as well as performed Western blotting for insulin receptor substrate 1, insulin receptor, SOCS3, and pro- and anti-apoptotic markers. Data demonstrated that salicylate significantly improved retinal function, as well as reduced TNFα and SOCS3-induced insulin resistance in all samples. Overall, results suggest that salicylate is effective in reducing insulin resistance in the retina of type 2 diabetic rat models.

  5. Loudness perception affected by high doses of salicylate--a behavioral model of hyperacusis.

    Science.gov (United States)

    Zhang, Chao; Flowers, Elizabeth; Li, Jun-Xu; Wang, Qiuju; Sun, Wei

    2014-09-01

    The major side-effects of high doses of salicylate include sensorial hearing loss and tinnitus. Although salicylate decreases cochlear output, it enhances the evoked potentials recorded from the central auditory system (CAS), suggesting an increase to sound sensitivity. However, the loudness change after salicylate administration has not yet been directly measured. In this study, we established an operant conditioning based behavioral task in rats and measured their loudness perception changes before and after high doses of salicylate injection (250 mg/kg, i.p.). We found that high doses of salicylate induced a significant increase to loudness response in 40% of the rats (out of 20 rats), suggesting a hyperacusis behavior. In another 40% of rats, a rapid increase of loudness response was detected, suggesting loudness recruitment. The reaction time of the rats was also measured during the loudness tests before and after salicylate exposure. The reaction time level functions are highly correlated to the loudness response functions. Our studies confirmed that increased sound sensitivity, which is commonly seen in patients with tinnitus and hyperacusis, can be induced by high doses of salicylate. This loudness change induced by salicylate may be related with hypersensitivity in the CAS. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Sodium Salicylate Reduced Insulin Resistance in the Retina of a Type 2 Diabetic Rat Model

    Science.gov (United States)

    Jiang, Youde; Thakran, Shalini; Bheemreddy, Rajini; Coppess, William; Walker, Robert J.; Steinle, Jena J.

    2015-01-01

    Sodium salicylate has been reported to reduce markers of diabetic retinopathy in a type 1 rat model. Because rates of type 2 diabetes are on the rise, we wanted to determine whether salicylate could improve insulin resistance in a type 2 rat model, as well as improve retinal function. We treated lean and obese BBZDR/Wor type 2 diabetic rats with salicylate in their chow for 2 months. Prior to salicylate treatment, rats underwent an electroretinogram to measure retinal function. After 2 months of treatment, rats underwent an additional electroretinogram prior to sacrifice. In addition to the animal model, we also treated retinal endothelial cells (REC) and rat Müller cells with salicylate and performed the same analyses as done for the rat retinal lysates. To investigate the role of salicylate in insulin signaling, we measured TNFα and caspase 3 levels by ELISA, as well as performed Western blotting for insulin receptor substrate 1, insulin receptor, SOCS3, and pro- and anti-apoptotic markers. Data demonstrated that salicylate significantly improved retinal function, as well as reduced TNFα and SOCS3-induced insulin resistance in all samples. Overall, results suggest that salicylate is effective in reducing insulin resistance in the retina of type 2 diabetic rat models. PMID:25874611

  7. Role of mycorrhizal fungi and salicylic acid in salinity tolerance of ...

    African Journals Online (AJOL)

    Salinity is one of the common agricultural and biological problems. Most researchers showed that inoculation of plants with mycorrhizal fungi and using salicylic acid increase tolerance of plants due to salinity. In this study, the effect of mycorrhizal fungi, including Glomus mosseae, Glomus intraradices, and salicylic acid (0.2 ...

  8. Salicylate and catechol levels are maintained in nahG transgenic poplar

    Science.gov (United States)

    Alison M. Morse; Timothy J. Tschaplinski; Christopher Dervinis; Paula M. Pijut; Eric A. Schmelz; Wendy Day; John M. Davis

    2007-01-01

    Metabolic profiling was used to investigate the molecular phenotypes of a transgenic Populus tremula × P. alba hybrid expressing the nahG transgene, a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol. Despite the efficacy of this transgenic approach to reduce...

  9. Dietary non-nutrients and haemostasis in humans : effects of salicylates, flavonoids and ginger

    NARCIS (Netherlands)

    Janssen, P.L.T.M.K.

    1997-01-01

    In this thesis we studied the content of acetylsalicylate and total salicylates in foods, and we studied the effects of the dietary non-nutrients salicylates and flavonoids and of certain foods on haemostatic parameters in humans.

    Acetylsalicylic acid -aspirin- irreversibly inhibits

  10. Systemic Induction of Salicylic Acid Accumulation in Cucumber after Inoculation with Pseudomonas syringae pv syringae 1

    Science.gov (United States)

    Rasmussen, Jack B.; Hammerschmidt, Raymond; Zook, Michael N.

    1991-01-01

    Inoculation of one true leaf of cucumber (Cucumis sativus L.) plants with Pseudomonas syringae pathovar syringae results in the systemic appearance of salicylic acid in the phloem exudates from petioles above, below, and at the site of inoculation. Analysis of phloem exudates from the petioles of leaves 1 and 2 demonstrated that the earliest increases in salicylic acid occurred 8 hours after inoculation of leaf 1 in leaf 1 and 12 hours after inoculation of leaf 1 in leaf 2. Detaching leaf 1 at intervals after inoculation demonstrated that leaf 1 must remain attached for only 4 hours after inoculation to result in the systemic accumulation of salicylic acid. Because the levels of salicylic acid in phloem exudates from leaf 1 did not increase to detectable levels until at least 8 hours after inoculation with P. s. pathovar syringae, the induction of increased levels of salicylic acid throughout the plant are presumably the result of another chemical signal generated from leaf 1 within 4 hours after inoculation. Injection of salicylic acid into tissues at concentrations found in the exudates induced resistance to disease and increased peroxidase activity. Our results support a role for salicylic acid as an endogenous inducer of resistance, but our data also suggest that salicylic acid is not the primary systemic signal of induced resistance in cucumber. ImagesFigure 2 PMID:16668554

  11. pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells.

    Science.gov (United States)

    Takanaga, H; Tamai, I; Tsuji, A

    1994-07-01

    The transport of monocarboxylic acid drugs such as salicylic acid was examined in the human colon adenocarcinoma cell line, Caco-2 cells that possess intestinal epithelia-like properties. [14C]Salicylic acid transport was pH-dependent and appeared to follow the pH-partition hypothesis. However, 10 mM unlabelled salicylic acid significantly reduced the permeability coefficient of [14C]salicylic acid. Kinetic analysis of the concentration dependence of the permeation rate of salicylic acid across Caco-2 cells showed both saturable (Kt = 5.28 +/- 0.72 mM Jmax = 36.6 +/- 3.54 nmol min-1 (mg protein)-1) and nonsaturable (kd = 0.37 +/- 0.08 microL min-1 (mg protein)-1) processes. The permeation rate of [14C]salicylic acid was competitively inhibited by both acetic acid and benzoic acid, which were demonstrated in our previous studies to be transported in the carrier-mediated-transport mechanism which is responsible for monocarboxylic acids. Furthermore, certain monocarboxylic acids significantly inhibited [14C]salicylic acid transport, whereas salicylamide and dicarboxylic acids such as succinic acid did not. From these results, it was concluded that the transcellular transport of [14C]salicylic acid across Caco-2 cells is by the pH-dependent and carrier-mediated transport mechanism specific for monocarboxylic acids.

  12. Crystallization, Structure Determination and Reticular Twinning in Iron(III) Salicylate: Fe[(HSal)(Sal)(H2O)2

    NARCIS (Netherlands)

    Horn, Jitschaq A. Van Der; Souvignier, Bernd; Lutz, Martin

    2017-01-01

    In this contribution, we present the first crystal structure of iron(III) salicylate without additional counterions. The octahedral complex contains two salicylate and two water molecules as ligands. One salicylate is mono-anionic while the other is di-anionic. Because of the centrosymmetry of the

  13. Comment on the paper ``Growth and characterization of organic nonlinear optical crystal: l-Valinium salicylate (LVS)''

    Science.gov (United States)

    Natarajan, S.; Moovendaran, K.; Srinivasan, B. R.

    2015-10-01

    The slow evaporation of an aqueous solution containing L-valine and salicylic acid results in the fractional crystallization of salicylic acid and not any so called L-valinium salicylate as reported recently by Andal and Murugakoothan in the title paper.

  14. Highly luminescent and color-tunable salicylate ionic liquids.

    Science.gov (United States)

    Campbell, Paul S; Yang, Mei; Pitz, Demian; Cybinska, Joanna; Mudring, Anja-Verena

    2014-04-14

    High quantum yields of up to 40.5% can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cation-anion pairing interactions. Facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Methylene-di-salicylates of rare-earths

    International Nuclear Information System (INIS)

    Sivapullaiah, P.V.; Soundararajan, S.

    1976-01-01

    Rare-earth methylene di salicylates of the general formula M 2 R 3 .8H 2 O, where M = La,Ce,Pr,Nd,Sm,Gd,Ho,Yb, or Y and R=MDSH 2 2- have been prepared and characterized by chemical analyses, infrared and differential thermal analyses. The infrared data show that the bonding of the carboxylate group to the metal is bidentate. The infrared and thermal studies reveal that the water present in the complexes is only lattice-held. (author)

  16. Thermal decomposition of anhydrous zinc and cadmium salicylates

    International Nuclear Information System (INIS)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K.

    1984-01-01

    On the basis of studying thermograms, thermogravigrams, IR absorption spectra, X-rayograms of anhydrous znc and cadmium salicylate complexes of the M(HSal) 2 composition, (where M=Zn, Cd; HSal is an anion of once deprotonated salicyclic acid H 2 Sal) and products of their thermal transformations, the processes are characterized of stage-by-stage thermal decomposition of these compounds under continuous heating in the air from room temperature to approximately 1000 deg C. It is shown that the Cd(HSal) 2 pyrolysis proceeds with the formation of CdSal at 170-250 deg C and CdO - at 320-460 deg C

  17. Thermochemical properties of rare earth complexes with salicylic acid

    International Nuclear Information System (INIS)

    Yang Xuwu; Sun Wujuan; Ke Congyu; Zhang Hangguo; Wang Xiaoyan; Gao Shengli

    2007-01-01

    Fourteen rare earth complexes with salicylic acid RE(HSal) 3 .nH 2 O (HSal = C 7 H 5 O 3 ; RE = La-Sm, n = 2; RE = Eu-Lu, n = 1) were synthesized and characterized by elemental analysis, and their thermal decomposition mechanism were studied with TG-DTG technology. The constant-volume combustion energies of complexes, Δ c U, were determined by a precise rotating-bomb calorimeter at 298.15 K. Their standard molar enthalpies of combustion, Δ c H m 0 , and standard molar enthalpies of formation, Δ f H m o , were calculated

  18. Kinetic model of mitochondrial Krebs cycle: unraveling the mechanism of salicylate hepatotoxic effects.

    Science.gov (United States)

    Mogilevskaya, Ekaterina; Demin, Oleg; Goryanin, Igor

    2006-10-01

    This paper studies the effect of salicylate on the energy metabolism of mitochondria using in silico simulations. A kinetic model of the mitochondrial Krebs cycle is constructed using information on the individual enzymes. Model parameters for the rate equations are estimated using in vitro experimental data from the literature. Enzyme concentrations are determined from data on respiration in mitochondrial suspensions containing glutamate and malate. It is shown that inhibition in succinate dehydrogenase and alpha-ketoglutarate dehydrogenase by salicylate contributes substantially to the cumulative inhibition of the Krebs cycle by salicylates. Uncoupling of oxidative phosphorylation has little effect and coenzyme A consumption in salicylates transformation processes has an insignificant effect on the rate of substrate oxidation in the Krebs cycle. It is found that the salicylate-inhibited Krebs cycle flux can be increased by flux redirection through addition of external glutamate and malate, and depletion in external alpha-ketoglutarate and glycine concentrations.

  19. Phase I trial of sodium salicylate in patients with myelodysplastic syndromes and acute myelogenous leukemia.

    Science.gov (United States)

    Klimek, Virginia M; Dolezal, Emily K; Smith, Larry; Soff, Gerald; Nimer, Stephen D

    2012-05-01

    Sodium salicylate is an inexpensive, readily available anti-inflammatory agent which inhibits NF-κB in in vitro models. We examined whether it was possible to safely achieve and maintain salicylate levels known to inhibit NF-κB in vitro in 11 patients with MDS or AML taking sodium salicylate. Most patients achieved the target blood salicylate level (20-30mg/dL) with acceptable toxicity, including reversible grade 1/2 elevations of hepatic transaminases (n=4) and ototoxicity (n=4). One patient had grade 3/4 elevations in AST/ALT. This study suggests that sodium salicylate may be safely combined with conventional chemotherapy regimens which are not associated with significant ototoxicity or hepatotoxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Modification of zirconium diphosphate with salicylic acid and its effect on the uranium (Vi) sorption

    International Nuclear Information System (INIS)

    Almazan T, M. G.; Garcia G, N.; Simoni, E.

    2014-10-01

    The surface of zirconium diphosphate (ZrP 2 O 7 ) was modified with salicylic acid and its effect was evaluated on the uranium (Vi) sorption. The modified surface of the material was analyzed with different analytical techniques among which are included the atomic force microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. This analysis allowed showing that the salicylic acid is being held on the surface of the zirconium diphosphate. The reactivity of modified zirconium diphosphate compared with uranium (Vi) was investigated using the classical method of batch sorption. The analysis of sorption isotherms shows that the salicylic acid has an important effect in the uranium (Vi) sorption. According to the study conducted, the interaction among the uranium (Vi) and the surface of zirconium diphosphate modified with the salicylic acid most likely leads to the complexes formation of binary (U(Vi)/ZrP 2 O 7 ) and ternary (U(Vi)/salicylate/ZrP 2 O 7 ) surface. (Author)

  1. Generation of nitryl chloride from chlorotrimethylsilane-acetyl nitrate ...

    Indian Academy of Sciences (India)

    Administrator

    amyl nitrate does not yield NO2Cl with silicon reagent. However, acetyl nitrate reacts successfully with chlorotrimethylsi- lane to give nitryl chloride, which is characterized by its UV spectrum. If it is generated in presence of ketoximes ...

  2. Partially Acetylated Sugarcane Bagasse For Wicking Oil From Contaminated Wetlands

    Science.gov (United States)

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased ...

  3. A Non-Isotopic In Vitro Assay for Histone Acetylation

    Science.gov (United States)

    Kuninger, David; Lundblad, James; Semirale, Anthony; Rotwein, Peter

    2007-01-01

    We describe a simple, robust, and relatively inexpensive non-radioactive in vitro assay for measuring histone acetyl-transferase activity. The assay takes advantage of easy to purify recombinant E. coli-derived fusion proteins containing the NH2-terminal tails of histones H3 and H4 linked to epitope-tagged maltose binding protein (MBP), and immunoblotting with antibodies specific to acetylated H3 and H4. Here we show the specificity and dynamic range of this assay for the histone acetyl-transferases, p300 and PCAF. This assay may be adapted readily for other substrates by simply generating new fusion proteins and for other acetyl-transferases by modifying reaction conditions. PMID:17698235

  4. Synthesis of spiro [indolo-1, 5-benzodiazepines] from 3-acetyl ...

    Indian Academy of Sciences (India)

    3'-hydroxy-2'-oxo indolo) acetyl coumarins (3), which on dehydration afforded the corresponding ,-unsaturated ketones (4). Cyclocondensation of (4) with substituted -phenylene diamines resulted in novel 3-coumarinyl spiro[indolo-1 ...

  5. Mechanistic insights into the regulation of metabolic enzymes by acetylation

    Science.gov (United States)

    2012-01-01

    The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates. PMID:22826120

  6. Ground-State Proton Transfer Tautomer of Al(III)-Salicylate Complexes in Ethanol Solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheming (BATTELLE (PACIFIC NW LAB)); Friedrich, Donald (Optical Coating Laboratory, Inc.); Ainsworth, Calvin C.(BATTELLE (PACIFIC NW LAB)); Hemmer, Staci L.(UNIVERSITY PROGRAMS); Joly, Alan G.(BATTELLE (PACIFIC NW LAB)); Beversluis, Michael R.(ASSOC WESTERN UNIVERSITY)

    2001-01-01

    The tautomerization of salicylate anion in the presence of A1(III) in ethanol was studied by UV? visible absorption spectroscopy and fluorescence spectroscopy, anisotropy, and lifetime measurements from 100 to 298 K. Complexation with A1(III) causes an equilibrium shift from the normal form of the salicylate anion toward the tautomer form, demonstrating that the presence of a highly charged cation, A1(III), stabilizes the tautomer form of salicylate. Spectra and fluorescence lifetimes of salicylate and other salicyl derivatives in the presence of A1(III) reveal three types of A1(III)-salicylate complexes. In type I complexes, salicylate binds to A1(III) through the carboxylate group, preserving the intramolecular hydrogen bond between the carbonyl oxygen and the phenol group, as indicated by the largely Stokes-shifted fluorescence emission following the excited state proton transfer process. In type II complexes, salicylate binds to A1(III) through the carboxylate group, but the phenol proton is oriented away from the carbonyl oxygen so that the complex shows short wavelength fluorescence emission characteristic of substituted phenolic compounds. In type III complexes, A1(III) stabilizes and binds to the tautomer form of salicylate through the phenolate oxygen, in which salicylate exists in its proton transferred tautomer form. Absorption spectra recorded at temperatures between 100 K and 298 K indicate that the type III tautomer complex is energetically favored at low temperature, although type I is the dominant species at room temperature. All three types of complexes are interconvertible above the ethanol glass transition temperature. However, below the glass transition temperature interconversion ceases, indicating large amplitude atomic motion is involved in the conversion.

  7. Acetyl radical generation in cigarette smoke: Quantification and simulations

    Science.gov (United States)

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  8. Paracetamol and salicylic acid removal from contaminated water by microalgae.

    Science.gov (United States)

    Escapa, C; Coimbra, R N; Paniagua, S; García, A I; Otero, M

    2017-12-01

    The biomass growth, pharmaceutical removal and light conversion efficiency of Chlorella sorokiniana under the presence of paracetamol (PC) and salicylic acid (SaC) were assessed and compared at two different concentrations of these pharmaceuticals (I: 25 mg l -1 , II: 250 mg l -1 ). Microalgae were resistant to these concentrations and, moreover, their growth was significantly stimulated (p ≤ 0.05) under these drugs (biomass concentration increased above 33% PCI, 35% SaCI, 13% PCII and 45% SaCII, as compared with the respective positive controls). At the steady state of the semicontinuous culture, C. sorokiniana showed removal efficiencies above 41% and 69% for PCI and PCII, respectively; and above 93% and 98% for SaCI and SaCII, respectively. Under an irradiance of 370 μE m -2  s -1 , higher quantum yields were reached by microalgae under the presence of drugs, either at dose I or II, than by the respective positive controls. These results point to C. sorokiniana as a robust strain for the bioremediation of paracetamol and salicylic acid concentrated wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Complete Molecular Geometry of Salicyl Aldehyde from Rotational Spectroscopy

    Science.gov (United States)

    Dorosh, O.; Bialkowska-Jaworska, E.; Kisiel, Z.; Pszczolkowski, L.; Kanska, M.; Krygowski, T. M.; Maeder, H.

    2013-06-01

    Salicyl aldehyde is a well known planar molecule containing an internal hydrogen bond. In preparing the publication of our previous report of the study of its rotational spectrum we have taken the opportunity to update the structure determination of this molecule to the complete r_e^{SE} geometry. The molecule contains 15 atoms and we have used supersonic expansion FTMW spectroscopy to obtain rotational constants for a total 26 different isotopic species, including all singly substitued species relative to the parent molecule. The ^{13}C and ^{18}O substitutions were measured in natural abundance, while deuterium substitutions were carried out synthetically. The r_e^{SE} determination requires the calculation of vibration-rotation changes in rotational constants from an ab initio anharmonic force field, which necessitates some compromises in the level of calculation for a molecule of the size of salicyl aldehyde. For this reason we studied the five lowest vibrationally excited states, by using the combination of room-temperature mm-wave spectroscopy and waveguide Fourier transform cm-wave spectroscopy. The experimental excited state rotational constants were then used to calibrate the anharmonic force field calculation. The resulting r_e^{SE} geometry is compared with other types of geometry determination possible from this data, with emphasis on the effect of the near zero principal coordinate of the important C_2 atom. Z.Kisiel et al., 61^{st} OSU Symposium on Molecular Spectroscopy, The Ohio State University, Ohio 2006, RI-12.

  10. Positional preferences of acetyl esterases from different CE families towards acetylated 4-O-methyl glucuronic acid-substituted xylo-oligosaccharides

    NARCIS (Netherlands)

    Neumüller, K.G.; Carvalho de Souza, A.; Rijn, van J.H.J.; Streekstra, H.; Gruppen, H.; Schols, H.A.

    2015-01-01

    Background Acetylation of the xylan backbone restricts the hydrolysis of plant poly- and oligosaccharides by hemicellulolytic enzyme preparations to constituent monosaccharides. The positional preferences and deacetylation efficiencies of acetyl esterases from seven different carbohydrate esterase

  11. Simultaneous determination of the UV-filters benzyl salicylate, phenyl salicylate, octyl salicylate, homosalate, 3-(4-methylbenzylidene) camphor and 3-benzylidene camphor in human placental tissue by LC-MS/MS. Assessment of their in vitro endocrine activity.

    Science.gov (United States)

    Jiménez-Díaz, I; Molina-Molina, J M; Zafra-Gómez, A; Ballesteros, O; Navalón, A; Real, M; Sáenz, J M; Fernández, M F; Olea, N

    2013-10-01

    UV-filters are widely used in many personal care products and cosmetics. Recent studies indicate that some organic UV-filters can accumulate in biota and act as endocrine disruptors, but there are few studies on the occurrence and fate of these compounds in humans. In the present work, a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to assess the presence of six UV-filters in current use (benzyl salicylate, phenyl salicylate, octyl salicylate, homosalate, 3-(4-methylbenzylidene) camphor, and 3-benzylidene camphor) in human placental tissue is proposed. The method involves the extraction of the analytes from the samples using ethyl acetate, followed by a clean-up step using centrifugation prior to their quantification by LC-MS/MS using an atmospheric pressure chemical ionization (APCI) interface. Bisphenol A-d16 was used as surrogate for the determination of benzyl salicylate, phenyl salicylate, octyl salicylate and homosalate in negative mode and benzophenone-d10, was used as surrogate for the determination of 3-(4-methylbenzylidene) camphor and 3-benzylidene camphor in positive mode. The found limits of detection ranged from 0.4 to 0.6ngg(-1) and the limits of quantification ranged from 1.3 to 2.0ngg(-1), while variability was under 13.7%. Recovery rates for spiked samples ranged from 97% to 104%. Moreover, the interactions of these compounds with the human estrogen receptor alpha (hERα) and androgen receptor (hAR), using two in vitro bioassays based on reporter gene expression and cell proliferation assessment, were also investigated. All tested compounds, except benzyl salicylate and octyl salicylate, showed estrogenic activity in the E-Screen bioassay whereas only homosalate and 3-(4-methylbenzylidene) camphor were potent hAR antagonists. Although free salicylate derivatives and free camphor derivatives were not detected in the human placenta samples analyzed, the observed estrogenic and anti-androgenic activities of some of these

  12. Silica-titania xerogel for solid phase spectrophotometric determination of salicylate and its derivatives in biological liquids and pharmaceuticals.

    Science.gov (United States)

    Morosanova, Maria A; Morosanova, Elena I

    2015-01-01

    Salicylic acid and its derivatives are widely used drugs with potential toxicity. The main areas of salicylate derivatives determination are biological liquids and pharmaceuticals analysis. Silica-titania xerogel has been used for solid phase spectrophotometric determination of various salicylate derivatives (salicylate, salicylamide, methylsalicylate). The reaction conditions influence on the interaction of salicylate derivatives with silica-titania xerogels has been investigated; the characteristics of titanium(IV)-salicylate derivatives complexes in solid phase have been described. The simple solid phase spectrophotometric procedures are based on the formation of xerogel incorporated titanium(IV) colored complexes with salicylate derivatives. A linear response has been observed in the following concentration ranges 0.1-5, 0.5-10 and 0.05-4.7 mM for salicylate, salicylamide, and methylsalicylate, respectively. The proposed procedures have been applied to the analysis of human urine, synthetic serum, and pharmaceuticals. The simple solid phase spectrophotometric procedures of salicylate derivatives determination based on the new sensor materials have been proposed for biological liquids and pharmaceuticals analysis. Graphical abstractComplexation of titanium (IV), incorporated in silica-titania xerogels (Si-Ti), with salicylate derivatives (L) resulting in yellow-colored xerogels (Si-Ti/Ln) has been proposed for salicylate derivatives determination in biological liquids and pharmaceuticals.

  13. Development of novel bepotastine salicylate salt bioequivalent to the commercial bepotastine besilate in beagle dogs.

    Science.gov (United States)

    Cho, Kwan Hyung; Choi, Han-Gon

    2013-06-01

    To develop a novel salt form of bepotastine with bioequivalent to the commericial bepostastine besilate, bepostastine salicylate was prepared and its physicochemical properties were investigated. Furthermore, the bepotastine salicylate-loaded tablet was prepared by the wet granulation method, and the dissolution and bioavailability in beagle dogs were evaluated compared to the bepotastine besilate-loaded commercial product. Bepotastine salicylate improved the solubility of bepotastine, and the extent of solubility improvement by salicylate form was similar to that by besilate form. However, this novel salt exhibited negligible hygroscopicity similar to besilate form, and showed slightly higher melting point than besilate form. It was stable in various pH solutions. Furthermore, the bepotastine salicylate-loaded tablet composed of bepotastine salicylate, microcrystalline cellulose, D-mannitol, povidone, sodium starch glycolate and sodium stearyl fumarate at the weight ratio of 9.63/60.97/38/3.6/6/1.8 showed similar dissolution to the bepotastine besilate-loaded commercial product in water, pH 1.2, pH 4.0 and pH 6.8 and was bioequivalent to the commercial product in beagle dogs. Thus, this bepotastine salicylate-loaded tablet would be a promising candidate with bioequivalence to the bepotastine besilate-loaded commercial product.

  14. Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae.

    Science.gov (United States)

    Ambrose, Karen V; Tian, Zipeng; Wang, Yifei; Smith, Jordan; Zylstra, Gerben; Huang, Bingru; Belanger, Faith C

    2015-06-09

    Epichloë spp. are symbiotic fungal endophytes of many cool season grasses. The presence of the fungal endophytes often confers insect, drought, and disease tolerance to the host grasses. The presence of the fungal endophytes within the host plants does not elicit host defense responses. The molecular basis for this phenomenon is not known. Epichloë festucae, the endophyte of Festuca rubra, expresses a salicylate hydroxylase similar to NahG from the bacterium Pseudomonas putida. Few fungal salicylate hydroxylase enzymes have been reported. The in planta expression of an endophyte salicylate hydroxylase raised the possibility that degradation of plant-produced salicylic acid is a factor in the mechanism of how the endophyte avoids eliciting host plant defenses. Here we report the characterization of the E. festucae salicylate hydroxylase, designated Efe-shyA. Although the fungal enzyme has the expected activity, based on salicylic acid levels in endophyte-free and endophyte-infected plants it is unlikely that expression of the endophyte salicylate hydroxylase is a factor in the lack of a host defense response to the presence of the fungal endophyte.

  15. Potassium channel activator attenuates salicylate-induced cochlear hearing loss potentially ameliorating tinnitus.

    Science.gov (United States)

    Sun, Wei; Liu, Jun; Zhang, Chao; Zhou, Na; Manohar, Senthilvelan; Winchester, Wendy; Miranda, Jason A; Salvi, Richard J

    2015-01-01

    High dose sodium salicylate causes moderate, reversible hearing loss and tinnitus. Salicylate-induced hearing loss is believed to arise from a reduction in the electromotile response of outer hair cells (OHCs) and/or reduction of KCNQ4 potassium currents in OHCs, which decreases the driving force for the transduction current. Therefore, enhancing OHC potassium currents could potentially prevent salicylate-induced temporary hearing loss. In this study, we tested whether opening voltage-gated potassium channels using ICA-105665, a novel small molecule that opens KCNQ2/3 and KCNQ3/5 channels, can reduce salicylate-induced hearing loss. We found that systemic application of ICA-105665 at 10 mg/kg prevented the salicylate-induced amplitude reduction and threshold shift in the compound action potentials recorded at the round window of the cochlea. ICA-105665 also prevented the salicylate-induced reduction of distortion-product otoacoustic emission. These results suggest that ICA-105665 partially compensates for salicylate-induced cochlear hearing loss by enhancing KCNQ2/3 and KCNQ3/5 potassium currents and the motility of OHCs.

  16. Highly sensitive electrochemical detection of methyl salicylate using electroactive gold nanoparticles.

    Science.gov (United States)

    Umasankar, Yogeswaran; Ramasamy, Ramaraja P

    2013-11-07

    Electrochemical sensing of methyl salicylate, a key plant volatile has been achieved using a gold nanoparticle (AuNP) modified screen printed carbon electrode (SPCE). The electrochemical response of planar gold electrodes, SPCE and AuNP-SPCE in alkaline electrolyte in the presence and absence of methyl salicylate were studied to understand the amperometric response of various electrochemical reactions. The reaction mechanism includes hydrolysis of methyl salicylate and the oxidation of negative species. The electrochemical responses were recorded using cyclic voltammetry and differential pulse voltammetry techniques, where the results showed characteristic signals for methyl salicylate oxidation. Among the examined electrodes, AuNP-SPCE possessed three fold better sensitivity than planar gold and 35 times better sensitivity than SPCE (at 0.5 V). The methyl salicylate sensing by AuNP-SPCE possessed 95% of its methyl salicylate response. The electroanalytical results of soybean extract showed that AuNP-SPCE can be employed for the determination of methyl salicylate in real samples.

  17. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.

    Science.gov (United States)

    Kobayashi, Kazuo

    2015-04-01

    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B. subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Salicylate selectively kills cochlear spiral ganglion neurons by paradoxically up-regulating superoxide.

    Science.gov (United States)

    Deng, Lili; Ding, Dalian; Su, Jiping; Manohar, Senthilvelan; Salvi, Richard

    2013-10-01

    Aspirin and its active ingredient salicylate are potent antioxidants that have been reported to be neuro- and otoprotective. However, when consumed in large quantities, these drugs can cause temporary hearing loss and tinnitus. Moreover, recent studies indicate that after several days of treatment, salicylate selectively destroys the spiral ganglion neurons and auditory nerve fibers that relay sounds from the sensory hair cells to the brain. Why salicylate selectively damages spiral ganglion neurons while sparing the hair cells and supports cells is unclear. Here we show that high dose of salicylate trigger an apoptotic response in spiral ganglion neurons characterized morphologically by soma shrinkage and nuclear condensation and fragmentation plus activation of extrinsic initiator caspase-8 and intrinsic initiator caspase-9 several days after the onset of drug treatment. Salicylate treatment triggered an upsurge in the toxic superoxide radical only in spiral ganglion neurons, but not in neighboring hair cells and support cells. Mn TMPyP pentachloride, a cell permeable scavenger of superoxide blocked the expression of superoxide staining in spiral ganglion neurons and almost completely blocked the damage to the nerve fibers and spiral ganglion neurons. NMDA receptor activation is known to increase neuronal superoxide levels. Since NMDA receptors are mainly found on spiral ganglion neurons and since salicylate enhances NMDA receptor currents, the selective killing of spiral ganglion neurons is likely a consequence of enhanced and sustained activation of NMDA receptors by salicylate.

  19. Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae

    Science.gov (United States)

    Ambrose, Karen V.; Tian, Zipeng; Wang, Yifei; Smith, Jordan; Zylstra, Gerben; Huang, Bingru; Belanger, Faith C.

