WorldWideScience

Sample records for glass-encapsulated calcium phosphate

  1. Complexation/encapsulation of green tea polyphenols in mixed calcium carbonate and phosphate micro-particles.

    Science.gov (United States)

    Elabbadi, Amal; Jeckelmann, Nicolas; Haefliger, Olivier P; Ouali, Lahoussine

    2011-01-01

    We used a double-jet mixer to encapsulate water-soluble polyphenols, green tea extract (GTE), with calcium-based inorganic materials. The device mixed calcium chloride solutions with a solution of carbonate and phosphate in the presence of a GTE solution, and formed micro-particles which capture the GTE molecules. The micro-particles were analysed by liquid chromatography coupled to tandem mass spectroscopy to determine the encapsulation yield and loading of the different GTE components. We established correlations between (1) the efficiency of the GTE encapsulation and the composition of the mixed anion solutions and (2) the protonation degree of the ions and the molar ratio of calcium cations and carbonate/phosphate anions. An optimal and reproducible GTE loading of about 40% with an encapsulation yield of 65% was observed for a carbonate/phosphate molar composition of 4 : 1. In addition, our experimental results showed that the process is selective and favours the encapsulation of gallated species which form stronger complexes with calcium cations.

  2. Structure and Degradation Behaviour of Calcium Phosphate Glasses

    International Nuclear Information System (INIS)

    Silva, A M B; Correia, R N; Fernandes, M H V; Oliveira, J M M

    2011-01-01

    Some studies have shown a relationship between glass structure and in vitro mineralization, generally associated with the rate of glass degradation, nature of released ions and subsequent Ca-P precipitation on glass surfaces when immersed in a Simulated Body Fluid (SBF). The knowledge of the ionic species distribution in glasses and of the involved bond strengths can be used to assess the in vitro behaviour of a glass. The role of ions such as silicon or titanium is of major importance for the development of new compositions and also for the control of glass degradation behaviour. A comparative study with two calcium phosphate glasses series was performed: Both glasses series - one with Si and another with Ti - include P 2 O 5 and alkaline earth ions in their compositions. Surface reactivity of glasses from the SiO 2 -containing system have been studied in SBF showing the precipitation of a Ca-P surface layer that increases with increasing MgO/CaO ratio. In glasses from the TiO 2 -containing series it is shown that the increase of TiO 2 contributes for the stabilization of the glass network thus allowing the control of their degradation rate when immersed in SBF. The relationship between structural features of these calcium-phosphate glasses and their degradation behaviour in SBF is discussed in terms of the structural role of Si and Ti ions. It is concluded that glasses with less interconnected species favour the Ca-P surface precipitation. The understanding of this relationship in synthetic physiological fluids is expected to allow the tailoring of glass degradation rates in complex biological systems.

  3. Structure and properties of gadolinium loaded calcium phosphate glasses

    International Nuclear Information System (INIS)

    Wang, Cuiling; Liang, Xiaofeng; Li, Haijian; Yu, Huijun; Li, Zhen; Yang, Shiyuan

    2014-01-01

    The glass samples with composition xGd 2 O 3 –(50 − x)CaO–50P 2 O 5 (0 ⩽ x ⩽ 9 mol%) were prepared by the conventional melt quench method. The structure and properties of gadolinium loaded in calcium phosphate glasses were investigated using XRD, SEM, DTA, IR and Raman spectroscopy. The XRD and SEM analysis for the samples show that the majority of samples are amorphous, and crystallization occurs when the content of Gd 2 O 3 containing is up to 6 mol%. Two main crystalline phases, Ca 2 P 2 O 7 and Gd 3 (P 2 O 7 ) 3 , are embedded in an amorphous matrix. IR and Raman data indicate that glass structure consists of predominantly metaphosphate (Q 2 ) units and the depolymerization of phosphate network with the addition of Gd 2 O 3 . Both the chemical durability and the glass transition temperature (T g ) are improved with the increase of Gd 2 O 3 , which suggests that the Gd acts a role of strengthening the cross-links between the phosphate chains of the glass

  4. Structure and properties of gadolinium loaded calcium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cuiling [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng, E-mail: XFLiang@swust.edu.cn [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Li, Haijian; Yu, Huijun; Li, Zhen [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Yang, Shiyuan [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2014-10-15

    The glass samples with composition xGd{sub 2}O{sub 3}–(50 − x)CaO–50P{sub 2}O{sub 5} (0 ⩽ x ⩽ 9 mol%) were prepared by the conventional melt quench method. The structure and properties of gadolinium loaded in calcium phosphate glasses were investigated using XRD, SEM, DTA, IR and Raman spectroscopy. The XRD and SEM analysis for the samples show that the majority of samples are amorphous, and crystallization occurs when the content of Gd{sub 2}O{sub 3} containing is up to 6 mol%. Two main crystalline phases, Ca{sub 2}P{sub 2}O{sub 7} and Gd{sub 3}(P{sub 2}O{sub 7}){sub 3}, are embedded in an amorphous matrix. IR and Raman data indicate that glass structure consists of predominantly metaphosphate (Q{sup 2}) units and the depolymerization of phosphate network with the addition of Gd{sub 2}O{sub 3}. Both the chemical durability and the glass transition temperature (T{sub g}) are improved with the increase of Gd{sub 2}O{sub 3}, which suggests that the Gd acts a role of strengthening the cross-links between the phosphate chains of the glass.

  5. Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair

    Science.gov (United States)

    Weir, Michael D.; Xu, Hockin H.K.

    2010-01-01

    Due to its injectability and excellent osteoconductivity, calcium phosphate cement (CPC) is highly promising for orthopedic applications. However, a literature search revealed no report on human bone marrow mesenchymal stem cell (hBMSC) encapsulation in CPC for bone tissue engineering. The aim of this study was to encapsulate hBMSCs in alginate hydrogel beads and then incorporate them into CPC, CPC–chitosan and CPC–chitosan–fiber scaffolds. Chitosan and degradable fibers were used to mechanically reinforce the scaffolds. After 21 days, that the percentage of live cells and the cell density of hBMSCs inside CPC-based constructs matched those in alginate without CPC, indicating that the CPC setting reaction did not harm the hBMSCs. Alkaline phosphate activity increased by 8-fold after 14 days. Mineral staining, scanning electron microscopy and X-ray diffraction confirmed that apatitic mineral was deposited by the cells. The amount of hBMSC-synthesized mineral in CPC–chitosan–fiber matched that in CPC without chitosan and fibers. Hence, adding chitosan and fibers, which reinforced the CPC, did not compromise hBMSC osteodifferentiation and mineral synthesis. In conclusion, hBMSCs were encapsulated in CPC and CPC–chitosan–fiber scaffolds for the first time. The encapsulated cells remained viable, osteodifferentiated and synthesized bone minerals. These self-setting, hBMSC-encapsulating CPC-based constructs may be promising for bone tissue engineering applications. PMID:20451676

  6. Development of novel strontium containing bioactive glass based calcium phosphate cement.

    Science.gov (United States)

    D'Onofrio, A; Kent, N W; Shahdad, S A; Hill, R G

    2016-06-01

    The aim of this study was to investigate the effect on properties of increasing strontium substitution for calcium in bioactive glasses used as precursors for novel calcium phosphate cements. Glasses were produced by progressively substituting strontium for calcium. Cements were prepared by mixing the glass powder with Ca(H2PO4)2 powder with a 2.5% solution of Na2HPO4. Setting times and compressive strength were measured after 1h, 1 day, 7 days and 28 days immersion in Tris buffer solution. X-ray diffraction (XRD), Fourier transform infrared spectroscopy and radiopacity were measured and crystal morphology was assessed using scanning electron microscopy. A correlation between the phases formed, morphology of the crystallites, setting time and compressive strength were analyzed. Setting time increased proportionally with strontium substitution in the glass up to 25%, whereas for higher substitutions it decreased. Compressive strength showed a maximum value of 12.5MPa and was strongly influenced by the interlocking of the crystals and their morphology. XRD showed that the presence of strontium influenced the crystal phases formed. Octacalcium phosphate (Ca8H2(PO4)6·5H2O, OCP) was the main phase present after 1h and 1 day whereas after 28 days OCP was completely transformed to strontium-containing hydroxyapatite (SrxCa(10-x)(PO4)6(OH)2, SrHA). Radiopacity increased proportionally to strontium substitution in the glass. A novel method to develop a bone substitute forming in vitro SrHA as a final product by using a bioactive glass as a precursor was shown. These novel injectable bioactive glass cements are promising materials for dental and orthopedic applications. Further in vivo characterizations are being conducted. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Osteogenic activity of cyclodextrin-encapsulated doxycycline in a calcium phosphate PCL and PLGA composite

    Energy Technology Data Exchange (ETDEWEB)

    Trajano, V.C.C.; Costa, K.J.R. [Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais (Brazil); Lanza, C.R.M. [Department of Oral Clinical, Surgery and Pathology, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais (Brazil); Sinisterra, R.D. [Chemistry Department, ICEX, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais (Brazil); Cortés, M.E., E-mail: mecortes@ufmg.br [Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2016-07-01

    Composites of biodegradable polymers and calcium phosphate are bioactive and flexible, and have been proposed for use in tissue engineering and bone regeneration. When associated with the broad-spectrum antibiotic doxycycline (DOX), they could favor antimicrobial action and enhance the action of osteogenic composites. Composites of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and a bioceramic of biphasic calcium phosphate Osteosynt® (BCP) were loaded with DOX encapsulated in β-cyclodextrin (βCD) and were evaluated for effects on osteoblastic cell cultures. The DOX/βCD composite was prepared with a double mixing method. Osteoblast viability was assessed with methyl tetrazolium (MTT) assays after 1 day, 7 day, and 14 days of composite exposure; alkaline phosphatase (AP) activity and collagen production were evaluated after 7 days and 14 days, and mineral nodule formation after 14 days. Composite structures were evaluated by scanning electron microscopy (SEM). Osteoblasts exposed to the composite containing 25 μg/mL DOX/βCD had increased cell proliferation (p < 0.05) compared to control osteoblast cultures at all experimental time points, reaching a maximum in the second week. AP activity and collagen secretion levels were also elevated in osteoblasts exposed to the DOX/βCD composite (p < 0.05 vs. controls) and reached a maximum after 14 days. These results were corroborated by Von Kossa test results, which showed strong formation of mineralization nodules during the same time period. SEM of the composite material revealed a surface topography with pore sizes suitable for growing osteoblasts. Together, these results suggest that osteoblasts are viable, proliferative, and osteogenic in the presence of a DOX/βCD-containing BCP ceramic composite. - Highlights: • Doxycycline encapsulated in β-cyclodextrin was incorpored into a polycaprolactone - poly(lactic-co-glycolic acid) - calcium phosphate • Composite’s scaffold carrying doxycycline

  8. Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method

    International Nuclear Information System (INIS)

    Jmal, Nouha; Bouaziz, Jamel

    2017-01-01

    In this work, a calcium-phosphate glass-ceramics was successfully obtained by heat treatment of a mixture of 26.52 in wt.% of fluorapatite (Fap) and 73.48 in wt.% of 77S (77 SiO 2 −14 CaO−9 P 2 O 5 in wt.%) gel. The calcium phosphate-glass-ceramics was prepared by sol-gel process with tetraethyl orthosilicate (TEOS), triethyl phosphate (TEP), calcium nitrate and fluorapatite. The synthesized powders were characterized by some commonly used tools such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), 31 P magic angle spinning nuclear magnetic resonance (MAS-NMR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thin-film X-ray diffraction (TF-XRD). The obtained results seemed to confirm the nucleation and growth of hydroxyapatite (Hap) nano-phase in the glass. Moreover, an in-vitro evaluation of the glass-ceramic was performed. In addition, to assess its bioactive capacity, it was soaked in simulated body fluid (SBF) at different time intervals. The SEM, EDS and TF-XRD analyses showed the deposition of hydroxyapatite on the surface of the specimens after three days of immersion in SBF solution. The mechanical properties of the obtained material such as rupture strength, Vickers hardness and elastic modulus were measured. In addition, the friction coefficient of calcium phosphate-glass-ceramics was tested. The values of the composite of rupture strength (24 MPa), Vickers hardness (214 Hv), Young's modulus (52.3 GPa), shear modulus (19 GPa) and friction coefficient (0.327) were obtained. This glass-ceramics can have useful applications in dental prostheses. Indeed, this material may have promising applications for implants because of its content of fluorine, the effective protector against dental caries. - Highlights: • A novel three phases Fap-Hap-glass-ceramics is prepared by sol–gel route. • Results showed a nucleation and growth of hydroxyapatite nano-phase in the glass. • Fap-Hap-glass

  9. Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method

    Energy Technology Data Exchange (ETDEWEB)

    Jmal, Nouha, E-mail: jmalnouha@gmail.com; Bouaziz, Jamel

    2017-02-01

    In this work, a calcium-phosphate glass-ceramics was successfully obtained by heat treatment of a mixture of 26.52 in wt.% of fluorapatite (Fap) and 73.48 in wt.% of 77S (77 SiO{sub 2}−14 CaO−9 P{sub 2}O{sub 5} in wt.%) gel. The calcium phosphate-glass-ceramics was prepared by sol-gel process with tetraethyl orthosilicate (TEOS), triethyl phosphate (TEP), calcium nitrate and fluorapatite. The synthesized powders were characterized by some commonly used tools such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), {sup 31}P magic angle spinning nuclear magnetic resonance (MAS-NMR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thin-film X-ray diffraction (TF-XRD). The obtained results seemed to confirm the nucleation and growth of hydroxyapatite (Hap) nano-phase in the glass. Moreover, an in-vitro evaluation of the glass-ceramic was performed. In addition, to assess its bioactive capacity, it was soaked in simulated body fluid (SBF) at different time intervals. The SEM, EDS and TF-XRD analyses showed the deposition of hydroxyapatite on the surface of the specimens after three days of immersion in SBF solution. The mechanical properties of the obtained material such as rupture strength, Vickers hardness and elastic modulus were measured. In addition, the friction coefficient of calcium phosphate-glass-ceramics was tested. The values of the composite of rupture strength (24 MPa), Vickers hardness (214 Hv), Young's modulus (52.3 GPa), shear modulus (19 GPa) and friction coefficient (0.327) were obtained. This glass-ceramics can have useful applications in dental prostheses. Indeed, this material may have promising applications for implants because of its content of fluorine, the effective protector against dental caries. - Highlights: • A novel three phases Fap-Hap-glass-ceramics is prepared by sol–gel route. • Results showed a nucleation and growth of hydroxyapatite nano-phase in the glass.

  10. Incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass-ionomer cement.

    Science.gov (United States)

    Mazzaoui, S A; Burrow, M F; Tyas, M J; Dashper, S G; Eakins, D; Reynolds, E C

    2003-11-01

    Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) nanocomplexes have been shown to prevent demineralization and promote remineralization of enamel subsurface lesions in animal and in situ caries models. The aim of this study was to determine the effect of incorporating CPP-ACP into a self-cured glass-ionomer cement (GIC). Incorporation of 1.56% w/w CPP-ACP into the GIC significantly increased microtensile bond strength (33%) and compressive strength (23%) and significantly enhanced the release of calcium, phosphate, and fluoride ions at neutral and acidic pH. MALDI mass spectrometry also showed casein phosphopeptides from the CPP-ACP nanocomplexes to be released. The release of CPP-ACP and fluoride from the CPP-ACP-containing GIC was associated with enhanced protection of the adjacent dentin during acid challenge in vitro.

  11. Physical and optical properties of calcium sulfate ultra-phosphate glass-doped Er2O3

    Science.gov (United States)

    Aliyu, Aliyu Mohammed; Hussin, R.; Deraman, Karim; Ahmad, N. E.; Danmadami, Amina M.; Yamusa, Y. A.

    2018-03-01

    The influence of erbium on physical and optical properties of calcium sulfate ultra-phosphate glass was investigated using conventional melt quench process. Selected samples of composition 20CaSO4 (80 - x) P2O5- xEr2O3 with 0.1 ≤x ≤ 0.9 mol.% were prepared and assessed. X-ray diffraction (XRD) techniques were used to confirm the amorphous nature of the said samples. The structural units of phosphate-based glass were assessed from Raman spectra as ultra-(Q3), meta-(Q2), pyro-(Q1) and orthophosphate (Q0) units. Depolymerization process of the glasses was testified for higher calcium oxide content and UV-visible for optical measurement. Thermal analysis have been investigated by means of thermogravimetric analysis. The results show the decomposition of materials in the temperature range of 25∘C-1000∘C. Er3+ absorption spectra were measured in the range of 400-1800nm. PL measurement was carried out in order to obtain the excitation and emission spectra of the samples. The emission spectra excited at 779nm comprises of 518nm, 550nm and 649nm of transition 4F9/2, 4S3/2 and 2H11/2 excited states to 4I15/2 ground state. In physical properties, the density calculated using Archimedes method is inversely proportional to molar volume with increase in Er3+ ions. Optical bandgap (Eg) were determined using Tauc’s plots for direct transitions where Eg (direct) decreases with increase in erbium content. The refractive index increases with decreasing molar volume; this may have a tendency for larger optical bandgap. The result obtained from the glass matrix indicates that erbium oxide-doped calcium sulfate ultra-phosphate may give important information for wider development of functional glasses.

  12. Calcium phosphate glass-ceramics for bioactive coating on a β-titanium alloy

    International Nuclear Information System (INIS)

    Kasuga, T.; Nogami, M.; Niinomi, M.

    2003-01-01

    The formation of a porous coating is the decisive feature for the bio-compatibility of silica-free calcium phosphate glass ceramics on alloy surfaces like the β-Ti structured Ti-29Nb-13Ta-4.6Zr used in this work. The ceramic composition is highly important: 50CaO-40P 2 O 5 -7Na 2 O-3TiO 2 glass powder produces a pore-free coating unable to bind hydroxyapatite, whereas 60CaO-30P 2 O 5 -7Na 2 O-3TiO 2 glass incorporates pores from which a crystalline hydroxyapatite phase can grow over the surface from simulated body fluid (see Figure). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  13. Calcium phosphate glass-ceramics for bioactive coating on a {beta}-titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kasuga, T.; Nogami, M. [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Niinomi, M. [Department of Production Systems Engineering, Toyohashi University of Technology, Tenpaku-cho, Toyohashi 441-8580 (Japan)

    2003-07-01

    The formation of a porous coating is the decisive feature for the bio-compatibility of silica-free calcium phosphate glass ceramics on alloy surfaces like the {beta}-Ti structured Ti-29Nb-13Ta-4.6Zr used in this work. The ceramic composition is highly important: 50CaO-40P{sub 2}O{sub 5}-7Na{sub 2}O-3TiO{sub 2} glass powder produces a pore-free coating unable to bind hydroxyapatite, whereas 60CaO-30P{sub 2}O{sub 5}-7Na{sub 2}O-3TiO{sub 2} glass incorporates pores from which a crystalline hydroxyapatite phase can grow over the surface from simulated body fluid (see Figure). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  14. Structure and properties of calcium iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Bin [School of Science, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng, E-mail: xfliangswust@gmail.com [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Cuiling; Yang, Shiyuan [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2013-11-15

    The structural properties of xCaO–(100 − x) (0.4Fe{sub 2}O{sub 3}–0.6P{sub 2}O{sub 5}) (x = 0, 10, 20, 30, 40, 50 mol%) glasses have been investigated by XRD, DTA, IR and Raman spectroscopy. XRD analysis has confirmed that the majority of samples are X-ray amorphous, and EDS analysis indicates that the glass matrix can accommodate ≈30 mol% CaO. IR and Raman spectra show that the glass structure consists predominantly of pyrophosphate (Q{sup 1}) units. IR spectra indicate that the phosphate network is depolymerized with the addition of CaO content. The density and glass transition temperature (T{sub g}) increase with increasing CaO content for the glasses. This behavior indicates that the addition of CaO improves the strength of the cross-links between the phosphate chains of the glass.

  15. Preparation and Characterization of Porous Calcium Phosphate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    Honglian Dai; Xinyu Wang; Yinchao Han; Xin Jiang; Shipu Li

    2011-01-01

    β-tricalcium phosphate (β-TCP) powder and Na2O-CaO-MgO-P2O5 glass binder were synthesized and mixed, and then the biodegradable porous calcium phosphate ceramics were successfully prepared by foaming and sintering at 850℃. The as-prepared ceramics possess a high porosity with partial three-dimension interconnected macro- and micro-pores. As in vitro experiment testified, the calcium phosphate ceramics (CPCs) has good degradability.

  16. Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

    Energy Technology Data Exchange (ETDEWEB)

    ALAM,TODD M.

    1999-12-21

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  17. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass.

    Science.gov (United States)

    Nganga, Sara; Zhang, Di; Moritz, Niko; Vallittu, Pekka K; Hupa, Leena

    2012-11-01

    Glass-fiber-reinforced composites (FRCs), based on bifunctional methacrylate resin, have recently shown their potential for use as durable cranioplasty, orthopedic and oral implants. In this study we suggest a multi-component sandwich implant structure with (i) outer layers out of porous FRC, which interface the cortical bone, and (ii) inner layers encompassing bioactive glass granules, which interface with the cancellous bone. The capability of Bioglass(®) 45S5 granules (100-250μm) to induce calcium phosphate formation on the surface of the FRC was explored by immersing the porous FRC-Bioglass laminates in simulated body fluid (SBF) for up to 28d. In both static (agitated) and dynamic conditions, bioactive glass granules induced precipitation of calcium phosphate at the laminate surfaces as confirmed by scanning electron microscopy. The proposed dynamic flow system is useful for the in vitro simulation of bone-like apatite formation on various new porous implant designs containing bioactive glass and implant material degradation. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Human embryonic stem cell-encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering

    Science.gov (United States)

    Tang, Minghui; Chen, Wenchuan; Weir, Michael D.; Thein-Han, Wahwah; Xu, Hockin H. K.

    2012-01-01

    Human embryonic stem cells (hESCs) are exciting for regenerative medicine applications because of their strong proliferative ability and multilineage differentiation capability. To date there has been no report on hESC seeding with calcium phosphate cement (CPC). The objective of this study was to investigate hESC-derived mesenchymal stem cell (hESCd-MSC) encapsulation in hydrogel microbeads in macroporous CPC for bone tissue engineering. hESCs were cultured to form embryoid bodies (EBs), and the MSCs were then migrated out of the EBs. hESCd-MSCs had surface markers characteristic of MSCs, with positive alkaline phosphatase (ALP) staining when cultured in osteogenic medium. hESCd-MSCs were encapsulated in alginate at a density of 1 million cells/mL, with an average microbead size of 207 µm. CPC contained mannitol porogen to create a porosity of 64% and macropores with size of 218 µm, with 20% absorbable fibers for additional porosity when the fibers degrade. hESCd-MSCs encapsulated in microbeads in CPC had good viability from 1 to 21 d. ALP gene expression at 21 d was 25-fold that at 1 d. Osteocalcin (OC) at 21 d was two orders of magnitude of that at 1 d. ALP activity in colorimetric p-nitrophenyl phosphate assay at 21 d was 5-fold that at 1 d. Mineral synthesis by the encapsulated hESCd-MSCs at 21 d was 7-fold that at 1 d. Potential benefits of the CPC-stem cell paste include injectability, intimate adaptation to complex-shaped bone defects, ease in contouring to achieve esthetics in maxillofacial repairs, and in situ setting ability. In conclusion, hESCd-MSCs were encapsulated in alginate microbeads in macroporous CPC showing good cell viability, osteogenic differentiation and mineral synthesis for the first time. The hESCd-MSC-encapsulating macroporous CPC construct is promising for bone regeneration in a wide range of orthopedic and maxillofacial applications. PMID:22633970

  19. Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses

    International Nuclear Information System (INIS)

    Heath, Paul G.; Corkhill, Claire L.; Stennett, Martin C.; Hand, Russell J.; Meyer, Willem C.H.M.; Hyatt, Neil C.

    2013-01-01

    Tri-Structural Isotropic (TRISO) coated particle-fuel is a key component in designs for future high temperature nuclear reactors. This study investigated the suitability of three soda lime silicate glass compositions, for the encapsulation of simulant TRISO particle fuel. A cold press and sinter (CPS) methodology was employed to produce TRISO particle–glass composites. Composites produced were determined to have an aqueous durability, fracture toughness and Vickers’ hardness comparable to glasses currently employed for the disposal of high level nuclear wastes. Sintering at 700 °C for 30 min was found to remove all interconnected porosity from the composite bodies and oxidation of the outer pyrolytic carbon layer during sintering was prevented by processing under a 5% H 2 /N 2 atmosphere. However, the outer pyrolytic carbon layer was not effectively wetted by the encapsulating glass matrix. The aqueous durability of the TRISO particle–glass composites was investigated using PCT and MCC-1 tests combined with geochemical modelling. It was found that durability was dependent on silicate and calcium solution saturation. This study provides significant advancements in the preparation of TRISO particle encapsulant waste forms. The potential for the use of non-borosilicate sintered glass composites for TRISO particle encapsulation has been confirmed, although further refinements are required

  20. Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Paul G.; Corkhill, Claire L.; Stennett, Martin C.; Hand, Russell J. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, Robert Hadfield Building, University of Sheffield, Sheffield S1 3JD (United Kingdom); Meyer, Willem C.H.M. [Necsa, South African Nuclear Energy Corporation, PO Box 582, Pretoria, Gauteng (South Africa); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, Robert Hadfield Building, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2013-05-15

    Tri-Structural Isotropic (TRISO) coated particle-fuel is a key component in designs for future high temperature nuclear reactors. This study investigated the suitability of three soda lime silicate glass compositions, for the encapsulation of simulant TRISO particle fuel. A cold press and sinter (CPS) methodology was employed to produce TRISO particle–glass composites. Composites produced were determined to have an aqueous durability, fracture toughness and Vickers’ hardness comparable to glasses currently employed for the disposal of high level nuclear wastes. Sintering at 700 °C for 30 min was found to remove all interconnected porosity from the composite bodies and oxidation of the outer pyrolytic carbon layer during sintering was prevented by processing under a 5% H{sub 2}/N{sub 2} atmosphere. However, the outer pyrolytic carbon layer was not effectively wetted by the encapsulating glass matrix. The aqueous durability of the TRISO particle–glass composites was investigated using PCT and MCC-1 tests combined with geochemical modelling. It was found that durability was dependent on silicate and calcium solution saturation. This study provides significant advancements in the preparation of TRISO particle encapsulant waste forms. The potential for the use of non-borosilicate sintered glass composites for TRISO particle encapsulation has been confirmed, although further refinements are required.

  1. [In vitro drug release behavior of carrier made of porous glass ceramics].

    Science.gov (United States)

    Wang, De-ping; Huang, Wen-hai; Zhou, Nai

    2002-09-01

    To conduct the in vitro test on drug release of rifampin encapsulated in a carrier made of porous phosphate glass ceramics and to analyze main factors which affect the drug release rate. A certain quantitative of rifampin was sealed in a hollow cylindrical capsule which consisted of chopped calcium phosphate crystal fiber obtained from glass crystallization. The rifampin concentration was measured in the simulated physiological solution in which the capsule soaked. Rifampin could be released in a constant rate from the porous glass ceramic carrier in a long time. The release rate was dependent on the size of crystal fiber and the wall thickness of the capsule. This kind of calcium phosphate glass ceramics can be a candidate of the carrier materials used as long term drug therapy after osteotomy surgery.

  2. Molecular glasses for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Ropp, R.C.

    1982-01-01

    The use of a molecular glass based upon a polymerized phosphate of aluminum (PAP), indium or gallium overcomes all of the prior objections to use of glass as a high-level nuclear waste (HLW) encapsulation agent. This HLW glass product could not be made to devitrify, dissolved all of the oxides found in calcine, including the difficultly soluble ones, did not form microcrystallites in the melt or subsequent glass-casting, and possessed a hydrolytic etching rate to boiling water even lower than that of HLW-ZBS glass. A precursor compound, M(H 2 PO 4 ) 3 , is prepared, where M is a trivalent metal selected from the group consisting of aluminum, indium and gallium. The impurity level is carefully controlled so as not to exceed 300 ppm total. The precursor crystals may be washed to remove excess phosphoric acid as desired. HLW is added to the crystals and the mixture is then heated at a controlled heating rate to induce solid state polymerization and to form a melt at 1350 degrees C in which the HLW oxides dissolve rapidly

  3. Alkaline resistant phosphate glasses and method of preparation and use thereof

    Science.gov (United States)

    Brow, Richard K.; Reis, Signo T.; Velez, Mariano; Day, Delbert E.

    2010-01-26

    A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.

  4. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  5. Synthesis of calcium phosphate hydrogel from waste incineration fly ash and bone powder

    International Nuclear Information System (INIS)

    Fukui, Kunihiro; Arimitsu, Naoki; Kidoguchi, Satoshi; Yamamoto, Tetsuya; Yoshida, Hideto

    2009-01-01

    Waste incineration fly ash and bone powder could be successfully recycled into calcium phosphate hydrogel, a type of fast proton conductor. Various properties of the intermediate and calcium phosphate hydrogel from them were characterized and compared with that from calcium carbonate reagent. It was found that the intermediate from the incineration fly ash and calcium phosphate glass was more brittle than that from bone powder and calcium carbonate reagent. The electric conductivity of crystallized hydrogel obtained from all raw materials increases exponentially with temperature. However, the crystallized hydrogel from incineration fly ash has lower electric conductivity and lower crystallinity than that from bone powder and the reagent. Moreover, the difference in electric conductivity between these crystallized hydrogels decreases with temperature. Compared with using the reagent as a raw material, bone powder provides a 25% reduction in the usage of H 3 PO 4 to acquire the crystallized hydrogel which has the highest conductivity. These experimental results suggest that the incineration fly ash and bone powder are useful calcium sources for the synthesis of calcium phosphate hydrogel

  6. Preparation of DNA/Gold Nanoparticle Encapsulated in Calcium Phosphate

    Directory of Open Access Journals (Sweden)

    Tomoko Ito

    2011-01-01

    Full Text Available Biocompatible DNA/gold nanoparticle complex with a protective calcium phosphate (CaP coating was prepared by incubating DNA/gold nanoparticle complex coated by hyaluronic acid in SBF (simulated body fluid with a Ca concentration above 2 mM. The CaP-coated DNA complex was revealed to have high compatibility with cells and resistance against enzymatic degradation. By immersion in acetate buffer (pH 4.5, the CaP capsule released the contained DNA complex. This CaP capsule including a DNA complex is promising as a sustained-release system of DNA complexes for gene therapy.

  7. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  8. Development of a calcium phosphate co-precipitate/poly(lactide-co-glycolide) DNA delivery system: release kinetics and cellular transfection studies.

    Science.gov (United States)

    Kofron, Michelle D; Laurencin, Cato T

    2004-06-01

    One of the most common non-viral methods for the introduction of foreign deoxyribonucleic acid (DNA) into cultured cells is calcium phosphate co-precipitate transfection. This technique involves the encapsulation of DNA within a calcium phosphate co-precipitate, particulate addition to in vitro cell culture, endocytosis of the co-precipitate, and exogenous DNA expression by the transfected cell. In this study, we fabricated a novel non-viral gene transfer system by adsorbing DNA, encapsulated in calcium phosphate (DNA/Ca-P) co-precipitates, to biodegradable two- and three-dimensional poly(lactide-co-glycolide) matrices (2D-DNA/Ca-P/PLAGA, 3D-DNA/Ca-P/PLAGA). Co-precipitate release studies demonstrated an initial burst release over the first 48 h. By day 7, approximately 96% of the initially adsorbed DNA/Ca-P co-precipitate had been released. This was followed by low levels of co-precipitate release for 42 days. Polymerase chain reaction was used to demonstrate the ability of the released DNA containing co-precipitates to transfect SaOS-2 cells cultured in vitro on the 3D-DNA/Ca-P/PLAGA matrix and maintenance of the structural integrity of the exogenous DNA. In summary, a promising system for the incorporation and controlled delivery of exogenous genes encapsulated within a calcium phosphate co-precipitate from biodegradable polymeric matrices has been developed and may have applicability to the delivery of therapeutic genes and the transfection of other cell types.

  9. Protein-adsorption and Ca-phosphate formation on chitosan-bioactive glass composite coatings

    Science.gov (United States)

    Wagener, V.; Boccaccini, A. R.; Virtanen, S.

    2017-09-01

    In the last years, chitosan-bioactive glass (BG) composites have been developed and investigated as bioactive coatings for orthopedic applications. The increase of bioactivity occurs due to the stimulation of calcium-phosphate/hydroxyapatite formation on the surface while the coating is degrading. In the present work, protein adsorption and its influence on calcium-phosphate precipitation was studied for the first time on such composite coatings. The experiments involved coating of 316L stainless steel substrates with chitosan (Ch) and chitosan-bioactive glass (Ch-BG) and immersion of the coated samples in two different bovine serum albumin (BSA) containing solutions, namely DI H2O (with pH adjusted to about 7.2 with diluted NaOH) and simulated body fluid (SBF). In order to investigate the influence of protein adsorption on calcium-phosphate precipitation, samples were also immersed in DI H2O and in SBF without BSA. Samples were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Surface analysis revealed that adsorption of BSA takes place on all studied samples and that protein adsorption is influenced by the presence of Ca2+ and PO43- ions. Bioactivity in the form of hydroxyapatite pre-stage formation is significantly increased on Ch-BG composite coating as compared with bare stainless steel surface. However, calcium-phosphate precipitation in SBF is reduced by the presence of BSA.

  10. Calcium phosphates: what is the evidence?

    Science.gov (United States)

    Larsson, Sune

    2010-03-01

    A number of different calcium phosphate compounds such as calcium phosphate cements and solid beta-tricalcium phosphate products have been introduced during the last decade. The chemical composition mimics the mineral phase of bone and as a result of this likeness, the materials seem to be remodeled as for normal bone through a cell-mediated process that involves osteoclastic activity. This is a major difference when compared with, for instance, calcium sulphate compounds that after implantation dissolve irrespective of the new bone formation rate. Calcium phosphates are highly biocompatible and in addition, they act as synthetic osteoconductive scaffolds after implantation in bone. When placed adjacent to bone, osteoid is formed directly on the surface of the calcium phosphate with no soft tissue interposed. Remodeling is slow and incomplete, but by adding more and larger pores, like in ultraporous beta-tricalcium phosphate, complete or nearly complete resorption can be achieved. The indications explored so far include filling of metaphyseal fracture voids or bone cysts, a volume expander in conjunction with inductive products, and as a carrier for various growth factors and antibiotics. Calcium phosphate compounds such as calcium phosphate cement and beta-tricalcium phosphate will most certainly be part of the future armamentarium when dealing with fracture treatment. It is reasonable to believe that we have so far only seen the beginning when it comes to clinical applications.

  11. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T.R.; Govindaraj, R.; Govindan Kutty, K.V.; Vasudeva Rao, P.R.

    2014-01-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe 3+ /Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300–700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass

  12. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  13. Structural and physico-chemical analysis of calcium/strontium substituted, near-invert phosphate based glasses for biomedical applications.

    Science.gov (United States)

    Patel, U; Moss, R M; Hossain, K M Z; Kennedy, A R; Barney, E R; Ahmed, I; Hannon, A C

    2017-09-15

    important role in the treatment of osteoporosis. We show firstly that the substitution of strontium for calcium in bioactive phosphate glasses can be used to control the dissolution rate of the glass, and hence the rate at which therapeutic ions are delivered. We then go on to examine in detail the influence of Sr/Ca substitution on the atomic sites in the glass, using advanced structural probes, especially neutron diffraction. The environments of most cations in the glass are unaffected by the substitution, with the exception of Mg, which becomes more disordered. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  14. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin [VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130011,China (China); Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Zhang, Chi [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041 (China); Li, Chunyan [VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130011,China (China); Weir, Michael D. [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Wang, Ping, E-mail: pwang@umaryland.edu [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Reynolds, Mark A. [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Zhao, Liang, E-mail: lzhaonf@126.com [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515 (China); Xu, Hockin H.K. [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore County, MD 21250 (United States)

    2016-12-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p < 0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p > 0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14 d was 14-fold that at 1 d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. - Highlights: • The osteogenic differentiation of hiPSC-MSCs from different origins, hDPSCs and hBMSCs were first investigated and compared in this study. • hDPSCs and hiPSC-MSCs from bone marrow represented viable alternatives to hBMSCs in bone tissue engineering. • hi

  15. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair

    International Nuclear Information System (INIS)

    Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D.; Wang, Ping; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H.K.

    2016-01-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p < 0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p > 0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14 d was 14-fold that at 1 d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. - Highlights: • The osteogenic differentiation of hiPSC-MSCs from different origins, hDPSCs and hBMSCs were first investigated and compared in this study. • hDPSCs and hiPSC-MSCs from bone marrow represented viable alternatives to hBMSCs in bone tissue engineering. • hi

  16. Calcium phosphates for biomedical applications

    Directory of Open Access Journals (Sweden)

    Maria Canillas

    2017-05-01

    Full Text Available The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies.

  17. Calcium phosphates for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Pena, P.; Aza, A.H. de; Rodriguez, M.A.

    2017-07-01

    The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies. (Author)

  18. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles.

    Science.gov (United States)

    Chiari, Marina D S; Rodrigues, Marcela C; Xavier, Tathy A; de Souza, Eugen M N; Arana-Chavez, Victor E; Braga, Roberto R

    2015-06-01

    To evaluate the effect of the replacement of barium glass by dicalcium phosphate dihydrate (DCPD) particles on the mechanical properties and degree of conversion (DC) of composites. Additionally, calcium and hydrogen phosphate (HPO4(2-)) release were followed for 28 days. Nine composites containing equal parts (in mols) of BisGMA and TEGDMA and 40, 50 or 60 vol% of total filler were manipulated. Filler phase was constituted by silanated barium glass and 0%, 10% or 20% of DCPD particles. DC was determined by near-FTIR. Biaxial flexural strength (BFS) and modulus (E) were tested using the "piston on three balls" method, while fracture toughness (KIc) used the "single edge notched beam" method. Specimens were tested after 24h and 28 days in water. Ion release was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Data were analyzed by ANOVA/Tukey (DC and ion release) or Kruskal-Wallis/Mann-Whitney (mechanical properties; alpha: 5%). DC was not affected by DCPD. The presence of DCPD reduced BFS for both storage times, while differences in E became evident after 28 days. After 24h, KIc increased with the addition of DCPD; after 28 days, however, KIc decreased only for DCPD-containing composites. Calcium release was similar for both DCPD contents and remained fairly constant during the 28-day period. Overall, HPO4(2-) release was higher at 7 days and did not decrease after 14 days. The composite with the highest filler level and 10% DCPD represented the best compromise between mechanical properties after aging in water and ion release. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Characterization of radiative properties of Nd{sub 2}O{sub 3} doped phosphate and silicate glasses for solid state laser

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, P., E-mail: pnandi@barc.gov.in; Shukla, R., E-mail: pnandi@barc.gov.in; Goswami, M., E-mail: pnandi@barc.gov.in [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2014-04-24

    Nd{sub 2}O{sub 3} doped calcium aluminium phosphate and calcium aluminium silicate glasses prepared to compare their absorption and emission properties. Radiative lifetime of the excited state {sup 4}F{sub 3/2} derived by Judd-Ofelt theory applied to the absorption spectra. Using the photoluminescence spectrometer the steady state emission and relaxation time from excited energy level recorded under green light excitation. Phosphate glass has higher emission cross-section, higher radiative lifetime but less quantum efficiency due to non-radiative quenching through hydroxyl ions compared to silicate glass for Nd{sup 3+}:{sup 4}F{sub 3/2}→{sup 4}I{sub 9/2} emission.

  20. Preparation of calcium phosphate paste

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Norzita Yaacob; Idris Besar; Che Seman Mahmood; Rusnah Mustafa

    2010-01-01

    Calcium phosphate paste were prepared by mixing between calcium sodium potassium phosphate, Ca 2 NaK (PO 4 ) 2 (CSPP) and monocalcium phosphate monohydrate, Ca(H 2 PO 4 ) 2 .H 2 O (MCPM). CSPP were obtained by reaction between calcium hydrogen phosphate (CaHPO 4 ), potassium carbonate (K 2 CO 3 ) and sodium carbonate (Na 2 CO 3 ) in solid state sintering process followed by quenching in air at 1000 degree Celsius. The paste was aging in simulated body fluid (SBF) for 0.5, 1, 3, 6, 12, 24, 48 hrs, 3, 7 and 14 days. The morphological investigation indicated the formation of apatite crystal were first growth after 24 hours. The obvious growth of apatite crystal was shown at 3 days. The obvious growth of apatite crystal was shown in 7 and 14 days indicated the prediction of paste would have rapid reaction with bone after implantation. (author)

  1. Optical and spectroscopic investigation on Calcium Borotellurite glass system

    Science.gov (United States)

    Paz, E. C.; Lodi, T. A.; Gomes, B. R. A.; Melo, G. H. A.; Pedrochi, F.; Steimacher, A.

    2016-05-01

    In this work, the glass formation in Calcium Borotellurite (CBTx) system and their optical properties were studied. Six glass samples were prepared by melt-quenching technique and the samples obtained are transparent, lightly yellowish, without any visible crystallites. The results showed that TeO2 addition increases the density, the electronic polarizability and, consequently, the refractive index. The increase of electronic polarizability and optical basicity suggest that TeO2 addition increases the non-bridging oxygen (NBO) concentration. The increase of TeO2 shifts the band edge to longer wavelength owing to increase in non-bridging oxygen ions, resulting in a linear decrease of optical energy gap. The addition of TeO2 increases the temperature coefficient of the optical path length (dS/dT) in room temperature, which are comparable to phosphate and lower than Low Silica Calcium Alumino Silicate (LSCAS) glasses. The values of dS/dT present an increase as a function of temperature for all the samples measured. The results suggest that CBTx is a good candidate for rare-earth doping and several optical applications.

  2. SEALING ABILITY OF MINERAL TRIOXIDE AGGREGATE, CALCIUM PHOSPHATE CEMENT, AND GLASS IONOMER CEMENT IN THE REPAIR OF FURCATION PERFORATIONS

    Directory of Open Access Journals (Sweden)

    Prabath Singh

    2013-01-01

    Full Text Available Objectives: The purpose of this study was to evaluate the in vitro sealing ability of three repair materials. Mineral trioxide aggregate (MTA; Group A, calcium phosphate cement (CPC; Group B, and light cured glass ionomer cement (GIC; Group C when used to repair the perforation created in the pulpal floor of fifty extracted human permanent molars. Materials and methods: Preparation of access openings and furcation perforations were done, and the teeth divided into five experimental groups (A, B, C including two controls (D, E with ten samples in each group randomly. Following the repair procedure, the pulp chambers and access openings were filled with composite resin and immersed in 2% methylene blue solution for 48 hours. The teeth were sectioned longitudinally and the linear dye penetration measured under a stereo­microscope. Results: The comparison of the linear length of micro-leakage (mm among the experimental groups revealed no significant difference (p = 0.332. On calculating the percentage of depth of leakage to the total length of the perforation, it was observed that the mean leakage was 35.5% in Group A, 53.6% in Group B and the highest, 87.5% in Group C. The mean of leakage percentage was statistically significant by Kruskal-Wallis test (p = 0.003. The results indicated that the dye penetration used as furcation perforation repair material was least with mineral trioxide aggregate. Comparing the depth of penetration of dye, 50% of the Group A samples showed less than 25% of depth penetration. While 40% of Group B cases had more than 50% dye penetration. In our study, all Group C teeth had ≥ 50% dye penetration. Conclusions: The present study indicated that GIC had the greatest dye penetration followed by CPC and MTA. Mineral trioxide aggregate and calcium phosphate cement had comparatively better sealing ability than glass ionomer cement.

  3. Immobilization of {sup 99}Tc (Re) using Iron-Phosphate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jong; Xu, Kai; Um, Woo Yong; Hrma, Pavel [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of)

    2012-05-15

    Technetium-99 ({sup 99}Tc) is a fission product artificially generated during the irradiation of {sup 235}U for commercial power production or {sup 239}Pu for nuclear weapons. Under oxidizing conditions, the dominant species of Tc, the pertechnetate anion (TcO{sub 4} {sup -}), is highly soluble in ground water and thus easily transports through the geologic systems. In addition, because of its high fission yield ({approx}6 %) and long half-life (2.1x10{sup 5} yr), immobilization of {sup 99}Tc has been investigated for decades. Several waste forms such as metallic alloys, sintered titanate ceramics and chemically bonded phosphate ceramics have been proposed to encapsulate {sup 99}Tc. They have not yet been realized in the industrial-scale, mostly either due to the high volatilization of {sup 99}Tc during high temperature process (>1300 .deg. C), or the low {sup 99}Tc loading. Iron-phosphate (FeP) glasses have been developed as alternative waste forms because of their chemical durability equivalent to borosilicate glasses. Additionally, vitrification of radioactive waste by FeP glasses can be done at a relatively low temperature ({approx}1000 .deg. C) and the low-temperature process can reduce the volatilization of {sup 99}Tc significantly. Thus, this work reports the immobilization of {sup 99}Tc by FeP glasses using rhenium (Re) as a surrogate. We also examine the chemical durability of Re-containing FeP glasses using product consistency test (PCT). Experimental results reveal that FeP glass can become a promising candidate for immobilizing {sup 99}Tc

  4. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic

    Energy Technology Data Exchange (ETDEWEB)

    He, Fupo, E-mail: fphebm@126.com [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Ren, Weiwei [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Tian, Xiumei [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Liu, Wei; Wu, Shanghua [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Chen, Xiaoming, E-mail: xmchenw@126.com [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China)

    2016-07-01

    In a previous study, robust calcium carbonate composite ceramics (CC/PG) were prepared by using phosphate-based glass (PG) as an additive, which showed good cell response. In the present study the in vivo response of porous CC/PG was compared to that of porous biphasic calcium phosphate ceramics (BCP), using a rabbit femoral critical-size grafting model. The materials degradation and bone formation processes were evaluated by general observation, X-ray radiography, micro-computed tomography, and histological examination. The results demonstrated excellent biocompatibility and osteoconductivity, and progressive degradation of CC/PG and BCP. Although the in vitro degradation rate of CC/PG was distinctly faster than that of BCP, at 4 week post-implantation, the bone generation and material degradation of CC/PG were less than those of BCP. Nevertheless, at postoperative week 8, the increment of bone formation and material degradation of CC/PG was pronouncedly larger than that of BCP. These results show that CC/PG is a potential resorbable bone graft aside from the traditional synthetic ones. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vivo response of CC/PG and biphasic calcium phosphate (BCP) was compared. • CC/PG showed faster in vitro degradation rate compared to BCP. • CC/PG showed less in vivo degradation and bone formation than BCP at week 4. • CC/PG had larger increment of degradation and bone formation than BCP at week 8.

  5. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic

    International Nuclear Information System (INIS)

    He, Fupo; Ren, Weiwei; Tian, Xiumei; Liu, Wei; Wu, Shanghua; Chen, Xiaoming

    2016-01-01

    In a previous study, robust calcium carbonate composite ceramics (CC/PG) were prepared by using phosphate-based glass (PG) as an additive, which showed good cell response. In the present study the in vivo response of porous CC/PG was compared to that of porous biphasic calcium phosphate ceramics (BCP), using a rabbit femoral critical-size grafting model. The materials degradation and bone formation processes were evaluated by general observation, X-ray radiography, micro-computed tomography, and histological examination. The results demonstrated excellent biocompatibility and osteoconductivity, and progressive degradation of CC/PG and BCP. Although the in vitro degradation rate of CC/PG was distinctly faster than that of BCP, at 4 week post-implantation, the bone generation and material degradation of CC/PG were less than those of BCP. Nevertheless, at postoperative week 8, the increment of bone formation and material degradation of CC/PG was pronouncedly larger than that of BCP. These results show that CC/PG is a potential resorbable bone graft aside from the traditional synthetic ones. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vivo response of CC/PG and biphasic calcium phosphate (BCP) was compared. • CC/PG showed faster in vitro degradation rate compared to BCP. • CC/PG showed less in vivo degradation and bone formation than BCP at week 4. • CC/PG had larger increment of degradation and bone formation than BCP at week 8.

  6. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite.

    Science.gov (United States)

    Yagi, Shintaro; Fukushi, Keisuke

    2012-10-15

    The sorption behavior and mechanism of phosphate on monohydrocalcite (CaCO(3)·H(2)O: MHC) were examined using batch sorption experiments as a function of phosphate concentrations, ionic strengths, temperatures, and reaction times. The mode of PO(4) sorption is divisible into three processes depending on the phosphate loading. At low phosphate concentrations, phosphate is removed by coprecipitation of phosphate during the transformation of MHC to calcite. The sorption mode at the low-to-moderate phosphate concentrations is most likely an adsorption process because the sorption isotherm at the conditions can be fitted reasonably with the Langmuir equation. The rapid sorption kinetics at the conditions is also consistent with the adsorption reaction. The adsorption of phosphate on MHC depends strongly on ionic strength, but slightly on temperature. The maximum adsorption capacities of MHC obtained from the regression of the experimental data to the Langmuir equation are higher than those reported for stable calcium carbonate (calcite or aragonite) in any conditions. At high phosphate concentrations, the amount of sorption deviates from the Langmuir isotherm, which can fit the low-to-moderate phosphate concentrations. Speciation-saturation analyses of the reacted solutions at the conditions indicated that the solution compositions which deviate from the Langmuir equation are supersaturated with respect to a certain calcium phosphate. The obtained calcium phosphate is most likely amorphous calcium phosphate (Ca(3)(PO(4))(2)·xH(2)O). The formation of the calcium phosphate depends strongly on ionic strength, temperature, and reaction times. The solubility of MHC is higher than calcite and aragonite because of its metastability. Therefore, the higher solubility of MHC facilitates the formation of the calcium phosphates more than with calcite and aragonite. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. A novel biphasic calcium phosphate derived from fish otoliths

    Science.gov (United States)

    Montañez-Supelano, N. D.; Sandoval-Amador, A.; Estupiñan-Durán, H. A.; Y Peña-Ballesteros, D.

    2017-12-01

    Calcium phosphates are bioceramics that have been widely used as bone substitutes because they encourage the formation of bone on their surface and can improve the healing of the bone. Hydroxyapatite HA (calcium/phosphorus ratio of 1.67) and tricalcium phosphate TCP (calcium/phosphorus ratio of 1.50) are the most common calcium phosphates. Natural materials have begun to be tested to make HA or TCP such as shells of cardiidae (family of mollusks) and eggshells. The calcium phosphate obtained has a high ability to precipitate apatite. In this work, the mixed phase ceramic of beta-Tri-calcium phosphate / hydroxyapatite (β-TCP/HA) was synthesized by aqueous precipitation from fish otoliths, which are monomineralic species composed of aragonite. Otoliths of the specie Plagioscion squamosissimus, commonly called the river croaker, were used. Techniques such as DRX, Raman spectroscopy and SEM-EDS were used to characterize the raw material and the obtained material. X-ray diffraction analysis revealed the presence of two crystalline phases of calcium phosphates with 86.2% crystallinity. SEM micrographs showed agglomeration of particles with porous structure and submicron particle sizes.

  8. Glass-water interphase reactivity with calcium rich solutions

    International Nuclear Information System (INIS)

    Chave, T.; Frugier, P.; Gin, S.; Chave, T.; Ayral, A.

    2011-01-01

    The effect of calcium on synthetic glass alteration mechanisms has been studied. It is known that the higher the calcium content in the glass, the higher the forward rate. However, in a confined medium reaching apparent saturation state and a pH (90 degrees C) around 9, synthetic calcium-bearing glasses are those with the lowest alteration rates. This work brings new and fundamental evidence toward understanding the alteration mechanisms: the rate-decreasing effect of calcium exists even if the calcium comes from the solution. Calcium from solution reacts with silica network in the hydrated layer at the glass surface. The calcium effect on the alteration kinetics is explained by the condensation of a passivating reactive interphase (PRI) whose passivating properties are strongly enhanced when calcium participates in its construction. These experiments provide new evidence of the role of condensation mechanisms in glass alteration. This better understanding of the calcium effect on glass long-term behavior will be useful both for improving glass formulations and for understanding the influence of the water composition. (authors)

  9. Effect of Ba in the glass characteristics of cesium loaded iron phosphate glasses

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Vasudeva Rao, P.R.

    2015-01-01

    Radioactive 137 Cs extracted from high level nuclear waste, when immobilized in a suitable matrix can be used as a γsource in medical industry. Iron phosphate glass (IPG) is one of a suitable matrix for the immobilization of 137 Cs prior to the immobilization of 137 Cs in IPG, it is essential to optimize the immobilization conditions using natural (inactive) cesium. Glass characteristics of inactive Cs loaded iron phosphate glasses were already explored in our earlier studies. However, the change in glass characteristics of 137 Cs loaded iron phosphate glass to 137 Ba loaded iron phosphate glass need to be studied before the immobilization of 137 Cs in iron phosphate glass as 137 Cs transforms to 137 Ba due to nuclear transmutation ( 137 Cs(β,γ) 137 Ba). This paper reports the studies on such a behaviour by incorporating inactive Ba in cesium loaded iron phosphate glasses. Cs and Ba loaded iron phosphate glasses were prepared by melt quench technique in air using appropriate amounts of Fe 2 O 3 , NH 4 H 2 PO 4 , Ba(OH) 2.8 H 2 O and Cs 2 CO 3 . The chemicals were added such that the glass formed possesses the batch composition of (a) 21.4 wt. % Fe 2 O 3 -45 wt. % Cs 2 O-5 wt % BaO-P 2 O 5 (henceforth referred as IP50Cs45Ba5); (b) 21.4 wt. % Fe 2 O 3 -25 wt. % Cs 2 O-25 wt % BaO-P 2 O5 (henceforth referred as IP50Cs25Ba25). The thermal expansion measurements were also carried out using a home-built quartz push-rod dilatometer. The data related to change in thermal expansion behaviour, glass forming ability, glass stability and structural changes in phosphate network due to the partial replacement of Cs with Ba will also be discussed. (author)

  10. Effect of Casein Phosphopeptide-Amorphous Calcium Phosphate and Three Calcium Phosphate on Enamel Microhardness.

    Science.gov (United States)

    Haghgou, En Hr; Haghgoo, Roza; Roholahi, Mohamad R; Ghorbani, Zahra

    2017-07-01

    This study aims to investigate the effect of casein phos-phopeptide-amorphous calcium phosphate and three calcium phosphate (CPP-ACP and TCP) on increasing the microhardness of human enamel after induction of erosion. A total of 26 healthy human-impacted third molar teeth were chosen, and their hardness measured using a microhardness testing machine. The samples were immersed in Coca Cola (pH = 4.7) for 8 minutes. Then, micro-hardness was measured again, and these samples were randomly divided into four groups (two control groups and two experimental groups). (1) Negative control group: Artificial saliva was used for 10 minutes, (2) positive control group: Fluoride gel was used for 10 minutes, (3) β-TCP group: TCP was used for 10 minutes, (4) CCP-ACP group: CCP-ACP was used for 10 minutes. The final microhardness of those samples was measured, and the changes in microhardness of teeth within group and between groups were analyzed using the paired and analysis of variance tests respectively. Results were considered statistically significant at a level of p < 0.05. No significant difference was observed in microhard-ness between CPP-ACP group and TCP group (p = 0.368) during the time microhardness significantly dropped after soaking in soda. Casein phosphopeptide-amorphous calcium phosphate and TCP increased the microhardness of teeth. The increase in hardness in the TCP group was higher than in the CPP-ACP group, but this difference was not significant (p = 0.36). Casein phosphopeptide-amorphous calcium phosphate and TCP can affect the remineralization of erosive lesions.

  11. Nuclear waste immobilization in iron phosphate glasses

    International Nuclear Information System (INIS)

    Garcia, D.A.; Rodriguez, Diego A.; Menghini, Jorge E.; Bevilacqua, Arturo

    2007-01-01

    Iron-phosphate glasses have become important in the nuclear waste immobilization area because they have some advantages over silicate-based glasses, such as a lower processing temperature and a higher nuclear waste load without losing chemical and mechanical properties. Structure and chemical properties of iron-phosphate glasses are determined in terms of the main components, in this case, phosphate oxide along with the other oxides that are added to improve some of the characteristics of the glasses. For example, Iron oxide improves chemical durability, lead oxide lowers fusion temperature and sodium oxide reduces viscosity at high temperature. In this work a study based on the composition-property relations was made. We used different techniques to characterize a series of iron-lead-phosphate glasses with uranium and aluminium oxide as simulated nuclear waste. We used the Arquimedes method to determine the bulk density, differential temperature analysis (DTA) to determine both glass transition temperature and crystallization temperature, dilatometric analysis to calculate the linear thermal expansion coefficient, chemical durability (MCC-1 test) and X-ray diffraction (XRD). We also applied some theoretic models to calculate activation energies associated with the glass transition temperature and crystallization processes. (author)

  12. Selective laser sintering of calcium phosphate materials for orthopedic implants

    Science.gov (United States)

    Lee, Goonhee

    control of micro and macro pore structure, to maximize bone healing and provide sufficient mechanical strength. It also permits the complete removal of the polymeric binders that are resided in the SLS process. In collaboration with the University of Texas Health Science Center at San Antonio and BioMedical Enterprises, Inc., porous implants based on anatomical geometry have been successfully implanted in rabbits and dogs. These histologic animal studies reveal excellent biocompatibility and show its great potential for commercial custom-fit implant manufacture. The second research effort involves fabrication of fully dense bone for application in dental restoration and load-bearing orthopedic functions. Calcium phosphate glass melts, proven to be biocompatible in the first effort, were cast into carbon molds. Processes were developed for preparing the molds. These carbon molds of anatomic shape can be prepared from either Computer Numerical Control (CNC) milling of slab stock or SLS processing of thermoset-coated graphite powder. The CNC milling method provides accurate dimension of the molds in a short period of time, however, the capable geometries are limited; generally two pieces of molds are required for complex shapes. The SLS method provides very complex shape green molds. However, they need to go through pyrolysis of thermoset binder to provide the high temperature capability reached at calcium phosphate melt temperatures (1100°C) and noticeable shrinkage was observed during pyrolysis. The cast glass was annealed to develop polycrystalline calcium phosphate. This process also exhibits great potential.

  13. Iron phosphate glasses: Bulk properties and atomic scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.; Asuvathraman, R.; Dube, Charu L.; Gandy, Amy S.; Govindan Kutty, K. V.; Jolley, Kenny; Vasudeva Rao, P. R.; Smith, Roger

    2017-10-01

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. % of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.

  14. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.