    2015-01-01

    Epichloë spp. are symbiotic fungal endophytes of many cool season grasses. The presence of the fungal endophytes often confers insect, drought, and disease tolerance to the host grasses. The presence of the fungal endophytes within the host plants does not elicit host defense responses. The molecular basis for this phenomenon is not known. Epichloë festucae, the endophyte of Festuca rubra, expresses a salicylate hydroxylase similar to NahG from the bacterium Pseudomonas putida. Few fungal salicylate hydroxylase enzymes have been reported. The in planta expression of an endophyte salicylate hydroxylase raised the possibility that degradation of plant-produced salicylic acid is a factor in the mechanism of how the endophyte avoids eliciting host plant defenses. Here we report the characterization of the E. festucae salicylate hydroxylase, designated Efe-shyA. Although the fungal enzyme has the expected activity, based on salicylic acid levels in endophyte-free and endophyte-infected plants it is unlikely that expression of the endophyte salicylate hydroxylase is a factor in the lack of a host defense response to the presence of the fungal endophyte. PMID:26055188

  20. Salicylic Acid Induction of Flavonoid Biosynthesis Pathways in Wheat Varies by Treatment.

    Science.gov (United States)

    Gondor, Orsolya K; Janda, Tibor; Soós, Vilmos; Pál, Magda; Majláth, Imre; Adak, Malay K; Balázs, Ervin; Szalai, Gabriella

    2016-01-01

    Salicylic acid is a promising compound for the reduction of stress sensitivity in plants. Although several biochemical and physiological changes have been described in plants treated with salicylic acid, the mode of action of the various treatments has not yet been clarified. The present work reports a detailed comparative study on the effects of different modes of salicylic acid application at the physiological, metabolomic, and transcriptomic levels. Seed soaking and hydroponic treatments were found to induce various changes in the protective mechanisms of wheat plants. The possible involvement of the flavonoid metabolism in salicylic acid-related stress signaling was also demonstrated. Different salicylic acid treatments were shown to induce different physiological and biochemical processes, with varying responses in the leaves and roots. Hydroponic treatment enhanced the level of oxidative stress, the expression of genes involved in the flavonoid metabolism and the amount of non-enzymatic antioxidant compounds, namely ortho-hydroxycinnamic acid and the flavonol quercetin in the leaves, while it decreased the ortho-hydroxycinnamic acid and flavonol contents and enhanced ascorbate peroxidase activity in the roots. In contrast, seed soaking only elevated the gene expression level of phenylalanine ammonia lyase in the roots and caused a slight increase in the amount of flavonols. These results draw attention to the fact that the effects of exogenous salicylic acid application cannot be generalized in different experimental systems and that the flavonoid metabolism may be an important part of the action mechanisms induced by salicylic acid.

  1. Different salicylic acid treatments differentially act through the induction of the flavonoid biosynthetic pathway in wheat

    Directory of Open Access Journals (Sweden)

    Orsolya Kinga Gondor

    2016-09-01

    Full Text Available Salicylic acid is a promising compound for the reduction of stress sensitivity in plants. Although several biochemical and physiological changes have been described in plants treated with salicylic acid, the mode of action of the various treatments has not yet been clarified. The present work reports a detailed comparative study on the effects of different modes of salicylic acid application at the physiological, metabolomic and transcriptomic levels. Seed soaking and hydroponic treatments were found to induce various changes in the protective mechanisms of wheat plants. The possible involvement of the flavonoid metabolism in salicylic acid-related stress signaling was also demonstrated. Different salicylic acid treatments were shown to induce different physiological and biochemical processes, with varying responses in the leaves and roots. Hydroponic treatment enhanced the level of oxidative stress, the expression of genes involved in the flavonoid metabolism and the amount of non-enzymatic antioxidant compounds, namely ortho-hydroxycinnamic acid and the flavonol quercetin in the leaves, while it decreased the ortho-hydroxycinnamic acid and flavonol contents and enhanced ascorbate peroxidase activity in the roots. In contrast, seed soaking only elevated the gene expression level of phenylalanine ammonia lyase in the roots and caused a slight increase in the amount of flavonols. These results draw attention to the fact that the effects of exogenous salicylic acid application cannot be generalized in different experimental systems and that the flavonoid metabolism may be an important part of the action mechanisms induced by salicylic acid.

  2. Salicylate-induced hyperacusis in rats: Dose- and frequency-dependent effects.

    Science.gov (United States)

    Radziwon, Kelly; Holfoth, David; Lindner, Julia; Kaier-Green, Zoe; Bowler, Rachael; Urban, Maxwell; Salvi, Richard

    2017-07-01

    The use of auditory reaction time is a reliable measure of loudness perception in both animals and humans with reaction times (RT) decreasing with increasing stimulus intensity. Since abnormal loudness perception is a common feature of hyperacusis, a potentially debilitating auditory disorder in which moderate-intensity sounds are perceived as uncomfortable or painfully loud, we used RT measures to assess rats for salicylate-induced hyperacusis. A previous study using an operant conditioning RT procedure found that high-dose sodium salicylate (SS) induced hyperacusis-like behavior, i.e., faster than normal RTs to moderate and high level sounds, when rats were tested with broadband noise stimuli. However, it was not clear from that study if salicylate induces hyperacusis-like behavior in a dose- or frequency-dependent manner. Therefore, the goals of the current study were to determine how RT-intensity functions were altered by different doses of salicylate, and, using tone bursts, to determine if salicylate induces hyperacusis-like behavior across the entire frequency spectrum or only at certain frequencies. Similar to previous physiological studies, we began to see faster than normal RTs for sounds 60 dB SPL and greater with salicylate doses of 150 mg/kg and higher; indicating the rats were experiencing hyperacusis at high salicylate doses. In addition, high-dose salicylate significantly reduced RTs across all stimulus frequencies tested which suggests that a central neural excitability mechanism may be a potential driver of salicylate-induced changes in loudness perception and hyperacusis. Copyright © 2017. Published by Elsevier B.V.

  3. Liquid-liquid extraction of uranium (VI) using Cyanex 272 in kerosene from sodium salicylate medium

    International Nuclear Information System (INIS)

    Kamble, Pravin N.; Mohite, Baburao S.; Suryavanshi, Vishal J.; Salunkhe, Suresh T.

    2015-01-01

    Liquid-liquid extraction of uranium (VI) from sodium salicylate media using Cyanex 272 in kerosene has been carried out. Uranium (VI) was quantitatively extracted from 1x10 -4 M sodium salicylate with 5x10 -4 M Cyanex 272 in kerosene. It was stripped quantitatively from the organic phase with 4M HCl and determined spectrophotometrically with arsenazo(III) at 600 nm. The effects of concentrations of sodium salicylate, metal ions and strippants have been studied. Separation of uranium (VI) from other elements was achieved from binary as well as from multicomponent mixtures. The method is simple, rapid and selective with good reproducibility (approximately ±2%). (author)

  4. Mathematical modeling of complexing in the scandium-salicylic acid-isoamyl alcohol system

    International Nuclear Information System (INIS)

    Evseev, A.M.; Smirnova, N.S.; Fadeeva, V.I.; Tikhomirova, T.I.; Kir'yanov, Yu.A.

    1984-01-01

    Mathematical modeling of an equilibrium multicomponent physicochemical system for extraction of Sc salicylate complexes by isoamyl alcohol was conducted. To calculate the equilibrium concentrations of Sc complexes different with respect to the content and composition, the system of nonlinear algebraic mass balance equations was solved. Experimental data on the extraction of Sc salicylates by isoamyl alcohol versus the pH of the solution at a constant Sc concentration and different concentration of salicylate-ions were used for construction of the mathematical model. The stability constants of ScHSal 2+ , Sc(HSal) 3 , ScOH(HSal) 2 , ScoH(HSal) 2 complexes were calculated

  5. Lysine Acetylation and Deacetylation in Brain Development and Neuropathies.

    Science.gov (United States)

    Tapias, Alicia; Wang, Zhao-Qi

    2017-02-01

    Embryonic development is critical for the final functionality and maintenance of the adult brain. Brain development is tightly regulated by intracellular and extracellular signaling. Lysine acetylation and deacetylation are posttranslational modifications that are able to link extracellular signals to intracellular responses. A wealth of evidence indicates that lysine acetylation and deacetylation are critical for brain development and functionality. Indeed, mutations of the enzymes and cofactors responsible for these processes are often associated with neurodevelopmental and psychiatric disorders. Lysine acetylation and deacetylation are involved in all levels of brain development, starting from neuroprogenitor survival and proliferation, cell fate decisions, neuronal maturation, migration, and synaptogenesis, as well as differentiation and maturation of astrocytes and oligodendrocytes, to the establishment of neuronal circuits. Hence, fluctuations in the balance between lysine acetylation and deacetylation contribute to the final shape and performance of the brain. In this review, we summarize the current basic knowledge on the specific roles of lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) complexes in brain development and the different neurodevelopmental disorders that are associated with dysfunctional lysine (de)acetylation machineries. Copyright © 2017 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  6. Histones of Chlamydomonas reinhardtii. Synthesis, acetylation, and methylation

    International Nuclear Information System (INIS)

    Waterborg, J.H.; Robertson, A.J.; Tatar, D.L.; Borza, C.M.; Davie, J.R.

    1995-01-01

    Histones of the green alga Chlamydomonas reinhardtii were prepared by a new method and fractionated by reversed-phase high-performance liquid chromatography. Acid-urea-Triton gel analysis and tritiated acetate labeling demonstrated high levels of steady-state acetylation for the single histone H3 protein, in contrast to low levels on histones H4 and H2B. Twenty percent of histone H3 is subject to dynamic acetylation with, on average, three acetylated lysine residues per protein molecule. Histone synthesis in light-dark-synchronized cultures was biphasic with pattern differences between two histone H1 variants, between two H2A variants, and between H2B and ubiquitinated H2B. Automated protein sequence analysis of histone H3 demonstrated a site-specific pattern of steady-state acetylation between 7 and 17% at five of the six amino-terminal lysines and of monomethylation between 5 and 81% at five of the eight amino-terminal lysines in a pattern that may limit dynamic acetylation. An algal histone H3 sequence was confirmed by protein sequencing with a since threonine as residue 28 instead of the serine(28)-alanine(29) sequence, present in all other known plant and animal H3 histones

  7. Relationship of histone acetylation to DNA topology and transcription.

    Science.gov (United States)

    Krajewski, W A; Luchnik, A N

    1991-12-01

    An autonomously replicating plasmid constructed from bovine papiloma virus (BPV) and pBR322 was stably maintained as a nuclear episome in a mouse cell culture. Addition to a cell culture of sodium butyrate (5 mM) induced an increase in plasmid DNA supercoiling of 3-5 turns, an increase in acetylation of cellular histones, and a decrease in plasmid transcription by 2- to 4-fold. After withdrawal of butyrate, DNA supercoiling began to fluctuate in a wave-like manner with an amplitude of up to 3 turns and a period of 3-4 h. These waves gradually faded by 24 h. The transcription of the plasmid and acetylation of cellular histones also oscillated with the same period. The wave-like alterations were not correlated with the cell cycle, for there was no resumption of DNA replication after butyrate withdrawal for at least 24 h. In vitro chemical acetylation of histones with acetyl adenylate also led to an increase in the superhelical density of plasmid DNA. The parallel changes in transcription, histone acetylation, and DNA supercoiling in vivo may indicate a functional innerconnection. Also, the observed in vivo variation in the level of DNA supercoiling directly indicates the possibility of its natural regulation in eukaryotic cells.

  8. Crystal structure of 2,5-dimethylanilinium salicylate

    Directory of Open Access Journals (Sweden)

    A. Mani

    2015-09-01

    Full Text Available The title molecular salt, C8H12N+·C7H5O3− arose from the proton-transfer reaction between 2,5-xylidine and salicylic acid. In the anion, the dihedral angle between the planes of the aromatic ring and the –CO2− group is 11.08 (8°; this near planarity is consolidated by an intramolecular O—H...O hydrogen bond. In the crystal, the components are connected by N—H...O hydrogen bonds, with all three O atoms in the anion acting as acceptors; the result is a [100] chain. The structure also features weak C—H...O bonds and aromatic π–π stacking [centroid-to-centroid distance = 3.7416 (10 Å] interactions, which lead to a three-dimensional network.

  9. Indomethacin and salicylate decrease epinephrine-induced glycogenolysis

    International Nuclear Information System (INIS)

    Miller, J.D.; Ganguli, S.; Artal, R.; Sperling, M.A.

    1985-01-01

    Epinephrine (E) produces an immediate (0-30 minutes) rise in hepatic glucose production (Ra), largely due to activation of glycogenolysis; thereafter, E-stimulated gluconeogenesis becomes the major factor maintaining glucose production. To investigate the possible role of arachidonic acid metabolites on Ra during E stimulation, the authors infused E in trained conscious dogs before and during administration of two inhibitors of arachidonic acid metabolism, indomethacin (INDO) and salicylate (S). On separate days, experimental animals were treated with both oral and IV INDO and oral acetylsalicylic acid and IV sodium salicylate. Ra and glucose utilization (Rd), both in mg x kg-1 min-1, were calculated by isotope dilution using 3- 3 H-glucose. After achieving steady state specific activity, control (C) and experimental animals (n . 6 per group) received E (0.1 ug x kg-1 min-1) for 150 minutes, raising plasma levels to approximately 1500 pg/mL in each group. In C, plasma glucose (G; mg/dL) rose by 17 +/- 5 at 10 minutes and 19 +/- 3 at 20 minutes due to an initial spike in Ra (2.7 +/- 0.2 to 4.9 +/- 0.5; P less than 0.01) at 10 minutes. INDO and S treatment attenuated this initial (10-20 minutes) rise in G (P less than 0.05) due to a lower stimulated Ra at 10 minutes (3.3 +/- 0.1 with INDO; 3.0 +/- 0.5 with S; P less than 0.05). After 20 minutes Ra was not different in the 3 groups; no overall differences in Rd, glucose clearance, or plasma insulin levels occurred with INDO or S treatment

  10. Indomethacin and salicylate decrease epinephrine-induced glycogenolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.; Ganguli, S.; Artal, R.; Sperling, M.A.

    1985-02-01

    Epinephrine (E) produces an immediate (0-30 minutes) rise in hepatic glucose production (Ra), largely due to activation of glycogenolysis; thereafter, E-stimulated gluconeogenesis becomes the major factor maintaining glucose production. To investigate the possible role of arachidonic acid metabolites on Ra during E stimulation, the authors infused E in trained conscious dogs before and during administration of two inhibitors of arachidonic acid metabolism, indomethacin (INDO) and salicylate (S). On separate days, experimental animals were treated with both oral and IV INDO and oral acetylsalicylic acid and IV sodium salicylate. Ra and glucose utilization (Rd), both in mg x kg-1 min-1, were calculated by isotope dilution using 3-/sup 3/H-glucose. After achieving steady state specific activity, control (C) and experimental animals (n . 6 per group) received E (0.1 ug x kg-1 min-1) for 150 minutes, raising plasma levels to approximately 1500 pg/mL in each group. In C, plasma glucose (G; mg/dL) rose by 17 +/- 5 at 10 minutes and 19 +/- 3 at 20 minutes due to an initial spike in Ra (2.7 +/- 0.2 to 4.9 +/- 0.5; P less than 0.01) at 10 minutes. INDO and S treatment attenuated this initial (10-20 minutes) rise in G (P less than 0.05) due to a lower stimulated Ra at 10 minutes (3.3 +/- 0.1 with INDO; 3.0 +/- 0.5 with S; P less than 0.05). After 20 minutes Ra was not different in the 3 groups; no overall differences in Rd, glucose clearance, or plasma insulin levels occurred with INDO or S treatment.

  11. Indomethacin and salicylate decrease epinephrine-induced glycogenolysis.

    Science.gov (United States)

    Miller, J D; Ganguli, S; Artal, R; Sperling, M A

    1985-02-01

    Epinephrine (E) produces an immediate (0-30 minutes) rise in hepatic glucose production (Ra), largely due to activation of glycogenolysis; thereafter, E-stimulated gluconeogenesis becomes the major factor maintaining glucose production. To investigate the possible role of arachidonic acid metabolites on Ra during E stimulation, we infused E in trained conscious dogs before and during administration of two inhibitors of arachidonic acid metabolism, indomethacin (INDO) and salicylate (S). On separate days, experimental animals were treated with both oral and IV INDO and oral acetylsalicylic acid and IV sodium salicylate. Ra and glucose utilization (Rd), both in mg x kg-1 min-1, were calculated by isotope dilution using 3-3H-glucose. After achieving steady state specific activity, control (C) and experimental animals (n = 6 per group) received E (0.1 ug x kg-1 min-1) for 150 minutes, raising plasma levels to approximately 1500 pg/mL in each group. In C, plasma glucose (G; mg/dL) rose by 17 +/- 5 at 10 minutes and 19 +/- 3 at 20 minutes due to an initial spike in Ra (2.7 +/- 0.2 to 4.9 +/- 0.5; P less than 0.01) at 10 minutes. INDO and S treatment attenuated this initial (10-20 minutes) rise in G (P less than 0.05) due to a lower stimulated Ra at 10 minutes (3.3 +/- 0.1 with INDO; 3.0 +/- 0.5 with S; P less than 0.05). After 20 minutes Ra was not different in the 3 groups; no overall differences in Rd, glucose clearance, or plasma insulin levels occurred with INDO or S treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Meat consumption, N-acetyl transferase 1 and 2 polymorphism and risk of breast cancer, in Danish postmenopausal women

    DEFF Research Database (Denmark)

    Egeberg, Rikke; Olsen, Anja; Autrup, Herman

    2008-01-01

    increment in intake. Compared with slow acetylators, the IRR (95% confidence interval) among fast N-acetyl transferase 1 acetylators was 1.43 (1.03-1.99) and 1.13 (0.83-1.54) among intermediate/fast N-acetyl transferase 2 acetylators. Interaction analyses revealed that the positive associations between...

  13. Synthetic biology for engineering acetyl coenzyme a metabolism in yeast

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2014-01-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting...... chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl......-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol....

  14. Both central and peripheral auditory systems are involved in salicylate-induced tinnitus in rats: a behavioral study.

    Directory of Open Access Journals (Sweden)

    Guanyin Chen

    Full Text Available OBJECTIVE: This study was designed to establish a low dose salicylate-induced tinnitus rat model and to investigate whether central or peripheral auditory system is involved in tinnitus. METHODS: Lick suppression ratio (R, lick count and lick latency of conditioned rats in salicylate group (120 mg/kg, intraperitoneally and saline group were first compared. Bilateral auditory nerves were ablated in unconditioned rats and lick count and lick latency were compared before and after ablation. The ablation was then performed in conditioned rats and lick count and lick latency were compared between salicylate group and saline group and between ablated and unablated salicylate groups. RESULTS: Both the R value and the lick count in salicylate group were significantly higher than those in saline group and lick latency in salicylate group was significantly shorter than that in saline group. No significant changes were observed in lick count and lick latency before and after ablation. After ablation, lick count and lick latency in salicylate group were significantly higher and shorter respectively than those in saline group, but they were significantly lower and longer respectively than those in unablated salicylate group. CONCLUSION: A low dose of salicylate (120 mg/kg can induce tinnitus in rats and both central and peripheral auditory systems participate in the generation of salicylate-induced tinnitus.

  15. Both central and peripheral auditory systems are involved in salicylate-induced tinnitus in rats: a behavioral study.

    Science.gov (United States)

    Chen, Guanyin; Feng, Lining; Liu, Zhi; Sun, Yongzhu; Chang, Haifeng; Cui, Pengcheng

    2014-01-01

    This study was designed to establish a low dose salicylate-induced tinnitus rat model and to investigate whether central or peripheral auditory system is involved in tinnitus. Lick suppression ratio (R), lick count and lick latency of conditioned rats in salicylate group (120 mg/kg, intraperitoneally) and saline group were first compared. Bilateral auditory nerves were ablated in unconditioned rats and lick count and lick latency were compared before and after ablation. The ablation was then performed in conditioned rats and lick count and lick latency were compared between salicylate group and saline group and between ablated and unablated salicylate groups. Both the R value and the lick count in salicylate group were significantly higher than those in saline group and lick latency in salicylate group was significantly shorter than that in saline group. No significant changes were observed in lick count and lick latency before and after ablation. After ablation, lick count and lick latency in salicylate group were significantly higher and shorter respectively than those in saline group, but they were significantly lower and longer respectively than those in unablated salicylate group. A low dose of salicylate (120 mg/kg) can induce tinnitus in rats and both central and peripheral auditory systems participate in the generation of salicylate-induced tinnitus.

  16. Both Central and Peripheral Auditory Systems Are Involved in Salicylate-Induced Tinnitus in Rats: A Behavioral Study

    Science.gov (United States)

    Liu, Zhi; Sun, Yongzhu; Chang, Haifeng; Cui, Pengcheng

    2014-01-01

    Objective This study was designed to establish a low dose salicylate-induced tinnitus rat model and to investigate whether central or peripheral auditory system is involved in tinnitus. Methods Lick suppression ratio (R), lick count and lick latency of conditioned rats in salicylate group (120 mg/kg, intraperitoneally) and saline group were first compared. Bilateral auditory nerves were ablated in unconditioned rats and lick count and lick latency were compared before and after ablation. The ablation was then performed in conditioned rats and lick count and lick latency were compared between salicylate group and saline group and between ablated and unablated salicylate groups. Results Both the R value and the lick count in salicylate group were significantly higher than those in saline group and lick latency in salicylate group was significantly shorter than that in saline group. No significant changes were observed in lick count and lick latency before and after ablation. After ablation, lick count and lick latency in salicylate group were significantly higher and shorter respectively than those in saline group, but they were significantly lower and longer respectively than those in unablated salicylate group. Conclusion A low dose of salicylate (120 mg/kg) can induce tinnitus in rats and both central and peripheral auditory systems participate in the generation of salicylate-induced tinnitus. PMID:25269067

  17. Hydrolytic metabolism of phenyl and benzyl salicylates, fragrances and flavoring agents in foods, by microsomes of rat and human tissues.

    Science.gov (United States)

    Ozaki, Hitomi; Sugihara, Kazumi; Tamura, Yuki; Fujino, Chieri; Watanabe, Yoko; Uramaru, Naoto; Sone, Tomomichi; Ohta, Shigeru; Kitamura, Shigeyuki

    2015-12-01

    Salicylates are used as fragrance and flavor ingredients for foods, as UV absorbers and as medicines. Here, we examined the hydrolytic metabolism of phenyl and benzyl salicylates by various tissue microsomes and plasma of rats, and by human liver and small-intestinal microsomes. Both salicylates were readily hydrolyzed by tissue microsomes, predominantly in small intestine, followed by liver, although phenyl salicylate was much more rapidly hydrolyzed than benzyl salicylate. The liver and small-intestinal microsomal hydrolase activities were completely inhibited by bis(4-nitrophenyl)phosphate, and could be extracted with Triton X-100. Phenyl salicylate-hydrolyzing activity was co-eluted with carboxylesterase activity by anion exchange column chromatography of the Triton X-100 extracts of liver and small-intestinal microsomes. Expression of rat liver and small-intestinal isoforms of carboxylesterase, Ces1e and Ces2c (AB010632), in COS cells resulted in significant phenyl salicylate-hydrolyzing activities with the same specific activities as those of liver and small-intestinal microsomes, respectively. Human small-intestinal microsomes also exhibited higher hydrolyzing activity than liver microsomes towards these salicylates. Human CES1 and CES2 isozymes expressed in COS cells both readily hydrolyzed phenyl salicylate, but the activity of CES2 was higher than that of CES1. These results indicate that significant amounts of salicylic acid might be formed by microsomal hydrolysis of phenyl and benzyl salicylates in vivo. The possible pharmacological and toxicological effects of salicylic acid released from salicylates present in commercial products should be considered. Copyright © 2015. Published by Elsevier Ltd.

  18. Total synthesis of marinomycin A using salicylate as a molecular switch to mediate dimerization

    Science.gov (United States)

    Evans, P. Andrew; Huang, Mu-Hua; Lawler, Michael J.; Maroto, Sergio

    2012-08-01

    Antibiotics play a significant role in human health because of their ability to treat life-threatening bacterial infections. The growing problems with antibiotic resistance have made the development of new antibiotics a World Health Organization priority. Marinomycin A is a member of a new class of bis-salicylate-containing polyene macrodiolides, which have potent antibiotic activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Herein, we describe a triply convergent synthesis of this agent using the salicylate as a novel molecular switch for the chemoselective construction of the macrodiolide. This strategy raises new questions regarding the biosynthetic role of the salicylate and its potential impact on the mechanism of action of these types of agents. For instance, in contrast to penicillin, which enhances the electrophilicity of the cyclic amide through ring strain, salicylates reduce the electrophilicity of the aryl ester through an intramolecular resonance-assisted hydrogen bond to provide an amide surrogate.

  19. Diazepam reduces excitability of amygdala and further influences auditory cortex following sodium salicylate treatment in rats.

    Science.gov (United States)

    Song, Yu; Liu, Junxiu; Ma, Furong; Mao, Lanqun

    2016-12-01

    Diazepam can reduce the excitability of lateral amygdala and eventually suppress the excitability of the auditory cortex in rats following salicylate treatment, indicating the regulating effect of lateral amygdala to the auditory cortex in the tinnitus procedure. To study the spontaneous firing rates (SFR) of the auditory cortex and lateral amygdala regulated by diazepam in the tinnitus rat model induced by sodium salicylate. This study first created a tinnitus rat modal induced by sodium salicylate, and recorded SFR of both auditory cortex and lateral amygdala. Then diazepam was intraperitoneally injected and the SFR changes of lateral amygdala recorded. Finally, diazepam was microinjected on lateral amygdala and the SFR changes of the auditory cortex recorded. Both SFRs of the auditory cortex and lateral amygdala increased after salicylate treatment. SFR of lateral amygdala decreased after intraperitoneal injection of diazepam. Microinjecting diazepam to lateral amygdala decreased SFR of the auditory cortex ipsilaterally and contralaterally.

  20. Bromodecarboxylation of quinoline salicylic acids: increasing the diversity of accessible substituted quinolines.

    Science.gov (United States)

    Janz, Kristin; Kaila, Neelu

    2009-11-20

    Quinoline salicylic acids underwent bromodecarboxylation at room temperature upon treatment with N-bromosuccinimide. A wide variety of functional groups was tolerated. Several one-pot transformations were also carried out, allowing the preparation of diverse 4-substituted quinolines.

  1. Ingestion of chilli pepper (Capsicum annuum) reduces salicylate bioavailability after oral asprin administration in the rat.

    Science.gov (United States)

    Cruz, L; Castañeda-Hernández, G; Navarrete, A

    1999-06-01

    The bioavailabilities of aspirin (acetylsalicylic acid) and of salicylic acid were studied in male Wistar rats after acute and chronic administration of a Capsicum annuum extract, containing 100 mg of capsaicin per gram. With a single administration of 100 mg/kg of the extract, aspirin blood levels remained unchanged, but salicylic acid bioavailability was reduced in 44% compared with control animals. With a single administration of 300 mg/kg of the extract, aspirin blood levels were undetectable while salicylic acid bioavailability was reduced in 59%. Chronic administration once daily for 4 weeks of 100 and 300 mg/kg of the extract resulted in undetectable aspirin blood levels, while salicylic acid bioavailability was reduced in 63 and 76%, respectively, compared with controls. Results show that Capsicum ingestion reduces oral drug bioavailability, likely as a result of the gastrointestinal effects of capsaicin.

  2. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects

    NARCIS (Netherlands)

    Swain, S.; Roy, S.; Shah, J.; Wees, S.C.M. van; Pieterse, C.M.J.; Nandi, A.K.

    2011-01-01

    Arabidopsis genotypes with a hyperactive salicylic acidmediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article,

  3. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates

    DEFF Research Database (Denmark)

    Cheng, Hong; Liang, Ran; Han, Rui-Min

    2014-01-01

    by the anion of salicylic acid with 2.2 × 10 L mol s, but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced......The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k = 3.2 × 10 L mol s in 9:1 v/v chloroform-methanol at 23 °C, less efficiently...... rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations....

  4. Chlorogenic acids biosynthesis in Centella asiatica cells is not stimulated by salicylic acid manipulation

    CSIR Research Space (South Africa)

    Ncube, EN

    2016-07-01

    Full Text Available Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been...

  5. Gas Chromatographic Determination of Methyl Salicylate in Rubbing Alcohol: An Experiment Employing Standard Addition.

    Science.gov (United States)

    Van Atta, Robert E.; Van Atta, R. Lewis

    1980-01-01

    Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)

  6. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates.

    Science.gov (United States)

    Cheng, Hong; Liang, Ran; Han, Rui-Min; Zhang, Jian-Ping; Skibsted, Leif H

    2014-02-01

    The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k2 = 3.2 × 10(9) L mol(-1) s(-1) in 9 : 1 v/v chloroform-methanol at 23 °C, less efficiently by the anion of salicylic acid with 2.2 × 10(8) L mol(-1) s(-1), but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations.

  7. Simultaneous determination of acetylsalicylic and salicylic acids by first derivative spectrometry in pharmaceutical preparations

    Science.gov (United States)

    Rogić, Dunja

    1993-03-01

    A multicomponent first derivative UV spectrometric procedure for determination of acetylsalicylic acid (aspirin) and salicylic acid in the solution containing 1 % (w/v) of citric acid in some pharmaceutical preparations is presented. The method is based on the use of the first derivative minimum spectrometric measurements at 286 nm for aspirin and at 318 nm for salicylic acid. Four kinds of cmmercial Aspirin tablets were assayed without a long pretreatment of the pharmaceuticals from the tablet additives. Beer's law is obeyed from 13.62-68.1 μg ml -1 of aspirin and from 2.723-13.616 μg ml -1 of salicylic acid. Detection limits at the 0.05 level of significance were calculated to be 1.24 and 0.25 μg ml -1 with relative standard deviations of 1.09 % and 1.2 % of aspirin and salicylic acid, respectively.

  8. Microautoradiography of 14C-salicylic acid in the skin of guinea-pig

    International Nuclear Information System (INIS)

    Washitake, Mitsunori; Ozawa, Yasuo; Anmo, Toshio; Tanaka, Ichiro

    1974-01-01

    The concentration of salicylic acid in guinea-pig skin was examined by microautoradiography. The retention of salicylic acid in the stratum corneum was observed. It was considered that the rate of transfer of the drug into the stratum corneum was small and that the stratum corneum became the barrier for permeability of the skin. The distribution of salicylic acid in other parts of the skin was uniform and no retention of the drug in any special parts was observed. The plasma level showed less percutaneous absorption of the drug when it was applied as liquid paraffin solution than when it was applied as an aqueous solution. The amount of salicylic acid absorbed from damaged skin was extremely large and, in this case, disappearance of the drug from the skin was fast. (author)

  9. The effect of the NMDA channel blocker memantine on salicylate-induced tinnitus in rats.

    Science.gov (United States)

    Ralli, M; Troiani, D; Podda, M V; Paciello, F; Eramo, S L M; de Corso, E; Salvi, R; Paludetti, G; Fetoni, A R

    2014-06-01

    Short-term tinnitus develops shortly after the administration of a high dose of salicylate. Since salicylate selectively potentiates N-methyl- D-aspartate (NMDA) currents in spiral ganglion neurons, it may play a vital role in tinnitus by amplifying NMDA-mediated neurotransmission. The aim of this study was to determine whether systemic treatment with a NMDA channel blocker, memantine, could prevent salicylate-induced tinnitus in animals. Additional experiments were performed to evaluate the effect of memantine on the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to test for changes in hearing function. Thirty-six rats were divided into 3 groups and treated daily for four consecutive days. One group (n = 12) was injected with salicylate (300 mg/kg/d, IP), the second (n = 12) was treated with memantine (5 mg/kg/d, IP) and the third group (n = 12) was injected with salicylate and memantine. All rats were tested for tinnitus and hearing loss at 2, 24, 48 and 72 h after the first drug administration and 24 h post treatment; tinnituslike behaviour was assessed with gap prepulse inhibition of acoustic startle (GPIAS), and hearing function was measured with DPOAE, ABR and noise burst prepulse inhibition of acoustic startle (NBPIAS). Rats in the salicylate group showed impaired GPIAS indicative of transient tinnitus-like behaviour near 16 kHz that recovered 24 h after the last salicylate treatment. Memantine did not cause a significant change in GPIAS. Combined injection of salicylate and memantine significantly attenuated GPIAS tinnitus-like behaviour at 48 hours after the first injection. None of the treatments induced permanent threshold shifts in the ABR and DPOAE, which recovered completely within one day post treatment. Animals treated with salicylate plus memantine showed results comparable to animals treated with salicylate alone, confirming that there is no effect of memantine on DPOAE which reflects OHC function. The

  10. Mutagenic Potential of Physostigmine Salicylate in the Ames Salmonella/ Mammalian Microsome Mutagenicity Test

    Science.gov (United States)

    1988-12-01

    Molecular Weight: 413.47 Analytical Data: The test compound was analyzed by the sponsors and the identity confirmed by UV and IR spectroscopy , high pressure...AD-A203 802 Institute Report No. 320 Mutagenic Potential of Physostigmine Salicylate in the Ames Salmonella/Mammalian Microsome Mutagenicity Test...T%&)MS (Continue on reverse if necessary and identify by block number) FiELDI GROUP ISUB-GROUP Physostigmine Salicylate , Mutagenicity, Genetic

  11. Some biochemical reactions of strawberry plants to infection with Botrytis cinerea and salicylic acid treatment

    Directory of Open Access Journals (Sweden)

    Urszula Małolepsza

    2013-12-01

    Full Text Available The reactions of strawberry plants to infection with B. cinerea and treatment with salicylic acid has been studied. Infection of leaves with B. cinerea resulted in early increases in active oxygen species generation, superoxide dismutase and peroxidase activities and phenolic compounds content. Some increases of the above reactions were noticed in plants treated with salicylic acid but not in the plants treated with SA and then later infected with B. cinerea.

  12. The Physical Characterization of Liposome Salicylic Acid Using Transmission Electron Microscope

    International Nuclear Information System (INIS)

    Elman Panjaitan

    2008-01-01

    The physical characterization of liposome, formulated from salicylic acid using thin film hydration methods with cholesterol and soybean lecithin, has been done. The formula was characterized by optical microscopes and Transmission Electron Microscope (TEM). The observation result shows that the salicylic acid can be formulated to liposomes. Soybean lecithin combined with cholesterol (600 mg : 20 mg) was the best formula and the liposome was spherical vesicle like with dimension about 70 nm unit 800 nm. (author)

  13. Dermal and underlying tissue pharmacokinetics of salicylic acid after topical application.

    Science.gov (United States)

    Singh, P; Roberts, M S

    1993-08-01

    The time course of salicylic acid at a dermal application site and in local underlying tissues below the site in rats was examined using a physiologically based pharmacokinetic model assuming first-order diffusional mass transfer between the dermis and underlying tissues. The concentrations of salicylic acid in tissues below the applied site were measured and compared with plasma concentrations and concentrations in similar tissues on the contralateral side. The direct penetration of salicylic acid was dominant only to a depth of 3-4 mm below the applied site for the first approximately 2 hr after application. The time course of salicylic acid in individual rats was modeled using known tissue blood flows and tissue-tissue clearances by (i) numerical integration and nonlinear regression of a series of differential equations representing events in individual tissues, and (ii) numerical integration and nonlinear regression of a single differential equation representation of the concentration-time course in an individual tissue with a polynomial representation of salicylate concentrations in other input tissues and an exponential representation of the input from the solution. Tissue-tissue clearances were deduced by both nonlinear regression and mass balance analysis (only for underlying dermis) using area-under-the-curves from salicylic acid tissue penetration data in anesthetized rats. The relative importance of direct penetration and blood supply in determining the concentrations of salicylic acid in deeper tissues was assessed by simulations in which either no direct penetration occurred or there was zero input from blood. Simulations confirm that direct penetration is only evident in the superficial tissues for approximately 2 hr. An attempt was also made to examine the dermal pharmacokinetics of salicylic acid using statistical moments.

  14. Characterization of rhizobacteria associated to maize crop in IAA, siderophores and salicylic acid metabolite production

    OpenAIRE

    Annia Hernández; Narovis Rives; Alberto Caballero; Ana N. Hernández; Mayra Heydrich

    2007-01-01

    It has been demonstrated that rhizobacteria are able to produce metabolites having agricultural interest, including salicylic acid, the siderophores and phytohormones. Indol acetic acid (IAA) is the most well-known and studied auxin, playing a governing role in culture growth. The object of this work was to characterise rhizobacteria associated with the maize crop in terms of producing IAA, siderophores and salicylic acid metabolites. Burkholderia cepacia and Pseudomonas fluorescens strains p...

  15. Effects of N-acetylation degree on N-acetylated chitosan hydrolysis with commercially available and modified pectinases.

    Science.gov (United States)

    Shin-ya; Lee; Hinode; Kajiuchi

    2001-01-01

    Three types of N-acetylated chitosans (NACs) with different degrees of acetylation (DA) were prepared and used as a substrate for enzymatic hydrolysis with a commercially available pectinase and a modified one. Pectinase modification was conducted using polyalkyleneoxide-maleic anhydride copolymer (PEO-MA copolymer). The effects of DA on enzymatic reaction with native and modified pectinases were investigated experimentally. Initial hydrolysis rate and Michaelis-Menten kinetic parameters were measured by analysis of reducing sugars. DA of NAC strongly affected the hydrolytic characteristics of native and modified pectinases. N-acetylation of chitosan increased the initial hydrolysis rate and the enzyme-substrate affinity with respect to both pectinases: NACs with DA over 0.3 showed high initial hydrolysis rate and strong affinity between enzyme and substrate. Especially, when NAC with DA over 0.3 was treated with modified pectinase, the affinity became much stronger than the native pectinase.

  16. Spurious Hyperchloremia in the Presence of Elevated Plasma Salicylate: A Cohort Study.

    Science.gov (United States)

    Kashani, Kianoush B; Steuernagle Iv, Jon H; Qian, Qi

    2018-01-01

    Acute metabolic acidosis is rarely associated with a reduced or negative anion gap (AG), but several case reports have described such an abnormality occurring in the setting of acute salicylate intoxication. The underlying cause of this phenomenon is unclear. In this retrospective cohort study, we reviewed our institutional database to identify all patients admitted for salicylate intoxication at Mayo Clinic (Rochester, MN, USA) from January 2010 through December 2012. Serum chloride was measured with the Cobas INTEGRA 400 plus electrode (expedited laboratory test) or Cobas 6000 (routine laboratory test). We compared blood chloride levels measured by the 2 devices in the presence of positive blood salicylate level. Twelve adult patients with salicylate levels >20 mg/dL had markedly elevated chloride concentrations. The median (interquartile range) chloride level at admission was 120 (107-145) mmol/L on their initial laboratory studies, resulting in reduced or even negative AGs. None of the patients had bromide toxicity, nor did they have any other identifiable cause of hyperchloremia or decreased AG. Further testing of the same blood samples with an alternative measurement system (Roche Cobas 6000) yielded normal chloride values, indicating that falsely elevated chloride values with the initial testing led to the diminished or negative AG values. Circulating levels of salicylate can interfere with chloride measured by using routine techniques, resulting in spurious hyperchloremia outcomes and erroneous AG values. In patients with acute metabolic acidosis and abnormally reduced or negative AG, salicylate interference with chloride measurement should be suspected. © 2017 S. Karger AG, Basel.

  17. Detection of AmpC beta-lactamases using sodium salicylate.

    Science.gov (United States)

    Kashif, Mona T; Yassin, Aymen S; Hosny, Alaa El-Dien M S

    2012-12-01

    AmpC β-lactamases are enzymes that hydrolyze all β-lactam antibiotics except cefipime and imipenem. Currently, there is no standard phenotypic method for detection of such enzymes. This study aims to report the use of sodium salicylate for AmpC β-lactamases detection and to compare its sensitivity and specificity to other commonly known inhibitors. A total of 135 clinical isolates were used to test the effectiveness of sodium salicylate in detection of plasmid- as well as chromosomally encoded AmpC β-lactamases. All isolates were tested by multiplex PCR testing as well as inhibitor-based methods using cloxacillin, phenylboronic acid and sodium salicylate for the detection of AmpC enzymes. Four isolates were confirmed as producers of plasmid-encoded AmpC β-lactamase and a single isolate was confirmed to have both plasmid and chromosomal genes. Cloxacillin and phenylyboronic acid failed to detect most of the plasmid-encoded enzymes. Sodium salicylate was able to detect the Escherichia coli isolates with plasmid-encoded enzymes in addition to few other isolates that were chromosomally mediated. The sensitivity and specificity of sodium salicylate was 50% and 93%, respectively, higher than those of other known inhibitors. We thus conclude that sodium salicylate can be reliably used as an inhibitor in the detection of plasmid-encoded AmpC enzymes in E. coli. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Expression of immediate-early genes in the dorsal cochlear nucleus in salicylate-induced tinnitus.

    Science.gov (United States)

    Hu, Shou-Sen; Mei, Ling; Chen, Jian-Yong; Huang, Zhi-Wu; Wu, Hao

    2016-02-01

    Spontaneous neuronal activity in dorsal cochlear nucleus (DCN) may be involved in the physiological processes underlying salicylate-induced tinnitus. As a neuronal activity marker, immediate-early gene (IEG) expression, especially activity-dependent cytoskeletal protein (Arc/Arg3.1) and the early growth response gene-1 (Egr-1), appears to be highly correlated with sensory-evoked neuronal activity. However, their relationships with tinnitus induced by salicylate have rarely been reported in the DCN. In this study, we assessed the effect of acute and chronic salicylate treatment on the expression of N-methyl D-aspartate receptor subunit 2B (NR2B), Arg3.1, and Egr-1. We also observed ultrastructural alterations in the DCN synapses in an animal model of tinnitus. Levels of mRNA and protein expression of NR2B and Arg3.1 were increased in rats that were chronically administered salicylate (200 mg/kg, twice daily for 3, 7, or 14 days). These levels returned to baseline 14 days after cessation of treatment. However, no significant changes were observed in Egr-1 gene expression in any groups. Furthermore, rats subjected to long-term salicylate administration showed more presynaptic vesicles, thicker and longer postsynaptic densities, and increased synaptic interface curvature. Alterations of Arg3.1 and NR2B may be responsible for the changes in the synaptic ultrastructure. These changes confirm that salicylate can cause neural plasticity changes at the DCN level.

  19. Transport of salicylate in proximal tubule (S2 segment) isolated from rabbit kidney

    International Nuclear Information System (INIS)

    Schild, L.; Roch-Ramel, F.

    1988-01-01

    The secretory and the reabsorptive transport of salicylate was studied in the isolated and perfused rabbit proximal tubule (S 2 segment). Salicylate secretion (J sal b→l ) fulfilled the criteria for a carrier-mediated transport system: J sal b→l was saturable, was reversibly inhibited by probenecid, and occurred against a concentration gradient. The K m and V max for this secretory transport were 80 μM and 3,200 fmol·min -1 ·mm -1 , respectively. At luminal pH of 7.4 and 6.6, salicylate reabsorption (J sal l→b ) was low. J sal l→b was stimulated by increasing the bath Pco 2 or by removing basolateral HCO 3 - ; J sal l→b was inhibited by ethoxyzolamide and by SITS in the bath. The results indicate that salicylate reabsorption depends on H + secretion, consistent with reabsorption by simple nonionic diffusion. When salicylate was present in the lumen only, J sal l→b increased after inhibition of the secretory transport by adding ouabain or probenecid in the bath or by lowering the bath temperature. These results are compatible with luminal recycling of salicylate, and suggest the presence of a mediated secretory transporter located at the luminal membrane

  20. Salicylate inhibits LDL oxidation initiated by superoxide/nitric oxide radicals.

    Science.gov (United States)

    Hermann, M; Kapiotis, S; Hofbauer, R; Exner, M; Seelos, C; Held, I; Gmeiner, B

    1999-02-19

    Simultaneously produced superoxide/nitric oxide radicals (O2*-/NO*) could form peroxynitrite (OONO-) which has been found to cause atherogenic, i.e. oxidative modification of LDL. Aromatic hydroxylation and nitration of the aspirin metabolite salicylate by OONO- has been reported. Therefore we tested if salicylate may be able to protect LDL from oxidation by O2*-/NO* by scavenging the OONO reactive decomposition products. When LDL was exposed to simultaneously produced O2*-/NO* using the sydnonimine SIN-1, salicylate exerted an inhibitory effect on LDL oxidation as measured by TBARS and lipid hydroperoxide formation and alteration in electrophoretic mobility of LDL. The cytotoxic effect of SIN-1 pre-oxidised LDL to endothelial cells was also diminished when salicylate was present during SIN-1 treatment of LDL. Spectrophotometric analysis revealed that salicylate was converted to dihydroxybenzoic acid (DHBA) derivatives in the presence of SIN-1. 2,3- and 2,5-DHBA were even more effective to protect LDL from oxidation by O2*-/NO*. Because O2*-/NO* can occur in vivo, the results may indicate that salicylate could act as an efficacious inhibitor of O2*-/NO* initiated atherogenic LDL modification, thus further supporting the rationale of aspirin medication regarding cardiovascular diseases.

  1. Thiamin and Salicylic Acid as Biological Alternatives for Controlling Broad Bean Rot Disease

    International Nuclear Information System (INIS)

    AlHakimi, A.M.A; Alghalibi, Saeed M.S

    2007-01-01

    The interactive effects of fungi (Fusarium solani and Rhizoctonia solani) infection and thiamin or salicylic acid on growth rate, membrane stability, K+ efflux, UV-absorbing metabolites, photosynthetic pigments, cell wall components and lipid fractions of broad bean plants (30-day-old) were studied. Fungal infection induced a reduction in growth rate, membrane stability and content of photosynthetic pigments. Application of thiamin or salicylic acid increased growth rate, membrane stability and content of photosynthetic pigments. The K+ efflux and the leakage of UV-absorbing metabolites were stimulated with fungal infection. However, thiamin and salicylic acid treatment partially retarded the stimulatory effect on leakage of K+ and UV-absorbing metabolites of fungal infected plants. Fungal infection produced a reduction in the content of pectin and cellulose, total lipid, glycolipids and sterols fraction of shoots and roots and phospholipids of roots. On the other hand, the contents of hemicellulose and lignin of shoots and roots and phospholipids of shoots were stimulated by fungal infection. Soaking seeds in thiamin or salicylic acid counteracts partially or completely the adverse effect of fungal infection on pectin and cellulose composition, total lipid, glycolipids and sterols of either shoots or roots. On the other side, thiamin or salicylic acid treatments retarded the phospholipids accumulation in shoots of infected plants, and in roots the phospholipids accumulation was partially or completely alleviated. The content of hemicellulose and lignin of shoots and roots were antagonistically lowered by the application of thiamin or salicylic acid. (author)

  2. CLOCK Acetylates ASS1 to Drive Circadian Rhythm of Ureagenesis.

    Science.gov (United States)

    Lin, Ran; Mo, Yan; Zha, Haihong; Qu, Zhipeng; Xie, Pancheng; Zhu, Zheng-Jiang; Xu, Ying; Xiong, Yue; Guan, Kun-Liang

    2017-10-05

    In addition to responding to environmental entrainment with diurnal variation, metabolism is also tightly controlled by cell-autonomous circadian clock. Extensive studies have revealed key roles of transcription in circadian control. Post-transcriptional regulation for the rhythmic gating of metabolic enzymes remains elusive. Here, we show that arginine biosynthesis and subsequent ureagenesis are collectively regulated by CLOCK (circadian locomotor output cycles kaput) in circadian rhythms. Facilitated by BMAL1 (brain and muscle Arnt-like protein), CLOCK directly acetylates K165 and K176 of argininosuccinate synthase (ASS1) to inactivate ASS1, which catalyzes the rate-limiting step of arginine biosynthesis. ASS1 acetylation by CLOCK exhibits circadian oscillation in human cells and mouse liver, possibly caused by rhythmic interaction between CLOCK and ASS1, leading to the circadian regulation of ASS1 and ureagenesis. Furthermore, we also identified NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 (NDUFA9) and inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) as acetylation substrates of CLOCK. Taken together, CLOCK modulates metabolic rhythmicity by acting as a rhythmic acetyl-transferase for metabolic enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Acetylated starch of Ofada rice as a sustained polymer in ...

    African Journals Online (AJOL)

    Background: Acetylated starches with degrees of substitution (DS) of > 2 have been found suitable for sustained release applications because of their hydrophobic nature and thermoplasticity. The short half-life and high dosing frequency of repaglinide make it an ideal candidate for sustained release. Objectives: To ...

  4. Acetylation of wood components and fourier transform infra-red ...

    African Journals Online (AJOL)

    Acetylation of Turkish pine or cedar wood flour with acetic anhydride was significantly improved in the presence of potassium carbonate at 100°C. Maximum of about 20 and 18% weight percentage gain (WPG) values were obtained with Turkish pine (Pinus brutia) and cedar (Cedrus libani) wood flour after 3 h reaction at ...

  5. Surface effects in the acetylation of granular potato starch

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Woortman, A.J.J.

    2008-01-01

    The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of

  6. Potentiometric studies of Nickel (II) and copper (II) acetyl acetonato ...

    African Journals Online (AJOL)

    Potentiometric studies of Nickel (II) and copper (II) acetyl acetonato complexes. HN Aliyu, A Mustapha. Abstract. The dissociation constant pKa of acetylacetone has been determined potentiometrically. The pKa value obtained is 9.40, indicating a weak acid. The stability constants of the complex compounds formed from the ...

  7. Effect Of Nicotine And Tobacco Consumption On Brain Acetyl ...

    African Journals Online (AJOL)

    The effect of nicotine and tobacco consumption on brain acetyl cholinesterase and serum alkaline phosphatase in rats was studied. Rats were divided into three groups and the first group was fed rat chow and water ad libitum and an oral administration of 2ml of 0.1%(v/v) nicotine per 100g body weight of rats per day.

  8. Effect of acetylation and varietal differences on the pasting ...

    African Journals Online (AJOL)

    The pasting properties of starch from eight varieties of corn; Okomasa, Obatanpa, Dodzi, Mamaba, Dadaba, Dorke, Golden crystal, and CIDA-ba were studied to establish the effects of acetylation and varietal differences on the pasting properties. Native starches extracted from the corn varieties were modified with 10% v/v ...

  9. The potential role of wood acetylation in climate change mitigation

    NARCIS (Netherlands)

    Van der Lugt, P.; Vogtländer, J.G.; Alexander, J.; Bongers, F.; Stebbins, H.

    2014-01-01

    In a carbon footprint assessment, the greenhouse gas emissions during the life cycle of a material can be measured, and compared to alternative products in terms of kg CO2 equivalent. If applied correctly, wood acetylation opens up a range of new innovative applications in which high performance yet

  10. Effects of salicylic acid foliar application on germination, growth and antioxidant potential of basil (Ocimum basilicum L.)

    OpenAIRE

    Karalija, Erna; Parić, Adisa

    2018-01-01

    Salicylic acid is one of endogenous plant growth regulators that plays a key role in many physiological processes. The present study analysed the effect of different concentrations (0, 0.01, 0.1, ad 1.0 mM) of salicylic acid on morphological parameters, photosynthetic pigments, protein, proline, total carbohydrates, and secondary metabolites content as well as peroxidase activity. One month after sowing seedlings were replanted in new pots, and salicylic acid was applied in form of a foliar s...

  11. Salicylate-inducible antibiotic resistance in Pseudomonas cepacia associated with absence of a pore-forming outer membrane protein.

    OpenAIRE

    Burns, J L; Clark, D K

    1992-01-01

    The most common mechanism of antibiotic resistance in multiply resistant Pseudomonas cepacia is decreased porin-mediated outer membrane permeability. In some gram-negative organisms this form of antibiotic resistance can be induced by growth in the presence of weak acids, such as salicylates, which suppress porin synthesis. To determine the effects of salicylates on outer membrane permeability of P. cepacia, a susceptible laboratory strain, 249-2, was grown in 10 mM sodium salicylate. Antibio...

  12. Radiation protection with mesalamine (5-amino salicylic acid)

    International Nuclear Information System (INIS)

    Onoda, James M.; Court, Wayne S.; Feldmeier, John J.; Alecu, Rodica

    1996-01-01

    Purpose: Radiation proctitis induced during the therapy of rectal and prostate cancers, and radiation injuries in general, are often the principal dose limiting factor limiting dose escalation for radiation therapy. Thus, there has been a continuous search for radioprotective agents, especially those that could selectively protect normal tissues, as opposed to the target cancer. 5-amino salicylic acid (5ASA) is in clinical use as Mesalamine for the local treatment of ulcerative proctitis. Inasmuch as other investigators have identified 5ASA as a free radical scavenger, we determined whether pretreatment with 5ASA could confer radiation protection. Materials and Methods: Adult male C57BL/6J mice obtained from Jackson Laboratories were employed for these studies. We determined LD50 for acute gastrointestinal death for young (≤ 10 weeks old, ≤ 25 gms body weight) and aged (≥ 1 year old, ≥ 35 gms body weight) animals exposed to single fractions (1 - 20 Gy) from three different radiation sources, Cs 137 , 270 KeV x-rays, and a 4 MeV linear accelerator. Experimental mice were pre- or post-treated with 5ASA in an acidified isotonic saline solution by oral, rectal, or intraperitoneal administration. Animals were housed, maintained by AAALAC standards and treated with antibiotics or acidified water post radiation exposure to control opportunistic infections. Animals were scored for death when moribund. Results: 5ASA was found to be radioprotective by oral, rectal or intraperitoneal administration when given 15 to 90 minutes prior to radiation exposure. Administration of drug following radiation exposure failed to confer radioprotection. We determined a dose effect for 5ASA with maximum tolerated dose of 200 mg/kg administered ip 30 minutes prior to 11 Gy whole body exposure. Dose modification and radioprotection by 5ASA were determined by LD50(6), LD50(30), or LD50(365). More recently, we determined that 5ASA conferred significant radioprotection to mice exposed to

  13. Effect of certain variables on the tumor and tissue distribution of tracers. III. Salicylates and vasoactive drugs

    International Nuclear Information System (INIS)

    Halpern, S.E.; Hagan, P.; Stern, P.; Gordon, R.; Dabbs, J.

    1981-01-01

    Attempts were made to increase the viable tumor concentration of 54 Mn and 67 Ga in a rat hepatoma model by administering rat angiotensin, tolazoline, and salicylates. Salicylates increased the tumor concentrations of 54 Mn and improved 65 Mn viable tumor/background ratios. 67 Ga was not affected by the salicylates. The salicylate effect appeared to be mediated by intracellular mechanisms rather than alterations in plasma protein binding. Rat angiotensin slightly increased the concentrations of 67 Ga in the tumors but not enough to suggest that it would be useful clinically. Tolazoline did not increase tumor uptake of the tracers

  14. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns

    DEFF Research Database (Denmark)

    Lundby, Alicia; Hansen, Kasper Lage; Weinert, Brian Tate

    2012-01-01

    that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle...

  15. Comprehensive Proteomic Analysis of Lysine Acetylation in the Foodborne Pathogen Trichinella spiralis

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2018-01-01

    Full Text Available Lysine acetylation is a dynamic and highly conserved post-translational modification that plays a critical role in regulating diverse cellular processes. Trichinella spiralis is a foodborne parasite with a considerable socio-economic impact. However, to date, little is known regarding the role of lysine acetylation in this parasitic nematode. In this study, we utilized a proteomic approach involving anti-acetyl lysine-based enrichment and highly sensitive mass spectrometry to identify the global acetylated proteome and investigate lysine acetylation in T. spiralis. In total, 3872 lysine modification sites were identified in 1592 proteins that are involved in a wide variety of biological processes. Consistent with the results of previous studies, a large number of the acetylated proteins appear to be involved in metabolic and biosynthetic processes. Interestingly, according to the functional enrichment analysis, 29 acetylated proteins were associated with phagocytosis, suggesting an important role of lysine acetylation in this process. Among the identified proteins, 15 putative acetylation motifs were detected. The presence of serine downstream of the lysine acetylation site was commonly observed in the regions surrounding the sites. Moreover, protein interaction network analysis revealed that various interactions are regulated by protein acetylation. These data represent the first report of the acetylome of T. spiralis and provide an important resource for further explorations of the role of lysine acetylation in this foodborne pathogen.

  16. DMPD: Acetylation of MKP-1 and the control of inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18922786 Acetylation of MKP-1 and the control of inflammation. Chi H, Flavell RA. S...ci Signal. 2008 Oct 14;1(41):pe44. (.png) (.svg) (.html) (.csml) Show Acetylation of MKP-1 and the control of inflammation.... PubmedID 18922786 Title Acetylation of MKP-1 and the control of inflammation. Authors Chi H,

  17. Relativistic Density Functional Theory Calculations of the Electron Paramagnetic Resonance Parameters for Vanadyl Acetyl Acetonate and Copper Acetyl Acetonate

    Science.gov (United States)

    Mainali, Laxman; Sahu, Indra; Earle, Keith

    2008-03-01

    Relativistic density functional theory calculations of electron paramagnetic resonance (EPR) parameters using a variety of basis sets have been computed for the model systems Vanadyl acetyl acetonate and Copper acetyl acetonate using the ORCA program. The basis set dependence of g and A tensor calculations for Vanadyl acetyl acetonate and Copper acetyl acetonate were studied using Pople Style and Ahlrichs basis sets in Local and gradient corrected functionals (BP86 and PWP) and Hybrid functionals (B3LYP and PW1PW). The PW1PW hybrid functional gives the best values for VO(acac)2 using the TZV basis set and for Cu(acac)2 using the 6-311G(d) basis set. The calculated A values with PW1PW hybrid functional for VO(acac)2 and Local and gradient corrected functional (BP86) for Cu(acac)2 with same basis set (DZ) give better results than previously reported values using the Amsterdam Density Functional Theory (ADF) Software. Our calculated g and A tensor values are in good agreement with the values determined from experiment.

  18. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins

    Directory of Open Access Journals (Sweden)

    Michael N. Davies

    2016-01-01

    Full Text Available Lysine acetylation (AcK, a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT, an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK.

  19. Differently sized granules from acetylated potato and sweet potato starches differ in the acetyl substitution pattern of their amylose polulations.

    NARCIS (Netherlands)

    Chen Zenghong,; Schols, H.A.; Voragen, A.G.J.

    2004-01-01

    Acetylated potato and sweet potato starches were fractionated according to granule size. From the fractions obtained amylose and amylopectin were isolated and characterized with respect to degree of substitution (DS) and degradability with -amylase, -amylase and amyloglucosidase. The DS of the

  20. Studies investigating the excretion of acetyl urea in the milk of dairy cows receiving oral doses of 14C acetyl urea

    International Nuclear Information System (INIS)

    Bergner, H.; Kijora, C.; Goersch, R.

    1976-01-01

    2 experimental cows were fed acetyl urea several weeks before the trial was started. The first cow received a daily amount of 200 g and the second cow 855 g. On the first day of experiment both cows were given 5 mCi of 14 C acetyl urea intraruminally. Up to 6 hrs after the beginning of the experiment acetyl urea in blood plasma was shown to contain a higher proportion of 14 C activity than urea. 0.21 g urea and 0.18 g acetyl urea were contained in 1 kg of milk from cow No 1 while 1 kg of milk from cow No 2 contained 0.18 g urea and 0.12 g acetyl urea. The feeding of acetyl urea to dairy cows is not recommended on the basis of the fact that any further contamination of human nutrition with foreign substances should be possibly avoided. (author)

  1. Sequential Dy(OTf)3 -Catalyzed Solvent-Free Per-O-Acetylation and Regioselective Anomeric De-O-Acetylation of Carbohydrates.

    Science.gov (United States)

    Yan, Yi-Ling; Guo, Jiun-Rung; Liang, Chien-Fu

    2017-09-19

    Dysprosium(III) trifluoromethanesulfonate-catalyzed per-O-acetylation and regioselective anomeric de-O-acetylation of carbohydrates can be tuned by adjusting the reaction medium. In this study, the per-O-acetylation of unprotected sugars by using a near-stoichiometric amount of acetic anhydride under solvent-free conditions resulted in the exclusive formation of acetylated saccharides as anomeric mixtures, whereas anomeric de-O-acetylation in methanol resulted in a moderate-to-excellent yield. Reactions with various unprotected monosaccharides or disaccharides followed by a semi-one-pot sequential conversion into the corresponding acetylated glycosyl hemiacetal also resulted in high yields. Furthermore, the obtained hemiacetals could be successfully transformed into trichloroimidates after Dy(OTf) 3 -catalyzed glycosylation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Combined effect of metformin with ascorbic acid versus acetyl salicylic acid on diabetes-related cardiovascular complication; a 12-month single blind multicenter randomized control trial.

    Science.gov (United States)

    Gillani, Syed Wasif; Sulaiman, Syed Azhar Syed; Abdul, Mohi Iqbal Mohammad; Baig, Mirza R

    2017-08-14

    We aimed to investigate the efficacy of ascorbic acid and acetylsalicylic acid among type II diabetes mellitus patients using metformin (only) for diabetes management therapy. A 12-month single blinded multicenter randomized control trial was designed to investigate the measured variables [Glycated Hemoglobin (HbA1c), Renal function, Albumin Creatinine Ratio (ACR) etc.]. The trial was randomized into 2 experimental parallel arms (ascorbic acid vs acetylsalicylic acid) were blinded with study supplements in combination with metformin and findings were compared to control arm with metformin alone and blinded with placebo. Withdrawal criteria was defined to maintain the equity and balance in the participants in the whole trial. Patients with metformin and ascorbic acid (parallel arm I) was twice more likely to reduce HbA1c than metformin alone (control arm) in a year (OR 2.31 (95% CI 1.87-4.42) p ascorbic acid with metformin is more effective against reducing risks for diabetes related long-term complications (including ACR). TRIAL details Registration No: NTR-6100, Registry Name: Netherlands Trial Registry, URL: http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6100 , Date of Registration: 20th October, 2016, Date of first Enrollment: 1 November, 2015.

  3. The C50T polymorphism of the cyclooxygenase-I gene and the risk of thrombotic events during low-dose therapy with acetyl salicylic acid

    NARCIS (Netherlands)

    Clappers, Nick; van Oijen, Martijn G. H.; Sundaresan, Santosh; Brouwer, Marc A.; te Morsche, Rene H. M.; Keuper, Wessel; Peters, Wilbert H. M.; Drenth, Joost P. H.; Verheugt, Freek W. A.

    2008-01-01

    prevents thrombotic events by inhibiting platelet cyclooxygenase-I (COX-1), thus reducing thromboxane A2 formation and platelet aggregation.The C50T polymorphism of COX-1 is associated with an impaired inhibition of both thromboxane production and in-vitro platelet aggregation by aspirin.We studied

  4. The Effect of Roux-en-Y Gastric Bypass Surgery in Morbidly Obese Patients on Pharmacokinetics of (Acetyl)Salicylic Acid and Omeprazole : the ERY-PAO Study

    NARCIS (Netherlands)

    Mitrov-Winkelmolen, Lieke; van Buul-Gast, Marie-Christine W; Swank, Dingeman J; Overdiek, Hans W P M; van Schaik, Ron H N; Touw, Daan J

    Data on the absorption of orally administered drugs following Roux-en-Y gastric bypass (RYGB) surgery in obese patients are limited and inconclusive. As it is difficult to predict changes in absorption, studies on frequently used drugs in this population are necessary. Acetylsalicylic acid (ASA) and

  5. Mechanism of Acetyl Salicylic Acid (Aspirin) Degradation under Solar Light in Presence of a TiO2-Polymeric Film Photocatalyst

    OpenAIRE

    Debjani Mukherjee; Ajay K. Ray; Shahzad Barghi

    2016-01-01

    Application of titanium dioxide (TiO2) as a photocatalyst has presented a promising avenue for the safe photocatalytic degradation of pollutants. Increasing levels of the release of pharmaceuticals in the environment and formation of the intermediates during their degradation may impose health and environmental risks and therefore require more attention. Photocatalytic degradation of acetylsalicylic acid (aspirin) was carried out in the presence of the TiO2-filled polymeric film as a photocat...

  6. Synthesis and characterization of a glycerol salicylate resin for bioactive root canal sealers.

    Science.gov (United States)

    Portella, F F; Santos, P D; Lima, G B; Leitune, V C B; Petzhold, C L; Collares, F M; Samuel, S M W

    2014-04-01

    To develop and characterize a salicylate resin with potential use in bioactive endodontic sealers. Methyl salicylate, glycerol and titanium isopropoxide were added in a closed system for the transesterification reaction. The resin obtained was characterized by proton nuclear magnetic resonance spectroscopy (1H NMR) and size exclusion chromatography (SEC). To verify the applicability of the resin to the development of endodontic sealers, experimental cements were prepared by mixing glycerol salicylate resin, calcium hydroxide and methyl salicylate in the ratios of 2 : 1 : 1, 1 : 2 : 1, 1 : 1 : 2, 1 : 1 : 1, 4 : 1 : 1, 1 : 4 : 1 and 1 : 1 : 4. Setting times were measured according to ISO 6876. Features of the hardening reaction were described by micro-RAMAN spectroscopy. The transesterification reaction had a 72% efficiency. The (1) H NMR analysis revealed the presence of the expected functional groups (hydroxyls and aromatic rings), and the SEC confirmed the molar mass of the resin produced. The setting times of experimental sealers ranged from 70 min (ratio 1 : 1 : 1) to 490 min (ratio 1 : 1 : 4). The conversion of the salicylic groups (1 613 cm(-1) ) to salicylate salt (1 543 cm(-1) ) and the reduction in calcium hydroxide peaks (1084 and 682 cm(-1) ) were confirmed by micro-RAMAN spectroscopy, which showed the calcium chelation by the resin. The new glycerol salicylate resin was successfully synthesized and revealed a potential application in the development of endodontic sealers. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Changes in the numbers of ribbon synapses and expression of RIBEYE in salicylate-induced tinnitus.