    Science.gov (United States)

    Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E

    1994-05-01

    Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Antagonist effects of calcium on borosilicate glass alteration

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Depierre, S. [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France); Angeli, F., E-mail: frederic.angeli@cea.fr [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France); Frizon, F. [CEA Marcoule, DTCD SECM LP2C, 30207 Bagnols sur Cèze (France); Gin, S. [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France)

    2013-10-15

    Graphical abstract: Display Omitted -- Highlights: •Kinetic study of glass alteration is investigated in calcium-enriched solutions. •New insights into silicon–calcium interactions in glass/cement systems are proposed. •Glass alteration is controlled by pH, Ca concentration and reaction progress. •Evidence of antagonist effects according to the importance of these parameters. -- Abstract: Numerous studies have been conducted on glass and cement durability in contact with water, but very little work to date has focused directly on interactions between the two materials. These interactions are mostly controlled by silicon–calcium reactivity. However, the physical and chemical processes involved remain insufficiently understood to predict the evolution of coupled glass–cement systems used in several industrial applications. Results are reported from borosilicate glass alteration in calcium-rich solutions. Our data show that four distinct behaviors can be expected according to the relative importance of three key parameters: the pH, the reaction progress (short- or long-term alteration) and the calcium concentration. Glass alteration is thus controlled by specific mechanisms depending on the solution chemistry: calcium complexation at the glass surface, precipitation of calcium silicate hydrates (C–S–H) or calcium incorporation in the altered layer. These findings highlight the impact of silicon–calcium interactions on glass durability and open the way for a better understanding of glass–cement mixing in civil engineering applications as well as in nuclear waste storage.

  16. Antagonist effects of calcium on borosilicate glass alteration

    International Nuclear Information System (INIS)

    Mercado-Depierre, S.; Angeli, F.; Frizon, F.; Gin, S.

    2013-01-01

    Graphical abstract: Display Omitted -- Highlights: •Kinetic study of glass alteration is investigated in calcium-enriched solutions. •New insights into silicon–calcium interactions in glass/cement systems are proposed. •Glass alteration is controlled by pH, Ca concentration and reaction progress. •Evidence of antagonist effects according to the importance of these parameters. -- Abstract: Numerous studies have been conducted on glass and cement durability in contact with water, but very little work to date has focused directly on interactions between the two materials. These interactions are mostly controlled by silicon–calcium reactivity. However, the physical and chemical processes involved remain insufficiently understood to predict the evolution of coupled glass–cement systems used in several industrial applications. Results are reported from borosilicate glass alteration in calcium-rich solutions. Our data show that four distinct behaviors can be expected according to the relative importance of three key parameters: the pH, the reaction progress (short- or long-term alteration) and the calcium concentration. Glass alteration is thus controlled by specific mechanisms depending on the solution chemistry: calcium complexation at the glass surface, precipitation of calcium silicate hydrates (C–S–H) or calcium incorporation in the altered layer. These findings highlight the impact of silicon–calcium interactions on glass durability and open the way for a better understanding of glass–cement mixing in civil engineering applications as well as in nuclear waste storage

  17. Characterization of a calcium phosphate cement based on alpha-tricalcium phosphate obtained by wet precipitation process

    International Nuclear Information System (INIS)

    Thurmer, M.B.; Diehl, C.E.; Vieira, R.S.; Coelho, W.T.G.; Santos, L.A.

    2012-01-01

    There are several systems of calcium phosphate cements being studied. Those based on alpha-tricalcium phosphate are of particular interest. After setting they produce calcium deficient hydroxyapatite similar to bone like hydroxyapatite. This work aims to obtain alpha-tricalcium phosphate powders by the wet precipitation process, using calcium nitrate and phosphoric acid as reagents. This powder was characterized by infrared spectroscopy, X-ray diffraction and particle size distribution. In order to prepare the calcium phosphate cement, the powder was mixed with an accelerator in an aqueous solution. The mechanical properties of the cement were assessed and it was evaluated by means of apparent density, X-ray diffraction and scanning electron microscopy. The described method produced crystalline alpha-tricalcium phosphate as the major phase. The calcium phosphate cement showed high values of compression strength (50 MPa). The soaking of the cement in a simulated body fluid (SBF) formed a layer of hydroxyapatite like crystals in the surface of the samples. (author)

  18. Development of a fully injectable calcium phosphate cement

    Indian Academy of Sciences (India)

    Permanent link: https://www.ias.ac.in/article/fulltext/boms/026/04/0415-0422. Keywords. Calcium phosphate cements; hydroxyapatite; bioceramics; bone substitute; orthopedic; dental. Abstract. A study on the development of a fully injectable calcium phosphate cement for orthopedic and dental applications is presented.

  19. Investigation of calcium phosphate coatings for biomedical applications

    International Nuclear Information System (INIS)

    Yusof Abdullah; Idris Besar; Muhammad Jamal Md Isa; Mohamad Abd Razak; Hyzan Mohd Yusof

    1999-01-01

    Calcium phosphate is the main constituent of our bone and tooth minerals. The use of this bioactive material for coating implant such as artificial joint prosthesis, therefore, can promote biological fixation and enhance biocompatibility. Our initial work has been focused on the evaluation of experimental conditions of coating preparation and the effects of post-deposition calcium phosphate coatings on stainless steel substrates. The coating layers were produced by the precipitation technique and coatings were carried out in sol-gel by the dipping method. For comparison purposes a wet method was used to obtain a fine calcium phosphate ceramic powder for fabrication of microcrystal suspension used as a coating material. Scanning electron microscopy (SEM), energy dispersive microanalysis (EDS), energy dispersive x-ray fluorescence (EDXRF) and x-ray diffraction (XRD) were used to characterise the morphology, chemical composition and structure of the coatings. The results showed that the dip coating of stainless steel substrates using viscous solutions lead to the formation of porous calcium phosphate layers. These results suggested that fabrication of bioactive calcium phosphate coatings using this route offers significant advantages over the currently used methods due to considerably lower temperature process involved and may produce better result for substrates with complex shapes

  20. Characterization of cement calcium phosphate for use dental

    International Nuclear Information System (INIS)

    Barros, C.M.B.; Oliveira, S.V.; Silva, M.C.; Marques, J.B.; Fook, M.V.L.

    2011-01-01

    Calcium phosphates are interesting biological and medical attention due to its occurrence in different animal species and humans. Ceramics based on calcium phosphate in the form of implants or porous particulate materials, have proven to be suitable replacements for bone tissue when they are only subjected to small mechanical stresses. Was obtained research laboratory DEMA/UFCG a calcium phosphate phase. The goal is to characterize the material by X-ray diffraction (XRD) in order to analyze what the phases and infrared spectroscopy (FTIR) to identify the absorption bands of the bonding characteristic. Was identified by XRD phase present in the sample is hydroxyapatite Ca/P 1.67. In infrared spectroscopy has absorption bands characteristic of the phosphate group at 1032 cm1 region. (author)

  1. Characterization of iron phosphate glasses prepared by microwave heating

    International Nuclear Information System (INIS)

    Almeida, Fabio Jesus Moreira de

    2006-01-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH 4 ) 2 HPO 4 and Fe 3 O 4 or (NH 4 ) 2 HPO 4 and Fe 2 O 3 were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  2. Characterization of iron phosphate glasses prepared by microwave heating

    International Nuclear Information System (INIS)

    Almeida, Fabio Jesus Moreira de

    2006-01-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C), and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH 4 ) 2 HPO 4 and Fe 3 O 4 or (NH 4 ) 2 HPO 4 and Fe 2 O 3 were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  3. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    International Nuclear Information System (INIS)

    Pan, Y.K.; Chen, C.Z.; Wang, D.G.; Lin, Z.Q.

    2013-01-01

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH 3 COO) 2 Ca·H 2 O) and disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 ·12H 2 O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HA) and calcium pyrophosphates (Ca 2 P 2 O 7 , CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF 2 , CaO, CaF 2 and Ca 3 (PO 4 ) 2 . • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate

  4. Role of magnesium on the biomimetic deposition of calcium phosphate

    Science.gov (United States)

    Sarma, Bimal K.; Sarma, Bikash

    2016-10-01

    Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.

  5. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.K. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Chen, C.Z., E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Wang, D.G.; Lin, Z.Q. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China)

    2013-09-16

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH{sub 3}COO){sub 2}Ca·H{sub 2}O) and disodium hydrogen phosphate dodecahydrate (Na{sub 2}HPO{sub 4}·12H{sub 2}O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) and calcium pyrophosphates (Ca{sub 2}P{sub 2}O{sub 7}, CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF{sub 2}, CaO, CaF{sub 2} and Ca{sub 3}(PO{sub 4}){sub 2}. • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate.

  6. Ultraviolet optical absorptions of semiconducting copper phosphate glasses

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    Results are presented of a quantitative investigation of the change in UV optical absorption in semiconducting copper phosphate glasses with batch compositions of 40, 50, and 55 percent CuO, as a function of the Cu(2+)/Cu(total) ratio in the glasses for each glass composition. It was found that optical energy gap, E(opt), of copper phosphate glass is a function of both glass composition and Cu(2+)/Cu(total) ratio in the glass. E(opt) increases as the CuO content for fixed Cu(2+)/Cu(total) ratio and the Cu(2+)/Cu(total) ratio for fixed glass composition are reduced.

  7. Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivity.

    Science.gov (United States)

    Massera, J; Ahmed, I; Petit, L; Aallos, V; Hupa, L

    2014-04-01

    This paper investigates the effect of fiber drawing on the thermal and structural properties as well as on the glass reactivity of a phosphate glass in tris(hydroxymethyl)aminomethane-buffered (TRIS) solution and simulated body fluid (SBF). The changes induced in the thermal properties suggest that the fiber drawing process leads to a weakening and probable re-orientation of the POP bonds. Whereas the fiber drawing did not significantly impact the release of P and Ca, an increase in the release of Na into the solution was noticed. This was probably due to small structural reorientations occurring during the fiber drawing process and to a slight diffusion of Na to the fiber surface. Both the powders from the bulk and the glass fibers formed a Ca-P surface layer when immersed in SBF and TRIS. The layer thickness was higher in the calcium and phosphate supersaturated SBF than in TRIS. This paper for the first time presents the in vitro reactivity and optical response of a phosphate-based bioactive glass (PBG) fiber when immersed in SBF. The light intensity remained constant for the first 48h after which a decrease with three distinct slopes was observed: the first decrease between 48 and 200h of immersion could be correlated to the formation of the Ca-P layer at the fiber surface. After this a faster decrease in light transmission was observed from 200 to ~425h in SBF. SEM analysis suggested that after 200h, the surface of the fiber was fully covered by a thin Ca-P layer which is likely to scatter light. For immersion times longer than ~425h, the thickness of the Ca-P layer increased and thus acted as a barrier to the dissolution process limiting further reduction in light transmission. The tracking of light transmission through the PBG fiber allowed monitoring of the fiber dissolution in vitro. These results are essential in developing new bioactive fiber sensors that can be used to monitor bioresponse in situ. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Atomic structure of intracellular amorphous calcium phosphate deposits.

    Science.gov (United States)

    Betts, F; Blumenthal, N C; Posner, A S; Becker, G L; Lehninger, A L

    1975-06-01

    The radial distribution function calculated from x-ray diffraction of mineralized cytoplasmic structures isolated from the hepatopancreas of the blue crab (Callinectes sapidus) is very similar to that previously found for synthetic amorphous calcium phosphate. Both types of mineral apparently have only short-range atomic order, represented as a neutral ion cluster of about 10 A in longest dimension, whose probable composition is expressed by the formula Ca9(PO4)6. The minor differences observed are attributed to the presence in the biological mineral of significant amounts of Mg-2+ and ATP. Synthetic amorphous calcium phosphate in contact with a solution containing an amount of ATP equivalent to that of the biological mineral failed to undergo conversion to the thermodynamically more stable hydroxyapatite. The amorphous calcium phosphate of the cytoplasmic mineral granules is similarly stable, and does not undergo conversion to hydroxyapatite, presumably owing to the presence of ATP and Mg-2+, known in inhibitors of the conversion process. The physiological implications of mineral deposits consisting of stabilized calcium phosphate ion clusters are discussed.

  9. Calcium phosphate saturation in seawater around the Andaman Island

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.; Reddy, C.V.G.

    Ionic product (IP) of calcium phosphate is calculated at some stations around Andaman Island. The depthwise variations of the ionic product of calcium phosphate seem to follow a normal trend with maximum saturation value between 100 to 200 m. Using...

  10. Investigation of lead-iron-phosphate glass for SRP waste

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-10-01

    The search for a host solid for the immobilization of nuclear waste has focused on various vitreous waste forms. Recently, lead-iron-phosphate (LIP) glasses have been proposed for solidification of all types of HLLW. Investigation of this glass for vitrification of SRP waste demonstrated that the phosphate glass is incompatible with the current borosilicate glass technology. The durability of LIP glasses in deionized water was comparable to current borosilicate waste glass formulations, and the LIP glass has a low melt temperature. However, many of the defense waste constituents have low solubility in the phosphate melt, producing an inhomogeneous product. Also, the LIP melt is highly corrosive which prevents the use of current melter materials, in particular Inconel 690, and thus requires more exotic materials of construction such as platinum

  11. Optimization of calcium phosphate fine ceramic powders preparation

    Science.gov (United States)

    Sezanova, K.; Tepavitcharova, S.; Rabadjieva, D.; Gergulova, R.; Ilieva, R.

    2013-12-01

    The effect of biomimetic synthesis method, reaction medium and further precursor treatments on the chemical and phase composition, crystal size and morphology of calcium phosphates was examined. Nanosized calcium phosphate precursors were biomimetically precipitated by the method of continuous precipitation in three types of reaction media at pH 8: (i) SBF as an inorganic electrolyte system; (ii) organic (glycerine) modified SBF (volume ratio of 1:1); (iii) polymer (10 g/l xanthan gum or 10 g/l guar gum) modified SBF (volume ratio of 1:1). After maturation (24 h) the samples were lyophilized, calcinated at 300°C for 3 hours, and washed with water, followed by new gelation, lyophilization and step-wise (200, 400, 600, 800, and 1000°C, each for 3 hours) sintering. The reaction medium influenced the chemical composition and particle size but not the morphology of the calcium phosphate powders. In all studied cases bi-phase calcium phosphate fine powders with well-shaped spherical grains, consisting of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) with a Ca/P ratio of 1.3 - 1.6 were obtained. The SBF modifiers decreased the particle size of the product in the sequence guar gum ˜ xanthan gum < glycerin < SBF medium.

  12. Preparation and characterization of bioceramics produced from calcium phosphate cements

    Energy Technology Data Exchange (ETDEWEB)

    Andriotis, O.; Katsamenis, O.L. [Department of Materials Science, University of Patras, 26504, Patras (Greece); Mouzakis, D.E. [Technological Educational Institute of Larisa, Department of Mechanical Engineering, T.E.I of Larissa, 411 10, Larissa (Greece); Bouropoulos, N. [Foundation for Research and Technology, Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, FORTH/ICE-HT, P.O. Box 1414, 26504 Rio Patras (Greece)

    2010-03-15

    The present work reports a method for preparing calcium phosphate ceramics by calcination of calcium phosphate cements composed mainly of calcium deficient hydroxyapatite (CDHA). It was found that hardened cements calcinied at temperatures from to 600 to 1300 C were transformed to tricalcium phosphates. Moreover the compressive strength was determined and porosity was estimated as a function of the calcination temperature. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. The electrical properties of semiconducting vanadium phosphate glasses

    International Nuclear Information System (INIS)

    Moridi, G.R.; Hogarth, C.A.; Hekmat Shooar, N.H.

    1984-01-01

    Vanadium phosphate glasses are a group of oxide glasses which show the semiconducting behaviour. In contrast to the conventional glasses, the conduction mechanism in these glasses is electronic, rather than being ionic. Since 1954, when the first paper appeared on the semiconducting properties of these glasses, much work has been carried out on transition-metal-oxide glasses in general, and vanadium phosphate glasses in particular. The mechanism of conduction is basicaly due to the transport of electrons between the transition-metal ions in different valency states. In the present paper, we have reviewed the previous works on the electrical characteristics of P 2 O 5 -V 2 O 5 glasses and also discussed the current theoretical ideas relevant for the interpretation of the experimental data

  14. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  15. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  16. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    Science.gov (United States)

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  17. Radiophotoluminescence from silver-doped phosphate glass

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Takei, Y.; Nanto, H.; Kurobori, T.; Konnai, A.; Yanagida, T.; Yoshikawa, A.; Shimotsuma, Y.; Sakakura, M.

    2011-01-01

    Glass dosimeter utilizing radiophotoluminescence (RPL) is one of accumulation type solid state dosimeters, which is based on luminescence phenomenon of silver (Ag + ions)-doped phosphate glass exposed to ionizing radiation. In this study, to clarify the emission mechanism of yellow and blue RPL peaks, optical properties of Ag + -doped glass, such as optical absorption spectrum, RPL excitation spectrum before and after X-ray irradiation as well as the lifetime of both RPL peaks are measured. From the results, we discuss the emission mechanism of yellow (peaked at 2.21 eV) and blue (peaked at 2.70 eV) RPL using a proposed energy band diagram for RPL emission and excitation in Ag + -doped phosphate glass. It is found that the radiative lifetime of blue RPL is three orders of magnitude faster than that of yellow RPL.

  18. Synthesis and characterization of porous calcium phosphate

    International Nuclear Information System (INIS)

    Granados C, F.; Serrano G, J.; Bonifacio M, J.

    2007-01-01

    The porous calcium phosphate was prepared by the continuous precipitation method using Ca(NO 3 ) 2 .4H 2 O and NH 4 H 2 PO 4 salts. The synthesized material was structurally and superficially characterized using the XRD, BET, IR TGA and SEM techniques. The obtained inorganic material was identified as calcium phosphate that presents a great specific area for what can be efficiently used as adsorbent material for adsorption studies in the radioactive wastes treatment present in aqueous solution. (Author)

  19. Calcium-phosphate-osteopontin particles for caries control

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Birkedal, Henrik; Olsen, Jakob

    2016-01-01

    Caries is caused by acid production in biofilms on dental surfaces. Preventing caries therefore involves control of microorganisms and/or the acid produced. Here, calcium-phosphate-osteopontin particles are presented as a new approach to caries control. The particles are made by co......-precipitation and designed to bind to bacteria in biofilms, impede biofilm build-up without killing the microflora, and release phosphate ions to buffer bacterial acid production if the pH decreases below 6. Analysis of biofilm formation and pH in a five-species biofilm model for dental caries showed that treatment......H always remained above 5.5. Hence, calcium-phosphate-osteopontin particles show potential for applications in caries control....

  20. Structural and luminescence properties of Mn2+ ions doped calcium zinc borophosphate glasses

    International Nuclear Information System (INIS)

    Wan, Ming Hua; Wong, Poh Sum; Hussin, Rosli; Lintang, Hendrik O.; Endud, Salasiah

    2014-01-01

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ( 4 T 1g → 6 A 1g ). • As the concentration of Mn 2+ ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn 2+ ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn 2+ ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper 4 T 1g → 6 A 1g ground state of Mn 2+ ions. As the concentration of Mn 2+ ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of 4 T 1g level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn 2+ concentrations. From the emission characteristic parameters of 6 A 1g (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices

  1. A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass using surface sensitive shallow angle X-ray diffraction.

    Science.gov (United States)

    Martin, R A; Twyman, H; Qiu, D; Knowles, J C; Newport, R J

    2009-04-01

    Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass((R)) [(CaO)(26.9)(Na(2)O)(24.4)(SiO(2))(46.1)(P(2)O(5))(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass((R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass((R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass((R)) is dominated by a broad amorphous feature around 2.2 A(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass((R)) in SBF a second broad amorphous feature evolves ~1.6 A(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass((R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.

  2. Drug Release Profile from Calcium-Induced Alginate-Phosphate Composite Gel Beads

    Directory of Open Access Journals (Sweden)

    Yoshifumi Murata

    2009-01-01

    Full Text Available Calcium-induced alginate-phosphate composite gel beads were prepared, and model drug release profiles were investigated in vitro. The formation of calcium phosphate in the alginate gel matrix was observed and did not affect the rheological properties of the hydrogel beads. X-ray diffraction patterns showed that the calcium phosphate does not exist in crystalline form in the matrix. The initial release amount and release rate of a water-soluble drug, diclofenac, from the alginate gel beads could be controlled by modifying the composition of the matrix with calcium phosphate. In contrast, the release profile was not affected by the modification for hydrocortisone, a drug only slightly soluble in water.

  3. Mechanical properties of experimental composites with different calcium phosphates fillers.

    Science.gov (United States)

    Okulus, Zuzanna; Voelkel, Adam

    2017-09-01

    Calcium phosphates (CaPs)-containing composites have already shown good properties from the point of view of dental restorative materials. The purpose of this study was to examine the crucial mechanical properties of twelve hydroxyapatite- or tricalcium phosphate-filled composites. The raw and surface-treated forms of both CaP fillers were applied. As a reference materials two experimental glass-containing composites and one commercial dental restorative composite were applied. Nano-hardness, elastic modulus, compressive, flexural and diametral tensile strength of all studied materials were determined. Application of statistical methods (one-way analysis of variance and cluster agglomerative analysis) allowed for assessing the similarities between examined materials according to the values of studied parameters. The obtained results show that in almost all cases the mechanical properties of experimental CaPs-composites are comparable or even better than mechanical properties of examined reference materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Preparation and Characterization of Apatitic Biphasic Calcium Phosphate

    International Nuclear Information System (INIS)

    Thin Thin Nwe; Kyaw Naing; Khin Mar Tun; Nyunt Wynn

    2005-09-01

    The apatitic biphasic calcium phosphate (ABcp) consisting of hydroxyapatite (HA) and -tricalcium phosphate ( -Tcp) has been prepared by precipitation technique using slaked lime and orthophosphoric acid. The X-ray diffraction analysis of the product I (hydroxyapatite) revealed that ABcp was partially crystalline state. However, on heating at 800 C for 8 hrs, XRD pattern indicated a perfectly crystalline form of ABcp. This observation was supported by FT-IR measurement. The change in morphology regarding in the functional nature was infered by the shift in the FT-IR frequency. The optimization of the apatitic biphasic calcium phosphate was done by the variation of disodium hydrogen phosphate concentration, setting time, hardening time as well as compressive strength. The perpared cement may be used as an artificial substitution bone

  5. Phosphate glasses, containing nitrogen

    International Nuclear Information System (INIS)

    Lisitsyna, E.A.; Khalilev, V.D.; Koryavin, A.A.; Goncharova, L.N.

    1987-01-01

    Possibilities of nitrogen-containing glass synthesis by the introduction into the charge of ammonium salts, as well as aluminium nitride, are studied. Zinc alumoyttrium phosphate glass (mol. %) Zn(PO 3 ) 2 - 4O, Al(PO 3 ) 3 - 3O, Y(PO 3 ) 3 -3O is suggested as a matrix. It is shown that the effect of amide and imide groups on the properties of the glass is less noticeable than the effect of nitride groups. Direct introduction of nitride constituent was realized using AlN, but aluminium introduction was taken into account so that the oxide was subtracted. The attempt to introduce more than 2.5 mass % of nitrogen into initial matrix by aluminium nitride has failed due to repeated restoration of glass with amorphous phosphorus isolation

  6. Calcium phosphate bioceramics prepared from wet chemically precipitated powders

    Directory of Open Access Journals (Sweden)

    Kristine Salma

    2010-03-01

    Full Text Available In this work calcium phosphates were synthesized by modified wet chemical precipitation route. Contrary to the conventional chemical precipitation route calcium hydroxide was homogenized with planetary mill. Milling calcium oxide and water in planetary ball mill as a first step of synthesis provides a highly dispersed calcium hydroxide suspension. The aim of this work was to study the influence of main processing parameters of wet chemical precipitation synthesis product and to control the morphology, phase and functional group composition and, consequently, thermal stability and microstructure of calcium phosphate bioceramics after thermal treatment. The results showed that it is possible to obtain calcium phosphates with different and reproducible phase compositions after thermal processing (hydroxyapatite [HAp], β-tricalcium phosphate [β-TCP] and HAp/β-TCP by modified wet-chemical precipitation route. The β-TCP phase content in sintered bioceramics samples is found to be highly dependent on the changes in technological parameters and it can be controlled with ending pH, synthesis temperature and thermal treatment. Pure, crystalline and highly thermally stable (up to 1300°C HAp bioceramics with homogenous grainy microstructure, grain size up to 200–250 nm and high open porosity can be successfully obtained by powder synthesized at elevated synthesis temperature of 70°C and stabilizing ending pH at 9.

  7. Effect of humic substances on the precipitation of calcium phosphate

    Institute of Scientific and Technical Information of China (English)

    SONG Yong-hui; Hermann H. HAHN; Erhard HOFFMANN; Peter G. WEIDLER

    2006-01-01

    For phosphorus (P) recovery from wastewater, the effect of humic substances (HS) on the precipitation of calcium phosphate was studied. Batch experiments of calcium phosphate precipitation were undertaken with synthetic water that contained 20 mg/L phosphate (as P) and 20 mg/L HS (as dissolved organic carbon, DOC) at a constant pH value in the range of 8.0-10.0. The concentration variations of phosphate, calcium (Ca) and HS were measured in the precipitation process; the crystalline state and compositions of the precipitates were analysed by powder X-ray diffraction (XRD) and chemical methods, respectively. It showed that at solution pH 8.0, the precipitation rate and removal efficiency of phosphate were greatly reduced by HS, but at solution pH ≥9.0,the effect of HS was very small. The Ca consumption for the precipitation of phosphate increased when HS was added; HS was also removed from solution with the precipitation of calcium phosphate. At solution pH 8.0 and HS concentrations ≤ 3.5 mg/L, and at pH ≥ 9.0 and HS concentrations ≤ 10 mg/L, the final precipitates were proved to be hydroxyapatite (HAP) by XRD. The increases of solution pH value and initial Ca/P ratio helped reduce the influence of HS on the precipitation of phosphate.

  8. Relative biological activity of amorphous calcium and calcium-magnesium phosphates

    International Nuclear Information System (INIS)

    Silina, E.N.; Kunitsa, T.N.; Shuslikova, E.S.; Griggs, J.; Levchenko, L.V.; Karjaubaeva, R.A.; Sinyayev, V.A.

    2005-01-01

    Three amorphous calcium and calcium-magnesium phosphates that are close on composition to mineral basis of the bone tissues are compared on bioactivity in the given article. Properties of the hydrated substances produced from water solutions and their derivations, which are formed due to thermal treatment, are discussed here. As a detector of bioactivity was used microbial culture E-Coli. [author

  9. Self-assembled nanotextures impart broadband transparency to glass windows and solar cell encapsulants

    Science.gov (United States)

    Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.

    2017-10-01

    Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. Here, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450-2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminating reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.

  10. Calcium phosphate cement scaffolds with PLGA fibers.

    Science.gov (United States)

    Vasconcellos, Letícia Araújo; dos Santos, Luís Alberto

    2013-04-01

    The use of calcium phosphate-based biomaterials has revolutionized current orthopedics and dentistry in repairing damaged parts of the skeletal system. Among those biomaterials, the cement made of hydraulic grip calcium phosphate has attracted great interest due to its biocompatibility and hardening "in situ". However, these cements have low mechanical strength compared with the bones of the human body. In the present work, we have studied the attainment of calcium phosphate cement powders and their addition to poly (co-glycolide) (PLGA) fibers to increase mechanical properties of those cements. We have used a new method that obtains fibers by dripping different reagents. PLGA fibers were frozen after lyophilized. With this new method, which was patented, it was possible to obtain fibers and reinforcing matrix which furthered the increase of mechanical properties, thus allowing the attainment of more resistant materials. The obtained materials were used in the construction of composites and scaffolds for tissue growth, keeping a higher mechanical integrity. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Production and characterization of setting hydraulic cements based on calcium phosphate

    International Nuclear Information System (INIS)

    Oliveira, Luci C. de; Rigo, Eliana C.S.; Santos, Luis A dos; Boschi, Anselmo Ortega; Carrodeguas, Raul G.

    1997-01-01

    Setting hydraulic cements based on calcium phosphate has risen great interest in scientific literature during recent years due to their total bio compatibility and to the fact that they harden 'in situ', providing easy handling and adaptation to the shape and dimensions of the defect which requires correction, differently from the predecessors, the calcium phosphate ceramics (Hydroxy apatite, β-tri calcium phosphate, biphasic, etc) in the shape of dense or porous blocks and grains. In the work, three calcium-phosphate cement compositions were studied. The resulting compositions were characterized according to the following aspects: setting times, pH, mechanical resistance, crystalline phases, microstructure and solubility in SBF (Simulated Body Fluid). The results show a potential use for the compositions. (author)

  12. Calcium-phosphate-osteopontin particles for caries control

    DEFF Research Database (Denmark)

    Schlafer, Sebastian

    Oftentimes caries lesions develop in protected sites that are difficult to access by self-performed mechanical tooth cleaning. At present, there is a growing interest in chemical adjuncts to mechanical procedures of oral hygiene that aim at biofilm control rather than biofilm eradication. Calcium......-phosphate-osteopontin particles are a new promising therapeutic approach to caries control. They are designed to bind to dental biofilms and interfere with biofilm build-up, lowering the bacterial burden on the tooth surface without affecting bacterial viability in the oral cavity. Moreover, they dissolve when pH in the biofilm...... drops to 6 or below and release buffering phosphate ions that stabilize biofilm pH above the critical level for enamel dissolution. With that twofold approach, calcium-phosphate-osteopontin particles may make a relevant contribution to clinical caries control....

  13. Mechanism of calcium phosphates precipitation in liquid crystals; Mecanisme de precipitation de phosphates de calcium dans des cristaux liquides

    Energy Technology Data Exchange (ETDEWEB)

    Prelot, B.; Zemb, T

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m{sup 2}/g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  14. Calcium phosphate-based coatings on titanium and its alloys.

    Science.gov (United States)

    Narayanan, R; Seshadri, S K; Kwon, T Y; Kim, K H

    2008-04-01

    Use of titanium as biomaterial is possible because of its very favorable biocompatibility with living tissue. Titanium implants having calcium phosphate coatings on their surface show good fixation to the bone. This review covers briefly the requirements of typical biomaterials and narrowly focuses on the works on titanium. Calcium phosphate ceramics for use in implants are introduced and various methods of producing calcium phosphate coating on titanium substrates are elaborated. Advantages and disadvantages of each type of coating from the view point of process simplicity, cost-effectiveness, stability of the coatings, coating integration with the bone, cell behavior, and so forth are highlighted. Taking into account all these factors, the efficient method(s) of producing these coatings are indicated finally.

  15. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy

    NARCIS (Netherlands)

    Liu, Yuelian; Layrolle, Pierre; de Bruijn, Joost Dick; van Blitterswijk, Clemens; de Groot, K.

    2001-01-01

    Titanium alloy implants were precoated biomimetically with a thin and dense layer of calcium phosphate and then incubated either in a supersaturated solution of calcium phosphate or in phosphate-buffered saline, each containing bovine serum albumin (BSA) at various concentrations, under

  16. Glass formation and structure of calcium antimony phosphate glasses and those doped with tellurium oxide

    Science.gov (United States)

    Li, Jun; Zhang, Yin; Nian, Shangjiu; Wu, Zhenning; Cao, Weijing; Zhou, Nianying; Wang, Danian

    2017-03-01

    An approximate glass-forming region in the P2O5-Sb2O3-CaO ternary system was determined. The properties and structure of two compositional series of (A) (75- x)P2O5- xSb2O3-25CaO ( x = 20, 25, 30, 35 mol%) and (B) 45P2O5-30Sb2O3-(25- x)CaO- xTeO2 ( x = 5, 10, 15, 20 mol%) were studied systematically. Thermal properties were investigated by means of differential scanning calorimetry (DSC). The densities of all samples were measured by Archimedes' method using distilled water as the immersion liquid. The water durability of the glasses was described by their dissolution rate (DR) in the distilled water at 90 °C for some time periods. Density, thermal stability and water durability were improved with the addition of Sb2O3 and TeO2. Structural studies were carried out by X-ray diffraction (XRD), infrared spectroscopy and Raman spectroscopy. The phosphate chain depolymerization occurred with the increase of Sb2O3 and the Q2 structural units transformed to the Q1 and Q0 structural units with the addition of TeO2.

  17. Characterization of Fe -doped silver phosphate glasses

    Indian Academy of Sciences (India)

    ... to their several spe- cial properties such as large thermal expansion coefficients, ... increase the conductivity of these glasses is to increase the modifier or dopant ... phosphate glasses were measured by the a.c. impedance spectroscopic .... and Fe2O3-doped Ag2O–P2O5 glasses were determined from. DSC curves and ...

  18. Spectroscopic properties of highly Nd-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Novais, A.L.F. [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil); Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Guedes, I. [Departamento de Física, Universidade Federal do Ceará, Campus do PICI, Caixa Postal 6030, 60455-760 Fortaleza, CE (Brazil); Vermelho, M.V.D., E-mail: vermelho@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil)

    2015-11-05

    The spectroscopic characteristics of highly Nd{sup 3+}-doped lead phosphate glasses (xNd:Pb{sub 3}(PO{sub 4}){sub 2}) have been investigated. The X-ray spectra show that the matrices are glassy up to 25 wt% of Nd{sup 3+} doping. From the Judd–Ofelt analysis we observe that while the Ω{sub (2)} parameter remains constant indicating that the 4f{sup N} and 4f{sup N−1}5 d{sup 1} configurations are not affected by the Nd{sup 3+} doping, the behavior of both Ω{sub (4)} and Ω{sub (6)} changes for 15 wt% of Nd{sup 3+} doping. The reduction of the Ω{sub (6)} parameter is related to the increase of the covalence bonding between the ligands and the Nd{sup 3+} ions. At this particular concentration, the radiative lifetime has a four-fold enhancement. Such behaviors are likely to be related to a modification in the glass structure for high Nd{sup 3+} concentrations. - Graphical abstract: Highly doped lead-phosphate glass matrix, with nominal concentration of up to 25 wt%, maintain the spectroscopic properties without deterioration. The analysis concerning the point of view of Nd{sup 3+} ions showed that high concentrations only affects the rare earth electronic charge density distribution. - Highlights: • Spectroscopic characterization of Nd{sub 2}O{sub 3} highly doped lead phosphate glasses. • Phosphate glass doped with Nd{sup 3+} for applications in photonic devices. • Judd–Ofelt analysis in phosphate glasses doped with Neodymium.

  19. Structure and spectroscopy of rare earth – Doped lead phosphate glasses

    International Nuclear Information System (INIS)

    Pisarski, Wojciech A.; Żur, Lidia; Goryczka, Tomasz; Sołtys, Marta; Pisarska, Joanna

    2014-01-01

    Highlights: • Lead phosphate glasses doped with rare earth ions were prepared. • The local structure was examined using X-ray diffraction and spectroscopic methods. • Different structural phosphate groups are present in lead phosphate glasses. • The electron–phonon coupling strength and phonon energy of the glass host was determined. • Several observed emission bands are due to 4f–4f electronic transitions of rare earth ions. -- Abstract: Lead–gallium phosphate glasses doped with rare the earth ions (Eu 3+ , Dy 3+ , Tb 3+ , Er 3+ ) were synthesized. The structure of obtained glasses was examined by means of use: X-ray diffraction (XRD), nuclear magnetic resonance ( 207 Pb and 31 P NMR), fourier transform infrared (FT-IR) and Raman spectroscopy. In contrast to fully amorphous Ln-doped samples (Ln = Eu, Dy, Tb), in Er-doped sample the GaPO 4 crystalline phase was identified. It was found from the NMR, FT-IR and Raman spectroscopic techniques that, different structural phosphate groups were present in lead phosphate glasses. Based on absorption measurements, the UV–VIS cut-off wavelength for lead phosphate glass was determined and its value is close to 305 nm. Excitation and emission spectra of rare earths were also detected. From excitation spectra of Eu 3+ the electron–phonon coupling strength and phonon energy of the glass host were determined. Due to 4f 6 –4f 6 (Eu 3+ ), 4f 8 –4f 8 (Tb 3+ ), 4f 9 –4f 9 (Dy 3+ ) and 4f 11 –4f 11 (Er 3+ ) electronic transitions of trivalent rare earth ions several luminescence bands were stated

  20. RBS and XPS analyses of the composite calcium phosphate coatings for biomedical applications

    International Nuclear Information System (INIS)

    Ide-Ektessabi, Ari; Yamaguchi, Tetsuro; Tanaka, Yoshikazu

    2005-01-01

    The calcium phosphate coatings on metallic implants are widely used for biomedical applications. The calcium phosphate coatings require mechanical strength, strong adhesion to the metallic implants, chemical stability and low dissolution into the human body fluid for stable functioning in the corrosive environment of the human body. In this study, a novel approach for improving the calcium phosphate coatings is utilized by adding trace metallic element into the coatings. We focused on teeth enamel, which is the hardest calcium phosphate tissue in the human body. Zn concentration increases exponentially from the interior to the surface of the enamel. As the Zn concentration increases, so the local hardness increases. Our previous studies suggest that Zn has influence on the hardness and other properties of enamel, calcium phosphate tissue. Calcium phosphate coatings doped with Zn was fabricated and characterized. The atomic composition and chemical state were investigated by using Rutherford backscattering spectroscopy (RBS) and X-ray photoelectron spectrometer (XPS), respectively. Scratch test was also carried out for measuring the adhesion of the coatings

  1. Amorphous calcium phosphate and its application in dentistry

    Directory of Open Access Journals (Sweden)

    Sun Wei-bin

    2011-07-01

    Full Text Available Abstract Amorphous Calcium Phosphate (ACP is an essential mineral phase formed in mineralized tissues and the first commercial product as artificial hydroxyapatite. ACP is unique among all forms of calcium phosphates in that it lacks long-range, periodic atomic scale order of crystalline calcium phosphates. The X-ray diffraction pattern is broad and diffuse with a maximum at 25 degree 2 theta, and no other different features compared with well-crystallized hydroxyapatite. Under electron microscopy, its morphological form is shown as small spheroidal particles in the scale of tenths nanometer. In aqueous media, ACP is easily transformed into crystalline phases such as octacalcium phosphate and apatite due to the growing of microcrystalline. It has been demonstrated that ACP has better osteoconductivity and biodegradability than tricalcium phosphate and hydroxyapatite in vivo. Moreover, it can increase alkaline phosphatase activities of mesoblasts, enhance cell proliferation and promote cell adhesion. The unique role of ACP during the formation of mineralized tissues makes it a promising candidate material for tissue repair and regeneration. ACP may also be a potential remineralizing agent in dental applications. Recently developed ACP-filled bioactive composites are believed to be effective anti-demineralizing/remineralizing agents for the preservation and repair of tooth structures. This review provides an overview of the development, structure, chemical composition, morphological characterization, phase transformation and biomedical application of ACP in dentistry.

  2. A comparative property investigation of lithium phosphate glass

    Indian Academy of Sciences (India)

    The present study addresses the application of microwave (MW) energy for melting lithium phosphate glass. Acomparative analysis of the properties is presented with glasses melted in conventional resistance heating adopting standardmethods of characterization. The density of the glass was found less in MW heating.

  3. Osteoinduction of calcium phosphate biomaterials in small animals

    International Nuclear Information System (INIS)

    Cheng, Lijia; Shi, Yujun; Ye, Feng; Bu, Hong

    2013-01-01

    Although osteoinduction mechanism of calcium phosphate (CP) ceramics is still unclear, several essential properties have been reported, such as chemical composition, pore size and porosity, etc. In this study, calcium phosphate powder (Ca 3 (PO 4 ) 2 , CaP, group 1), biphasic calcium phosphate ceramic powder (BCP, group 2), and intact BCP rods (group 3) were implanted into leg muscles of mice and dorsal muscles of rabbits. One month and three months after implantation, samples were harvested for biological and histological analysis. New bone tissues were observed in 10/10 samples in group 1, 3/10 samples in group 2, and 9/10 samples in group 3 at 3rd month in mice, but not in rabbits. In vitro, human mesenchymal stem cells (hMSCs) were cultured with trace CaP and BCP powder, and osteogenic differentiation was observed at day 7. Our results suggested that chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation. - Highlights: ► Intrinsic osteoinduction of calcium phosphate biomaterials was observed implanted in muscles of mice. ► Biomaterials powder also has osteoinduction property. ► Osteogenic genes and protein could be detected by RT-PCR and Western blot in implanted biomaterials. ► Osteogenic phenomenon could be observed by electron microscopy. ► The chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation

  4. Osteoinduction of calcium phosphate biomaterials in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lijia; Shi, Yujun [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Ye, Feng [Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 (China); Bu, Hong, E-mail: hongbu@scu.edu.cn [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 (China)

    2013-04-01

    Although osteoinduction mechanism of calcium phosphate (CP) ceramics is still unclear, several essential properties have been reported, such as chemical composition, pore size and porosity, etc. In this study, calcium phosphate powder (Ca{sub 3}(PO{sub 4}){sub 2}, CaP, group 1), biphasic calcium phosphate ceramic powder (BCP, group 2), and intact BCP rods (group 3) were implanted into leg muscles of mice and dorsal muscles of rabbits. One month and three months after implantation, samples were harvested for biological and histological analysis. New bone tissues were observed in 10/10 samples in group 1, 3/10 samples in group 2, and 9/10 samples in group 3 at 3rd month in mice, but not in rabbits. In vitro, human mesenchymal stem cells (hMSCs) were cultured with trace CaP and BCP powder, and osteogenic differentiation was observed at day 7. Our results suggested that chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation. - Highlights: ► Intrinsic osteoinduction of calcium phosphate biomaterials was observed implanted in muscles of mice. ► Biomaterials powder also has osteoinduction property. ► Osteogenic genes and protein could be detected by RT-PCR and Western blot in implanted biomaterials. ► Osteogenic phenomenon could be observed by electron microscopy. ► The chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation.

  5. Sorption behavior of Zn(II) ions on synthetic apatitic calcium phosphates

    Science.gov (United States)

    Sebei, Haroun; Pham Minh, Doan; Nzihou, Ange; Sharrock, Patrick

    2015-12-01

    The synthesis, characterization and the reactivity of apatitic calcium phosphates (Ca-HA, chemical formula Ca10(PO4)6(OH)2) is reported. Calcium carbonate (CaCO3) and potassium dihydrogen orthophosphate (KH2PO4) were selected as economical starting materials for the synthesis of Ca-HA under atmospheric conditions. Monocalcium phosphate monohydrate (MCPM), dicalcium phosphate dihydrate (DCPD), and octacalcium phosphate pentahydrate (OCP) were identified as the main intermediates of the synthesis reaction. The product obtained after 48 h of reaction contains mainly low-crystalline Ca-HA and small amounts of other calcium phosphates such as octacalcium phosphate (OCP), B-type carbonate apatite (CAP), as well as unreacted calcium carbonate. This Ca-HA was found to be active for the removal of Zn2+ from an aqueous solution. Its sorption capacity reached up to 120 mg of Zn2+ per g of Ca-HA powder after 24 h of reaction. The monitoring of soluble Zn, Ca and P during the sorption experiment allowed characterizing the mechanism of Zn uptake. Dissolution-precipitation, ionic exchange and surface complexation are the three main mechanisms involved in the sorption processes. The contribution of these mechanisms is discussed in detail.

  6. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    Energy Technology Data Exchange (ETDEWEB)

    Yang Liang; Habibovic, Pamela; Van Blitterswijk, Clemens A [Department of Tissue Regeneration, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Hedhammar, My; Johansson, Jan [Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, the Biomedical Centre, Box 575, 751 23 Uppsala (Sweden); Blom, Tobias; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden)

    2010-08-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently, artificial spider silk, with mechanical and structural characteristics similar to those of native spider silk, has been produced from recombinant minispidroins. In the present study, supersaturated simulated body fluid was used to deposit calcium phosphate coatings on recombinant spider silk fibres. The mineralization process was followed in time using scanning electron microscopy equipped with an energy dispersive x-ray (EDX) detector and Raman spectroscope. Focused ion beam technology was used to produce a cross section of a coated fibre, which was further analysed by EDX. Preliminary in vitro experiments using a culture of bone marrow-derived human mesenchymal stem cells (hMSCs) on coated fibres were also performed. This study showed that recombinant spider silk fibres were successfully coated with a homogeneous and thick crystalline calcium phosphate layer. In the course of the mineralization process from modified simulated body fluid, sodium chloride crystals were first deposited on the silk surface, followed by the deposition of a calcium phosphate layer. The coated silk fibres supported the attachment and growth of hMSCs.

  7. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    International Nuclear Information System (INIS)

    Yang Liang; Habibovic, Pamela; Van Blitterswijk, Clemens A; Hedhammar, My; Johansson, Jan; Blom, Tobias; Leifer, Klaus

    2010-01-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently, artificial spider silk, with mechanical and structural characteristics similar to those of native spider silk, has been produced from recombinant minispidroins. In the present study, supersaturated simulated body fluid was used to deposit calcium phosphate coatings on recombinant spider silk fibres. The mineralization process was followed in time using scanning electron microscopy equipped with an energy dispersive x-ray (EDX) detector and Raman spectroscope. Focused ion beam technology was used to produce a cross section of a coated fibre, which was further analysed by EDX. Preliminary in vitro experiments using a culture of bone marrow-derived human mesenchymal stem cells (hMSCs) on coated fibres were also performed. This study showed that recombinant spider silk fibres were successfully coated with a homogeneous and thick crystalline calcium phosphate layer. In the course of the mineralization process from modified simulated body fluid, sodium chloride crystals were first deposited on the silk surface, followed by the deposition of a calcium phosphate layer. The coated silk fibres supported the attachment and growth of hMSCs.

  8. Calcium Overload Accelerates Phosphate-Induced Vascular Calcification Via Pit-1, but not the Calcium-Sensing Receptor.

    Science.gov (United States)

    Masumoto, Asuka; Sonou, Tomohiro; Ohya, Masaki; Yashiro, Mitsuru; Nakashima, Yuri; Okuda, Kouji; Iwashita, Yuko; Mima, Toru; Negi, Shigeo; Shigematsu, Takashi

    2017-07-01

    Vascular calcification (VC) is a risk factor of cardiovascular and all-cause mortality in patients with chronic kidney disease (CKD). CKD-mineral and bone metabolism disorder is an important problem in patients with renal failure. Abnormal levels of serum phosphate and calcium affect CKD-mineral and bone metabolism disorder and contribute to bone disease, VC, and cardiovascular disease. Hypercalcemia is a contributing factor in progression of VC in patients with CKD. However, the mechanisms of how calcium promotes intracellular calcification are still unclear. This study aimed to examine the mechanisms underlying calcium-induced calcification in a rat aortic tissue culture model. Aortic segments from 7-week-old male Sprague-Dawley rats were cultured in serum-supplemented medium for 10 days. We added high calcium (HiCa; calcium 3.0 mM) to high phosphate (HPi; phosphate 3.8 mM) medium to accelerate phosphate and calcium-induced VC. We used phosphonoformic acid and the calcimimetic R-568 to determine whether the mechanism of calcification involves Pit-1 or the calcium-sensing receptor. Medial VC was significantly augmented by HPi+HiCa medium compared with HPi alone (300%, p<0.05), and was associated with upregulation of Pit-1 protein. Pit-1 protein concentrations in HPi+HiCa medium were greater than those in HPi medium. Phosphonoformic acid completely negated the augmentation of medial VC induced by HPi+HiCa. R-568 had no additive direct effect on medial VC. These results indicated that exposure to HPi+HiCa accelerates medial VC, and this is mediated through Pit-1, not the calcium-sensing receptor.

  9. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically.

    Science.gov (United States)

    Morimoto, Shinji; Anada, Takahisa; Honda, Yoshitomo; Suzuki, Osamu

    2012-08-01

    The present study was designed to investigate the extent to which calcium phosphate bone substitute materials, including osteoconductive octacalcium phosphate (OCP), display cytotoxic and inflammatory responses based on their dissolution in vitro. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics, which are clinically used, as well as dicalcium phosphate dihydrate (DCPD) and synthesized OCP were compared. The materials were well characterized by chemical analysis, x-ray diffraction and Fourier transform infrared spectroscopy. Calcium and phosphate ion concentrations and the pH of culture media after immersion of the materials were determined. The colony forming rate of Chinese hamster lung fibroblasts was estimated with extraction of the materials. Proliferation of bone marrow stromal ST-2 cells and inflammatory cytokine TNF-α production by THP-1 cells grown on the material-coated plates were examined. The materials had characteristics that corresponded to those reported. DCPD was shown to dissolve the most in the culture media, with a marked increase in phosphate ion concentration and a reduction in pH. ST-2 cells proliferated well on the materials, with the exception of DCPD, which markedly inhibited cellular growth. The colony forming capacity was the lowest on DCPD, while that of the other calcium phosphates was not altered. In contrast, TNF-α was not detected even in cells grown on DCPD, suggesting that calcium phosphate materials are essentially non-inflammatory, while the solubility of the materials can affect osteoblastic and fibroblastic cellular attachment. These results indicate that OCP is biocompatible, which is similar to the materials used clinically, such as HA. Therefore, OCP could be clinically used as a biocompatible bone substitute material.

  10. Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements.

    NARCIS (Netherlands)

    Sariibrahimoglu, K.; Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Yubao, L.; Jansen, J.A.

    2012-01-01

    The main disadvantage of apatitic calcium phosphate cements (CPCs) is their slow degradation rate, which limits complete bone regeneration. Carbonate (CO(3)(2)(-)) is the common constituent of bone and it can be used to improve the degradability of the apatitic calcium phosphate ceramics. This study

  11. Effect of ZnO on phase emergence, microstructure and surface modifications of calcium phosphosilicate glass/glass-ceramics having iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.; Dixit, A.; Bhattacharya, S.; Jagannath [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Deo, M.N. [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kothiyal, G.P., E-mail: gpkoth@barc.gov.in [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2010-03-01

    The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO{sub 2}-50CaO-15P{sub 2}O{sub 5}-(10 - x)Fe{sub 2}O{sub 3}-xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 deg. C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca{sub 3}Si{sub 2}O{sub 7}) phase is also observed when glass is heat treated at 1000 deg. C. The microstructure of the glass-ceramics heat treated at 800 deg. C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 deg. C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.

  12. Effect of ZnO on phase emergence, microstructure and surface modifications of calcium phosphosilicate glass/glass-ceramics having iron oxide

    International Nuclear Information System (INIS)

    Sharma, K.; Dixit, A.; Bhattacharya, S.; Jagannath; Deo, M.N.; Kothiyal, G.P.

    2010-01-01

    The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO 2 -50CaO-15P 2 O 5 -(10 - x)Fe 2 O 3 -xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 deg. C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca 3 Si 2 O 7 ) phase is also observed when glass is heat treated at 1000 deg. C. The microstructure of the glass-ceramics heat treated at 800 deg. C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 deg. C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.

  13. Effects of calcium phosphate/chitosan composite on bone healing in rats: calcium phosphate induces osteon formation.

    Science.gov (United States)

    Fernández, Tulio; Olave, Gilberto; Valencia, Carlos H; Arce, Sandra; Quinn, Julian M W; Thouas, George A; Chen, Qi-Zhi

    2014-07-01

    Vascularization of an artificial graft represents one of the most significant challenges facing the field of bone tissue engineering. Over the past decade, strategies to vascularize artificial scaffolds have been intensively evaluated using osteoinductive calcium phosphate (CaP) biomaterials in animal models. In this work, we observed that CaP-based biomaterials implanted into rat calvarial defects showed remarkably accelerated formation and mineralization of new woven bone in defects in the initial stages, at a rate of ∼60 μm/day (0.8 mg/day), which was considerably higher than normal bone growth rates (several μm/day, 0.1 mg/day) in implant-free controls of the same age. Surprisingly, we also observed histological evidence of primary osteon formation, indicated by blood vessels in early-region fibrous tissue, which was encapsulated by lamellar osteocyte structures. These were later fully replaced by compact bone, indicating complete regeneration of calvarial bone. Thus, the CaP biomaterial used here is not only osteoinductive, but vasculogenic, and it may have contributed to the bone regeneration, despite an absence of osteons in normal rat calvaria. Further investigation will involve how this strategy can regulate formation of vascularized cortical bone such as by control of degradation rate, and use of models of long, dense bones, to more closely approximate repair of human cortical bone.

  14. A randomised study to compare salivary pH, calcium, phosphate and calculus formation after using anticavity dentifrices containing Recaldent(®) and functionalized tri-calcium phosphate.

    Science.gov (United States)

    Sharma, Ena; Vishwanathamurthy, Ramesh Alampalli; Nadella, Manjari; Savitha, A N; Gundannavar, Gayatri; Hussain, M Ahad

    2012-10-01

    The aim of this study was to estimate the pH of saliva, concentration of calcium and inorganic phosphate, and calculus formation before and after usage of Recaldent(®) (GC Tooth Mousse Plus™), Functionalized Tricalcium Phosphate (3M ESPE ClinPro™ Tooth Crème) and standard dentifrice (Colgate dental cream). Randomized double-blind study. A total of 50 subjects were recruited, the subjects were assessed at their first visit, on the 21(st) day and on the 42(nd) day. At the first visit, scaling was carried out and oral hygiene instructions were given. After 21 days, the subjects were given coded dentifrices where the operator and the subjects both were unaware of the type of dentifrice. Clinical parameters assessed were Plaque index, Gingival index, and Calculus index. Salivary samples were obtained to measure calcium, phosphate levels, and pH at 21(st) day and 42(nd) day. ANOVA test, t-test, Mann-Whitney test, Kruskal-Wallis test. The mean salivary calcium level and mean salivary phosphate level were higher in Group III (functionalized tricalcium phosphate (3M ESPE ClinPro™ Tooth Creme) as compared to Group II (Recaldent(®) GC Tooth Mousse Plus™) and Group I (Colgate dental cream) on the 42(nd) day after using dentifrices, which was statistically significant. This showed that the usage of remineralizing dentifrices led to an increase in the salivary calcium, phosphate, and pH but it did not reach the level of super saturation of the ions caused by elevated pH which could lead to calculus formation. Thought here was a statistically significant increase in salivary calcium and phosphate level in all three groups from baseline to 42(nd) day, there was no calculus formation.

  15. Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium.

    Science.gov (United States)

    Cheng, Lei; Weir, Michael D; Zhang, Ke; Wu, Eric J; Xu, Sarah M; Zhou, Xuedong; Xu, Hockin H K

    2012-08-01

    Half of dental restorations fail in 10 years, with secondary caries as the main reason. Calcium phosphate composites could remineralize tooth lesions. The objectives of this study were to: (1) impart antibacterial activity to a composite with nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate the effect of quaternary ammonium dimethacrylate (QADM) on mechanical and dental plaque microcosm biofilm properties for the first time. The NACP and glass particles were filled into a dental resin that contained bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, the QADM. NACP nanocomposites containing 0%, 7%, 14%, and 17.5% of QADM by mass, respectively, were photo-cured. A commercial composite with no antibacterial activity was used as control. Mechanical properties were measured in three-point flexure. A human saliva microcosm model was used to grow biofilms on composites. Live/dead assay, metabolic activity, colony-forming unit (CFU) counts, and lactic acid production of biofilms on the composites were measured. Increasing QADM mass fraction monotonically reduced the biofilm viability, CFU and lactic acid. Biofilms on NACP nanocomposite with 17.5% QADM had metabolic activity that was 30% that on a commercial composite control (pbacterial cells with normal short-rod shapes, while some cells on NACP-QADM nanocomposites disintegrated into pieces. Adding QADM to NACP did not decrease the composite strength and elastic modulus, which matched (p>0.1) those of a commercial composite without Ca-PO(4) or antibacterial activity. A dental plaque microcosm model was used to evaluate the novel NACP-QADM nanocomposite. The nanocomposite greatly reduced the biofilm viability, metabolic activity and lactic acid, while its mechanical properties matched those of a commercial composite. NACP-QADM nanocomposite with calcium phosphate fillers, good mechanical properties and a strong antibacterial activity may have potential for anti-biofilm and anti

  16. Application of a lipid-coated hollow calcium phosphate nanoparticle in synergistic co-delivery of doxorubicin and paclitaxel for the treatment of human lung cancer A549 cells

    Directory of Open Access Journals (Sweden)

    Wu C

    2017-10-01

    Full Text Available Chao Wu, Jie Xu, Yanna Hao, Ying Zhao, Yang Qiu, Jie Jiang, Tong Yu, Peng Ji, Ying Liu Pharmacy School, Jinzhou Medical University, Jinzhou, China Abstract: In this study, we developed a lipid-coated hollow calcium phosphate (LCP nanoparticle for the combined application of two chemotherapeutic drugs to human lung cancer A549 cells. Hydrophilic doxorubicin (DOX was incorporated into the hollow structure of hollow calcium phosphate (HCP, and a lipid bilayer containing hydrophobic paclitaxel (PTX was subsequently coated on the surface of HCP. The study on combinational effects demonstrated that the combination of DOX and PTX at a mass ratio of 12:1 showed a synergistic effect against A549 cells. The particle size, zeta potential, and encapsulation efficiency were measured to obtain optimal values: particle size was 335.0 3.2 nm, zeta potential -41.1 mV, and encapsulation efficiency 80.40%±2.24%. An in vitro release study indicated that LCP produced a sustained drug release. A549 cells had a better uptake of LCP with good biocompatibility. Furthermore, in vitro cytotoxicity experiment, apoptosis analysis, in vivo anti-tumor efficacy and protein expression analysis of Bax, Bcl-2, and Caspase-3 demonstrated that the co-delivery system based on LCP had significant synergistic anti-tumor activity. All conclusions suggested that LCP is a promising platform for co-delivery of multiple anti-tumor drugs. Keywords: doxorubicin, paclitaxel, co-delivery, lipid, hollow calcium phosphate, lung cancer cell

  17. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    Science.gov (United States)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  18. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    Science.gov (United States)

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-05

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Hybrid calcium phosphate coatings for implants

    Science.gov (United States)

    Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.

    2016-08-01

    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.

  20. Spectroscopic study of biologically active glasses

    Science.gov (United States)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  1. Mechanism of calcium phosphates precipitation in liquid crystals

    International Nuclear Information System (INIS)

    Prelot, B.; Zemb, T.

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m 2 /g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  2. Laser-assisted one-pot fabrication of calcium phosphate-based submicrospheres with internally crystallized magnetite nanoparticles through chemical precipitation.