    Science.gov (United States)

    Zhang, Feng-Ying; Xue, Yi-Xue; Liu, Wen-Jing; Yao, Yi-Long; Ma, Jun; Chen, Lin; Shang, Xiu-Li

    2014-01-01

    This study was performed to explore the mechanism underlying tinnitus by investigating the changes in the synaptic ribbons and RIBEYE expression in cochlear inner hair cells in salicylate-induced tinnitus. C57BL/6J mice were injected with salicylate (350 mg/kg) for 10 days and grouped. Behavioral procedures were performed to assess whether the animals experienced tinnitus. The specific presynaptic RIBEYE protein and non-specific postsynaptic glutamate receptor 2&3 protein in basilar membrane samples were examined by immunofluorescent labeling. RT-PCR and Western blot assays were used to examine RIBEYE expression. Serial sections were used to build three-dimensional models using 3ds MAX software to evaluate the changes in the synaptic ribbons. The administration of salicylate increased false positives in the behavioral procedure from 3 d to 10 d. The membrane profiles of inner hair cells in all mice were intact. The number of synaptic ribbons in the salicylate group increased on the 7(th) d and decreased on the 9(th) and 10(th) d. mRNA and protein expression of RIBEYE were initially up-regulated and later down-regulated by injecting salicylate for 10 consecutive days. This change in the ribbon synapses of cochlear inner hair cells in salicylate-induced mice might serve as a compensatory mechanism in the early stages of ototoxicity and contribute to tinnitus later. The alteration of RIBEYE expression could be responsible for the changes in the morphology of ribbon synapses and for salicylate-induced tinnitus. © 2014 S. Karger AG, Basel.

  8. Absorption of salicylate powders versus tablets following overdose: a poison center observational study.

    Science.gov (United States)

    Rose, S Rutherfoord; Cumpston, Kirk L; Kim, Janice; Difranco, Danielle; Wills, Brandon K

    2016-11-01

    Salicylate absorption following overdose of aspirin (ASA) tablet formulations can be prolonged for greater than 24 h. Accordingly, serial serum concentrations are typically recommended to guide treatment. However, there are little published data on absorption following ingestion of powder ASA formulations, and it is not known if delayed ASA absorption occurs following overdose of powder formulations. The objective of this study is to compare the absorption characteristics of powder and tablet formulations of ASA in patients reported to a single poison center. Electronic records from an accredited poison center were searched for single substance acute or acute on chronic ingestions of ASA in powder form between 1 January 2002 and 31 January 2014. An identical search for ingestions of ASA tablet products between 1 January 2012 and 31 December 2013 was undertaken as the comparator group. Other inclusion criteria were age >12 years, documented time of ingestion, treatment in a health care facility within nine hours of ingestion and at least two detectable serum salicylate concentrations. 16 of 25 powder and 22 of 49 tablet cases met inclusion criteria for analysis. Repeat serum salicylate concentrations following ingestion of tablets increased or insignificantly changed in 11 of 22 (50%) cases, and median serum salicylate concentrations in followed cases remained elevated for up to 12 h in some cases. In comparison, serum salicylate concentrations following powder ingestions declined in 15 of 16 (94%) cases. One patient, who ingested a powder product, underwent hemodialysis pursuant to an initial serum salicylate concentration of 96 mg/dL. In contrast to persistent concentrations following overdose of tablets, the majority of serum salicylate concentrations declined following ingestion of powder formulations. In this small study population, these findings suggest that prolonged absorption is unlikely following ingestions of ASA powders.

  9. High doses of salicylate causes prepulse facilitation of onset-gap induced acoustic startle response.

    Science.gov (United States)

    Sun, Wei; Doolittle, Lauren; Flowers, Elizabeth; Zhang, Chao; Wang, Qiuju

    2014-01-01

    Prepulse inhibition of acoustic startle reflex (PPI), a well-established method for evaluating sensorimotor gating function, has been used to detect tinnitus in animal models. Reduced gap induced PPI (gap-PPI) was considered as a sign of tinnitus. The silent gap used in the test contains both onset and offset signals. Tinnitus may affect these cues differently. In this experiment, we studied the effects of a high dose of salicylate (250 mg/kg, i.p.), an inducer of reversible tinnitus and sensorineural hearing loss, on gap-PPI induced by three different gaps: an onset-gap with 0.1 ms onset and 25 ms offset time, an offset-gap with 25 ms onset and 0.1 ms offset time, and an onset-offset-gap with 0.1 ms onset and offset time. We found that the onset-gaps induced smaller inhibitions than the offset-gaps before salicylate treatment. The offset-gap induced PPI was significantly reduced 1-3h after salicylate treatment. However, the onset-gap caused a facilitation of startle response. These results suggest that salicylate induced reduction of gap-PPI was not only caused by the decrease of offset-gap induced PPI, but also by the facilitation induced by the onset-gap. Since the onset-gap induced PPI is caused by neural offset response, our results suggest that salicylate may cause a facilitation of neural response to an offset acoustical signal. Treatment of vigabatrin (60 mg/kg/day, 14 days), which elevates the GABA level in the brain, blocked the offset-gap induced PPI and onset-gap induced facilitation caused by salicylate. These results suggest that enhancing GABAergic activities can alleviate salicylate induced tinnitus. Published by Elsevier B.V.

  10. Salicylate-induced peripheral auditory changes and tonotopic reorganization of auditory cortex

    Science.gov (United States)

    Stolzberg, Daniel; Chen, Guang-Di; Allman, Brian L.; Salvi, Richard J.

    2011-01-01

    The neuronal mechanism underlying the phantom auditory perception of tinnitus remains at present elusive. For over 25 years, temporary tinnitus following acute salicylate intoxication in rats has been used as a model to understand how a phantom sound can be generated. Behavioral studies have indicated the pitch of salicylate-induced tinnitus in the rat is approximately 16 kHz. In order to better understand the origin of the tinnitus pitch, in the present study, measurements were made at the levels of auditory input and output; both cochlear and cortical physiological recordings were performed in ketamine/xylazine anesthetized rats. Both compound action potentials and distortion product otoacoustic emission measurements revealed a salicylate-induced band-pass-like cochlear deficit in which the reduction of cochlear input was least at 16 kHz and significantly greater at high and low frequencies. In a separate group of rats, frequency receptive fields of primary auditory cortex neurons were tracked using multichannel microelectrodes before and after systemic salicylate treatment. Tracking frequency receptive fields following salicylate revealed a population of neurons that shifted their frequency of maximum sensitivity (i.e., characteristic frequency) towards the tinnitus frequency region of the tonotopic axis (~16 kHz). The data presented here supports the hypothesis that salicylateinduced tinnitus results from an expanded cortical representation of the tinnitus pitch determined by an altered profile of input from the cochlea. Moreover, the pliability of cortical frequency receptive fields during salicylate-induced tinnitus is likely due to salicylate’s direct action on intracortical inhibitory networks. Such a disproportionate representation of middle frequencies in the auditory cortex following salicylate may result in a finer analysis of signals within this region which may pathologically enhance the functional importance of spurious neuronal activity

  11. Effect of salicylic acid and aloe vera gel on postharvest quality of table grapes ( Vitis Vinifera

    Directory of Open Access Journals (Sweden)

    H. Peyro

    2017-06-01

    Full Text Available To investigate the effects of salicylic acid dipping and Aloe vera gel coating on shelf life and post harvest quality of table grapes (Vitis vinifera of the cultivar Shahroudi, a factorial experiment was conducted on the basis of randomized complete blocks design with three factors and three replicates in agricultural faculty of Islamic Azad University in 2014. The treatments were dipping in Salicylic acid (three levels of 0, 1 and 2 mmmol-1 for 15 minutes and coating with Aloe vera gel (four levels of 0, 10%, 15% and 20% w/v and measurement of traits in 1st day, 30th day and 60th day after treatment of berries. The results showed that the interaction effect of salicylic acid and Aloe vera gel application was significant on all of traits except for pH value in a way that the best and the minimum weight loss (0.09g was obtained by application of 2 mmol-1 Salicylic acid and 20% Aloe vera gel in 1st day after treatment. The greatest amount of total soluble solids (428.43 g.100g-1 fruit juice was found in 2 mmol-1 Salicylic acid and 15% Aloe vera gel in 60th day. The highest Catalase enzyme activity (0.0013 Ua.mg-1Pro was attained in 2 mmol-1 Salicylic acid and 15% Aloe vera gel in 30th day. These results demonstrated that treatment of grape berries by salicylic acid and Aloe vera gel had positive effect on shelf life of table grapes and their postharvest quality

  12. Glycerol Salicylate-based Pulp-Capping Material Containing Portland Cement.

    Science.gov (United States)

    Portella, Fernando Freitas; Collares, Fabrício Mezzomo; Santos, Paula Dapper; Sartori, Cláudia; Wegner, Everton; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner

    2015-01-01

    The purpose of this study was to evaluate the water sorption, solubility, pH and ability to diffuse into dentin of a glycerol salicylate-based, pulp-capping cement in comparison to a conventional calcium hydroxide-based pulp capping material (Hydcal). An experimental cement was developed containing 60% glycerol salicylate resin, 10% methyl salicylate, 25% calcium hydroxide and 5% Portland cement. Water sorption and solubility were determined based on mass changes in the samples before and after the immersion in distilled water for 7 days. Material discs were stored in distilled water for 24 h, 7 days and 28 days, and a digital pHmeter was used to measure the pH of water. The cement's ability to diffuse into bovine dentin was assessed by Raman spectroscopy. The glycerol salicylate-based cement presented higher water sorption and lower solubility than Hydcal. The pH of water used to store the samples increased for both cements, reaching 12.59 ± 0.06 and 12.54 ± 0.05 after 7 days, for Hydcal and glycerol salicylate-based cements, respectively. Both cements were able to turn alkaline the medium at 24 h and sustain its alkalinity after 28 days. Hydcal exhibited an intense diffusion into dentin up to 40 µm deep, and the glycerol salicylate-based cement penetrated 20 µm. The experimental glycerol salicylate-based cement presents good sorption, solubility, ability to alkalize the surrounding tissues and diffusion into dentin to be used as pulp capping material.

  13. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation

    Science.gov (United States)

    Matsunaga, S. N.; Guenther, A. B.; Potosnak, M. J.; Apel, E. C.

    2008-12-01

    Biogenic volatile organic compounds (BVOC) produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima), desert willow (Chilopsis linearis), mesquite (Prosopis glandulosa), mondel pine (Pinus eldarica), pinyon pine (Pinus monophylla), cottonwood (Populus deltoides), saguaro cactus (Carnegiea gigantea) and yucca (Yucca baccata). The measurements focused on BVOCs with relatively high molecular weight (>C15) and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 3.1, 1.0 and 4.8μgC dwg-1 h-1, respectively (dwg; dry weight of the leaves in gram). The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS) and 3,3,5-trimethylcyclohexenyl salicylate (homosalate) and are known as effective ultraviolet (UV) absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA) because they probably produce oxidation products that can condense onto the aerosol phase. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas area using a BVOC emission model. The contribution was estimated to reach 50% of the biogenic terpenoid emission in the landscapes dominated by desert willow and mesquite and 13% in the Las Vegas area. The

  14. Formation of molecular complexes of salicylic acid, acetylsalicylic acid, and methyl salicylate in a mixture of supercritical carbon dioxide with a polar cosolvent

    Science.gov (United States)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.

    2015-08-01

    The solvate structures formed by salicylic acid, acetylsalicylic acid, and methyl salicylate in supercritical (SC) carbon dioxide with a polar cosolvent (methanol, 0.03 mole fractions) at a density of 0.7 g/cm3 and a temperature of 318 K were studied by the molecular dynamics method. Salicylic and acetylsalicylic acids were found to form highly stable hydrogen-bonded complexes with methanol via the hydrogen atom of the carboxyl group. For methyl salicylate in which the carboxyl hydrogen is substituted by a methyl radical, the formation of stable hydrogen bonds with methanol was not revealed. The contribution of other functional groups of the solute to the interactions with the cosolvent was much smaller. An analysis of correlations between the obtained data and the literature data on the cosolvent effect on the solubility of the compounds in SC CO2 showed that the dissolving ability of SC CO2 with respect to a polar organic substance in the presence of a cosolvent increased only when stable hydrogen-bonded complexes are formed between this substance and the cosolvent.

  15. Salicylic acid interferes with clathrin-mediated endocytic protein trafficking.

    Science.gov (United States)

    Du, Yunlong; Tejos, Ricardo; Beck, Martina; Himschoot, Ellie; Li, Hongjiang; Robatzek, Silke; Vanneste, Steffen; Friml, Jirí

    2013-05-07

    Removal of cargos from the cell surface via endocytosis is an efficient mechanism to regulate activities of plasma membrane (PM)-resident proteins, such as receptors or transporters. Salicylic acid (SA) is an important plant hormone that is traditionally associated with pathogen defense. Here, we describe an unanticipated effect of SA on subcellular endocytic cycling of proteins. Both exogenous treatments and endogenously enhanced SA levels repressed endocytosis of different PM proteins. The SA effect on endocytosis did not involve transcription or known components of the SA signaling pathway for transcriptional regulation. SA likely targets an endocytic mechanism that involves the coat protein clathrin, because SA interfered with the clathrin incidence at the PM and clathrin-deficient mutants were less sensitive to the impact of SA on the auxin distribution and root bending during the gravitropic response. By contrast, SA did not affect the ligand-induced endocytosis of the flagellin sensing2 (FLS2) receptor during pathogen responses. Our data suggest that the established SA impact on transcription in plant immunity and the nontranscriptional effect of SA on clathrin-mediated endocytosis are independent mechanisms by which SA regulates distinct aspects of plant physiology.

  16. Salicylic-acid-mediated enhanced biological treatment of wastewater.

    Science.gov (United States)

    Khardenavis, Anshuman A; Kapley, Atya; Purohit, Hemant J

    2010-03-01

    Activated sludge represents a microbial community which is responsible for reduction in pollution load from wastewaters and whose performance depends upon the composition and the expression of degradative capacity. In the present study, the role of salicylic acid (SA) has been evaluated for acclimatization of activated sludge collected from a combined effluent treatment plant followed by analysis of the physiological performance and microbial community of the sludge. The biodegradative capacity of the acclimatized activated sludge was further evaluated for improvement in efficiency of chemical oxygen demand (COD) removal from wastewater samples collected from industries manufacturing bulk drugs and dyes and dye intermediates (wastewater 1) and from dye industry (wastewater 2). An increase in COD removal efficiency from 50% to 58% and from 78% to 82% was observed for wastewater 1 and wastewater 2, respectively. Microbial community analysis data showed selective enrichment and change in composition due to acclimatization by SA, with 50% of the clones showing sequence homology to unidentified and uncultured bacteria. This was demonstrated by analysis of partial 16S rDNA sequence data generated from dominating clones representing the metagenome which also showed the appearance of a unique population of clones after acclimatization, which was distinct from those obtained before acclimatization and clustered away from the dominating population.

  17. Hardening of eucalyptus seedlings via salicylic acid application

    Directory of Open Access Journals (Sweden)

    Eduardo Henrique Lima Mazzuchelli

    2014-09-01

    Full Text Available The agricultural and forest productivity suffer restrictions imposed by water stress, high temperature and high solar radiation. This study aimed to evaluate the capacity of stress attenuation and growth promotion of salicylic acid (SA application in eucalyptus (E. urophylla x E. grandis hybrid seedlings under water stress. A completely randomized design, in a 3x4 factorial scheme (three water treatments: constant irrigation with daily replacement of 40% (CI40% or 100% (CI100% of evapotranspirated water, and temporary irrigation suspension with replacement of only 40% of evapotranspirated water (S40%; and four SA concentrations: 0 mg L-1, 100 mg L-1, 200 mg L-1 and 300 mg L-1, was used. Plant photosynthetic parameters and biometric features were evaluated. The stomatal limitation was higher in plants under S40% irrigation, however, the SA application reverted this result, allowing the maintenance of the photosynthetic potential. There was interaction between irrigation regimes and SA doses for number of leaves, leaf area/number of leaves ratio and shoot and root dry mass. It was concluded that the application of 200 mg L -1 of SA positively affected the growth of eucalyptus seedlings under water stress, being considered an auxiliary management technique to their hardening process.

  18. Expression of mung bean pectin acetyl esterase in potato tubers: effect on acetylation of cell wall polymers and tuber mechanical properties.

    Science.gov (United States)

    Orfila, Caroline; Dal Degan, Florence; Jørgensen, Bodil; Scheller, Henrik Vibe; Ray, Peter M; Ulvskov, Peter

    2012-07-01

    A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue properties. The recombinant tubers showed no apparent macroscopic phenotype. The enzyme was recovered from transgenic tubers using a high ionic strength buffer and the extract was active against a range of pectic substrates. Partial in vivo de-acetylation of cell wall polysaccharides occurred in the transformants, as shown by a 39% decrease in the degree of acetylation (DA) of tuber cell wall material (CWM). Treatment of CWM using a combination of endo-polygalacturonase and pectin methyl esterase extracted more pectin polymers from the transformed tissue compared to wild type. The largest effect of the pectin acetyl esterase (68% decrease in DA) was seen in the residue from this extraction, suggesting that the enzyme is preferentially active on acetylated pectin that is tightly bound to the cell wall. The effects of acetylation on tuber mechanical properties were investigated by tests of failure under compression and by determination of viscoelastic relaxation spectra. These tests suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component. These results are discussed in relation to the role of pectin acetylation in primary cell walls and its implications for industrial uses of potato fibres.

  19. Direct analysis of salicylic acid, salicyl acyl glucuronide, salicyluric acid and gentisic acid in human plasma and urine by high-performance liquid chromatography.

    Science.gov (United States)

    Liu, J H; Smith, P C

    1996-01-12

    A method for the simultaneous direct determination of salicylate (SA), its labile, reactive metabolite, salicyl acyl glucuronide (SAG), and two other major metabolites, salicyluric acid and gentisic acid in plasma and urine is described. Isocratic reversed-phase high performance liquid chromatography (HPLC) employed a 15-cm C18 column using methanol-acetonitrile-25 mM acetic acid as the mobile phase, resulting in HPLC analysis time of less than 20 min. Ultraviolet detection at 310 nm permitted analysis of SAG in plasma, but did not provide sensitivity for measurement of salicyl phenol glucuronide. Plasma or urine samples are stabilized immediately upon collection by adjustment of pH to 3-4 to prevent degradation of the labile acyl glucuronide metabolite. Plasma is then deproteinated with acetonitrile, dried and reconstituted for injection, whereas urine samples are simply diluted prior to injection on HPLC. m-Hydroxybenzoic acid served as the internal standard. Recoveries from plasma were greater than 85% for all four compounds over a range of 0.2-20 micrograms/ml and linearity was observed from 0.1-200 micrograms/ml and 5-2000 micrograms/ml for SA in plasma and urine, respectively. The method was validated to 0.2 microgram/ml, thus allowing accurate measurement of SA, and three major metabolites in plasma and urine of subjects and small animals administered salicylates. The method is unique by allowing quantitation of reactive SAG in plasma at levels well below 1% that of the parent compound, SA, as is observed in patients administered salicylates.

  20. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Henriksen, Peter; Wagner, Sebastian Alexander; Weinert, Brian Tate

    2012-01-01

    acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S......-containing histone H2B deubiquitylase complex. Our data provides the first global survey of acetylation in budding yeast, and suggests a wide-ranging regulatory scope of this modification. The provided dataset may serve as an important resource for the functional analysis of lysine acetylation in eukaryotes....

  1. Lipids Reprogram Metabolism to Become a Major Carbon Source for Histone Acetylation

    DEFF Research Database (Denmark)

    McDonnell, Eoin; Crown, Scott B; Fox, Douglas B

    2016-01-01

    Cells integrate nutrient sensing and metabolism to coordinate proper cellular responses to a particular nutrient source. For example, glucose drives a gene expression program characterized by activating genes involved in its metabolism, in part by increasing glucose-derived histone acetylation....... Here, we find that lipid-derived acetyl-CoA is a major source of carbon for histone acetylation. Using (13)C-carbon tracing combined with acetyl-proteomics, we show that up to 90% of acetylation on certain histone lysines can be derived from fatty acid carbon, even in the presence of excess glucose...

  2. Protective effects of salicylate on PKA inhibitor (H-89)-induced spatial memory deficit via lessening autophagy and apoptosis in rats.

    Science.gov (United States)

    Azimi, Leila; Kachooeian, Maryam; Khodagholi, Fariba; Yans, Asal; Heysieattalab, Soomaayeh; Vakilzadeh, Gelareh; Vosoughi, Nasim; Sanati, Mehdi; Taghizadeh, Ghorban; Sharifzadeh, Mohammad

    In this study, the effects of salicylate on spatial learning and memory, through its effects on autophagy and apoptosis, were evaluated in the presence of the PKA inhibitor H-89. Adult male Wistar rats were divided into experimental groups as follows: salicylate (30, 50, 100μg/0.5μl/side, intra-hippocampal; 400mg/kg, intra-peritoneal), donepezil (1mg/kg as a positive control for behavioral effects of salicylate), H-89 (1μl/side of 5 or 20μM), H-89 plus salicylate and H-89 plus donepezil. The Morris water maze test was used for evaluation of spatial learning and memory. The levels of different apoptotic and autophagic biomarkers were evaluated using the western blot technique. Salicylate (100μg/0.5μl/side) significantly reduced the escape latency on training days, increased the percentage of time spent in the target quadrant during the probe trial and reversed the inhibitory effects of H-89 during the process of spatial learning and memory. The behavioral efficacy of salicylate was comparable to that of donepezil. In addition, salicylate significantly decreased the levels of apoptotic proteins, Bax and caspase 3, and increased the Bcl2 levels in all groups. Furthermore, the levels of LC3II and Atg7 were decreased by salicylate. Our study revealed that both systemic and direct intra-hippocampal administration of salicylate can facilitate the spatial learning and memory. Additionally, intra-hippocampal administration of salicylate can reduce apoptotic and autophagic proteins. The antioxidant activity of salicylate might lead to increased pCREB via stimulation of signaling pathways, resulting in reduction of H-89-induced apoptosis and autophagy. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Infrared Multiple-Photon Dissociation spectroscopy of group II metal complexes with salicylate

    Energy Technology Data Exchange (ETDEWEB)

    Ryan P. Dain; Gary Gresham; Gary S. Groenewold; Jeffrey D. Steill; Jos Oomens; Michael J. van Stipdonk

    2011-07-01

    Ion-trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations were used to characterize singly-charged, 1:1 complexes of Ca2+, Sr2+ and Ba2+ with salicylate. For each metal-salicylate complex, the CID pathways are: (a) elimination of CO2 and (b) formation of [MOH]+ where M=Ca2+, Sr2+ or Ba2+. DFT calculations predict three minima for the cation-salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cation is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal-salicylate complexes contains a number of absorptions between 1000 – 1650 cm-1, and the best correlation between theoretical and experimental spectra for the structure that features coordination of the metal ion by phenoxide and the carbonyl group of the carboxylic acid group, consistent with calculated energies for the respective species.

  4. The aspirin metabolite salicylate inhibits lysine acetyltransferases and MUC1 induced epithelial to mesenchymal transition.

    Science.gov (United States)

    Fernandez, Harvey R; Lindén, Sara K

    2017-07-17

    MUC1 is a transmembrane mucin that can promote cancer progression, and its upregulation correlates with a worse prognosis in colon cancer. We examined the effects of overexpression of MUC1 in colon cancer cells, finding that it induced epithelial to mesenchymal transition (EMT), including enhanced migration and invasion, and increased Akt phosphorylation. When the clones were treated with the aspirin metabolite salicylate, Akt phosphorylation was decreased and EMT inhibited. As the salicylate motif is necessary for the activity of the lysine acetyltransferase (KAT) inhibitor anacardic acid, we hypothesized these effects were associated with the inhibition of KAT activity. This was supported by anacardic acid treatment producing the same effect on EMT. In vitro KAT assays confirmed that salicylate directly inhibited PCAF/Kat2b, Tip60/Kat5 and hMOF/Kat8, and this inhibition was likely involved in the reversal of EMT in the metastatic prostate cancer cell line PC-3. Salicylate treatment also inhibited EMT induced by cytokines, illustrating the general effect it had on this process. The inhibition of both EMT and KATs by salicylate presents a little explored activity that could explain some of the anti-cancer effects of aspirin.

  5. Synergistic Substrate and Oxygen Activation in Salicylate Dioxygenase Revealed by QM/MM Simulations.

    Science.gov (United States)

    Roy, Subhendu; Kästner, Johannes

    2016-01-18

    Salicylate 1,2-dioxygenase (SDO) is the first enzyme to be discovered to catalyze the oxidative cleavage of a monohydroxylated aromatic compound, namely salicylate, instead of the well-known electron-rich substrates. We have investigated the mechanism of dioxygen activation in SDO by QM/MM calculations. Our study reveals that the non-heme Fe(II) center in SDO activates salicylate and O2 synergistically through a strong covalent interaction to facilitate the reductive cleavage of O2. A covalent salicylate-Fe(II) -O2 complex is the reactive oxygen species in this case, and its electronic structure is best described as being between the two limiting cases, Fe(II)-O2 and Fe(II)-O2˙(-), with partial electron transfer from the activated salicylate to O2 via the Fe center. Thus SDO employs a synergistic strategy of substrate and oxygen activation to carry out the catalytic reaction, which is unprecedented in the family of iron dioxygenases. Moreover, O2 activation in SDO happens without the assistance of a proton source. Our study essentially shows a new mechanistic possibility for O2 activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Salicylate-induced changes in immediate-early genes in the hippocampal CA1 area

    Science.gov (United States)

    WU, HAO; XU, FENG-LEI; YIN, YONG; DA, PENG; YOU, XIAO-DONG; XU, HUI-MIN; TANG, YAN

    2015-01-01

    Studies have suggested that salicylate affects neuronal function via interactions with specific membrane channels/receptors. However, the effect of salicylate on activity and synaptic morphology of the hippocampal Cornu Ammonis (CA) 1 area remains to be elucidated. The activation of immediate-early genes (IEGs) was reported to correlate with neuronal activity, in particular activity-regulated cytoskeleton-associated protein and early growth response gene 1. The aim of the present study was to evaluate the expression of these IEGs, as well that of N-methyl D-aspartate (NMDA) receptor subunit 2B in rats following acute and chronic salicylate treatment. Protein and messenger RNA levels of all three genes were increased in rats following chronic administration of salicylate (300 mg/kg for 10 days), returning to baseline levels 14 days post-cessation of treatment. The transient upregulation of gene expression following treatment was accompanied by ultrastructural alterations in hippocampal CA1 area synapses. An increase in synaptic interface curvature was observed as well as an increased number of presynaptic vesicles; in addition, postsynaptic densities thickened and lengthened. In conclusion, the results of the present study indicated that chronic exposure to salicylate may lead to structural alteration of hippocampal CA1 neurons, and it was suggested that this process occurs through induced expression of IEGs via NMDA receptor activation. PMID:25873216

  7. Salicylate •Phenanthroline copper (II) complex induces apoptosis in triple-negative breast cancer cells.

    Science.gov (United States)

    Fan, Limei; Tian, Muyou; Liu, Yunyi; Deng, Ying; Liao, Zhengkai; Xu, Jinhua

    2017-05-02

    In this study, we investigated anti-tumor activity and associated molecular mechanism of action of Salicylate ●Phenanthroline Copper (II) Complex in triple-negative breast cancer. Salicylate ●Phenanthroline Copper (II) Complex inhibited the growth of four breast cancer cell lines (MCF-7, T47D, MDA-MB-231 and BT-20) and induced apoptosis in a concentration-dependent manner. The effect was more profound in MDA-MB-231 and BT-20 triple-negative breast cancer cell lines. Western blot showed that the expression of the apoptosis-related protein Bcl-2, Bcl-xl and survivin was significantly reduced in MDA-MB-231 after treatment with Salicylate ●Phenanthroline Copper (II) Complex. In vivo, Salicylate ●Phenanthroline Copper (II) Complex administration significantly attenuated tumor growth of MDA-MB-231 xenografts, and the expression levels of Bcl-2, Bcl-xL and survivin were reduced as measured by immunohistochemical staining. These data suggest that Salicylate ●Phenanthroline Copper (II) Complex is a promising novel therapeutic drug for triple-negative breast cancer and warrants further study.

  8. A systematic review of salicylates in foods: estimated daily intake of a Scottish population.

    Science.gov (United States)

    Wood, Adrian; Baxter, Gwen; Thies, Frank; Kyle, Janet; Duthie, Garry

    2011-05-01

    Several studies suggest that natural salicylates in plant-based foods may benefit health. However, large variation in published values of the salicylate content of foods means that relating dietary intakes to disease risk is problematical. Consequently, we have systematically reviewed the available literature using prescribed selection criteria. By combining these literature values with in-house analysis, we have constructed a food composition database describing median salicylate values for 27 different types of fruits, 21 vegetables, 28 herbs, spices and condiments, 2 soups and 11 beverages. Application of a validated food frequency questionnaire estimated median dietary intakes of 4.42 (range 2.90-6.27) and 3.16 (2.35-4.89) mg/day for Scottish males and females, respectively. Major dietary sources of salicylates were alcoholic beverages (22%), herbs and spices (17%), fruits (16%), non-alcoholic beverages including fruit juices (13%), tomato-based sauces (12%) and vegetables (9%). Application of the database to populations with differing dietary habits and disease risk profiles may provide further evidence for the role of dietary salicylates in the prevention of chronic diseases. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hypercapnea and Acidemia despite Hyperventilation following Endotracheal Intubation in a Case of Unknown Severe Salicylate Poisoning

    Directory of Open Access Journals (Sweden)

    Shannon M. Fernando

    2017-01-01

    Full Text Available Salicylates are common substances for deliberate self-harm. Acute salicylate toxicity is classically associated with an initial respiratory alkalosis, followed by an anion gap metabolic acidosis. The respiratory alkalosis is achieved through hyperventilation, driven by direct stimulation on the respiratory centers in the medulla and considered as a compensatory mechanism to avoid acidemia. However, in later stages of severe salicylate toxicity, patients become increasingly obtunded, with subsequent loss of airway reflexes, and therefore intubation may be necessary. Mechanical ventilation has been recommended against in acute salicylate poisoning, as it is believed to take away the compensatory hyperpnea and tachypnea. Despite the intuitive physiological basis for this recommendation, there is a paucity of evidence to support it. We describe a case of a 59-year-old male presenting with decreased level of consciousness and no known history of ingestion. He was intubated and experienced profound hypercarbia and acidemia despite mechanical ventilation with high minute ventilation and tidal volumes. This case illustrates the deleterious effects of intubation in severe salicylate toxicity.

  10. Acetylation Increases EWS-FLI1 DNA Binding and Transcriptional Activity

    International Nuclear Information System (INIS)

    Schlottmann, Silke; Erkizan, Hayriye V.; Barber-Rotenberg, Julie S.; Knights, Chad; Cheema, Amrita; Üren, Aykut; Avantaggiati, Maria L.; Toretsky, Jeffrey A.

    2012-01-01

    Ewing Sarcoma (ES) is associated with a balanced chromosomal translocation that in most cases leads to the expression of the oncogenic fusion protein and transcription factor EWS-FLI1. EWS-FLI1 has been shown to be crucial for ES cell survival and tumor growth. However, its regulation is still enigmatic. To date, no functionally significant post-translational modifications of EWS-FLI1 have been shown. Since ES are sensitive to histone deacetylase inhibitors (HDI), and these inhibitors are advancing in clinical trials, we sought to identify if EWS-FLI1 is directly acetylated. We convincingly show acetylation of the C-terminal FLI1 (FLI1-CTD) domain, which is the DNA binding domain of EWS-FLI1. In vitro acetylation studies showed that acetylated FLI1-CTD has higher DNA binding activity than the non-acetylated protein. Over-expression of PCAF or treatment with HDI increased the transcriptional activity of EWS-FLI1, when co-expressed in Cos7 cells. However, our data that evaluates the acetylation of full-length EWS-FLI1 in ES cells remains unclear, despite creating acetylation specific antibodies to four potential acetylation sites. We conclude that EWS-FLI1 may either gain access to chromatin as a result of histone acetylation or undergo regulation by direct acetylation. These data should be considered when patients are treated with HDAC inhibitors. Further investigation of this phenomenon will reveal if this potential acetylation has an impact on tumor response.

  11. Flexibility of backbone fibrils in α-chitin crystals with different degree of acetylation.

    Science.gov (United States)

    Yu, Zechuan; Lau, Denvid

    2017-10-15

    Acetyl groups are backbone outreaches that enhance inter-fibril connection in chitin and chitosan fibril bundle. Removal of acetyl groups affects flexibility of chitosan fibril bundle, thereby affecting mechanical strength of chitosan-based products. Understandings of relationship between degree of acetylation and flexibility of chitin fibril bundle conduce to optimization of synthetic chitin materials. Here, the relationship is examined by performing molecular dynamics simulations. Coiling of chitin and chitosan fibril bundle with different degree of acetylation is observed and flexibility of fibrils is measured. Number and alignment of acetyl groups are found to be important factors determining the flexibility of chitin and chitosan fibril bundle. Structural instability can be caused by incompatible alignment of acetyl groups. Our findings on synthetic chitin-based materials indicate that adding a small amount of acetyl groups to chitosan can significantly enhance the integrity of fibril bundle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Snail acetylation by histone acetyltransferase p300 in lung cancer

    OpenAIRE

    Chang, Rui; Zhang, Yinjie; Zhang, Peng; Zhou, Qinghua

    2017-01-01

    Background Epithelial to mesenchymal transition (EMT) is a complex and dynamic molecular event in lung cancer metastasis that has not yet been thoroughly investigated. EMT transcriptional factors, such as Snail, play a central role in regulation of the EMT process. In this study, we sought to identify an association between p300 and Snail in lung cancer, as well as the engagement of p300 in Snail acetylation. Methods We transfected p300 small interfering RNA into lung cancer cells to detect S...

  13. Acetylated DNA-damaging clerodane diterpenes from Casearia sylvestris.

    Science.gov (United States)

    de Carvalho, Paulo Roberto F.; Furlan, Maysa; Young, Maria Claudia M.; Kingston, David G. I.; Bolzani, Vanderlan da S.

    1998-11-20

    In addition to the known diterpene casearin G (1), two new clerodane diterpene casearins type, casearin S (2) and casearin T (3), were isolated from an acetylated bioactive CH(2)Cl(2)/MeOH extract from leaves of Casearia sylvestris. The diterpenes 1-3 exhibited moderate but selective activity towards the DNA-repair deficient yeast Saccharomyces cerevisiae mutants RAD 52YK and RS 321. The structures of 1-3 were established on the basis of NMR spectroscopic experiments

  14. Acetylation site specificities of lysine deacetylase inhibitors in human cells

    DEFF Research Database (Denmark)

    Schölz, Christian; Weinert, Brian Tate; Wagner, Sebastian A

    2015-01-01

    Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain acety......1-α, providing a possible mechanistic explanation of its adverse, pro-inflammatory effects. Our results offer a systems view of KDACI specificities, providing a framework for studying function of acetylation and deacetylases....

  15. EWSR1 regulates mitosis by dynamically influencing microtubule acetylation.

    Science.gov (United States)

    Wang, Yi-Long; Chen, Hui; Zhan, Yi-Qun; Yin, Rong-Hua; Li, Chang-Yan; Ge, Chang-Hui; Yu, Miao; Yang, Xiao-Ming

    2016-08-17

    EWSR1, participating in transcription and splicing, has been identified as a translocation partner for various transcription factors, resulting in translocation, which in turn plays crucial roles in tumorigenesis. Recent studies have investigated the role of EWSR1 in mitosis. However, the effect of EWSR1 on mitosis is poorly understood. Here, we observed that depletion of EWSR1 resulted in cell cycle arrest in the mitotic phase, mainly due to an increase in the time from nuclear envelope breakdown to metaphase, resulting in a high percentage of unaligned chromosomes and multipolar spindles. We also demonstrated that EWSR1 is a spindle-associated protein that interacts with α-tubulin during mitosis. EWSR1 depletion increased the cold-sensitivity of spindle microtubules, and decreased the rate of spindle assembly. EWSR1 regulated the level of microtubule acetylation in the mitotic spindle; microtubule acetylation was rescued in EWSR1-depleted mitotic cells following suppression of HDAC6 activity by its specific inhibitor or siRNA treatment. In summary, these results suggest that EWSR1 regulates the acetylation of microtubules in a cell cycle-dependent manner through its dynamic location on spindle MTs, and may be a novel regulator for mitosis progress independent of its translocation.

  16. Autoradiographic study of nuclear protein acetylation during Locust spermiogenesis

    International Nuclear Information System (INIS)

    Bouvier, D.; Chevaillier, P.

    1975-01-01

    Autoradiographic studies, at the light and electron microscope level, demonstrate that spermatid nuclei of the Locust Locusta migratoria incorporate 3 H-acetate, especially during the first stages of spermiogenesis. The highest level of acetate incorporation is observed during stage II of spermiogenesis. During this stage and the following, the spermatid nucleus undergoes a number of structural and chemical modifications: chromatin decondenses and somatic histones are progressively replaced by newly synthesized arginine-rich proteins. Therefore, the higher degree of acetylation of nuclear components coincides with chromatin decondensation and precedes the protein transition occurring in later stages. Cytochemical and autoradiographic tests have been realized so as to localize 3 H-acetate in the nuclear components. Trichloracetic acid was used at various concentrations: the action of hydrochloric acid, pronase and DNase was also tested. The results support the idea that proteins, and among them histones, are the only nuclear components to be acetylated during spermiogenesis. Thus, histone acetylation seems to play an important role in modulating histone-DNA interactions and allowing histone replacement [fr

  17. Salicylate Functions as an Efflux Pump Inducer and Promotes the Emergence of Fluoroquinolone-Resistant Campylobacter jejuni Mutants▿

    Science.gov (United States)

    Shen, Zhangqi; Pu, Xiao-Ying; Zhang, Qijing

    2011-01-01

    Salicylate, a nonsteroidal anti-inflammatory compound, has been shown to increase the resistance of Campylobacter to antimicrobials. However, the molecular mechanism underlying salicylate-induced resistance has not yet been established. In this study, we determined how salicylate increases antibiotic resistance and evaluated its impact on the development of fluoroquinolone-resistant Campylobacter mutants. Transcriptional fusion assays, real-time quantitative reverse transcription-PCR (RT-PCR), and immunoblotting assays consistently demonstrated the induction of the CmeABC multidrug efflux pump by salicylate. Electrophoretic mobility shift assays further showed that salicylate inhibits the binding of CmeR (a transcriptional repressor of the TetR family) to the promoter DNA of cmeABC, suggesting that salicylate inhibits the function of CmeR. The presence of salicylate in the culture medium not only decreased the susceptibility of Campylobacter to ciprofloxacin but also resulted in an approximately 70-fold increase in the observed frequency of emergence of fluoroquinolone-resistant mutants under selection with ciprofloxacin. Together, these results indicate that in Campylobacter, salicylate inhibits the binding of CmeR to the promoter DNA and induces expression of cmeABC, resulting in decreased susceptibility to antibiotics and in increased emergence of fluoroquinolone-resistant mutants under selection pressure. PMID:21821741

  18. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation.

    Science.gov (United States)

    Faried, Hafiz Nazar; Ayyub, Chaudhary Muhammad; Amjad, Muhammad; Ahmed, Rashid; Wattoo, Fahad Masoud; Butt, Madiha; Bashir, Mohsin; Shaheen, Muhammad Rashid; Waqas, Muhammad Ahmed

    2017-04-01

    Potato is an important vegetable; however, salt stress drastically affects its growth and yield. A pot experiment was therefore conducted to assess salicylic acid efficacy in improving performance of potato cultivars, grown under salt stress (50 mmol L -1 ). Salicylic acid at 0.5 mmol L -1 was sprayed on to potato plants after 1 week of salinity application. Salt stress effects were ameliorated by salicylic acid effectively in both the studied cultivars. N-Y LARA proved more responsive to salicylic acid application than 720-110 NARC, which confirmed genetic variation between cultivars. Salicylic acid scavenged reactive oxygen species by improving antioxidant enzyme activities (superoxide dismutase, catalase, peroxidases) and regulating osmotic adjustment (proline, phenolic contents), which led to enhanced water relation and gaseous exchange attributes, and thereby increased potassium availability and reduced sodium content in potato leaves. Moreover, potato tuber yield showed a positive correlation with potassium content, photosynthesis and antioxidant enzyme activities. Salt tolerance efficacy of salicylic acid is authenticated in improving potato crop performance under salt stress. Salicylic acid effect was more pronounced in N-Y LARA, reflecting greater tolerance than 720-110 NARC, which was confirmed as a susceptible cultivar. Hence salicylic acid at 0.5 mmol L -1 and cultivation of N-Y LARA may be recommended in saline soil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Salicylate Detection by Complexation with Iron(III) and Optical Absorbance Spectroscopy: An Undergraduate Quantitative Analysis Experiment

    Science.gov (United States)

    Mitchell-Koch, Jeremy T.; Reid, Kendra R.; Meyerhoff, Mark E.

    2008-01-01

    An experiment for the undergraduate quantitative analysis laboratory involving applications of visible spectrophotometry is described. Salicylate, a component found in several medications, as well as the active by-product of aspirin decomposition, is quantified. The addition of excess iron(III) to a solution of salicylate generates a deeply…

  20. The Interaction Effect of Salicylic Acid and High Temperature Stress on Some Physiological Characteristics of Maize Zea mays L.(

    Directory of Open Access Journals (Sweden)

    M Attarzadeh

    2015-04-01

    Full Text Available The present study was conducted to evaluate the effects of salicylic acid and High temperature on physiological characteristics of maize (cv. SC704. In order to, a factorial experiment based on randomized complete blocks design with three replications was carried out in Research Greenhouse of Vali-e-Asr University of Rafsanjan. The factors were included pre-treatment of concentrations of salicylic acid (0, 50, 100 and 200 μM and duration of 40°C (0, 8, 16 and 24 hours. Results showed that SPAD index increased significantly in levels of 50 and 100μM salicylic acid but it was low in control and 200μM salicylic acid. In level of 50μM salicylic acid, increase in duration of heat stress was resulted in increasing content of a and ab chlorophyll. However, it was occurred conversely in level of 200 μM salicylic acid, i.e., content of a and ab was decreased. Levels of salicylic acid and duration of heat stress did not effect on Fv/Fm and content of soluble sugar. Use of 200 μM salicylic acid decreased significantly relative water content, while increase in duration of heat stress caused to increase relative water content. In addition, increase in duration of heat stress resulted in increasing leaf temperature and proline content.

  1. Second-derivative synchronous fluorescence spectroscopy for the simultaneous determination of naproxen and salicylic acid in human serum.

    Science.gov (United States)

    Konstantianos, D G; Ioannou, P C

    1996-07-01

    Second-derivative synchronous fluorescence spectrometry was used to develop a simple, rapid and sensitive spectrofluorimetric method for the simultaneous determination of naproxen and salicylic acid in human serum. The method is based on the intrinsic fluorescence of naproxen and salicylic acid in chloroform-1% acetic acid solution. A delta gamma of 130 nm was used for the direct measurement of salicylic acid in the binary mixture, whereas naproxen was determined from direct measurements at delta gamma = 60 nm and by means of a correction equation which incorporates the concentration of salicylic acid. The range of application is 0-14 mg l-1 for naproxen and 0-13 mg l-1 for salicylic acid. The detection limits for naproxen and salicylic acid are 0.003 and 0.01 mg l-1, respectively. Serum samples are extracted into chloroform-1% acetic acid solution prior to instrumental measurement. Analytical recoveries range from 97 to 105% (mean 102%) for naproxen and from 97 to 112% (mean 103%) for salicylic acid. The within-run precision (RSD) for the method for four naproxen-salicylic acid mixtures varied from 1.2 to 6.7% and the day-to-day precision for mixtures varied from 2.1 to 5.0%.

  2. AHL-priming functions via oxylipin and salicylic acid

    Directory of Open Access Journals (Sweden)

    Sebastian Timo Schenk

    2015-01-01

    Full Text Available Collaborative action between the host plant and associated bacteria is crucial for the establishment of an efficient interaction. In bacteria, the synchronized behavior of a population is often achieved by a density-dependent communication called quorum sensing (QS. This behavior is based on signaling molecules, which influence bacterial gene expression. N-acyl-homoserine lactones (AHLs are such molecules in many Gram-negative bacteria. Moreover, some AHLs are responsible for the beneficial effect of bacteria on plants, for example the long chain N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL can prime Arabidopsis and barley plants for an enhanced defense. This AHL-induced resistance phenomenon, named AHL-priming, was observed in several independent laboratories during the last two decades. Very recently, the mechanism of priming with oxo-C14-HSL was shown to depend on an oxylipin and salicylic acid (SA. SA is a key element in plant defense, it accumulates during different plant resistance responses and is the base of systemic acquired resistance. In addition, SA itself can prime plants for an enhanced resistance against pathogen attack. On the other side, oxylipins, including jasmonic acid (JA and related metabolites, are lipid-derived signaling compounds. Especially the oxidized fatty acid derivative cis-OPDA, which is the precursor of JA, is a newly described player in plant defense. Unlike the antagonistic effect of SA and JA in plant-microbe interactions, the recently described pathway functions through a synergistic effect of oxylipins and SA, and is independent of the JA signaling cascade. Interestingly, the oxo-C14-HSL-induced oxylipin/SA signaling pathway induces stomata defense responses and cell wall strengthening thus prevents pathogen invasion. In this review, we summarize the findings on AHL-priming and the related signaling cascade. In addition, we discuss the potential of AHL-induced resistance in new strategies of plant

  3. AHL-priming functions via oxylipin and salicylic acid.

    Science.gov (United States)

    Schenk, Sebastian T; Schikora, Adam

    2014-01-01

    Collaborative action between the host plant and associated bacteria is crucial for the establishment of an efficient interaction. In bacteria, the synchronized behavior of a population is often achieved by a density-dependent communication called quorum sensing. This behavior is based on signaling molecules, which influence bacterial gene expression. N-acyl homoserine lactones (AHLs) are such molecules in many Gram-negative bacteria. Moreover, some AHLs are responsible for the beneficial effect of bacteria on plants, for example the long chain N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) can prime Arabidopsis and barley plants for an enhanced defense. This AHL-induced resistance phenomenon, named AHL-priming, was observed in several independent laboratories during the last two decades. Very recently, the mechanism of priming with oxo-C14-HSL was shown to depend on an oxylipin and salicylic acid (SA). SA is a key element in plant defense, it accumulates during different plant resistance responses and is the base of systemic acquired resistance. In addition, SA itself can prime plants for an enhanced resistance against pathogen attack. On the other side, oxylipins, including jasmonic acid (JA) and related metabolites, are lipid-derived signaling compounds. Especially the oxidized fatty acid derivative cis-OPDA, which is the precursor of JA, is a newly described player in plant defense. Unlike the antagonistic effect of SA and JA in plant-microbe interactions, the recently described pathway functions through a synergistic effect of oxylipins and SA, and is independent of the JA signaling cascade. Interestingly, the oxo-C14-HSL-induced oxylipin/SA signaling pathway induces stomata defense responses and cell wall strengthening thus prevents pathogen invasion. In this review, we summarize the findings on AHL-priming and the related signaling cascade. In addition, we discuss the potential of AHL-induced resistance in new strategies of plant protection.

  4. Neonicotinoid insecticides induce salicylate-associated plant defense responses

    Science.gov (United States)

    Ford, Kevin A.; Casida, John E.; Chandran, Divya; Gulevich, Alexander G.; Okrent, Rachel A.; Durkin, Kathleen A.; Sarpong, Richmond; Bunnelle, Eric M.; Wildermuth, Mary C.

    2010-01-01

    Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl- and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl-neonicotinoids induce SA responses associated with enhanced stress tolerance. PMID:20876120

  5. Reactivity of paraquat with sodium salicylate: formation of stable complexes.

    Science.gov (United States)

    Dinis-Oliveira, Ricardo Jorge; de Pinho, Paula Guedes; Ferreira, António César Silva; Silva, Artur M S; Afonso, Carlos; Bastos, Maria de Lourdes; Remião, Fernando; Duarte, José Alberto; Carvalho, Félix

    2008-07-30

    Sodium salicylate (NaSAL) has been shown to be a promising antidote for the treatment of paraquat (PQ) poisonings. The modulation of the pro-oxidant and pro-inflammatory pathways, as well as the anti-thrombogenic properties of NaSAL are probably essential features for the healing effects provided by this drug. Nevertheless, a possible direct chemical reactivity between PQ and NaSAL is also a putative pathway to be considered, this hypothesis being the ground of the present study. In accordance, it is shown, for the first time that PQ and NaSAL react immediately in aqueous medium and within 2-3 min in the solid state. Photographs and scanning electron photomicrographs indicated that a new chemical entity is formed when both compounds are mixed. This assumption was corroborated by the evaluation of the melting point, and through several analytical techniques, namely ultraviolet/visible spectroscopy, nuclear magnetic resonance spectroscopy, gas chromatography/mass spectrometry/mass spectrometry (GC/MS/MS), liquid chromatography/electrospray ionization/mass spectrometry/mass spectrometry (LC/ESI/MS/MS) and infrared spectroscopy, which revealed that stable charge-transfer complexes are formed when PQ is mixed with NaSAL. LC/ESI/MS/MS allowed obtaining the stoichiometry of the charge-transfer complexes. In order to increase resolution, single value decomposition, acting as a filter, showed that the charge-transfer complexes with m/z 483, 643 and 803 correspond to the pseudo-molecular ions, respectively 1:2, 1:3 and 1:4 (PQ:NaSAL). In conclusion, these results provided a new and important mechanism of action of NaSAL against the toxicity mediated by PQ.

  6. How salicylic acid takes transcriptional control over jasmonic acid signaling

    Directory of Open Access Journals (Sweden)

    Lotte eCaarls

    2015-03-01

    Full Text Available Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA and jasmonic acid (JA are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well.

  7. Reactivity of paraquat with sodium salicylate: Formation of stable complexes

    International Nuclear Information System (INIS)

    Dinis-Oliveira, Ricardo Jorge; Guedes de Pinho, Paula; Ferreira, Antonio Cesar Silva; Silva, Artur M.S.; Afonso, Carlos; Bastos, Maria de Lourdes; Remiao, Fernando; Duarte, Jose Alberto; Carvalho, Felix

    2008-01-01

    Sodium salicylate (NaSAL) has been shown to be a promising antidote for the treatment of paraquat (PQ) poisonings. The modulation of the pro-oxidant and pro-inflammatory pathways, as well as the anti-thrombogenic properties of NaSAL are probably essential features for the healing effects provided by this drug. Nevertheless, a possible direct chemical reactivity between PQ and NaSAL is also a putative pathway to be considered, this hypothesis being the ground of the present study. In accordance, it is shown, for the first time that PQ and NaSAL react immediately in aqueous medium and within 2-3 min in the solid state. Photographs and scanning electron photomicrographs indicated that a new chemical entity is formed when both compounds are mixed. This assumption was corroborated by the evaluation of the melting point, and through several analytical techniques, namely ultraviolet/visible spectroscopy, nuclear magnetic resonance spectroscopy, gas chromatography/mass spectrometry/mass spectrometry (GC/MS/MS), liquid chromatography/electrospray ionization/mass spectrometry/mass spectrometry (LC/ESI/MS/MS) and infrared spectroscopy, which revealed that stable charge-transfer complexes are formed when PQ is mixed with NaSAL. LC/ESI/MS/MS allowed obtaining the stoichiometry of the charge-transfer complexes. In order to increase resolution, single value decomposition, acting as a filter, showed that the charge-transfer complexes with m/z 483, 643 and 803 correspond to the pseudo-molecular ions, respectively 1:2, 1:3 and 1:4 (PQ:NaSAL). In conclusion, these results provided a new and important mechanism of action of NaSAL against the toxicity mediated by PQ

  8. Exogenous salicylate application affects the lead and copper accumulation characteristics of Lemna gibba L.

    Energy Technology Data Exchange (ETDEWEB)

    Duman, Fatih; Aksoy, Ahmet; Ozturk, Fatma; Ceylan, Ahmet [Erciyes Univ., Kayseri (Turkey). Dept. of Biology

    2010-11-15

    Previous studies have shown that salicylates can change the ion permeability of root cells. Therefore the possible effects of exogenous salicylate application on lead (Pb) and copper (Cu) accumulation and its protective role against DNA damage due to metal exposure in Lemna gibba were studied. L. gibba was exposed to 5, 10, and 25 {mu}M Pb and Cu for six days in the presence and absence of sodium salicylate (SA) (0.1, 0.5, and 1 mM). At all concentrations tested, SA application decreased Pb accumulation. On the other hand, application of 0.5 mM SA increased Cu accumulation. SA did not reduce DNA damage resulting from Pb and Cu toxicity. In summary, SA may be useful for reducing Pb accumulation, and application of SA at 0.5 mM may be useful for the phytoextraction of Cu. (orig.)

  9. Efficacy of salicylic acid in the treatment of digital dermatitis in dairy cattle

    DEFF Research Database (Denmark)

    Schultz, N.; Capion, N.

    2013-01-01

    Digital dermatitis (DD) is one of the most important causes of lameness in dairy cattle worldwide. The objective of this study was to evaluate the efficacy of salicylic acid in the treatment of the disease. A total of 201 DD lesions from 173 cows from four commercial dairy herds were evaluated...... at day 0 during routine hoof trimming and were allocated into two groups, namely, a control group given chlortetracycline spray, and a treatment group given 10 g of salicylic acid powder applied topically within a bandage. Pain, lesion size and clinical appearance (scored MO to M4) were evaluated on days...... the control group were 2.2 times more likely (P = 0.09) to have a pain score equal to 2 by day 14. The proportion of lesions getting smaller by days 14 and 34 was 2.5 times higher (P salicylic acid should be considered as an alternative...

  10. Determination of free salicylic acid in chewing aspirin tablets by HPLC.

    Science.gov (United States)

    Tian, Jun; Chen, Xin-shan; Wang, Rui-dong

    2003-07-01

    To establish a HPLC method for determining the content of free salicylic acid in chewing aspirin tablets. The determination was conducted on a HPLC column (C(18), 150 mm x 4.6 mm x 5 microm) with methanol-water-glacial acetic acid (8.0 5.5 1.0) as the mobile phase and the detection wavelength of 302 nm. The calibration curve was linear within the concentration range of 2.65 to 31.77 microg/ml (r=0.999 97) of salicylic acid. The average recovery rate was 100.21% with relative standard deviation of 0.53% (n=6). HPLC is quick and accurate of determining the content of free salicylic acid for chewing aspirin tablets.

  11. [Determination of aspirin and free salicylic acid in lysinipirine injection by high performance liquid chromatography].

    Science.gov (United States)

    Dong, Yu; Zhao, Yuan-zheng; Zhang, Yi-na

    2002-05-01

    The contents of aspirin and free salicylic acid in lysinipirine injection were determined by high performance liquid chromatography (HPLC). A Hypersil BDS C18 column was used with the mobile phase of methanol-water-acetic acid (35:65:3, volume ratio) and the detection wavelength of 280 nm. The average recoveries of aspirin and salicylic acid added were 99.27% (RSD = 0.8%) and 99.61%(RSD = 1.3%), respectively. The calibration curves had good linearity in the range of 0.028 g/L -0.141 mg/L and 0.77 mg/L -3.85 mg/L, and the correlation coefficients were 0.9999 and 0.9998 for aspirin and salicylic acid respectively.

  12. [Determination of resorcinol and salicylic acid in piyanning tincture by high performance liquid chromatography].

    Science.gov (United States)

    Guo, X; Zhou, M

    1998-11-01

    A method for the simultaneous determination of resorcinol and salicylic acid in Piyanning tincture by HPLC has been proposed. Operating conditions were Hyppersil ODS column, 4.6 mm x 200 mm, V (methanol): V(water): V(acetic acid) = 50:50:0.9 mobile phase and UV detection at 285 nm. The linear ranges of the method were 0.05-0.25 g/L(r = 1.000) for resorcinol and 0.025-0.127 g/L(r = 1.000) for salicylic acid. The limits of detection were both 0.2 mg/L at a signal-to-noise of 3. The assay method was capable to resolve resorcinol and salicylic acid from their impurities.

  13. A 29-year analysis of acute peak salicylate concentrations in fatalities reported to United States poison centers.

    Science.gov (United States)

    Warrick, Brandon J; King, Andrew; Smolinske, Susan; Thomas, Ronald; Aaron, Cynthia

    2018-02-12

    The threshold salicylate concentration commonly recommended to initiate extracorporeal elimination, in the absence of significant end-organ toxicity, is 100 mg/dL. Unfortunately, the grade of evidence to support this decision is low. Our primary aim is to describe highest reported salicylate concentrations in patients who died from acute salicylate ingestions. Our secondary aim is to determine if age or coingestants varied with highest reported salicylate concentration. We analyzed acute salicylate fatalities reported to the National Poison Data System (NPDS) between 1 January 1986 and 31 December 2014. Included were patients who died during the index hospitalization and for which acute salicylate toxicity was the primary cause of death. We used descriptive statistics with standard deviations (SD) or 95% confidence intervals (CI) where appropriate. We created a general linear model that evaluated the association of age and coingestions with salicylate concentrations. We divided the patients into age quartiles to assess a possible interaction between age and salicylate concentration. We identified 602 acute salicylate fatalities that fit inclusion criteria. The mean peak reported fatal salicylate concentration across all age groups was 99.19 mg/dL (± 50.2 mg/dL). The median peak fatal salicylate concentration was 97.0 mg/dL. The oldest quartile had a lower mean concentration (age >57 years; 90.4 mg/dL) than the youngest quartile (age salicylates alone (mean difference 13.4 mg/dL, 95%CI 21.4-5.3). Increasing age and the presence of any coingestions were negatively associated with fatal concentrations (estimates; 95%CI 0.41; 0.61-0.021 and -14.43; 22.45-6.42, respectively). When opioids were a coingestant, mean concentration was 72.8 (mean difference 32.1 95%CI 23.1-41.1). Using the current recommended hemodialysis threshold of 100 mg/dL, more than half of the patients would be deprived of this critical life-saving therapy. Additionally

  14. Partial reversal by beta-D-xyloside of salicylate-induced inhibition of glycosaminoglycan synthesis in articular cartilage

    International Nuclear Information System (INIS)

    Palmoski, M.J.; Brandt, K.D.

    1982-01-01

    While net 35 S-glycosaminoglycan synthesis in normal canine articular cartilage was suppressed by 10(-3)M sodium salicylate to about 70% of the control value, addition of xyloside (10(-6)M-10(-3)M) to the salicylate-treated cultures led to a concentration-dependent increase in glycosaminoglycan synthesis, which rose to 120-237% of controls. Similar results were obtained when 3 H-glucosamine was used to measure glycosaminoglycan synthesis, confirming that salicylate suppresses and xyloside stimulates net glycosaminoglycan synthesis, and not merely sulfation. Salicylate (10-3)M) did not affect the activity of xylosyl or galactosyl transferase prepared from canine knee cartilage, and net protein synthesis was unaltered by either salicylate or xyloside. The proportion of newly synthesized proteoglycans existing as aggregates when cartilage was cultured with xyloside was similar to that in controls, although the average hydrodynamic size of disaggregated proteoglycans and of sulfated glycosaminoglycans was diminished

  15. Transport of salicylate in proximal tubule (S sub 2 segment) isolated from rabbit kidney

    Energy Technology Data Exchange (ETDEWEB)

    Schild, L.; Roch-Ramel, F. (Institut de Pharmacologie de l' Universite de Lausanne (Switzerland))

    1988-04-01

    The secretory and the reabsorptive transport of salicylate was studied in the isolated and perfused rabbit proximal tubule (S{sub 2} segment). Salicylate secretion (J{sub sal}{sup b{yields}l}) fulfilled the criteria for a carrier-mediated transport system: J{sub sal}{sup b{yields}l} was saturable, was reversibly inhibited by probenecid, and occurred against a concentration gradient. The K{sub m} and V{sub max} for this secretory transport were 80 {mu}M and 3,200 fmol{center dot}min{sup {minus}1}{center dot}mm{sup {minus}1}, respectively. At luminal pH of 7.4 and 6.6, salicylate reabsorption (J{sub sal}{sup l{yields}b}) was low. J{sub sal}{sup l{yields}b} was stimulated by increasing the bath Pco{sub 2} or by removing basolateral HCO{sub 3}{sup {minus}}; J{sub sal}{sup l{yields}b} was inhibited by ethoxyzolamide and by SITS in the bath. The results indicate that salicylate reabsorption depends on H{sup +} secretion, consistent with reabsorption by simple nonionic diffusion. When salicylate was present in the lumen only, J{sub sal}{sup l{yields}b} increased after inhibition of the secretory transport by adding ouabain or probenecid in the bath or by lowering the bath temperature. These results are compatible with luminal recycling of salicylate, and suggest the presence of a mediated secretory transporter located at the luminal membrane.

  16. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    Science.gov (United States)

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  17. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Directory of Open Access Journals (Sweden)

    Ryuma Matsubara

    Full Text Available The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  18. New insight into photo-bromination processes in saline surface waters: The case of salicylic acid

    International Nuclear Information System (INIS)

    Tamtam, Fatima; Chiron, Serge

    2012-01-01

    It was shown, through a combination of field and laboratory observations, that salicylic acid can undergo photo-bromination reactions in sunlit saline surface waters. Laboratory-scale experiments revealed that the photochemical yields of 5-bromosalicylic acid and 3,5-dibromosalicylic acid from salicylic acid were always low (in the 4% range at most). However, this might be of concern since these compounds are potential inhibitors of the 20α-hydroxysteroid dehydrogenase enzyme, with potential implications in endocrine disruption processes. At least two mechanisms were involved simultaneously to account for the photo-generation of brominated substances. The first one might involve the formation of reactive brominated radical species (Br·, Br 2 · − ) through hydroxyl radical mediated oxidation of bromide ions. These ions reacted more selectively than hydroxyl radicals with electron-rich organic pollutants such as salicylic acid. The second one might involve the formation of hypobromous acid, through a two electron oxidation of bromine ions by peroxynitrite. This reaction was catalyzed by nitrite, since these ions play a crucial role in the formation of nitric oxide upon photolysis. This nitric oxide further reacts with superoxide radical anions to yield peroxynitrite and by ammonium through the formation of N-bromoamines, probably due to the ability of N-bromoamines to promote the aromatic bromination of phenolic compounds. Field measurements revealed the presence of salicylic acid together with 5-bromosalicylic and 3,5-dibromosalicylic acid in a brackish coastal lagoon, thus confirming the environmental significance of the proposed photochemically induced bromination pathways. -- Highlights: ► Brominated derivatives of salicylic acid were detected in a brackish lagoon. ► A photochemical pathway was hypothesized to account for bromination of salicylic acid. ► Radical bromine species are partly responsible for the bromination process. ► Hypobromous acid

  19. Salicylate-induced frequency-map reorganization in four subfields of the mouse auditory cortex.

    Science.gov (United States)

    Yanagawa, Yasutaka; Takasu, Kengo; Osanai, Hisayuki; Tateno, Takashi

    2017-08-01

    Salicylate is the active ingredient in aspirin, and in high-doses it is used as an experimental tool to induce transient hearing loss, tinnitus, and hyperacusis. These salicylate-induced perceptual disturbances are associated with tonotopic-map reorganization and neural activity modulation, and such neural correlates have been examined in the central auditory pathway, including the auditory cortex (AC). Although previous studies have reported that salicylate induces increases in noise-burst-evoked neural responses and reorganization of tonotopic maps in the primary AC, little is known about the effects of salicylate on other frequency-organized AC subfields such as the anterior auditory, secondary auditory, and dorsomedial fields. Therefore, to examine salicylate-induced spatiotemporal effects on AC subfields, we measured sound-evoked neural activity in mice before and after the administration of sodium salicylate (SS, 200 mg/kg), using flavoprotein auto-fluorescence imaging. SS-treatment gradually reduced responses driven by tone-bursts with lower (≤8 kHz) and higher (≥25 kHz) frequencies over 3 h, whereas evoked responses to tone-bursts within middle-range frequencies (e.g., 12 and 16 kHz) were sustained and unchanged in the four subfields. Additionally, in each of the four subfields, SS-treatment induced similar reorganization of tonotopic maps, and the response areas selectively driven by the middle-range frequencies were profoundly expanded. Our results indicate that the SS-induced tonotopic map reorganizations in each of the four AC subfields were similar, and only the extent of the activated areas responsive to tone-bursts with specific frequencies was subfield-dependent. Thus, we expect that examining cortical reorganization induced by SS may open the possibility of new treatments aimed at altering cortical reorganization into the normative functional organization. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2.

    Science.gov (United States)

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn; O'Connor, J Patrick

    2015-07-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation.

  1. Simultaneous liquid-chromatographic quantitation of salicylic acid, salicyluric acid, and gentisic acid in urine.

    Science.gov (United States)

    Cham, B E; Bochner, F; Imhoff, D M; Johns, D; Rowland, M

    1980-01-01

    We have developed a specific and sensitive method for the determination of salicylic acid, salicyluric acid, and gentisic acid in urine. Any proteins present are precipitated with methyl cyanide. After centrifugation, an aliquot of the supernate is directly injected into an octadecyl silane reversed-phase chromatographic column, then eluted with a mixture of water, butanol, acetic acid, and sodium sulfate, and quantitated at 313 nm by ultraviolet detection according to peak-height ratios (with internal standard, o-methoxybenzoic acid) or peak heights (no internal standard). The method allows estimates within 25 min. Sensitivity was 0.2 mg/L for gentisic acid, and 0.5 mg/L for both salicyluric and salicylic acid (20-micro L injection volume); response was linear with concentration to at least 2.000 g/L for salicylic acid and metabolites. Analytical recovery of salicylic acid and metabolites from urine is complete. Intra-assay precision (coefficient of variation) is 5.52% at 7.5 mg/L for salicylic acid, 5.01% at 9.33 mg/L for salicyluric acid, and 3.07% at 7.96 mg/L for gentisic acid. Interassay precision is 7.32% at 7.51 mg/L for salicylic acid, 5.52% at 8.58 mg/L for salicyluric acid, and 3.97% at 8.32 mg/L for gentisic acid. We saw no significant interference in urine from patients being treated with various drugs other than aspirin.