    Science.gov (United States)

    Nakamura, Maki; Oyane, Ayako; Sakamaki, Ikuko; Ishikawa, Yoshie; Shimizu, Yoshiki; Kawaguchi, Kenji

    2015-04-14

    In this paper, we have further developed our simple (one-pot) and rapid (short irradiation time) laser fabrication process of submicrometer spheres composed of amorphous calcium iron phosphate. In our previous process, laser irradiation was applied to a calcium phosphate (CaP) reaction mixture supplemented with ferric ions (Fe(3+)) as a light-absorbing agent. Because the intention of the present study was to fabricate magnetite-encapsulated CaP-based submicrometer spheres, ferrous ions (Fe(2+)) were used as a light-absorbing agent rather than ferric ions. The ferrous ions served as a light-absorbing agent and facilitated the fabrication of submicrometer and micrometer spheres of amorphous calcium iron phosphate. The sphere formation and growth were better promoted by the use of ferrous ions as compared with the use of ferric ions. The chemical composition of the spheres was controllable through adjustment of the experimental conditions. By the addition of sodium hydroxide to the CaP reaction mixture supplemented with ferrous ions, fabrication of CaP-based magnetic submicrometer spheres was successfully achieved. Numerous magnetite and wüstite nanoparticles were coprecipitated or segregated into the CaP-based spherical amorphous matrix via light-material interaction during the CaP precipitation process. The magnetic properties of the magnetite and wüstite formed in the CaP-based spheres were investigated by magnetization measurements. The present process and the resulting CaP-based spheres are expected to have great potential for biomedical applications.

  3. Biocompatibility of calcium phosphate bone cement with optimised mechanical properties: an in vivo study.

    Science.gov (United States)

    Palmer, Iwan; Nelson, John; Schatton, Wolfgang; Dunne, Nicholas J; Buchanan, Fraser; Clarke, Susan A

    2016-12-01

    This work establishes the in vivo performance of modified calcium phosphate bone cements for vertebroplasty of spinal fractures using a lapine model. A non-modified calcium phosphate bone cement and collagen-calcium phosphate bone cements composites with enhanced mechanical properties, utilising either bovine collagen or collagen from a marine sponge, were compared to a commercial poly(methyl methacrylate) cement. Conical cement samples (8 mm height × 4 mm base diameter) were press-fit into distal femoral condyle defects in New Zealand White rabbits and assessed after 5 and 10 weeks. Bone apposition and tartrate-resistant acid phosphatase activity around cements were assessed. All implants were well tolerated, but bone apposition was higher on calcium phosphate bone cements than on poly(methyl methacrylate) cement. Incorporation of collagen showed no evidence of inflammatory or immune reactions. Presence of positive tartrate-resistant acid phosphatase staining within cracks formed in calcium phosphate bone cements suggested active osteoclasts were present within the implants and were actively remodelling within the cements. Bone growth was also observed within these cracks. These findings confirm the biological advantages of calcium phosphate bone cements over poly(methyl methacrylate) and, coupled with previous work on enhancement of mechanical properties through collagen incorporation, suggest collagen-calcium phosphate bone cement composite may offer an alternative to calcium phosphate bone cements in applications where low setting times and higher mechanical stability are important.

  4. Extrusion-based, three-dimensional printing of calcium-phosphate scaffolds

    Science.gov (United States)

    Witek, Lukasz

    Small or large bone defects, can occur due to a variety of reasons: congenital disorders, infections, tumors, or traumas which can lead to significant disabilities. There is an assortment of bone grafting procedures, each having their own respective advantages and disadvantages and exhibiting certain essential characteristics. Among the available grafts, autogenous (autograft), allograft, xenograft, and alloplasts, all exhibit a minimum of two-thirds of the essential characteristics and have been proven useful in fully or partially repairing skeletal defects. However, different host-to-grafting material responses have been reported and should be taken into consideration when determining treatment options. A large range of physical and chemical properties can be achieved with calcium phosphate based materials, which possess two of the ideal characteristics for grafting procedures: osteoconduction and osseointegration. Calcium phosphate based scaffolds composed of hydroxyapatite (HA), beta-tri-calcium phosphate (beta-TCP), or a combination of both (HA/beta-TCP) were investigated as materials for three-dimensional printing process to create layer-by-layer structures for use as bone regeneration scaffolds. Different calcium-phosphate phases will result in different degrees of in vivo dissolution and/or cell-mediated resorption. There has been a growing interest in BCP because it has been shown that this material improves the formation of new bone inside the implanted scaffold. The literature indicates that the faster dissolution rate of ?-TCP would be greatly responsible of this enhancement. However, in vitro tests indicate that fast dissolution can decrease the mechanical strength of BCP scaffolds. Furthermore, studies reported that HA has higher mechanical strength and lower degradation rate than beta-TCP. Therefore, the HA/beta-TCP ratio is a key parameter controlling the performance of the scaffold for bone repair applications, since it determines degradation rate

  5. Molecular Dynamics Simulation of the Structure and Properties of Lithium Phosphate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liang, J-J; Cygan, R.T.; Alam, T.M.

    1999-07-09

    A new forcefield model was developed for the computer simulation of phosphate materials that have many important applications in the electronics and biomedical industries. The model provides a fundamental basis for the evaluation of phosphate glass structure and thermodynamics. Molecular dynamics simulations of a series of lithium phosphate glass compositions were performed using the forcefield model. A high concentration of three-membered rings (P{sub 3}O{sub 3}) occurs in the glass of intermediate composition (0.2 Li{sub 2}O {center_dot} 0.8P{sub 2}O{sub 5}) that corresponds to the minimum in the glass transition temperature curve for the compositional series. Molecular orbital calculations of various phosphate ring clusters indicate an increasing stabilization of the phosphate ring structure going from two- to four-membered rings.

  6. Immobilization of calcium and phosphate ions improves the osteoconductivity of titanium implants

    International Nuclear Information System (INIS)

    Sunarso; Toita, Riki; Tsuru, Kanji; Ishikawa, Kunio

    2016-01-01

    In this work, to elevate weak osteoconductivity of titanium (Ti) implant, we prepared a Ti implant having both calcium and phosphate ions on its surface. To modify calcium and phosphate ions onto Ti, phosphate ions were first immobilized by treating the Ti with a NaH 2 PO 4 solution, followed by CaCl 2 treatment to immobilize calcium ions, which created the calcium and phosphate ions-modified Ti (Ca-P-Ti). X-ray photoelectron spectroscopy and thin-layer X-ray diffraction measurement confirmed that both phosphate and calcium ions were co-immobilized onto the Ti surface on the molecular level. Three-hour after seeding MC3T3-E1 murine pre-osteoblast cells on substrates, cell number on Ca-P-Ti was much larger than that of Ti and phosphate-modified Ti (P-Ti), but was similar to that of calcium-modified Ti (Ca-Ti). Also, MC3T3-E1 cells on Ca-P-Ti expressed larger amount of vinculin, a focal adhesion protein, than those on other substrates, probably resulting in larger cell size as well as greater cell proliferation on Ca-P-Ti than those on other substrates. Alkaline phosphatase activity of cells on Ca-P-Ti was greater than those on Ti and P-Ti, but was almost comparable to that of Ca-Ti. Moreover, the largest amount of bone-like nodule formation was observed on Ca-P-Ti. These results provide evidence that calcium and phosphate ions-co-immobilization onto Ti increased the osteoconductivity of Ti by stimulating the responses of pre-osteoblast cells. This simple modification would be promising technique for bone tissue implant including dental and orthopedic implants. - Highlights: • Phosphate and calcium ions have been successfully co-immobilize on Ti surface. • Co-immobilization of Ca and phosphate ions (Ca-P-Ti) did not alter the original surface morphology. • Ca-P-Ti significantly improved initial MC3T3-E1 cell adhesion. • Ca-P-Ti demonstrated remarkable cell proliferation, differentiation and mineralization. • Overall, Ca-P-Ti would be a promising bone

  7. Influence of calcium on ceramide-1-phosphate monolayers

    Directory of Open Access Journals (Sweden)

    Joana S. L. Oliveira

    2016-02-01

    Full Text Available Ceramide-1-phosphate (C1P plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM, infrared reflection–absorption spectroscopy (IRRAS and grazing incidence X-ray diffraction (GIXD. The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P.

  8. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses

    Science.gov (United States)

    Shaharyar, Yaqoot

    The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of novel biodegradable materials with higher bioactivity, such as biodegradable phosphate-based bioactive glasses, which can be a viable alternative for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids.Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O - (45-x) CaO - 45P2O5 - xCaF2, where x varies between 0 -- 10 mol.%. NMR and MD data reveal that the medium-range atomic-scale structure of thse glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. On a macroscopic scale, we find that incorporating fluoride in phosphate glasses does not affect the rate of apatite formation on the glass surface in simulated body fluid (SBF). However, fluoride has a marked favorable impact on the glass dissolution in deionized water. Similarly, fluoride incorporation in the glasses results in significant weight gain due to adsorption of water (in the form of OH ions). These macroscopic trends are discussed on the basis of the F effect on the atomistic structure of the glasses, such as the F-induced phosphate network re-polymerization, in a

  9. Prediction of the Setting Properties of Calcium Phosphate Bone Cement

    Directory of Open Access Journals (Sweden)

    Seyed Mahmud Rabiee

    2012-01-01

    Full Text Available Setting properties of bone substitutes are improved using an injectable system. The injectable bone graft substitutes can be molded to the shape of the bone cavity and set in situ when injected. Such system is useful for surgical operation. The powder part of the injectable bone cement is included of β-tricalcium phosphate, calcium carbonate, and dicalcium phosphate and the liquid part contains poly ethylene glycol solution with different concentrations. In this way, prediction of the mechanical properties, setting times, and injectability helps to optimize the calcium phosphate bone cement properties. The objective of this study is development of three different adaptive neurofuzzy inference systems (ANFISs for estimation of compression strength, setting time, and injectability using the data generated based on experimental observations. The input parameters of models are polyethylene glycol percent and liquid/powder ratio. Comparison of the predicted values and measured data indicates that the ANFIS model has an acceptable performance to the estimation of calcium phosphate bone cement properties.

  10. The effects of excess calcium on the handling and mechanical properties of hydrothermal derived calcium phosphate bone cement

    Science.gov (United States)

    Razali, N. N.; Sukardi, M. A.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.

    2018-01-01

    The objective of this study is to determine the effects of excess calcium on the handling and mechanical properties of hydrothermal derived calcium phosphate cement (CPC) for bone filling applications. Hydroxyapatite powder was synthesized via hydrothermal method using calcium oxide, CaO and ammonium dihydrogen phosphate, NH4H2PO4 as the calcium and phosphorus precursors respectively. The effects of calcium excess were evaluated by varying the CaO content at 0, 5 and 15 mole %. The precursors were then refluxed in distilled water at 90-100°C and dried overnight until the calcium phosphate powder was formed. CPC was then produced by mixing the synthesized powder with distilled water at the powder-to-liquid (P/L) ratio of 1.5. The result from the morphological properties of CPC shows the increase in agglomeration and particles size with 5 mole % of calcium excess but decreased with 15 mole % of calcium excess in CPC. This result was in agreement with the compressive strength result where the CPC increased its strength with 5 mole % of calcium excess but reduced with 15 mole % of calcium excess. The excess in calcium precursor also significantly improved the setting time but reduced the injectability of CPC.

  11. Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate.

    Science.gov (United States)

    de Olyveira, Gabriel Molina; Basmaji, Pierre; Costa, Ligia Maria Manzine; Dos Santos, Márcio Luiz; Dos Santos Riccardi, Carla; Guastaldi, Fernando Pozzi Semeghini; Scarel-Caminaga, Raquel Mantuaneli; de Oliveira Capote, Ticiana Sidorenko; Pizoni, Elisabeth; Guastaldi, Antônio Carlos

    2017-06-01

    Bacterial cellulose has become established as a new biomaterial, and it can be used for medical applications. In addition, it has called attention due to the increasing interest in tissue engineering materials for wound care. In this work, the bacterial cellulose fermentation process was modified by the addition of chondroitin sulfate to the culture medium before the inoculation of the bacteria. The biomimetic process with heterogeneous calcium phosphate precipitation of biological interest was studied for the guided regeneration purposes on bacterial cellulose. FTIR results showed the incorporation of the chondroitin sulfate in the bacterial cellulose, SEM images confirmed the deposition of the calcium phosphate on the bacterial cellulose surface, XPS analysis showed a selective chemical group influences which change calcium phosphate deposition, besides, the calcium phosphate phase with different Ca/P ratios on bacterial cellulose surface influences wettability. XTT results concluded that these materials did not affect significantly in the cell viability, being non-cytotoxic. Thus, it was produced one biomaterial with the surface charge changes for calcium phosphate deposition, besides different wettability which builds new membranes for Guided Tissue Regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Shear-peel strength comparison of orthodontic band cements including novel calcium silicate

    DEFF Research Database (Denmark)

    Leo, Mariantonietta; Løvschall, Henrik

    calcium silicate with fluoride and fast-setting, Glass ionomer, and Zinc phosphate cement, used for luting of orthodontic bands on molars kept one month in phosphate buffering solution (PBS). Materials and methods: The roots of 35 extracted human molars were embedded in acryl. Three groups were allocated....... An orthodontic band (AO) was fitted on the free crown. Each group of the teeth (n>10) was cemented with novel calcium silicate (Protooth), Glass ionomer (Orthocem), or Zinc phosphate (DeTrey Zinc). The cements were mixed according to the manufacturers instructions. Samples were stored at 37ºC in humid chamber...... Silicate (Protooth) and Zinc phosphate cement (DeTrey Zinc) were significantly higher than Glass ionomer cement (Orthocem) when looking for the force (N, p

  13. Structural and luminescence properties of Mn{sup 2+} ions doped calcium zinc borophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Ming Hua, E-mail: wanminghua819@gmail.com [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Wong, Poh Sum, E-mail: pohsumwong@gmail.com [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Hussin, Rosli, E-mail: roslihussin@utm.my [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Lintang, Hendrik O., E-mail: hendrik@ibnusina.utm.my [Catalytic Science and Technology (CST) Research Group, Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Endud, Salasiah, E-mail: salasiah@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2014-05-15

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ({sup 4}T{sub 1g} → {sup 6}A{sub 1g}). • As the concentration of Mn{sup 2+} ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn{sup 2+} ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn{sup 2+} ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper {sup 4}T{sub 1g} → {sup 6}A{sub 1g} ground state of Mn{sup 2+} ions. As the concentration of Mn{sup 2+} ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of {sup 4}T{sub 1g} level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn{sup 2+} concentrations. From the emission characteristic parameters of {sup 6}A{sub 1g} (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices.

  14. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate glass. Vitreous lead-iron-phosphate glass appears to have substantially better chemical durability than borosilicate glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters as is presently done with borosilicate glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from borosilicate glass. Therefore, in order to realize the performance advantages of the lead-iron-phosphate material in a nuclear waste form, it would be necessary to process it so that it is rapidly cooled, thus retaining its vitreous structure. 22 refs., 4 figs., 4 tabs

  15. Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: Synthesis, microstructure and biological responsiveness

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, Devis, E-mail: devis.bellucci@unimore.it [Department of Engineering “E. Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); Sola, Antonella [Department of Engineering “E. Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); Cacciotti, Ilaria [University of Rome " Niccolò Cusano" , UdR INSTM, Via Don Carlo Gnocchi 3, 00166, Rome (Italy); Bartoli, Cristina; Gazzarri, Matteo [Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM — Pisa, Via Risorgimento 35, 56127 Pisa (Italy); Bianco, Alessandra [Department of Enterprise Engineering, INSTM RU “Rome-Tor Vergata”, Via del Politecnico 1, 00133 Roma (Italy); Chiellini, Federica [Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM — Pisa, Via Risorgimento 35, 56127 Pisa (Italy); Cannillo, Valeria [Department of Engineering “E. Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy)

    2014-09-01

    Presently, there is an increasing interest towards the composites of calcium phosphates, especially β-tricalcium phosphate (TCP), and bioactive glasses. In the present contribution, the recently developed BG{sub C}a/Mix glass has been used because its low tendency to crystallize allows to sinter the composites at relatively low temperature (i.e. 850 °C), thus minimizing the glass devitrification and the interaction with TCP. A further improvement is the introduction of lab-produced TCP powders doped with specific ions instead of non-doped commercial powders, since the biological properties of materials for bone replacement can be modulated by doping them with certain metallic ions, such as Mg and Sr. Therefore, novel binary composites have been produced by sintering the BG{sub C}a/Mix glass with the addition of pure, Mg-substituted, Sr-substituted or Mg/Sr bisubstituted TCP powders. After an accurate characterization of the starting TCP powders and of the obtained samples, the composites have been used as three-dimensional supports for the culture of mouse calvaria-derived pre-osteoblastic cells. The samples supported cell adhesion and proliferation and induced promising mechanisms of differentiation towards an osteoblastic phenotype. In particular, the Mg/Sr bi-doped samples seemed to better promote the differentiation process thus suggesting a combined stimulatory effect of Mg{sup 2+} and Sr{sup 2+} ions.

  16. Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: Synthesis, microstructure and biological responsiveness

    International Nuclear Information System (INIS)

    Bellucci, Devis; Sola, Antonella; Niccolò Cusano, UdR INSTM, Via Don Carlo Gnocchi 3, 00166, Rome (Italy))" data-affiliation=" (University of Rome Niccolò Cusano, UdR INSTM, Via Don Carlo Gnocchi 3, 00166, Rome (Italy))" >Cacciotti, Ilaria; Bartoli, Cristina; Gazzarri, Matteo; Bianco, Alessandra; Chiellini, Federica; Cannillo, Valeria

    2014-01-01

    Presently, there is an increasing interest towards the composites of calcium phosphates, especially β-tricalcium phosphate (TCP), and bioactive glasses. In the present contribution, the recently developed BG C a/Mix glass has been used because its low tendency to crystallize allows to sinter the composites at relatively low temperature (i.e. 850 °C), thus minimizing the glass devitrification and the interaction with TCP. A further improvement is the introduction of lab-produced TCP powders doped with specific ions instead of non-doped commercial powders, since the biological properties of materials for bone replacement can be modulated by doping them with certain metallic ions, such as Mg and Sr. Therefore, novel binary composites have been produced by sintering the BG C a/Mix glass with the addition of pure, Mg-substituted, Sr-substituted or Mg/Sr bisubstituted TCP powders. After an accurate characterization of the starting TCP powders and of the obtained samples, the composites have been used as three-dimensional supports for the culture of mouse calvaria-derived pre-osteoblastic cells. The samples supported cell adhesion and proliferation and induced promising mechanisms of differentiation towards an osteoblastic phenotype. In particular, the Mg/Sr bi-doped samples seemed to better promote the differentiation process thus suggesting a combined stimulatory effect of Mg 2+ and Sr 2+ ions

  17. Synthesis and characterization of niobium and iron phosphate glasses for U3O8 immobilization

    International Nuclear Information System (INIS)

    Ghussn, Luciana

    2005-01-01

    Niobium and iron phosphate glasses were produced by melting inorganic compound mixtures in electric furnaces and microwave ovens. The chemical durability was compared among niobium phosphate glasses produced by both processes, and equivalent results were obtained. Leaching tests were also performed to compare the chemical durability among monolithic glass blocks and sintered glasses. The glass transition, crystallization and melting temperatures as well the Hruby parameter (K H ) and the activation energy for crystallization were determined from differential thermal analysis of niobium phosphate glasses produced in electric furnaces. Niobium phosphate glasses are thermally more stable (K H =0.82 +- 0.04) than iron phosphate glasses (K H = 0.42 +- 0.03). Sintered glasses were produced from particles with different particle size distributions and sintering temperatures in the range of 720 - 800 deg C for niobium phosphate and 530 - 680 deg C for iron phosphate glasses. The sintering process was suitable because a glass with composition 37P 2 O 5 -23K 2 O-40Nb 2 O 5 showing leaching rate of 10 -6 g.cm -2 .d -1 , 99 % of the monolithic density and none crystalline phases was obtained. This glass only crystallizes itself after re heating at temperatures above 800 deg C , showing two crystalline phases identified as KNb 3 O 8 e K 3 NbP 2 O 9 . The activation energies for crystallization are 496 +- 7 kJ/mol and 513 +- 14 kJ/mol. Niobium phosphate sintered glasses are better densified than sintered iron phosphate glasses. The leaching rate of sintered glasses that show open porosity is higher than monolithic glass blocks. This effect is related to an increase of the surface area associated to open porous and, a correction of the value of the surface area used to calculate the leaching rate is required. A model was proposed based on the surface area of spherical porous to take in account that effect. Even after correcting the surface area, the leaching rates of sintered

  18. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering

    Directory of Open Access Journals (Sweden)

    Widyasri Prananingrum

    2012-06-01

    Full Text Available Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP is a paste material containing milk protein (casein, that actually contains minerals, such as calcium and phosphate. The casein ability to stabilize calcium phosphate and enhance mineral solubility and bioavailability confers upon CPP potential to be biological delivery vehicles for calcium and phosphate. Purpose: The aim of this study was to determine the calcium levels in tooth enamel after being covered with CPP-ACP 2 times a day for 3, 14 and 28 days. Methods: Sample were bovine incisors of 3 year old cows divided into 4 groups, namely group I as control group, group II, III and IV as treatment groups covered with CPP-ACP 2 times a day. All of those teeth were then immersed in artificial saliva. Group II was immersed for 3 days, while group III was immersed for 14 days, and group IV was immersed for 28 days. One drop of CPP-ACP was used to cover the entire labial surface of teeth. The measurement of the calcium levels was then conducted by using titration method. All data were analyzed by One- Way ANOVA test with 5% degree of confidence. Results: The results showed significant difference of the calcium levels in tooth enamel of those groups after covered with CPP-ACP 2 times a day for 3, 14 and 28 days (p = 0.001. There is also significant difference of the calcium levels in tooth enamel of those treatment groups and the control group (p = 0.001. Conclusion: The calcium levels of tooth enamel are increased after covered with CPP-ACP 2 times a day for 3, 14 and 28 days.Latar belakang: Proses terjadinya karies gigi ditandai oleh adanya demineralisasi

  19. Calcium phosphate saturation in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.; Reddy, C.V.G.

    Temperature, inorganic phosphate concentration and pH seem to be the major factors influencing the degree of saturation of calcium phosphate in sea water. Two water regions can be demarcated in the study area based on the saturation patterns...

  20. Controlled adsorption and release onto calcium phosphates materials and drug delivery applications

    Directory of Open Access Journals (Sweden)

    Barroug A.

    2013-11-01

    Full Text Available The adsorptive properties of synthetic calcium phosphates analogous to bone mineral were examined with respect to cisplatin and risedronate, two biological active drugs; the uptake and release experiments were carried out under various conditions in order to understand the basic mechanism of interaction. The effect of temperature and solution composition were highlighted and discussed. The adsorption results obtained for the therapeutic agents demonstrated that, depending on the conditions investigated (nature of the sorbent, concentration range, ionic composition, temperature…, the shape of the isotherms is of Freundlich or Langmuir type. The adsorption is described as an ion-exchange process in dilute solutions, while the interaction appears to be reactive for concentrated solutions (dissolution of mineral ions from the apatite substrate and formation of soluble calcium complex and/or precipitation of calcium salts involving sorbate molecules. The information gained on the surface reactivity of calcium phosphate were exploited to associate an antibiotic to calcium phosphate cements for drug delivery applications. The specimens were obtained by combination of calcium phosphate and calcium carbonate powders upon mixing with water. The physicochemical properties of the paste were altered by the drug loading method (in the liquid or solid phase. Thus, a dose-dependent effect was noticed for the paste setting time, hardening and the release process.

  1. Alteration of a borosilicate glass in cemented water: antagonist effects of calcium

    International Nuclear Information System (INIS)

    Frizon, F.; Depierre, S.; Angeli, F.; Gin, S.

    2013-01-01

    In the framework of the storage of radioactive wastes in deep geological layers, vitrified waste may be in contact with an environment saturated with solutions stemming from various stages of cement degradation. A series of experiments has been performed to assess how a basic aqueous calcium-rich solution can impact the mechanisms and kinetics of glass alteration. This study shows that 2 main parameters have an impact on the kinetics of the dissolution of glass: the S/V ratio (the glass surface divided by the volume of solution) and the calcium concentration. The calcium concentration is a key parameter whatever the kinetics of glass degradation. In a diluted medium with a pH over 11, the kinetics of glass alteration slows down along with an increase in calcium concentration. What happens is that the silicon flux being too weak to allow the nucleation of C-S-H phases, calcium can penetrate the alteration layer which leads to a better retention of glass components through specific silicon-calcium reactivity and a slowing down of the glass alteration kinetics. On the contrary in a confined environment, a high concentration in calcium leads to the precipitation of C-S-H and to less C-S-H available to cover glass grains diminishing its passivating effect and consequently the dissolving of glass can keep on at more or less the same pace. (A.C.)

  2. Biomimetic fabrication of antibacterial calcium phosphates mediated by polydopamine.

    Science.gov (United States)

    Forte, Lucia; Torricelli, Paola; Bonvicini, Francesca; Boanini, Elisa; Gentilomi, Giovanna Angela; Lusvardi, Gigliola; Della Bella, Elena; Fini, Milena; Vecchio Nepita, Edoardo; Bigi, Adriana

    2018-01-01

    In this work we developed new antibacterial composite materials using polydopamine (PDA) to trigger the deposition of silver nanoparticles (AgNPs) onto calcium phosphates, namely octacalcium phosphate (OCP) and α-tricalcium phosphate (αTCP). Functionalization of OCP and αTCP with a self-polymerized polydopamine layer was obtained by soaking the calcium phosphates in dopamine solution. The PDA surface of functionalized calcium phosphates (OCPd and αTCPd) promoted the deposition of AgNPs by reducing silver ions when soaked in a silver nitrate solution. The amount of deposited AgNPs can be modulated by varying the concentration of silver nitrate solution and the type of substrate. The results of in vitro tests carried out with osteoblast-like MG63 cells indicate that the combination of AgNPs with OCP provides more biocompatible materials than those obtained using αTCP as substrate. In particular, the study of osteoblast activity and differentiation was focused on the samples OCPdAg5 (silver content=8.2wt%) and αTCPdAg5 (silver content=4.7wt%), which did not show any cytotoxicity, and compared with those obtained on pure OCP and αTCP. The results demonstrate that the AgNPs loaded materials support osteoblast viability and differentiation, whereas they significantly inhibit the growth of relevant antibiotic-resistant pathogenic bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The encapsulation of nuclear waste in a magnesium aluminosilicate glass-ceramic

    International Nuclear Information System (INIS)

    Luk, K.M.

    1999-07-01

    The use of Magnesium aluminosilicate (MAS) glass-ceramics for the immobilisation of nuclear waste has been investigated. Nuclear waste is currently immobilised in a borosilicate glass. It is possible that immobilisation in an MAS glass-ceramic will reduce processing temperature of the waste, offer greater thermal and chemical stabilities and chemical durabilities. The primary reason for investigating sintered glass-ceramics is the possible advent of wastes containing high levels of refractory elements such as zirconia from the future reprocessing techniques such as electrochemical dissolution. In the first instance zirconia was used as a simulated waste with the principal of encapsulating zirconia with the minimum of porosity. Attempts were made to encapsulate 0, 20 and 40 volume % of zirconia in MAS sintering at temperatures of around 950 deg. C. It was found that the main cause of porosity was the agglomeration of fine zirconia powder. Three Taguchi experiments to optimise conditions for encapsulation of zirconia in MAS were carried out. In each case 10 volume % of zirconia was encapsulated. A Taguchi L 8 was carried out to optimise thermal conditions and powder characteristics. A Taguchi L 9 was carried out to improve knowledge of the thermal characteristics and an L 16 was carried out to provide information on curvature of thermal parameters and powder particle sizes. The conditions predicted to be optimum from these Taguchi experiments were a temperature of 940 - 960 deg. C, a heating rate of 30 deg. C/min, a hold time of 30 - 50 minutes and particle sizes of 2-4 and ∼ 15μm respectively. Densifications of up to 99% have been observed. Tapping experiments were carried out in an attempt to remove the pressing stage from processing. MAS was tapped into an alumina crucible with and without the addition of a dead weight. Almost fully dense MAS pellets were produced. This is an indication that it may be possible to process glass-ceramic waste forms in their final

  4. A model for phosphate glass topology considering the modifying ion sub-network

    DEFF Research Database (Denmark)

    Hermansen, Christian; Mauro, J.C.; Yue, Yuanzheng

    2014-01-01

    In the present paper we establish a temperature dependent constraint model of alkali phosphate glasses considering the structural and topological role of the modifying ion sub-network constituted by alkali ions and their non-bonding oxygen coordination spheres. The model is consistent with availa......In the present paper we establish a temperature dependent constraint model of alkali phosphate glasses considering the structural and topological role of the modifying ion sub-network constituted by alkali ions and their non-bonding oxygen coordination spheres. The model is consistent...... with available structural data by NMR and molecular dynamics simulation and dynamic data such glass transition temperature (Tg) and liquid fragility (m). Alkali phosphate glasses are exemplary systems for developing constraint model since the modifying cation network plays an important role besides the primary...... phosphate network. The proposed topological model predicts the changing trend of the Tg and m with increasing alkali oxide content for alkali phosphate glasses, including an anomalous minimum at around 20 mol% alkali oxide content. We find that the minimum in Tg and m is caused by increased connectivity...

  5. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Science.gov (United States)

    Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.

    2015-10-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.

  6. The effect of organic ligands on the crystallinity of calcium phosphate

    Science.gov (United States)

    van der Houwen, Jacqueline A. M.; Cressey, Gordon; Cressey, Barbara A.; Valsami-Jones, Eugenia

    2003-03-01

    Calcium phosphate phases precipitated under critical supersaturation were identified and studied in detail using X-ray powder diffraction, electron probe microanalysis, infrared spectroscopy (IR) and transmission electron microscopy. These synthetic calcium phosphates formed by spontaneous precipitation at pH 7, 25°C and 0.1 M ionic strength (NaCl as the background electrolyte). The combination of several methods allowed detailed characterisation of the calcium phosphates. The purpose of the work was to assess the influence of carboxylate ligands, specifically acetate and citrate, on the quality of the calcium phosphate precipitate. All precipitates were identified as non-stoichiometric, calcium-deficient hydroxylapatites (HAPs), containing carbonate, HPO 42-, sodium and chloride impurities. No other phases were found to be present in any of the precipitates. The presence of citrate resulted in a decrease in crystal size and a higher degree of apatite lattice imperfection in the precipitated HAP. Furthermore, IR spectroscopy showed a higher amount of carbonate present in that HAP, compared with the ones formed in the control and acetate experiments. An additional absorption band, in the infrared spectrum of the HAP formed in the presence of citrate, was observed at 1570 cm -1; this is interpreted as carboxyl groups bound to HAP.

  7. Osteogenic and antimicrobial nanoparticulate calcium phosphate and poly-(D,L-lactide-co-glycolide) powders for the treatment of osteomyelitis

    International Nuclear Information System (INIS)

    Uskoković, Vuk; Hoover, Charles; Vukomanović, Marija; Uskoković, Dragan P.; Desai, Tejal A.

    2013-01-01

    Development of a material for simultaneous sustained and localized delivery of antibiotics and induction of spontaneous regeneration of hard tissues affected by osteomyelitis stands for an important clinical need. In this work, a comparative analysis of the bacterial and osteoblastic cell response to two different nanoparticulate carriers of clindamycin, an antibiotic commonly prescribed in the treatment of bone infection, one composed of calcium phosphate and the other comprising poly-(D,L-lactide-co-glycolide)-coated calcium phosphate, was carried out. Three different non-cytotoxic phases of calcium phosphate, exhibiting dissolution and drug release profiles in the range of one week to two months to one year, respectively, were included in the analysis: monetite, amorphous calcium phosphate and hydroxyapatite. Spherical morphologies and narrow size distribution of both types of nanopowders were confirmed in transmission and scanning electron microscopic analyses. The antibiotic-containing powders exhibited sustained drug release contingent upon the degradation rate of the carrier. Assessment of the antibacterial performance of the antibiotic-encapsulated powders against Staphylococcus aureus, the most common pathogen isolated from infected bone, yielded satisfactory results both in broths and on blood agar plates for all the analyzed powders. In contrast, no cytotoxic behavior was detected upon the incubation of the antibiotic powders with the osteoblastic MC3T3-E1 cell line for up to three weeks. The cells were shown to engage in a close contact with the antibiotic-containing particles, irrespective of their internal or surface phase composition, polymeric or mineral. At the same time, both types of particles upregulated the expression of osteogenic markers osteocalcin, osteopontin, Runx2 and protocollagen type I, suggesting their ability to promote osteogenesis and enhance remineralization of the infected site in addition to eliminating the bacterial source of

  8. Osteogenic and antimicrobial nanoparticulate calcium phosphate and poly-(D,L-lactide-co-glycolide) powders for the treatment of osteomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Uskoković, Vuk, E-mail: vuk21@yahoo.com [Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA (United States); Hoover, Charles [Department of Cell and Tissue Biology, University of California, San Francisco, CA (United States); Vukomanović, Marija [Institute of Technical Sciences, Serbian Academy of Sciences and Arts, Belgrade (Serbia); Advanced Materials Department, Jožef Stefan Institute, Ljubljana (Slovenia); Uskoković, Dragan P. [Institute of Technical Sciences, Serbian Academy of Sciences and Arts, Belgrade (Serbia); Desai, Tejal A. [Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA (United States)

    2013-08-01

    Development of a material for simultaneous sustained and localized delivery of antibiotics and induction of spontaneous regeneration of hard tissues affected by osteomyelitis stands for an important clinical need. In this work, a comparative analysis of the bacterial and osteoblastic cell response to two different nanoparticulate carriers of clindamycin, an antibiotic commonly prescribed in the treatment of bone infection, one composed of calcium phosphate and the other comprising poly-(D,L-lactide-co-glycolide)-coated calcium phosphate, was carried out. Three different non-cytotoxic phases of calcium phosphate, exhibiting dissolution and drug release profiles in the range of one week to two months to one year, respectively, were included in the analysis: monetite, amorphous calcium phosphate and hydroxyapatite. Spherical morphologies and narrow size distribution of both types of nanopowders were confirmed in transmission and scanning electron microscopic analyses. The antibiotic-containing powders exhibited sustained drug release contingent upon the degradation rate of the carrier. Assessment of the antibacterial performance of the antibiotic-encapsulated powders against Staphylococcus aureus, the most common pathogen isolated from infected bone, yielded satisfactory results both in broths and on blood agar plates for all the analyzed powders. In contrast, no cytotoxic behavior was detected upon the incubation of the antibiotic powders with the osteoblastic MC3T3-E1 cell line for up to three weeks. The cells were shown to engage in a close contact with the antibiotic-containing particles, irrespective of their internal or surface phase composition, polymeric or mineral. At the same time, both types of particles upregulated the expression of osteogenic markers osteocalcin, osteopontin, Runx2 and protocollagen type I, suggesting their ability to promote osteogenesis and enhance remineralization of the infected site in addition to eliminating the bacterial source of

  9. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  10. Third-order nonlinearity of Er3+-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C. C. [Universidade Federal do Ceara, Ceara, Brazil; Guedes Da Silva, Ilde [ORNL; Siqueira, J. P. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Misoguti, L. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Zilio, S. C. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Boatner, Lynn A [ORNL

    2010-01-01

    The third-order optical susceptibility and dispersion of the linear refractive index of Er3+-doped lead phosphate glass were measured in the wavelength range between 400 and 1940 nm by using the spectrally resolved femtosecond Maker fringes technique. The nonlinear refractive index obtained from the third-order susceptibility was found to be five times higher than that of silica, indicating that Er3+-doped lead phosphate glass is a potential candidate to be used as the base component for the fabrication of photonic devices. For comparison purposes, the Z-scan technique was also employed to obtain the values of the nonlinear refractive index of E-doped lead phosphate glass at several wavelengths, and the values obtained using the two techniques agree to within 15%.

  11. Chemistry Misconceptions Associated with Understanding Calcium and Phosphate Homeostasis

    Science.gov (United States)

    Cliff, William H.

    2009-01-01

    Successful learning of many aspects in physiology depends on a meaningful understanding of fundamental chemistry concepts. Two conceptual diagnostic questions measured student understanding of the chemical equilibrium underlying calcium and phosphate homeostasis. One question assessed the ability to predict the change in phosphate concentration…

  12. Biomimetic fabrication of calcium phosphate/chitosan nanohybrid composite in modified simulated body fluids

    Directory of Open Access Journals (Sweden)

    K. H. Park

    2017-01-01

    Full Text Available In this study, nucleation and growth of bone-like hydroxyapatite (HAp mineral in modified simulated body fluids (m-SBF were induced on chitosan (CS substrates, which were prepared by spin coating of chitosan on Ti substrate. The m-SBF showed a two fold increase in the concentrations of calcium and phosphate ions compared to SBF, and the post-NaOH treatment provided stabilization of the coatings. The calcium phosphate/chitosan composite prepared in m-SBF showed homogeneous distribution of approximately 350 nm-sized spherical clusters composed of octacalcium phosphate (OCP; Ca8H2(PO46·5H2O crystalline structure. Chitosan provided a control over the size of calcium phosphate prepared by immersion in m-SBF, and post-NaOH treatment supported the binding of calcium phosphate compound on the Ti surface. Post-NaOH treatment increased hydrophilicity and crystallinity of carbonate apatite, which increased its potential for biomedical application.

  13. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    Directory of Open Access Journals (Sweden)

    Suwimon Ruengsri

    2014-01-01

    Full Text Available Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of the glass matrices. The silicate and phosphate glass systems are more appropriate choices as lead-based radiation shielding glass than the borate glass system. Moreover, comparison of results has shown that the glasses possess better shielding properties than standard shielding concretes, suggesting a smaller size requirement in addition to transparency in the visible region.

  14. Effect of the calcium to phosphorus ratio on the setting properties of calcium phosphate bone cements.

    Science.gov (United States)

    Vlad, M D; Gómez, S; Barracó, M; López, J; Fernández, E

    2012-09-01

    α-Tricalcium phosphate (α-TCP) has become the main reactant of most experimental and commercial ceramic bone cements. It has calcium-to-phosphorus (Ca/P) ratio of 1.50. The present study expands and reports on the microstructures and mechanical properties of calcium phosphate (CP) cements containing sintered monolithic reactants obtained in the interval 1.29 properties as well as on their microstructure and crystal phase evolution. The results showed that: (a) CP-cements made with reactants with Ca/P ratio other than 1.50 have longer setting and lower hardening properties; (b) CP-cements reactivity was clearly affected by the Ca/P ratio of the starting reactant; (c) reactants with Ca/P calcium pyrophosphate and α- and β-TCP. Similarly, reactants with Ca/P > 1.50 were composed of α-TCP, tetracalcium phosphate and hydroxyapatite; (d) only the reactant with Ca/P = 1.50 was monophasic and was made of α-TCP, which transformed during the setting into calcium deficient hydroxyapatite; (e) CP-cements developed different crystal microstructures with specific features depending on the Ca/P ratio of the starting reactant.

  15. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects

    International Nuclear Information System (INIS)

    Han, I-H; Lee, I-S; Song, J-H; Lee, M-H; Park, J-C; Lee, G-H; Sun, X-D; Chung, S-M

    2007-01-01

    A thin calcium phosphate film was synthesized on both commercially pure Ti and Si wafers by electron beam evaporation of hydroxyapatite as an evaporant with simultaneous Ar ion beam bombardments. Silver was introduced into an ion-beam-assisted deposition of a calcium phosphate thin film for antimicrobial effect. The amount of incorporated silver ions was controlled by immersing calcium-phosphate-coated samples in different AgNO 3 concentrations, and Rutherford backscattering spectrometry (RBS) was employed to measure the amounts of substituted silver. The higher concentration of silver in the calcium phosphate film was more effective in reducing the bacteria of Escherichia coli ATCC 8739 and Streptococcus mutans OMZ 65 on contact with respect to controls

  16. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects

    Energy Technology Data Exchange (ETDEWEB)

    Han, I-H [Institute of Physics and Applied Physics, and Atomic-Scale Surface Science Research Center, Yonsei University, Seou1 120-749 (Korea, Republic of); Lee, I-S [Institute of Physics and Applied Physics, and Atomic-Scale Surface Science Research Center, Yonsei University, Seou1 120-749 (Korea, Republic of); Song, J-H [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lee, M-H [Department of Medical Engineering, Yonsei University, Seoul 120-752 (Korea, Republic of); Park, J-C [Department of Medical Engineering, Yonsei University, Seoul 120-752 (Korea, Republic of); Lee, G-H [Korea Institute of Machinery and Materials, Chang-Won 641-010 (Korea, Republic of); Sun, X-D [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chung, S-M [Implantium Research Center, Seoul 135-879 (Korea, Republic of)

    2007-09-15

    A thin calcium phosphate film was synthesized on both commercially pure Ti and Si wafers by electron beam evaporation of hydroxyapatite as an evaporant with simultaneous Ar ion beam bombardments. Silver was introduced into an ion-beam-assisted deposition of a calcium phosphate thin film for antimicrobial effect. The amount of incorporated silver ions was controlled by immersing calcium-phosphate-coated samples in different AgNO{sub 3} concentrations, and Rutherford backscattering spectrometry (RBS) was employed to measure the amounts of substituted silver. The higher concentration of silver in the calcium phosphate film was more effective in reducing the bacteria of Escherichia coli ATCC 8739 and Streptococcus mutans OMZ 65 on contact with respect to controls.

  17. Immobilization of Uranium Silicide in Sintered Iron-Phosphate Glass

    International Nuclear Information System (INIS)

    Mateos, Patricia; Russo, Diego; Rodriguez, Diego; Heredia, A; Sanfilippo, M.; Sterba, Mario

    2003-01-01

    This work is a continuation of a previous one performed in vitrification of uranium silicide in borosilicate and iron-silicate glasses, by sintering.We present the results obtained with an iron-phosphate glass developed at our laboratory and we compare this results with those obtained with the above mentioned glasses. The main objective was to develop a method as simple as possible, so as to get a monolithic glass block with the appropriate properties to be disposed in a deep geological repository.The thermal transformation of the uranium silicide was characterized by DTA/TG analysis and X-ray diffraction.We determined the evolution of the crystalline phases and the change in weight.Calcined uranium silicide was mixed with natural U 3 O 8 , the amount of U 3 O 8 was calculated to simulate an isotopic dilution of 4%.This material was mixed with powdered iron-phosphate glass (in wt.%: 64,9 P 2 O 5 ; 22,7 Fe 2 O 3 ; 8,1 Al 2 O 3 ; 4,3 Na 2 O) in different proportions (in wt%): 7%, 10% y 15%.The powders were pressed and sintered at temperatures between 585 y 670 °C. Samples of the sintered pellet were prepared for the lixiviation tests (MCC-1P: monolithic samples; deionised water; 90° C; 7, 14 and 28 days).The samples showed a quite good durability (0,6 g.m -2 .day -1 ), similar to borosilicate glasses.The microstructure of the glass samples showed that the uranium particles are much better integrated to the glass matrix in the iron-phosphate glasses than in the borosilicate or iron-silicate glasses.We can conclude that the sintered product obtained could be a good alternative for the immobilization of nuclear wastes with high content of uranium, as the ones arising from the conditioning of research reactors spent fuels

  18. The influence of Sr content in calcium phosphate coatings

    International Nuclear Information System (INIS)

    Lindahl, Carl; Pujari-Palmer, Shiuli; Hoess, Andreas; Ott, Marjam; Engqvist, Håkan; Xia, Wei

    2015-01-01

    In this study calcium phosphate coatings with different amounts of strontium (Sr) were prepared using a biomineralization method. The incorporation of Sr changed the composition and morphology of coatings from plate-like to sphere-like morphology. Dissolution testing indicated that the solubility of the coatings increased with increased Sr concentration. Evaluation of extracts (with Sr concentrations ranging from 0 to 2.37 μg/mL) from the HA, 0.06Sr, 0.6Sr, and 1.2Sr coatings during in vitro cell cultures showed that Sr incorporation into coatings significantly enhanced the ALP activity in comparison to cells treated with control and HA eluted media. These findings show that calcium phosphate coatings could promote osteogenic differentiation even in a low amount of strontium. - Highlights: • Calcium phosphate coating doping with low Sr contents was prepared via a biomineralization process. • The solubility of the coatings increased with increased Sr concentration. • Present findings show the potential that Sr has on promoting osteogenic differentiation even in a low amount

  19. Synthesis and characterization of powders calcium phosphate for biomedical applications

    International Nuclear Information System (INIS)

    Oliveira, D.M.P. de; Prants, W.T.; Camargo, N.H.A.; Gemelli, E.

    2009-01-01

    Scientists of different areas research the bioceramics as new materials to substitute parts of the human body. The bioceramics of the calcium phosphate have the advantage present similar chemical composition to the structure of the bony apatite of the human skeleton. In this study, calcium phosphate powder was synthesized chemically using the solution of phosphorus pentoxide (P 2 O 5 ) and calcium oxide (CaO) necessary for molar Ca/P =1.67. These works aim the study of different thermal treatments, physics and of the microstructure properties. For characterization the bony matrix were used the techniques of: X-ray diffraction (DRX); Scanning Electronic Microscopy (SEM) and Differential Scanning Calorimetry (DSC). (author)

  20. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering

    OpenAIRE

    Widyasri Prananingrum; Puguh Bayu Prabowo

    2012-01-01

    Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP) is a paste material containing milk protein (casein), that actually contains minerals, such as calcium an...

  1. Characterization of Fe 3 + -doped silver phosphate glasses

    Indian Academy of Sciences (India)

    The relationship among the composition, structure and selected properties for five series of silver phosphate glasses containing 0, 5, 10, 15 and 20wt% Fe 2 O 3 has been investigated. The synthesized glasses have been characterized using different experimental techniques. X-ray diffraction studies revealed that the ...

  2. Kinetics of strontium sorption in calcium phosphate

    International Nuclear Information System (INIS)

    Bacic, S.; Komarov, V.F.; Vukovic, Z.

    1989-01-01

    Kinetics of strontium sorption by highly dispersed solids: tricalcium phosphate (Ca 3 (PO 4 ) 2 , TCP) and hydroxyapatite (Ca 5 (PO 4 ) 3 )H, HAP) were investigated. Analysis of sorption data was made taking into consideration composition and morphology of ultra micro particles. Conclusion is that the isomorphous strontium impurity is structurally sensitive element for calcium phosphate. It was determined that the beginning of strontium desorption corresponds to the beginning of transformation of the TCP - HAP (author)

  3. Hydrolytic conversion of amorphous calcium phosphate into apatite accompanied by sustained calcium and orthophosphate ions release

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Xufeng, E-mail: nxf@buaa.edu.cn [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 (China); BUAA Research Institute, Guangzhou 510530 (China); Research Institute of Beihang University in Shenzhen, Shenzhen 518057 (China); Chen, Siqian; Tian, Feng; Wang, Lizhen [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 (China); Feng, Qingling [State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Fan, Yubo, E-mail: yubofan@buaa.edu.cn [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 (China)

    2017-01-01

    The aim of this study is to investigate the calcium and orthophosphate ions release during the transformation of amorphous calcium phosphate (ACP) to hydroxyapatite (HA) in aqueous solution. The ACP is prepared by a wet chemical method and further immersed in the distilled water for various time points till 14 d. The release of calcium and orthophosphate ions is measured with calcium and phosphate colorimetric assay kits, respectively. The transition of ACP towards HA is detected by x-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FTIR). The results indicate that the morphological conversion of ACP to HA occurs within the first 9 h, whereas the calcium and orthophosphate ions releases last for over 7 d. Such sustained calcium and orthophosphate ions release is very useful for ACP as a candidate material for hard tissue regeneration. - Highlights: • ACP is prepared using a wet chemical method. • The conversion of crystal morphology and structure occurs mainly within the initial 9 h. • The calcium and orthophosphate ions release sustains over 14 d.

  4. Preliminary characterization of calcium chemical environment in apatitic and non-apatitic calcium phosphates of biological interest by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Eichert, D.; Salome, M.; Banu, M.; Susini, J.; Rey, C.

    2005-01-01

    Several reports have mentioned the existence of non-apatitic environments of phosphate and carbonate ions in synthetic and biological poorly crystalline apatites. However there were no direct spectroscopic evidences for the existence of non-apatitic environment of calcium ions. X-ray Absorption Spectroscopy, at the K-edge of calcium, allows the discrimination between different calcium phosphates of biological interest despite great spectral similarities. A primary analysis of the spectra reveals the existence, in synthetic poorly crystalline apatites, of variable features related to the maturation stage of the sample and corresponding to the existence of non-apatitic environments of calcium ions. Although these features can also be found in several other calcium phosphate salts, and do not allow a clear identification of the ionic environments of calcium ions, they give a possibility to directly determine the maturity of poorly crystalline apatite from calcium X-ray Absorption Near Edge Structure spectra

  5. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    Energy Technology Data Exchange (ETDEWEB)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore)

    2012-06-15

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  6. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    International Nuclear Information System (INIS)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim

    2012-01-01

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  7. Yolk-Shell Porous Microspheres of Calcium Phosphate Prepared by Using Calcium L-Lactate and Adenosine 5'-Triphosphate Disodium Salt: Application in Protein/Drug Delivery.

    Science.gov (United States)

    Ding, Guan-Jun; Zhu, Ying-Jie; Qi, Chao; Sun, Tuan-Wei; Wu, Jin; Chen, Feng

    2015-06-26

    A facile and environmentally friendly approach has been developed to prepare yolk-shell porous microspheres of calcium phosphate by using calcium L-lactate pentahydrate (CL) as the calcium source and adenosine 5'-triphosphate disodium salt (ATP) as the phosphate source through the microwave-assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk-shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk-shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as-prepared yolk-shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH-responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk-shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Laser properties of an improved average-power Nd-doped phosphate glass

    International Nuclear Information System (INIS)

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.

    1995-01-01

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime

  9. Synthesis and characterization of powders calcium phosphate for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, D.M.P. de; Prants, W.T.; Camargo, N.H.A.; Gemelli, E., E-mail: daniellapinheiro@gmail.com, E-mail: w_prants@hotmail.com, E-mail: dem2nhac@joinville.udesc.br, E-mail: dma2ec@joinville.udesc.br [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Centro de Ciencias Tecnologicas

    2009-07-01

    Scientists of different areas research the bioceramics as new materials to substitute parts of the human body. The bioceramics of the calcium phosphate have the advantage present similar chemical composition to the structure of the bony apatite of the human skeleton. In this study, calcium phosphate powder was synthesized chemically using the solution of phosphorus pentoxide (P{sub 2}O{sub 5}) and calcium oxide (CaO) necessary for molar Ca/P =1.67. These works aim the study of different thermal treatments, physics and of the microstructure properties. For characterization the bony matrix were used the techniques of: X-ray diffraction (DRX); Scanning Electronic Microscopy (SEM) and Differential Scanning Calorimetry (DSC). (author)

  10. Uptake of CrO42- ions by Fe-treated tri-calcium phosphate

    International Nuclear Information System (INIS)

    Serrano G, J.; Ramirez S, J. L.; Bonifacio M, J.; Granados C, F.; Badillo A, V. E.

    2010-01-01

    CrO 4 2- ion adsorption of Fe-treated tri-calcium phosphate was studied by batch experiments as a function of contact time, initial concentration of metal ion and temperature. Adsorption results showed that at ph 5.5 and 1.0 x 10 -4 M chromium concentration the adsorption capacity of Fe-treated tri-calcium phosphate for CrO 4 2- ions was 7.10 x 10 -3 mmol/g. Chromium adsorption data on Fe-treated tri-calcium phosphate at various initial concentration fitted the Freundlich isotherm. By temperature studies the thermodynamic parameters ΔH 0 , ΔG 0 and ΔS 0 were estimated and the obtained results showed that the adsorption reaction was endothermic and spontaneous. (Author)

  11. Effects of Different End-Point Cooking Temperatures on the Efficiency of Encapsulated Phosphates on Lipid Oxidation Inhibition in Ground Meat.

    Science.gov (United States)

    Kılıç, B; Şimşek, A; Claus, J R; Atılgan, E; Aktaş, N

    2015-10-01

    Effects of 0.5% encapsulated (e) phosphates (sodium tripolyphosphate, STP; sodium hexametaphosphate, HMP; sodium pyrophosphate, SPP) on lipid oxidation during storage (0, 1, and 7 d) of ground meat (chicken, beef) after being cooked to 3 end-point cooking temperatures (EPCT; 71, 74, and 77 °C) were evaluated. The use of STP or eSTP resulted in lower (P cooking loss (CL) compared to encapsulated or unencapsulated forms of HMP and SPP. Increasing EPCT led to a significant increase in CL (P chicken compared to 74 and 71 °C (P chicken samples (P < 0.05). Findings suggest that encapsulated phosphates can be a strategy to inhibit lipid oxidation for meat industry and the efficiency of encapsulated phosphates on lipid oxidation inhibition can be enhanced by lowering EPCT. © 2015 Institute of Food Technologists®

  12. Novel selenium containing boro-phosphate glasses: preparation and structural study.

    Science.gov (United States)

    Ciceo-Lucacel, R; Radu, T; Ponta, O; Simon, V

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P2O7(4-) dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO3(-) middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ3 or BØ2O(-) units. A small contribution of BØ4(-) units was also detected from the FT-IR spectra of glasses. For SeO2 content higher than 5mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  14. Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery

    NARCIS (Netherlands)

    Tervahauta, T.H.; Weijden, van der R.D.; Flemming, R.L.; Hernández, L.; Zeeman, G.; Buisman, C.J.N.

    2014-01-01

    Recovery of phosphorus from wastewater as calcium phosphate could diminish the need for mining of scarce phosphate rock resources. This study introduces a novel approach to phosphorus recovery by precipitation of calcium phosphate granules in anaerobic treatment of black water. The granules formed

  15. Investigation of alumino-phosphate glasses for iodine conditioning

    International Nuclear Information System (INIS)

    Lemesle, T.

    2013-01-01

    Iodine 129 is a long-lived intermediate level radioactive waste, which is currently managed by isotopic dilution. In view of an alternative management by geological disposal, we aimed at developing phosphate glasses of the AgI-Ag 2 O-P 2 O 5 -Al 2 O 3 system, elaborated at low temperature and without iodine volatilization. Alumina is expected to induce crosslinking of the phosphate network and thus to improve the thermal and chemical properties. To define a glass composition that meets the specifications, we varied the level of iodine, the Ag 2 O/P 2 O 5 ratio and alumina content. For 1 g.cm -3 of iodine, SEM-EDS observations indicate that alumina solubility is limited to 0.5% mol., independently of Ag 2 O/P 2 O 5 ratio. The structural study by 31 P, 27 Al and 109 Ag MAS NMR, shows that aluminum adopts an octahedral coordination that effectively contributes to the crosslinking of the glassy network and iodine is incorporated without clustering. 31 P- 27 Al NMR correlations confirmed the presence of an alumino-phosphate network, and 31 P- 31 P correlations indicate that iodine does not change the connectivity of the glass network. The glass composition 28,8AgI-44,2Ag 2 O-26,5P 2 O 5 -0,5Al 2 O 3 presents the best compromise between the level of incorporation of iodine and the chemical durability, has a glass transition temperature of 123 C and an initial alteration rate in pure water at 50 C of 6 g.m -2 .d -1 . The long-term behavior of this glass is controlled by a post-alteration structure based on pyrophosphate, which holds nearly 80% of the initial iodine. (author) [fr

  16. Dense and porous titanium substrates with a biomimetic calcium phosphate coating

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.A., E-mail: aantunesr@yahoo.com.br [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil); Balestra, R.M. [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil); Rocha, M.N. [Metallurgical and Materials Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Peripolli, S.B. [Materials Metrology Division, National Institute of Metrology, Normalization and Quality, No. 50 Nossa Senhora das Gracas Street, Building 3, 25250-020 Duque de Caxias, RJ (Brazil); Andrade, M.C. [Polytechnic Institute of Rio de Janeiro, Rio de Janeiro State University, s/n, Alberto Rangel Street, 28630-050 Nova Friburgo, RJ (Brazil); Pereira, L.C. [Metallurgical and Materials Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Oliveira, M.V. [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer A biomimetic coating method with simplified solution is proposed. Black-Right-Pointing-Pointer Titanium substrates are submitted to chemical and heat treatments. Black-Right-Pointing-Pointer Titanium substrates are coated with biocompatible calcium phosphate phases. Black-Right-Pointing-Pointer The simplified solution shows potential to be applied as a coating technique. - Abstract: The present work studied a biomimetic method using a simplified solution (SS) with calcium and phosphorus ions for coating titanium substrates, in order to improve their bioactivity. Commercially pure titanium dense sheet, microporous and macroporous titanium samples, both produced by powder metallurgy, were treated in NaOH solution followed by heat-treating and immersed in SS for 7, 14 or 21 days. The samples characterization was performed by quantitative metallographic analysis, confocal scanning optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and low angle X-ray diffraction. The results showed coatings with calcium phosphate precipitation in all samples, with globular or plate-like morphology, typical of hydroxyapatite and octacalcium phosphate, respectively, indicating that the solution (SS) has potential for coating titanium substrates. In addition, the different surfaces of substrates had an effect on the formed calcium phosphate phase and thickness of coatings, depending on the substrate type and imersion time in the simplified solution.

  17. Simultaneous in vivo determination of calcium and phosphate effective intestinal absorption in the rat

    International Nuclear Information System (INIS)

    Ladizesky, M.; Mautalen, C.A.; Cabrejas, M.; Degrossi, O.J.

    1978-01-01

    A description is given of a technique which allows a more precise assessment of the interrelation between calcium and phosphate transport systems. Rats were given an i.p. or oral dose of 47 Ca with 40 Ca as carrier and/or 32 P with 31 P as carrier. The animals were sacrificed and activities in body and excised gastrointestinal tract determined. The 1.28 MeV photopeak activity was measured for calcium 47, and phosphorus 32 activity was determined by measuring the Bremsstrahlung produced by this isotope in the rat's body in the 80 to 200 keV range. The rates of intestinal absorption of calcium and phosphate differed; there seemed to be no urinary excretion of the radioisotopes within 3 hours. The reciprocal influence of calcium and phosphate on the intestinal absorption was also studied. The technique is simple and allows the simultaneous in vivo measurement of the effective intestinal absorption of calcium and phosphate. (U.K.)

  18. Calcium phosphate ceramics in drug delivery

    Science.gov (United States)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  19. Electrosprayed calcium phosphate coatings for biomedical purposes.

    NARCIS (Netherlands)

    Leeuwenburgh, S.C.G.