  2. Rabbit N-acetyltransferase 2 genotyping method to investigate role of acetylation polymorphism on N- and O-acetylation of aromatic and heterocyclic amine carcinogens.

    Science.gov (United States)

    Hein, David W; Doll, Mark A

    2017-09-01

    The rabbit was the initial animal model to investigate the acetylation polymorphism expressed in humans. Use of the rabbit model is compromised by lack of a rapid non-invasive method for determining acetylator phenotype. Slow acetylator phenotype in the rabbit results from deletion of the N-acetyltransferase 2 (NAT2) gene. A relatively quick and non-invasive method for identifying the gene deletion was developed and acetylator phenotypes confirmed by measurement of N- and O-acetyltransferase activities in hepatic cytosols. Rabbit liver cytosols catalyzed the N-acetylation of sulfamethazine (p = 0.0014), benzidine (p = 0.0257), 4-aminobiphenyl (p = 0.0012), and the O-acetylation of N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP; p = 0.002) at rates significantly higher in rabbits possessing NAT2 gene than rabbits with NAT2 gene deleted. In contrast, hepatic cytosols catalyzed the N-acetylation of p-aminobenzoic acid (an N-acetyltransferase 1 selective substrate) at rates that did not differ significantly (p > 0.05) between rabbits positive and negative for NAT2. The new NAT2 genotyping method facilitates use of the rabbit model to investigate the role of acetylator polymorphism in the metabolism of aromatic and heterocyclic amine drugs and carcinogens.

  3. Molecular design and synthesis of novel salicyl glycoconjugates as elicitors against plant diseases.

    Directory of Open Access Journals (Sweden)

    Zining Cui

    Full Text Available A new series of salicyl glycoconjugates containing hydrazide and hydrazone moieties were designed and synthesized. The bioassay indicated that the novel compounds had no in vitro fungicidal activity but showed significant in vivo antifungal activity against the tested fungal pathogens. Some compounds even had superior activity than the commercial fungicides in greenhouse trial. The results of RT-PCR analysis showed that the designed salicyl glycoconjugates could induce the expression of LOX1 and Cs-AOS2, which are the specific marker genes of jasmonate signaling pathway, to trigger the plant defense resistance.

  4. MgAl- Layered Double Hydroxide Nanoparticles for controlled release of Salicylate.

    Science.gov (United States)

    Mondal, Soumini; Dasgupta, Sudip; Maji, Kanchan

    2016-11-01

    Layered double hydroxides (LDHs), have been known for many decades as catalyst and ceramic precursors, traps for anionic pollutants, and additives for polymers. Recently, their successful synthesis on the nanometer scale opened up a whole new field for their application in nanomedicine. Here we report the efficacy of Mg1-xAlx (NO3)x (OH)2 LDH nanoparticles as a carrier and for controlled release of one of the non-steroidal anti-inflammatory drugs (NSAID), sodium salicylate. Mg1-xAlx (NO3)x (OH)2.nH2O nanoparticles were synthesized using co-precipitation method from an aqueous solution of Mg(NO3)2.6H2O and Al(NO3)3.9H2O. Salicylate was intercalated in the interlayer space of Mg-Al LDH after suspending nanoparticles in 0.0025(M) HNO3 and 0.75 (M) NaNO3 solution and using anion exchange method under N2 atmosphere. The shift in the basal planes like (003) and (006) to lower 2θ value in the XRD plot of intercalated sample confirmed the increase in basal spacing in LDH because of intercalation of salicylate into the interlayer space of LDH. FTIR spectroscopy of SA-LDH nano hybrid revealed a red shift in the frequency band of carboxylate group in salicylate indicating an electrostatic interaction between cationic LDH sheet and anionic drug. Differential thermal analysis of LDH-SA nanohybrid indicated higher thermal stability of salicylate in the intercalated form into LDH as compared to its free state. DLS studies showed a particle size distribution between 30-60 nm for pristine LDH whereas salicylate intercalated LDH exhibited a particle size distribution between 40-80nm which is ideal for its efficacy as a superior carrier for drugs and biomolecules. The cumulative release kinetic of salicylate from MgAl-LDH-SA hybrids in phosphate buffer saline (PBS) at pH7.4 showed a sustained release of salicylate up to 72h that closely resembled first order release kinetics through a combination of drug diffusion and dissolution of LDH under physiological conditions. Also the

  5. A placebo controlled trial of bismuth salicylate in Helicobacter pylori associated gastritis.

    Science.gov (United States)

    Kazi, J I; Jafarey, N A; Alam, S M; Zuberi, S J; Kazi, A M; Qureshi, H; Ahmed, W

    1990-07-01

    In a placebo controlled prospective clinical trial of bismuth salicylate in helicobacter pylori associated gastritis, 52 adult patients were randomly allocated to treatment with bismuth salicylate or placebo. Helicobacter pylori were totally cleared in 77% patients in bismuth group but none in placebo group (P less than 0.001). Resolution of gastritis (P less than 0.001) and improvement of symptoms (P less than 0.01) were significantly better in patients where H. pylori infection cleared as compared to patients where the infection persisted.

  6. Sugar signaling regulation by Arabidopsis SIZ1-driven sumoylation is independent of salicylic acid

    DEFF Research Database (Denmark)

    Castro, Pedro Humberto Araújo R F; Verde, Nuno; Tavares, Rui Manuel

    2018-01-01

    inefficient responses to nutrient imbalance in phosphate, nitrate and copper. Recently, we reported that siz1 also displays altered responses to exogenous sugar supplementation. The siz1 mutant is a salicylic acid (SA) accumulator, and SA may interfere with sugar-dependent responses and signaling events. Here......, we extended our previous studies to determine the importance of SA in the SIZ1 response to sugars, by introducing the bacterial salicylate hydroxylase NahG into the siz1 background. Results demonstrate that siz1 phenotypes involving delayed germination are partially dependent of SA levels, whereas...

  7. Acute environmental toxicity and persistence of methyl salicylate: A chemical agent simulant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Harvey, S.D.; Fellows, R.J.; Li, S.W.

    1994-06-01

    The interactions of methyl salicylate with plant foliage and soils were assessed using aerosol/vapor exposure methods. Measurements of deposition velocity and residence times for soils and foliar surfaces are reported. Severe plant contact toxicity was observed at foliar mass-loading levels above 4 {mu}g/cm{sup 2} leaf; however, recovery was noted after four to fourteen days. Methyl salicylate has a short-term effect on soil dehydrogenase activity, but not phosphatase activity. Results of the earthworm bioassay indicated only minimal effects on survival.

  8. Spectroscopic study of jet-cooled heterodimers of salicylic acid with acetic and trifluoroacetic acids

    Science.gov (United States)

    Lahmani, F.; Zehnacker-Rentien, A.

    1997-06-01

    The photophysical properties of the intermolecular hydrogen-bonded complexes of salicylic acid with acetic acid and trifluoroacetic acid have been investigated in a supersonic expansion. The fluorescence excitation spectra are characterized by a long harmonic progression upon a low frequency mode and their origin is blue-shifted with respect to that of pure salicylic acid. The emission spectra exhibit a single broad band peaking at 360 and 390 nm respectively for the complex with trifluoroacetic and acetic acids and are not dependent on the excitation wavelength. The results have been rationalized in terms of a single minimum energy curve in both the ground and excited states.

  9. Effect of Salicylic Acid on the Growth and Chemical Responses of Pectobacterium carotovorum subsp. carotovorum.

    Science.gov (United States)

    Ntushelo, Khayalethu

    2017-01-01

    Salicylic acid is a signal molecule which activates plant defense against plant pathogens such as the soft rot enterobacterium Pectobacterium carotovorum subsp. carotovorum. The objectives of study were to determine bactericidal effects of salicylic acid on the growth of P. carotovorum subsp. carotovorum and secondly, assess chemical responses of P. carotovorum subsp. carotovorum to salicylic acid. Pectobacterium carotovorum subsp. carotovorum was grown in lysogeny broth amended with salicylic acid at concentrations of 0, 100, 200, 400, 800 and 1200 mg L-1. The P. carotovorum subsp. carotovorum cultures were incubated at 25°C and sampled at two time points, 0 h (sampled before incubation) and 24 h. Bacterial counts were done at the onset of the incubation (0 h) and after the 24 h incubation. The set which was incubated for 24 h was split into two, one subset was centrifuged and the other was not. From the centrifuged subset the supernatant was recovered and was, together with all the other samples (0 and 24 h not centrifuged), analyzed with1H nuclear magnetic resonance and gas chromatography. Bacterial counts done before and after incubation showed that the lower concentrations of salicylic acid, 0, 100, 200 and 400 mg L-1, supported the growth of P. carotovorum subsp. carotovorum whereas the higher concentrations of 800 and 1200 mg L-1 inhibited the growth of the bacterium completely. Nuclear magnetic resonance results showed either slight or no differences in the metabolite profiles and gas chromatography showed different responses without a clearly defined pattern among the experimental treatments. However, methanethiol was detected by both nuclear magnetic resonance and gas chromatography in all the treatments and was probably formed as a result of the breakdown of lysogeny broth. From the results obtained it was concluded that salicylic acid promotes the growth of P. carotovorum subsp. carotovorum at lower concentrations of 0-400 mg L-1 but higher

  10. Molecular Cloning, Characterization, and Functional Analysis of Acetyl-CoA C-Acetyltransferase and Mevalonate Kinase Genes Involved in Terpene Trilactone Biosynthesis from Ginkgo biloba

    Directory of Open Access Journals (Sweden)

    Qiangwen Chen

    2017-01-01

    Full Text Available Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs, are terpenoids that form the main active substance of Ginkgo biloba. Terpenoids in the mevalonate (MVA biosynthetic pathway include acetyl-CoA C-acetyltransferase (AACT and mevalonate kinase (MVK as core enzymes. In this study, two full-length (cDNAs encoding AACT (GbAACT, GenBank Accession No. KX904942 and MVK (GbMVK, GenBank Accession No. KX904944 were cloned from G. biloba. The deduced GbAACT and GbMVK proteins contain 404 and 396 amino acids with the corresponding open-reading frame (ORF sizes of 1215 bp and 1194 bp, respectively. Tissue expression pattern analysis revealed that GbAACT was highly expressed in ginkgo fruits and leaves, and GbMVK was highly expressed in leaves and roots. The functional complementation of GbAACT in AACT-deficient Saccharomyces cerevisiae strain Δerg10 and GbMVK in MVK-deficient strain Δerg12 confirmed that GbAACT mediated the conversion of mevalonate acetyl-CoA to acetoacetyl-CoA and GbMVK mediated the conversion of mevalonate to mevalonate phosphate. This observation indicated that GbAACT and GbMVK are functional genes in the cytosolic mevalonate (MVA biosynthesis pathway. After G. biloba seedlings were treated with methyl jasmonate and salicylic acid, the expression levels of GbAACT and GbMVK increased, and TTL production was enhanced. The cloning, characterization, expression and functional analysis of GbAACT and GbMVK will be helpful to understand more about the role of these two genes involved in TTL biosynthesis.

  11. Molecular Cloning, Characterization, and Functional Analysis of Acetyl-CoA C-Acetyltransferase and Mevalonate Kinase Genes Involved in Terpene Trilactone Biosynthesis from Ginkgo biloba.

    Science.gov (United States)

    Chen, Qiangwen; Yan, Jiaping; Meng, Xiangxiang; Xu, Feng; Zhang, Weiwei; Liao, Yongling; Qu, Jinwang

    2017-01-02

    Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs), are terpenoids that form the main active substance of Ginkgo biloba . Terpenoids in the mevalonate (MVA) biosynthetic pathway include acetyl-CoA C -acetyltransferase (AACT) and mevalonate kinase (MVK) as core enzymes. In this study, two full-length (cDNAs) encoding AACT ( GbAACT , GenBank Accession No. KX904942) and MVK ( GbMVK , GenBank Accession No. KX904944) were cloned from G. biloba . The deduced GbAACT and GbMVK proteins contain 404 and 396 amino acids with the corresponding open-reading frame (ORF) sizes of 1215 bp and 1194 bp, respectively. Tissue expression pattern analysis revealed that GbAACT was highly expressed in ginkgo fruits and leaves, and GbMVK was highly expressed in leaves and roots. The functional complementation of GbAACT in AACT-deficient Saccharomyces cerevisiae strain Δerg10 and GbMVK in MVK-deficient strain Δerg12 confirmed that GbAACT mediated the conversion of mevalonate acetyl-CoA to acetoacetyl-CoA and GbMVK mediated the conversion of mevalonate to mevalonate phosphate. This observation indicated that GbAACT and GbMVK are functional genes in the cytosolic mevalonate (MVA) biosynthesis pathway. After G. biloba seedlings were treated with methyl jasmonate and salicylic acid, the expression levels of GbAACT and GbMVK increased, and TTL production was enhanced. The cloning, characterization, expression and functional analysis of GbAACT and GbMVK will be helpful to understand more about the role of these two genes involved in TTL biosynthesis.

  12. Global proteomic analysis of lysine acetylation in zebrafish (Danio rerio) embryos.

    Science.gov (United States)

    Kwon, Oh Kwang; Kim, Sunjoo; Lee, Sangkyu

    2016-12-01

    Lysine acetylation is an important post-translational modification (PTM). Since the development of MS-based proteomics technology, important roles of lysine acetylation beyond histones have focused on chromatin remodeling during the cell cycle and regulation of nuclear transport, metabolism, and translation. Zebrafish (Danio rerio) is a widely used vertebrate model in genetics and biologic studies. Although studies in several mammalian species have been performed, the mechanism of lysine acetylation in D. rerio embryos is incompletely understood. Here, we investigated the global acetylome in D. rerio embryos by using an MS-based proteomics approach. We identified 351 acetylated peptides and 377 nonredundant acetylation sites on 189 lysine-acetylated proteins in 5-day postfertilization (hpf) embryos of D. rerio. Among lysine-acetylated peptides, 40.2% indicated three motifs: (ac)KxxxK, (ac)KxxxxK, and Lx(ac)K. Of 190 acetylated proteins, 81 (42.6%) were mainly distributed in the cytoplasm. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that lysine acetylation in D. rerio was enriched in metabolic pathways. Additionally, 17 of 30 acetylated ribosomal proteins were evolutionarily conserved between zebrafish and humans. Our results indicate that acetyllysine might have regulatory effects on ribosomal proteins involved in protein biosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sub-Tg enthalpy relaxation in an unstable oxide glass former: insights into the structural heterogeneity

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Zhang, Yanfei

    Structural heterogeneity plays a crucial role in determining functionality of glasses. In this work we have found that the sub-Tg enthalpy relaxation pattern in a hyperquenched glass is highly sensitive to structural heterogeneity. As a consequence, the former can be used as an effective approach...... to detect and quantify the structural heterogeneity in glass-forming liquids. However, the chemical nature of structural heterogeneity should be revealed by other means such as high resolution microscopic and spectroscopic methods. To study the impact of the structural heterogeneity on the sub-Tg relaxation...... chemical features and degrees of structural heterogeneity in glass-forming liquids. This finding contributes to the microscopic origin of both the primary and secondary relaxation in terms of structural heterogeneity. Finally the results provide insights into the relation between structural heterogeneity...

  14. Rapid solidification of Ni50Nb28Zr22 glass former alloy through suction-casting

    International Nuclear Information System (INIS)

    Miyamoto, M.I.; Santos, F.S.; Bolfarini, C.; Botta Filho, W.J.; Kiminami, C.S.

    2010-01-01

    To select new alloys with high glass forming ability (GFA) to present amorphous structure in millimeter scale, several semi-empirical models have been developed. In the present work, a new alloy, Ni 50 Nb 28 Zr 22 d, was designed based on the combination of topological instability lambda (A) criterion and electronegativity difference (Δe). The alloy was rapidly solidified in a bulk wedge sample by cooper mold suction casting in order to investigate its amorphization. The sample was characterized by the combination of scanning electron microscopy (MEV), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). For the minimum thickness of 200 μm analyzed, it was found that the alloy did not show a totally amorphous structure. Factor such as low cooling rate, existence of oxides on the surface of the elements and presence of oxygen in the atmosphere of equipment did not allowed the achievement of higher amorphous thickness. (author)

  15. Nonlinear dielectric features of highly polar glass formers: Derivatives of propylene carbonate

    Science.gov (United States)

    Young-Gonzales, A. R.; Adrjanowicz, K.; Paluch, M.; Richert, R.

    2017-12-01

    We have measured the nonlinear dielectric behavior of several highly polar propylene carbonate (PC) derivatives in the vicinity of their glass transition temperatures. Focus is on the effects of a large static electric field on the frequency dependent permittivity and on the cubic susceptibility measured using sinusoidal fields of high amplitude. The case of vinyl-PC shows dielectric saturation as well as an electro-rheological effect, i.e., a field induced increase of dielectric relaxation times, whose magnitude changes linearly with the apparent activation energy. The extent of this shift of the loss profile caused by the field correlates strongly with the peak magnitude of the cubic susceptibility, |χ3|, underlining the notion of a link between the |χ3| "hump" and this electro-rheological behavior. Further support for this picture emerges from the observation that the most polar of these liquids, (S)-(-)-methoxy-PC with ɛs ≈ 250, lacks both the electro-rheological effect in ɛ″(ω) and the "hump" typically observed in |χ3(ω)|. The absence of any sensitivity of the dynamics to an electric field is contrary to the expectation that the electro-rheological effect correlates with the field induced entropy change, which is extraordinarily high for this liquid. The results suggest that the dependence of the relaxation time on the electric field is not directly linked to the entropy change.

  16. [Investigation of the recrystallization of trehalose as a good glass-former excipient].

    Science.gov (United States)

    Katona, Gábor; Orsolya, Jójártné Laczkovich; Szabóné, Révész Piroska

    2014-01-01

    An amorphous form of trehalose is easy to prepare by using a solvent method. The recrystallization kinetics can be followed well, which is important because of the occurrence of polymorphic forms of trehalose. This is especially significant in the case of dry powder inhalers. Spray-drying was used as a preparation method this being one of the most efficient technologies with which to obtain an amorphous form. This method can result in the required particle size and a monodisperse distribution with excellent flowability and with moreover considerable amorphization. In our work, trehalose was applied as a technological auxiliary agent, and literature data relating to the spray-drying technology of trehalose were collected. Studies were made of the influence of the spraying process on the amorphization of trehalose and on the recrystallization of amorphous trehalose during storage. Amorphous samples were investigated under 3 different conditions during 3 months. The recrystallization process was followed by differential scanning calorimetry and X-ray powder diffraction. The results demonstrated the perfect amorphization of trehalose during the spray-drying process. The glass transition temperature was well measurable in the samples and proved to be the same as the literature data. Recrystallization under normal conditions was very slow but at high relative humidity the process was accelerated greatly. Amorphous trehalose gave rise to dihydrate forms (gamma- and h-trehaloses) during recrystallization, and beta-trehalose was also identified as an anhydrous form.

  17. Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former.

    Science.gov (United States)

    Kim, Jeongmin; Sung, Bong June

    2015-06-17

    The dynamics of multicomponent metallic alloys is spatially heterogeneous near glass transition. The diffusion coefficient of one component of the metallic alloys may also decouple from those of other components, i.e., the diffusion coefficient of each component depends differently on the viscosity of metallic alloys. In this work we investigate the dynamic heterogeneity and decoupling of a model system for multicomponent Pd43Cu27Ni10P20 melts by using a hard sphere model that considers the size disparity of alloys but does not take chemical effects into account. We also study how such dynamic behaviors would relate to the local atomic structure of metallic alloys. We find, from molecular dynamics simulations, that the smallest component P of multicomponent Pd43Cu27Ni10P20 melts becomes dynamically heterogeneous at a translational relaxation time scale and that the largest major component Pd forms a slow subsystem, which has been considered mainly responsible for the stabilization of amorphous state of alloys. The heterogeneous dynamics of P atoms accounts for the breakdown of Stokes-Einstein relation and also leads to the dynamic decoupling of P and Pd atoms. The dynamically heterogeneous P atoms decrease the lifetime of the local short-range atomic orders of both icosahedral and close-packed structures by orders of magnitude.

  18. Negative differential mobility of weakly driven particles in models of glass formers

    Energy Technology Data Exchange (ETDEWEB)

    Jack, Robert L.; Kelsey, David; Garrahan, Juan P.; Chandler, David

    2008-04-01

    We study the response of probe particles to weak constant driving in kinetically constrained models of glassy systems, and show that the probe's response can be non-monotonic and give rise to negative differential mobility: increasing the applied force can reduce the probe's drift velocity in the force direction. Other significant non-linear effects are also demonstrated, such as the enhancement with increasing force of the probe's fluctuations away from the average path, a phenomenon known in other contexts as giant diffusivity. We show that these results can be explained analytically by a continuous-time random walk approximation where there is decoupling between persistence and exchange times for local displacements of the probe. This decoupling is due to dynamic heterogeneity in the glassy system, which also leads to bimodal distributions of probe particle displacements. We discuss the relevance of our results to experiments.

  19. Relaxation in the glass former acetylsalicylic acid studied by deuteron magnetic resonance and dielectric spectroscopy

    Science.gov (United States)

    Nath, R.; El Goresy, T.; Geil, B.; Zimmermann, H.; Böhmer, R.

    2006-08-01

    Supercooled liquid and glassy acetylsalicylic acid was studied using dielectric spectroscopy and deuteron relaxometry in a wide temperature range. The supercooled liquid is characterized by major deviations from thermally activated behavior. In the glass the secondary relaxation exhibits the typical features of a Johari-Goldstein process. Via measurements of spin-lattice relaxation times the selectively deuterated methyl group was used as a sensitive probe of its local environments. There is a large difference in the mean activation energy in the glass with respect to that in crystalline acetylsalicylic acid. This can be understood by taking into account the broad energy barrier distribution in the glass.

  20. The Arabidopsis pi4kIIIβ1β2 double mutant is salicylic acid-overaccumulating: A new example of salicylic acid influence on plant stature

    Czech Academy of Sciences Publication Activity Database

    Janda, Martin; Šašek, Vladimír; Ruelland, E.

    2014-01-01

    Roč. 9, č. 12 (2014) ISSN 1559-2324 R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional support: RVO:61389030 Keywords : phosphatidylinositol-4-kinase * plant growth * salicylic acid Subject RIV: ED - Physiology http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25482755

  1. Evaluation of gels obtained from acetylation of chitosan in heterogeneous medium

    International Nuclear Information System (INIS)

    Garcia, Rosangela Balaban; Silva, Dayse Luzia Pinheiro da; Costa, Marta

    2008-01-01

    Chitosan was acetylated during 2, 5 and 10 h and physical gels were obtained at different polymer concentrations in N,N-dimethylacetamide containing 5% of LiCl. Acetylation was confirmed by infrared spectroscopy and 13 C NMR, and degrees of acetylation in the range of 0.82-0.91 were determined by NMR. The O-acetylation degree (0.12-0.15) was exclusively determined by a volumetric method. Rheological studies showed that the storage modulus values were smaller for the more acetylated samples and increased with the temperature and the polymer concentration. All the gels presented storage modulus superior to loss modulus, evidencing more elastic than viscous characteristics. The results obtained in this work suggest a gelation process based on a balance between O and N-acetylation and intermolecular bonds. (author)

  2. (1-Acetyl-2,6-diphenylpiperidin-4-ylidene(phenylacetonitrile

    Directory of Open Access Journals (Sweden)

    R. J. Butcher

    2008-05-01

    Full Text Available In the title molecule, C27H24N2O, the piperidine ring adopts a boat conformation. The acetyl group at position 1 has a bisectional orientation. The two phenyl rings attached to the piperidine ring at positions 2 and 6 have bisectional and axial orientations, respectively, and make a dihedral angle of 75.27 (10°. The phenylacetonitrile group at position 4 has an equatorial orientation. Molecules are linked by C—H...N, C—H...O intermolecular and C—H...π interactions. A C—H...O intramolecular interaction is also found in the molecule.

  3. Epigenetic Readers of Lysine Acetylation Regulate Cocaine-Induced Plasticity

    Science.gov (United States)

    Sartor, Gregory C.; Powell, Samuel K.; Brothers, Shaun P.

    2015-01-01

    Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic “reader” proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. SIGNIFICANCE STATEMENT Proteins involved in the “readout” of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and

  4. Epigenetic Readers of Lysine Acetylation Regulate Cocaine-Induced Plasticity.

    Science.gov (United States)

    Sartor, Gregory C; Powell, Samuel K; Brothers, Shaun P; Wahlestedt, Claes

    2015-11-11

    Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic "reader" proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. Proteins involved in the "readout" of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and BET inhibitors are currently

  5. 2-acetyl-1-pyrroline - key aroma compound in Mediterranean dried sausages

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    2000-01-01

    and Southern types were attributed to a burned coffee odour from smoke in the smoked sausages and a popcorn note in the Mediterranean products covered with mould. The two compounds were 2-furfurylthiol and 2-acetyl-1-pyrroline, respectively. An analysis of five dried, moulded sausages showed that the surface...... edge of the sausages contained higher amounts of 2-acetyl-1-pyrroline than the core, indicating that the mould growing on the surface of Mediterranean products produces 2-acetyl-1-pyrroline....

  6. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    International Nuclear Information System (INIS)

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda

    2014-01-01

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress

  7. An Easily Constructed Salicylate-Ion-Selective Electrode for Use in the Instructional Laboratory.

    Science.gov (United States)

    Creager, Stephen E.; And Others

    1995-01-01

    Describes an electrode, selective for the salicylate ion, that can be prepared and used by undergraduate students. Discusses the preparation of the electrode, typical response characteristics obtained, and results of a limited study using the electrode to estimate the selectivity coefficient for an interfering ion and to determine the amount of…

  8. Infrared multiple-photon dissociation spectroscopy of group II metal complexes with salicylate

    NARCIS (Netherlands)

    Dain, R.P.; Gresham, G.; Groenewold, G.S.; Steill, J.D.; Oomens, J.; van Stipdonk, M.J.

    2011-01-01

    Ion trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations, were used to characterize singly charged, 1:1 complexes of Ca2+, Sr2+ and Ba2+ with salicylate.

  9. Rotational Spectrum of the Methyl Salicylate-Water Complex: the Missing Conformer and the Tunneling Motions

    Science.gov (United States)

    Ghosh, Supriya; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang

    2015-06-01

    Methyl salicylate is a naturally occurring organic ester produced by wintergreen and other plants. It is also found in many over-the-counter remedies, such as muscle ache creams. The rotational spectrum of the methyl salicylate monomer was reported previously, where the most stable, dominant conformer was identified. The methyl salicylate-water complex was first studied using fluorescence-detected infrared spectroscopy; only one monohydrate conformer was found in that work. In the present study, we employed both broadband chirped and cavity based Fourier transform microwave spectroscopy to examine the competition between intra- and intermolecular hydrogen-bonding interactions and possible large amplitude motions associated with the methyl group and the water subunit. In contrast to the previous infrared study, two monohydrate conformers were identified, with carbonyl O or hydroxyl O as the hydrogen bond acceptors. Detailed analyses of the observed hyperfine structures will be presented, as well as our efforts to extend the study to larger methyl salicylate hydration clusters. S. Melandri, B. M. Giuliano, A. Maris, L. B. Favero, P. Ottaviani, B. Velino, W. Caminati, J. Phys. Chem. A. 2007, 111, 9076. A. Mitsuzuka, A. Fujii, T. Ebata, N. Mikami, J. Phys. Chem. A 1998, 102, 9779.

  10. Salicylate-induced hearing loss and gap detection deficits in rats.

    Science.gov (United States)

    Radziwon, Kelly E; Stolzberg, Daniel J; Urban, Maxwell E; Bowler, Rachael A; Salvi, Richard J

    2015-01-01

    To test the "tinnitus gap-filling" hypothesis in an animal psychoacoustic paradigm, rats were tested using a go/no-go operant gap detection task in which silent intervals of various durations were embedded within a continuous noise. Gap detection thresholds were measured before and after treatment with a dose of sodium salicylate (200 mg/kg) that reliably induces tinnitus in rats. Noise-burst detection thresholds were also measured to document the amount of hearing loss and aid in interpreting the gap detection results. As in the previous human psychophysical experiments, salicylate had little or no effect on gap thresholds measured in broadband noise presented at high-stimulus levels (30-60 dB SPL); gap detection thresholds were always 10 ms or less. Salicylate also did not affect gap thresholds presented in narrowband noise at 60 dB SPL. Therefore, rats treated with a dose of salicylate that reliably induces tinnitus have no difficulty detecting silent gaps as long as the noise in which they are embedded is clearly audible.

  11. Infrared multiple-photon dissociation spectroscopy of group II metal complexes with salicylate

    NARCIS (Netherlands)

    Dain, R. P.; Gresham, G.; Groenewold, G. S.; Steill, J. D.; Oomens, J.; van Stipdonk, M. J.

    2011-01-01

    Ion trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations, were used to characterize singly charged, 1: 1 complexes of Ca2+, Sr2+ and Ba2+ with salicylate.

  12. Effect of Methyl Salicylate-Based Lures on Beneficial and Pest Arthropods in Strawberry

    Science.gov (United States)

    Methyl salicylate (MeSA) is a common herbivore-induced plant volatile that, when applied to crops, has the potential to enhance natural enemy abundance and pest control. The impacts of MeSA in the strawberry system were unknown and examined in this study. Strawberry plots contained no lures (contr...

  13. Hybrid organic-inorganic crystals based on ammonium dihydrogen phosphate and ammonium salicylate

    Science.gov (United States)

    Voronov, A. P.; Salo, V. I.; Puzikov, V. M.; Babenko, G. N.; Roshal, A. D.; Tkachenko, V. F.

    2011-11-01

    ADP-NH 4Sal hybrid crystals are grown from aqueous solutions. The influence of the acidity of the mixed solution on the conditions of co-crystallization of the components is studied. The spectral and scintillation characteristics are determined. Co-crystallization of ammonium salicylate (NH 4Sal) and ammonium dihydrogen phosphate (ADP, NH 4H 2PO 4) is shown to be feasible, the structure of the doping addition being defined by the solution рН. In basic and weak acidic media the hybrid crystals ADP:NH 4Sal are formed in which salicylate anions are located in the interplanar space between the {110}-type planes in the lattice of ADP. The luminescence spectra contain an emission band maximum with λ max=360 nm. In acidic solutions there are ADP:HSal crystals in which salicylic acid molecules captured by the growth macrosteps are located in the interplanar space of the prismatic {100} and pyramidal {101} growth sectors. The luminescence band undergoes bathochromic shift to λmax=400 nm. The sensitivity of ADP:NH 4Sal scintillation crystals to fast neutrons depends on the concentration of ammonium salicylate in ADP matrix. The highest neutron sensitivity is characteristic of the co-doped ADP:NH 4Sal/Tl scintillation crystals.

  14. Salicylate-Induced Hearing Loss and Gap Detection Deficits in Rats

    Science.gov (United States)

    Radziwon, Kelly E.; Stolzberg, Daniel J.; Urban, Maxwell E.; Bowler, Rachael A.; Salvi, Richard J.

    2015-01-01

    To test the “tinnitus gap-filling” hypothesis in an animal psychoacoustic paradigm, rats were tested using a go/no-go operant gap detection task in which silent intervals of various durations were embedded within a continuous noise. Gap detection thresholds were measured before and after treatment with a dose of sodium salicylate (200 mg/kg) that reliably induces tinnitus in rats. Noise-burst detection thresholds were also measured to document the amount of hearing loss and aid in interpreting the gap detection results. As in the previous human psychophysical experiments, salicylate had little or no effect on gap thresholds measured in broadband noise presented at high-stimulus levels (30–60 dB SPL); gap detection thresholds were always 10 ms or less. Salicylate also did not affect gap thresholds presented in narrowband noise at 60 dB SPL. Therefore, rats treated with a dose of salicylate that reliably induces tinnitus have no difficulty detecting silent gaps as long as the noise in which they are embedded is clearly audible. PMID:25750635

  15. Green Synthesis of Ultraviolet Absorber 2-Ethylhexyl Salicylate: Experimental Design and Artificial Neural Network Modeling

    Directory of Open Access Journals (Sweden)

    Shang-Ming Huang

    2017-11-01

    Full Text Available 2-Ethylhexyl salicylate, an ultraviolet filter, is widely used to protect skin against sunlight-induced harmful effects in the cosmetic industry. In this study, the green synthesis of 2-ethylhexyl salicylate using immobilized lipase through a solvent-free and reduced pressure evaporation system was investigated. A Box–Behnken design was employed to develop an artificial neural network (ANN model. The parameters for an optimal architecture of an ANN were set out: a quick propagation algorithm, a hyperbolic tangent transfer function, 10,000 iterations, and six nodes within the hidden layer. The best-fitting performance of the ANN was determined by the coefficient of determination and the root-mean-square error between the correlation of predicted and experimental data, indicating that the ANN displayed excellent data-fitting properties. Finally, the experimental conditions of synthesis were well established with the optimal parameters to obtain a high conversion of 2-ethylhexyl salicylate. In conclusion, this study efficiently replaces the traditional solvents with a green process for the synthesis of 2-ethylhexyl salicylate to avoid environmental contamination, and this process is well-modeled by a methodological ANN for optimization, which might be a benefit for industrial production.