    2006-01-01

    In this thesis, the suitability of the Electrostatic Spray Deposition (ESD) technique was studied for biomedical purposes, i.e., deposition of calcium phosphate (CaP) coatings onto titanium substrates. Using ESD, which is a simple and cheap deposition method for inorganic and organic coatings, it

  20. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng

    2011-01-01

    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass...... to resist crystallization during reheating. In addition, the fragility index (m) is derived by fitting the viscosity data with the Avramov-Milchev equation. The results show that m is inversely proportional to the glass stability for the two series of melts, implying that m is an indirect measure of GFA...

  1. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  2. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    International Nuclear Information System (INIS)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-01-01

    In this paper spectroscopic investigation of Cu 2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu 2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu 2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds

  3. Preparation method and thermal properties of samarium and europium-doped alumino-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sava, B.A., E-mail: savabogdanalexandru@yahoo.com [National Institute of Research and Development for Optoelectronics, Department for Optospintronics, 409 Atomistilor Street, P.O. Box MG – 5, RO-77125 Magurele (Romania); Elisa, M., E-mail: astatin18@yahoo.com [National Institute of Research and Development for Optoelectronics, Department for Optospintronics, 409 Atomistilor Street, P.O. Box MG – 5, RO-77125 Magurele (Romania); Boroica, L., E-mail: boroica_lucica@yahoo.com [National Institute for Lasers, Plasma and Radiation Physics, 77125 Magurele (Romania); Monteiro, R.C.C., E-mail: rcm@fct.unl.pt [Center of Materials Research/Institute for Nanostructures, Nanomodelling and Nanofabrication, (CENIMAT/I3N), Department of Materials Sciences, Faculty of Sciences and Technology, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2013-12-01

    Highlights: • Improved preparation method of rare-earth-doped phosphate glasses was done. • Working and annealing temperatures were lower than for undoped phosphate glass. • Doped glass viscosity is also lower and has quasi-linear variation with temperature. • Exothermic peak appears at about 555 °C and 685 °C, due to devitrification in glass. -- Abstract: The present work investigates alumino-phosphate glasses from Li{sub 2}O–BaO–Al{sub 2}O{sub 3}–La{sub 2}O{sub 3}–P{sub 2}O{sub 5} system containing Sm{sup 3+} and Eu{sup 3+} ions, prepared by two different ways: a wet raw materials mixing route followed by evaporation and melt-quenching, and by remelting of shards. The linear thermal expansion coefficient measured by dilatometry is identical for both rare-earth-doped phosphate glasses. Comparatively to undoped phosphate glass the linear thermal expansion coefficient increases with 2 × 10{sup −7} K{sup −1} when dopants are added. The characteristic temperatures very slowly decrease but can be considered constant with atomic weight, atomic number and f electrons number of the doping ions in the case of T{sub g} (vitreous transition temperature) and T{sub sr} (high annealing temperature) but slowly increase in the case of T{sub ir} (low annealing temperature–strain point) and very slowly increase, being practically constant in the case of T{sub D} (dilatometric softening temperature). Comparatively to undoped phosphate glass the characteristic temperatures of Sm and Eu-doped glasses present lower values. The higher values of electrical conductance for both doped glasses, comparatively to usual soda-lime-silicate glass, indicate a slightly reduced stability against water. The viscosity measurements, showed a quasi-linear variation with temperature the mean square deviation (R{sup 2}) being ranged between 0.872% and 0.996%. The viscosity of doped glasses comparatively to the undoped one is lower at the same temperature. Thermogravimetric

  4. Modelling aqueous corrosion of nuclear waste phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A. [Bochvar All-Russian Scientific Research Institute for Inorganic Materials (VNIINM), Moscow (Russian Federation); Ojovan, Michael I., E-mail: m.ojovan@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2017-02-15

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface. - Highlights: • The radionuclides yield is determined by the transport from the glass through the surface corrosion layer. • Formation of the surface layer is due to the dissolution of the glass network and the formation of insoluble compounds. • The model proposed accounts for glass dissolution, formation of corrosion layer, specie diffusion and chemical reactions. • Analytical solutions are found for corrosion layer growth rate and glass components component leaching rates.

  5. Spectral-luminescence properties of trivalent titanium in aluminum-sodium phosphate glass

    International Nuclear Information System (INIS)

    Sukhanov, S.B.; Batyaev, I.M.

    1992-01-01

    Since development of the first crystal laser, Al 2 O 3 crystals remain the most widely used in quantum electronics. In the present work, the aluminum-sodium phosphate glass, Al 2 O 3 -Na 2 O 3 -P 2 O 5 , was studied with different proportions of components. A luminescence medium is obtained based on phosphate glass doped by Ti 3+ ions with intense emission in the 700-900-nm spectral range. This glass is a promising lasing medium for tunable solid-state lasers. 12 refs., 2 figs

  6. Lithium-Ion Mobility in Quaternary Boro-Germano-Phosphate Glasses.

    Science.gov (United States)

    Moguš-Milanković, Andrea; Sklepić, Kristina; Mošner, Petr; Koudelka, Ladislav; Kalenda, Petr

    2016-04-28

    Effect of the structural changes, electrical conductivity, and dielectric properties on the addition of a third glass-former, GeO2, to the borophosphate glasses, 40Li2O-10B2O3-(50 - x)P2O5-xGeO2, x = 0-25 mol %, has been studied. Introduction of GeO2 causes the structural modifications in the glass network, which results in a continuous increase in electrical conductivity. Glasses with low GeO2 content, up to 10 mol %, show a rapid increase in dc conductivity as a result of the interlinkage of slightly depolymerized phosphate chains and negatively charged [GeO4](-) units, which enhances the migration of Li(+) ions. The Li(+) ions compensate these delocalized charges connecting both phosphate and germanium units, which results in reduction of both bond effectiveness and binding energy of Li(+) ions and therefore enables their hop to the next charge-compensating site. For higher GeO2 content, the dc conductivity increases slightly, tending to approach a maximum in Li(+) ion mobility caused by the incorporation of GeO2 units into phosphate network combined with conversion of GeO4 to GeO6 units. The strong cross-linkage of germanium and phosphate units creates heteroatomic P-O-Ge bonds responsible for more effectively trapped Li(+) ions. A close correspondence between dielectric and conductivity parameters at high frequencies indicates that the increase in conductivity indeed is controlled by the modification of structure as a function of GeO2 addition.

  7. Preparation of in situ hardening composite microcarriers: Calcium phosphate cement combined with alginate for bone regeneration

    Science.gov (United States)

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C

    2014-01-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8–1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement–alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate–hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement–alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone. PMID:23836845

  8. Structure of cesium loaded iron phosphate glasses: An infrared and Raman spectroscopy study

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Premila, M.; Amarendra, G.; Govindan Kutty, K.V.; Sundar, C.S.; Vasudeva Rao, P.R.

    2012-01-01

    The structure of cesium loaded iron phosphate glasses (IPG) was investigated using infrared and Raman spectroscopy. The spectra of the cesium doped samples revealed a structural modification of the parent glass owing to the incorporation of cesium. The structural changes could be correlated with the variation observed in the glass transition temperature of these glasses. Increased Cs-mediated cationic cross linking appears to be the reason for the initial rise in glass transition temperature up to 21 mol% Cs 2 O in IPG; while, breakdown of the phosphate network with increasing cesium content, brings down the glass transition temperature.

  9. Serum Calcium, Inorganic Phosphates and some Haematological ...

    African Journals Online (AJOL)

    Objectives: Sickle cell disease has long been associated with bone deformities and pain. Mineral salts such as calcium and inorganic phosphate are critical in bone formation and metabolism. This investigation was designed to study the serum concentration of these minerals as well as some haematological parameters in ...

  10. Novel selenium containing boro-phosphate glasses: Preparation and structural study

    Energy Technology Data Exchange (ETDEWEB)

    Ciceo-Lucacel, R.; Radu, T., E-mail: teodora.radu@phys.ubbcluj.ro; Ponta, O.; Simon, V.

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO{sub 2} content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P{sub 2}O{sub 7}{sup 4−} dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO{sub 3}{sup −} middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ{sub 3} or BØ{sub 2}O{sup −} units. A small contribution of BØ{sub 4}{sup −} units was also detected from the FT-IR spectra of glasses. For SeO{sub 2} content higher than 5 mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. - Highlights: • New P{sub 2}O{sub 5}-CaO-B{sub 2}O{sub 3}-SeO{sub 2} glasses synthesized by conventional melt quenching method. • Evidences for the Se ions modifier role in the local structure by FT-IR and XPS. • Significant advances in understanding the structural properties of the new system.

  11. Novel selenium containing boro-phosphate glasses: Preparation and structural study

    International Nuclear Information System (INIS)

    Ciceo-Lucacel, R.; Radu, T.; Ponta, O.; Simon, V.

    2014-01-01

    We synthesized a new boro-phosphate glass system with different %mol SeO 2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P 2 O 7 4− dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO 3 − middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ 3 or BØ 2 O − units. A small contribution of BØ 4 − units was also detected from the FT-IR spectra of glasses. For SeO 2 content higher than 5 mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. - Highlights: • New P 2 O 5 -CaO-B 2 O 3 -SeO 2 glasses synthesized by conventional melt quenching method. • Evidences for the Se ions modifier role in the local structure by FT-IR and XPS. • Significant advances in understanding the structural properties of the new system

  12. Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers

    International Nuclear Information System (INIS)

    Seneschal, Karine; Smektala, Frederic; Bureau, Bruno; Floch, Marie Le; Jiang Shibin; Luo, Tao; Lucas, Jacques; Peyghambarian, Nasser

    2005-01-01

    New phosphate glasses have been developed in order to incorporate high rare-earth ions concentrations. These glasses present a great chemical stability and a high optical quality. The phosphate glass network is open, very flexible, with a linkage of the tetrahedrons very disordered and contains a larger number of non-bridging oxygens (66%). The great stability and resistance against crystallization associated with the possibility to incorporate high doping concentration of rare-earth ions in these phosphate glasses make them very good candidates for the realization of ultra short single mode amplifiers with a high gain at 1.55 μm

  13. Bioactivity evaluation of commercial calcium phosphate-based bioceramics for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Borrós, S.; Mas, A.

    2016-11-01

    Calcium phosphate-based bioceramics constitute a great promise for bone tissue engineering as they chemically resemble to mammalian bone and teeth. Their use is a viable alternative for bone regeneration as it avoids the use of autografts and allografts, which usually involves immunogenic reactions and patient’s discomfort. This work evolves around the study of the bioactivity potential of different commercially available bone substitutes based in calcium phosphate through the characterization of their ionic exchangeability when immersed in simulated body fluid (SBF). (Author)

  14. Processing glass-pyrochlore composites for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Pace, S.; Cannillo, V.; Wu, J.; Boccaccini, D.N.; Seglem, S.; Boccaccini, A.R.

    2005-01-01

    Glass matrix composites have been developed as alternative materials to immobilize nuclear solid waste, in particular actinides. These composites are made of soda borosilicate glass matrix, into which particles of lanthanum zirconate pyrochlore are encapsulated in concentrations of 30 vol.%. The fabrication process involves powder mixing followed by hot-pressing. At the relatively low processing temperature used (620 deg. C), the pyrochlore crystalline structure of the zirconate, which is relevant for containment of radioactive nuclei, remains unaltered. The microstructure of the composites exhibits a homogeneous distribution of isolated pyrochlore particles in the glass matrix and strong bonding at the matrix-particle interfaces. Hot-pressing was found to lead to high densification (95% th.d.) of the composite. The materials are characterized by relatively high elastic modulus, flexural strength, hardness and fracture toughness. A numerical approach using a microstructure-based finite element solver was used in order to investigate the mechanical properties of the composites

  15. Kinetics of dissolution of calcium phosphate (Ca-P bioceramics

    Directory of Open Access Journals (Sweden)

    Lukas Brazda

    2008-06-01

    Full Text Available Hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP are widely used bioceramics for surgical or dental applications. This paper is dealing with dissolution kinetics of synthetically prepared β-TCP and four types of HAp granules. Two groups of HAp, treated at different temperatures, each of them with two different granule sizes, were tested. Three corrosive solutions with different pH and simulated body fluid (SBF were used for immersing of the samples. Changes in concentrations of calcium and phosphate ions, pH level and weight changes of the samples were observed. It was found that presence of TRIS buffer enhanced dissolution rate of the β-TCP approximately two times. When exposed to SBF solution, calcium phosphate (most probably hydroxyapatite precipitation predominates over β-TCP dissolution. Results from HAp samples dissolution showed some unexpected findings. Neither heat treatment nor HAp particle size made any major differences in dissolution rate of the same mass of each HAp sample.

  16. Evaluation of growth of calcium phosphate ceramics on sintered Ti-Ca-P composites

    Energy Technology Data Exchange (ETDEWEB)

    Karanjai, Malobika [Centre for Nano Materials, International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur P.O, Hyderabad - 500 005, Andhra Pradesh (India)], E-mail: malobika_k@rediffmail.com; Sundaresan, Ranganathan [Centre for Nano Materials, International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur P.O, Hyderabad - 500 005, Andhra Pradesh (India); Mohan, Tallapragada Raja Rama; Kashyap, Bhagwati Prasad [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai - 400 076, Maharashtra (India)

    2008-12-01

    Sintered Ti-Ca-P composites having in situ formed calcium phosphate phases developed by powder metallurgy processing were soaked for 28 days in simulated body fluid (SBF) with a pH of 7.4 at 37 deg. C and evaluated for the growth of calcium phosphate ceramics onto its surface. The composites were taken out once every 7 days and characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) for evaluating the Ca-P growth. Based on the change in chemistry of the SBF and phase contents, a model has been proposed for mechanism of growth of calcium phosphate compounds on sintered Ti-Ca-P composites immersed in SBF.

  17. Structure and properties of silver-doped calcium phosphate ...

    Indian Academy of Sciences (India)

    Abstract. Stable and antimicrobial silver-doped calcium phosphate nanopowders were synthesized using sol–gel .... ical morphology of HAP/Ag nanoparticles with particle size ..... [40] Buckley J J, Lee A F, Olivi L and Wilson K 2010 J. Mater.

  18. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1984-01-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the ''reference'' waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (1) an aqueous corrosion rate that is about 1000 times lower, (2) a processing temperature that is 100 0 to 250 0 C lower and, (3) a much lower melt viscosity in the temperature range from 800 0 to 1000 0 C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses

  19. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    International Nuclear Information System (INIS)

    Vasileva, A.A.; Nazarov, I.A.; Olshin, P.K.; Povolotskiy, A.V.; Sokolov, I.A.; Manshina, A.A.

    2015-01-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag 2 O–0.4P 2 O 5 –0,1Nb 2 O 5 glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag 2 O–0.1Nb 2 O 5 –0.4P 2 O 5 and 0.55Ag 2 O–0.45P 2 O 5 glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown

  20. A review paper on biomimetic calcium phosphate coatings

    NARCIS (Netherlands)

    Lin, X.; de Groot, K.; Wang, D.; Hu, Q.; Wismeijer, D.; Liu, Y.

    2015-01-01

    Biomimetic calcium phosphate coatings have been developed for bone regeneration and repair because of their biocompatibility, osteoconductivity, and easy preparation. They can be rendered osteoinductive by incorporating an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2), into the

  1. Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells.

    Science.gov (United States)

    Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C

    2014-04-01

    The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Mechanical behaviour of degradable phosphate glass fibres and composites-a review.

    Science.gov (United States)

    Colquhoun, R; Tanner, K E

    2015-12-23

    Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs.

  3. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    Science.gov (United States)

    Dashper, Stuart G; Catmull, Deanne V; Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E A; Huq, N Laila; Reynolds, Eric C

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.

  4. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    OpenAIRE

    Ruengsri, Suwimon

    2014-01-01

    Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of th...

  5. Femtosecond laser writing of waveguides in zinc phosphate glasses [Invited

    NARCIS (Netherlands)

    Fletcher, L.B.; Witcher, J.J.; Troy, N.; Reis, S.T.; Brow, R.K.; Martinez Vazquez, R.; Osellame, R.; Krol, D.M.

    2011-01-01

    We have studied the relationship between the initial glass composition and the structural changes associated with laser-induced refractive index modification in a series of Er-Yb doped and undoped zinc phosphate glasses. White light microscopy and waveguide experiments are used together with Raman

  6. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Energy Technology Data Exchange (ETDEWEB)

    Vasileva, A.A., E-mail: anvsilv@gmail.com [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Nazarov, I.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg (Russian Federation); Olshin, P.K.; Povolotskiy, A.V. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Sokolov, I.A. [St.Petersburg State Polytechnical University, St.Petersburg (Russian Federation); LTD “AtomTjazhMash”, St.Petersburg (Russian Federation); Manshina, A.A. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation)

    2015-10-15

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag{sub 2}O–0.4P{sub 2}O{sub 5}–0,1Nb{sub 2}O{sub 5} glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag{sub 2}O–0.1Nb{sub 2}O{sub 5}–0.4P{sub 2}O{sub 5} and 0.55Ag{sub 2}O–0.45P{sub 2}O{sub 5} glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown.

  7. Structural and thermochemical properties of sodium magnesium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Oueslati Omrani, Refka [Université de Tunis El Manar, Faculté des Sciences de Tunis, Chemistry Department, LR01SE10 Applied Thermodynamics Laboratory, 2092 Tunis (Tunisia); Kaoutar, Abdeltif; El Jazouli, Abdelaziz [LCMS, URAC 17, Faculté des Sciences Ben M’Sik, UH2MC, Casablanca (Morocco); Krimi, Saida [LPCMI, Faculté des Sciences Aïn Chok, UH2C, Casablanca (Morocco); Khattech, Ismail, E-mail: ismail.khattech@fst.rnu.tn [Université de Tunis El Manar, Faculté des Sciences de Tunis, Chemistry Department, LR01SE10 Applied Thermodynamics Laboratory, 2092 Tunis (Tunisia); Jemal, Mohamed [Université de Tunis El Manar, Faculté des Sciences de Tunis, Chemistry Department, LR01SE10 Applied Thermodynamics Laboratory, 2092 Tunis (Tunisia); Videau, Jean-Jacques [ICMCB, Institut de Chimie de la matière condensée, Université de Bordeaux 1 (France); Couzi, Michel [Institut des Sciences Moléculaires, CNRS-Université de Bordeaux 1 (France)

    2015-05-25

    Highlights: • Phosphate glasses were prepared by met quenching technique. • Structural study is investigated using FTIR, Raman and {sup 31}PNMR spectroscopy. • A 4.5% weight of H{sub 3}PO{sub 4} solution has use for glass dissolution. • Dissolution is endothermic for lower MgO content and becomes exothermic when x rises. - Abstract: Ternary phosphate based glasses with the general formula (50−x/2)Na{sub 2}O–xMgO–(50−x/2)P{sub 2}O{sub 5} (0 ⩽ x ⩽ 42.8 mol%), where the O/P ratio was varied from 3 to 3.75, have been prepared using a conventional melt quenching technique. Samples were investigated by means of density measurements, Fourier-transformed infrared (FTIR), Raman and {sup 31}P solid state magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopies, differential scanning calorimetry (DSC), inductively coupled plasma atomic emission spectroscopy (ICP/AES) analysis and calorimetric dissolution. The depolymerization of metaphosphate chains are described by the decrease of Q{sup 2} tetrahedral sites allowing the formation of pyrophosphate groups (Q{sup 1}) revealed by spectroscopic investigations. As a result, the increase of density and glass transition temperature when x rises. Calorimetric study shows that the dissolution phenomenon is endothermic for a lower MgO content and becomes exothermic when magnesium oxide is gradually incorporated, suggesting the disruption of phosphate chains with increasing O/P ratio.

  8. Bioactivity tests of calcium phosphates with variant molar ratios of main components.

    Science.gov (United States)

    Pluta, Klaudia; Sobczak-Kupiec, Agnieszka; Półtorak, Olga; Malina, Dagmara; Tyliszczak, Bożena

    2018-03-09

    Calcium phosphates constitute attractive materials of biomedical applications. Among them particular attention is devoted to bioactive hydroxyapatite (HAp) and bioresorbable tricalcium phosphate (TCP) that possess ability to bind to living bones and can be used clinically as important bone substitutes. Notably, in vivo bone bioactivity can be predicted from apatite formation of bone immersed in SBF fluids. Thus, analyses of behavior of calcium phosphates immersed in various bio fluids are of great importance. Recently, stoichiometric HAp and TCP structures have been widely studied, whereas only limited number of publications have been devoted to analyses of nonstoichiometric calcium phosphates. Here, we report physicochemical analysis of natural and synthetic phosphates with variable Ca/P molar ratios. Subsequently attained structures were subjected to incubation in either artificial saliva or Ringer's fluids. Both pH and conductivity of such fluids were determined before and after incubation. Furthermore, the influence of the Ca/P values on such parameters was exemplified. Physicochemical analysis of received materials was performed by XRD and FT-IR characterization techniques. Their potential antibacterial activity and behavior in the presence of infectious microorganisms as Escherichia coli and Staphylococcus aureus was also evaluated. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  9. Synthesis and characterization of nanostructured powders of hydroxyapatite and β-calcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Prants, W.T.; Muller, D.T.; Orzechowski, L.G.; Feit, G.; Delima, S.A.; Camargo, N.H.A.; Gemelli, E., E-mail: w_prants@hotmail.com, E-mail: danielt_muller@yahoo.com.br, E-mail: sarahamindelima@hotmail.com, E-mail: dem2nhac@joinville.udesc.br, E-mail: gemelli@joinville.udesc.br [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Campus Universitario Prof. Avelino Marcante

    2009-07-01

    Biphasic calcium phosphate (BCP) bioceramics are composed in a general manner from a mixture between hydroxyapatite (HA), and β-calcium phosphate. In the recent years, the BCP bioceramics are pointed out in researches from regeneration and reconstitution in osseous tissue, in reason of their similar mineralogical characteristics of the human bone structure, as great biodegradation, absorption and formation of precocious osseous tissue. The biphasic materials (BCP) are detached for use in medical and dental application, as filling bone cavities, maxillofacial treatment, medicaments discharge for treatment cancerous osteomyelitis and antibiotics discharge related with orthopedic injuries reparation. The aim of this work focused in synthesis and characterization of hydroxyapatite and β-calcium phosphate. The presented results are related with the mineralogical characterization with X-ray diffraction, thermal behavior with Differential Scanning Calorimetry and Dilatometer. The Scanning Electronic Microscopy (SEM) was used to help in the morphological characterization of the nanostructured powders. (author)

  10. Synthesis and characterization of nanostructured powders of hydroxyapatite and β-calcium phosphate

    International Nuclear Information System (INIS)

    Prants, W.T.; Muller, D.T.; Orzechowski, L.G.; Feit, G.; Delima, S.A.; Camargo, N.H.A.; Gemelli, E.

    2009-01-01

    Biphasic calcium phosphate (BCP) bioceramics are composed in a general manner from a mixture between hydroxyapatite (HA), and β-calcium phosphate. In the recent years, the BCP bioceramics are pointed out in researches from regeneration and reconstitution in osseous tissue, in reason of their similar mineralogical characteristics of the human bone structure, as great biodegradation, absorption and formation of precocious osseous tissue. The biphasic materials (BCP) are detached for use in medical and dental application, as filling bone cavities, maxillofacial treatment, medicaments discharge for treatment cancerous osteomyelitis and antibiotics discharge related with orthopedic injuries reparation. The aim of this work focused in synthesis and characterization of hydroxyapatite and β-calcium phosphate. The presented results are related with the mineralogical characterization with X-ray diffraction, thermal behavior with Differential Scanning Calorimetry and Dilatometer. The Scanning Electronic Microscopy (SEM) was used to help in the morphological characterization of the nanostructured powders. (author)

  11. Properties of Lactobacillus reuteri chitosan-calcium-alginate encapsulation under simulated gastrointestinal conditions.

    Science.gov (United States)

    Huang, Hui-Ying; Tang, Yi-Ju; King, V An-Erl; Chou, Jen-Wei; Tsen, Jen-Horng

    2015-03-01

    The protective effects of encapsulation on the survival of Lactobacillus reuteri and the retention of the bacterium's probiotic properties under simulated gastrointestinal conditions were investigated. Viable counts and the remaining probiotic properties of calcium (Ca)-alginate encapsulated (A group), chitosan-Ca-alginate encapsulated (CA group), and unencapsulated, free L. reuteri (F group) were determined. Encapsulation improved the survival of L. reuteri subjected to simulated gastrointestinal conditions, with the greatest protective effect achieved in the CA group. The degree of cell membrane injury increased with increasing bile salt concentrations at constant pH, but the extent of injury was less in the encapsulated than in the free cells. Adherence rates were, in descending order: CA (0.524%)>A (0.360%)>F (0.275%). Lactobacillus reuteri cells retained their antagonistic activity toward Listeria monocytogenes even after incubation of the lactobacilli under simulated gastrointestinal conditions. Displacement of the pathogen by cells released from either of the encapsulation matrices was higher than that by free cells. The safety of L. reuteri was demonstrated in an in vitro invasion assay. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  12. Reinforcement of calcium phosphate cement with multi-walled carbon nanotubes and bovine serum albumin for injectable bone substitute applications

    NARCIS (Netherlands)

    Chew, K.K.; Low, K.L.; Zein, S.H.S.; McPhail, D.; Gerhardt, L.C.; Roether, J.A.; Boccaccini, A.R.

    2011-01-01

    This paper presents the development of novel alternative injectable calcium phosphate cement (CPC) composites for orthopaedic applications. The new CPC composites comprise ß-tri-calcium phosphate (ß-TCP) and di-calcium phosphate anhydrous (DCPA) mixed with bovine serum albumin (BSA) and incorporated

  13. Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites.

    Science.gov (United States)

    Chen, Wen-Cheng; Ju, Chien-Ping; Wang, Jen-Chyan; Hung, Chun-Cheng; Chern Lin, Jiin-Huey

    2008-12-01

    Bone filler has been used over the years in dental and biomedical applications. The present work is to characterize a non-dispersive, fast setting, modulus adjustable, high bioresorbable composite bone cement derived from calcium phosphate-based cement combined with polymer and binding agents. This cement, we hope, will not swell in simulated body fluid and keep the osteogenetic properties of the dry bone and avoid its disadvantages of being brittle. We developed a calcium phosphate cement (CPC) of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-polyacrylic acid with tartaric acid, calcium fluoride additives and phosphate hardening solution. The results show that while composite, the hard-brittle properties of 25wt% polyacrylic acid are proportional to CPC and mixing with additives is the same as those of the CPC without polyacrylic acid added. With an increase of polyacrylic acid/CPC ratio, the 67wt% samples revealed ductile-tough properties and 100wt% samples kept ductile or elastic properties after 24h of immersion. The modulus range of this development was from 200 to 2600MPa after getting immersed in simulated body fluid for 24h. The TTCP/DCPA-polyacrylic acid based CPC demonstrates adjustable brittle/ductile strength during setting and after immersion, and the final reaction products consist of high bioresorbable monetite/brushite/calcium fluoride composite with polyacrylic acid.

  14. Ultrasonic and Thermal Properties of Borate and Phosphate Glasses Containing Bismuth and Lead

    International Nuclear Information System (INIS)

    Aziz, Sidek Hj. Abd.; Ahmad, Hamezan; Wahab, Zaidan A.; Sulaiman, Zainal Abidin; Talib, Zainal Abidin; Shaari, A. Halim; Senin, H. B.

    2007-01-01

    Systematic series of (B2O3,P2O5)-Bi2O3-PbO glasses have been successfully prepared by using the rapid quenching technique in which each oxide content changes for every series on the basis of its weight percentage. Their amorphous natures were confirmed earlier by the x-ray diffraction technique. The experimental results show that the density of both glasses, determined by using the Archimedes principle, increases with the glass modifier content. This is due to the replacement of Bi2O3 and PbO in the borate and phosphate glassy networks. The molar volume for borate glass increases with the addition of bismuth and lead oxides, but a reverse trend occurs for the phosphate glass. The longitudinal and shear ultrasound velocities, determined by the MBS 8000 system, of both lead bismuth borate and phosphate glasses show a decreasing trend as more PbO and Bi2O3 are added to the glass system. The increase in PbO/Bi2O3 content was probably related to the progressive increase in the concentration of non-bridging oxygen (NBOs). Thermal studies of the glass, using the Labsys DTA-Setaram machine, show that the value of the glass transition temperature (Tg) is closely related to the chemical bond in the system. In lead bismuth borate glasses, the addition of more Pb2+ and Bi3+ results in a more dominant ionic bond character in the system and hence decreases Tg of the sample. However, in lead bismuth phosphate glasses, the addition of Pb2+ and Bi3+ not only failed to weaken the covalent character in P-O-P bonds, but strengthened it further, leading to an increment in the values of Tg

  15. Removal of radioactive waste waters by calcium phosphate precipitation

    International Nuclear Information System (INIS)

    Raicevic, S.; Vukovic, Z.; Mandic, M.

    1997-01-01

    The kinetics of removal of radioactive strontium by coprecipitation and sorption with amorphous calcium phosphate (ACP) which transformed into stable crystalline hydroxyapatite (HA) were investigated. The advantage of phosphate precipitation is a possibility not only for removal of radioactive strontium but also for incorporation of a strontium ion into stable structure of HA. calcium phosphate was precipitated from highly saturated solution by fast reagent mixing. Kinetic experiments were performed using strontium nitrate solution labeled with 8 5 Sr. The amount of radionuclide uptake by the solid phase was determined radiometrically at different time intervals. It was found that ACP phase firmly retains coprecipitated impurities up to 150 min, of reaction time when partial rejection of strontium into the solution occurred. In sorption experiments after prolonged time of equilibrium the firm incorporation of 8 5 Sr stable crystalline structure of HA was detected. The incorporation of 8 5 Sr into crystalline HA was analysed in detail in the paper /S. Raicevic, et. al., J. Radioanal. Nucl. Chem., Articles, Vol. 204, No 2, 1996/ (author)

  16. Development of a fully injectable calcium phosphate cement for ...

    Indian Academy of Sciences (India)

    Unknown

    2003-01-27

    Jan 27, 2003 ... excellent alloplastic material for osseous augmentation because of the ... and basic calcium phosphate compounds on wetting with an aqueous ... ment of acute fracture of the radius through percutaneous administration of ...

  17. Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral

    Science.gov (United States)

    El Rhilassi, A.; Mourabet, M.; El Boujaady, H.; Bennani-Ziatni, M.; Hamri, R. El; Taitai, A.

    2012-10-01

    Study focused on the interaction of adsorbate with poorly crystalline apatitic calcium phosphates analogous to bone mineral. Calcium phosphates prepared in water-ethanol medium at physiological temperature (37 °C) and neutral pH, their Ca/P ratio was between 1.33 and 1.67. Adsorbate used in this paper takes the mixture form of two essential amino acids L-lysine and DL-leucine which have respectively a character hydrophilic and hydrophobic. Adsorption and release are investigated experimentally; they are dependent on the phosphate type and on the nature of adsorbate L-lysine, DL-leucine and their mixture. Adsorption of mixture of amino acids on the apatitic calcium phosphates is influenced by the competition between the two amino acids: L-lysine and DL-leucine which exist in the medium reaction. The adsorption kinetics is very fast while the release kinetics is slow. The chemical composition of apatite has an influence on both adsorption and release. The interactions adsorbate-adsorbent are electrostatic type. Adsorption and release reactions of the amino acid mixture are explained by the existence of the hydrated surface layer of calcium phosphate apatite. The charged sbnd COOsbnd and sbnd NH3+ of adsorbates are the strongest groups that interact with the surface of apatites, the adsorption is mainly due to the electrostatic interaction between the groups sbnd COOsbnd of amino acids and calcium Ca2+ ions of the apatite. Comparative study of interactions between adsorbates (L-lysine, DL-leucine and their mixture) and apatitic calcium phosphates is carried out in vitro by using UV-vis and infrared spectroscopy IR techniques.

  18. Reduced CSF leak in complete calvarial reconstructions of microvascular decompression craniectomies using calcium phosphate cement.

    Science.gov (United States)

    Eseonu, Chikezie I; Goodwin, C Rory; Zhou, Xin; Theodros, Debebe; Bender, Matthew T; Mathios, Dimitrios; Bettegowda, Chetan; Lim, Michael

    2015-12-01

    Calcium phosphate cement provides a biomaterial that can be used for calvarial reconstruction in a retrosigmoid craniectomy for microvascular decompression (MVD). This study evaluates the outcomes of postoperative CSF leak and wound infection for patients undergoing a complete cranioplasty using calcium phosphate cement versus incomplete cranioplasty using polyethylene titanium mesh following a retrosigmoid craniectomy for MVD. The authors evaluated 211 cases involving patients who underwent first-time retrosigmoid craniectomies performed by a single attending surgeon fortrigeminal neuralgia from October 2008 to June 2014. From this patient population, 111 patients underwent calvarial reconstruction after retrosigmoid craniectomy using polyethylene titanium mesh, and 100 patients had reconstructions using calcium phosphate cement. A Pearson's chi-square test was used to compare postoperative complications of CSF leak and wound infection in these 2 types of cranioplasties. The polyethylene titanium mesh group included 5 patients (4.5%) with postoperative CSF leak or pseudomeningocele and 3 patients (2.7%) with wound infections. In the calcium phosphate cement group, no patients had a CSF leak, and 2 patients (2%) had wound infections. This represented a statistically significant reduction of postoperative CSF leak in patients who underwent calcium phosphate reconstructions of their calvarial defect compared with those who underwent polyethylene titanium mesh reconstructions (p = 0.03). No significant difference was seen between the 2 groups in the number of patients with postoperative wound infections. Calcium phosphate cement provides a viable alternative biomaterial for calvarial reconstruction of retrosigmoid craniectomy defects in patients who have an MVD. The application of this material provides a biocompatible barrier that reduces the incidence of postoperative CSF leaks.

  19. Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration

    Science.gov (United States)

    Chen, Wenchuan; Zhou, Hongzhi; Weir, Michael D.; Bao, Chongyun; Xu, Hockin H.K.

    2012-01-01

    The need for bone repair has increased as the population ages. The objectives of this study were to (1) develop a novel biofunctionalized and macroporous calcium phosphate cement (CPC) containing alginate-fibrin microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs); and (2) investigate hUCMSC proliferation and osteogenic differentiation inside CPC for the first time. Macroporous CPC was developed using calcium phosphate powders, chitosan, and gas-foaming porogen. Five types of CPCs were fabricated: CPC control, CPC + 0.05% fibronectin (Fn), CPC + 0.1% Fn, CPC + 0.1% Arg-Gly-Asp (RGD), and CPC + 0.1% Fn + 0.1% RGD. Alginate-fibrin microbeads containing 106 hUCMSCs/mL were encapsulated in the CPC paste. After CPC had set, the degradable microbeads released hUCMSCs inside CPC. hUCMScs proliferated inside CPC, with cell density at 21 d being 4-fold that at 1 d. CPC + 0.1% RGD had the highest cell density, which was 4-fold that of CPC control. The released cells differentiated into the osteogenic lineage and synthesized bone minerals. hUCMSCs inside the CPC + 0.1% RGD construct had gene expressions of alkaline phosphatase (ALP), osteocalcin (OC) and collagen I, which were twice those of CPC control. Mineral synthesis by hUCMSCs inside the CPC + 0.1% RGD construct was 2-fold that in CPC control. RGD and Fn incorporation in CPC did not compromise the strength of CPC, which matched the reported strength of cancellous bone. In conclusion, degradable microbeads released the hUCMSCs which proliferated, differentiated and synthesized minerals inside the macroporous CPC for the first time. CPC with RGD greatly enhanced cell functions. The novel biofunctionalized and macroporous CPC-microbead-hUCMSC construct is promising for bone tissue engineering applications. PMID:22391411

  20. Mechanical properties of calcium phosphate cements obtained by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Volkmer, Tiago M.; Barreiro, Oscar; Souza, Vania Caldas; Santos, Luis Alberto dos, E-mail: tiagovolkmer@gmail.com, E-mail: oscarbafer@hotmail.com, E-mail: vania.souza@ufrgs.br, E-mail: luis.santos@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Laboratorio de Biomateriais

    2009-07-01

    Bioceramics based on calcium phosphates, especially hydroxyapatite and tricalcium phosphates (TCP) are the most used biomaterials as bone substitutes. The objective of this work is to evaluate the mechanical properties of α-tricalcium phosphate (α-TCP) synthesized by the solution combustion method. The solution combustion synthesis (SCS) can be considered as faster and simpler as other methods, furthermore it allows the obtainment of high purity α-TCP. In the calcium phosphates (CPC), α-TCP reacts with water forming needle like HA, which restrain the movement of grains, increasing mechanical resistance. In the present paper the influence of particle size on mechanical properties of α-TCP cements were evaluated. The α-TCP powder were characterized by XRD, TEM, BET and laser diffraction to asses particle size while the CPC bodies by SEM, Arquimedes method and compression tests. Increasing the milling time, the particle size decreases, resulting in samples with less porosity and consequently with higher compression resistance. (author)

  1. A simple method for tuning the glass transition process in inorganic phosphate glasses

    Science.gov (United States)

    Fulchiron, René; Belyamani, Imane; Otaigbe, Joshua U.; Bounor-Legaré, Véronique

    2015-02-01

    The physical modification of glass transition temperature (Tg) and properties of materials via blending is a common practice in industry and academia and has a large economic advantage. In this context, simple production of hitherto unattainable new inorganic glass blends from already existing glass compositions via blending raises much hope with the potential to provide new glasses with new and improved properties, that cannot be achieved with classical glass synthesis, for a plethora of applications such as computers screens, glass-to-metal seals, and storage materials for nuclear wastes. Here, we demonstrate that blends of the specific glass compositions studied are miscible in all proportions, an unreported phenomenon in hard condensed matter like glass. Interestingly, excellent agreement was found between the obtained data and calculated Tgs from theoretical equations (Supplementary information) for predicting the composition dependence of Tg for miscible blends with weak but significant specific interactions between the blend components. That this blending method is at present not applied to inorganic glasses reflects the fact that water and chemically resistant phosphate glasses with relatively low Tgs have become available only recently.

  2. A new paramagnetic center of copper ion γ-irradiated phosphate glasses

    International Nuclear Information System (INIS)

    Bogomolova, L.D.; Fedorov, A.G.; Jachkin, V.A.; Lazukin, V.N.; Pavlushkina, T.K.

    1981-01-01

    In the present paper are shown the results of EPR and optical absorption investigations of copper ions in γ-irradiated sodium-phosphate glasses and in MO-P 2 O 5 glasses (M = MG,Ca, Sr, Zn, Ba) containing copper and comparisons are made with the data for sodium-silicate glasses. (orig./HOF)

  3. Phase stability of silver particles embedded calcium phosphate ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we report the compositional variation-dependent phase stability of hydroxyapatite ... material along with other calcium phosphate bioceramics.3–5 ... Model U-3310). ... recorded using a Field Emissio scanning electron microscope .... the colour change of the silver-doped samples only after sin-.

  4. Corrosion control of galvanized steel using a phosphate/calcium ion inhibitor mixture

    International Nuclear Information System (INIS)

    Zin, I.M.; Lyon, S.B.; Pokhmurskii, V.I.

    2003-01-01

    The corrosion inhibition of galvanized steel was studied in artificial acid rain solution using extracts of pigments normally used in organic coatings for corrosion control. It was established that a combination of zinc phosphate/molybdate and calcium ion exchange silica has a significant synergetic anticorrosion effect in the acid rain solution compared to the pigments used alone. Further, the charge transfer resistance of galvanized steel in acid rain solution saturated by the above pigment blend approaches that of strontium chromate in artificial acid rain solution. Use of the pigment blend was found to lead to development of a protective film, which is thought to be a complex mixture of calcium phosphates and zinc phosphate

  5. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors

    OpenAIRE

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong; Li, He; Li, Yaogang; Duan, Yourong

    2015-01-01

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-?-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average s...

  6. Study of multicomponent fluoro-phosphate based glasses: Ho3+ as a luminescence center

    International Nuclear Information System (INIS)

    Babu, S.; Seshadri, M.; Balakrishna, A.; Reddy Prasad, V.; Ratnakaram, Y.C.

    2015-01-01

    The multicomponent 49.5P 2 O 5 –10AlF 3 –10BaF 2 –10SrF 2 –10PbO–10M (M=Li 2 O, Na 2 O, K 2 O, ZnO and Bi 2 O 3 ) glasses doped with 0.5 mol% holmium were prepared by melt quenching technique. Their thermal behavior was examined from differential scanning calorimetry (DSC). It is found that bismuth fluoro-phosphate glass matrix has good thermal stability. Their structures were characterized by the X-ray diffraction with SEM analysis, fourier transform infrared (FTIR), Raman spectroscopy and magic angle spinning (MAS) nuclear magnetic resonance (NMR) techniques. It was found that the phosphate network of these glasses was composed mainly of Q 2 and Q 3 phosphate tetrahedral units. The Judd–Ofelt parameters (J–O) (Ω 2 , Ω 4 and Ω 6 ) were evaluated from the intensities of the energy levels through optical absorption spectra. The most intense transitions are observed in the visible region of the spectrum. It is observed that the transition 5 I 8 → 5 G 6 is the hypersensitive transition for Ho 3+ ion. With these J–O parameters, various radiative properties like the probabilities of radiative transitions, radiative lifetimes and branching ratios have been calculated for different fluoro-phosphate glasses. The luminescence kinetics from excited holmium levels have been studied upon selective excitation through photoluminescence measurements. Holmium produces two visible laser emissions i.e. one is green ( 5 F 4 ( 5 S 2 )→ 5 I 8 ) and another one is red ( 5 F 5 → 5 I 8 ). The lifetimes of these levels have been experimentally determined through decay profile studies. The above results suggest that the prepared bismuth fluoro-phosphate glass system could be a suitable candidate for using it as a green laser source ( 5 F 4 ( 5 S 2 )→ 5 I 8 ) in the visible region of the spectrum. - Highlights: • Holmium doped different fluoro-phosphate glasses were prepared and characterized. • Structural, thermal and spectroscopic properties have been studied

  7. Tailoring the structure of biphasic calcium phosphate via synthesis procedure

    Science.gov (United States)

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. K.

    2017-12-01

    Nano calcium phosphate ceramics (CaPC) were synthesized using simple co-precipitation method at different preparation conditions. The selected Ca/P ratio with a variation of pH value lead to formation of dicalcium phosphate dihydrate (DCPD) at pH 5 and 6 while, hydroxyapatite (HAP) nano particles were formed at pH 9 and 12 at room temperature. The crystallite size was in the range of 15-55 nm depending on the obtained crystalline phase. The study displayed variation of decomposition depending on the annealing temperature. The significant note is the different transformation trend of each phase depending on the starting pH value. The HRTEM illustrated that the DCPD phase was formed as fibers with diameter around 4-6 nm, while HAP was formed in rod shape. The aspect ratio decreased from 6.6 at pH 9 to 4 at pH 12 which refer to the great influence of pH value on the morphology of calcium phosphates.

  8. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, J. te; Habibovic, P.; Tahmasebi Birgani, Z.; Li, Y.; Bomans, P.H.; Jansen, J.A.; Sommerdijk, N.A.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phosphate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  9. Substitution of strontium for calcium in glass ionomer cements (Part ...

    African Journals Online (AJOL)

    Substitution of strontium for calcium in glass ionomer cements (Part 1): Glass synthesis and characterisation, and the effects on the cement handling variables and ... acid to form glass ionomer cements, whose properties were investigated at different time points: working and setting times were determined by rheometry; and, ...

  10. Ferric oxide quantum dots in stable phosphate glass system and their magneto-optical study

    Energy Technology Data Exchange (ETDEWEB)

    Garaje, Sunil N.; Apte, Sanjay K. [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India); Kumar, Ganpathy [Department of Electrical and Computer Engineering, Tennessee Technological University, 1 William L. Jones Drive, Cookeville, TN 38505 (United States); Panmand, Rajendra P.; Naik, Sonali D. [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India); Mahajan, Satish M., E-mail: smahajan@tntech.edu [Department of Electrical and Computer Engineering, Tennessee Technological University, 1 William L. Jones Drive, Cookeville, TN 38505 (United States); Chand, Ramesh [Ministry of Communications and Information Technology, Department of Electronics and Information Technology (DeitY), Electronics Niketan, 6, CGO Complex, New Delhi 110003 (India); Kale, Bharat B., E-mail: bbkale@cmet.gov.in [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India)

    2013-02-15

    Graphical abstract: We report synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles (NCs) content on the optical and magneto-optical properties of the glasses. Faraday rotation of the glass nanocomposites was measured and showed variation in Verdet constant with concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and there is a threefold enhancement in the Verdet constant of ferric oxide quantum dot-glass nanocomposite. Highlights: ► We synthesize ferric oxide embedded low melting stable phosphate glass nanocomposite. ► Glasses doped with 0.25 and 2% ferric oxide show particle size in the range of 4–12 nm. ► The host phosphate glass itself shows fairly good Verdet constant (11.5°/T cm). ► Glasses doped with 0.25% ferric oxide show high Verdet constant (30.525°/T cm). ► The as synthesis glasses may have potential application in magneto optical devices. -- Abstract: Herein, we report the synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles content on the optical and magneto-optical properties of the glasses. The optical study clearly showed red shift in optical cut off with increasing ferric oxide concentration. The band gap of the host glass was observed to be 3.48 eV and it shifted to 3.14 eV after doping with ferric oxide. The glasses doped with 0.25 and 2% ferric oxide showed particle size of 4–6 nm and 8–12 nm, respectively. Faraday rotation of the glass nanocomposites was measured and showed variation in the Verdet constant as per increasing concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and threefold enhancement was observed in the Verdet constant of ferric oxide quantum dot-glass nanocomposite.

  11. Ossification Vesicles with Calcium Phosphate in the Eyes of the Insect Copium teucrii (Hemiptera: Tingidae

    Directory of Open Access Journals (Sweden)

    Javier Garcia-Guinea

    2011-01-01

    Full Text Available Arthropod eyes are built of repeating units named ommatidia. Each single ommatidium unit contains a cluster of photoreceptor cells surrounded by support cells and pigment cells. The insect Copium eye ommatidia include additional calcium-phosphate deposits, not described in insects to date, which can be examined today using a combined set of modern microscopy and spectroscopy techniques. Teucrium gnaphalodes L'Her plants, growing in central Spain, develop galls induced by Copium insects. A survey of C. teucrii adult specimens resulted in surprising environmental scanning electron microscopy (ESEM images, showing that their bright red eyes contain a calcium-phosphate mineralization. A complete survey of Copium eye specimens was performed by ESEM using energy-dispersive spectroscopy, backscattered electron detector and cathodoluminescence (CL probes, field emission scanning electron microscopy, micro-Raman spectroscopy, and confocal laser scanning microscopy in order to learn ommatidia features, such as chemical composition, molecular structure, cell membrane, and internal ommatidium eye fluids and calcium-phosphate distribution deposits. The CL panchromatic images distinguish between the calcium-phosphate ommatidium and calcium-phosphate setae, which are more apatite rich. They show Raman bands attributable to bone tissue apatite biomaterials, such as bone, collagen, lipids, and blood, i.e., peptides, amide-S, amide-II, amide-III, and cytochrome P-450scc. The chemical composition of both galls and leaves of T. gnaphalodes was determined by gas chromatography – mass spectrometry (GC-MS of their extracts. The spectrometric and microscopic images reveal that the calcium-phosphate mineralization is formed and constrained to Copium ommatidia, which are both matrix vesicles generating mixtures of apatite collagen and operational compound eyes of the insect.

  12. Nanostructured silicate substituted calcium phosphate (NanoSiCaPs) nanoparticles — Efficient calcium phosphate based non-viral gene delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, Sudhanshu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States); McGowan Institute of Regenerative Medicine, University of Pittsburgh, PA 15261 (United States); Roy, Abhijit; Hong, Daeho [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States); McGowan Institute of Regenerative Medicine, University of Pittsburgh, PA 15261 (United States)

    2016-12-01

    Nanostructured ceramic particles, particularly, nanoparticles of calcium phosphate (CaP) remain an attractive option among the various types of non-viral gene delivery vectors studied because of their safety, biocompatibility, biodegradability, and ease of handling as well as their adsorptive capacity for DNA. We have accordingly developed an enhanced version of nanostructured calcium phosphates (NanoCaPs), by substituting known amounts of silicate for phosphate in the hydroxyapatite (HA) lattice (NanoSiCaPs). Results indicate that in addition to the excellent transfection levels exhibited by un-substituted NanoCaPs alone in vitro, an additional 20–50% increase in transfection is observed for NanoCaPs containing 8.3–50 mol% silicate aptly called NanoSiCaPs, owing to its rapid dissolution properties enabling nanoparticles escaping the lysosomal degradation. However, high silicate substitution (> 50 mol%) resulted in a drastic decline in transfection as the synthesized NanoCaPs deviated far from the characteristic hydroxyapatite phase formed as evidenced by the materials characterization results. - Highlights: • Successful demonstration of nanostructured NanoSiCaPs formation • Demonstration of superior transfection of NanoSiCaPs contrasted to NanoCaPs • Silicate substitution leads to smaller aggregates of nanoparticle complexes. • Enhanced dissolution of NanoSiCaPs demonstrated • Faster NanoSiCaPs dissolution leads to escape of pDNA from lysosomal degradation.

  13. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up to 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.

  14. Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells

    International Nuclear Information System (INIS)

    Tămăşan, M.; Ozyegin, L.S.; Oktar, F.N.; Simon, V.

    2013-01-01

    The study reports the preparation and characterization of powders consisting of the different phases of calcium phosphates that were obtained from the naturally derived raw materials of sea-shell origins reacted with H 3 PO 4 . Species of sea origin, such as corals and nacres, attracted a special interest in bone tissue engineering area. Nacre shells are built up of calcium carbonate in aragonite form crystallized in an organic matrix. In this work two natural marine origin materials (shells of echinoderm Sputnik sea urchin — Phyllacanthus imperialis and Trochidae Infundibulum concavus mollusk) were involved in the developing powders of calcium phosphate based biomaterials (as raw materials for bone-scaffolds) by hotplate and ultrasound methods. Thermal analyses of the as-prepared materials were made for an assessment of the thermal behavior and heat treatment temperatures. Samples from both sea shells each of them prepared by the above mentioned methods were subjected to thermal treatments at 450 °C and 850 °C in order to evaluate the crystalline transformations of the calcium phosphate structures in the heating process. By X-ray diffraction analyses various calcium phosphate phases were identified. In Sputnik sea urchins originated samples were found predominantly brushite and calcite as a small secondary phase, while in Trochidae I. concavus samples mainly monetite and HA phases were identified. Thermal treatment at 850 °C resulted flat-plate whitlockite crystals — β-MgTCP [(Ca, Mg) 3 (PO 4 ) 2 ] for both samples regardless the preparation method (ultrasound or hotplate) or the targeted Ca/P molar ratio according with XRD patterns. Scanning electron microscopy and Fourier transformed infrared spectroscopy were involved more in the characterization of these materials and the good correlations of the results of these methods were made. - Highlights: ► Calcium phosphate powders are obtained from the crushed shells of 2 “marine” species and H 3 PO 4

  15. Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells

    Energy Technology Data Exchange (ETDEWEB)

    Tămăşan, M., E-mail: monica.tamasan@phys.ubbcluj.ro [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, Cluj-Napoca (Romania); Ozyegin, L.S. [Marmara University, Istanbul (Turkey); Oktar, F.N. [Marmara University, Faculty of Engineering, Department of Bioengineering, Göztepe Campus, Kadıköy 34722, Istanbul (Turkey); Marmara University, School of Health Related Professions, Department of Medical Imaging Technics, Haydarpaşa Campus, Tıbbiye Street, 49, Üsküdar 34668, Istanbul (Turkey); Marmara University, Nanotechnology and Biomaterials Application and Research Centre, Göztepe Campus, Kadıköy 34722, Istanbul (Turkey); Simon, V. [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, Cluj-Napoca (Romania)

    2013-07-01

    The study reports the preparation and characterization of powders consisting of the different phases of calcium phosphates that were obtained from the naturally derived raw materials of sea-shell origins reacted with H{sub 3}PO{sub 4}. Species of sea origin, such as corals and nacres, attracted a special interest in bone tissue engineering area. Nacre shells are built up of calcium carbonate in aragonite form crystallized in an organic matrix. In this work two natural marine origin materials (shells of echinoderm Sputnik sea urchin — Phyllacanthus imperialis and Trochidae Infundibulum concavus mollusk) were involved in the developing powders of calcium phosphate based biomaterials (as raw materials for bone-scaffolds) by hotplate and ultrasound methods. Thermal analyses of the as-prepared materials were made for an assessment of the thermal behavior and heat treatment temperatures. Samples from both sea shells each of them prepared by the above mentioned methods were subjected to thermal treatments at 450 °C and 850 °C in order to evaluate the crystalline transformations of the calcium phosphate structures in the heating process. By X-ray diffraction analyses various calcium phosphate phases were identified. In Sputnik sea urchins originated samples were found predominantly brushite and calcite as a small secondary phase, while in Trochidae I. concavus samples mainly monetite and HA phases were identified. Thermal treatment at 850 °C resulted flat-plate whitlockite crystals — β-MgTCP [(Ca, Mg){sub 3} (PO{sub 4}){sub 2}] for both samples regardless the preparation method (ultrasound or hotplate) or the targeted Ca/P molar ratio according with XRD patterns. Scanning electron microscopy and Fourier transformed infrared spectroscopy were involved more in the characterization of these materials and the good correlations of the results of these methods were made. - Highlights: ► Calcium phosphate powders are obtained from the crushed shells of 2

  16. Synthesis and characterization of nanocomposite powders of calcium phosphate/titanium oxide for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Delima, S.A.; Camargo, N.H.A.; Souza, J.C.P.; Gemelli, E., E-mail: sarahamindelima@hotmail.com, E-mail: dem2nhac@joinville.udesc.br, E-mail: souzajulio@joinville.udesc.br, E-mail: gemelli@joinville.udesc.br [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Centro de Ciencias Tecnologicas

    2009-07-01

    The nanostructured bioceramics of calcium phosphate are current themes of research and they are becoming important as bone matrix in regeneration of tissues in orthopedic and dental applications. Nanocomposite powders of calcium phosphate, reinforced with nanometric particles of titanium oxide, silica oxide and alumina oxid ealpha, are being widely studied because they offer new microstructures, nanostructures and interconnected microporosity with high superficial area of micropores that contribute to osteointegration and osteoinduction processes. This study is about the synthesis of nanocomposites powders of calcium phosphate reinforced with 1%, 2%, 3% and 5% in volume of titanium oxide and its characterization through the techniques of X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Differential Thermal Analysis (DTA), Thermogravimetry (TG) and Dilatometry. (author)

  17. Synthesis and characterization of nanocomposite powders of calcium phosphate/titanium oxide for biomedical applications

    International Nuclear Information System (INIS)

    Delima, S.A.; Camargo, N.H.A.; Souza, J.C.P.; Gemelli, E.

    2009-01-01

    The nanostructured bioceramics of calcium phosphate are current themes of research and they are becoming important as bone matrix in regeneration of tissues in orthopedic and dental applications. Nanocomposite powders of calcium phosphate, reinforced with nanometric particles of titanium oxide, silica oxide and alumina oxid ealpha, are being widely studied because they offer new microstructures, nanostructures and interconnected microporosity with high superficial area of micropores that contribute to osteointegration and osteoinduction processes. This study is about the synthesis of nanocomposites powders of calcium phosphate reinforced with 1%, 2%, 3% and 5% in volume of titanium oxide and its characterization through the techniques of X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Differential Thermal Analysis (DTA), Thermogravimetry (TG) and Dilatometry. (author)

  18. Calcium phosphate formation from sea urchin - (brissus latecarinatus via modified mechano-chemical (ultrasonic conversion method

    Directory of Open Access Journals (Sweden)

    R. Samur

    2013-07-01

    Full Text Available This study aims to produce apatite structures, such as hydroxyapatite (HA and fluorapatite (FA, from precursor calcium phosphates of biological origin, namely from sea urchin, with mechano-chemical stirring and hot-plating conversion method. The produced materials were heat treated at 800 °C for 4 hours. X-ray diffraction and scanning electron microscopy (SEM studies were conducted. Calcium phosphate phases were developed. The SEM images showed the formation of micro to nano-powders. The experimental results suggest that sea urchin, Brissus latecarinatus skeleton could be an alternative source for the production of various mono or biphasic calcium phosphates with simple and economic mechano-chemical (ultrasonic conversion method.

  19. Processing and properties of calcium phosphates bioceramics by hot isostatic pressing

    Directory of Open Access Journals (Sweden)

    Boilet Laurent

    2013-11-01

    Full Text Available Stoichiometric β-tricalcium phosphate (β-TCP, hydroxyapatite (HA and biphasic calcium phosphate (TCP/HA 60/40 %wt, BCP40 powders were synthesized by chemical precipitation of aqueous solutions of diammonium phosphate and calcium nitrate. After a calcination treatment and a milling step, powders were shaped by slip-casting. The sintering temperature effect on the density and the average grain size was investigated. By natural sintering, densities between 98 and 99.8% were obtained. Hot Isostatic Pressing (HIP treatment was carried out after a pre-sintering of these materials. Transparent or translucent samples were obtained, indicating a relative density very close to the theoretical value (>99.9%. Mechanical properties (three-point bending strength, fracture toughness, Young's modulus and Vickers hardness were measured on hipped materials with similar grain size (∼0.7μm.

  20. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    Directory of Open Access Journals (Sweden)

    Stuart G Dashper

    Full Text Available Glass ionomer cements (GIC are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.

  1. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    NARCIS (Netherlands)

    Yang, Liang; Hedhammar, My; Blom, Tobias; Leifer, Klaus; Johansson, Jan; Habibovic, Pamela; van Blitterswijk, Clemens

    2010-01-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently,

  2. Cell response of calcium phosphate based ceramics, a bone substitute material

    Directory of Open Access Journals (Sweden)

    Juliana Marchi

    2013-01-01

    Full Text Available The aim of this study was to characterize calcium phosphate ceramics with different Ca/P ratios and evaluate cell response of these materials for use as a bone substitute. Bioceramics consisting of mixtures of hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP powders in different proportions were pressed and sintered. The physical and chemical properties of these bioceramics were then characterized. Characterization of the biological properties of these materials was based on analysis of cell response using cultured fibroblasts. The number of cells attached to the samples was counted from SEM images of samples exposed to cell culture solution for different periods. These data were compared by analysis of variance (ANOVA complemented by the Tukey's test. The TCP sample had higher surface roughness and lower density. The adherence and growth of FMM1 cells on samples from all groups was studied. Even though the different calcium based ceramics exhibited properties which made them suitable as bone substitutes, those with higher levels of β-TCP revealed improved cell growth on their surfaces. These observations indicated two-phase calcium phosphate based materials with a β-TCP surface layer to be a promising bone substitute.

  3. Synthesis of amorphous calcium phosphate using various types of cyclodextrins

    International Nuclear Information System (INIS)

    Li Yanbao; Wiliana, Tjandra; Tam, Kam C.

    2007-01-01

    Amorphous calcium phosphate (ACP) was synthesised in aqueous solution at room temperature using cyclodextrins. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and thermal analysis (DTA/TGA) were performed on the calcium phosphate precipitates obtained from solutions. We observed that only β-CD could stabilise the amorphous phase in the mother solution because of the lower solubility of β-CD in water and the ACP remained stable in aqueous solution for more than 24 h at room temperature. The ACP particle has an initial particle size of less than 40 nm, Ca/P molar ratio of 1.67 and β-CD absorbed on its surface. The mechanism for the stabilisation of ACP is proposed

  4. The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts.

    Science.gov (United States)

    Massera, J; Kokkari, A; Närhi, T; Hupa, L

    2015-06-01

    In this paper, we investigate the effect of substituting SrO for CaO in silicate and phosphate bioactive glasses on the human gingival fibroblast activity. In both materials the presence of SrO led to the formation of a CaP layer with partial Sr substitution for Ca. The layer at the surface of the silicate glass consisted of HAP whereas at the phosphate glasses it was close to the DCPD composition. In silicate glasses, SrO gave a faster initial dissolution and a thinner reaction layer probably allowing for a continuous ion release into the solution. In phosphate glasses, SrO decreased the dissolution process and gave a more strongly bonded reaction layer. Overall, the SrO-containing silicate glass led to a slight enhancement in the activity of the gingival fibroblasts cells when compared to the SrO-free reference glass, S53P4. The cell activity decreased up to 3 days of culturing for all phosphate glasses containing SrO. Whereas culturing together with the SrO-free phosphate glass led to complete cell death at 7 days. The glasses containing SrO showed rapid cell proliferation and growth between 7 and 14 days, reaching similar activity than glass S53P4. The addition of SrO in both silicate and phosphate glasses was assumed beneficial for proliferation and growth of human gingival fibroblasts due to Sr incorporation in the reaction layer at the glass surface and released in the cell culture medium.

  5. Modulating calcium phosphate formation using CO2 laser engineering of a polymeric material

    International Nuclear Information System (INIS)

    Waugh, D.G.; Lawrence, J.

    2012-01-01

    The use of simulated body fluid (SBF) is widely used as a screening technique to assess the ability of materials to promote calcium phosphate formation. This paper details the use of CO 2 laser surface treatment of nylon® 6,6 to modulate calcium phosphate formation following immersion in SBF for 14 days. Through white light interferometry (WLI) it was determined that the laser surface processing gave rise to maximum Ra and Sa parameters of 1.3 and 4.4 μm, respectively. The use of X-ray photoelectron spectroscopy (XPS) enabled a maximum increase in surface oxygen content of 5.6%at. to be identified. The laser-induced surface modifications gave rise to a modulation in the wettability characteristics such that the contact angle, θ, decreased for the whole area processed samples, as expected, and increased for the patterned samples. The increase in θ can be attributed to a transition in wetting nature to a mixed-state wetting regime. It was seen for all samples that calcium phosphate formed on each surface following 14 days. The largest increase in mass, Δg, owed to calcium phosphate formation, was brought about by the whole area processed sample irradiated with a fluence of 51 J cm −2 . No correlation between the calcium phosphate formation and the laser patterned surface properties was determined due to the likely affect of the mixed-state wetting regime. Strong correlations between θ, the surface energy parameters and the calcium phosphate formation for the whole area processed samples allow one to realize the potential for this surface treatment technique in predicting the bone forming ability of laser processed materials. - Highlights: ► Surface modifications brought about a modulation in the wetting of nylon 6,6. ► An increase in θ can be attributed to a mixed-state wetting regime. ► Laser surface treatment modulated the ability to promote apatite formation. ► Mixed-state wetting regime affected the promotion of uniform apatite formation.

  6. Nanoscale mechanochemical wear of phosphate laser glass against a CeO{sub 2} particle in humid air

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiaxin, E-mail: yujiaxin@swust.edu.cn [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); He, Hongtu; Zhang, Yafeng [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); Hu, Hailong [Analysis and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-01-15

    Highlights: • Friction components of phosphate glass/CeO{sub 2} pair in humid air were quantified to understand the friction mechanism. • Severe nanoscale wear was directly observed by AFM topography on both phosphate glass and CeO{sub 2} particle in humid air. • The wearless behaviors of phosphate glass in vacuum were confirmed by the AFM phase image. • Capillary water bridge induced corrosion plays an important role in the mechanochemical wear of phosphate glass in air. - Abstract: Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO{sub 2} particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO{sub 2} pair in air was found to be 5–7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65–79%. The capillary water bridge further induced a serious material removal of glass and CeO{sub 2} particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Ce−O−P bond, accelerating the reaction between water and the glass/CeO{sub 2} pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.

  7. Calcium phosphate stabilization of fly ash with chloride extraction.

    Science.gov (United States)

    Nzihou, Ange; Sharrock, Patrick

    2002-01-01

    Municipal solid waste incinerator by products include fly ash and air pollution control residues. In order to transform these incinerator wastes into reusable mineral species, soluble alkali chlorides must be separated and toxic trace elements must be stabilized in insoluble form. We show that alkali chlorides can be extracted efficiently in an aqueous extraction step combining a calcium phosphate gel precipitation. In such a process, sodium and potassium chlorides are obtained free from calcium salts, and the trace metal ions are immobilized in the calcium phosphate matrix. Moderate calcination of the chemically treated fly ash leads to the formation of cristalline hydroxylapatite. Fly ash spiked with copper ions and treated by this process shows improved stability of metal ions. Leaching tests with water or EDTA reveal a significant drop in metal ion dissolution. Hydroxylapatite may trap toxic metals and also prevent their evaporation during thermal treatments. Incinerator fly ash together with air pollution control residues, treated by the combined chloride extraction and hydroxylapatite formation process may be considered safe to use as a mineral filler in value added products such as road base or cement blocks.

  8. Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang [Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong (China); Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Zhang, Chi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 (China); Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Wang, Ping, E-mail: dentistping@gmail.com [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Wang, Lin [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130011 (China); Bao, Chunyun [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 (China); Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Weir, Michael D.; Reynolds, Mark A. [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Ren, Ke [Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, University of Maryland, Baltimore, MD 21201 (United States); Zhao, Liang, E-mail: lzhaonf@126.com [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515 (China); and others

    2017-06-01

    Cell-based tissue engineering is promising to create living functional tissues for bone regeneration. The implanted cells should be evenly distributed in the scaffold, be fast-released to the defect and maintain high viability in order to actively participate in the regenerative process. Herein, we report an injectable calcium phosphate cement (CPC) scaffold containing cell-encapsulating hydrogel microfibers with desirable degradability that could deliver cells in a timely manner and maintain cell viability. Microfibers were synthesized using partially-oxidized alginate with various concentrations (0–0.8%) of fibrinogen to optimize the degradation rate of the alginate-fibrin microfibers (Alg-Fb MF). A fibrin concentration of 0.4% in Alg-Fb MF resulted in the greatest enhancement of cell migration, release and proliferation. Interestingly, a significant amount of cell–cell contact along the long-axis of the microfibers was established in Alg-0.4%Fb MF as early as day 2. The injectable tissue engineered construct for bone reconstruct was fabricated by mixing the fast-degradable Alg-0.4%Fb MF with CPC paste at 1:1 volume ratio. In vitro study showed that cells re-collected from the construct maintained good viability and osteogenic potentials. In vivo study demonstrated that the hBMSC-encapsulated CPC-MF tissue engineered construct displayed a robust capacity for bone regeneration. At 12 weeks after implantation, osseous bridge in the rat mandibular defect was observed in CPC-MF-hBMSCs group with a new bone area fraction of (42.1 ± 7.8) % in the defects, which was > 3-fold that of the control group. The novel tissue-engineered construct presents an excellent prospect for a wide range of dental, craniofacial and orthopedic applications. - Highlights: • Microfibers protected cells during CPC mixing and injection, and supported the viability, migration and differentiation of encapsulated cells. • Cells re-collected from the construct maintained good viability

  9. Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold

    International Nuclear Information System (INIS)

    Song, Yang; Zhang, Chi; Wang, Ping; Wang, Lin; Bao, Chunyun; Weir, Michael D.; Reynolds, Mark A.; Ren, Ke; Zhao, Liang

    2017-01-01

    Cell-based tissue engineering is promising to create living functional tissues for bone regeneration. The implanted cells should be evenly distributed in the scaffold, be fast-released to the defect and maintain high viability in order to actively participate in the regenerative process. Herein, we report an injectable calcium phosphate cement (CPC) scaffold containing cell-encapsulating hydrogel microfibers with desirable degradability that could deliver cells in a timely manner and maintain cell viability. Microfibers were synthesized using partially-oxidized alginate with various concentrations (0–0.8%) of fibrinogen to optimize the degradation rate of the alginate-fibrin microfibers (Alg-Fb MF). A fibrin concentration of 0.4% in Alg-Fb MF resulted in the greatest enhancement of cell migration, release and proliferation. Interestingly, a significant amount of cell–cell contact along the long-axis of the microfibers was established in Alg-0.4%Fb MF as early as day 2. The injectable tissue engineered construct for bone reconstruct was fabricated by mixing the fast-degradable Alg-0.4%Fb MF with CPC paste at 1:1 volume ratio. In vitro study showed that cells re-collected from the construct maintained good viability and osteogenic potentials. In vivo study demonstrated that the hBMSC-encapsulated CPC-MF tissue engineered construct displayed a robust capacity for bone regeneration. At 12 weeks after implantation, osseous bridge in the rat mandibular defect was observed in CPC-MF-hBMSCs group with a new bone area fraction of (42.1 ± 7.8) % in the defects, which was > 3-fold that of the control group. The novel tissue-engineered construct presents an excellent prospect for a wide range of dental, craniofacial and orthopedic applications. - Highlights: • Microfibers protected cells during CPC mixing and injection, and supported the viability, migration and differentiation of encapsulated cells. • Cells re-collected from the construct maintained good viability

  10. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications

    International Nuclear Information System (INIS)

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Knowles, Jonathan Campbell

    2014-01-01

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds. - Highlights: • This study investigated the role of titania on the biological response of phosphate glasses. • Incorporation of titania improved HOS cell attachment, viability and proliferation. • Titania modified glasses regulated osteoblastic cell differentiation. • Using osteogenic media had no significant effect on cell differentiation. • Titania modified glasses may have future use as bone tissue engineering scaffolds

  11. Aluminum and Phthalates in Calcium Gluconate: Contribution From Glass and Plastic Packaging.

    Science.gov (United States)

    Yokel, Robert A; Unrine, Jason M

    2017-01-01

    Aluminum contamination of parenteral nutrition solutions has been documented for 3 decades. It can result in elevated blood, bone, and whole body aluminum levels associated with neurotoxicity, reduced bone mass and mineral content, and perhaps hepatotoxicity. The primary aluminum source among parenteral nutrition components is glass-packaged calcium gluconate, in which aluminum concentration in the past 3 decades has averaged approximately 4000 μg/L, compared with nutrition solutions; 2 packaged in glass (from France and the United States) and 1 in plastic (from Germany); in a recently released plastic-packaged solution (from the United States); and in the 2 glass containers. Phthalate concentration was determined in selected samples of each product and leachate of the plastic containers. The initial aluminum concentration was approximately 5000 μg/L in the 2 glass-packaged products and approximately 20 μg/L in the plastic-packaged product, and increased approximately 30%, 50%, and 100% in 2 years, respectively. The aluminum concentration in a recently released Calcium Gluconate Injection USP was approximately 320 μg/L. Phthalates were not detected in any calcium gluconate solutions or leachates. Plastic packaging greatly reduces the contribution of aluminum to parenteral nutrition solutions from calcium gluconate compared with the glass-packaged product.

  12. Preparation and Sustained-Release Property of Triblock Copolymer/Calcium Phosphate Nanocomposite as Nanocarrier for Hydrophobic Drug

    Directory of Open Access Journals (Sweden)

    Cao Shao-Wen

    2010-01-01

    Full Text Available Abstract The P123/ACP nanocomposite with sizes less than 100 nm consisting of triblock copolymer P123 and amorphous calcium phosphate (ACP has been prepared by using an aqueous solution containing CaCl2, (NH43PO4, and P123 at room temperature. The P123/ACP nanocomposite is used as the nanocarrier for hydrophobic drug ibuprofen, based on the combined advantages of both amphiphilic block copolymer and calcium phosphate delivery system. The P123/ACP nanocomposite has a much higher ibuprofen loading capacity (148 mg/g than the single-phase calcium phosphate nanostructures. The drug release percentage of the P123/ACP nanocomposite in simulated body fluid reaches about 100% in a period of 156 h, which is much slower than that of single-phase calcium phosphate nanostructures. It is expected that the P123/ACP nanocomposite is promising for the application in the controlled delivery of hydrophobic drugs.

  13. Efficacy of tooth whitening with different calcium phosphate-based formulations.

    Science.gov (United States)

    Jin, Jian; Xu, Xiaohui; Lai, Guangyun; Kunzelmann, Karl-Heinz

    2013-08-01

    The aim of this in-vitro study was to evaluate the efficacy of tooth whitening using different calcium phosphate-based formulations. Teeth were treated with three different hydroxyapatite preparations at different concentrations and with two control preparations; each tooth was treated a total of three times. After application of the last material, hydrodynamic shear force was applied to mimic mechanical loading. After each treatment, tooth color was measured using a dental spectrophotometer, and the mean changes in L*a*b* values between different measurements were expressed as ∆E. The results indicated significant differences between the materials, but neither dose- nor time-dependent associations were found. The suspension containing tricalcium phosphate (10 wt%) showed the most obvious color change (∆E = 2.20 ± 0.90), while the suspension containing zinc-carbonate-apatite (20 wt%) showed the least obvious color change (∆E = 0.91 ± 0.50). Calcium phosphate-based formulations that can adhere to the enamel surface and contribute to tooth whitening have promising tooth-whitening potential. © 2013 Eur J Oral Sci.

  14. Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dube, Charu L., E-mail: dubecharu@gmail.com; Stennett, Martin C.; Gandy, Amy S.; Hyatt, Neil C.

    2016-03-15

    Highlights: • Alpha decay of actinides in iron phosphate glasses is simulated by employing ion irradiation technique. • FTIR and Raman spectroscopic measurements confirm modification of glass network. • The depolymerisation of glass network after irradiation is attributed to synergetic effect of nuclear and electronic losses. - Abstract: A surrogate approach of ion beam irradiation is employed to simulate alpha decay of actinides in iron phosphate nuclear waste glasses. Bismuth and helium ions of different energies have been selected for simulating glass matrix modification owing to radiolysis and ballistic damage due to recoil atoms. Structural modification and change in coordination number of network former were probed by employing Reflectance Fourier-Transform Infrared (FT-IR), and Raman spectroscopies as a consequence of ion irradiation. Depolymerisation is observed in glass sample irradiated at intermediate energy of 2 MeV. Helium blisters of micron size are seen in glass sample irradiated at low helium ion energy of 30 keV.

  15. Role of lead as modifier on the properties of lead iron phosphate nuclear waste glasses

    International Nuclear Information System (INIS)

    Hazra, G.; Mitra, P.; Das, T.

    2011-01-01

    Lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high level defence and high level commercial radioactive waste for long term disposal. Lead iron phosphate glasses have several advantages such as lower aqueous corrosion rate, lower processing temperature etc. (author)

  16. Effect of calcium source on structure and properties of sol-gel derived bioactive glasses.

    Science.gov (United States)

    Yu, Bobo; Turdean-Ionescu, Claudia A; Martin, Richard A; Newport, Robert J; Hanna, John V; Smith, Mark E; Jones, Julian R

    2012-12-18

    The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.

  17. Physical, thermal and structural properties of Calcium Borotellurite glass system

    Energy Technology Data Exchange (ETDEWEB)

    Paz, E.C. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Açailândia, MA (Brazil); Dias, J.D.M. [CCSST – UFMA, Imperatriz, MA (Brazil); Melo, G.H.A. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Imperatriz, MA (Brazil); Lodi, T.A. [CCSST – UFMA, Imperatriz, MA (Brazil); Carvalho, J.O. [CCSST – UFMA, Imperatriz, MA (Brazil); IFTO, Araguaína, TO (Brazil); Façanha Filho, P.F.; Barboza, M.J.; Pedrochi, F. [CCSST – UFMA, Imperatriz, MA (Brazil); Steimacher, A., E-mail: steimacher@hotmail.com [CCSST – UFMA, Imperatriz, MA (Brazil)

    2016-08-01

    In this work the glass forming ability in Calcium Borotellurite (CBTx) glass system was studied. Six glass samples were prepared by melt-quenching technique and the obtained samples are transparent, lightly yellowish, with no visible crystallites. The structural studies were carried out by using XRD, FTIR, Raman Spectra, density measurements, and the thermal analysis by using DTA and specific heat. The results are discussed in terms of tellurium oxide content and their changes in structural and thermal properties of glass samples. The addition of TeO{sub 2} increased the density and thermal stability values and decreased glass transition temperature (Tg). Raman and FTIR spectroscopies indicated that the network structure of CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. CBTx system showed good glass formation ability and good thermal stability, which make CBTx glasses suitable for manufacturing process and a candidate for rare-earth doping for several optical applications. - Highlights: • Glass forming ability on Calcium Borotellurite system was studied. • The glass structure was investigated by XRD, Raman and FTIR. • The glass network structure of the CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. • The density and thermal stability of the CBTx glass decreases with TeO{sub 2} while the Cp and the Tg decreases. • The obtained CBTx glasses are suitable for manufacturing process and rare-earth doping for several optical applications.

  18. Optimizing conditions for calcium phosphate mediated transient transfection

    Directory of Open Access Journals (Sweden)

    Ling Guo

    2017-03-01

    Conclusions: Calcium phosphate mediated transfection is the most low-cost approach to introduce recombinant DNA into culture cells. However, the utility of this procedure is limited in highly-differentiated cells. Here we describe the specific HBS-buffered saline, PH, glycerol shock, vortex strength, transfection medium, and particle concentrations conditions necessary to optimize this transfection method in highly differentiated cells.

  19. Studies on the synthesis and characterization of cesium-containing iron phosphate glasses

    Science.gov (United States)

    Joseph, Kitheri; Govindan Kutty, K. V.; Chandramohan, P.; Vasudeva Rao, P. R.

    2009-02-01

    Isotopes of cesium and strontium can be utilized as radiation source for various industrial and medical applications after their separation from high level nuclear waste. However, these elements need to be immobilized in a suitable matrix. In the present work, a systematic approach has been made to immobilize inactive cesium into iron phosphate glass. Up to 36 mol% of Cs 2O has been loaded successfully without crystallization. The glass transition temperature of the cesium loaded glass was found to increase initially and then decrease as a function of Cs 2O content. Mössbauer studies show that the concentration of Fe 3+ ions in the cesium loaded glasses is >95%. Volatilization experiments at 1263 K show that the weight loss is >0.5% for a period of 4 h. The 36 mol% of Cs 2O loaded iron phosphate glass with high Fe 3+ content described in this paper is reported for the first time.

  20. A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg-3Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yingwei, E-mail: ywsong@imr.ac.cn; Shan, Dayong; Han, En-Hou

    2013-01-01

    A novel biodegradable composite coating is prepared to reduce the biodegradation rate of Mg-3Zn alloy. The Mg-3Zn substrate is first immersed into 0.02 mol L{sup -1} nicotinic acid (NA) solution, named as vitamin B{sub 3}, to obtain a pretreatment film, and then the electrodeposition of calcium phosphate coating with ultrasonic agitation is carried out on the NA pretreatment film to obtain a NA/calcium phosphate composite coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. Protection property of the coatings is evaluated by electrochemical tests. The biodegradable behavior is investigated by immersion tests. The results indicate that a thin but compact bottom layer can be obtained by NA pretreatment. The electrodeposition calcium phosphate coating consists of many flake particles and ultrasonic agitation can greatly improve the compactness of the coating. The composite coating is biodegradable and can reduce the biodegradation rate of Mg alloys in stimulated body fluid (SBF) for twenty times. The biodegradation process of the composite coating can be attributed to the gradual dissolution of the flake particles into chippings. - Highlights: Black-Right-Pointing-Pointer NA/calcium phosphate composite coating is prepared to protect Mg-3Zn alloy implant. Black-Right-Pointing-Pointer Nicotinic acid (vitamin B{sub 3}) is available to obtain a protective bottom film. Black-Right-Pointing-Pointer Ultrasonic agitation greatly improves the compactness of calcium phosphate coating. Black-Right-Pointing-Pointer The composite coating can reduce the biodegradation rate of Mg-3Zn twenty times. Black-Right-Pointing-Pointer The composite coating is biodegraded by the dissolution of flakes into chippings.

  1. Substitution of strontium for calcium in glass ionomer cements (Part ...

    African Journals Online (AJOL)

    Objectives: To investigate the effects of substituting strontium for calcium in fluoroaluminosilicate glass on the mechanical and ion-releasing properties of high-viscosity glass ionomer cements. Design: An exploratory, laboratory-based study. Setting: Dental biomaterials research laboratory, Dental Physical Sciences Unit, ...

  2. Investigation into the role of NaOH and calcium ions in the synthesis of calcium phosphate nanoshells

    Directory of Open Access Journals (Sweden)

    C. H. Yeo

    2012-03-01

    Full Text Available Calcium phosphate (CaP nanoshells were prepared using negatively charged liposomes (1,2-dioleoyl-sn-glycero-3-phosphate sodium salt (DOPA as a template by base titration synthesis at various concentrations of NaOH and calcium ions. The elemental composition, morphology, particle size, particle size distribution and zeta potential of the products were determined via various characterisation techniques, such as energy-dispersive X-ray spectrometry (EDX, transmission electron microscopy (TEM, dynamic light scattering (DLS, laser Doppler velocimetry (LDV and Fourier transform infrared spectroscopy (FTIR. The best results showed that stable spherical CaP nanoshells with a mean particle size of 197.5 ± 5.8 nm and a zeta potential of -34.5 ± 0.6 mV were successfully formed when 0.100 M sodium hydroxide (NaOH and 0.100 M calcium ions were used. Moreover, an optimal pH of 10.52 and a final Ca/P molar ratio of 0.97 were achieved under these conditions.

  3. Effect of carbonate and phosphate ratios on the transformation of calcium orthophosphates

    Energy Technology Data Exchange (ETDEWEB)

    Eliassi, Mohammad Daoud, E-mail: eliassi2007@gmail.com [Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Zhao, Wei [State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling 712100 (China); Tan, Wen Feng, E-mail: wenfeng.tan@hotmail.com [Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China)

    2014-07-01

    Graphical abstract: Complexes among phosphate, carbonate and calcium have been prepared via a facile hydrothermal route. The synthesized product at the low (0.15) and the high (1.8) molar ratio of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} is calcium phosphate hydrate and hydroxylapatite (HAp), respectively. Molar ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} are effective on the reduction of carbonate activity during the crystallization of HAp. - Highlights: • Formation of different complexes from CO{sub 3}{sup 2−}, PO{sub 4}{sup 3−} and Ca{sup 2+} solutions at 60 °C. • Molar ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2} cause changes in phase and size of synthesized products. • Addition of PO{sub 4}{sup 3} inhibited the activity of CO{sub 3}{sup 2−} during bound with Ca{sup 2+}. • The phase transformation was completed, when CO{sub 3}{sup 2−} peaks disappeared in FTIR. • PO{sub 4}{sup 3−}, CO{sub 3}{sup 2−} and Ca{sup 2+} distributed heterogeneously on the surface of precipitation. - Abstract: Complexes among phosphate, carbonate and calcium have been synthesized by a designed hydrothermal method. Effects of carbonate and phosphate ratios on the transformation of calcium-orthophosphates were investigated. With X-ray diffraction measurement the synthesized product at the low (0.15) and the high (1.8) molar ratio of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} is calcium phosphate hydrate at pH 9.0, and hydroxylapatite (HAp) at pH 8.0, respectively. Fourier transform infrared spectroscopy of product at the high ratio (1.8) of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} shows that the CO{sub 3}{sup 2−} peaks disappear, and the strong peaks at 1412 and 1460 cm{sup −1} are assigned to the vibrations of PO{sub 4}{sup 3−} in HAp. {sup 31}P nuclear magnetic resonance spectra of products at the low (0.15–0.6) to the high (1.2–1.8) ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} are obtained at 2.9 and 2.7 ppm, respectively. Molar ratios of PO

  4. The effect of calcium phosphate-containing desensitizing agent on ...

    African Journals Online (AJOL)

    Objective: The aim of this study was to investigate the effect of calcium phosphate containing desensitizing pretreatments on the microtensile bond strength (MTBS) and microleakage of the multimode adhesive agent to dentin. Materials and Methods: In this study, twelve noncarious, freshly extracted human third molar teeth ...

  5. Evaluation of Serum Calcium and Inorganic Phosphate Levels in ...

    African Journals Online (AJOL)

    The importance of calcium and inorganic phosphate in pregnancy cannot be overemphasized. Their adequacy or otherwise amongst pregnant and lactating women in Enugu metropolis receiving their routine antenatal supplements was the focus of this study. Two hundred subjects (forty in each trimester; forty lactating and ...

  6. Novel method for early investigation of bioactivity in different borate bio-glasses

    Science.gov (United States)

    Abdelghany, A. M.

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  7. Correlation between calcium and phosphate levels to calculus accumulation on coronary heart disease patients

    Science.gov (United States)

    Cahaya, Cindy; Masulili, Sri Lelyati C.; Lessang, Robert; Radi, Basuni

    2017-02-01

    Coronary Artery Disease (CAD) or Coronary Heart Disease (CHD) is a disease that happened because of blood flow being blocked by atherosclerosis. Atherosclerosis is a process of hardening of the arteries which characterized by thickening and loss of elasticity of the intimal layer of vascular wall, by lipid deposit. Periodontitis is a chronic multifactorial inflammatory disease caused by microorganism and characterized by progressive destruction of the tooth supporting apparatus leading to tooth loss. Many studies use saliva as a valuable source for clinically information, as an asset for early diagnosis, prognostic and reviewer for pascatherapy status. Dental calculus had happened as a consequence of saliva supersaturation by calcium and phosphate. Salivary flow rate and its composition influence the formation of calculus. Increasing salivary calcium levels is characteristic of periodontitis patients. An important hipotesis in Cardiology is chronic infections contribute in atherosclerosis. Objective: To analyse the correlation between calcium and phosphate levels in saliva to calculus accumulation on CHD patients. Result: Correlation analysis between salivary calcium levels with calculus accumulation in patients with CHD and non-CHD showed no significant p value, p=0.59 and p=0.518. Correlation analysis between salivary phosphate levels and calculus accumulation showed no significant p value, p=0.836 for CHD patients and p=0.484 for non-CHD patients. Conclusion: There are no correlation between calcium levels and phosphate levels with calculus accumulation in CHD patients. Further research need to be done.

  8. The Effect of Moderate Dietary Protein and Phosphate Restriction on Calcium-Phosphate Homeostasis in Healthy Older Cats.

    Science.gov (United States)

    Geddes, R F; Biourge, V; Chang, Y; Syme, H M; Elliott, J

    2016-09-01

    Dietary phosphate and protein restriction decreases plasma PTH and FGF-23 concentrations and improves survival time in azotemic cats, but has not been examined in cats that are not azotemic. Feeding a moderately protein- and phosphate-restricted diet decreases PTH and FGF-23 in healthy older cats and thereby slows progression to azotemic CKD. A total of 54 healthy, client-owned cats (≥ 9 years). Prospective double-blinded randomized placebo-controlled trial. Cats were assigned to test diet (protein 76 g/Mcal and phosphate 1.6 g/Mcal) or control diet (protein 86 g/Mcal and phosphate 2.6 g/Mcal) and monitored for 18 months. Changes in variables over time and effect of diet were assessed by linear mixed models. A total of 26 cats ate test diet and 28 cats ate control diet. There was a significant effect of diet on urinary fractional excretion of phosphate (P = 0.045), plasma PTH (P = 0.005), and ionized calcium concentrations (P = 0.018), but not plasma phosphate, FGF-23, or creatinine concentrations. Plasma PTH concentrations did not significantly change in cats fed the test diet (P = 0.62) but increased over time in cats fed the control diet (P = 0.001). There was no significant treatment effect of the test diet on development of azotemic CKD (3 of 26 (12%) test versus 3 of 28 (11%) control, odds ratio 1.09 (95% CI 0.13-8.94), P = 0.92). Feeding a moderately protein- and phosphate-restricted diet has effects on calcium-phosphate homeostasis in healthy older cats and is well tolerated. This might have an impact on renal function and could be useful in early chronic kidney disease. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  9. DNA-encapsulated magnesium phosphate nanoparticles elicit both humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Gajadhar Bhakta

    2014-01-01

    Full Text Available The efficacy of pEGFP (plasmid expressing enhanced green fluorescent protein-encapsulated PEGylated (meaning polyethylene glycol coated magnesium phosphate nanoparticles (referred to as MgPi-pEGFP nanoparticles for the induction of immune responses was investigated in a mouse model. MgPi-pEGFP nanoparticles induced enhanced serum antibody and antigen-specific T-lymphocyte responses, as well as increased IFN-γ and IL-12 levels compared to naked pEGFP when administered via intravenous, intraperitoneal or intramuscular routes. A significant macrophage response, both in size and activity, was also observed when mice were immunized with the nanoparticle formulation. The response was highly specific for the antigen, as the increase in interaction between macrophages and lymphocytes as well as lymphocyte proliferation took place only when they were re-stimulated with recombinant green fluorescence protein (rGFP. Thus the nanoparticle formulation elicited both humoral as well as cellular responses. Cytokine profiling revealed the induction of Th-1 type responses. The results suggest DNA-encapsulated magnesium phosphate (MgPi nanoparticles may constitute a safer, more stable and cost-efficient DNA vaccine formulation.

  10. Elaboration de biocéramiques phosphocalciques Processing of calcium phosphate bioceramics

    Directory of Open Access Journals (Sweden)

    Champion Eric

    2013-11-01

    Full Text Available Les céramiques phosphocalciques (hydroxyapatite, phosphate tricalcique sont couramment utilisées comme implants synthétiques en substitution osseuse. Le développement de nouveaux implants céramiques aux performances accrues nécessite la maîtrise de nombreux paramètres chimiques et physiques intervenant dans leurs procédés d'élaboration : synthèse de poudres spécifiques, mise en forme d'architectures complexes contrôlées, frittage et fonctionnalisation. Cette contribution illustre à travers quelques exemples les travaux menés dans le domaine des procédés d'élaboration de ces biocéramiques phosphocalciques pour des applications en ingénierie des tissus osseux. Calcium phosphate ceramics (hydroxyapatite, tricalcium phosphate are commonly used as synthetic bone graft substitutes. The development of new ceramic implants with improved performances requires the mastering of many chemical and physical parameters involved in their processing: synthesis of specific powders, shaping of complex architectures, sintering and functionalization. This paper illustrates a few examples of the work in the field of processes of these calcium phosphate bioceramics for applications in bone tissue engineering.

  11. Calcium phosphate implants coatings as carriers for BMP-2

    NARCIS (Netherlands)

    Liu, Y.; He, J.F.; Hunziker, E.B.

    2009-01-01

    The osteoconductivity of dental implants can be improved by coating them with a layer of calcium phosphate (CaP), which can be rendered osteoinductive by functionalizing it with an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2). In the present study, we wished to compare the

  12. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    Directory of Open Access Journals (Sweden)

    Ryszard Stępień

    2014-06-01

    Full Text Available In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt% of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index and thermal proprieties (thermal expansion coefficient, rheology. The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity.

  13. Comparative investigation on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses

    Science.gov (United States)

    Zhang, Liaolin; Dong, Guoping; Peng, Mingying; Qiu, Jianrong

    We report on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses. The stimulated absorption and emission cross sections were estimated. Only one emission at 596 nm and 605 nm is observed in Pr3+-doped boro-phosphate and boro-germo-silicate glasses, respectively, while three emissions at 605 nm, 612 nm and 645 nm are observed in Pr3+-doped tellurite glass when excited at 467 nm. The fluorescence lifetime at 600 nm in Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses is 137 μs, 73 μs and 51 μs, respectively. The emissions from Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses show different decay behaviors and can be well explained by multiphonon relaxation theory.

  14. Modulating calcium phosphate formation using CO{sub 2} laser engineering of a polymeric material

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, D.G., E-mail: Dwaugh@lincoln.ac.uk; Lawrence, J.

    2012-02-01

    The use of simulated body fluid (SBF) is widely used as a screening technique to assess the ability of materials to promote calcium phosphate formation. This paper details the use of CO{sub 2} laser surface treatment of nylon Registered-Sign 6,6 to modulate calcium phosphate formation following immersion in SBF for 14 days. Through white light interferometry (WLI) it was determined that the laser surface processing gave rise to maximum Ra and Sa parameters of 1.3 and 4.4 {mu}m, respectively. The use of X-ray photoelectron spectroscopy (XPS) enabled a maximum increase in surface oxygen content of 5.6%at. to be identified. The laser-induced surface modifications gave rise to a modulation in the wettability characteristics such that the contact angle, {theta}, decreased for the whole area processed samples, as expected, and increased for the patterned samples. The increase in {theta} can be attributed to a transition in wetting nature to a mixed-state wetting regime. It was seen for all samples that calcium phosphate formed on each surface following 14 days. The largest increase in mass, {Delta}g, owed to calcium phosphate formation, was brought about by the whole area processed sample irradiated with a fluence of 51 J cm{sup -2}. No correlation between the calcium phosphate formation and the laser patterned surface properties was determined due to the likely affect of the mixed-state wetting regime. Strong correlations between {theta}, the surface energy parameters and the calcium phosphate formation for the whole area processed samples allow one to realize the potential for this surface treatment technique in predicting the bone forming ability of laser processed materials. - Highlights: Black-Right-Pointing-Pointer Surface modifications brought about a modulation in the wetting of nylon 6,6. Black-Right-Pointing-Pointer An increase in {theta} can be attributed to a mixed-state wetting regime. Black-Right-Pointing-Pointer Laser surface treatment modulated the

  15. The effects of uranium on the structure of iron phosphate glasses

    International Nuclear Information System (INIS)

    Badyal, Y.; Karabulut, M.; Marasinghe, K.; Saboungi, M.L.; Haeffner, D.; Shastri, S.; Day, D.E.; Ray, C.S.

    1999-01-01

    Because of their high chemical durability and waste loading capacity, iron phosphate glasses are a natural candidate for a nuclear waste disposal medium. The authors have studied the effects of uranium on the structure of iron phosphate glasses with both neutron and high-energy x-ray diffraction. The results of neutron scattering, which is mostly sensitive to pair correlations involving light atoms, i.e., O-O, Fe-O and P-O, indicate the main structural features of the base glass are largely unaffected by the addition of UO 2 . The nearest-neighbor P-O, Fe-O and O-O peaks remain at the same position in real space and their intensities scale approximately with concentration. These findings are consistent with earlier results using Raman scattering and EXAFS on the Fe-K edge, where in both cases the spectra remain similar to the base glass. The results of high-energy x-ray scattering, which is sensitive to correlations involving the heavier atoms and thus complements the neutron measurements, are also consistent with the overall picture of uranium occupying interstitial sites in the relatively undisturbed base glass structure. Combining the neutron and x-ray data for a 10 mol% UO 2 glass suggests the intriguing possibility of a U 6+ uranyl ion configuration although further work is needed to establish the precise local structure and valence state of uranium in these glasses

  16. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    Science.gov (United States)

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  17. Uptake of CrO{sub 4}{sup 2-} ions by Fe-treated tri-calcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Serrano G, J.; Ramirez S, J. L.; Bonifacio M, J.; Granados C, F.; Badillo A, V. E., E-mail: juan.serrano@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    CrO{sub 4}{sup 2-} ion adsorption of Fe-treated tri-calcium phosphate was studied by batch experiments as a function of contact time, initial concentration of metal ion and temperature. Adsorption results showed that at ph 5.5 and 1.0 x 10{sup -4} M chromium concentration the adsorption capacity of Fe-treated tri-calcium phosphate for CrO{sub 4}{sup 2-} ions was 7.10 x 10{sup -3} mmol/g. Chromium adsorption data on Fe-treated tri-calcium phosphate at various initial concentration fitted the Freundlich isotherm. By temperature studies the thermodynamic parameters {Delta}H{sup 0}, {Delta}G{sup 0} and {Delta}S{sup 0} were estimated and the obtained results showed that the adsorption reaction was endothermic and spontaneous. (Author)

  18. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering

    Science.gov (United States)

    Zhao, Liang; Weir, Michael D.; Xu, Hockin H. K.

    2010-01-01

    The need for bone repair has increased as the population ages. Stem cell-scaffold approaches hold immense promise for bone tissue engineering. However, currently, preformed scaffolds for cell delivery have drawbacks including the difficulty to seed cells deep into the scaffold, and inability for injection in minimally invasive surgeries. Current injectable polymeric carriers and hydrogels are too weak for load-bearing orthopedic application. The objective of this study was to develop an injectable and mechanically-strong stem cell construct for bone tissue engineering. Calcium phosphate cement (CPC) paste was combined with hydrogel microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs). The hUCMSC-encapsulating composite paste was fully injectable under small injection forces. Cell viability after injection matched that in hydrogel without CPC and without injection. Mechanical properties of the construct matched the reported values of cancellous bone, and were much higher than previous injectable polymeric and hydrogel carriers. hUCMSCs in the injectable constructs osteodifferentiated, yielding high alkaline phosphatase, osteocalcin, collagen type I, and osterix gene expressions at 7 d, which were 50–70 fold higher than those at 1 d. Mineralization by the hUCMSCs at 14 d was 100-fold that at 1 d. In conclusion, a fully-injectable, mechanically-strong, stem cell-CPC scaffold construct was developed. The encapsulated hUCMSCs remained viable, osteodifferentiated, and synthesized bone minerals. The new injectable stem cell construct with load-bearing capability may enhance bone regeneration in minimally-invasive and other orthopedic surgeries. PMID:20570346

  19. Physicochemical Properties of Calcium Phosphate Based Coating on Gutta-Percha Root Canal Filling

    Directory of Open Access Journals (Sweden)

    Afaf Al-Haddad

    2015-01-01

    Full Text Available Dental Gutta-percha (GP is a polymer based standard root canal filling material that has been widely used in dentistry. However, it has an inadequate sealing ability and adhesion to root dentin. The aim of this study is to coat GP with a bioactive material to enhance its sealing ability and adhesion to the root sealer and subsequently to the root dentin. The choice of coating method is limited by the nature of GP as it requires a technique that is not governed by high temperatures or uses organic solvents. In this study, biomimetic coating technique using 1.5 Tas-simulated body fluids (SBF was employed to coat the treated GP cones. The coated samples were characterized using Fourier transform infrared spectroscopy (FTIR, X-ray Diffraction (XRD, and field emission scanning electron microscope (FESEM. The presence of hydroxyl, carbonate, and phosphate groups was detected by FTIR while the formation of hydroxyapatite (HA/calcium phosphate was confirmed with XRD. FESEM revealed uniform, thin, and crystalline HA calcium phosphate coating. The adhesion of the coating to the GP substrate was assessed with microscratch technique. It was viable with cohesive failure mode. In conclusion, Tas-SBF is able to coat pretreated GP cones with a crystalline apatitic calcium phosphate layer.

  20. Electrosprayed calcium phosphate coatings for biomedical purposes.

    OpenAIRE

    Leeuwenburgh, S.C.G.

    2006-01-01

    In this thesis, the suitability of the Electrostatic Spray Deposition (ESD) technique was studied for biomedical purposes, i.e., deposition of calcium phosphate (CaP) coatings onto titanium substrates. Using ESD, which is a simple and cheap deposition method for inorganic and organic coatings, it was possible to obtain thin CaP layers with an extremely wide range of chemical and morphological characteristics. Various CaP phases and phase mixtures were deposited and a broad diversity of coatin...

  1. Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses

    International Nuclear Information System (INIS)

    Natura, U.; Ehrt, D.

    2001-01-01

    Fluoride phosphate (FP) glasses with low phosphate content are high-transparent in the deep ultraviolet (UV) range and attractive candidates for UV-optics. Their optical properties are complementary to fluoride crystals. The anomalous partial dispersion makes them desirable for optical lens designs to reduce the secondary spectrum. Their UV transmission is limited by trace impurities introduced by raw materials and decreases when exposed to UV-radiation (lamps, lasers). The experiments of the paper published previously in this journal were used in order to separate radiation induced absorption bands in the fluoride phosphate glass FP10. In this paper the generation mechanism of the phosphorus-oxygen related hole center POHC 2 is investigated in detail in glasses of various compositions (various phosphate and impurity contents) in order to predict the transmission loss in case of long-time irradiation. Experiments were carried out using ArF- and KrF-excimer lasers (ns-pulses). POHC 2 generation strongly depends on the phosphate content and on the content of Pb 2+ . A model was developed on these terms. Rate equations are formulated, incorporating the influence of the Pb 2+ -content on the defect generation, a two-step creation term including an energy transfer process and a one-photon bleaching term. This results in a set of coupled nonlinear differential equations. Absorption coefficients and lifetimes of the excited states were calculated as well. Experimental results compared well with the numerical analysis of the theoretical rate equations

  2. AN ALTERNATIVE HOST MATRIX BASED ON IRON PHOSPHATE GLASSES FOR THE VITRIFICATION OF SPECIALIZED WASTE FORMS

    International Nuclear Information System (INIS)

    Day, Delbert D.

    2000-01-01

    As mentioned above, the overall goal of this research project was to collect the scientific information essential to develop iron phosphate glass based nuclear wasteforms. The specific objectives of the project were: (1) Investigate the structure of binary iron phosphate glasses and it's dependence on the composition and melting atmosphere: Understand atomic arrangements and nature of the bonding. Establish structure-property relationships. Determine the compositions and melting conditions which optimize the critical properties of the base glass. (2) Understand the structure of iron phosphate wasteforms and it's dependence on the composition and melting atmosphere: Investigate how the waste elements are bonded and coordinated within the glass structure. Establish structure-property relationships for the waste glasses. Determine the compositions and melting atmosphere for which the critical properties of the waste forms would be optimum. (3) Determine the role(s) played by the valence states of iron ions and it's dependence on the composition and melting atmosphere: Understand the different roles of iron(II) and iron(III) ions in determining the critical properties of the base glass and the waste forms. Investigate how the iron valence and its significance depend on the composition and melting atmosphere. (4) Investigate glass forming and crystallization processes of the iron phosphate glasses and their waste forms: Understand the dependence of the glass forming and crystallization characteristics on overall glass composition and valence states of iron ions. Identify the products of devitrification and investigate the critical properties of these crystalline compounds which may adversely affect the chemical and physical properties of the waste forms

  3. Praseodymium ion doped phosphate glasses for integrated broadband ion-exchanged waveguide amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Shen, L.F. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Chen, B.J. [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Lin, H., E-mail: lhai8686@yahoo.com [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Pun, E.Y.B. [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-02-15

    Highlights: • Effective near-infrared emission (1380-1525 nm) is observed in Pr{sup 3+}-doped phosphate glasses. • Effective bandwidth of {sup 1}D{sub 2} → {sup 1}G{sub 4} transition emission is obtained to be 124 nm. • Channel waveguides have been fabricated by K{sup +}-Na{sup +} ion-exchange method. • Pr{sup 3+}-doped phosphate glasses are promising in developing integrated broadband waveguide amplifier. - Abstract: Effective near-infrared emission covering the fifth optical telecommunication window (1380-1525 nm) has been observed in Pr{sup 3+}-doped phosphate (NMAP) glasses. Judd-Ofelt parameters Ω{sub 2} (6.38 × 10{sup −20} cm{sup 2}), Ω{sub 4} (20.30 × 10{sup −20} cm{sup 2}) and Ω{sub 6} (0.40 × 10{sup −20} cm{sup 2}) indicate a high inversion asymmetrical and strong covalent environment in the optical glasses. The effective bandwidth (Δλ{sub eff}) of the corresponding {sup 1}D{sub 2} → {sup 1}G{sub 4} transition emission is obtained to be 124 nm, and the maximum stimulated emission cross-section (σ{sub em-max}) at 1468 nm is derived to be 1.14 × 10{sup −20} cm{sup 2}. Channel waveguide was fabricated successfully by K{sup +}-Na{sup +} ion-exchange method with mode field diameter of 8.8 μm in the horizontal direction and 6.7 μm in the vertical direction. Broad effective bandwidth, large emission cross-section and perfect thermal ion-exchangeability indicate that Pr{sup 3+}-doped NMAP phosphate glasses are promising in developing integrated broadband waveguide amplifier, especially operating at E- and S-bands which belong to the fifth optical telecommunication window.

  4. Treatment of post-orthodontic white spot lesions with casein phosphopeptide-stabilised amorphous calcium phosphate

    DEFF Research Database (Denmark)

    Bröchner, Ann; Christensen, Carsten; Kristensen, Bjarne

    2010-01-01

    This study aims to investigate the effect of topical applications of 10% casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on white spot lesions (WSL) detected after treatment with fixed orthodontic appliances. Sixty healthy adolescents with >/=1 clinically visible WSL at debonding were...... findings were largely reflected by the clinical scores. No side effects were reported. Topical treatment of white spot lesions after debonding of orthodontic appliances with a casein phosphopeptide-stabilised amorphous calcium phosphate agent resulted in significantly reduced fluorescence and a reduced...

  5. Mechanical Properties of Densified Tectosilicate Calcium-Aluminosilicate Glasses

    DEFF Research Database (Denmark)

    Johnson, Nicole; Lamberson, Lisa; Smedskjær, Morten Mattrup

    Aluminosilicate glasses are widely used in applications such as LCD glass, touchscreens for hand held devices and car windows. We have shown that the tectosilicate compositions exhibit an interesting non-monotonic variation in hardness with increasing SiO2 content. From 40% to 85 mol% SiO2......, hardness and indentation modulus both decrease, consistent with the topological constraint theory. Above 85 mol% SiO2 , hardness increases rapidly with increasing SiO2 content while modulus continues to decrease. A switch from shear to densification based on the species present in the glass has been...... proposed to explain this behavior. To reduce densification and study shear deformation independently, a series of calcium aluminosilicate glasses with tectosilicate compositions were densified by isostatic compression in a gas pressure chamber at elevated temperatures. The compressed glasses have increased...

  6. The calcium phosphate coating of soy lecithin nanoemulsion with performance in stability and as an oxygen carrier

    Science.gov (United States)

    Han, Kyu B.

    This work studied the relationship between surfactant, oil, and water, by building ternary phase diagrams, the goal of which was to identify the oil-in-water phase composition. The resulting nano-sized emulsion was coated with dicalcium phosphate by utilizing the ionic affinity between calcium ions and the emulsion surface. Since the desired function of the particle is as an oxygen carrier, the particle stability, oxygen capacity, and oxygen release rate were investigated. The first step in the process was to construct ternary phase diagrams with 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) and soy derived lecithin. The results showed that the lecithin surfactant formed an oil-in-water phase region that was 36 times greater than that of DOPA. With the desired phase composition set, the lecithin emulsion was extruded, resulting in a well-dispersed nanosized particle. A pH titration study of the emulsion found an optimized calcium phosphate coating condition at pH 8.8, at which, the calcium ion had a greater affinity for the emulsion surface than phosphate. A Hill plot was used to show calcium cooperativeness on the emulsion surface which suggested one calcium ion binds to one lecithin molecule. The lecithin emulsion particles were then coated with calcium phosphate using a layering technique that allowed for careful control of the coating thickness. The overall particle hydrodynamic radius was consistent with the growth of the calcium phosphate coating, from 8 nm to 28 nm. This observation was further supported with cryo-TEM measurements. The stability of the coated emulsion was tested in conditions that simulate practical thermal, physical, and time-dependent conditions. Throughout the tests, the coated emulsion exhibited a constant mono-dispersed particle size, while the uncoated emulsion size fluctuated greatly and exhibited increased polydispersion. The fast mixing method with the stopped-flow apparatus was employed to test the product as an oxygen carrier, and it

  7. Spectroscopic identification of rare earth elements in phosphate glass

    Science.gov (United States)

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.

    2018-01-01

    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV-VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  8. Synthesis of Calcium Phosphate Composite Organogels by Using Emulsion Method for Dentine Occlusion Materials

    Science.gov (United States)

    Nopteeranupharp, C.; Akkarachaneeyakorn, K.; Songsasaen, A.

    2018-03-01

    Dentinal hypersensitivity (DH) is one of the most human’s problems caused by the erosion of enamel. There are many methods and materials to solve this problem. Calcium phosphate is an excellent alternative for curing this symptom because of its osteoconductivity, and biocompatibility properties. The low-cost and low-toxicity calcium phosphate nanogel was fabricated by using emulsion method and characterized by using TEM, EDX, and DLS techniques. The results showed that P123 (poly (ethylene oxide)19-block-Poly (propylene oxide)69-block-poly (ethylene oxide)19) has played a major role as template and gel formation, SDS was used as a surfactant to form water-in-oil emulsion nanodroplets with circle-like shape. Moreover, the ability of synthesised organogel to occlude the exposed dentine tubules was tested on the model of human’s dentine slices. The results showed that calcium phosphate composite organogel can be efficiently occluded on dentine slice, characterized by SEM technique, after 1 day.

  9. Orthodontic cement with protein-repellent and antibacterial properties and the release of calcium and phosphate ions.

    Science.gov (United States)

    Zhang, Ning; Weir, Michael D; Chen, Chen; Melo, Mary A S; Bai, Yuxing; Xu, Hockin H K

    2016-07-01

    White spot lesions often occur in orthodontic treatments. The objective of this study was to develop a novel resin-modified glass ionomer cement (RMGI) as an orthodontic cement with protein-repellent, antibacterial and remineralization capabilities. Protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC), antibacterial dimethylaminohexadecyl methacrylate (DMAHDM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP) were incorporated into a RMGI. Enamel shear bond strength (SBS) was determined. Calcium (Ca) and phosphate (P) ion releases were measured. Protein adsorption onto specimens was determined by a micro bicinchoninic acid method. A dental plaque microcosm biofilm model was tested. Increasing the NACP filler level increased the Ca and P ion release. Decreasing the solution pH increased the ion release. Incorporating MPC into RMGI reduced protein adsorption, which was an order of magnitude less than that of commercial controls. Adding DMAHDM and NAg into RMGI yielded a strong antibacterial function, greatly reducing biofilm viability and acid production. Biofilm CFU counts on the multifunctional orthodontic cement were 3 orders of magnitude less than that of commercial control (p0.1). A novel multifunctional orthodontic cement was developed with strong antibacterial and protein-repellent capabilities for preventing enamel demineralization. The new cement is promising to prevent white spot lesions in orthodontic treatments. The method of incorporating four bioactive agents may have wide applicability to the development of other bioactive dental materials to inhibit caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Preparation of Porous Calcium Phosphate Bioceramic

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Porous calcium phosphate ceramics were prepared by slip casting and molding method respectively. By these two different methods, different microstructures can be got. By slip casting method, the pore size was 100- 350μm and 20- 80μm; pores were opened, interconnected and ball-like; the grain size was 2- 4 μm.By molding method, the pore size was 100-500 μm and 1-10μm; the grain size was 2-8μm. By slip casting method regular and interconnected pores can be got. By molding method the porosity and strength can be adjusted easily.

  11. Optical and structural characterization of rare earth doped niobium phosphate glasses

    International Nuclear Information System (INIS)

    Sene, F.F.; Martinelli, J.R.; Gomes, L.

    2004-01-01

    Phosphate glasses containing up to 45mol% of niobium were obtained. X-ray diffraction, infrared, Raman, and optical absorption spectroscopy were used to analyze those materials. The refractive index varies from 1.70 to 1.85 as the amount of Nb increases. Niobium phosphate glasses with optical transparence in the (400-2500nm) range were produced. The cut off varied from 342nm to 378nm as a function of the Nb concentration. The cut off is due to the charge transfer O 2 ->Nb 5+ . Glasses containing 10mol% of Nb 2 O 5 are the most promising materials to be used as rare-earth ions hosts because they are chemically resistant, and show optical transparency in the spectral range of visible to infrared. Doping the glasses with 1-5mol% of Er, Ho, Pr, and Yb ions does not change the glass structure, as measured by X-ray diffraction, infrared, and Raman spectroscopy. The fluorescence lifetimes were determined for Nd, Yb, and Er, and the absorption cross-section were determined for all ions. The energy transfer in co-doped Yb-Er system was measured, and the lifetime of excited states and the luminescence efficiency were determined to be 91% for the Er 4 I 11/2 level, in the Yb-Er co-doped glasses

  12. In vitro study on biomineralization of biphasic calcium phosphate ...

    Indian Academy of Sciences (India)

    In this study, we report the preparation of a bone graft material, having cylindrical shape, containing biphasic calcium phosphate (BCP), gelatin (G), chitosan (C) and Terminalia chebula (TC) extract. TC extract was used as a crosslinker that gives stability to bone graft when it is placed in SBF. The graft was stable in the SBF ...

  13. Encapsulated phosphates reduce lipid oxidation in both ground chicken and ground beef during raw and cooked meat storage with some influence on color, pH, and cooking loss.

    Science.gov (United States)

    Kılıç, B; Simşek, A; Claus, J R; Atılgan, E

    2014-05-01

    Effects of encapsulated sodium tripolyphosphate (STP), sodium hexametaphosphate (HMP) and sodium pyrophosphate (SPP) on lipid oxidation in uncooked (0, 2, 24h) and cooked (0, 1, 7 d) ground chicken and beef during storage were determined. Ten phosphate treatments included a control (no phosphate), three unencapsulated (u) at 0.5% and three encapsulated (e) phosphates (0.5%) each at a low (e-low) and high (e-high) coating level. Two heating rates (slow, fast) were investigated. Cooking loss (CL), pH, color, orthophosphate (OP), TBARS and lipid hydroperoxides (LPO) were determined. A fast heating and uSTP resulted in lower CL (pcooked samples. Not increased coating level but encapsulated phosphates decreased lipid oxidation in cooked samples (p<0.05). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Comparison of Calcium Hydroxide and Bioactive Glass after Direct Pulp Capping in Primary Teeth

    Directory of Open Access Journals (Sweden)

    R. Haghgoo

    2007-12-01

    Full Text Available Objective: Bioactive glass is often used as a filler material for repair of dental bone defects.In different studies osteogenic potential of this material was proved, but its dentinogenesisproperty is in doubt. The purpose of this study was to evaluate the histological pulp responses of Calcium hydroxide and Bioactive glass placed directly on exposed pulp tissues.Materials and Methods: Twenty teeth to be extracted due to orthodontic reasons were selected. These teeth were divided into two groups and treated with direct pulp capping.Calcium hydroxide was used for 10 teeth and Bioactive glass for 10 teeth. After 60 daysthe teeth were extracted and prepared for histological evaluation. Finally the data was analyzed with exact Fisher test.Results: All teeth treated with Calcium hydroxide showed inflammation. Internal resorption was seen in six teeth, abscess in five teeth and dentinal bridge in two teeth. Inflammationwas seen in three Bioactive glass samples and dentinal bridge in seven teeth, but internal resorption and abscess were not seen.Conclusion: Bioactive glass appears to be superior to Calcium hydroxide as a pulp capping agent in primary teeth.

  15. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    International Nuclear Information System (INIS)

    Kim, Dae-Sung; Ryu, Bong-ki

    2017-01-01

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P 2 O 5 -CaO-Na 2 O-TiO 2 system with a high TiO 2 content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO 2 enters the network as (TiO 6 ), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO 2 content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  16. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Sung; Ryu, Bong-ki [Pusan National University, Busan (Korea, Republic of)

    2017-04-15

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P{sub 2}O{sub 5}-CaO-Na{sub 2}O-TiO{sub 2} system with a high TiO{sub 2} content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO{sub 2} enters the network as (TiO{sub 6}), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO{sub 2} content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  17. Immobilisation of radio cesium loaded ammonium molybdo phosphate in glass matrices

    International Nuclear Information System (INIS)

    Yalmali, Vrunda S.; Singh, I.J.; Sathi Sasidharan, N.; Deshingkar, D.S.

    2004-11-01

    Long half life and easy availability from high level wastes make 137 Cesium most economical radiation source. High level liquid waste processing for 137 Cesium removal has become easier due to development of Cesium specific granulated ammonium molybdophosphate (AMP) composite. In such applications, resulting spent composite AMP itself represents high active solid waste and immobilization of these materials in cement may not be acceptable. Studies on immobilization of 137 Cs loaded AMP were taken up in order to achieve twin goals of increasing safety and minimizing processing costs of the final matrix. Studies indicated that phosphate modified sodium borosilicate SPNM glasses prepared under usual oxidizing conditions are not suitable for immobilization of 137 Cs loaded on AMP .Phosphate glasses containing Na 2 O, P 2 O 5 , B 2 O 3 , Fe 2 O 3 , Al 2 O 3 and SiO 2 as major constituents are capable of incorporating 6 to 8 % AMP. The Normalized Leach rates of these glasses for sodium, cesium, boron and silica are 10 -4 to 10 -6 gm/cm 2 /day which are comparable to or better than those reported for NBS glasses incorporating HLW. Homogeneity of the final matrix was confirmed by x-ray diffraction analysis. Further studies on characterization of these glasses would establish their acceptability. (author)

  18. Injectable biphasic calcium phosphate cements as a potential bone substitute

    NARCIS (Netherlands)

    Sariibrahimoglu, K.; Wolke, J.G.C.; Leeuwenburgh, S.C.G.; Yubao, L.; Jansen, J.A.

    2014-01-01

    Apatitic calcium phosphate cements (CPCs) have been widely used as bone grafts due to their excellent osteoconductive properties, but the degradation properties are insufficient to stimulate bone healing in large bone defects. A novel approach to overcome the lack of degradability of apatitic CPC

  19. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells.