  16. Preharvest treatments with salicylates enhance nutrient and antioxidant compounds in plum at harvest and after storage.

    Science.gov (United States)

    Martínez-Esplá, Alejandra; Zapata, Pedro J; Valero, Daniel; Martínez-Romero, Domingo; Díaz-Mula, Huertas M; Serrano, María

    2017-11-06

    Previous reports have addressed the effectiveness of salicylic acid (SA), acetylsalicylic acid (ASA) and methylsalicylate (MeSA) postharvest treatments on maintaining quality properties during storage in several commodities. However, there is no literature regarding the effect of preharvest treatments with salicylates on plum quality attributes (at harvest or after long-term cold storage), which was evaluated in this research. At harvest, weight, firmness, individual organic acids, sugars, phenolics, anthocyanins and total carotenoids were found at higher levels in plums from SA-, ASA- and MeSA-treated trees than in those from controls. During storage, softening, colour changes and acidity losses were delayed in treated fruits as compared to controls. In addition, organic acids and antioxidant compounds were still found at higher levels in treated than in control plums after 40 days of storage. Results show a delay in the postharvest ripening process due to salicylate treatments, which could be attributed to their effect in delaying and decreasing ethylene production. Preharvest treatment with salicylates could be a safety, eco-friendly and new tool to improve (at harvest) and maintain (during storage) plum quality and especially its content of bioactive compounds with antioxidant properties, increasing the health effects of plum consumption. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Effect of foliar application of salicylic acid, hydrogen peroxide and a ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 2. Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associatedwith capsinoids synthesis in Capsicum annuum L. AY ZUNUN-PÉREZ T GUEVARA-FIGUEROA SN ...

  18. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    Science.gov (United States)

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  19. 21 CFR 201.314 - Labeling of drug preparations containing salicylates.

    Science.gov (United States)

    2010-04-01

    ... distributor, be labeled for use by adults only. If their labeling and advertising clearly offer them for... clearly offered for administration to adults only. (f) If the labeling or advertising of a salicylate... beneficial effects claimed are limited to: “For the temporary relief of minor aches and pains of arthritis...

  20. In vitro effects of salicylic acid, calcium and copper ions on growth ...

    African Journals Online (AJOL)

    Yomi

    2012-08-30

    Aug 30, 2012 ... 1Department of Crop Sciences, Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia, Bintulu Campus,. Sarawak, Malaysia. .... magnesium, copper, carbon, salicylic acid and nitrogen are critical variables for ... Five concentrations of calcium chloride anhydrous powder (Merck,. Darmstadt ...

  1. Salicylic acids as readily available starting materials for the synthesis of meta-substituted biaryls.

    Science.gov (United States)

    Luo, Junfei; Preciado, Sara; Larrosa, Igor

    2015-02-21

    Salicylic acids are shown to be readily available and versatile starting materials that easily undergo a tandem arylation-protodecarboxylation process under Pd-catalysis. The corresponding meta-arylphenols can subsequently be easily transformed into a variety of meta-functionalized biaryls, highlighting the versatility of this approach to access this structural motif.

  2. Changes in actin dynamics are involved in salicylic acid signaling pathway

    Czech Academy of Sciences Publication Activity Database

    Matoušková, J.; Janda, M.; Fišer, R.; Šašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, J.; Martinec, Jan; Valentová, O.

    2014-01-01

    Roč. 223, JUN 2014 (2014), s. 36-44 ISSN 0168-9452 R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional support: RVO:61389030 Keywords : Actin dynamics * Salicylic acid * PR genes Subject RIV: CE - Biochemistry Impact factor: 3.607, year: 2014

  3. Influence of salicylic acid pre-treatment on cadmium tolerance and ...

    African Journals Online (AJOL)

    Dose-dependent changes in cadmium (Cd) tolerance, non-protein thiol (NP-SH) production and their relationship were investigated in sixteen-day-old flax (Linum usitatissimum L.) seedlings derived from seeds pre-soaked with various salicylic acid (SA) doses and grown hydroponically under increased Cd concentrations ...

  4. Influence of salicylic acid on in vitro propagation and salt tolerance ...

    African Journals Online (AJOL)

    Salicylic acid (SA) has been reported to improve in vitro regeneration as well as induce abiotic stress tolerance in plants. The effects of varying SA concentrations (0, 0.5, and 1 mM) on in vitro shoot apices of two Hibiscus species, Hibiscus moscheutos (cv 'Luna Red') and Hibiscus acetosella, grown under various salt ...

  5. Heat shock and salicylic acid on postharvest preservation of organic strawberries

    Directory of Open Access Journals (Sweden)

    Sidiane Coltro

    2014-06-01

    Full Text Available Heat shock and salicylic acid have been studied on shelf-life extension of fruits. The benefits of these techniques have been related to their effect on inducing physiological defense responses against the oxidative stress and pathogen development. The objective of this study was to evaluate the effect of heat shock and salicylic acid on the postharvest preservation and contents of total phenolics, anthocyanins, ascorbic acid, fresh weight loss and microbiological quality of organic strawberries cv. Dover. Strawberries produced organically and stored at 5 ºC were subjected to heat shock (45 ºC ± 3 ºC for 3 h, application of salicylic acid (soaking in 2.0 mmol L-1 solution, heat shock in combination with salicylic acid and control. After treatment, the fruits were packed and stored in a climatic chamber at 5 ºC ± 2 ºC. At 1, 7 and 14 days, the experimental units were removed from refrigeration and kept at room temperature of approximately 20 ºC for two days. There was no effect of treatments on fresh weight loss, incidence of pathogens or chemical variations in strawberry fruits during the storage period. In natural conditions, organically grown strawberries remained in good condition for sale up to seven days of storage in all treatments.

  6. WRKY transcription factors involved in salicylic acid-induced defense gene expression

    NARCIS (Netherlands)

    Verk, Marcel Cristiaan van

    2010-01-01

    The salicylic acid (SA) signaling pathway triggered by attack of biotrophic pathogens leads to broad spectrum resistance against a plethora of pathogenic fungi, bacteria and viruses and is known as systemic acquired resistance (SAR). One of the hallmarks of SAR is the accumulation of PR proteins and

  7. Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens

    DEFF Research Database (Denmark)

    Mur, Luis A J; Sivakumaran, Anushen; Mandon, Julien

    2012-01-01

    Nitric oxide (NO) plays a role in defence against hemibiotrophic pathogens mediated by salicylate (SA) and also necrotrophic pathogens influenced by jasmonate/ethylene (JA/Et). This study examined how NO-oxidizing haemoglobins (Hb) encoded by GLB1, GLB2, and GLB3 in Arabidopsis could influence both...

  8. Synthesis of 125 I - Salicyl Hydroxamic Acid for Urinary Bladder Imaging

    International Nuclear Information System (INIS)

    Ibrahim, I.T.; Abou EL Zahab, M.; Hamed, M.

    2015-01-01

    Salicylhydroxamic acid is a salicylate derivative. Radiolabeling of Salicyl hydroxamic acid ( SHA ) with iodine-125 may have considerable interest for imaging of urinary bladder. This study is aimed to optimize the radiolabeling yield of Salicyl hydroxamic with radio iodine (125-123) using chloramine - T (CAT) as an oxidizing agent with respect to factors that affect the reaction conditions such as SHA amount, CAT amount, reaction time and ph of the reaction mixture. In - vitro stability of the radiolabeled complex was checked and it was found to be stable for up to 24 h. 125 I-SHA was injected via intravenous administration routes into normal male Sprague – Dawley rats. Bio - distribution studies have revealed that 125 I-SHA was excreted in urine with extent that it could give a clear image for urinary bladder especially if the bladder it tightly closed. The amount of 125 I - Salicyl hydroxamic excreted was increased in case of giving potassium bicarbonate to rat before injection of 125 I-SHA. The result of biodistribution study of 125 I - SHA in experimental animal suggest ed the possibility of using 123 I-SHA to image the urinary bladder

  9. Retrobiosynthetic study of salicylic acid in Catharanthus roseus cell suspension cultures

    NARCIS (Netherlands)

    Mustafa, Natali Rianika

    2007-01-01

    Salicylic acid (SA) is an important signal compound in systemic acquired resistance in plants. The level of this C6C1 compound in plants increases after a pathogenic attack. There are two biosynthetic pathways of SA, the phenylalanine pathway, which is thought to occur in plants, and the

  10. Effect of Salicylic Acid on the Growth and Physiological Characteristics of Maize under Stress Conditions

    International Nuclear Information System (INIS)

    Manzoor, K.; Ilyas, N.; Batool, N.; Arshad, M.; Ahmad, B.

    2015-01-01

    Salicylic acid (SA) is a naturally occurring signaling molecule and growth regulator that enhances plant growth particularly in stress conditions. The present study was planned to evaluate the effects of different levels of SA on maize growth under drought and salt stress conditions. An experiment was conducted to test the morphological, physiological and biochemical changes in two cultivar of maize D-1184 and TG-8250. Varying levels of salicylic acid, i.e. 5mM, 10mM and 15mM were applied through foliar method. Exogenous applications of salicylic acid were done after 20 days of germination of the maize plants. Salicylic acid significantly affects root and shoot dry matter under drought and salt stress. Foliar application of SA significantly increased proline concentration (11 percentage and 12 percentage), amino acid accumulation (25 percentage and 18 percentage), relative water (17 percentage and 14 percentage) and Chlorophyll content. Overall, it can be concluded that SA at lower concentration is effective to minimize the effect of stress conditions. Maize cultivar TG-8250 showed better tolerance under drought and salt stress condition as compared to D-1184 cultivar. (author)

  11. Sterilization by Gamma-Radiation of the Sodium Salt of p-Amino-Salicylic Acid

    International Nuclear Information System (INIS)

    Bellion, B.; Denti, E.; Massagli, A.

    1963-01-01

    Sodium p-amino-salicylate cannot be sterilized thermally. During manufacture or packing for medical purposes it must therefore be handled under sterilized conditions, with all the difficulties which this involves. The paper quotes experimental data to show that, using gamma irradiation, the product may be sterilized without damage and without the formation of substances harmful from the medical standpoint. (author) [fr

  12. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways

    DEFF Research Database (Denmark)

    Mur, Luis A J; Prats, Elena; Pierre, Sandra

    2013-01-01

    Plant defence against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defence responses...

  13. Use of jasmonic acid and salicylic acid to inhibit growth of sugarbeet storage rot pathogens

    Science.gov (United States)

    Jasmonic acid (JA) and salicylic acid (SA) are endogenous plant hormones that induce native plant defense responses and provide protection against a wide range of diseases. Previously, JA, applied after harvest, was shown to protect sugarbeet roots against the storage pathogens, Botrytis cinerea, P...

  14. Some physiological and biochemical responses to nickel in salicylic acid applied chickpea (Cicer arietinum L.) seedlings.

    Science.gov (United States)

    Canakci, Songül; Dursun, Bahar

    2011-09-01

    The present study examined the effects of salicylic acid pre-application on the responses of seven-day-old chickpea (Cicer arietinum L.) seedlings to nickel. For this purpose, the plants were treated with 1 mM salicylic acid solution for 6 and 10 hours and then treated with 0.75, 1.5 and 3 mM nickel solutions for 48 hours hydroponically. Following the treatment, changes in seedling length, seedling fresh weight and leaf dry weight (after 10 hours), as well as MDA, proline, protein and pigment contents (after 6 and 10 hours) were examined. Salicylic acid pre-application was found to significantly alleviate the typical harmful effects caused by nickel and 3 mM nickel concentration in particular, on the parameters associated with toxic stress. However, pre-application of salicylic acid for 6 and 10 hours without nickel treatment did not produce any stimulatory or inhibitory effect on the seedlings as compared to the controls.

  15. Altered intensity coding in the salicylate-overdose animal model of tinnitus

    Czech Academy of Sciences Publication Activity Database

    Wan, I.; Pokora, O.; Chiu, T.; Lánský, Petr; Poon, P. W.

    2015-01-01

    Roč. 136, Oct 2015 (2015), s. 113-119 ISSN 0303-2647 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : auditory evoked potential * electrocorticogram * Fisher information * salicylate-overdose * tinnitus * rat Subject RIV: BD - Theory of Information Impact factor: 1.495, year: 2015

  16. Salicylate prevents virus-induced type 1 diabetes in the BBDR rat.

    Directory of Open Access Journals (Sweden)

    Chaoxing Yang

    Full Text Available Epidemiologic and clinical evidence suggests that virus infection plays an important role in human type 1 diabetes pathogenesis. We used the virus-inducible BioBreeding Diabetes Resistant (BBDR rat to investigate the ability of sodium salicylate, a non-steroidal anti-inflammatory drug (NSAID, to modulate development of type 1 diabetes. BBDR rats treated with Kilham rat virus (KRV and polyinosinic:polycytidylic acid (pIC, a TLR3 agonist develop diabetes at nearly 100% incidence by ~2 weeks. We found distinct temporal profiles of the proinflammatory serum cytokines, IL-1β, IL-6, IFN-γ, IL-12, and haptoglobin (an acute phase protein in KRV+pIC treated rats. Significant elevations of IL-1β and IL-12, coupled with sustained elevations of haptoglobin, were specific to KRV+pIC and not found in rats co-treated with pIC and H1, a non-diabetogenic virus. Salicylate administered concurrently with KRV+pIC inhibited the elevations in IL-1β, IL-6, IFN-γ and haptoglobin almost completely, and reduced IL-12 levels significantly. Salicylate prevented diabetes in a dose-dependent manner, and diabetes-free animals had no evidence of insulitis. Our data support an important role for innate immunity in virus-induced type 1 diabetes pathogenesis. The ability of salicylate to prevent diabetes in this robust animal model demonstrates its potential use to prevent or attenuate human autoimmune diabetes.

  17. Synthesis and biological evaluation of new salicylate macrolactones from anacardic acids

    Energy Technology Data Exchange (ETDEWEB)

    Logrado, Lucio P.L.; Santos, Maria Lucilia dos [Brasilia Univ., DF (Brazil). Inst. de Quimica. Lab. de Isolamento e Transformacao de Moleculas Organicas]. E-mail: mlsantos@unb.br; Silveira, Damaris [Brasilia Univ., DF (Brazil). Faculdade de Ciencias da Saude; Romeiro, Luiz A.S. [Universidade Catolica de Brasilia, Taguatinga, DF (Brazil). Nucleo de Quimica Bioorganica e Medicinal; Moraes, Manoel O. de; Cavalcanti, Bruno C.; Costa-Lotufo, Leticia V.; Pessoa, Claudia do O [Ceara Univ., Fortaleza, CE (Brazil). Lab. de Oncologia Experimental

    2005-11-15

    onnection with our ongoing investigation in the search for new bioactive compounds using non-isoprenoid phenolic lipids from Anacardium occidentale as starting material, we describe the synthesis and cytotoxicity screening of some novel salicylate macrolactones prepared from anacardic acids, the major constituents of natural cashew nut-shell liquid (CNSL). (author)

  18. Decreasing the toxicity of paraquat through the complexation with sodium salicylate: Stoichiometric analysis.

    Science.gov (United States)

    Gales, Luís; Amorim, Ricardo; Afonso, Carlos Manuel M; Carvalho, Félix; Dinis-Oliveira, Ricardo Jorge

    2015-10-02

    Over the last decades, paraquat (1,1'-dimethyl-4,4'-bipyridilium dichloride; PQ) has been involved in numerous fatalities especially attributed to suicide attempts. Previously, it was shown that salicylates, namely sodium salicylate (NaSAL) and lysine acetylsalicylate (LAS) may form complexes with PQ, which may contribute to prevent its toxicity. The direct chemical reactivity between PQ and NaSAL was previously studied by liquid chromatography/electrospray ionization/mass spectrometry/mass spectrometry, showing the formation of complexes, though reported data was not fully conclusive. In the present study, the structure of the complex of PQ with NaSAL is fully characterized by crystallography. It was observed that PQ is complexed with 4 NaSAL molecules. Since formulations containing PQ and salicylates have been proposed, these results point that the stoichiometry of 1:4 (PQ:salicylates) should be considered to optimize prevention of PQ-mediated toxic effects. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Effects of Foliar Treatments of Salicylic Acid on Apple (Malus domestica L. Against Freezing

    Directory of Open Access Journals (Sweden)

    Bengü Türkyılmaz Ünal

    2015-02-01

    Full Text Available In our study we aim to increase frost resistance and improve the yield and quality of apple is important in Turkey and world economy. Phenological and morphological observations, physiological and biochemical analyzes were carried out in apple (Malus domestica L. plants. It was studied to determine the effects of foliar Salicylic acid (0, 500 ppm/plant and 1000 ppm/plant on adaptation of this plant when exposed to freezing stress, the quality and yield. Leaf photosynthetic pigment contents, total protein amount, proline amount, superoxide dismutase and peroxidase enzymatic activities were measured. The study planned by random experimental design and statistical analysis of data with SPSS program (LSD test were made. It was determined that fruit and shoot numbers were increased in samples exposed to 500 ppm salicylic acid and while fruit weights were increased in samples exposed to 500 ppm and 1000 ppm salicylic acid compared to the control. Also, colour of plants were darkened. Chla, chlb, total chl, proline, superoxide dismutase and peroxidase amounts were increased significantly compared to the control group. Increases occured in the carotenoid and the protein amounts are not significant statistically. In the light of obtained data, foliar application of salicylic acid were found to reduce the effects of freezing stress and to increase the yield and quality of apple plants.

  20. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  1. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda, E-mail: pal.magda@agrar.mta.hu

    2014-09-15

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.

  2. Effect of salicylic acid on Concentration of nutrients, protein and antioxidant enzymes of basil under lead stress

    Directory of Open Access Journals (Sweden)

    Ali Padash

    2016-03-01

    Full Text Available Today, phenolic compounds and plant growth regulator has been proposed, to reduce the negative effects of stress. Salicylic acid is a substance that causes plant resistance to biotic and abiotic stresses. This experiment was conducted in Zabol University during 2013 as factorial randomized complete block design with 3 replications. Factors included 4 levels of lead nitrate; 0 (control, 100, 200 and 300 mg per kg of soil and foliar application of salicylic acid at 3 levels of 0, 50 and 100 ppm. Addition of lead significantly reduced concentrations of potassium, magnesium, calcium, phosphorous and nitrogen and increased concentrations of sodium, polyphenol oxidase, ascorbate peroxidase, superoxide dismutase and peroxidase. In addition, salicylic acid spraying had a significant influence on all traits, and salicylic acid spraying at 100 mL/L increased concentrations of potassium, magnesium, calcium, phosphorus, nitrogen and decreased concentrations of polyphenol oxidase, ascorbate peroxidase, superoxide dismutase and peroxidase. In this study the interaction between salicylic acid and lead on potassium, magnesium, calcium, phosphorus, nitrogen, sodium and catalase, guaiacol peroxidase and polyphenol oxidase were significant, and salicylic acid play moderating role and reducing the negative effects of lead toxicity. The results suggested salicylic acid application in basil can increase uptake of macro and micro nutrients required for plant growth and reduce the negative effects of stress lead-induced oxidative damage.

  3. Fate of [14C] warfarin in guinea-pigs: effect of a concomitant single dose of salicylate

    International Nuclear Information System (INIS)

    Wong, L.T.; Solomonraj, G.; Thomas, B.H.

    1978-01-01

    When a single dose of sodium salicylate (177.8 mg kg -1 , by mouth) was given with [ 14 C] warfarin (1 mg kg -1 , i.p.) to guinea-pigs, the salicylate depressed the blood concentrations of 14 C for 6 h. At 1 h, salicylate increased the distribution of 14 C in the liver and brain, but at 1 and 6 h it was decreased in the blood and kidney. A significant portion of the 14 C was excreted into the bile, but was subject to enterohepatic circulation and then excreted by the kidney. There was an enhancement of the biliary elimination of 14 C in the first 5 h after salicylate and a decrease in 14 C concentration in blood; the proportion of warfarin to its metabolites excreted in the urine and bile was unchanged. Salicylate displaced serum protein bound [ 14 C] warfarin in vitro. Salicylate increases the initial biliary elimination of warfarin by displacing some of that bound to plasma protein. This facilitated uptake of warfarin by the liver where it was metabolized. This effect of salicylate did not modify the hypoprothrombinaemia produced by warfarin. (author)

  4. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation

    Directory of Open Access Journals (Sweden)

    S. N. Matsunaga

    2008-12-01

    Full Text Available Biogenic volatile organic compounds (BVOC produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima, desert willow (Chilopsis linearis, mesquite (Prosopis glandulosa, mondel pine (Pinus eldarica, pinyon pine (Pinus monophylla, cottonwood (Populus deltoides, saguaro cactus (Carnegiea gigantea and yucca (Yucca baccata. The measurements focused on BVOCs with relatively high molecular weight (>C15 and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 3.1, 1.0 and 4.8μgC dwg−1 h−1, respectively (dwg; dry weight of the leaves in gram. The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS and 3,3,5-trimethylcyclohexenyl salicylate (homosalate and are known as effective ultraviolet (UV absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA because they probably produce oxidation products that can condense onto the aerosol phase. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas area using a BVOC emission model. The contribution was estimated to reach 50% of the biogenic terpenoid

  5. Study on the kinetics and transformation products of salicylic acid in water via ozonation.

    Science.gov (United States)

    Hu, Ruikang; Zhang, Lifeng; Hu, Jiangyong

    2016-06-01

    As salicylic acid is one of widely used pharmaceuticals, its residue has been found in various environmental water systems e.g. wastewater, surface water, treated water and drinking water. It has been reported that salicylic acid can be efficiently removed by advanced oxidation processes, but there are few studies on its transformation products and ozonation mechanisms during ozonation process. The objective of this study is to characterize the transformation products, investigate the degradation mechanisms at different pH, and propose the ozonation pathways of salicylic acid. The results showed that the rate of degradation was about 10 times higher at acidic condition than that at alkaline condition in the first 1 min when 1 mg L(-1) of ozone solution was added into 1 mg L(-1) of salicylic acid solution. It was proposed that ozone direct oxidation mechanism dominates at acidic condition, while indirect OH radical mechanism dominates at alkaline condition. A two stages pseudo-first order reaction was proposed at different pH conditions. Various hydroxylation products, carbonyl compounds and carboxylic acids, such as 2,5-dihydroxylbenzoic acid, 2,3-dihydroxylbenzoic acid, catechol, formaldehyde, glyoxal, acetaldehyde, maleic acid, acetic acid and oxalic acid etc. were identified as ozonation transformation products. In addition, acrylic acid was identified, for the first time, as ozonation transformation products through high resolution liquid chromatography-time of flight mass spectrometer. The information demonstrated in this study will help us to better understand the possible effects of ozonation products on the water quality. The degradation pathways of salicylic acid by ozonation in water sample were proposed. As both O3 and OH radical were important in the reactions, the degradation pathways of salicylic acid by ozonation in water sample were proposed at acidic and basic conditions. To our knowledge, there was no integrated study reported on the ozonation of

  6. Lysine acetylation targets protein complexes and co-regulates major cellular functions

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Kumar, Chanchal; Gnad, Florian

    2009-01-01

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600......, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other...

  7. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism

    Science.gov (United States)

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu

    2015-01-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. PMID:26438600

  8. Metabolism of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine in the human neutrophil

    International Nuclear Information System (INIS)

    Triggiani, M.; D'Souza, D.M.; Chilton, F.H.

    1991-01-01

    The biosynthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (1-acyl-2-acetyl-GPC) together with that of 1-alkyl-2-acetyl-GPC (platelet-activating factor) has been demonstrated in a variety of inflammatory cells and tissues. It has been hypothesized that the relative proportion of these phospholipids produced upon cell activation may be influenced by their rates of catabolism. We studied the catabolism of 1-acyl-2-acetyl-GPC in resting and activated human neutrophils and compared it to that of 1-alkyl-2-acetyl-GPC. Neutrophils rapidly catabolize both 1-alkyl-2-acetyl-GPC and 1-acyl-2-acetyl-GPC; however, the rate of catabolism of 1-acyl-2-acetyl-GPC is approximately 2-fold higher than that of 1-alkyl-2-acetyl-GPC. In addition, most of 1-acyl-2-acetyl-GPC is catabolized through a pathway different from that of 1-alkyl-2-acetyl-GPC. The main step in the catabolism of 1-acyl-2-acetyl-GPC is the removal of the long chain at the sn-1 position; the long chain residue is subsequently incorporated either into triglycerides or into phosphatidylcholine. The 1-lyso-2-acetyl-GPC formed in this reaction is then further degraded to glycerophosphocholine, choline, or phosphocholine. 1-Acyl-2-acetyl-GPC is also catabolized, to a lesser extent, through deacetylation at the sn-2 position and reacylation with a long chain fatty acid. Stimulation of neutrophils by A23187 results in a higher rate of catabolism of 1-acyl-2-acetyl-GPC by increasing both the removal of the long chain at the sn-1 position and the deacetylation-reacylation at the sn-2 position. In a broken cell preparation, the cytosolic fraction of the neutrophil was shown to contain an enzyme activity which cleaved the sn-1 position of 1-acyl-2-acetyl-GPC and 1-acyl-2-lyso-GPC but not of 1,2-diacyl-GPC

  9. Aspirin-mediated acetylation induces structural alteration and aggregation of bovine pancreatic insulin.

    Science.gov (United States)

    Yousefi, Reza; Taheri, Behnaz; Alavi, Parnian; Shahsavani, Mohammad Bagher; Asadi, Zahra; Ghahramani, Maryam; Niazi, Ali; Alavianmehr, Mohammad Mehdi; Moosavi-Movahedi, Ali Akbar

    2016-01-01

    The simple aggregation of insulin under various chemical and physical stresses is still an important challenge for both pharmaceutical production and clinical formulation. In the storage form, this protein is subjected to various chemical modifications which alter its physicochemical and aggregation properties. Aspirin (acetylsalicylic acid) which is the most widely used medicine worldwide has been indicated to acetylate a large number of proteins both in vitro and in vivo. In this study, as insulin treated with aspirin at 37°C, a significant level of acetylation was observed by flourescamine and o-phthalaldehyde assay. Also, different spectroscopic techniques, gel electrophoresis, and microscopic assessment were applied to compare the structural variation and aggregation/fibrillation propensity among acetylated and non-acetylated insulin samples. The results of spectroscopic assessments elucidate that acetylation induces insulin unfolding which is accompanied with the exposure of protein hydrophobic patches, a transition from alpha-helix to beta-sheet and increased propensity of the protein for aggregation. The kinetic studies propose that acetylation increases aggregation rate of insulin under both thermal and chemical stresses. Also, gel electrophoresis and dynamic light scattering experiments suggest that acetylation induces insulin oligomerization. Additionally, the results of Thioflavin T fluorescence study, Congo red absorption assessment, and microscopic analysis suggest that acetylation with aspirin enhances the process of insulin fibrillation. Overall, the increased susceptibility of acetylated insulin for aggregation may reflect the fact that this type of modification has significant structural destabilizing effect which finally makes the protein more vulnerable for pathogenic aggregation/fibrillation.

  10. Treadmill exercise induces selective changes in hippocampal histone acetylation during the aging process in rats.

    Science.gov (United States)

    de Meireles, Louisiana Carolina Ferreira; Bertoldi, Karine; Cechinel, Laura Reck; Schallenberger, Bruna Luisa; da Silva, Vanessa Kappel; Schröder, Nadja; Siqueira, Ionara Rodrigues

    2016-11-10

    Physical exercise and the aging process have been shown to induce opposite effects on epigenetic marks, such as histone acetylation. The impact of exercise on hippocampal histone acetylation on specific lysine residues, especially during the aging process, is rarely studied. The aim of this study was to investigate the effect of treadmill exercise (20min/day during 2 weeks) on H3K9, H4K5 and H4K12 acetylation levels in hippocampi of young adult and aged rats. Male Wistar rats aged 3 or 20-21 months were assigned to sedentary and exercise groups. Single-trial step-down inhibitory avoidance conditioning was employed as an aversive memory paradigm. Hippocampal H3K9, H4K5 and H4K12 acetylation was determined by Western blotting. The daily moderate exercise protocol improved the aversive memory performance and increased hipocampal H4K12 acetylation levels in both tested ages. Exercise was also able to increase H3K9 acetylation levels in aged rats. An age-related decline in memory performance was observed, without any effect of the aging process on histone acetylation state. Our data suggest that treadmill exercise can impact hippocampal the histone acetylation profile in an age- and lysine-dependent manner. In addition, higher hippocampal H4K12 acetylation levels at both ages may be related to improvement of aversive memory performance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Salicylate, a catalytic inhibitor of topoisomerase II, inhibits DNA cleavage and is selective for the α isoform.

    Science.gov (United States)

    Bau, Jason T; Kang, Zhili; Austin, Caroline A; Kurz, Ebba U

    2014-02-01

    Topoisomerase II (topo II) is a ubiquitous enzyme that is essential for cell survival through its role in regulating DNA topology and chromatid separation. Topo II can be poisoned by common chemotherapeutics (such as doxorubicin and etoposide), leading to the accumulation of cytotoxic enzyme-linked DNA double-stranded breaks. In contrast, nonbreak-inducing topo II catalytic inhibitors have also been described and have more limited use in clinical chemotherapy. These agents, however, may alter the efficacy of regimens incorporating topo II poisons. We previously identified salicylate, the primary metabolite of aspirin, as a novel catalytic inhibitor of topo II. We have now determined the mechanism by which salicylate inhibits topo II. As catalytic inhibitors can act at a number of steps in the topo II catalytic cycle, we used multiple independent, biochemical approaches to interrogate the catalytic cycle. Furthermore, as mammalian cells express two isoforms of topo II (α and β), we examined whether salicylate was isoform selective. Our results demonstrate that salicylate is unable to intercalate DNA, and does not prevent enzyme-DNA interaction, nor does it promote stabilization of topo IIα in closed clamps on DNA. Although salicylate decreased topo IIα ATPase activity in a dose-dependent noncompetitive manner, this was secondary to salicylate-mediated inhibition of DNA cleavage. Surprisingly, comparison of salicylate's effects using purified human topo IIα and topo IIβ revealed that salicylate selectively inhibits the α isoform. These findings provide a definitive mechanism for salicylate-mediated inhibition of topo IIα and provide support for further studies determining the basis for its isoform selectivity.

  12. Sensitive, selective detection and differentiation of salicylates and metabolites in urine by a simple HPTLC method.

    Science.gov (United States)

    Kincaid, R L; McMullin, M M; Sanders, D; Rieders, F

    1991-01-01

    We present a method for salicylates which is slightly more labor intensive than the usual manual Trinder's test, but is much more sensitive and able to identify individual drugs or metabolites. A 2-mL acidified urine aliquot is briefly extracted with 5 mL ether, and the residue from evaporating the ether under nitrogen is chromatographed on a 250-microns silica gel HPTLC plate using benzene-acetic acid-diethylether-methanol (60:9:30:5) as mobile phase and 5% aqueous ferric chloride as chromogen. The hardiness of the method is evidenced by the Rf values, which vary by no more than 3% over a four-month period. The Rf values are 0.70 for salicylic acid and diflunisal, 0.67 for aspirin and methyl salicylate, 0.60 for gentisic acid, 0.57 for p-aminosalicyclic acid, and 0.40 for salicyluric acid. Detection limits of 1 ppm or less for all the analytes compared favorably to limits of more than 20 ppm for Trinder's test. Separations and spot shapes are sufficiently good to make instrumental quantitation potentially applicable. Sensitivity is sufficient to give clearcut, positive test results 48 h after a single 80-mg dose of ASA by mouth or a 100-mg dose of methyl salicylate by skin injection with a muscle rub, and more than 96 h after a 660-mg oral aspirin dose. Thus, the test is useful for detection and a good degree of differentiation, even in patients using subtherapeutic doses of these salicylates or in those with trace residues from significantly remote full therapeutic or larger doses prior to specimen collections.

  13. Concerted effects in the reaction of ·OH radicals with aromatics: radiolytic oxidation of salicylic acid

    International Nuclear Information System (INIS)

    Albarran, G.; Schuler, R.H.

    2003-01-01

    Liquid chromatographic and capillary electrophoretic studies have been used to resolve the products produced in the radiolytic oxidation of salicylic acid in aqueous solution. These studies have shown that, as in the case of phenol, · OH radicals preferentially add to the positions ortho and para to the OH substituent. However, in contrast to its reaction with phenol, addition at the ortho position is favored over addition at the para position. Because · OH radical is a strong electrophile this difference suggests that the electron population at the ortho position in the salicylate anion is enhanced as a result of the hydrogen bonding in salicylic acid

  14. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate

    Directory of Open Access Journals (Sweden)

    Clemens Schmeitzl

    2015-08-01

    Full Text Available Deoxynivalenol (DON is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON, 15-acetyl-DON (15-ADON and 3,15-diacetyl-DON (3,15-diADON, and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G and of 15-acetyl-DON-3-sulfate (15-ADON3S as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G. This study highlights significant differences in the metabolization of DON and its acetylated derivatives.