    Science.gov (United States)

    Karaman, Ozan; Kumar, Ankur; Moeinzadeh, Seyedsina; He, Xuezhong; Cui, Tong; Jabbari, Esmaiel

    2016-02-01

    Biomineralization is mediated by extracellular matrix (ECM) proteins with amino acid sequences rich in glutamic acid. The objective of this study was to investigate the effect of calcium phosphate deposition on aligned nanofibres surface-modified with a glutamic acid peptide on osteogenic differentiation of rat marrow stromal cells. Blend of EEGGC peptide (GLU) conjugated low molecular weight polylactide (PLA) and high molecular weight poly(lactide-co-glycolide) (PLGA) was electrospun to form aligned nanofibres (GLU-NF). The GLU-NF microsheets were incubated in a modified simulated body fluid for nucleation of calcium phosphate crystals on the fibre surface. To achieve a high calcium phosphate to fibre ratio, a layer-by-layer approach was used to improve diffusion of calcium and phosphate ions inside the microsheets. Based on dissipative particle dynamics simulation of PLGA/PLA-GLU fibres, > 80% of GLU peptide was localized to the fibre surface. Calcium phosphate to fibre ratios as high as 200%, between those of cancellous (160%) and cortical (310%) bone, was obtained with the layer-by-layer approach. The extent of osteogenic differentiation and mineralization of marrow stromal cells seeded on GLU-NF microsheets was directly related to the amount of calcium phosphate deposition on the fibres prior to cell seeding. Expression of osteogenic markers osteopontin, alkaline phosphatase (ALP), osteocalcin and type 1 collagen increased gradually with calcium phosphate deposition on GLU-NF microsheets. Results demonstrate that surface modification of aligned synthetic nanofibres with EEGGC peptide dramatically affects nucleation and growth of calcium phosphate crystals on the fibres leading to increased osteogenic differentiation of marrow stromal cells and mineralization. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Effects of the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on mechanical properties of luting and lining glass ionomer cement

    Science.gov (United States)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-07-01

    Recently, the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into glass ionomer cements (GICs) has attracted interest due to its remineralization of teeth and its antibacterial effects. However, it should be investigated to ensure that the incorporation of CPP-ACP does not have significant adverse effects on its mechanical properties. The purpose of this study was to evaluate the effects of the addition of CPP-ACP on the mechanical properties of luting and lining GIC. The first step was to synthesize the CPP-ACP. Then the CPP-ACP at concentrations of 1%, 1.56% and 2% of CPP-ACP was added into a luting and lining GIC. GIC without CPP-ACP was used as a control group. The results revealed that the incorporation of CPP-ACP up to 1.56%(w/w) increased the flexural strength (29%), diametral tensile strength (36%) and microhardness (18%), followed by a reduction in these mechanical properties at 2%(w/w) CPP-ACP. The wear rate was significantly decreased (23%) in 1.56%(w/w) concentration of CPP-ACP and it was increased in 2%(w/w). Accordingly, the addition of 1.56%(w/w) CPP-ACP into luting and lining GIC had no adverse effect on the mechanical properties of luting and lining GIC and could be used in clinical practice.

  1. Development of a Calcium Phosphate Nanocomposite for Fast Fluorogenic Detection of Bacteria

    Directory of Open Access Journals (Sweden)

    Claudio R. Martínez

    2014-09-01

    Full Text Available Current procedures for the detection and identification of bacterial infections are laborious, time-consuming, and require a high workload and well-equipped laboratories. Therefore the work presented herein developed a simple, fast, and low cost method for bacterial detection based on hydroxyapatite nanoparticles with a nutritive mixture and the fluorogenic substrate. Calcium phosphate ceramic nanoparticles were characterized and integrated with a nutritive mixture for the early detection of bacteria by visual as well as fluorescence spectroscopy techniques. The composite was obtained by combining calcium phosphate nanoparticles (Ca:P ratio, 1.33:1 with a nutritive mixture of protein hydrolysates and carbon sources, which promote fast bacterial multiplication, and the fluorogenic substrate 4-methylumbellipheryl-β-d-glucuronide (MUG. The composite had an average particle size of 173.2 nm and did not show antibacterial activity against Gram-negative or Gram-positive bacteria. After an Escherichia coli suspension was in contact with the composite for 60–90 min, fluorescence detected under UV light or by fluorescence spectrophotometer indicated the presence of bacteria. Intense fluorescence was observed after incubation for a maximum of 90 min. Thus, this calcium phosphate nanocomposite system may be useful as a model for the development of other nanoparticle composites for detection of early bacterial adhesion.

  2. Recent advances in phosphate laser glasses for high power applications

    International Nuclear Information System (INIS)

    Campbell, J.H.

    1996-01-01

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm 3 have been made and methods for continuous melting laser glass are under development

  3. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, M; Poulsen, Søren Lundsted; Herfort, D

    2012-01-01

    M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012).......M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012)....

  4. Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART).

    Science.gov (United States)

    Molina, Gustavo Fabián; Cabral, Ricardo Juan; Mazzola, Ignacio; Lascano, Laura Brain; Frencken, Jo E

    2013-01-01

    The Atraumatic Restorative Treatment (ART) approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. To test the null-hypotheses that no difference in diametral tensile, compressive and flexural strengths exists between: (1) The EQUIA system and (2) The Chemfil Rock (encapsulated glass-ionomers; test materials) and the Fuji 9 Gold Label and the Ketac Molar Easymix (hand-mixed conventional glass-ionomers; control materials); (3) The EQUIA system and Chemfil Rock. Specimens for testing flexural (n = 240) and diametral tensile (n=80) strengths were prepared according to standardized specifications; the compressive strength (n=80) was measured using a tooth-model of a class II ART restoration. ANOVA and Tukey B tests were used to test for significant differences between dependent and independent variables. The EQUIA system and Chemfil Rock had significantly higher mean scores for all the three strength variables than the Fuji 9 Gold Label and Ketac Molar Easymix (α=0.05). The EQUIA system had significant higher mean scores for diametral tensile and flexural strengths than the Chemfil Rock (α=0.05). The two encapsulated high-viscosity glass-ionomers had significantly higher test values for diametral tensile, flexural and compressive strengths than the commonly used hand-mixed high-viscosity glass-ionomers.

  5. Electrospinning of calcium phosphate-poly(D,L-lactic acid nanofibers for sustained release of water-soluble drug and fast mineralization

    Directory of Open Access Journals (Sweden)

    Fu QW

    2016-10-01

    Full Text Available Qi-Wei Fu,1,* Yun-Peng Zi,1,* Wei Xu,1 Rong Zhou,1 Zhu-Yun Cai,1 Wei-Jie Zheng,1 Feng Chen,2 Qi-Rong Qian1 1Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Calcium phosphate-based biomaterials have been well studied in biomedical fields due to their outstanding chemical and biological properties which are similar to the inorganic constituents in bone tissue. In this study, amorphous calcium phosphate (ACP nanoparticles were prepared by a precipitation method, and used for preparation of ACP-poly(D,L-lactic acid (ACP-PLA nanofibers and water-soluble drug-containing ACP-PLA nanofibers by electrospinning. Promoting the encapsulation efficiency of water-soluble drugs in electrospun hydrophobic polymer nanofibers is a common problem due to the incompatibility between the water-soluble drug molecules and hydrophobic polymers solution. Herein, we used a native biomolecule of lecithin as a biocompatible surfactant to overcome this problem, and successfully prepared water-soluble drug-containing ACP-PLA nanofibers. The lecithin and ACP nanoparticles played important roles in stabilizing water-soluble drug in the electrospinning composite solution. The electrospun drug-containing ACP-PLA nanofibers exhibited fast mineralization in simulated body fluid. The ACP nanoparticles played the key role of seeds in the process of mineralization. Furthermore, the drug-containing ACP-PLA nanofibers exhibited sustained drug release which simultaneously occurred with the in situ mineralization in simulated body fluid. The osteoblast-like (MG63 cells with spreading filopodia were well observed on the as-prepared nanofibrous mats after culturing for 24 hours, indicating a high cytocompatibility. Due

  6. Development and testing of matrices for the encapsulation of glass and ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Wald, J.W.; Brite, D.W.; Gurwell, W.E.; Buckwalter, C.Q.; Bunnell, L.R.; Gray, W.J.; Blair, H.T.; Rusin, J.M.

    1982-02-01

    This report details the results of research on the matrix encapsulation of high level wastes at PML over the past few years. The demonstrations and tests described were designed to illustrate how the waste materials are effected when encapsulated in an inert matrix. Candidate materials evaluated for potential use as matrices for encapslation of pelletized ceramics or glass marbles were categorized into four groups: metals, glasses, ceramics, and graphite. Two processing techniques, casting and hot pressing, were investigated as the most promising methods of formation or densification of the matrices. The major results reported deal with the development aspects. However, chemical durability tests (leach tests) of the matrix materials themselves and matrix-waste form composites are also reported. Matrix waste forms can provide a low porosity, waste-free barrier resulting in increased leach protection, higher impact strength and improved thermal conductivity compared to unencapsulated glass or ceramic waste materials. Glass marbles encapsulated in a lead matrix offer the most significant improvement in waste form stability of all combinations evaluated. This form represents a readily demonstrable process that provides high thermal conductivity, mechanical shock resistance, radiation shielding and increased chemical durability through both a chemical passivation mechanism and as a physical barrier. Other durable matrix waste forms evaluated, applicable primarily to ceramic pellets, involved hot-pressed titanium or TiO 2 materials. In the processing of these forms, near 100% dense matrices were obtained. The matrix materials had excellent compatibility with the waste materials and superior potential chemical durability. Cracking of the hot-pressed ceramic matrix forms, in general, prevented the realization of their optimum properties

  7. Calcium phosphate holmium-166 ceramic to addition in bone cement: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Donanzam, Blanda A.; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.b [Universidade do Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Dept. de Engenharia Nuclear; Dalmazio, Ilza; Valente, Eduardo S., E-mail: id@cdtn.b, E-mail: valente@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Spine metastases are a common and painful complication of cancer. The treatment often consists of bone cement injection (vertebroplasty or kyphoplasty) within vertebral body for vertebrae stabilization, followed by external beam radiation therapy. Recently, researchers introduced the concept of radioactive bone cement for spine tumors therapy. Then, investigations about bioactive and radioactive materials became interesting. In this study, we present the synthesis of calcium phosphate incorporated holmium (CaP-Ho) via sol-gel technique, and its characterization by XRD, FT-IR, NA and SEM. Results showed a multiphasic bioceramic composed mainly of hydroxyapatite, {beta}-tricalcium phosphate, holmium phosphate and traces of calcium pyrophosphate. Furthermore, the nuclide Ho-166 was the major radioisotope produced. Despite that, the radioactive bioceramic CaP-{sup 166}Ho must be investigated in clinical trials to assure its efficacy and safety on spine tumors treatment (author)

  8. Calcium phosphate holmium-166 ceramic to addition in bone cement: synthesis and characterization

    International Nuclear Information System (INIS)

    Donanzam, Blanda A.; Campos, Tarcisio P.R.

    2011-01-01

    Spine metastases are a common and painful complication of cancer. The treatment often consists of bone cement injection (vertebroplasty or kyphoplasty) within vertebral body for vertebrae stabilization, followed by external beam radiation therapy. Recently, researchers introduced the concept of radioactive bone cement for spine tumors therapy. Then, investigations about bioactive and radioactive materials became interesting. In this study, we present the synthesis of calcium phosphate incorporated holmium (CaP-Ho) via sol-gel technique, and its characterization by XRD, FT-IR, NA and SEM. Results showed a multiphasic bioceramic composed mainly of hydroxyapatite, β-tricalcium phosphate, holmium phosphate and traces of calcium pyrophosphate. Furthermore, the nuclide Ho-166 was the major radioisotope produced. Despite that, the radioactive bioceramic CaP- 166 Ho must be investigated in clinical trials to assure its efficacy and safety on spine tumors treatment (author)

  9. Influence of whole-body irradiation on calcium and phosphate homeostasis in the rat

    International Nuclear Information System (INIS)

    Pento, J.T.; Kenny, A.D.

    1975-01-01

    Previous irradiation studies have revealed marked alterations in calcium metabolism. Moreover, the maintenance of calcium homeostasis with parathyroid hormone or calcium salts has been reported to reduce radiation lethality. Therefore, the present study was designed to evaluate the influence of irradiation on calcium homeostasis in the rat. Nine hundred rad of whole-body irradiation produced a significant depression of both plasma calcium and phosphate at 4 days postirradiation. This effect of irradiation was observed to be dose-dependent over a range of 600 to 1200 rad, and possibly related to irradiation-induced anorexia. The physiological significance of these observations is discussed

  10. Dissolution and storage stability of nanostructured calcium carbonates and phosphates for nutrition

    Science.gov (United States)

    Posavec, Lidija; Knijnenburg, Jesper T. N.; Hilty, Florentine M.; Krumeich, Frank; Pratsinis, Sotiris E.; Zimmermann, Michael B.

    2016-10-01

    Rapid calcium (Ca) dissolution from nanostructured Ca phosphate and carbonate (CaCO3) powders may allow them to be absorbed in much higher fraction in humans. Nanosized Ca phosphate and CaCO3 made by flame-assisted spray pyrolysis were characterized by nitrogen adsorption, X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy. As-prepared nanopowders contained both CaCO3 and CaO, but storing them under ambient conditions over 130 days resulted in a complete transformation into CaCO3, with an increase in both crystal and particle sizes. The small particle size could be stabilized against such aging by cation (Mg, Zn, Sr) and anion (P) doping, with P and Mg being most effective. Calcium phosphate nanopowders made at Ca:P ≤ 1.5 were XRD amorphous and contained γ-Ca2P2O7 with increasing hydroxyapatite content at higher Ca:P. Aging of powders with Ca:P = 1.0 and 1.5 for over 500 days gradually increased particle size (but less than for CaCO3) without a change in phase composition or crystallinity. In 0.01 M H3PO4 calcium phosphate nanopowders dissolved ≈4 times more Ca than micronsized compounds and about twice more Ca than CaCO3 nanopowders, confirming that nanosizing and/or amorphous structuring sharply increases Ca powder dissolution. Because higher Ca solubility in vitro generally leads to greater absorption in vivo, these novel FASP-made Ca nanostructured compounds may prove useful for nutrition applications, including supplementation and/or food fortification.

  11. Dissolution and storage stability of nanostructured calcium carbonates and phosphates for nutrition

    International Nuclear Information System (INIS)

    Posavec, Lidija; Knijnenburg, Jesper T. N.; Hilty, Florentine M.; Krumeich, Frank; Pratsinis, Sotiris E.; Zimmermann, Michael B.

    2016-01-01

    Rapid calcium (Ca) dissolution from nanostructured Ca phosphate and carbonate (CaCO 3 ) powders may allow them to be absorbed in much higher fraction in humans. Nanosized Ca phosphate and CaCO 3 made by flame-assisted spray pyrolysis were characterized by nitrogen adsorption, X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy. As-prepared nanopowders contained both CaCO 3 and CaO, but storing them under ambient conditions over 130 days resulted in a complete transformation into CaCO 3 , with an increase in both crystal and particle sizes. The small particle size could be stabilized against such aging by cation (Mg, Zn, Sr) and anion (P) doping, with P and Mg being most effective. Calcium phosphate nanopowders made at Ca:P ≤ 1.5 were XRD amorphous and contained γ-Ca 2 P 2 O 7 with increasing hydroxyapatite content at higher Ca:P. Aging of powders with Ca:P = 1.0 and 1.5 for over 500 days gradually increased particle size (but less than for CaCO 3 ) without a change in phase composition or crystallinity. In 0.01 M H 3 PO 4 calcium phosphate nanopowders dissolved ≈4 times more Ca than micronsized compounds and about twice more Ca than CaCO 3 nanopowders, confirming that nanosizing and/or amorphous structuring sharply increases Ca powder dissolution. Because higher Ca solubility in vitro generally leads to greater absorption in vivo, these novel FASP-made Ca nanostructured compounds may prove useful for nutrition applications, including supplementation and/or food fortification.

  12. Physical–chemical and biological behavior of an amorphous calcium phosphate thin film produced by RF-magnetron sputtering

    International Nuclear Information System (INIS)

    Santos, Euler A. dos; Moldovan, Simona; Mateescu, Mihaela; Faerber, Jacques; Acosta, Manuel; Pelletier, Hervé; Anselme, Karine; Werckmann, Jacques

    2012-01-01

    This work evaluates the thermal reactivity and the biological reactivity of an amorphous calcium phosphate thin film produced by radio frequency (RF) magnetron sputtering onto titanium substrates. The analyses showed that the sputtering conditions used in this work led to the deposition of an amorphous calcium phosphate. The thermal treatment of this amorphous coating in the presence of H 2 O and CO 2 promoted the formation of a carbonated HA crystalline coating with the entrance of CO 3 2− ions into the hydroxyl HA lattice. When immersed in culture medium, the amorphous and carbonated coatings exhibited a remarkable instability. The presence of proteins increased the dissolution process, which was confirmed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Moreover, the carbonated HA coating induced precipitation independently of the presence of proteins under dynamic conditions. Despite this surface instability, this reactive calcium phosphate significantly improved the cellular behavior. The cell proliferation was higher on the Ticp than on the calcium phosphate coatings, but the two coatings increased cellular spreading and stress fiber formation. In this sense, the presence of reactive calcium phosphate coatings can stimulate cellular behavior. - Highlights: ► Functionalization of Ti with reactive CaP thin film by RF-magnetron sputtering. ► De-hydroxylation facilitating the insertion of CO 3 2− into the HA lattice. ► High surface reactivity in the presence of culture medium. ► Cell behavior improved by the presence of reactive films.

  13. Enhanced Luminescent Properties in Tm3+/Dy3+ Co-doped Transparent Phosphate Glass Ceramic

    OpenAIRE

    Yao L. Q.; Chen G. H.; Zhong H. J.; Cui S. C.; Li F.; Gan J.Y.

    2016-01-01

    Novel Tm3+/Dy3+ co-doped phosphate glass and glass ceramic samples for white light emitting diodes were prepared by melt quenching method. Under 353 nm excitation, the colors of the luminescence of the glass and glass ceramic samples are white. The CIE chromaticity coordinates (0.338, 0.328) of the emission from the glass ceramic is close to the standard white-light illumination (0.333, 0.333). Compared to the glass, the fluorescence intensity in the glass ceramic is greatly enhanced.

  14. Ph-activated nano-amorphous calcium phosphate-based cement to reduce dental enamel demineralization.

    Science.gov (United States)

    Melo, Mary A S; Weir, Michael D; Passos, Vanara F; Powers, Michael; Xu, Hockin H K

    2017-12-01

    Enamel demineralization is destructive, esthetically compromised, and costly complications for orthodontic patients. Nano-sized amorphous calcium phosphate (NACP) has been explored to address this challenge. The 20% NACP-loaded ortho-cement notably exhibited favorable behavior on reducing demineralization of enamel around brackets in a caries model designed to simulate the carious attack. The 20% NACP-loaded ortho-cement markedly promotes higher calcium and phosphate release at a low pH, and the mineral loss was almost two fold lower and carious lesion depth decreased the by 1/3. This novel approach is promising co-adjuvant route for prevention of dental caries dissemination in millions of patients under orthodontic treatment.

  15. calcium sulphate hemihydrate and bioactive glass composites for ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 41; Issue 2. In vitro bioactivity evaluation of α -calcium sulphate hemihydrate and bioactive glass composites for their potential use in bone regeneration. YANYAN ZHENG CHENGDONG XIONG DUJUAN ZHANG LIFANG ZHANG. Volume 41 Issue 2 April 2018 Article ID ...

  16. Structural and spectroscopic characteristics of Eu3+-doped tungsten phosphate glasses

    Science.gov (United States)

    Dousti, M. Reza; Poirier, Gael Yves; de Camargo, Andrea Simone Stucchi

    2015-07-01

    Tungsten based phosphate glasses are interesting non-crystalline materials, commonly known for photochromic and electrochromic effects, but also promising hosts for luminescent trivalent rare earth ions. Despite very few reports in the literature, association of the host´s functionalities with the efficient emissions of the dopant ions in the visible and near-infrared spectra could lead to novel applications. This work reports the preparation and characterization of glasses with the new composition 4(Sb2O3)96-x(50WO3 50NaPO3)xEu2O3 where x = 0, 0.1, 0.25, 0.5 and 1.0 mol%, obtained by the melt quenching technique. The glasses present large density (∼4.6 g cm-3), high glass transition temperature (∼480 °C) and high thermal stability against crystallization. Upon excitation at 464 nm, the characteristic emissions of Eu3+ ions in the red spectral region are observed with high intensity. The Judd-Ofelt intensity parameters Ω2 = 6.86 × 10-20, Ω4 = 3.22 × 10-20 and Ω6 = 8.2 × 10-20 cm2 were calculated from the emission spectra and found to be higher than those reported for other phosphate glass compositions. An average excited state lifetime value of 1.2 ms, was determined by fitting the luminescence decay curves with single exponential functions and it is comparable or higher than those of other oxide glasses.

  17. Synthesis of some calcium phosphate crystals using the useful biomass for immobilization of microorganisms

    International Nuclear Information System (INIS)

    Kohiruimaki, T

    2011-01-01

    Three sources of biomass generated by primary industry were used as the raw material for the synthesis of calcium phosphate crystals. Phosphoric acid was extracted from burned rice chaff using a 30% nitric acid solution, while scallop shells and gypsum of plasterboard were used as calcium sources. The calcium phosphate crystals were synthesized by a method involving homogeneous precipitation, and the relationship between the composition and shape of the crystals and the pH at the time of the precipitation was investigated. Monetite crystals in a petal form with a diameter ranging from 0.1 to 2 μm were precipitated at pH 2.0, while granular apatite crystals with a mean diameter of 1 μm were precipitated at pH 6.0. We also investigated the ability of the synthesized calcium phosphate crystals to immobilize lactic acid bacteria for practical use in industrial bioreactor. It was determined that monetite crystals with a diameter of 2 μm had the highest ability to fix lactic acid bacteria. The population of lactic acid bacteria was estimated to exceed 1,300 bacteria per crystal surface of 50 μm 2 suggesting that these crystals may be of practical use in industrial fermenters.

  18. Association of salivary calcium, phosphate, pH and flow rate on oral health: A study on 90 subjects.

    Science.gov (United States)

    Fiyaz, Mohamed; Ramesh, Amitha; Ramalingam, Karthikeyan; Thomas, Biju; Shetty, Sucheta; Prakash, Prashanth

    2013-07-01

    This study was designed to compare inorganic salivary calcium, phosphate, flow rate and pH of un-stimulated saliva and oral hygiene of healthy subjects, patients with periodontitis and dental caries and to correlate salivary calcium level with the number of intact teeth. The present study consisted of 90 patients aged between 18 and 55 years and were divided into three groups, periodontitis, dental caries and controls. Oral hygiene index-simplified, probing pocket depth, clinical attachment level and number of teeth present, teeth with active carious lesions were recorded. Salivary flow rate and pH was recorded and subjected to biochemical investigation. Estimation of inorganic calcium and phosphate was performed by colorimetric method. Results showed statistically significant increase in salivary inorganic calcium and phosphate levels, poor oral hygiene status, pH and salivary flow rate in patients with periodontitis when compared with dental caries group and controls. Individuals who have increased salivary inorganic calcium, phosphate, pH, flow rate and maintain poor oral hygiene could be at a higher risk for developing periodontitis and may have less dental caries and more number of intact teeth.

  19. Treatment of cows with parturient paresis using intravenous calcium and oral sodium phosphate.

    Science.gov (United States)

    Braun, U; Grob, D; Hässig, M

    2016-09-01

    The goal of this study was to investigate whether intravenous infusion of 1000 ml 40% calcium borogluconate combined with the oral adminstration of 500 g sodium phosphate leads to a better cure rate and longer-lasting normocalcaemia and normophosphataemia than standard intravenous treatment with 500 ml calcium borogluconate in cows with parturient paresis. Forty recumbent cows with hypocalcaemia and hypophosphataemia were alternately allocated to group A or B. Cows of both groups were treated intravenously with 500 ml 40% calcium borogluconate, and cows of group B additionally received another 500 ml calcium borogluconate via slow intravenous infusion and 500 g sodium phosphate administered via an orogastric tube. Thirty-two cows stood within 8 hours after the start of treatment and 8 did not; of the 32 cows that stood, 18 belonged to group A and 14 to group B (90% of group A vs. 70% of group B; P = 0.23). Seven cows relapsed; of these and the 8 that did not respond to initial treatment, 10 stood after two standard intravenous treatments. Downer cow syndrome occurred in 5 cows, 3 of which recovered after aggressive therapy. The overall cure rate did not differ significantly between groups A and B. Twelve (60%) cows of group A and 14 (70%) cows of group B were cured after a single treatment and of the remaining 14, 11 were cured after two or more treatments. Two downer cows were euthanized and one other died of heart failure during treatment. Serum calcium concentrations during the first eight hours after the start of treatment were significantly higher in group B than in group A, and oral sodium phosphate caused a significant and lasting increase in inorganic phosphate. More cows of group B than group A were cured after a single treatment (P > 0.05). These findings, although not statistically significant, are promising and should be verified using a larger number of cows.

  20. The Transformation of Calcium Phosphate Bioceramics in Vivo

    Institute of Scientific and Technical Information of China (English)

    DAI Hong-lian; CAO Xian-ying; LI Xiao-xi; YAN Yu-hua; LI Shi-pu

    2003-01-01

    To study the transformation process of calcium phosphate bioceramic in vivo,biodegradable porous β-tricalcium phosphate ceramics (β-TCP) were used in this experiment. The materials (φ5×8mm) were implanted in the tibia of rabbits. The β-TCP ceramics with bone tissue were retrieved and treated for histology, and then observed by using a scanning electron microscope (SEM) and an electron probe X-ray microanalyzer (EMPA) every month. The results show that β-TCP ceramics bond to bone directly,new bones are forming and maturing with materials continuous degrading,and the materials are nearly replaced by the formed bone finally.Parts of the materials were degraded,absorpted and recrystallized,the others dispersped on the cancellous bone and the Haversian lamella with an irregular arrangement incorporating in bone formation directly by remodeling structure.

  1. Comprehensive thermal and structural characterization of antimony-phosphate glass

    Science.gov (United States)

    Moustafa, S. Y.; Sahar, M. R.; Ghoshal, S. K.

    For the first time, we prepare new ternary glass systems of composition (95-x)Sb2O3-xP2O5-5MgO, where x = 45, 40, 35 mol%; (85-x)Sb2O3-xP2O5-15MgO, where x = 55, 35, 25 mol%; (75-x)Sb2O3-xP2O5-25MgO, where x = 45, 35, 25 mol%; and 60Sb2O3-(40-x)P2O5-xMgO, where x = 10, 20 mol% via melt-quenching method. Synthesized glasses are characterized using XRD, FESEM, EDX, and TG/DTA measurements. The influence of varying modifier concentrations on their thermal properties is evaluated. The XRD patterns confirmed the amorphous nature of samples. SEM images demonstrated interesting phase formation with ribbons-like texture. Five crystalline phases are evidenced in the ternary diagram which are antimony phosphate and antimony orthophosphate as major phases as well as magnesium phosphate, magnesium cyclo-tetraphosphate and cervantite as minor phases. EDX spectra detected the right elemental traces. Detailed thermal analysis of these glasses revealed their high-molecular polymer character for Sb2O3 content greater than 50 mol%. Three different glass transition temperatures are achieved around 276, 380-381 and 422-470 °C depending on the composition. Furthermore, the solidus and liquidus temperature are found to decrease with increasing Sb2O3 and increases for MgO contents till 15 mol% and then decrease, where the lowest recorded solidus temperature is 426 °C. This observation may open up new research avenues for antimony based ternary glasses and an exploitation of the derived results for optoelectronics applications, photonic devices and non-linear optical devices.

  2. Formation of calcium phosphates by vapour diffusion in highly concentrated ionic micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Iafisco, M. [Alma Mater Studiorum Universita di Bologna, Dipartimento di Chimica ' ' G. Ciamician' ' , Via Selmi 2, 40126 Bologna (Italy); Universita del Piemonte Orientale, Dipartimento di Scienze Mediche, Via Solaroli 4, 28100 Novara (Italy); Delgado-Lopez, J.M.; Gomez-Morales, J.; Hernandez-Hernandez, M.A.; Rodriguez-Ruiz, I. [Laboratorio de Estudios Cristalograficos, IACT CSIC-UGR, Edificio Lopez Neyra, Avenida del Conocimiento, s/n 18100 Armilla (Spain); Roveri, N. [Alma Mater Studiorum Universita di Bologna, Dipartimento di Chimica ' ' G. Ciamician' ' , Via Selmi 2, 40126 Bologna (Italy)

    2011-08-15

    In this work we have used the sitting drop vapour diffusion technique, employing the ''crystallization mushroom '' to analyze the evolution of calcium phosphate crystallization in micro-droplets containing high initial concentrations of Ca{sup 2+} and HPO{sub 4}{sup 2-}. The decomposition of NH{sub 4}HCO{sub 3} solution produces vapours of NH{sub 3} and CO{sub 2} which diffuse through the droplets containing an aqueous solution of Ca(CH{sub 3}COO){sub 2} and (NH{sub 4}){sub 2}HPO{sub 4}. The result is the increase of pH by means of the diffusion of NH{sub 3} gas and the doping of the calcium phosphate with CO{sub 3}{sup 2-} ions by means of the diffusion of CO{sub 2} gas. The pH of the crystallization process is monitored and the precipitates at different times are characterized by XRD, FTIR, TGA, SEM and TEM techniques. The slow increase of pH and the high concentration of Ca{sup 2+} and HPO{sub 4}{sup 2-} in the droplets induce the crystallization of three calcium phosphate phases: dicalcium phosphate dihydrate (DCPD, brushite), octacalcium phosphate (OCP) and carbonate-hydroxyapatite (HA). The amount of HA nanocrystals with needle-like morphology and dimensions of about 100 nm, closely resembling the inorganic phase of bones, gradually increases, with the precipitation time up to 7 days, whereas the amount of DCPD, growing along the b axis, increases up to 3 days. Then, DCDP crystals start to hydrolyze yielding OCP nanoribbons and HA nanocrystals. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Mechanisms of postradiation transformations in alkaline-phosphate glasses activated by copper

    International Nuclear Information System (INIS)

    Vil'chinskaya, N.N.; Dmitryuk, A.V.; Ignat'ev, E.G.; Karapetyan, G.O.; Petrovskij, G.T.

    1984-01-01

    Lithium aluminophosphate glasses activated by copper served as the object under investigation. Copper content varied from 0 up to 0.13 mass.%. It is shown that pole redistribution among PO 4 2- and Cu(2) centers takes place in alkaline -phosphate glasses activated by Cu(1). This process prevails for copper content of above 0.1%. Therefore the possibility appears to evaluate the quantum yield of colour center formation

  4. Mechanisms of postradiation transformations in alkaline-phosphate glasses activated by copper

    Energy Technology Data Exchange (ETDEWEB)

    Vil' chinskaya, N.N.; Dmitryuk, A.V.; Ignat' ev, E.G.; Karapetyan, G.O.; Petrovskij, G.T. (Gosudarstvennyj Opticheskij Inst., Leningrad (USSR))

    1984-01-01

    Lithium aluminophosphate glasses activated by copper served as the object under investigation. Copper content varied from 0 up to 0.13 mass.%. It is shown that pole redistribution among PO/sub 4//sup 2 -/ and Cu(2) centers takes place in alkaline -phosphate glasses activated by Cu(1). This process prevails for copper content of above 0.1%. Therefore the possibility appears to evaluate the quantum yield of colour center formation.

  5. Properties of calcium silicate-monobasic calcium phosphate materials for endodontics containing tantalum pentoxide and zirconium oxide.

    Science.gov (United States)

    Zamparini, Fausto; Siboni, Francesco; Prati, Carlo; Taddei, Paola; Gandolfi, Maria Giovanna

    2018-05-08

    The aim of the study was to evaluate chemical-physical properties and apatite-forming ability of three premixed calcium silicate materials containing monobasic calcium phosphate (CaH 4 P 2 O 8 ) bioceramic, tantalum pentoxide and zirconium oxide, recently marketed for endodontics (TotalFill BC-Sealer, BC-RRM-Paste, BC-RRM-Putty). Microchemical and micromorphological analyses, radiopacity, initial and final setting times, calcium release and alkalising activity were tested. The nucleation of calcium phosphates (CaPs) and/or apatite after 28 days ageing was evaluated by ESEM-EDX and micro-Raman spectroscopy. BC-Sealer and BC-RRM-Paste showed similar initial (23 h), prolonged final (52 h) setting times and good radiopacity (> 7 mm Al); BC-RRM-Putty showed fast initial (2 h) and final setting times (27 h) and excellent radiopacity (> 9 mm Al). All materials induced a marked alkalisation (pH 11-12) up to 28 days and showed the release of calcium ions throughout the entire test period (cumulative calcium release 641-806 ppm). After 28 days ageing, a well-distributed mineral layer was present on all samples surface; EDX demonstrated relevant calcium and phosphorous peaks. B-type carbonated apatite and calcite deposits were identified by micro-Raman spectroscopy on all the 28-day-aged samples; the deposit thickness was higher on BC-RRM-Paste and BC-RRM-Putty, in agreement with calcium release data. These materials met the required chemical and physical standards and released biologically relevant ions. The CaSi-CaH 4 P 2 O 8 system present in the materials provided Ca and OH ions release with marked abilities to nucleate a layer of B-type carbonated apatite favoured/accelerated by the bioceramic presence. The ability to nucleate apatite may lead many clinical advantages: In orthograde endodontics, it may improve the sealing ability by the deposition of CaPs at the material-root dentine interface, and in endodontic surgery, it could promote bone and

  6. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering.

    Science.gov (United States)

    Wang, Ping; Song, Yang; Weir, Michael D; Sun, Jinyu; Zhao, Liang; Simon, Carl G; Xu, Hockin H K

    2016-02-01

    Calcium phosphate cements (CPCs) are promising for dental and craniofacial repairs. The objectives of this study were to: (1) develop an injectable cell delivery system based on encapsulation of induced pluripotent stem cell-derived mesenchymal stem cells (iPSMSCs) in microbeads; (2) develop a novel tissue engineered construct by dispersing iPSMSC-microbeads in CPC to investigate bone regeneration in an animal model for the first time. iPSMSCs were pre-osteoinduced for 2 weeks (OS-iPSMSCs), or transduced with bone morphogenetic protein-2 (BMP2-iPSMSCs). Cells were encapsulated in fast-degradable alginate microbeads. Microbeads were mixed with CPC paste and filled into cranial defects in nude rats. Four groups were tested: (1) CPC-microbeads without cells (CPC control); (2) CPC-microbeads-iPSMSCs (CPC-iPSMSCs); (3) CPC-microbeads-OS-iPSMSCs (CPC-OS-iPSMSCs); (4) CPC-microbeads-BMP2-iPSMSCs (CPC-BMP2-iPSMSCs). Cells maintained good viability inside microbeads after injection. The microbeads were able to release the cells which had more than 10-fold increase in live cell density from 1 to 14 days. The cells exhibited up-regulation of osteogenic markers and deposition of minerals. In vivo, new bone area fraction (mean±SD; n=5) for CPC-iPSMSCs group was (22.5±7.6)%. New bone area fractions were (38.9±18.4)% and (44.7±22.8)% for CPC-OS-iPSMSCs group and CPC-BMP2-iPSMSCs group, respectively, 2-3 times the (15.6±11.2)% in CPC control at 12 weeks (pdental and craniofacial bone regenerations. Published by Elsevier Ltd.

  7. Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior

    Directory of Open Access Journals (Sweden)

    M Bongio

    2011-12-01

    Full Text Available The ultimate goal of this work was to develop a biocompatible and biomimetic in situ crosslinkable hydrogel scaffold with an instructive capacity for bone regenerative treatment. To this end, synthetic hydrogels were functionalized with two key components of the extracellular matrix of native bone tissue, i.e. the three-amino acid peptide sequence RGD (which is the principal integrin-binding domain responsible for cell adhesion and survival of anchorage-dependent cells and calcium phosphate (CaP nanoparticles in the form of hydroxyapatite (which are similar to the inorganic phase of bone tissue. Rat bone marrow osteoblast-like cells (OBLCs were encapsulated in four different biomaterials (plain oligo(poly(ethylene glycol fumarate (OPF, RGD-modified OPF, OPF enriched with CaP nanoparticles and RGD-modified OPF enriched with CaP nanoparticles and cell survival, cell spreading, proliferation and mineralized matrix formation were determined via cell viability assay, histology and biochemical analysis for alkaline phosphatase activity and calcium. This study showed that RGD peptide sequences promoted cell spreading in OPF hydrogels and hence play a crucial role in cell survival during the early stage of culture, whereas CaP nanoparticles significantly enhanced cell-mediated hydrogel mineralization. Although cell spreading and proliferation activity were inhibited, the combined effect of RGD peptide sequences and CaP nanoparticles within OPF hydrogel systems elicited a better biological response than that of the individual components. Specifically, both a sustained cell viability and mineralized matrix production mediated by encapsulated OBLCs were observed within these novel biomimetic composite systems.

  8. Nano-sized calcium phosphate (CaP) carriers for non-viral gene deilvery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghyun, E-mail: dhlee@cau.ac.kr [Department of Biomedical Engineering, Division of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Upadhye, Kalpesh [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Mechanical Engineering and Materials Sceince, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer Nanostructured calcium phosphates (NanoCaPs): comprehensive review. Black-Right-Pointing-Pointer Non viral gene delivery mechanisms: detailed mechanisms are outlined. Black-Right-Pointing-Pointer Barriers to non-viral gene delivery: detailed barriers are discussed. - Abstract: Gene therapy has garnered much interest due to the potential for curing multiple inherited and/or increases in the acquired diseases. As a result, there has been intense activity from multiple research groups for developing effective delivery methods and carriers, which is a critical step in advancing gene delivery technologies. In order for the carriers to effectively deliver the genetic payloads, multiple extracellular and intracellular barriers need to be overcome. Although overcoming these challenges to improve the effectiveness is critical, the development of safe gene delivery agents is even more vital to assure its use in clinical applications. The development of safe and effective strategies has therefore been a major challenge impeding gene therapy progress. In this regard, calcium phosphate (CaP) based nano-particles has been considered as one of the candidate non-viral gene delivery vehicles, but has been plagued by inconsistent and low transfection efficiencies limiting its progress. There has been major research effort to improve the consistency and effectiveness of CaP based vectors. Currently, it is therefore thought that by controlling the various synthesis factors such as Ca/P ratio, mode of mixing, and type of calcium phosphate phase, such variability and inefficiency could be modulated. This review attempts to provide a comprehensive analysis of the current research activity in the development of CaP based ceramic and polymer-ceramic hybrid systems for non-viral gene delivery. Preliminary transfection results of hydroxyapatite (HA or NanoCaPs), amorphous calcium phosphate (ACP) and brushite phases are also compared to assess the

  9. Injectable TEMPO-oxidized nanofibrillated cellulose/biphasic calcium phosphate hydrogel for bone regeneration.

    Science.gov (United States)

    Safwat, Engie; Hassan, Mohammad L; Saniour, Sayed; Zaki, Dalia Yehia; Eldeftar, Mervat; Saba, Dalia; Zazou, Mohamed

    2018-05-01

    Nanofibrillated cellulose, obtained from rice straw agricultural wastes was used as a substrate for the preparation of a new injectable and mineralized hydrogel for bone regeneration. Tetramethyl pyridine oxyl (TEMPO) oxidized nanofibrillated cellulose, was mineralized through the incorporation of a prepared and characterized biphasic calcium phosphate at a fixed ratio of 50 wt%. The TEMPO-oxidized rice straw nanofibrillated cellulose was characterized using transmission electron microscopy, Fourier transform infrared, and carboxylic content determination. The injectability and viscosity of the prepared hydrogel were evaluated using universal testing machine and rheometer testing, respectively. Cytotoxicity and alkaline phosphatase level tests on osteoblast like-cells for in vitro assessment of the biocompatibility were investigated. Results revealed that the isolated rice straw nanofibrillated cellulose is a nanocomposite of the cellulose nanofibers and silica nanoparticles. Rheological properties of the tested materials are suitable for use as injectable material and of nontoxic effect on osteoblast-like cells, as revealed by the positive alkaline phosphate assay. However, nanofibrillated cellulose/ biphasic calcium phosphate hydrogel showed higher cytotoxicity and lower bioactivity test results when compared to that of nanofibrillated cellulose.

  10. Dissolution and storage stability of nanostructured calcium carbonates and phosphates for nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Posavec, Lidija; Knijnenburg, Jesper T. N., E-mail: jesper.knijnenburg@alumni.ethz.ch; Hilty, Florentine M. [ETH Zurich, Human Nutrition Laboratory, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology (Switzerland); Krumeich, Frank; Pratsinis, Sotiris E. [ETH Zurich, Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering (Switzerland); Zimmermann, Michael B. [ETH Zurich, Human Nutrition Laboratory, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology (Switzerland)

    2016-10-15

    Rapid calcium (Ca) dissolution from nanostructured Ca phosphate and carbonate (CaCO{sub 3}) powders may allow them to be absorbed in much higher fraction in humans. Nanosized Ca phosphate and CaCO{sub 3} made by flame-assisted spray pyrolysis were characterized by nitrogen adsorption, X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy. As-prepared nanopowders contained both CaCO{sub 3} and CaO, but storing them under ambient conditions over 130 days resulted in a complete transformation into CaCO{sub 3}, with an increase in both crystal and particle sizes. The small particle size could be stabilized against such aging by cation (Mg, Zn, Sr) and anion (P) doping, with P and Mg being most effective. Calcium phosphate nanopowders made at Ca:P ≤ 1.5 were XRD amorphous and contained γ-Ca{sub 2}P{sub 2}O{sub 7} with increasing hydroxyapatite content at higher Ca:P. Aging of powders with Ca:P = 1.0 and 1.5 for over 500 days gradually increased particle size (but less than for CaCO{sub 3}) without a change in phase composition or crystallinity. In 0.01 M H{sub 3}PO{sub 4} calcium phosphate nanopowders dissolved ≈4 times more Ca than micronsized compounds and about twice more Ca than CaCO{sub 3} nanopowders, confirming that nanosizing and/or amorphous structuring sharply increases Ca powder dissolution. Because higher Ca solubility in vitro generally leads to greater absorption in vivo, these novel FASP-made Ca nanostructured compounds may prove useful for nutrition applications, including supplementation and/or food fortification.

  11. Comparative investigation on the spectroscopic properties of Pr³⁺-doped boro-phosphate, boro-germo-silicate and tellurite glasses.

    Science.gov (United States)

    Zhang, Liaolin; Dong, Guoping; Peng, Mingying; Qiu, Jianrong

    2012-07-01

    We report on the spectroscopic properties of Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses. The stimulated absorption and emission cross sections were estimated. Only one emission at 596 nm and 605 nm is observed in Pr(3+)-doped boro-phosphate and boro-germo-silicate glasses, respectively, while three emissions at 605 nm, 612 nm and 645 nm are observed in Pr(3+)-doped tellurite glass when excited at 467 nm. The fluorescence lifetime at 600 nm in Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses is 137 μs, 73 μs and 51 μs, respectively. The emissions from Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses show different decay behaviors and can be well explained by multiphonon relaxation theory. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Effects of Nanodiamond Abrasive Friability in Experimental MR Fluids with Phosphate Laser Glass LHG-8 and Other Optical Glasses

    Energy Technology Data Exchange (ETDEWEB)

    DeGroote, J.E.; Marino, A.E.; Wilson, J.P.; Spencer, K.E.; Jacobs, S.D.

    2005-09-22

    Research is currently being conducted to better understand the role that nanodiamond abrasives play in the removal process of Magnetorheological Finishing (MRF). The following presents removal rate data for a set of six optical glasses that were spotted (not polished out) with four different MR fluids, as well as texturing/smoothing data for phosphate laser glass LHG-8.

  13. The effect of calcium phosphate nanoparticles on hormone production and apoptosis in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Gao Li

    2010-04-01

    Full Text Available Abstract Objectives Although many nanomaterials are being used in academia, industry and daily life, there is little understanding about the effects of nanoparticles on the reproductive health of vertebral animals, including human beings. An experimental study was therefore performed here to explore the effect of calcium phosphate nanoparticles on both steroid hormone production and apoptosis in human ovarian granulosa cells. Methods Calcium phosphate nanoparticles uptaking was evaluated by transmission electron microscopy (TEM. The cell cycle was assessed with propidium iodide-stained cells (distribution of cells in G0/G1, S, and G2/M phases by flow cytometry. The pattern of cell death (necrosis and apoptosis was analyzed by flow cytometry with annexin V-FITC/PI staining. The expression of mRNAs encoding P450scc, P450arom and StAR were determined by RT-PCR. Progesterone and estradiol levels were measured by radioimmunoassay. Results TEM results confirmed that calcium phosphate nanoparticles could enter into granulosa cells, and distributed in the membranate compartments, including lysosome and mitochondria and intracellular vesicles. The increased percentage of cells in S phase when cultured with nanoparticles indicated that there was an arrest at the checkpoint from phase S-to-G2/M (from 6.28 +/- 1.55% to 11.18 +/- 1.73%, p Conclusion Calcium phosphate nanoparticles interfered with cell cycle of cultured human ovarian granulosa cells thus increasing cell apoptosis. This pilot study suggested that effects of nanoparticles on ovarian function should be extensively investigated.

  14. Co-crystallization of cholesterol and calcium phosphate as related to atherosclerosis

    Science.gov (United States)

    Hirsch, Danielle; Azoury, Reuven; Sarig, Sara

    1990-09-01

    Calcification of atherosclerotic plaques occurs very frequently and aggravates the disease. In biological systems, epitaxial relationships between crystal structures may be important in nucleating the deposit of a solid phase. The biologically preferred calcium phosphate species, apatite, and cholesterol crystal have structurally compatible crystallographic faces which allow epitaxial growth of one crystal upon another. The present study describes a new approach to explore, in vitro, the crystallization processes of calcium phosphate (CaP) with cholesterol (CS) and cholestanol (CN) which are related to atherosclerosis. Aqueous solutions containing calcium and phosphate ions or CaP crystals as hydroxyapatite were added into saturated ethanolic solutions of CS or CS and 10% CN. After precipitation, crystals were collected and analyzed by nuclear magnetic resonance (NMR), infra-red (IR), X-ray, scanning electron microscope (SEM-LINK), differential scanning calorimeter (DSC) and atomic absorption. The principal result is the well-formed crystals precipitation when an aqueous solution and CaP seed crystals were added to saturated solutions of CS and 10% CN. Cholesterol-cholestanol dihydrate (CC2W) crystals precipitated in the presence of CaP seeds were compared to the CC2W crystals obtained without the mineral compound. The results of this comparison indicate a special link between crystals of CaP and CC2W, and support the epitaxial relationship between the two kinds of crystals. The potential of CC2W crystals to be precipitated by CaP seed crystals prove likewise the possible significant role of the cholestanol metabolite in the process of cholesterol crystallization and calcification in the arteries.

  15. Phosphate-based glasses: Prediction of acoustical properties

    Science.gov (United States)

    El-Moneim, Amin Abd

    2016-04-01

    In this work, a comprehensive study has been carried out to predict the composition dependence of bulk modulus and ultrasonic attenuation coefficient in the phosphate-based glass systems PbO-P2O5, Li2O-TeO2-B2O3-P2O5, TiO2-Na2O-CaO-P2O5 and Cr2O3-doped Na2O-ZnO-P2O5 at room temperature. The prediction is based on (i) Makishima-Mackenzie theory, which correlates the bulk modulus with packing density and dissociation energy per unit volume, and (ii) Our recently presented semi-empirical formulas, which correlate the ultrasonic attenuation coefficient with the oxygen density, mean atomic ring size, first-order stretching force constant and experimental bulk modulus. Results revealed that our recently presented semi-empirical formulas can be applied successfully to predict changes of ultrasonic attenuation coefficient in binary PbO-P2O5 glasses at 10 MHz frequency and in quaternary Li2O-TeO2-B2O3-P2O5, TiO2-Na2O-CaO-P2O5 and Cr2O3-Na2O-ZnO-P2O5 glasses at 5 MHz frequency. Also, Makishima-Mackenzie theory appears to be valid for the studied glasses if the effect of the basic structural units that present in the glass network is taken into account.

  16. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Dolder, J. van den; Yang, F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and

  17. Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review

    Directory of Open Access Journals (Sweden)

    Nadia Giovanna Boetti

    2017-12-01

    Full Text Available In recent years, the exploitation of compact laser sources and amplifiers in fiber form has found extensive applications in industrial and scientific fields. The fiber format offers compactness, high beam quality through single-mode regime and excellent heat dissipation, thus leading to high laser reliability and long-term stability. The realization of devices based on this technology requires an active medium with high optical gain over a short length to increase efficiency while mitigating nonlinear optical effects. Multicomponent phosphate glasses meet these requirements thanks to the high solubility of rare-earth ions in their glass matrix, alongside with high emission cross-sections, chemical stability and high optical damage threshold. In this paper, we review recent advances in the field thanks to the combination of highly-doped phosphate glasses and innovative fiber drawing techniques. We also present the main performance achievements and outlook both in continuous wave (CW and pulsed mode regimes.

  18. Synthesis and characterization of porous calcium phosphate; Sintesis y caracterizacion del fosfato de calcio poroso

    Energy Technology Data Exchange (ETDEWEB)

    Granados C, F.; Serrano G, J.; Bonifacio M, J. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: fgc@nuclear.inin.mx

    2007-07-01

    The porous calcium phosphate was prepared by the continuous precipitation method using Ca(NO{sub 3}){sub 2}.4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} salts. The synthesized material was structurally and superficially characterized using the XRD, BET, IR TGA and SEM techniques. The obtained inorganic material was identified as calcium phosphate that presents a great specific area for what can be efficiently used as adsorbent material for adsorption studies in the radioactive wastes treatment present in aqueous solution. (Author)

  19. The antimicrobial activity of as-prepared silver-loaded phosphate glasses and zirconium phosphate

    International Nuclear Information System (INIS)

    Jing, Wang; Jiang, Ji Zhi; Yang, Yang; Yan, Zhao Chun; Yan, Wang Xiao; He, Shui Zhong

    2016-01-01

    The antimicrobial activities of silver-loaded zirconium phosphate (JDG) and silver-loaded phosphate glasses (ZZB) against Escherichia coli were studied. Although the silver content in JDG was higher than that in ZZB, ZZB suspensions showed better antimicrobial property than JDG suspensions, especially at low concentrations. The antimicrobial activity was analyzed using minimum inhibitory concentrations, bacterial inhibition ring tests, and detection of silver ions in the suspensions. Furthermore, the amounts of silver ions in suspensions with/without bacterial cells were analyzed. Results revealed that only a portion of released silver ions could be adsorbed by E. coli cells, which are critical to cell death. The damaged microstructures of E. coli cells observed by transmission electron microscopy may further prove that the adsorbed silver ions play an important role in the antimicrobial process.

  20. The fabrication of nanocomposites via calcium phosphate formation on gelatin–chitosan network and the gelatin influence on the properties of biphasic composites

    International Nuclear Information System (INIS)

    Babaei, Zahra; Jahanshahi, Mohsen; Rabiee, Sayed Mahmood

    2013-01-01

    A novel biodegradable polymer–ceramic nanocomposite which consisted of gelatin (Gel), chitosan (CS), and calcium phosphate (CaP) nanoparticles was prepared based on in situ preparation method. The fabricated biocomposites were characterized by FTIR, X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as scanning electron microscope with X-ray elemental analysis (SEM-EDX). The characterization results confirmed that the crystalline calcium phosphate nanoparticles were mineralized in polymeric matrix and the interaction between Ca2+ in calcium phosphate and functional groups in polymers molecular chains was formed. XRD result showed that in addition to hydroxyapatite (HA), Brushite (BR) and tricalcium phosphate (β-TCP) particles also were formed due to lack of complete penetration of the basic solution into the polymeric matrix. However, SEM image indicated that the polymeric matrix has the controlling role in the particle size of calcium phosphate. The size of particles in three component composites was about 100 nm while in two component composites proved to be more in μm size. TEM observation supported SEM results and showed that the three component composites have calcium phosphate nanoparticles. The elastic modulus and compressive strength of the composites were also improved by the employment of gelatin and chitosan together, which can make them more beneficial for surgical applications. - Highlights: ► A new type of calcium phosphate nanocomposites consisted chitosan and gelatin as polymeric matrix was obtained via in situ precipitation method. ► The formed particles into the polymeric matrix are hydroxyapatite, Brushite and β-tricalcium phosphate. ► The polymer concentration is a predominant factor for inhibiting nucleation and growth of calcium phosphate particles as the particles size was also decreased by increasing the amount of polymeric phase. ► The nano particles formed in three component composites and micro particles

  1. Assessment of salivary calcium, phosphate, magnesium, pH, and flow rate in healthy subjects, periodontitis, and dental caries.

    Science.gov (United States)

    Rajesh, K S; Zareena; Hegde, Shashikanth; Arun Kumar, M S

    2015-01-01

    This study was conducted to estimate and compare inorganic salivary calcium, phosphate, magnesium, salivary flow rate, and pH of unstimulated saliva and oral hygiene status of healthy subjects, subjects with periodontitis and dental caries, and to correlate salivary calcium level with number of intact teeth. The study population consisted of 48 systemically healthy subjects in the age group of 18-55 years, which was further divided into three groups: healthy, periodontitis, and dental caries. Oral hygiene index-simplified, probing pocket depth, clinical attachment level, the number of intact teeth, and active carious lesions were recorded. Estimation of inorganic salivary calcium, phosphate, and magnesium was performed spectrophotometrically using Vitros 5.1 FS. Statistical analysis was performed using the one-way analysis of variance test at 5% significance level. There was a statistically significant increase in inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene status in periodontitis group compared to dental caries and healthy group. Subjects with increased inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene are at a higher risk of developing periodontitis. Since there is increased remineralization potential, these subjects have more number of intact teeth compared to the dental caries group.

  2. Assessment of salivary calcium, phosphate, magnesium, pH, and flow rate in healthy subjects, periodontitis, and dental caries

    Directory of Open Access Journals (Sweden)

    K S Rajesh

    2015-01-01

    Full Text Available Aim: This study was conducted to estimate and compare inorganic salivary calcium, phosphate, magnesium, salivary flow rate, and pH of unstimulated saliva and oral hygiene status of healthy subjects, subjects with periodontitis and dental caries, and to correlate salivary calcium level with number of intact teeth. Materials and Methods: The study population consisted of 48 systemically healthy subjects in the age group of 18-55 years, which was further divided into three groups: healthy, periodontitis, and dental caries. Oral hygiene index-simplified, probing pocket depth, clinical attachment level, the number of intact teeth, and active carious lesions were recorded. Estimation of inorganic salivary calcium, phosphate, and magnesium was performed spectrophotometrically using Vitros 5.1 FS. Statistical analysis was performed using the one-way analysis of variance test at 5% significance level. Results: There was a statistically significant increase in inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene status in periodontitis group compared to dental caries and healthy group. Conclusion: Subjects with increased inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene are at a higher risk of developing periodontitis. Since there is increased remineralization potential, these subjects have more number of intact teeth compared to the dental caries group.

  3. Nucleation, growth and evolution of calcium phosphate films on calcite.

    Science.gov (United States)

    Naidu, Sonia; Scherer, George W

    2014-12-01

    Marble, a stone composed of the mineral calcite, is subject to chemically induced weathering in nature due to its relatively high dissolution rate in acid rain. To protect monuments and sculpture from corrosion, we are investigating the application of thin layers of hydroxyapatite (HAP) onto marble. The motivation for using HAP is its low dissolution rate and crystal and lattice compatibility with calcite. A mild, wet chemical synthesis route, in which diammonium hydrogen phosphate salt was reacted with marble, alone and with cationic and anionic precursors under different reaction conditions, was used to produce inorganic HAP layers on marble. Nucleation and growth on the calcite substrate was studied, as well as metastable phase evolution, using scanning electron microscopy, grazing incidence X-ray diffraction, and atomic force microscopy. Film nucleation was enhanced by surface roughness. The rate of nucleation and the growth rate of the film increased with cationic (calcium) and anionic (carbonate) precursor additions. Calcium additions also influenced phase formation, introducing a metastable phase (octacalcium phosphate) and a different phase evolution sequence. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Studies on the mechanisms underlying the transfer of calcium and phosphate from bone to blood

    Energy Technology Data Exchange (ETDEWEB)

    Brommage, Jr., Robert J. [Univ. of Rochester, NY (United States)

    1978-01-01

    The skeleton is recognized as a crucial organ in the minute-to-minute regulation of the blood levels of calcium and phosphate. The fluxes of calcium and phosphate to and from bone greatly exceed the entry and exit of these ions occurring in the intestine and kidneys. Parathyroid hormone, calcitonin, and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3 are known to influence the transfer of calcium and phosphate from bone to blood. Three mechanisms have been proposed to explain the hormonal control of the calcium and phosphate effluxes from bone. The concept of a bone membrane maintaining a distinct bone extracellular fluid composition has led to the pump and pH gradient theories. An alternate solubilizer theory proposes that bone cells secrete a substance which increases the solubility of the bone mineral. The bone membrane concept was originally proposed to explain the presence of the apparent anomalously high concentrations of potassium in the bone extracellular fluid. However, the available evidence does not allow an unambiguous decision concerning the presence of a bone membrane. Calvarial lactate production was unaltered by 1,25-(OH)2D3 treatment and consequently 1,25-(OH)2D3 does not appear to promote the mobilization of bone mineral through a lactate-mediated pH gradient mechanism. 1,25-(OH)2D3 did increase the solubility of non-vital bone, clearly demonstrating that the solubilizer mechanism is at least partially responsible for the mobilization of bone mineral and the regulation of blood levels of calcium and phosphate. Vitamin D-deficient female rats fed a 0.2% calcium, 0.4% phosphorous diet and supplemented with daily injections of 0.75 pmole of 1,25-(OH)2D3 were shown to be capable of bearing young. When the injections of 1,25-(OH)2D3 were terminated at delivery, the dams and pups showed signs of vitamin D deficiency

  5. Preparation and Properties of Nanoparticles of Calcium Phosphates With Various Ca/P Ratios.

    Science.gov (United States)

    Sun, Limin; Chow, Laurence C; Frukhtbeyn, Stanislav A; Bonevich, John E

    2010-01-01

    This study aimed at preparing and studying the properties of nanoparticles of calcium phosphate (nCaP) with Ca/P ratios ranging from 1.0 to 1.67 using a spray-drying technique. Micro-structural analyses suggested that the nCaPs with Ca/P ratios of 1.67 to 1.33 were nano-sized amorphous calcium phosphate (ACP) containing varying amounts of acid phosphate and carbonate. The nCaP with Ca/P ratio of 1 contained only nano-sized low crystalline dicalcium phosphate (DCP). BET measurements of the nCaPs showed specific surface areas of (12 ± 2 to 50 ± 1) m(2)/g, corresponding to estimated equivalent spherical diameters of (38 to 172) nm. However, dynamic light scattering measurements revealed much larger particles of (380 ± 49 to 768 ± 111) nm, owing to agglomeration of the smaller primary nano particles as revealed by Scanning Electron Microscopy (SEM). Thermodynamic solubility measurements showed that the nCaPs with Ca/P ratio of 1.33 - 1.67 all have similar solubility behavior. The materials were more soluble than the crystalline hydroxyapatite (HA) at pH greater than about 4.7, and more soluble than β-tricalcium phosphate (β-TCP), octacalcium phosphate (OCP) and DCP at pH above 5.5. Their solubility approached that of α-tricalcium phosphate (α-TCP) at about pH 7. These nCaPs, which cannot be readily prepared by other currently available methods for nanoparticle preparation, have potential biomedical applications.

  6. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate (Pb-Fe-P) nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate (B-Si) glass. Vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters, as is presently done with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the performance advantages of the Pb-Fe-P material in a nuclear waste form, it would be necessary to process it so that it is cooled rapidly, thus retaining its vitreous structure

  7. Effect of Fluoride, Casein Phosphopeptide–Amorphous Calcium Phosphate and Casein Phosphopeptide–Amorphous Calcium Phosphate Fluoride on Enamel Surface Microhardness After Microabrasion: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Ghazaleh Ahmadi Zenouz

    2016-03-01

    Full Text Available Objectives: This study aimed to assess the effect of applying casein phosphopeptide–amorphous calcium phosphate (CPP-ACP paste, casein phosphopeptide–amorphous calcium phosphate fluoride (CPP-ACPF paste and sodium fluoride gel on surface microhardness of enamel after microabrasion.Materials and Methods: Thirty freshly extracted human premolars were selected. All samples were subjected to hardness indentations made with the Vickers hardness machine and the average value was recorded as the initial surface microhardness. The specimens were then randomly divided into three groups (n=10 of CPP-ACPF, fluoride and CPP-ACP. The teeth were micro-abraded with Opalustre. Microhardness test was performed to assess the post-abrasion hardness. Three remineralization modalities were performed on samples of each group. The enamel surface microhardness measurements were performed. To compare the difference between groups, the rehardening and softening values were defined. One-way ANOVA and Tukey’s post hoc test at a significance level of 5% were used for statistical analysis.Results: The mean microhardness value (MMV had a significant decrease after microabrasion from baseline. The MMV had a significant increase after remineralization in all groups. The MMV of CPP-ACPF group was significantly more than that of fluoride group (P=0.027. The rehardening value of fluoride group was significantly more than that of other groups (P<0.001.Conclusion: All the remineralizing agents were effective for rehardening the enamel after microabrasion. The CPP-ACP and CPP-ACPF pastes are effective, but to a lesser extent than neutral sodium fluoride gel in remineralizing enamel surface. Incorporation of fluoride to CPP-ACP formulation does not provide any additional remineralizing potential.Keywords: Casein phosphopeptide-amorphous calcium phosphate nanocomplex; Enamel Microabrasion; Hardness; Sodium Fluoride

  8. Difference in surface reactions between titanium and zirconium in Hanks' solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization

    International Nuclear Information System (INIS)

    Tsutsumi, Y.; Nishimura, D.; Doi, H.; Nomura, N.; Hanawa, T.

    2009-01-01

    Titanium and zirconium were immersed in Hanks' solution with and without calcium and phosphate ions, and the surfaces were characterized with X-ray photoelectron spectroscopy (XPS) to determine the mechanism of calcium phosphate formation on titanium in simulated body fluids and in a living body. In addition, they were cathodically polarized in the above solutions. XPS characterization and cathodic polarization revealed differences in the surface properties in the ability of calcium phosphate formation between titanium and zirconium. The surface oxide film on titanium is not completely oxidized and is relatively reactive; that on zirconium is more passive and protective than that on titanium. Neither calcium nor phosphate stably exists alone on titanium, and calcium phosphate is naturally formed on it; calcium phosphate formed on titanium is stable and protective. On the other hand, calcium is never incorporated on zirconium, while zirconium phosphate, which is easily formed on zirconium, is highly stable and protective. Our study presents new information regarding the surface property of titanium and demonstrates that the characteristics of titanium and zirconium may be applied to various medical devices and new surface modification techniques.

  9. Strontium hydroxyapatite and strontium carbonate as templates for the precipitation of calcium-phosphates in the absence and presence of fluoride

    Science.gov (United States)

    Sternitzke, Vanessa; Janousch, Markus; Heeb, Michèle B.; Hering, Janet G.; Johnson, C. Annette

    2014-06-01

    The heterogeneous precipitation of calcium-phosphates on calcium hydroxyapatite (Ca10(PO4)6(OH)2 or HAP) in the presence and absence of fluoride is important in the formation of bone and teeth, protection against tooth decay, dental and skeletal fluorosis and defluoridation of drinking water. Strontium hydroxyapatite (Sr10(PO4)6(OH)2 or SrHAP) and strontium carbonate (SrCO3) were used as calcium-free seed templates in precipitation experiments conducted with varying initial calcium-to-phosphate (Ca/P) or calcium-to-phosphate-to-fluoride (Ca/P/F) ratios. Suspensions of SrHAP or SrCO3 seed templates (which were calcium-limited for both templates and phosphate-limited in the case of SrCO3) were reacted at pH 7.3 (25 °C) over 3 days. The resulting solids were examined with Scanning Transmission Electron Microscopy (STEM), X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Near Edge Structure (XANES), and Extended X-ray Absorption Fine Structure spectroscopy (EXAFS). Calcium apatite was the predominant phase identified by all techniques independent of the added Ca/P ratios and of the presence of fluoride. It was not possible to make an unambiguous distinction between HAP and fluorapatite (Ca10(PO4)6F2, FAP). The apatite was calcium-deficient and probably contained some strontium.

  10. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    Science.gov (United States)

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  11. Properties and solubility of chrome in iron alumina phosphate glasses containing high level nuclear waste

    International Nuclear Information System (INIS)

    Huang, W.; Day, D.E.; Ray, C.S.; Kim, C.W.; Reis, S.T.D.

    2004-01-01

    Chemical durability, glass formation tendency, and other properties of iron alumina phosphate glasses containing 70 wt% of a simulated high level nuclear waste (HLW), doped with different amounts of Cr 2 O 3 , have been investigated. All of the iron alumina phosphate glasses had an outstanding chemical durability as measured by their small dissolution rate (1 . 10 -9 g/(cm 2 . min)) in deionized water at 90 C for 128 d, their low normalized mass release as determined by the product consistency test (PCT) and a barely measurable corrosion rate of 2 . d) after 7 d at 200 C by the vapor hydration test (VHT). The solubility limit for Cr 2 O 3 in the iron phosphate melts was estimated at 4.1 wt%, but all of the as-annealed melts contained a few percent of crystalline Cr 2 O 3 that had no apparent effect on the chemical durability. The chemical durability was unchanged after deliberate crystallization, 48 h at 650 C. These iron phosphate waste forms, with a waste loading of at least 70 wt%, can be readily melted in commercial refractory crucibles at 1250 C for 2 to 4 h, are resistant to crystallization, meet all current US Department of Energy requirements for chemical durability, and have a solubility limit for Cr 2 O 3 which is at least three times larger than that for borosilicate glasses. (orig.)

  12. Ectopic osteoid and bone formation by three calcium-phosphate ceramics in rats, rabbits and dogs.

    Directory of Open Access Journals (Sweden)

    Liao Wang

    Full Text Available Calcium phosphate ceramics with specific physicochemical properties have been shown to induce de novo bone formation upon ectopic implantation in a number of animal models. In this study we explored the influence of physicochemical properties as well as the animal species on material-induced ectopic bone formation. Three bioceramics were used for the study: phase-pure hydroxyapatite (HA sintered at 1200°C and two biphasic calcium phosphate (BCP ceramics, consisting of 60 wt.% HA and 40 wt.% TCP (β-Tricalcium phosphate, sintered at either 1100°C or 1200°C. 108 samples of each ceramic were intramuscularly implanted in dogs, rabbits, and rats for 6, 12, and 24 weeks respectively. Histological and histomorphometrical analyses illustrated that ectopic bone and/or osteoid tissue formation was most pronounced in BCP sintered at 1100°C and most limited in HA, independent of the animal model. Concerning the effect of animal species, ectopic bone formation reproducibly occurred in dogs, while in rabbits and rats, new tissue formation was mainly limited to osteoid. The results of this study confirmed that the incidence and the extent of material-induced bone formation are related to both the physicochemical properties of calcium phosphate ceramics and the animal model.

  13. Nitrite-cured color and phosphate-mediated water binding of pork muscle proteins as affected by calcium in the curing solution.

    Science.gov (United States)

    Zhao, Jing; Xiong, Youling L

    2012-07-01

    Calcium is a mineral naturally present in water and may be included into meat products during processing thereby influencing meat quality. Phosphates improve myofibril swelling and meat water-holding capacity (WHC) but can be sensitive to calcium precipitation. In this study, pork shoulder meat was used to investigate the impact of calcium at 0, 250, and 500 ppm and phosphate type [sodium pyrophosphate (PP), tripolyphosphate (TPP), and hexametaphopshate (HMP)] at 10 mM on nitrite-cured protein extract color at various pH levels (5.5, 6.0, and 6.5) and crude myofibril WHC at pH 6.0. Neither calcium nor phosphates present in the curing brines significantly affected the cured color. Increasing the pH tended to promote the formation of metmyoglobin instead of nitrosylmyoglobin. The ability of PP to enhance myofibril WHC was hampered (P meat products. Although not affecting nitrite-cured color, calcium hampers the efficacy of phosphates to promote water binding by muscle proteins, underscoring the importance of water quality for brine-enhanced meat products. © 2012 Institute of Food Technologists®

  14. Preparation, Physical-Chemical Characterization, and Cytocompatibility of Polymeric Calcium Phosphate Cements

    Directory of Open Access Journals (Sweden)

    Rania M. Khashaba

    2011-01-01

    Full Text Available Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control. Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications.

  15. Obtain ceramic porous alumina-zirconia by replica method calcium phosphate coated

    International Nuclear Information System (INIS)

    Silva, A.D.R.; Rigoli, W.R.; Osiro, Denise; Pallone, E.M.J.A.

    2016-01-01

    Biomaterials used in bone replacement, including porous bioceramics, are often used as support structure for bone formation and repair. The porous bioceramics are used because present features as biocompatibility, high porosity and pore morphology that confer adequate mechanical strength and induce bone growth. In this work were obtained porous specimens of alumina containing 5% by inclusion of volume of zirconia produced by the replica method. The porous specimens had its surface chemically treated with phosphoric acid and were coated with calcium phosphate. The coating was performed using the biomimetic method during 14 days and an initial pH of 6.1. The porous specimens were characterized using the follow techniques: porosity, axial compression tests, microtomography, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and pH measurements SBF solution. The results showed specimens with suitable pore morphology for application as biomaterial, and even a reduced time of incubation favored the calcium phosphate phases formation on the material surfaces. (author)

  16. Synthesis of calcium phosphates and porous hydroxyapatite beads prepared by emulsion method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B.-H. [Faculty of Biotechnology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Chen, K.-I [Department of Electronics Engineering and Computer Science, Tung-Fang Institute of Technology, 100 Dungfang Road, Hunei, Kaohsiung, Taiwan (China); Ho, M.-L. [Department of Physiology, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, H.-N. [Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Chen, W.-C. [Faculty of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Wang, C.-K. [Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: ckwang@kmu.edu.tw

    2009-01-15

    Raw calcium phosphates were synthesized via a chemical reaction between 0.5 M orthophosphoric acid and 0.5 M calcium hydroxide. Hydroxyapatite (HAp), {beta}-tricalcium phosphate ({beta}-TCP) or biphase calcium phosphate (BCP) comprising HAp and {beta}-TCP were obtained by changing pH value, Ca/P ratio, and the addition of glycerol. The as-synthesized and heat-treated powders were analyzed by X-ray diffraction (XRD) and Fourier transformation infrared spectrometry (FTIR). Thermal stability of the pure apatite phase was obtained to be 1300 deg. C, while synthesis was done at the pH value of 10.0 with a Ca/P ratio of 2.0 and a temperature of 37 deg. C. Besides, the {beta}-TCP phase (with higher purity) was achieved at 800 deg. C, whose synthesis was done at pH 6.4 with a Ca/P ratio of 1.5 and a temperature of 37 deg. C. Therefore, the biphase bioceramics comprising of HAp and {beta}-TCP could be obtained, since it was manipulated suitably. The HAp raw material was subjected to a simple emulsion method for the preparation of porous beads. They should have the advantage of exhibiting higher adsorptive ability and osteoconductivity in comparison with the sintered dense apatite. Additionally, the porous beads of apatite were demonstrated to be non-toxic to cells, and should be suitable for the use as a scaffold of cultured bone and bone graft material, as well as for drug delivery systems.

  17. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ Grown Dental Biofilms.

    Science.gov (United States)

    Schlafer, Sebastian; Ibsen, Casper J S; Birkedal, Henrik; Nyvad, Bente

    2017-01-01

    This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects of repeated ex vivo treatment with calcium-phosphate-osteopontin particles were observed. Particle treatment resulted in a 32% lower amount of biofilm formed (p Biofilm pH was significantly higher upon particle treatment, both shortly after the addition of glucose and after 30 min of incubation with glucose (p biofilms as well as the remineralizing potential of the particles. © 2016 S. Karger AG, Basel.

  18. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ-Grown Dental Biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Ibsen, Casper Jon Steenberg; Birkedal, Henrik

    2017-01-01

    This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary......-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either...... calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects...

  19. Immobilization of alginate-encapsulated Bacillus thuringiensis var. israelensis containing different multivalent counterions for mosquito control.

    Science.gov (United States)

    Prabakaran, G; Hoti, S L

    2008-08-01

    Immobilized techniques have been used widely for the controlled release formulation of mosquitoes. Among the microbial formulations, polymeric matrices play an important role in the controlled release of microbial pesticide at rates sufficiently effective to kill mosquitoes in the field. The advantage of these matrices is that they enhance the stability of both spores and toxin against pH, temperature variations, and UV irradiation. The disadvantage of using calcium alginate beads is that they are unstable upon contact with phosphate of potassium or sodium ions rich in the mosquito habitats. To overcome these problems, attempts were made to encapsulate Bacillus thuringiensis var. israelensis within alginate by using different multivalent counterions, namely, calcium chloride, zinc sulfate, copper sulfate, cobalt chloride, and ferric chloride, and the beads formed were tested for its mosquito larvicidal activity. Among all the beads tested, zinc alginate beads resulted in maximum larvicidal activity of 98% (+/-1.40 SE) against Culex quinquefasciatus IIIrd instar larvae and maximum spore count of 3.36 x 10(5) (+/-5291.50 SE) CFU/ml. Zinc alginate beads maintained their structure for up to 48 h when shaken vigorously on a rotary shaker at 180 rpm in the presence of 10 mM potassium phosphate buffer (pH 6.8 +/- 0.1). In conclusion, our results suggest that the use of zinc sulfate as counterions to encapsulate B. thuringiensis var. israelensis within alginate may be a potent mosquito control program in the habitats where more phosphate ions are present.

  20. Comparison of silicone and spin-on glass packaging materials for light-emitting diode encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liann-Be; Pan, Ke-Wei; Yen, Chia-Yi [Department of Electronic Engineering and Green Technology Research Center, Chang Gung University, Taoyuan, Taiwan (China); Jeng, Ming-Jer, E-mail: mjjeng@mail.cgu.edu.tw [Department of Electronic Engineering and Green Technology Research Center, Chang Gung University, Taoyuan, Taiwan (China); Wu, Chun-Te; Hu, Sung-Cheng; Kuo, Yang-Kuao [Chemical Systems Research Division, Chung-Shan Institute of Science and Technology Armaments Bureau, MND, Taoyuan, Taiwan (China)

    2014-11-03

    Traditional white light light-emitting diode (LED) encapsulation is performed by mixed phosphors and silicone coating on LED die. However, this encapsulation with silicone coating incurs overheated temperatures and yellowing problem. Therefore, this work attempts to replace silicone paste by using spin-on-glass (SOG) materials. Experimental results indicate that although initial brightness of SOG-based packaging is lower than that of silicone packaging, its light attenuation is significantly lower than that of silicone for a long lighting time. After the LED power is turned on for 12 h, the brightness of LED with silicone and SOG material packaging decreases from 84 to 48 lm and 73 to 59 lm, respectively. Therefore, SOG material provides an alternative packaging solution for high power LED lighting applications. - Highlights: • Spin-on-glass (SOG) material was used to replace silicone coating for LED packaging. • Initial brightness of SOG packaging is lower than that of silicone packaging. • Over time, light attenuation in SOG is much lower than that in silicone. • Color rendering index and brightness of LED packaging was optimized by Taguchi method.

  1. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis.

    Science.gov (United States)

    Zhang, Jingwei; Dalbay, Melis T; Luo, Xiaoman; Vrij, Erik; Barbieri, Davide; Moroni, Lorenzo; de Bruijn, Joost D; van Blitterswijk, Clemens A; Chapple, J Paul; Knight, Martin M; Yuan, Huipin

    2017-07-15

    The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery

  2. In vitro degradation of calcium phosphates: Effect of multiscale porosity, textural properties and composition.

    Science.gov (United States)

    Diez-Escudero, A; Espanol, M; Beats, S; Ginebra, M-P

    2017-09-15

    The capacity of calcium phosphates to be replaced by bone is tightly linked to their resorbability. However, the relative importance of some textural parameters on their degradation behavior is still unclear. The present study aims to quantify the effect of composition, specific surface area (SSA), and porosity at various length scales (nano-, micro- and macroporosity) on the in vitro degradation of different calcium phosphates. Degradation studies were performed in an acidic medium to mimic the osteoclastic environment. Small degradations were found in samples with interconnected nano- and micropores with sizes below 3µm although they were highly porous (35-65%), with maximum weight loss of 8wt%. Biomimetic calcium deficient hydroxyapatite, with high SSA and low crystallinity, presented the highest degradation rates exceeding even the more soluble β-TCP. A dependence of degradation on SSA was indisputable when porosity and pore sizes were increased. The introduction of additional macroporosity with pore interconnections above 20µm significantly impacted degradation, more markedly in the substrates with high SSA (>15m 2 /g), whereas in sintered substrates with low SSA (calcium deficient hydroxyapatite did not increase its degradation rate. Overall, the study highlights the importance of textural properties, which can modulate or even outweigh the effect of other features such as the solubility of the compounds. The physicochemical features of calcium phosphates are crucial to tune biological events like resorption during bone remodeling. Understanding in vitro resorption can help to predict the in vivo behavior. Besides chemical composition, other parameters such as porosity and specific surface area have a strong influence on resorption. The complexity of isolating the contribution of each parameter lies in the close interrelation between them. In this work, a multiscale study was proposed to discern the extent to which each parameter influences degradation in

  3. Fibronectin-calcium phosphate composite layer on hydroxyapatite to enhance adhesion, cell spread and osteogenic differentiation of human mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Sogo, Yu; Ito, Atsuo; Matsuno, Tomonori; Oyane, Ayako; Tamazawa, Gaku; Satoh, Tazuko; Yamazaki, Atsushi; Uchimura, Eiji; Ohno, Tadao

    2007-01-01

    Fibronectin (Fn) and type I collagen (Col) were immobilized on a surface of a hydroxyapatite (HAP) ceramic by coprecipitation with calcium phosphate in a supersaturated calcium phosphate solution prepared by mixing clinically approved infusion fluids. These proteins and the calcium phosphate precipitate formed a composite surface layer. As a result, the proteins were immobilized firmly as not to be released completely for 3 d in a physiological salt solution. When human mesenchymal stem cells (hMSCs) were cultured on a HAP ceramic in a differentiation medium supplemented with dexamethasone, β-glycerophosphate and ascorbic acid, hMSCs spread well within 1 h. The alkaline phosphatase (ALP) activity of hMSCs cultured on the Fn-calcium phosphate composite layer significantly increased compared with that of hMSCs cultured on the untreated HAP ceramic. On the other hand, Col did not increase the ALP activity of hMSCs and no synergy between Fn and Col was observed. Therefore, the Fn-calcium phosphate composite layer formed on the HAP is useful for the enhancement of the spreading and osteogenic differentiation of hMSCs in vitro

  4. Chemical synthesis and characterization of magnesium substituted amorphous calcium phosphate (MG-ACP)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghyun [Department of Biomedical Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Mechanical Engineering and Materials Sceince, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2010-10-12

    Amorphous calcium phosphate (ACP) was synthesized by a simple aqueous precipitation using CaCl{sub 2} and Na{sub 3}PO{sub 4} in the presence of MgCl{sub 2} to ensure the formation of the ACP phase at room temperature. Magnesium substituted ACP phases corresponding to two different compositions representing the two most prominent calcium phosphate phases (hydroxyapatite: Ca + Mg/P = 1.67 and tricalcium phosphate: Ca + Mg/P = 1.5) were synthesized by this simple approach. Both compositions of ACP phases resulted in their transformation into {beta}-tricalcium phosphate upon heat treatment in air at 600 deg. C. X-ray diffraction (XRD), heat treatment, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) and Brunauer-Emmett-Teller (BET) analyses were used to characterize the phase, thermal stability, surface area, and morphology of the synthesized ACP powders corresponding to the two different nominal Ca/P compositions. Although it is known that {alpha}-TCP is the phase that appears upon heat treatment at 600 deg. C unsubstituted ACP, substitution of magnesium ion in ACP (both TCP and HA composition) stabilized the structure of {beta}-TCMP phase at 600 deg. C. Moreover, FT-IR analysis revealed that the ACP phase regardless of the composition, exhibited characteristic bands corresponding to that of HA, with the exception of the ACP corresponding to HA composition which exhibited a prominent OH vibrational mode.

  5. Dental Composites with Calcium / Strontium Phosphates and Polylysine.

    Directory of Open Access Journals (Sweden)

    Piyaphong Panpisut

    Full Text Available This study developed light cured dental composites with added monocalcium phosphate monohydrate (MCPM, tristrontium phosphate (TSrP and antimicrobial polylysine (PLS. The aim was to produce composites that have enhanced water sorption induced expansion, can promote apatite precipitation and release polylysine.Experimental composite formulations consisted of light activated dimethacrylate monomers combined with 80 wt% powder. The powder phase contained a dental glass with and without PLS (2.5 wt% and/or reactive phosphate fillers (15 wt% TSrP and 10 wt% MCPM. The commercial composite, Z250, was used as a control. Monomer conversion and calculated polymerization shrinkage were assessed using FTIR. Subsequent mass or volume changes in water versus simulated body fluid (SBF were quantified using gravimetric studies. These were used, along with Raman and SEM, to assess apatite precipitation on the composite surface. PLS release was determined using UV spectroscopy. Furthermore, biaxial flexural strengths after 24 hours of SBF immersion were obtained.Monomer conversion of the composites decreased upon the addition of phosphate fillers (from 76 to 64% but was always higher than that of Z250 (54%. Phosphate addition increased water sorption induced expansion from 2 to 4% helping to balance the calculated polymerization shrinkage of ~ 3.4%. Phosphate addition promoted apatite precipitation from SBF. Polylysine increased the apatite layer thickness from ~ 10 to 20 μm after 4 weeks. The novel composites showed a burst release of PLS (3.7% followed by diffusion-controlled release irrespective of phosphate addition. PLS and phosphates decreased strength from 154 MPa on average by 17% and 18%, respectively. All formulations, however, had greater strength than the ISO 4049 requirement of > 80 MPa.The addition of MCPM with TSrP promoted hygroscopic expansion, and apatite formation. These properties are expected to help compensate polymerization shrinkage and

  6. Eu{sup 3+} emission in phosphate glasses with high UV transparency

    Energy Technology Data Exchange (ETDEWEB)

    Silva, G.H. [Laboratório de Espectroscopia de Materiais (LEM), Departamento de Física, Universidade Federal de Juiz de Fora, CEP 36036-900 Juiz de Fora, MG (Brazil); Anjos, V., E-mail: virgilio@fisica.ufjf.br [Laboratório de Espectroscopia de Materiais (LEM), Departamento de Física, Universidade Federal de Juiz de Fora, CEP 36036-900 Juiz de Fora, MG (Brazil); Bell, M.J.V. [Laboratório de Espectroscopia de Materiais (LEM), Departamento de Física, Universidade Federal de Juiz de Fora, CEP 36036-900 Juiz de Fora, MG (Brazil); Carmo, A.P. [Instituto Federal Fluminense-Campus Cabo Frio, CP 112015, CEP 28909-971 Cabo Frio, RJ (Brazil); Pinheiro, A.S.; Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, CP 593, CEP 38400-902 Uberlândia, MG (Brazil)

    2014-10-15

    We report a study of the phosphate glass PZABP (P{sub 2}O{sub 5}–ZnO–Al{sub 2}O{sub 3}–BaO–PbO) doped with europium (Eu{sup 3+}) in different concentrations. Absorption, photoluminescence and time resolved photoluminescence were used to investigate the influence of increasing Eu{sup 3+} concentrations. The present glass exhibits Eu{sup 3+} absorption bands in the ultraviolet region (about 300 nm) due to the high transparency of the system compared to other phosphate glasses. In this way, it was possible to obtain the Judd–Ofelt parameters from the emission and absorption spectra. Moreover, a strong red emission attributed to the transition {sup 5}D{sub 0}→{sup 7}F{sub 2} of Eu{sup 3+} (611 nm) was observed. It was found that the radiative lifetime and the quantum efficiency of the Eu{sup 3+} level, {sup 5}D{sub 0}, do not suffer a significant change as the concentration of Eu{sup 3+} ions increases. - Highlights: • UV transparent glass matrix is used for Eu{sup 3+} doping. • Judd–Ofelt parameters from the emission and absorption spectra were obtained. • Red emission attributed to the transition {sup 5}D{sub 0}→{sup 7}F{sub 2} of Eu{sup 3+} (611 nm) was observed.

  7. Controlling surface microstructure of calcium phosphate ceramic from random to custom-design

    NARCIS (Netherlands)

    Wang, Liao; Luo, Xiaoman; Barbieri, D.; Bao, Chongyun; Yuan, Huipin

    2014-01-01

    Calcium phosphate ceramics have long been studied as bone graft substitutes due to their similarity with the mineral constitute of bone and teeth, excellent biocompatibility and bioactivity. Chemical composition, macrostructure and surface microstructure are believed to be important for the bone

  8. Calcium phosphate coated eletrospun fiber matrices as scaffold for bone tissue engineering

    NARCIS (Netherlands)

    Nandakumar, A.; Yang, Liang; Habibovic, Pamela; van Blitterswijk, Clemens

    2010-01-01

    Electrospun polymeric scaffolds are used for various tissue engineering applications. In this study, we applied a biomimetic coating method to provide electrospun scaffolds from a block copolymer-poly(ethylene oxide terephthalate)−poly(buthylene terephthalate), with a calcium phosphate layer to

  9. Structure and Dynamics on Superionic Conducting Phosphate Glasses By Neutron Scattering

    International Nuclear Information System (INIS)

    Kartini, E.; Kennedy, S.J.; Itoh, K.; Arai, M.; Mezei, F.; Nakamura, M.

    2005-01-01

    Full text: A series of Neutron Diffraction and Inelastic scattering experiments have been performed on superionic conducting phosphate glasses, MX-MPO 3 (M=Ag; X=I,S) and AgI-Ag 2 S-AgPO 3 . These materials are used for solid state battery, due to high conductivity up to 10 -2 S.cm -1 at ambient temperature. The conductivity of the insulator glass AgPO 3 ∼ 10 -7 S.cm -1 . Interestingly, the structure factor S(Q) exhibits a prepeak at very low Q∼0.7 Aangstroem -1 related to the IRO ∼ 10-12 Aangstroem and the Radial Distribution Function gives an extra peak ∼ 2.8 Aangstroem -1 that corresponds to Ag-I correlation. The dynamic structure factor S(Q,ω), shows a Boson peak at low energy ∼ 2.5 meV that increases with composition and temperature. These behaviors seem to be universal for the AgI doped glasses, but the origin remains not well understood. Increasing mobility of the Ag ions, due to expansion of the phosphate network plays a dominant role on raising the ionic conductivity, prepeak and Boson peak. (authors)

  10. Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications.

    Science.gov (United States)

    el-Briak, Hasna; Durand, Denis; Nurit, Josiane; Munier, Sylvie; Pauvert, Bernard; Boudeville, Phillipe

    2002-01-01

    By mixing CaHPO(4) x 2H(2)O (DCPD) and CaO with water or sodium phosphate buffers as liquid phase, a calcium phosphate cement was obtained. Its physical and mechanical properties, such as compressive strength, initial and final setting times, cohesion time, dough time, swelling time, dimensional and thermal behavior, and injectability were investigated by varying different parameters such as liquid to powder (L/P) ratio (0.35-0.7 ml g(-1)), molar calcium to phosphate (Ca/P) ratio (1.67-2.5) and the pH (4, 7, and 9) and the concentration (0-1 M) of the sodium phosphate buffer. The best results were obtained with the pH 7 sodium phosphate buffer at the concentration of 0.75 M. With this liquid phase, physical and mechanical properties depended on the Ca/P and L/P ratios, varying from 3 to 11 MPa (compressive strength), 6 to 10 min (initial setting time), 11 to 15 min (final setting time), 15 to 30 min (swelling time), 7 to 20 min (time of 100% injectability). The dough or working time was over 16 min. This cement expanded during its setting (1.2-5 % according to Ca/P and L/P ratios); this would allow a tight filling. Given the mechanical and rheological properties of this new DCPD/CaO-based cement, its use as root canal sealing material can be considered as classical calcium hydroxide or ZnO/eugenol-based pastes, without or with a gutta-percha point. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 447-453, 2002

  11. Effect of the melting conditions on the properties of radiation color centers in lanthanum phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, G.O.; Rusan, V.V.; Yashchurzhinskaya, O.A.

    1986-01-01

    The authors investigate the spatial effects of ionizing radiation on the radiation processes in phosphate glasses to make a comparative estimate of the radiation yield from the radiation color centers (RCC) of different types. A study is made of their behavior under thermal decoloration. The results of a comparison of the integrated intensities of the ESR signal from trapping centers are given. The ESR spectrum of the glasses are presented--one differs slightly from the others. On the basis of the result of processing the ESR and optical spectra of gamma-irradiated lanthanum phosphate glasses synthesized under various conditions, the radiation yield of the RCC and the behavior of the intensity of their absorption under thermodecoloration are significantly affected by the conditions of synthesis of the glass.

  12. [Osteogenic activity of porous calcium phosphate ceramics fabricated by rapid prototyping].

    Science.gov (United States)

    He, Chenguang; Zhao, Li; Lin, Liulan; Gu, Huijie; Zhou, Heng; Cui, Lei

    2010-07-01

    Calcium phosphate bioceramics has a broad application prospect because of good biocompatibility, but porous scaffolds with complex shape can not be prepared by the traditional methods. To fabricate porous calcium phosphate ceramics by rapid prototyping and to investigate the in vitro osteogenic activities. The porous calcium phosphate ceramics was fabricated by rapid prototyping. The bone marrow mesenchymal stem cells (BMSCs) were isolated from bone marrow of Beagle canine, and the 3rd passage BMSCs were seeded onto the porous ceramics. The cell/ceramics composite cultured in osteogenic medium were taken as the experimental group (group A) and the cell/ceramics composite cultured in growth medium were taken as the control group (group B). Meanwhile, the cells seeded on the culture plate were cultured in osteogenic medium or growth medium respectively as positive control (group C) or negative control (group D). After 1, 3, and 7 days of culture, the cell proliferation and osteogenic differentiation on the porous ceramics were evaluated by DNA quantitative analysis, histochemical staining and alkaline phosphatase (ALP) activity. After DiO fluorescent dye, the cell adhesion, growth, and proliferation on the porous ceramics were also observed by confocal laser scanning microscope (CLSM). DNA quantitative analysis results showed that the number of BMSCs in all groups increased continuously with time. Plateau phase was not obvious in groups A and B, but it was clearly observed in groups C and D. The CLSM observation indicated that the activity of BMSCs was good and the cells spread extensively, showing good adhesion and proliferation on the porous calcium phosphate ceramics prepared by rapid prototyping. ALP quantitative analysis results showed that the stain of cells on the ceramics became deeper and deeper with time in groups A and B, the staining degree in group A were stronger than that in group B. There was no significant difference in the change of the ALP activity

  13. Cellular Performance Comparison of Biomimetic Calcium Phosphate Coating and Alkaline-Treated Titanium Surface

    Directory of Open Access Journals (Sweden)

    Xiaohua Yu

    2013-01-01

    Full Text Available The influence of biomimetic calcium phosphate coating on osteoblasts behavior in vitro is not well established yet. In this study, we investigated the behavior of osteoblastic rat osteosarcoma 17/2.8 cells (ROS17/2.8 on two groups of biomaterial surfaces: alkaline-treated titanium surface (ATT and biomimetic calcium phosphate coated ATT (CaP. The cell attachment, proliferation, differentiation, and morphology on these surfaces were extensively evaluated to reveal the impact of substrate surface on osteoblastic cell responses. It was found that the ROS17/2.8 cells cultured on the ATT surface had higher attachment and proliferation rates compared to those on the CaP surface. Our results also showed that the calcium phosphate coatings generated in this work have an inhibiting effect on osteoblast adhesion and further influenced the proliferation and differentiation of osteoblast compared to the ATT surface in vitro. Cells on the ATT surface also exhibited a higher alkaline phosphatase activity than on the CaP surface after two weeks of culture. Immunofluorescence staining and scanning electron microscopy results showed that the cells adhered and spread faster on the ATT surface than on the CaP surface. These results collectively suggested that substrate surface properties directly influence cell adhesion on different biomaterials, which would result in further influence on the cell proliferation and differentiation.

  14. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing.

    Science.gov (United States)

    Catauro, M; Papale, F; Sapio, L; Naviglio, S

    2016-08-01

    The objective of this work has been to develop low temperature sol-gel glass coatings to modify the substrate surface and to evaluate their bioactivity and biocompatibility. Glasses, based on SiO2·CaO·P2O5, were synthesized by the sol-gel technique using tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as precursors of SiO2, CaO and P2O5, respectively. Those materials, still in the sol phase, have been used to coat substrates by means of the dip-coating technique. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) has been used for characterize coatings and a microstructural analysis has been obtained using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated substrate was immersed in simulated body fluid (SBF) for 21days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. In order to study the cell behavior and response to our silica based materials, prepared via the sol-gel method, with various Ca/P ratio and coating substrate, we have used the human osteoblast-like U2OS cell line. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Glucose-6-phosphate reduces calcium accumulation in rat brain endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Jeffrey Thomas Cole

    2012-04-01

    Full Text Available Brain cells expend large amounts of energy sequestering calcium (Ca2+, while loss of Ca2+ compartmentalization leads to cell damage or death. Upon cell entry, glucose is converted to glucose-6-phosphate (G6P, a parent substrate to several metabolic major pathways, including glycolysis. In several tissues, G6P alters the ability of the endoplasmic reticulum to sequester Ca2+. This led to the hypothesis that G6P regulates Ca2+ accumulation by acting as an endogenous ligand for sarco-endoplasmic reticulum calcium ATPase (SERCA. Whole brain ER microsomes were pooled from adult male Sprague-Dawley rats. Using radio-isotopic assays, 45Ca2+ accumulation was quantified following incubation with increasing amounts of G6P, in the presence or absence of thapsigargin, a potent SERCA inhibitor. To qualitatively assess SERCA activity, the simultaneous release of inorganic phosphate (Pi coupled with Ca2+ accumulation was quantified. Addition of G6P significantly and decreased Ca2+ accumulation in a dose-dependent fashion (1-10 mM. The reduction in Ca2+ accumulation was not significantly different that seen with addition of thapsigargin. Addition of glucose-1-phosphate or fructose-6-phosphate, or other glucose metabolic pathway intermediates, had no effect on Ca2+ accumulation. Further, the release of Pi was markedly decreased, indicating G6P-mediated SERCA inhibition as the responsible mechanism for reduced Ca2+ uptake. Simultaneous addition of thapsigargin and G6P did decrease inorganic phosphate in comparison to either treatment alone, which suggests that the two treatments have different mechanisms of action. Therefore, G6P may be a novel, endogenous regulator of SERCA activity. Additionally, pathological conditions observed during disease states that disrupt glucose homeostasis, may be attributable to Ca2+ dystasis caused by altered G6P regulation of SERCA activity

  16. Characteristics of the interaction of calcium with casein submicelles as determined by analytical affinity chromatography

    International Nuclear Information System (INIS)

    Jang, H.D.; Swaisgood, H.E.

    1990-01-01

    Interaction of calcium with casein submicelles was investigated in CaCl2 and calcium phosphate buffers and with synthetic milk salt solutions using the technique of analytical affinity chromatography. Micelles that had been prepared by size exclusion chromatography with glycerolpropyl controlled-pore glass from fresh raw skim milk that had never been cooled, were dialyzed at room temperature against calcium-free imidazole buffer, pH 6.7. Resulting submicelles were covalently immobilized on succinamidopropyl controlled-pore glass (300-nm pore size). Using 45Ca to monitor the elution retardation, the affinity of free Ca2+ and calcium salt species was determined at temperatures of 20 to 40 degrees C and pH 6.0 to 7.5. Increasing the pH in this range or increasing the temperature strengthened the binding of calcium to submicelles, similar to previous observations with individual caseins. However, the enthalpy change obtained from the temperature dependence was considerably greater than that reported for alpha s1- and beta-caseins. Furthermore, the elution profiles for 45Ca in milk salt solutions were decidedly different from those in CaCl2 or calcium phosphate buffers and the affinities were also greater. For example, at pH 6.7 and 30 degrees C the average dissociation constant for the submicelle-calcium complex is 0.074 mM for CaCl2 and calcium phosphate buffers, vs 0.016 mM for the milk salt solution. The asymmetric frontal boundaries and higher average affinities observed with milk salts may be due to binding of calcium salts with greater affinity in addition to the binding of free Ca2+ in these solutions

  17. Micro-Raman spectroscopy studies of the phase separation mechanisms of transition-metal phosphate glasses

    International Nuclear Information System (INIS)

    Mazali, Italo Odone; Alves, Oswaldo Luiz; Gimenez, Iara de Fatima

    2009-01-01

    Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation. (author)

  18. Magnetic properties of bioactive glass-ceramics containing nanocrystalline zinc ferrite

    International Nuclear Information System (INIS)

    Singh, Rajendra Kumar; Srinivasan, A.

    2011-01-01

    Glass-ceramics with finely dispersed zinc ferrite (ZnFe 2 O 4 ) nanocrystallites were obtained by heat treatment of x(ZnO,Fe 2 O 3 )(65-x)SiO 2 20(CaO,P 2 O 5 )15Na 2 O (6≤x≤21 mole%) glasses. X-ray diffraction patterns of the glass-ceramic samples revealed the presence of calcium sodium phosphate [NaCaPO 4 ] and zinc ferrite [ZnFe 2 O 4 ] as major crystalline phases. Zinc ferrite present in nanocrystalline form contributes to the magnetic properties of the glass-ceramic samples. Magnetic hysteresis cycles of the glass-ceramic samples were obtained with applied magnetic field sweeps of ±20 kOe and ±500 Oe, in order to evaluate the potential of these glass-ceramics for hyperthermia treatment of cancer. The evolution of magnetic properties in these samples, viz., from a partially paramagnetic to fully ferrimagnetic nature has been explored using magnetometry and X-ray diffraction studies. - Research highlights: → The glass-ceramics contain bone mineral and magnetic phases. → Calcium sodium phosphate and zinc ferrite nanocrystallites have been identified in all the sample. → With an increase in ZnO and Fe2O3 content, magnetic property of samples evolved from partially paramagnetic to fully ferrimagnetic nature. → Large magnetic hysteresis loops have been obtained for samples with high ZnO+Fe2O3 content.

  19. Interactions of casein micelles with calcium phosphate particles.

    Science.gov (United States)

    Tercinier, Lucile; Ye, Aiqian; Anema, Skelte G; Singh, Anne; Singh, Harjinder

    2014-06-25

    Insoluble calcium phosphate particles, such as hydroxyapatite (HA), are often used in calcium-fortified milks as they are considered to be chemically unreactive. However, this study showed that there was an interaction between the casein micelles in milk and HA particles. The caseins in milk were shown to bind to the HA particles, with the relative proportions of bound β-casein, αS-casein, and κ-casein different from the proportions of the individual caseins present in milk. Transmission electron microscopy showed no evidence of intact casein micelles on the surface of the HA particles, which suggested that the casein micelles dissociated either before or during binding. The HA particles behaved as ion chelators, with the ability to bind the ions contained in the milk serum phase. Consequently, the depletion of the serum minerals disrupted the milk mineral equilibrium, resulting in dissociation of the casein micelles in milk.

  20. Spectroscopic and electrochemical characterization of cytochrome c encapsulated in a bio sol-gel matrix.

    Science.gov (United States)

    Deriu, Daniela; Pagnotta, Sara Emanuela; Santucci, Roberto; Rosato, Nicola

    2008-08-01

    Sol-gel technique represents a remarkably versatile method for protein encapsulation. To enhance sol-gel biocompatibility, systems envisaging the presence of calcium and phosphates in the sol-gel composition were recently prepared and investigated. Unfortunately, the low pH at which solutions were prepared (pH proteins, because the acidic environment induces protein denaturation. In this paper we apply a new protocol based on the introduction of calcium nitrate to the inorganic phase, with formation of a binary bioactive system. In this case protein encapsulation results versatile and secure, being achieved at a pH close to neutrality (pH 6.0); also, the presence of calcium is expected to enhance system biocompatibility. To determine the properties of the salt-doped sol-gel and the influence exerted on entrapped biosystems, the structural and functional properties of embedded cytochrome c have been investigated. Data obtained indicate that the salt-doped sol-gel induces no significant change in the structure and the redox properties of the embedded protein; also, the matrix increases protein stability. Interestingly, the presence of calcium nitrate appears determinant for refolding of the acid-denatured protein. This is of interest in the perspective of future applications in biosensoristic area.

  1. Photon absorption of calcium phosphate-based dental biomaterials

    International Nuclear Information System (INIS)

    Singh, V. P.; Badiger, N. M.; Tekin, H. O.; Kara, U.; Vega C, H. R.; Fernandes Z, M. A.

    2017-10-01

    Effective atomic number and mass energy absorption buildup factors for four calcium phosphate-based biomaterials used in dental treatments were calculated for 0.015 to 15 MeV photons. The mass energy absorption coefficients were calculated for 0.5 to 40 mean free paths of photons. In the energy region important for dental radiology the Zeff for all studied biomaterials are larger in comparison to larger energies. In x-rays for dental radiology and the energy absorption buildup factors are low, however CbMDI bio material shows a resonance at 80 keV. (Author)

  2. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers

    Directory of Open Access Journals (Sweden)

    Zhang Kui-Hua

    2011-01-01

    Full Text Available Abstract Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP/polylactide-block-monomethoxy(polyethyleneglycol hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP porous nanospheres is achieved (126.7 m2/g. PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t. The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated.

  3. Bioactivity and Surface Reactivity of RF-sputtered Calcium Phosphate Thin Films

    NARCIS (Netherlands)

    Wal, Edwin van der

    2003-01-01

    Calcium phosphates (CaP) are known to be bioactive, i.e. able to bond to bone. This makes CaPs very suitable to be aplied as thin coatings on bone-implants. In this work we studied the physicochemical behaviour of CaP coatings applied with radio frequency (RF) magnetron sputtering, a deposition

  4. Interaction of bovine gallbladder mucin and calcium-binding protein: effects on calcium phosphate precipitation.

    Science.gov (United States)

    Afdhal, N H; Ostrow, J D; Koehler, R; Niu, N; Groen, A K; Veis, A; Nunes, D P; Offner, G D

    1995-11-01

    Gallstones consist of calcium salts and cholesterol crystals, arrayed on a matrix of gallbladder mucin (GBM), and regulatory proteins like calcium-binding protein (CBP). To determine if interactions between CBP and GBM follow a biomineralization scheme, their mutual binding and effects on CaHPO4 precipitation were studied. Binding of CBP to GBM was assessed by inhibition of the fluorescence of the complex of GBM with bis-1,8-anilinonaphthalene sulfonic acid (bis-ANS). The effects of the proteins on precipitation of CaHPO4 were assessed by nephelometry and gravimetry. Precipitates were analyzed for calcium, phosphate, and protein. CBP and bis-ANS competitively displaced each other from 30 binding sites on mucin, with a 1:1 stoichiometry and similar affinity. The rate of precipitation of CaHPO4 was retarded by mucin and CBP. Precipitate mass was unaffected by GBM alone but decreased with the addition of CBP. Complexing CBP with GBM abolished or moderated this latter effect, altered precipitate morphology, and changed the stoichiometric ratios of Ca to PO4 in the precipitates from 1:1 to 3:2. Mucin and CBP were incorporated into the precipitates. These studies suggest that the formation of calcium-containing gallstones is a biomineralization process regulated by both GBM and CBP.

  5. Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction.

    Science.gov (United States)

    Combes, C; Bareille, R; Rey, C

    2006-11-01

    The feasibility of making calcium carbonate-calcium phosphate (CaCO(3)-CaP) mixed cements, comprising at least 40% (w/w) CaCO(3) in the dry powder ingredients, has been demonstrated. Several original cement compositions were obtained by mixing metastable crystalline CaCO(3) phases with metastable amorphous or crystalline CaP powders in aqueous medium. The cements set within at most 1 h at 37 degrees C in atmosphere saturated with water. The hardened cement is microporous and exhibits weak compressive strength. The setting reaction appeared to be essentially related to the formation of a highly carbonated nanocrystalline apatite phase by reaction of the metastable CaP phase with part or almost all of the metastable CaCO(3) phase. The recrystallization of metastable CaP varieties led to a final cement consisting of a highly carbonated poorly crystalline apatite analogous to bone mineral associated with various amounts of vaterite and/or aragonite. The presence of controlled amounts of CaCO(3) with a higher solubility than that of the apatite formed in the well-developed CaP cements might be of interest to increase resorption rates in biomedical cement and favors its replacement by bone tissue. Cytotoxicity testing revealed excellent cytocompatibility of CaCO(3)-CaP mixed cement compositions.

  6. Comparison of xenogenic bone bioimplant and calcium phosphate granules on experimental femoral bone defect healing in rabbits

    Directory of Open Access Journals (Sweden)

    GH Mousavi

    2012-05-01

    Full Text Available Rebuilding and renovation of lost bone whether because of physiologic or pathologic factors was one of the surgeons’ motivations from the past. Osteogenesis of decalcified bone induced by growth factors contained in it. This study is to assay probability effect of decalcified bone and calcium phosphate granules on osteogenesis which is made in experimental flaw and it is as a laboratory pattern in rabbit femur.This experimental study is made on 15 male rabbits. Animals were divided randomly into 3 groups (control and treatments.After induction of general anesthesia, 2 holes in size of 2 mm in diameter was made using a dental bit in femur width to medullary channel. After surgery, the control group left untreated and decalcified bones was placed in group 2 and calcium phosphate granules were placed in group 3. Histopathological and histomorphometrical studies for evaluation of bone healing were carried out in experimental rats, which were euthanized after 45 days of the experiment using hematoxylin-eosin (H&E staining method.In control group, defect seemed to be filled with woven bone and bone marrow spaces and in spite of a poor osteogenic activity. In calcium phosphate group, young bone trabeculas increased in number and bone trabeculas more organized. Histomorphometric results, observed that calcium phosphate granules has significant effect on bone healing than decalcified and control groups.

  7. In vitro bioactivity of soda lime borate glasses with substituted SrO in sodium phosphate solution

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk

    2014-09-01

    Full Text Available Borate glasses with the basic composition 0.6B2O3·0.2Na2O·0.2CaO and SrO progressively substituting CaO were prepared and characterized for their bone-bonding ability. The obtained glasses were thermally treated and converted to their glass-ceramic derivatives. In this study, FTIR spectral analyses were done for the prepared glasses and glass-ceramics before and after immersion in a sodium phosphate solution for extended times. The appearance of two IR bands within the spectral range 550–680 cm-1 after immersion confirms the formation of hydroxyapatite. X-ray diffraction studies and scanning electron microscope analysis supported the obtained infrared spectroscopy results. The solubility test (measurements of the weight loss in aqueous sodium phosphate solution was conducted for measuring the dissolution of both glassy and crystalline derivatives to find out the role of SrO. The corrosion behaviour of the glasses and glass-ceramics indicate the increase of weight loss with the increase of SrO content. Different suggested proposals were introduced to explain this abnormal behaviour.

  8. Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glasses.

    Science.gov (United States)

    Massera, J; Petit, L; Cardinal, T; Videau, J J; Hupa, M; Hupa, L

    2013-06-01

    In this paper, we investigate the effect of SrO substitution for CaO in 50P₂O₅-10Na₂-(40-x)CaO-xSrO glass system (x from 0 to 40) on the thermal and structural properties and also on the glass reactivity in simulated body fluid (SBF) in order to find new glass candidates for biomedical glass fibers. The addition of SrO at the expense of CaO seems to restrain the leaching of phosphate ions in the solution limiting the reduction of the solution pH. We observed the formation of an apatite layer at the surface of the glasses when in contact with SBF. SrO and MgO were found in the apatite layer of the strontium ion-containing glasses, the concentration of which increases with an increase of SrO content. We think that it is the presence of MgO and SrO in the layer which limits the leaching of phosphate in the solution and thus the glass dissolution in SBF.

  9. In vitro bioactivity behavior of modified multicomponent borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5

    Science.gov (United States)

    Marzouk, M. A.; ElBatal, F. H.; Ghoneim, N. A.

    2018-02-01

    Some multi-component borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5 were prepared. Multi-characterization techniques were carried out to investigate their bioactivity, corrosion weight loss after immersion in phosphate solution. Controlled thermal heat-treatment by two-step technique was done to convert the prepared glasses to their corresponding glass-ceramic derivatives. X-ray diffraction analysis was performed to identify the crystalline phases formed by thermal treatment. Infrared absorption of glasses and glass-ceramics reveal vibrational bands due to combined main triangular and tetrahedral borate groups in their specific wavenumbers besides some sharing of phosphate group. After immersion in the phosphate solution, two extra characteristic peaks are generated indicating the bioactivity of the studied glasses and glass-ceramics through the formation of calcium phosphate (hydroxyapatite). X-ray diffraction data indicate the formation of crystalline phases which are variable with the introduced dopants. The main crystalline phase identified is calcium borate together with some other phases some of which contain phosphate ions. These data indicate that the presence of CaO and P2O5 initiates phase separation and subsequent crystallization of the parent and doped glasses. Weight loss data indicate that glass-ceramics are obviously durable than the parent glasses. SEM micrographs of glass-ceramics before immersion show multiconstituent crystalline phases due to the basic chemical composition consisting of multicomponent mixed alkali and alkaline earth oxides beside P2O5 and with the main B2O3 constituent. After immersion, the crystalline phases are identified to be more distinct in different shapes because of the multi-composition involved.

  10. Production and characterization of setting hydraulic cements based on calcium phosphate; Obtencao e caracterizacao de cimentos de fosfato de calcio de pega hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luci C. de; Rigo, Eliana C.S.; Santos, Luis A dos; Boschi, Anselmo Ortega [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais; Carrodeguas, Raul G. [Universidad de La Habana, Habana (Cuba). Centro de Biomateriales

    1997-12-31

    Setting hydraulic cements based on calcium phosphate has risen great interest in scientific literature during recent years due to their total bio compatibility and to the fact that they harden `in situ`, providing easy handling and adaptation to the shape and dimensions of the defect which requires correction, differently from the predecessors, the calcium phosphate ceramics (Hydroxy apatite, {beta}-tri calcium phosphate, biphasic, etc) in the shape of dense or porous blocks and grains. In the work, three calcium-phosphate cement compositions were studied. The resulting compositions were characterized according to the following aspects: setting times, pH, mechanical resistance, crystalline phases, microstructure and solubility in SBF (Simulated Body Fluid). The results show a potential use for the compositions. (author) 6 figs., 4 tabs.

  11. Long-term conversion of 45S5 bioactive glass-ceramic microspheres in aqueous phosphate solution.

    Science.gov (United States)

    Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Huang, Wenhai

    2012-05-01

    The conversion of 45S5 glass and glass-ceramics to a hydroxyapatite (HA)-like material in vitro has been studied extensively, but only for short reaction times (typically glass-ceramic microspheres (designated 45S5c) in an aqueous phosphate solution. Microspheres of 45S5c (75-150 μm) were immersed for 10 years at room temperature (~25 °C) in K(2)HPO(4) solution with a concentration of 0.01 M or 1.0 M, and with a starting pH of 7.0 or 9.5. The reacted 45S5c microspheres and solutions were analyzed using structural and analytical techniques. Only 25-45 vol% of the 45S5c microspheres were converted to an HA-like material after the 10 year reaction. In solutions with a starting pH of 9.5, an increase in the K(2)HPO(4) concentration from 0.01 to 1.0 M resulted in a doubling of the volume of the microspheres converted to an HA-like material but had little effect on the composition of the HA-like product. In comparison, reaction of the 45S5c microspheres in the solution with a starting pH of 7.0 resulted in an HA-like product in the 0.01 M K(2)HPO(4) solution but a calcium pyrophosphate product, Ca(10)K(4)(P(2)O(7))(6).9H(2)O, in the 1.0 M solution. The consequences of these results for the long-term use of 45S5 glass-ceramics in biomedical applications are discussed.

  12. Calcium phosphate barrier for augmentation of bone in noncontained periodontal osseous defects: a novel approach.

    Science.gov (United States)

    Chopra, Aditi; Sivaraman, Karthik; Awataramaney, Tarun K

    2014-11-01

    The aim of this technique is to augment bone in non-contained osseous deformities using a unique self-sustaining calcium phosphate barrier. Bone has the inherent ability to regenerate completely if it is provided with a fracture space or an undisturbed enclosed scaffold. A secluded environment is essential as it provides a secured, sterile and stable wound system that regenerates lost bone by a process of osteopromotion. Reconstructive techniques using bone grafts and barrier membranes utilize this principle for augmentation of deficient bony sites by providing a closed environment that promotes clot stability, graft retention, and facilitates correct cell repopulation. However, in noncontained bone defects like one walled infrabony periodontal defect or sites with horizontal bone loss, regeneration of bone still remains an unrealistic situation since osseous topography at such sites does not favor membrane stability or bone grafts retention. This case report presents a promising technique to augment bone in areas with horizontal loss. Augmentation of bone in the interdental area with horizontal bone loss was accomplished by building a contained defect using a unique self sustaining calcium phosphate cement formulation. The calcium phosphate barrier stimulates the lost cortical plates and promotes graft retention and clot stability. At 6 months, there was a significant bone fill and trabecular formation in the interdental area and reduction in tooth mobility. This promising technique could prove to be a good alternative to the conventional approaches for treating osseous deformities. Calcium phosphate is a promising barrier graft for repair of noncontained periodontal osseous defect. This technique cues both the clinicians and manufacturers to develop moldable tissue engineered constructs for osseous repair.

  13. The calcium-paracaseinate-phosphate-complex under conditions similar to those in cheese

    NARCIS (Netherlands)

    Monib, A.M.M.F.

    1962-01-01

    The complex of calcium-paracaseinate-phosphate is the matrix substance of cheese. The changes it undergoes during maturing determines many characteristics of the finished product.

    The preliminary studies of the effect of pH and sodium chloride on the swelling and solubility of the

  14. Nano-scale study of the nucleation and growth of calcium phosphate coating

    NARCIS (Netherlands)

    Barrère, F.; Snel, M.M.E.; van Blitterswijk, Clemens; de Groot, K.; Layrolle, Pierre

    2004-01-01

    The nucleation and growth of a calcium phosphate (Ca-P) coating deposited on titanium implants from simulated body fluid was investigated by using atomic force microscopy (AFM) and environmental scanning electron microscopy (ESEM). Forty titanium alloy plates were assigned into two groups. One group

  15. Preparation and characterization of phosphate glasses containing titanium and vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Kaoua, S. [Laboratoire de Chimie du Solide, Faculte des Sciences Ain Chock, Casablanca (Morocco); Krimi, S. [Laboratoire de Chimie du Solide, Faculte des Sciences Ain Chock, Casablanca (Morocco)]. E-mail: krimisaida@yahoo.fr; El Jazouli, A. [Laboratoire de Chimie des Materiaux Solides, Faculte des Sciences Ben M' Sik, Casablanca (Morocco); Hlil, E.K. [Laboratoire de Cristallographie du CNRS, Grenoble (France)]. E-mail: hlil@grenoble.cnrs.fr; Waal, D. de [Department of Chemistry, University of Pretoria, 0002 Pretoria (South Africa)

    2007-02-21

    Na{sub 5-x}Ti{sub 1-x}V {sub x}(PO{sub 4}){sub 3} (0 {<=} x {<=} 1) phosphates glasses have been obtained in air by direct fusion of Na{sub 2}CO{sub 3}, TiO{sub 2}, V{sub 2}O{sub 5} and (NH{sub 4}){sub 2}HPO{sub 4}. Vitreous Na{sub 5}Ti(PO{sub 4}){sub 3} is colourless while the glasses containing vanadium are green, due to the reduction of V{sup 5+} to V{sup 4+}. Glass transition and crystallization temperatures (T {sub g}, T {sub c}) decrease when the amount of vanadium increases. EPR, Raman and UV-vis spectra have been investigated. The results are consistent with the presence of V{sup 4+} ions in distorted octahedra with very strong V-O bond.

  16. Evaluation of TeO2 content on the optical and spectroscopic properties of Yb3 +-doped calcium borotellurite glasses

    Science.gov (United States)

    Lima, A. M. O.; Gomes, J. F.; Hegeto, F. L.; Medina, A. N.; Steimacher, A.; Barboza, M. J.