  15. The dynamic organization of fungal acetyl-CoA carboxylase

    Science.gov (United States)

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-04-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control.

  16. Protein acetylation sites mediated by Schistosoma mansoni GCN5

    International Nuclear Information System (INIS)

    Moraes Maciel, Renata de; Furtado Madeiro da Costa, Rodrigo; Meirelles Bastosde Oliveira, Francisco; Rumjanek, Franklin David; Fantappie, Marcelo Rosado

    2008-01-01

    The transcriptional co-activator GCN5, a histone acetyltransferase (HAT), is part of large multimeric complexes that are required for chromatin remodeling and transcription activation. As in other eukaryotes, the DNA from the parasite Schistosome mansoni is organized into nucleosomes and the genome encodes components of chromatin-remodeling complexes. Using a series of synthetic peptides we determined that Lys-14 of histone H3 was acetylated by the recombinant SmGCN5-HAT domain. SmGCN5 was also able to acetylate schistosome non-histone proteins, such as the nuclear receptors SmRXR1 and SmNR1, and the co-activator SmNCoA-62. Electron microscopy revealed the presence of SmGCN5 protein in the nuclei of vitelline cells. Within the nucleus, SmGCN5 was found to be located in interchromatin granule clusters (IGCs), which are transcriptionally active structures. The data suggest that SmGCN5 is involved in transcription activation

  17. Comparative Analysis of Proteome-Wide Lysine Acetylation in Juvenile and Adult Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Qing Li

    2017-11-01

    Full Text Available Schistosomiasis is a devastating parasitic disease caused by tremotodes of the genus Schistosoma. Eggs produced by sexually mature schistosomes are the causative agents of for pathogenesis and transmission. Elucidating the molecular mechanism of schistosome development and sexual maturation would facilitate the prevention and control of schistosomiasis. Acetylation of lysine is a dynamic and reversible post-translational modification playing keys role in many biological processes including development in both eukaryotes and prokaryotes. To investigate the impacts of lysine acetylation on Schistosoma japonicum (S. japonicum development and sexual maturation, we used immunoaffinity-based acetyllysine peptide enrichment combined with mass spectrometry (MS, to perform the first comparative analysis of proteome-wide lysine acetylation in both female and male, juvenile (18 days post infection, 18 dpi and adult (28 dpi schistosome samples. In total, we identified 874 unique acetylated sites in 494 acetylated proteins. The four samples shared 47 acetylated sites and 46 proteins. More acetylated sites and proteins shared by both females and males were identified in 28 dpi adults (189 and 143, respectively than in 18 dpi schistosomula (76 and 59, respectively. More stage-unique acetylated sites and proteins were also identified in 28 dpi adults (494 and 210, respectively than in 18 dpi schistosomula (73 and 44, respectively. Functional annotation showed that in different developmental stages and genders, a number of proteins involving in muscle movement, glycometabolism, lipid metabolism, energy metabolism, environmental stress resistance, antioxidation, etc., displayed distinct acetylation profiles, which was in accordance with the changes of their biological functions during schistosome development, suggesting that lysine acetylation modification exerted important regulatory roles in schistosome development. Taken together, our data provided the first

  18. The salicylate 1,2-dioxygenase as a model for a conventional gentisate 1,2-dioxygenase: crystal structures of the G106A mutant and its adducts with gentisate and salicylate.

    Science.gov (United States)

    Ferraroni, Marta; Matera, Irene; Bürger, Sibylle; Reichert, Sabrina; Steimer, Lenz; Scozzafava, Andrea; Stolz, Andreas; Briganti, Fabrizio

    2013-04-01

    The salicylate 1,2-dioxygenase (SDO) from the bacterium Pseudaminobacter salicylatoxidans BN12 is a versatile gentisate 1,2-dioxygenase (GDO) that converts both gentisate (2,5-dihydroxybenzoate) and various monohydroxylated substrates. Several variants of this enzyme were rationally designed based on the previously determined enzyme structure and sequence differences between the SDO and the 'conventional' GDO from Corynebacterium glutamicum. This was undertaken in order to define the structural elements that give the SDO its unique ability to dioxygenolytically cleave (substituted) salicylates. SDO variants M103L, G106A, G111A, R113G, S147R and F159Y were constructed and it was found that G106A oxidized only gentisate; 1-hydroxy-2-naphthoate and salicylate were not converted. This indicated that this enzyme variant behaves like previously known 'conventional' GDOs. Crystals of the G106A SDO variant and its complexes with salicylate and gentisate were obtained under anaerobic conditions, and the structures were solved and analyzed. The amino acid residue Gly106 is located inside the SDO active site cavity but does not directly interact with the substrates. Crystal structures of G106A SDO complexes with gentisate and salicylate showed a different binding mode for salicylate when compared with the wild-type enzyme. Thus, salicylate coordinated in the G106A variant with the catalytically active Fe(II) ion in an unusual and unproductive manner because of the inability of salicylate to displace a hydrogen bond that was formed between Trp104 and Asp174 in the G106A variant. It is proposed that this type of unproductive substrate binding might generally limit the substrate spectrum of 'conventional' GDOs. Structural data are available in the Protein Data Bank databases under the accession numbers 3NST, 3NWA, 3NVC. © 2013 The Authors Journal compilation © 2013 FEBS.

  19. A convenient sol-gel route for the synthesis of salicylate-titania nanocomposites having visible absorption and blue luminescence

    Science.gov (United States)

    Mitra, Atanu; Bhaumik, Asim; Nandi, Mahasweta; Mondal, John; Roy, B. K.

    2009-05-01

    Syntheses of titania-based nanomaterials by simple sol-gel route using a mixture of CTAB and salicylate as well as salicylate ions as templates have been reported. The materials are characterized by the powder X-ray diffraction (XRD), thermal analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and spectroscopic (FT IR, UV-VIS) analyses. A disordered mesoscale orientation of nanoparticles (ca. 2-4 nm) composed of TiO 2-salicylate surface complex has been obtained when 1:1 mixing ratio of CTAB and salicylate at the CTAB concentration of 0.001 M was employed as a template. All these nanocomposites exhibit a considerable red shift at the onsets of their absorption band compared to pure (organic-free) nanocrystalline TiO 2 and show blue luminescence at room temperature. This assembly of nanoparticles is highly interesting in the context of visible light sensitization and nanodevice fabrication.

  20. Stability constants of mixed ligand complexes of lanthanide(III) and yttrium(III) with complexone and substituted salicylic acids

    International Nuclear Information System (INIS)

    Kolhe, Vishnu; Dwivedi, K.

    1996-01-01

    Salicylic acid and substituted salicylic acids are potential antimicrobial agents. Binary complexes of salicylic acid and its substituted derivatives with lanthanide(III) and yttrium(III) metal ions have been reported. There are reports on the ternary metal complexing equilibria with some lanthanide(III) and yttrium(III) metal ions involving aminopolycarboxylic acid as one ligand and salicylic acid (SA) and other related compounds as the second ligands. Ethylene glycol bis(2-aminoethylether)- N, N, N', N'-tetraacetic acid (EGTA) is an important member of aminopolycarboxylic acid and finds many applications in medicine and biology. Recently, few ternary complexes have been reported using EGTA as ligand. In view of biological importance of simple and mixed ligand complexes EGTA, SA and DNSA (3,5-dinitrosalicylic acid), a systematic study has been undertaken for the determination of stability constant and the results are reported. (author). 6 refs., 1 fig., 2 tabs

  1. Pre-sowing application of ascorbic acid and salicylic acid to seed of pumpkin and seedling response to salt

    International Nuclear Information System (INIS)

    Rafique, N.; Raza, S.H.; Qasim, M.; Iqbal, N.

    2011-01-01

    The effects of seed soaking with salicylic acid or ascorbic acid on pumpkin seedlings growth under saline (10 dS m/sup -1/) conditions were investigated. Seedlings fresh weight, protein contents, protease and nitrate reductase activities were significantly affected by 15 and 30 mg L/sup -1/ salicylic acid and 30 mg L/sup -1/ ascorbic acid priming treatments, under both normal and saline conditions. Priming reduced the severity of the salt stress, the amelioration was better due to 30 mg L/sup -1/ ascorbic acid or 30 mg L/sup -1/ salicylic acid treatments as these treatments showed best results on seedling growth, fresh and dry matter production under non-saline and saline environments. Application of seed priming with ascorbic acid and salicylic acid in pumpkin ameliorate the adverse effects of salt stress. (author)

  2. Prediction of Nepsilon-acetylation on internal lysines implemented in Bayesian Discriminant Method.

    Science.gov (United States)

    Li, Ao; Xue, Yu; Jin, Changjiang; Wang, Minghui; Yao, Xuebiao

    2006-12-01

    Protein acetylation is an important and reversible post-translational modification (PTM), and it governs a variety of cellular dynamics and plasticity. Experimental identification of acetylation sites is labor-intensive and often limited by the availability of reagents such as acetyl-specific antibodies and optimization of enzymatic reactions. Computational analyses may facilitate the identification of potential acetylation sites and provide insights into further experimentation. In this manuscript, we present a novel protein acetylation prediction program named PAIL, prediction of acetylation on internal lysines, implemented in a BDM (Bayesian Discriminant Method) algorithm. The accuracies of PAIL are 85.13%, 87.97%, and 89.21% at low, medium, and high thresholds, respectively. Both Jack-Knife validation and n-fold cross-validation have been performed to show that PAIL is accurate and robust. Taken together, we propose that PAIL is a novel predictor for identification of protein acetylation sites and may serve as an important tool to study the function of protein acetylation. PAIL has been implemented in PHP and is freely available on a web server at: http://bioinformatics.lcd-ustc.org/pail.

  3. Prediction of Nε-acetylation on internal lysines implemented in Bayesian Discriminant Method

    Science.gov (United States)

    Li, Ao; Xue, Yu; Jin, Changjiang; Wang, Minghui; Yao, Xuebiao

    2007-01-01

    Protein acetylation is an important and reversible post-translational modification (PTM), and it governs a variety of cellular dynamics and plasticity. Experimental identification of acetylation sites is labor-intensive and often limited by the availability reagents such as acetyl-specific antibodies and optimization of enzymatic reactions. Computational analyses may facilitate the identification of potential acetylation sites and provide insights into further experimentation. In this manuscript, we present a novel protein acetylation prediction program named PAIL, prediction of acetylation on internal lysines, implemented in a BDM (Bayesian Discriminant Method) algorithm. The accuracies of PAIL are 85.13%, 87.97% and 89.21% at low, medium and high thresholds, respectively. Both Jack-Knife validation and n-fold cross validation have been performed to show that PAIL is accurate and robust. Taken together, we propose that PAIL is a novel predictor for identification of protein acetylation sites and may serve as an important tool to study the function of protein acetylation. PAIL has been implemented in PHP and is freely available on a web server at: http://bioinformatics.lcd-ustc.org/pail. PMID:17045240

  4. The Effect of Hypochlorite Oxidation and Acetylation on Some of the ...

    African Journals Online (AJOL)

    The study evaluated the effect of hypochlorite oxidation and acetylation on some physicochemical properties of Icacina trichantha starch. The native and modified (oxidized and acetylated) starches were studied with respect to Infrared spectroscopy(IR), microscopy, gelatinization, swelling power, solubility index, amylose ...

  5. Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors.

    Science.gov (United States)

    Giandomenico, Valeria; Simonsson, Maria; Grönroos, Eva; Ericsson, Johan

    2003-04-01

    Members of the SREBP family of transcription factors control cholesterol and lipid homeostasis and play important roles during adipocyte differentiation. The transcriptional activity of SREBPs is dependent on the coactivators p300 and CBP. We now present evidence that SREBPs are acetylated by the intrinsic acetyltransferase activity of p300 and CBP. In SREBP1a, the acetylated lysine residue resides in the DNA-binding domain of the protein. Coexpression with p300 dramatically increases the expression of both SREBP1a and SREBP2, and this effect is dependent on the acetyltransferase activity of p300, indicating that acetylation of SREBPs regulates their stability. Indeed, acetylation or mutation of the acetylated lysine residue in SREBP1a stabilizes the protein. We demonstrate that the acetylated residue in SREBP1a is also targeted by ubiquitination and that acetylation inhibits this process. Thus, our studies define acetylation-dependent stabilization of transcription factors as a novel mechanism for coactivators to regulate gene expression.

  6. Protective Effects of Acetylation on the Pathological Reactions of the Lens Crystallins with Homocysteine Thiolactone.

    Directory of Open Access Journals (Sweden)

    Zeinab Moafian

    Full Text Available Various post-translational lens crystallins modifications result in structural and functional insults, contributing to the development of lens opacity and cataract disorders. Lens crystallins are potential targets of homocysteinylation, particularly under hyperhomocysteinemia which has been indicated in various eye diseases. Since both homocysteinylation and acetylation primarily occur on protein free amino groups, we applied different spectroscopic methods and gel mobility shift analysis to examine the possible preventive role of acetylation against homocysteinylation. Lens crystallins were extensively acetylated in the presence of acetic anhydride and then subjected to homocysteinylation in the presence of homocysteine thiolactone (HCTL. Extensive acetylation of the lens crystallins results in partial structural alteration and enhancement of their stability, as well as improvement of α-crystallin chaperone-like activity. In addition, acetylation partially prevents HCTL-induced structural alteration and aggregation of lens crystallins. Also, acetylation protects against HCTL-induced loss of α-crystallin chaperone activity. Additionally, subsequent acetylation and homocysteinylation cause significant proteolytic degradation of crystallins. Therefore, further experimentation is required in order to judge effectively the preventative role of acetylation on the structural and functional insults induced by homocysteinylation of lens crystallins.

  7. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol

    Directory of Open Access Journals (Sweden)

    Harmen M. van Rossum

    2016-05-01

    Full Text Available In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo. This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S. cerevisiae strain, in which cytosolic acetyl coenzyme A (acetyl-CoA synthesis could be switched off by omitting lipoic acid from growth media. Laboratory evolution of this strain yielded mutants whose growth on glucose, in the absence of lipoic acid, was l-carnitine dependent, indicating that in vivo export of mitochondrial acetyl units to the cytosol occurred via the carnitine shuttle. The mitochondrial pyruvate dehydrogenase complex was identified as the predominant source of acetyl-CoA in the evolved strains. Whole-genome sequencing revealed mutations in genes involved in mitochondrial fatty acid synthesis (MCT1, nuclear-mitochondrial communication (RTG2, and encoding a carnitine acetyltransferase (YAT2. Introduction of these mutations into the nonevolved parental strain enabled l-carnitine-dependent growth on glucose. This study indicates intramitochondrial acetyl-CoA concentration and constitutive expression of carnitine shuttle genes as key factors in enabling in vivo export of mitochondrial acetyl units via the carnitine shuttle.

  8. Novel myelin penta- and hexa-acetyl-galactosyl-ceramides: structural characterization and immunoreactivity in cerebrospinal fluid

    DEFF Research Database (Denmark)

    Podbielska, Maria; Dasgupta, Somsankar; Levery, Steven B

    2010-01-01

    -acetylation of the 2-hydroxy-fatty acid. The immuno-reactivity in human cerebrospinal fluid (CSF) to these acetylated glycolipids was examined in central nervous system (CNS) infectious disease, noninflammatory disorders, and multiple sclerosis (MS). Screening for lipid binding in MS and other neurological disease...

  9. Total levels of hippocampal histone acetylation predict normal variability in mouse behavior.

    Directory of Open Access Journals (Sweden)

    Addie May I Nesbitt

    Full Text Available Genetic, pharmacological, and environmental interventions that alter total levels of histone acetylation in specific brain regions can modulate behaviors and treatment responses. Efforts have been made to identify specific genes that are affected by alterations in total histone acetylation and to propose that such gene specific modulation could explain the effects of total histone acetylation levels on behavior - the implication being that under naturalistic conditions variability in histone acetylation occurs primarily around the promoters of specific genes.Here we challenge this hypothesis by demonstrating with a novel flow cytometry based technique that normal variability in open field exploration, a hippocampus-related behavior, was associated with total levels of histone acetylation in the hippocampus but not in other brain regions.Results suggest that modulation of total levels of histone acetylation may play a role in regulating biological processes. We speculate in the discussion that endogenous regulation of total levels of histone acetylation may be a mechanism through which organisms regulate cellular plasticity. Flow cytometry provides a useful approach to measure total levels of histone acetylation at the single cell level. Relating such information to behavioral measures and treatment responses could inform drug delivery strategies to target histone deacetylase inhibitors and other chromatin modulators to places where they may be of benefit while avoiding areas where correction is not needed and could be harmful.

  10. Global profiling of lysine acetylation in human histoplasmosis pathogen Histoplasma capsulatum.

    Science.gov (United States)

    Xie, Longxiang; Fang, Wenjie; Deng, Wanyan; Yu, Zhaoxiao; Li, Juan; Chen, Min; Liao, Wanqing; Xie, Jianping; Pan, Weihua

    2016-04-01

    Histoplasma capsulatum is the causative agent of human histoplasmosis, which can cause respiratory and systemic mycosis in immune-compromised individuals. Lysine acetylation, a protein posttranslational protein modification, is widespread in both eukaryotes and prokaryotes. Although increasing evidence suggests that lysine acetylation may play critical roles in fungus physiology, very little is known about its extent and function in H. capsulatum. To comprehensively profile protein lysine acetylation in H. capsulatum, we performed a global acetylome analysis through peptide prefractionation, antibody enrichment, and LC-MS/MS analysis, identifying 775 acetylation sites on 456 acetylated proteins; and functionally analysis showing their involvement in different biological processes. We defined six types of acetylation site motifs, and the results imply that lysine residue of polypeptide with tyrosine at the -1 and +1 positions, histidine at the +1 position, and phenylalanine (F) at the +1 and +2 position is a preferred substrate of lysine acetyltransferase. Moreover, some virulence factors candidates including calmodulin and DnaK are acetylated. In conclusion, our data set may serve as an important resource for the elucidation of associations between functional protein lysine acetylation and virulence in H. capsulatum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Acetylome analysis reveals the involvement of lysine acetylation in biosynthesis of antibiotics in Bacillus amyloliquefaciens.

    Science.gov (United States)

    Liu, Lin; Wang, Guangyuan; Song, Limin; Lv, Binna; Liang, Wenxing

    2016-01-29

    Lysine acetylation is a major post-translational modification that plays an important regulatory role in almost every aspects in both eukaryotes and prokaryotes. Bacillus amyloliquefaciens, a Gram-positive bacterium, is very effective for the control of plant pathogens. However, very little is known about the function of lysine acetylation in this organism. Here, we conducted the first lysine acetylome in B. amyloliquefaciens through a combination of highly sensitive immune-affinity purification and high-resolution LC-MS/MS. Overall, we identified 3268 lysine acetylation sites in 1254 proteins, which account for 32.9% of the total proteins in this bacterium. Till date, this is the highest ratio of acetylated proteins that have been identified in bacteria. Acetylated proteins are associated with a variety of biological processes and a large fraction of these proteins are involved in metabolism. Interestingly, for the first time, we found that about 71.1% (27/38) and 78.6% (22/28) of all the proteins tightly related to the synthesis of three types of pepketides and five families of lipopeptides were acetylated, respectively. These findings suggest that lysine acetylation plays a critical role in the regulation of antibiotics biosynthesis. These data serves as an important resource for further elucidation of the physiological role of lysine acetylation in B. amyloliquefaciens.

  12. Histone Acetylation is Recruited in Consolidation as a Molecular Feature of Stronger Memories

    Science.gov (United States)

    Federman, Noel; Fustinana, Maria Sol; Romano, Arturo

    2009-01-01

    Gene expression is a key process for memory consolidation. Recently, the participation of epigenetic mechanisms like histone acetylation was evidenced in long-term memories. However, until now the training strength required and the persistence of the chromatin acetylation recruited are not well characterized. Here we studied whether histone…

  13. Discovery and characterization of sialic acid O-acetylation in group B Streptococcus.

    Science.gov (United States)

    Lewis, Amanda L; Nizet, Victor; Varki, Ajit

    2004-07-27

    Group B Streptococcus (GBS) is the leading cause of human neonatal sepsis and meningitis. The GBS capsular polysaccharide is a major virulence factor and the active principle of vaccines in phase II trials. All GBS capsules have a terminal alpha 2-3-linked sialic acid [N-acetylneuraminic acid (Neu5Ac)], which interferes with complement-mediated killing. We show here that some of the Neu5Ac residues of the GBS type III capsule are O-acetylated at carbon position 7, 8, or 9, a major modification evidently missed in previous studies. Data are consistent with initial O-acetylation at position 7, and subsequent migration of the O-acetyl ester at positions 8 and 9. O-acetylation was also present on several other GBS serotypes (Ia, Ib, II, V, and VI). Deletion of the CMP-Neu5Ac synthase gene neuA by precise, in-frame allelic replacement gave intracellular accumulation of O-acetylated Neu5Ac, whereas overexpression markedly decreased O-acetylation. Given the known GBS Neu5Ac biosynthesis pathway, these data indicate that O-acetylation occurs on free Neu5Ac, competing with the CMP-Neu5Ac synthase. O-acetylation often generates immunogenic epitopes on bacterial capsular polysaccharides and can modulate human alternate pathway complement activation. Thus, our discovery has important implications for GBS pathogenicity, immunogenicity, and vaccine design.

  14. A bioinformatics-based overview of protein Lys-Ne-acetylation

    Science.gov (United States)

    Among posttranslational modifications, there are some conceptual similarities between Lys-N'-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. T...

  15. Kinetic and Thermodynamic Analysis of Acetyl-CoA Activation of Staphylococcus aureus Pyruvate Carboxylase.

    Science.gov (United States)

    Westerhold, Lauren E; Bridges, Lance C; Shaikh, Saame Raza; Zeczycki, Tonya N

    2017-07-11

    Allosteric regulation of pyruvate carboxylase (PC) activity is pivotal to maintaining metabolic homeostasis. In contrast, dysregulated PC activity contributes to the pathogenesis of numerous diseases, rendering PC a possible target for allosteric therapeutic development. Recent research efforts have focused on demarcating the role of acetyl-CoA, one of the most potent activators of PC, in coordinating catalytic events within the multifunctional enzyme. Herein, we report a kinetic and thermodynamic analysis of acetyl-CoA activation of the Staphylococcus aureus PC (SaPC)-catalyzed carboxylation of pyruvate to identify novel means by which acetyl-CoA synchronizes catalytic events within the PC tetramer. Kinetic and linked-function analysis, or thermodynamic linkage analysis, indicates that the substrates of the biotin carboxylase and carboxyl transferase domain are energetically coupled in the presence of acetyl-CoA. In contrast, both kinetic and energetic coupling between the two domains is lost in the absence of acetyl-CoA, suggesting a functional role for acetyl-CoA in facilitating the long-range transmission of substrate-induced conformational changes within the PC tetramer. Interestingly, thermodynamic activation parameters for the SaPC-catalyzed carboxylation of pyruvate are largely independent of acetyl-CoA. Our results also reveal the possibility that global conformational changes give rise to observed species-specific thermodynamic activation parameters. Taken together, our kinetic and thermodynamic results provide a possible allosteric mechanism by which acetyl-CoA coordinates catalysis within the PC tetramer.

  16. Salicylate-Induced Suppression of Electrically Driven Activity in Brain Slices from the Auditory Cortex of Aging Mice.

    Science.gov (United States)

    Namikawa, Minoru; Sano, Ayaka; Tateno, Takashi

    2017-01-01

    The prevalence of tinnitus is known to increase with age. The age-dependent mechanisms of tinnitus may have important implications for the development of new therapeutic treatments. High doses of salicylate can be used experimentally to induce transient tinnitus and hearing loss. Although accumulating evidence indicates that salicylate induces tinnitus by directly targeting neurons in the peripheral and central auditory systems, the precise effect of salicylate on neural networks in the auditory cortex (AC) is unknown. Here, we examined salicylate-induced changes in stimulus-driven laminar responses of AC slices with salicylate superfusion in young and aged senescence-accelerated-prone (SAMP) and -resistant (SAMR) mice. Of the two strains, SAMP1 is known to be a more suitable model of presbycusis. We recorded stimulus-driven laminar local field potential (LFP) responses at multi sites in AC slice preparations. We found that for all AC slices in the two strains, salicylate always reduced stimulus-driven LFP responses in all layers. However, for the amplitudes of the LFP responses, the two senescence-accelerated mice (SAM) strains showed different laminar properties between the pre- and post-salicylate conditions, reflecting strain-related differences in local circuits. As for the relationships between auditory brainstem response (ABR) thresholds and the LFP amplitude ratios in the pre- vs. post-salicylate condition, we found negative correlations in layers 2/3 and 4 for both older strains, and in layer 5 (L5) in older SAMR1. In contrast, the GABAergic agonist muscimol (MSC) led to positive correlations between ABR thresholds and LFP amplitude ratios in the pre- vs. post-MSC condition in younger SAM mice from both strains. Further, in younger mice, salicylate decreased the firing rate in AC L4 pyramidal neurons. Thus, salicylate can directly reduce neural excitability of L4 pyramidal neurons and thereby influence AC neural circuit activity. That we observed age

  17. Salicylate-Induced Suppression of Electrically Driven Activity in Brain Slices from the Auditory Cortex of Aging Mice

    Directory of Open Access Journals (Sweden)

    Minoru Namikawa

    2017-12-01

    Full Text Available The prevalence of tinnitus is known to increase with age. The age-dependent mechanisms of tinnitus may have important implications for the development of new therapeutic treatments. High doses of salicylate can be used experimentally to induce transient tinnitus and hearing loss. Although accumulating evidence indicates that salicylate induces tinnitus by directly targeting neurons in the peripheral and central auditory systems, the precise effect of salicylate on neural networks in the auditory cortex (AC is unknown. Here, we examined salicylate-induced changes in stimulus-driven laminar responses of AC slices with salicylate superfusion in young and aged senescence-accelerated-prone (SAMP and -resistant (SAMR mice. Of the two strains, SAMP1 is known to be a more suitable model of presbycusis. We recorded stimulus-driven laminar local field potential (LFP responses at multi sites in AC slice preparations. We found that for all AC slices in the two strains, salicylate always reduced stimulus-driven LFP responses in all layers. However, for the amplitudes of the LFP responses, the two senescence-accelerated mice (SAM strains showed different laminar properties between the pre- and post-salicylate conditions, reflecting strain-related differences in local circuits. As for the relationships between auditory brainstem response (ABR thresholds and the LFP amplitude ratios in the pre- vs. post-salicylate condition, we found negative correlations in layers 2/3 and 4 for both older strains, and in layer 5 (L5 in older SAMR1. In contrast, the GABAergic agonist muscimol (MSC led to positive correlations between ABR thresholds and LFP amplitude ratios in the pre- vs. post-MSC condition in younger SAM mice from both strains. Further, in younger mice, salicylate decreased the firing rate in AC L4 pyramidal neurons. Thus, salicylate can directly reduce neural excitability of L4 pyramidal neurons and thereby influence AC neural circuit activity. That we

  18. Cryotherapy versus salicylic acid for the treatment of plantar warts (verrucae): a randomised controlled trial

    Science.gov (United States)

    Hewitt, Catherine; Hicks, Kate; Jayakody, Shalmini; Kang’ombe, Arthur Ricky; Stamuli, Eugena; Turner, Gwen; Thomas, Kim; Curran, Mike; Denby, Gary; Hashmi, Farina; McIntosh, Caroline; McLarnon, Nichola; Torgerson, David; Watt, Ian

    2011-01-01

    Objective To compare the clinical effectiveness of cryotherapy versus salicylic acid for the treatment of plantar warts. Design A multicentre, open, two arm randomised controlled trial. Setting University podiatry school clinics, NHS podiatry clinics, and primary care in England, Scotland, and Ireland. Participants 240 patients aged 12 years and over, with a plantar wart that in the opinion of the healthcare professional was suitable for treatment with both cryotherapy and salicylic acid. Interventions Cryotherapy with liquid nitrogen delivered by a healthcare professional, up to four treatments two to three weeks apart. Patient self treatment with 50% salicylic acid (Verrugon) daily up to a maximum of eight weeks. Main outcome measures Complete clearance of all plantar warts at 12 weeks. Secondary outcomes were (a) complete clearance of all plantar warts at 12 weeks controlling for age, whether the wart had been treated previously, and type of wart, (b) patient self reported clearance of plantar warts at six months, (c) time to clearance of plantar wart, (d) number of plantar warts at 12 weeks, and (e) patient satisfaction with the treatment. Results There was no evidence of a difference between the salicylic acid and cryotherapy groups in the proportions of participants with complete clearance of all plantar warts at 12 weeks (17/119 (14%) v 15/110 (14%), difference 0.65% (95% CI –8.33 to 9.63), P=0.89). The results did not change when the analysis was repeated but with adjustment for age, whether the wart had been treated previously, and type of plantar wart or for patients’ preferences at baseline. There was no evidence of a difference between the salicylic acid and cryotherapy groups in self reported clearance of plantar warts at six months (29/95 (31%) v 33/98 (34%), difference –3.15% (–16.31 to 10.02), P=0.64) or in time to clearance (hazard ratio 0.80 (95% CI 0.51 to 1.25), P=0.33). There was also no evidence of a difference in the number of plantar

  19. New insight into photo-bromination processes in saline surface waters: The case of salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tamtam, Fatima; Chiron, Serge, E-mail: serge.chiron@msem.univ-montp2.fr

    2012-10-01

    It was shown, through a combination of field and laboratory observations, that salicylic acid can undergo photo-bromination reactions in sunlit saline surface waters. Laboratory-scale experiments revealed that the photochemical yields of 5-bromosalicylic acid and 3,5-dibromosalicylic acid from salicylic acid were always low (in the 4% range at most). However, this might be of concern since these compounds are potential inhibitors of the 20{alpha}-hydroxysteroid dehydrogenase enzyme, with potential implications in endocrine disruption processes. At least two mechanisms were involved simultaneously to account for the photo-generation of brominated substances. The first one might involve the formation of reactive brominated radical species (Br{center_dot}, Br{sub 2}{center_dot}{sup -}) through hydroxyl radical mediated oxidation of bromide ions. These ions reacted more selectively than hydroxyl radicals with electron-rich organic pollutants such as salicylic acid. The second one might involve the formation of hypobromous acid, through a two electron oxidation of bromine ions by peroxynitrite. This reaction was catalyzed by nitrite, since these ions play a crucial role in the formation of nitric oxide upon photolysis. This nitric oxide further reacts with superoxide radical anions to yield peroxynitrite and by ammonium through the formation of N-bromoamines, probably due to the ability of N-bromoamines to promote the aromatic bromination of phenolic compounds. Field measurements revealed the presence of salicylic acid together with 5-bromosalicylic and 3,5-dibromosalicylic acid in a brackish coastal lagoon, thus confirming the environmental significance of the proposed photochemically induced bromination pathways. -- Highlights: Black-Right-Pointing-Pointer Brominated derivatives of salicylic acid were detected in a brackish lagoon. Black-Right-Pointing-Pointer A photochemical pathway was hypothesized to account for bromination of salicylic acid. Black

  20. Effects of the cannabinoid CB1agonist ACEA on salicylate ototoxicity, hyperacusis and tinnitus in guinea pigs.

    Science.gov (United States)

    Berger, Joel I; Coomber, Ben; Hill, Samantha; Alexander, Steve P H; Owen, William; Palmer, Alan R; Wallace, Mark N

    2017-12-01

    Cannabinoids have been suggested as a therapeutic target for a variety of brain disorders. Despite the presence of their receptors throughout the auditory system, little is known about how cannabinoids affect auditory function. We sought to determine whether administration of arachidonyl-2'-chloroethylamide (ACEA), a highly-selective CB 1 agonist, could attenuate a variety of auditory effects caused by prior administration of salicylate, and potentially treat tinnitus. We recorded cortical resting-state activity, auditory-evoked cortical activity and auditory brainstem responses (ABRs), from chronically-implanted awake guinea pigs, before and after salicylate + ACEA. Salicylate-induced reductions in click-evoked ABR amplitudes were smaller in the presence of ACEA, suggesting that the ototoxic effects of salicylate were less severe. ACEA also abolished salicylate-induced changes in cortical alpha band (6-10 Hz) oscillatory activity. However, salicylate-induced increases in cortical evoked activity (suggestive of the presence of hyperacusis) were still present with salicylate + ACEA. ACEA administered alone did not induce significant changes in either ABR amplitudes or oscillatory activity, but did increase cortical evoked potentials. Furthermore, in two separate groups of non-implanted animals, we found no evidence that ACEA could reverse behavioural identification of salicylate- or noise-induced tinnitus. Together, these data suggest that while ACEA may be potentially otoprotective, selective CB 1 agonists are not effective in diminishing the presence of tinnitus or hyperacusis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.