    2018-03-01

    This paper reports the synthesis and the characterization of Yb3 +-doped calcium borotellurite (CaBTeX) glasses with composition 10CaF2-(29.5 - 0.4x)CaO-(60 - 0.6x)B2O3-xTeO2-0.5Yb2O3 (x = 10, 16, 22, 31 and 54 mol%). The results of XRD confirm the amorphous character of all the samples. The density, molar volume, refractive index and electronic polarizability values show an increase with TeO2 content. Otherwise, the optical band gap energy shows a decrease with the increase of TeO2 content. The replacement of CaO and B2O3 by TeO2 changes the glass structure, which decreases the excited Yb3 +/cm3 and, consequently, the luminescence intensity. The temperature dependence of luminescence was studied for all the samples up to 420 K. The fluorescence lifetime does not change significantly due to TeO2 addition. In addition, absorption and emission cross section were calculated and present high values as compared to other tellurite and phosphate glasses.

  17. Synthesis and characterization of nanosized calcium phosphates by flame spray pyrolysis, and their effect on osteogenic differentiation of stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ataol, Sibel; Tezcaner, Ayşen [Middle East Technical University, Department of Biomedical Engineering (Turkey); Duygulu, Ozgur [TUBITAK Marmara Research Center, Materials Institute (Turkey); Keskin, Dilek [Middle East Technical University, Department of Biomedical Engineering (Turkey); Machin, Nesrin E., E-mail: nesrinmachin@gmail.com [Kocaeli University, Department of Chemical Engineering (Turkey)

    2015-02-15

    The present study evaluates the synthesis of biocompatible osteoconductive and osteoinductive nano calcium phosphate (CaP) particles by industrially applied, aerosol-derived flame spray pyrolysis method for biomedical field. Calcium phosphate nanoparticles were produced in a range of calcium-to-phosphorus ratio, (1.20–2.19) in order to analyze the morphology and crystallinity changes, and to test the bioactivity of particles. The characterization results confirmed that nanometer-sized, spherical calcium phosphate particles were produced. The average primary particle size was determined as 23 nm by counting more than 500 particles in TEM pictures. XRD patterns, HRTEM, SAED, and SEM analyses revealed the amorphous nature of the as-prepared nano calcium phosphate particles at low Ca/P ratios. Increases in the specific surface area and crystallinity were observed with the increasing Ca/P ratio. TGA–DTA analysis showed that the thermally stable crystal phases formed after 700 °C. Cell culture studies were conducted with urine-derived stem cells that possess the characteristics of mesenchymal stem cells. Synthesized amorphous nanoparticles did not have cytotoxic effect at 5–50 μg/ml concentration range. Cells treated with the as-prepared nanoparticles had higher alkaline phosphatase (ALP) enzyme activity than control cells, indicating osteogenic differentiation of cells. A slight decrease in ALP activity of cells treated with two highest Ca:P ratios at 50 μg/ml concentration was observed at day 7. The findings suggest that calcium phosphate nanoparticles produced in this work have a potential to be used as biomaterials in biomedical applications.

  18. Synthesis and characterization of nanosized calcium phosphates by flame spray pyrolysis, and their effect on osteogenic differentiation of stem cells

    Science.gov (United States)

    Ataol, Sibel; Tezcaner, Ayşen; Duygulu, Ozgur; Keskin, Dilek; Machin, Nesrin E.

    2015-02-01

    The present study evaluates the synthesis of biocompatible osteoconductive and osteoinductive nano calcium phosphate (CaP) particles by industrially applied, aerosol-derived flame spray pyrolysis method for biomedical field. Calcium phosphate nanoparticles were produced in a range of calcium-to-phosphorus ratio, (1.20-2.19) in order to analyze the morphology and crystallinity changes, and to test the bioactivity of particles. The characterization results confirmed that nanometer-sized, spherical calcium phosphate particles were produced. The average primary particle size was determined as 23 nm by counting more than 500 particles in TEM pictures. XRD patterns, HRTEM, SAED, and SEM analyses revealed the amorphous nature of the as-prepared nano calcium phosphate particles at low Ca/P ratios. Increases in the specific surface area and crystallinity were observed with the increasing Ca/P ratio. TGA-DTA analysis showed that the thermally stable crystal phases formed after 700 °C. Cell culture studies were conducted with urine-derived stem cells that possess the characteristics of mesenchymal stem cells. Synthesized amorphous nanoparticles did not have cytotoxic effect at 5-50 μg/ml concentration range. Cells treated with the as-prepared nanoparticles had higher alkaline phosphatase (ALP) enzyme activity than control cells, indicating osteogenic differentiation of cells. A slight decrease in ALP activity of cells treated with two highest Ca:P ratios at 50 μg/ml concentration was observed at day 7. The findings suggest that calcium phosphate nanoparticles produced in this work have a potential to be used as biomaterials in biomedical applications.

  19. Calcium phosphate-gold nanoparticles nanocomposite for protein adsorption and mediator-free H{sub 2}O{sub 2} biosensor construction

    Energy Technology Data Exchange (ETDEWEB)

    Xu Qin [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou 225002 (China); Lu Guiju; Bian XiaoJun; Jin Gendi [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Wang Wei [School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051 (China); Hu Xiaoya, E-mail: xyhu@yzu.edu.cn [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou 225002 (China); Wang Yang; Yang Zhanjun [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China)

    2012-04-01

    This work reports a new method for the preparation and application of a kind of biocompatible calcium phosphate-gold nanoparticles (Ca{sub 3}(PO{sub 4}){sub 2}-AuNPs) nanocomposite. UV-vis spectroscopy and transmittance electron microscopy (TEM) have been used to monitor the formation process of the nanocomposite and to examine the interaction between calcium phosphate and gold nanoparticles (AuNPs). The nanocomposite has multiple sites and improved conductivity which make it suitable for the binding of proteins to construct electrochemical sensors. Myoglobin (Mb) adsorbed on the nanocomposite retained its native structure which was proved by Fourier transform infrared spectroscopy (FTIR). Direct electron transfer between the adsorbed Mb and the electrode was observed. Further results demonstrated that the adsorbed Mb has good electrocatalytic activity towards the reduction of H{sub 2}O{sub 2} in the absence of any mediator. Highlights: Black-Right-Pointing-Pointer Using gelatin modified gold nanoparticles to prepare needle-like calcium phosphate. Black-Right-Pointing-Pointer Calcium phosphate provides multiple sites for protein adsorption. Black-Right-Pointing-Pointer Gold nanoparticles act as electron tunneling. Black-Right-Pointing-Pointer Myoglobin adsorbed on the material showed direct electrochemistry and good catalysis.

  20. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2016-01-22

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  1. Characterization of iron phosphate glasses prepared by microwave heating; Obtencao de vidros fosfatos contendo ferro por meio do aquecimento em fornos de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Fabio Jesus Moreira de

    2006-07-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C), and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH{sub 4}){sub 2}HPO{sub 4} and Fe{sub 3}O{sub 4} or (NH{sub 4}){sub 2}HPO{sub 4} and Fe{sub 2}O{sub 3} were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  2. Calcium carbonate phosphate binding ion exchange filtration and accelerated denitrification improve public health standards and combat eutrophication in aquatic ecosystems.

    Science.gov (United States)

    Yanamadala, Vijay

    2005-01-01

    Cultural eutrophication, the process by which a lake becomes rich in dissolved nutrients as a result of point and nonpoint pollutant sources, is a major cause of the loss of natural lake ecosystems throughout the world. The process occurs naturally in all lakes, but phosphate-rich nutrient runoff from sources such as storm drains and agricultural runoff is a major cause of excess phosphate-induced eutrophication. Especially in Madrona Marsh, one of the last remaining vernal marshes in the greater Los Angeles area, California, cultural eutrophication has become a major problem. In this study, calcium carbonate was found to be an excellent phosphate binder, reducing up to 70% of the phosphates in a given sample of water, and it posed relatively negligent ecological repercussions. This study involved the testing of this principle in both the laboratory and the real ecosystem. A calcium carbonate lacing procedure was first carried out to determine its efficacy in Madrona Marsh. Through this, ammonia was found to interfere with the solubility of calcium carbonate and therefore to be a hindrance to the reduction of phosphate. Therefore, various approaches for reduction of ammonia were tested, including aeration, use of fiber growth media, and plants, mainly Caulerpa verticellata, chosen for it hardiness, primarily in an attempt to increase population of Nitrobacter and Nitrosomonas. All were successful in moderately reducing ammonia levels. In addition, soil sampling, sediment analysis, microscopic plant analysis, microorganism and macroinvertebrate identification, and rate law formulations were conducted. The effect of phosphate and ammonia reduction on the populations of enterobacteria was also an important focus of this experiment. Varying concentrations of phosphate, ammonia, and calcium carbonate in conjunction with phosphate were tested in Madrona Marsh to determine their effects on the populations of enteropathogens on nonspecific blood agar, MacConkey agar, and

  3. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.

    Science.gov (United States)

    Mohammadi, Maziar Shah; Ahmed, Ifty; Muja, Naser; Rudd, Christopher D; Bureau, Martin N; Nazhat, Showan N

    2011-12-01

    Incorporation of soluble bioactive glass fibres into biodegradable polymers is an interesting approach for bone repair and regeneration. However, the glass composition and its surface properties significantly affect the nature of the fibre-matrix interface and composite properties. Herein, the effect of Si and Fe on the surface properties of calcium containing phosphate based glasses (PGs) in the system (50P(2)O(5)-40CaO-(10-x)SiO(2)-xFe(2)O(3), where x = 0, 5 and 10 mol.%) were investigated. Contact angle measurements revealed a higher surface energy, and surface polarity as well as increased hydrophilicity for Si doped PG which may account for the presence of surface hydroxyl groups. Two PG formulations, 50P(2)O(5)-40CaO-10Fe(2)O(3) (Fe10) and 50P(2)O(5)-40CaO-5Fe(2)O(3)-5SiO(2) (Fe5Si5), were melt drawn into fibres and randomly incorporated into poly(lactic acid) (PLA) produced by melt processing. The ageing in deionised water (DW), mechanical property changes in phosphate buffered saline (PBS) and cytocompatibility properties of these composites were investigated. In contrast to Fe10 and as a consequence of the higher surface energy and polarity of Fe5Si5, its incorporation into PLA led to increased inorganic/organic interaction indicated by a reduction in the carbonyl group of the matrix. PLA chain scission was confirmed by a greater reduction in its molecular weight in PLA-Fe5Si5 composites. In DW, the dissolution rate of PLA-Fe5Si5 was significantly higher than that of PLA-Fe10. Dissolution of the glass fibres resulted in the formation of channels within the matrix. Initial flexural strength was significantly increased through PGF incorporation. After PBS ageing, the reduction in mechanical properties was greater for PLA-Fe5Si5 compared to PLA-Fe10. MC3T3-E1 preosteoblasts seeded onto PG discs, PLA and PLA-PGF composites were evaluated for up to 7 days indicating that the materials were generally cytocompatible. In addition, cell alignment along the PGF

  4. Cooperation of phosphates and carboxylates controls calcium oxalate crystallization in ultrafiltered urine.

    Science.gov (United States)

    Grohe, Bernd; Chan, Brian P H; Sørensen, Esben S; Lajoie, Gilles; Goldberg, Harvey A; Hunter, Graeme K

    2011-10-01

    Osteopontin (OPN) is one of a group of proteins found in urine that are believed to limit the formation of kidney stones. In the present study, we investigate the roles of phosphate and carboxylate groups in the OPN-mediated modulation of calcium oxalate (CaOx), the principal mineral phase found in kidney stones. To this end, crystallization was induced by addition of CaOx solution to ultrafiltered human urine containing either human kidney OPN (kOPN; 7 consecutive carboxylates, 8 phosphates) or synthesized peptides corresponding to residues 65-80 (pSHDHMDDDDDDDDDGD; pOPAR) or 220-235 (pSHEpSTEQSDAIDpSAEK; P3) of rat bone OPN. Sequence 65-80 was also synthesized without the phosphate group (OPAR). Effects on calcium oxalate monohydrate (COM) and dihydrate (COD) formation were studied by scanning electron microscopy. We found that controls form large, partly intergrown COM platelets; COD was never observed. Adding any of the polyelectrolytes was sufficient to prevent intergrowth of COM platelets entirely, inhibiting formation of these platelets strongly, and inducing formation of the COD phase. Strongest effects on COM formation were found for pOPAR and OPAR followed by kOPN and then P3, showing that acidity and hydrophilicity are crucial in polyelectrolyte-affected COM crystallization. At higher concentrations, OPAR also inhibited COD formation, while P3, kOPN and, in particular, pOPAR promoted COD, a difference explainable by the variations of carboxylate and phosphate groups present in the molecules. Thus, we conclude that carboxylate groups play a primary role in inhibiting COM formation, but phosphate and carboxylate groups are both important in initiating and promoting COD formation.

  5. Interaction between calcium and phosphate adsorption on goethite.

    Science.gov (United States)

    Rietra, R P; Hiemstra, T; van Riemsdijk, W H

    2001-08-15

    Quantitatively, little is known about the ion interaction processes that are responsible for the binding of phosphate in soil, water, and sediment, which determine the bioavailability and mobility of phosphate. Studies have shown that metal hydroxides are often responsible for the binding of PO4 in soils and sediments, but the binding behavior of PO4 in these systems often differs significantly from adsorption studies on metal hydroxides in laboratory. The interaction between PO4 and Ca adsorption was studied on goethite because Ca can influence the PO4 adsorption equilibria. Since adsorption interactions are very difficult to discriminate from precipitation reactions, conditions were chosen to prevent precipitation of Ca-PO4 solids. Adsorption experiments of PO4 and Ca, individually and in combination, show a strong interaction between adsorbed Ca and PO4 on goethite for conditions below the saturation index of apatite. It is shown that it is possible to predict the adsorption and interaction of PO4 and Ca on electrostatic arguments using the model parameter values derived from the single-ion systems and without invoking ternary complex formation or precipitation. The model enables the prediction of the Ca-PO4 interaction for environmentally relevant calcium and phosphate concentrations.

  6. Influences of ambient gases on the structure and the composition of calcium phosphate films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kim, Hye-Lee; Kim, Young-Sun; Kim, Dae-Joon; Lee, Won-Jun; Han, Jung-Suk

    2006-01-01

    Calcium phosphate films were prepared by using a pulsed KrF-laser deposition (PLD) method with a hydroxyapatite target in various ambient gases, such as Ar, O 2 and H 2 O. The influence of the ambient gas on the properties of the deposited films was investigated. The chamber pressure and the substrate temperature were fixed at 0.25 Torr and 600 .deg. C, respectively. Calcium-rich amorphous calcium phosphate films were deposited with a low density in Ar due to the preferential resputtering of phosphorus from the growing film. In an O 2 ambient, the density and the Ca/P ratio of the films were similar to those of the target. However, the deposited film was amorphous calcium phosphate and did not contain OH - groups. Polycrystalline hydroxyapatite films can be deposited in a H 2 O ambient because a sufficient supply of OH - groups from the ambient gas is essential for the growth of a hydroxyapatite film.

  7. Influences of ambient gases on the structure and the composition of calcium phosphate films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Lee; Kim, Young-Sun; Kim, Dae-Joon; Lee, Won-Jun [Sejong University, Seoul (Korea, Republic of); Han, Jung-Suk [Seoul National University, Seoul (Korea, Republic of)

    2006-11-15

    Calcium phosphate films were prepared by using a pulsed KrF-laser deposition (PLD) method with a hydroxyapatite target in various ambient gases, such as Ar, O{sub 2} and H{sub 2}O. The influence of the ambient gas on the properties of the deposited films was investigated. The chamber pressure and the substrate temperature were fixed at 0.25 Torr and 600 .deg. C, respectively. Calcium-rich amorphous calcium phosphate films were deposited with a low density in Ar due to the preferential resputtering of phosphorus from the growing film. In an O{sub 2} ambient, the density and the Ca/P ratio of the films were similar to those of the target. However, the deposited film was amorphous calcium phosphate and did not contain OH{sup -} groups. Polycrystalline hydroxyapatite films can be deposited in a H{sub 2}O ambient because a sufficient supply of OH{sup -} groups from the ambient gas is essential for the growth of a hydroxyapatite film.

  8. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29 (Italy); Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29 (Italy); Sapio, L.; Naviglio, S. [Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples (Italy)

    2016-08-01

    The objective of this work has been to develop low temperature sol-gel glass coatings to modify the substrate surface and to evaluate their bioactivity and biocompatibility. Glasses, based on SiO{sub 2}·CaO·P{sub 2}O{sub 5}, were synthesized by the sol-gel technique using tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as precursors of SiO{sub 2}, CaO and P{sub 2}O{sub 5}, respectively. Those materials, still in the sol phase, have been used to coat substrates by means of the dip-coating technique. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) has been used for characterize coatings and a microstructural analysis has been obtained using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated substrate was immersed in simulated body fluid (SBF) for 21 days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. In order to study the cell behavior and response to our silica based materials, prepared via the sol-gel method, with various Ca/P ratio and coating substrate, we have used the human osteoblast-like U2OS cell line. - Highlights: • Coatings consisting of SiO{sub 2}·CaO·P{sub 2}O{sub 5} glasses were prepared via sol-gel dip coating. • Ca/P molar ratio affects the film morphology and biocompatibility. • Higher cell proliferation was found in response to higher Ca/P ratios coatings. • A growth cell proliferation inhibition was observed in response to lower Ca/P ratio.

  9. In vitro and in vivo reactivity of porous, electrosprayed calcium phosphate coatings.

    NARCIS (Netherlands)

    Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Siebers, M.C.; Schoonman, J.; Jansen, J.A.

    2006-01-01

    The dissolution and/or precipitation behaviour of porous calcium phosphate (CaP) coatings, deposited using electrostatic spray deposition (ESD), was investigated (a) in vitro after soaking in simulated body fluid (SBF) for several time periods (2, 4, 8, and 12 weeks), and (b) in vivo after

  10. Microporous calcium phosphate ceramics driving osteogenesis through surface architecture.

    Science.gov (United States)

    Zhang, Jingwei; Barbieri, Davide; ten Hoopen, Hetty; de Bruijn, Joost D; van Blitterswijk, Clemens A; Yuan, Huipin

    2015-03-01

    The presence of micropores in calcium phosphate (CaP) ceramics has shown its important role in initiating inductive bone formation in ectopic sites. To investigate how microporous CaP ceramics trigger osteoinduction, we optimized two biphasic CaP ceramics (i.e., BCP-R and BCP-S) to have the same chemical composition, equivalent surface area per volume, comparable protein adsorption, similar ion (i.e., calcium and phosphate) exchange and the same surface mineralization potential, but different surface architecture. In particular, BCP-R had a surface roughness (Ra) of 325.4 ± 58.9 nm while for BCP-S it was 231.6 ± 35.7 nm. Ceramic blocks with crossing or noncrossing channels of 250, 500, 1000, and 2000 µm were implanted in paraspinal muscle of dogs for 12 weeks. The percentage of bone volume in the channels was not affected by the type of pores (i.e., crossing vs. closed) or their size, but it was greatly influenced by the ceramic type (i.e., BCP-R vs. BCP-S). Significantly, more bone was formed in the channels of BCP-R than in those of BCP-S. Since the two CaP ceramics differed only in their surface architecture, the results hereby demonstrate that microporous CaP ceramics may induce ectopic osteogenesis through surface architecture. © 2014 Wiley Periodicals, Inc.

  11. Effect of Oestrogen on Altering the Serum and Urinary Levels of Calcium, Phosphate and Magnesium in Hysterectomised Women Compared to Natural Menopausal South Indian Women: A Case Control Study.

    Science.gov (United States)

    Sonu, Yeldose; Avinash, S S; Sreekantha; Arun Kumar, K; Malathi, M; Shivashankara, A R

    2016-07-01

    Given the paucity of studies conducted to know the effect of suddenness and earlier onset of endocrinological changes associated with hysterectomy, on the serum and urinary levels of calcium, magnesium and phosphate the present study was conducted to compare the levels of calcium, magnesium and phosphate in serum and urine of hysterectomised and natural menopausal south Indian women. This is a cross-sectional observational study. The study included three groups of 30 healthy premenopausal, 30 early surgical menopausal and 30 natural post menopausal women. Women suffering from any endocrine disease were excluded. Analysis was performed in serum and urine sample. The levels of calcium, magnesium and phosphate in serum and calcium/creatinine, magnesium/creatinine and phosphate/creatinine ratio were estimated in urine by spectrophotometric method. Hysterectomised women (serum calcium: 8.7 ± 0.09 mg/dl; urine calcium/creatinine: 0.16 ± 0.02) have significantly low serum calcium (p women (serum magnesium: 2.1 ± 0.03; serum phosphate: 4.4 ± 0.16; urinary calcium/creatinine: 0.17 ± 0.02; urinary magnesium/creatinine: 0.09 ± 0.01) have significantly high serum magnesium (p = 0.016), serum phosphate (p = 0.043) and high urinary calcium/creatinine (p = 0.002), magnesium/creatinine ratio (p = 0.025) compared to healthy pre menopausal women. Post menopausal women (serum calcium: 9.1 ± 0.08) have significantly high serum calcium and phosphate compared to hysterectomised women (serum phosphate: 3.93 ± 0.11). Hysterectomised women have significantly low serum calcium, oestrogen and high urinary calcium/creatinine ratio compared to healthy premenopausal women and low serum calcium and low serum phosphate compared to natural postmenopausal women. Natural postmenopausal women had low serum oestrogen and high serum magnesium, serum phosphate, urinary calcium creatinine ratio and urinary magnesium creatinine ratio compared to healthy premenopausal

  12. 25-Hydroxycholecalciferol as an antagonist of adverse corticosteroid effects on phosphate and calcium metabolism in man.

    Science.gov (United States)

    Nuti, R; Vattimo, A; Turchetti, V; Righi, G

    1984-10-01

    The present study was performed in 30 patients who needed steroid therapy: courses of triamcinolone or DTM 8-15 given orally lasted 30 days. In 15 of these patients glucoactive corticosteroids were administered in combination with 5 micrograms/day of 25OH-vitamin D3 (25OHD3). 47Calcium oral test and 99mTc-MDP kinetics, as an index of bone turnover, were performed at the beginning of the therapy and after 30 days. At the end of treatment a significant improvement of intestinal radiocalcium transport together with a decrease in bone turnover in the group of patients treated with 25OHD3 was observed. As it concerns plasma calcium level, inorganic phosphate, the urinary excretion of calcium, phosphate and hydroxyproline no significant difference between the two groups examined were noticed. These results indicate that the adverse effects of glucoactive corticosteroids on intestinal calcium transport and bone turnover may be counteracted by the combined administration of physiological doses of 25OHD3.

  13. Bioactivity of thermal plasma synthesized bovine hydroxyapatite/glass ceramic composites

    International Nuclear Information System (INIS)

    Yoganand, C P; Selvarajan, V; Rouabhia, Mahmoud; Cannillo, Valeria; Sola, Antonella

    2010-01-01

    Bone injuries and failures often require the inception of implant biomaterials. Research in this area is receiving increasing attention worldwide. A variety of artificial bone materials, such as metals, polymeric materials, composites and ceramics, are being explored to replace diseased bones. Calcium phosphate ceramics are currently used as biomaterials for many applications in both dentistry and orthopedics. Bioactive silicate-based glasses show a higher bioactive behaviour than calcium phosphate materials. It is very interesting to study the mixtures of HA and silicate-based glasses. In the present study; natural bovine hydroxyapatite / SiO 2 -CaO-MgO glass composites were produced using the Transferred arc plasma (TAP) melting method. TAP melting route is a brisk process of preparation of glass-ceramics in which the raw materials are melted in the plasma and crystallization of the melt occurs while cooling down at a much faster rate in relatively short processing times compared to the conventional methods of manufacture of glass ceramics/composites. It is well known that; one essential step to the understanding of the biological events occurring at the bone tissue/material interface is the biological investigation by in vitro tests. Cell lines are commonly used for biocompatibility tests, and are very efficient because of their reproducibility and culture facility. In this study, we report the results of a study on the response of primary cultures of human fibroblast cells to TAP melted bioactive glass ceramics.

  14. Influence of pulse ratio on codeposition of copper species with calcium phosphate coatings on titanium by means of electrochemically assisted deposition.

    Science.gov (United States)

    Wolf-Brandstetter, Cornelia; Oswald, Steffen; Bierbaum, Susanne; Wiesmann, Hans-Peter; Scharnweber, Dieter

    2014-01-01

    Aim of this study was to combine the well-known biocompatibility and ostoeconductivity of thin calcium phosphate coatings on titanium with proangiogenic signals from codeposited copper species. Copper species could be integrated in mineral layers based on hydroxyapatite by means of electrochemically assisted deposition from electrolytes containing calcium, phosphate, and copper ions. Different combinations of duration and intensity of galvanostatic pulses result in different amounts of deposited calcium phosphate and of copper species even for the same applied total charge. Absolute amounts of copper varied between 2.1 and 6.9 μg/cm², and the copper was distributed homogeneously as shown by EDX mapping. The presence of copper did not change the crystalline phase of deposited calcium phosphate (hydroxyapatite) but provoked a significant decrease in deposited amounts by factor 3 to 4. The copper was deposited mainly as Cu(I) species with a minor fraction of basic copper phosphates. Reduction of copper occurred not only at the surface of titanium but also within the hydroxyapatite coating due to the reaction with hydrogen produced by the electrolysis of water during the cathodic polarization of the substrate. Copyright © 2013 Wiley Periodicals, Inc.

  15. In vitro and in vivo study of commercial calcium phosphate cement HydroSet™.

    Science.gov (United States)

    Kent, Niall W; Blunn, Gordon; Karpukhina, Natalia; Davis, Graham; de Godoy, Roberta Ferro; Wilson, Rory M; Coathup, Melanie; Onwordi, Lyris; Quak, Wen Yu; Hill, Robert

    2018-01-01

    The commercial calcium phosphate cement, HydroSet™, was investigated in vitro, studying phase formation, compressive strength and setting time, followed by an ovine in vivo study to measure osseointegration, bone apposition and bone-to-graft contact. The X-ray diffraction and 31 P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) results showed the initial formation of octacalcium phosphate and hydroxyapatite at one hour. Over 7 days the octacalcium phosphate transformed to apatite, which was the only crystalline phase of the cement at 28 days. This apatite phase is thought to be a calcium deficient apatite. In the scanning electron microscopy, histological images of 12-week ovine in vivo results showed a high degree of osseointegration, 92.5%. Compressive strength comparisons between in vitro and in vivo measurements showed a dramatic difference between the in vitro measurements (highest 25.4 MPa) and in vivo (95 MPa), attributed to bone ingrowth into the cement in vivo. To the best of our knowledge this is the first time phase evolution of HydroSet™ and the properties studied in vitro complement the in vivo evaluation of the cement in a publication. The significance of the new finding of initial formation of octacalcium phosphate in this cement is discussed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 21-30, 2018. © 2016 Wiley Periodicals, Inc.

  16. Effect of different calcium phosphate scaffold ratios on odontogenic differentiation of human dental pulp cells

    International Nuclear Information System (INIS)

    AbdulQader, Sarah Talib; Kannan, Thirumulu Ponnuraj; Rahman, Ismail Ab; Ismail, Hanafi; Mahmood, Zuliani

    2015-01-01

    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300 μm and 65% porosity were prepared from phosphoric acid (H 2 PO 4 ) and calcium carbonate (CaCO 3 ) sintered at 1000 °C for 2 h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration. - Highlights: • BCPs of different HA/β-TCP ratios influence cell microenvironment. • BCP20 decreases cell viability of HDPCs as compared to BCP50 and BCP80. • HDPCs cultured with BCP20 express highest ALP activity. • HDPCs cultured with BCP20 up-regulate BSP, DMP-1 and DSPP gene expressions. • BCP20 can support HDPC differentiation for dentin tissue regeneration

  17. Effect of different calcium phosphate scaffold ratios on odontogenic differentiation of human dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    AbdulQader, Sarah Talib [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Department of Pedodontic and Preventive Dentistry, College of Dentistry, University of Baghdad, Baghdad (Iraq); Kannan, Thirumulu Ponnuraj, E-mail: kannan@usm.my [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Rahman, Ismail Ab [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Ismail, Hanafi [School of Materials and Minerals Resource Engineering, Universiti Sains Malaysia, 14300 Penang (Malaysia); Mahmood, Zuliani [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-01

    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300 μm and 65% porosity were prepared from phosphoric acid (H{sub 2}PO{sub 4}) and calcium carbonate (CaCO{sub 3}) sintered at 1000 °C for 2 h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration. - Highlights: • BCPs of different HA/β-TCP ratios influence cell microenvironment. • BCP20 decreases cell viability of HDPCs as compared to BCP50 and BCP80. • HDPCs cultured with BCP20 express highest ALP activity. • HDPCs cultured with BCP20 up-regulate BSP, DMP-1 and DSPP gene expressions. • BCP20 can support HDPC differentiation for dentin tissue regeneration.

  18. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-09-01

    The lead-iron-phosphate (Pb-Fe-P) glass developed at Oak Ridge National Laboratory was evaluated for its potential as an improvement over the current reference nuclear waste form, borosilicate (B-Si) glass. The evaluation was conducted as part of the Second Generation HLW Technology Subtask of the Nuclear Waste Treatment Program at Pacific Northwest Laboratory. The purpose of this work was to investigate possible alternatives to B-Si glass as second-generation waste forms. While vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass, severe crystallization or devitrification leading to deteriorated chemical durability would result if this glass were poured into large canisters as is the procedure with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the potential performance advantages of the Pb-Fe-P material in a nuclear waste form, the processing method would have to cool the material rapidly to retain its vitreous structure

  19. Influences of the steam sterilization on the properties of calcium phosphate porous bioceramics.

    Science.gov (United States)

    Li, Xiangfeng; Guo, Bo; Xiao, Yumei; Yuan, Tun; Fan, Yujiang; Zhang, Xingdong

    2016-01-01

    The influences of steam sterilization on the physicochemical properties of calcium phosphate (Ca-P) porous bioceramics, including β-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP) and hydroxyapatite (HA) are investigated. After being steam sterilized in an autoclave (121 °C for 40 min), the porous bioceramics are dried and characterized. The steam sterilization has no obvious effects on the phase composition, thermal stability, pH value and dissolubility of β-TCP porous bioceramic, but changes its morphology and mechanical strength. Meanwhile, the steam sterilization leads to the significant changes of the morphology, phase composition, pH value and dissolubility of BCP porous bioceramic. The increase of dissolubility and mechanical strength, the decrease of pH value of the immersed solution and partial oriented growth of crystals are also observed in HA porous bioceramic after steam sterilization. These results indicate that the steam sterilization can result in different influences on the physicochemical properties of β-TCP, BCP and HA porous bioceramics, thus the application of the steam sterilization on the three kinds of Ca-P porous bioceramics should be considered carefully based on the above changed properties.

  20. Phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses.

    Science.gov (United States)

    Li, Ailing; Qiu, Dong

    2011-12-01

    The possibility of using phytic acid as a precursor to synthesize CaO-P(2)O(5)-SiO(2) glasses by sol-gel method has been explored and the pseudo ternary phase diagram has been established. It was shown that gel-glasses over a broader range of compositions could be prepared compared to other phosphorus precursors or melt-quenching method. Furthermore, phytic acid was found to assist calcium being incorporated into glass networks. In vitro tests in simulated body fluid (SBF) were performed on the above gel-glasses and it was found that they were bioactive over a much broader compositional range especially at high phosphate content, thus enabling one to design bioactive materials with various degradation rates by adjusting the phosphate content.

  1. Optical bistability in Er-Yb codoped phosphate glass microspheres at room temperature

    NARCIS (Netherlands)

    Warda, Jonathan M.; O'Shea, Danny G.; Shortt, Brian J.; Chormaic, Sile Nic

    2007-01-01

    We experimentally demonstrate optical bistability in Er(3+)-Yb(3+) phosphate glass microspheres at 295 K. Bistability is associated with both Er(3+) fluorescence and lasing behavior, and chromatic switching. The chromatic switching results from an intrinsic mechanism exploiting the thermal coupling

  2. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites

    International Nuclear Information System (INIS)

    Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B.

    2015-01-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg +2 and Ca +2 ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg +2 and Ca +2 ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg +2 , calcium magnesium phosphates (CMPs) which release Mg +2 and Ca +2 , and hydroxyapatites (HAs) which release Ca +2 were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7 days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg + 2 and Ca +2 ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. - Highlights: • Role of Mg 2+ and Ca 2+ ions in proliferation, and differentiation

  3. Aptamer-Conjugated Calcium Phosphate Nanoparticles for Reducing Diabetes Risk via Retinol Binding Protein 4 Inhibition.

    Science.gov (United States)

    Torabi, Raheleh; Ghourchian, Hedayatollah; Amanlou, Massoud; Pasalar, Parvin

    2017-06-01

    Inhibition of the binding of retinol to its carrier, retinol binding protein 4, is a new strategy for treating type 2 diabetes; for this purpose, we have provided an aptamer-functionalized multishell calcium phosphate nanoparticle. First, calcium phosphate nanoparticles were synthesized and conjugated to the aptamer. The cytotoxicity of nanoparticles releases the process of aptamer from nanoparticles and their inhibition function of binding retinol to retinol binding protein 4. After synthesizing and characterizing the multishell calcium phosphate nanoparticles and observing the noncytotoxicity of conjugate, the optimum time (48 hours) and the pH (7.4) for releasing the aptamer from the nanoparticles was determined. The half-maximum inhibitory concentration (IC 50 ) value for inhibition of retinol binding to retinol binding protein 4 was 210 femtomolar (fmol). The results revealed that the aptamer could prevent connection between retinol and retinol binding protein 4 at a very low IC 50 value (210 fmol) compared to other reported inhibitors. It seems that this aptamer could be used as an efficient candidate not only for decreasing the insulin resistance in type 2 diabetes, but also for inhibiting the other retinol binding protein 4-related diseases. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  4. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction

    International Nuclear Information System (INIS)

    Guo, H; Wei, J; Liu, C S

    2006-01-01

    A new type of composite bone cement was prepared and investigated by adding calcium sulfate (CS) to calcium phosphate cement (CPC). This composite cement can be handled as a paste and easily shaped into any contour, which can set within 5-20 min, the setting time largely depending on the liquid-solid (L/S) ratio; adding CS to CPC had little effect on the setting time of the composite cements. No obvious temperature increase and pH change were observed during setting and immersion in simulated body fluid (SBF). The compressive strength of the cement decreased with an increase in the content of CS. The degradation rate of the composite cements increased with time when the CS content was more than 20 wt%. Calcium deficient apatite could form on the surface of the composite cement because the release of calcium into SBF from the dissolution of CS and the apatite of the cement induced the new apatite formation; increasing the content of CS in the composite could improve the bioactivity of the composite cements. The results suggested that composite cement has a reasonable setting time, excellent degradability and suitable mechanical strength and bioactivity, which shows promising prospects for development as a clinical cement

  5. Effect of calcium hydroxide on mechanical strength and biological properties of bioactive glass.

    Science.gov (United States)

    Shah, Asma Tufail; Batool, Madeeha; Chaudhry, Aqif Anwar; Iqbal, Farasat; Javaid, Ayesha; Zahid, Saba; Ilyas, Kanwal; Bin Qasim, Saad; Khan, Ather Farooq; Khan, Abdul Samad; Ur Rehman, Ihtesham

    2016-08-01

    In this manuscript for the first time calcium hydroxide (Ca(OH)2) has been used for preparation of bioactive glass (BG-2) by co-precipitation method and compared with glass prepared using calcium nitrate tetrahydrate Ca(NO3)2·4H2O (BG-1), which is a conventional source of calcium. The new source positively affected physical, biological and mechanical properties of BG-2. The glasses were characterized by Fourier transform infrared (FTIR), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA-DSC), BET surface area analysis and Knoop hardness. The results showed that BG-2 possessed relatively larger surface properties (100m(2)g(-1) surface area) as compared to BG-1 (78m(2)g(-1)), spherical morphology and crystalline phases (wollastonite and apatite) after sintering at lower than conventional temperature. These properties contribute critical role in both mechanical and biological properties of glasses. The Knoop hardness measurements revealed that BG-2 possessed much better hardness (0.43±0.06GPa at 680°C and 2.16±0.46GPa at 980°C) than BG-1 (0.24±0.01 at 680°C and 0.57±0.07GPA at 980°C) under same conditions. Alamar blue Assay and confocal microscopy revealed that BG-2 exhibited better attachment and proliferation of MG63 cells. Based on the improved biological properties of BG-2 as a consequent of novel calcium source selection, BG-2 is proposed as a bioactive ceramic for hard tissue repair and regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. In vivo performance of microstructured calcium phosphate formulated in novel water-free carriers

    NARCIS (Netherlands)

    Davison, N.L.; Yuan, Huipin; de Bruijn, Joost Dick; Barrere-de Groot, F.YF.

    2012-01-01

    Osteoinductive calcium phosphate (CaP) ceramics can be combined with polymeric carriers to make shapeable bone substitutes as an alternative to autologous bone; however, carriers containing water may degrade the ceramic surface microstructure, which is crucial to bone formation. In this study five

  7. Comparison of the adjuvant activity of aluminum hydroxide and calcium phosphate on the antibody response towards Bothrops asper snake venom.

    Science.gov (United States)

    Olmedo, Hidekel; Herrera, María; Rojas, Leonardo; Villalta, Mauren; Vargas, Mariángela; Leiguez, Elbio; Teixeira, Catarina; Estrada, Ricardo; Gutiérrez, José María; León, Guillermo; Montero, Mavis L

    2014-01-01

    The adjuvanticity of aluminum hydroxide and calcium phosphate on the antibody response in mice towards the venom of the snake Bothrops asper was studied. It was found that, in vitro, most of the venom proteins are similarly adsorbed by both mineral salts, with the exception of some basic phospholipases A2, which are better adsorbed by calcium phosphate. After injection, the adjuvants promoted a slow release of the venom, as judged by the lack of acute toxicity when lethal doses of venom were administered to mice. Leukocyte recruitment induced by the venom was enhanced when it was adsorbed on both mineral salts; however, venom adsorbed on calcium phosphate induced a higher antibody response towards all tested HPLC fractions of the venom. On the other hand, co-precipitation of venom with calcium phosphate was the best strategy for increasing: (1) the capacity of the salt to couple venom proteins in vitro; (2) the venom ability to induce leukocyte recruitment; (3) phagocytosis by macrophages; and (4) a host antibody response. These findings suggest that the chemical nature is not the only one determining factor of the adjuvant activity of mineral salts.

  8. An inorganic electroluminescent device using calcium phosphate doped with Eu{sup 3+} as the luminescent layer

    Energy Technology Data Exchange (ETDEWEB)

    Koide, Takuhiro [Department of Chemistry and Chemical Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa-shi, Yamagata 992-8510 (Japan); Ito, Michimasa [Tokai Rika Co. Ltd., 3-260 Toyota, Oguchi-cho, Niwa-gun, Aichi 480-0195 (Japan); Kawai, Takahiro [Department of Biochemical Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa-shi, Yamagata 992-8510 (Japan); Matsushima, Yuta, E-mail: ymatsush@yz.yamagata-u.ac.jp [Department of Chemistry and Chemical Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa-shi, Yamagata 992-8510 (Japan)

    2013-03-20

    Highlights: ► A thin film electroluminescent device was fabricated with a calcium phosphate as the light emitting layer. ► The light emitting layer was formed on the BaTiO{sub 3} disk by a spray pyrolysis method. ► Among the examined calcium phosphates, β-Ca{sub 3}(PO{sub 4}){sub 2}:Eu{sup 3+} showed the best photo- and electroluminescent properties. -- Abstract: In this work, the availability of calcium phosphates for the light emitting layer of a thin-film electroluminescent (TFEL) device was investigated. The goal of this work was to develop an electronic device with ordinary materials such as a calcium phosphate, the principal ingredient of the skeleton of the vertebrate. Compositions of 2CaO·P{sub 2}O{sub 5} (Ca{sub 2}P{sub 2}O{sub 7}), 3CaO·P{sub 2}O{sub 5} (Ca{sub 3}(PO{sub 4}){sub 2}) and 4CaO·P{sub 2}O{sub 5} (Ca{sub 4}O(PO{sub 4}){sub 2}) were examined as the candidates for the light emitting layer. Before composing the TFEL device, the photoluminescence (PL) properties of the three compositions were investigated in the powder form to evaluate the performance as the light emitting layer. Among the examined calcium phosphates, Eu-doped β-Ca{sub 3}(PO{sub 4}){sub 2} showed the best PL properties. It showed typical red-emission from Eu{sup 3+}. The PL intensity was enhanced with the heat-treatment temperature and the optimal temperature was 1250 °C. Then, a TFEL device was prepared by a spray pyrolysis method with the β-Ca{sub 3}(PO{sub 4}){sub 2}:Eu{sup 3+} phosphor layer on a BaTiO{sub 3} disk. The TFEL device exhibited the red emission originating in Eu{sup 3+} at 610 nm under applying alternating voltage. Different from the power sample, the intensity of EL decreased with the heat-treatment temperature from 1000 to 1250 °C. The deterioration of EL at the higher temperatures was attributed to chemical interaction between the phosphor layer and the BaTiO{sub 3} disk.

  9. Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers

    International Nuclear Information System (INIS)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2014-01-01

    Molecular dynamics simulations are used to study the structural and dynamic properties of calcium aluminosilicate, (CaO-Al 2 O 3 ) 1−x (SiO 2 ) x , glass formers along three joins, namely, R = 1, 1.57, and 3, in which the silica content x can vary from 0 to 1. For all compositions, we determined the glass-transition temperature, the abundances of the non-bridging oxygen, triclusters, and AlO 5 structural units, as well as the fragility from the temperature evolution of the α-relaxation times. We clearly evidence the role played by the non-bridging oxygen linked either to Al atoms or Si atoms in the evolution of the glass-transition temperature as well as of the fragility as a function of silica content along the three joins

  10. Comparison study of biomimetic strontium-doped calcium phosphate coatings by electrochemical deposition and air plasma spray: morphology, composition and bioactive performance.

    Science.gov (United States)

    Li, Ling; Lu, Xia; Meng, Yizhi; Weyant, Christopher M

    2012-10-01

    In this study, strontium-doped calcium phosphate coatings were deposited by electrochemical deposition and plasma spray under different process parameters to achieve various coating morphologies. The coating composition was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy while the cytocompatibility and bioactivity of the strontium-doped calcium phosphate coatings were evaluated using bone cell culture using MC3T3-E1 osteoblast-like cells. The addition of strontium leads to enhanced proliferation suggesting the possible benefits of strontium incorporation in calcium phosphate coatings. The morphology and composition of deposited coatings showed a strong influence on the growth of cells.

  11. Ectopic bone formation in bone marrow stem cell seeded calcium phosphate scaffolds as compared to autograft and (cell seeded allograft

    Directory of Open Access Journals (Sweden)

    J O Eniwumide

    2007-08-01

    Full Text Available Improvements to current therapeutic strategies are needed for the treatment of skeletal defects. Bone tissue engineering offers potential advantages to these strategies. In this study, ectopic bone formation in a range of scaffolds was assessed. Vital autograft and devitalised allograft served as controls and the experimental groups comprised autologous bone marrow derived stem cell seeded allograft, biphasic calcium phosphate (BCP and tricalcium phosphate (TCP, respectively. All implants were implanted in the back muscle of adult Dutch milk goats for 12 weeks. Micro-computed tomography (µCT analysis and histomorphometry was performed to evaluate and quantify ectopic bone formation. In good agreement, both µCT and histomorphometric analysis demonstrated a significant increase in bone formation by cell-seeded calcium phosphate scaffolds as compared to the autograft, allograft and cell-seeded allograft implants. An extensive resorption of the autograft, allograft and cell-seeded allograft implants was observed by histology and confirmed by histomorphometry. Cell-seeded TCP implants also showed distinct signs of degradation with histomorphometry and µCT, while the degradation of the cell-seeded BCP implants was negligible. These results indicate that cell-seeded calcium phosphate scaffolds are superior to autograft, allograft or cell-seeded allograft in terms of bone formation at ectopic implantation sites. In addition, the usefulness of µCT for the efficient and non-destructive analysis of mineralised bone and calcium phosphate scaffold was demonstrated.

  12. The effects of uranium oxide high-level waste on the structure of iron phosphate glasses

    International Nuclear Information System (INIS)

    Badyal, Y.

    1998-01-01

    Because of their unusually good chemical durability, iron phosphate glasses are a natural candidate for a nuclear waste disposal glass. We have studied the effects of UO 2 high-level waste on the structure of iron phosphate glasses with both neutron and high-energy x-ray diffraction using the GLAD instrument of the Intense Pulsed Neutron Source and the 1-BM bending magnet beamline of the Advanced Photon Source, respectively. The results of neutron scattering, which is mostly sensitive to correlations involving light atoms i.e. O-O, Fe-O and P-O, suggest the main structural features of the base glass are largely unaffected by the addition of UO 2 . The nearest-neighbor P-O, Fe-O and O-O peaks remain at the same position in real space and their intensities scale approximately with concentration. These findings are consistent with the earlier results of Raman scattering and EXAFS on the Fe-K edge wherein both cases the spectra remain similar to the base glass. High-energy x-ray scattering which is sensitive to correlations involving the heavier atoms and thus complements the neutron measurements, is also consistent with uranium occupying interstitial sites in the relatively undisturbed base glass structure. However, important questions remain as to the precise local structure and oxidation state of uranium in these glasses

  13. Phosphate content influence on structural, spectroscopic, and lasing properties of Er,Yb-doped potassium-lanthanum phosphate glasses

    Czech Academy of Sciences Publication Activity Database

    Šulc, J.; Švejkar, R.; Jelínková, H.; Nejezchleb, K.; Nitsch, Karel; Cihlář, Antonín; Král, Robert; Ledinský, Martin; Fejfar, Antonín; Rodová, Miroslava; Zemenová, Petra; Nikl, Martin

    2016-01-01

    Roč. 55, č. 4 (2016), 1-10, č. článku 047102. ISSN 0091-3286 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : erbium laser s * infrared laser s * laser materials modification * phosphate glass * diode -pumped eye-safe solid state laser Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.082, year: 2016

  14. Encapsulation of nodal segments of lobelia chinensis

    Directory of Open Access Journals (Sweden)

    Weng Hing Thong

    2015-04-01

    Full Text Available Lobelia chinensis served as an important herb in traditional chinese medicine. It is rare in the field and infected by some pathogens. Therefore, encapsulation of axillary buds has been developed for in vitro propagation of L. chinensis. Nodal explants of L. chinensis were used as inclusion materials for encapsulation. Various combinations of calcium chloride and sodium alginate were tested. Encapsulation beads produced by mixing 50 mM calcium chloride and 3.5% sodium alginate supported the optimal in vitro conversion potential. The number of multiple shoots formed by encapsulated nodal segments was not significantly different from the average of shoots produced by non-encapsulated nodal segments. The encapsulated nodal segments regenerated in vitro on different medium. The optimal germination and regeneration medium was Murashige-Skoog medium. Plantlets regenerated from the encapsulated nodal segments were hardened, acclimatized and established well in the field, showing similar morphology with parent plants. This encapsulation technology would serve as an alternative in vitro regeneration system for L. chinensis.

  15. Glasses and nuclear waste vitrification

    International Nuclear Information System (INIS)

    Ojovan, Michael I.

    2012-01-01

    Glass is an amorphous solid material which behaves like an isotropic crystal. Atomic structure of glass lacks long-range order but possesses short and most probably medium range order. Compared to crystalline materials of the same composition glasses are metastable materials however crystallisation processes are kinetically impeded within times which typically exceed the age of universe. The physical and chemical durability of glasses combined with their high tolerance to compositional changes makes glasses irreplaceable when hazardous waste needs immobilisation for safe long-term storage, transportation and consequent disposal. Immobilisation of radioactive waste in glassy materials using vitrification has been used successfully for several decades. Nuclear waste vitrification is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting wasteform. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro- and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material. Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes. In addition to relatively homogeneous glasses novel glass composite materials are used to immobilise problematic waste streams. (author)

  16. Infrared and Raman investigation of rare-earth phosphate glasses for potential use as radioactive waste forms

    International Nuclear Information System (INIS)

    Morgan, S.H.

    1989-01-01

    This project was designed to investigate the properties of the rare-earth phosphate glass systems CeO 2 -P 2 O 5 and Pr 2 O 3 -P 2 O 5 for potential use as radioactive waste glasses. The glass-forming region and optimum processing parameters of these glass systems were investigated. The structure of the host glasses and glassed loaded with simulated waste elements was investigated using Raman and infrared spectroscopy. Because of the radical differences in the spectra of the molybdenum-loaded glasses, the structure of the MoO 3 -P 2 O 5 glass system was also investigated. 29 refs., 8 figs., 2 tabs

  17. Compression and rupture cycles as tools for compressibility characterization application to apatitic calcium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Pontier, C. [S.P.C.T.S., Faculte des Sciences, Limoges (France); G.E.F., Faculte de Pharmacie, Limoges (France); Viana, M.; Chulia, D. [G.E.F., Faculte de Pharmacie, Limoges (France); Champion, E.; Bernache-Assollant, D. [S.P.C.T.S., Faculte des Sciences, Limoges (France)

    2002-07-01

    Measurement of the cycles of compression and rupture helps to understand the phenomena occurring during compaction. Different parameters are deduced from the cycles, such as the packing of the material and energies used during compression. The ratio between the energy of rupture and the energy of compaction defines the efficacy of compaction of the materials. This technique is applied to ceramic materials using apatitic calcium phosphates with a Ca/P molar ratio of 1.5 (apatitic tricalcium phosphate and {beta}-tricalcium phosphate) and 1.667 (stoichiometric hydroxyapatite). The methodology uses a uniaxial instrumented press to plot the cycles of compaction and rupture. The results point out the good compaction and cohesion properties of apatitic tricalcium phosphate, compared to the other apatitic materials. (orig.)

  18. Luminescence properties of Ce3+ doped gadolinium-calcium-silicaborate glass scintillator

    International Nuclear Information System (INIS)

    Park, J.M.; Ha, D.H.; Kaewjeang, S.; Maghanemi, U.; Kothan, S.; Kaewkhao, J.; Kim, H.J.

    2016-01-01

    In this work, the Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators of the composition ratio 25Gd 2 O 3 :10CaO:10SiO 2 :(55−x)B 2 O 3 :xCeF 3 , have been fabricated by using the melt-quenching technique. The doping concentration of the Ce 3+ was varied from 0.05 mol% to 2.5 mol%. The 4f-5d transition of the Ce 3+ allowed scintillation with a fast decay time. The absorption spectrum, X-ray induced emission spectrum, photo luminescence spectrum, laser luminescence spectrum and decay time of the scintillators were measured for studying the luminescence properties. From the X-ray induced emission spectrum result, we checked the trend between doping concentration and light yield. The laser induced luminescence spectrum was measured while changing the temperature from 300 K to 10 K. We also measured the decay time by using the laser excitation of the 0.15 mol% Ce 3+ doped glass scintillator. - Highlights: • Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators were developed. • Glass is easily fabricated with large sizes and various doping materials. • The luminescence properties are studied by using various radiation sources. • The light yield and decay time were measured at low temperature. • One decay time component is found.

  19. The efficiency of child formula dentifrices containing different calcium and phosphate compounds on artificial enamel caries.

    Science.gov (United States)

    Rirattanapong, Praphasri; Vongsavan, Kadkao; Saengsirinavin, Chavengkiat; Khumsub, Ploychompoo

    2016-01-01

    Fluoride toothpaste has been extensively used to prevent dental caries. However, the risk of fluorosis is concerning, especially in young children. Calcium phosphate has been an effective remineralizing agent and is present in commercial dental products, with no risk of fluorosis to users. This in vitro study aimed to compare the effects of different calcium phosphate compounds and fluoride-containing dentifrices on artificial caries in primary teeth. Fifty sound primary incisors were coated with nail varnish, leaving two 1 mm 2 windows on the labial surface before immersion in demineralizing solution for 96 hours to produce artificial enamel lesions. Subsequently, one window from each tooth was coated with nail varnish, and all 50 teeth were divided into five groups ( n = 10); group A - deionized water; group B - casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste (Tooth Mousse); group C - 500 ppm F (Colgate Spiderman ® ); group D - nonfluoridated toothpaste with triple calcium phosphate (Pureen ® ); and group E - tricalcium phosphate (TCP). Polarized light microscopy and Image-Pro ® Plus software were used to evaluate lesions. After a 7-day pH-cycle, mean lesion depths in groups A, B, C, D, and E had increased by 57.52 ± 10.66%, 33.28 ± 10.16%, 17.04 ± 4.76%, 32.51 ± 8.99%, and 21.76 ± 8.15%, respectively. All data were processed by the Statistical Package for the Social Sciences (version 16.0) software package. Comparison of percentage changes using one-way analysis of variance and Fisher's least squares difference tests at a 95% level of confidence demonstrated that group A was significantly different from the other groups ( P < 0.001). Lesions in groups B and D had a significant lesion progression when compared with groups C and E. All toothpastes in this study had the potential to delay the demineralization progression of artificial enamel caries in primary teeth. The fluoride 500 ppm and TCP toothpastes were equal in the deceleration of

  20. Identification and quantitive analysis of calcium phosphate microparticles in intestinal tissue by nuclear microscopy

    International Nuclear Information System (INIS)

    Gomez-Morilla, Inmaculada; Thoree, Vinay; Powell, Jonathan J.; Kirkby, Karen J.; Grime, Geoffrey W.

    2006-01-01

    Microscopic particles (0.5-2 μm diameter), rich in calcium and phosphorus, are found in the lumen of the mid-distal gut of all mammals investigated, including humans, and these may play a role in immuno-surveillance and immune regulation of antigens from food and symbiotic bacteria that are contained in the gut. Whether these particles can cross in to tissue of the intestinal mucosa is unclear. If so, characterising their morphology and chemical composition is an important task in elucidating their function. The analysis of calcium phosphate in biological tissues has been approached in several ways including optical microscopy, scanning electron microscopy and, most recently in this work, with nuclear microscopy. In this paper, we describe the use of microPIXE and microRBS to locate these particles and to determine, accurately, the ratio of phosphorus to calcium using the information on sample thickness obtained from RBS to allow the PIXE ratios to be corrected. A commercial sample of hydroxy apatite was used to demonstrate accuracy and precision of the technique. Then, in a pilot study on intestinal tissue of mice, we demonstrated the presence of calcium phosphate microparticles, consistent with confocal microscopy observations, and we identified the average molar P:Ca molar ratio as 1.0. Further work will confirm the exact chemical speciation of these particles and will examine the influence of differing calcium containing diets on the formation of these microparticles

  1. Identification and quantitive analysis of calcium phosphate microparticles in intestinal tissue by nuclear microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Morilla, Inmaculada [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)]. E-mail: i.gomez-morilla@surrey.ac.uk; Thoree, Vinay [Gastrointestinal Laboratory, Rayne Institute, St. Thomas' Hospital, London SE1 7EH (United Kingdom); Powell, Jonathan J. [MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL (United Kingdom); Kirkby, Karen J. [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom); Grime, Geoffrey W. [Department of Physics, University of Surrey, GU2 7XH (United Kingdom)

    2006-08-15

    Microscopic particles (0.5-2 {mu}m diameter), rich in calcium and phosphorus, are found in the lumen of the mid-distal gut of all mammals investigated, including humans, and these may play a role in immuno-surveillance and immune regulation of antigens from food and symbiotic bacteria that are contained in the gut. Whether these particles can cross in to tissue of the intestinal mucosa is unclear. If so, characterising their morphology and chemical composition is an important task in elucidating their function. The analysis of calcium phosphate in biological tissues has been approached in several ways including optical microscopy, scanning electron microscopy and, most recently in this work, with nuclear microscopy. In this paper, we describe the use of microPIXE and microRBS to locate these particles and to determine, accurately, the ratio of phosphorus to calcium using the information on sample thickness obtained from RBS to allow the PIXE ratios to be corrected. A commercial sample of hydroxy apatite was used to demonstrate accuracy and precision of the technique. Then, in a pilot study on intestinal tissue of mice, we demonstrated the presence of calcium phosphate microparticles, consistent with confocal microscopy observations, and we identified the average molar P:Ca molar ratio as 1.0. Further work will confirm the exact chemical speciation of these particles and will examine the influence of differing calcium containing diets on the formation of these microparticles.

  2. Calcification mechanism and bony bonding studies of calcium carbonate and composite aluminosilicate/calcium phosphate applied as biomaterials by using radioactivation methods

    International Nuclear Information System (INIS)

    Oudadesse, H.; Derrien, A.C.; Lucas-Girot, A.; Martin, S.; Cathelieau, G.

    2007-01-01

    Bony grafts are used as a filling biomaterial for defective bone. The introduction of new range of synthetic materials offers to surgeons additional possibilities to avoid virus transmission risks by using natural grafts in bony surgery. In this work, two materials, synthetic calcium carbonate and composite aluminosilicate/calcium phosphate were synthesized by an original method and experimented 'in vivo' as biomaterials for bony filling. Extracted biopsies were studied by several physico chemical and biological methods. The aim was to evaluate the kinetic resorption and bioconsolidation of these materials. We focused on the bioconsolidation between implant and bone by realising cartographies from the implant to the bone and on the calcification mechanism by determination of the origin of Ca and Sr responsible of the neo-formed bone. Neutron activation analysis (NAA), radiotracers 45 Ca* and 85 Sr* and proton-induced X-ray emission (PIXE) were used. Concerning the synthetic calcium carbonate, results show that twelve months after implantation, the mineral composition of implant becomes similar to that of the mature bone. The neoformed bone is composed with Ca and Sr coming from the organism when the Ca and Sr of the implant were progressively eliminated. Concerning the composite geopolymer/calcium phosphate, PIXE and histological studies reveal the intimate links between the bone and the implant starting with the first month after implantation. (author)

  3. Concentration dependent spectroscopic properties of Dy3+ ions doped boro-phosphate glasses

    Science.gov (United States)

    Mariyappan, M.; Marimuthu, K.

    2016-05-01

    Dy3+ ions doped boro-phosphate glasses have been synthesized by melt quenching method and characterized through FTIR, absorption and luminescence spectral measurements. The presence of various stretching and bending vibrations of different borate and phosphate groups were identified from the FTIR spectra. In order to examine the electronic band structure of the studied glasses, Optical energy gap (Eopt) and Urbach energy (ΔE) values were estimated from the absorption spectra. The Judd-Ofelt (JO) intensity parameters were calculated to examine the symmetry of the ligand environment around the Dy3+ ions site. The emission spectra exhibit two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions respectively. The emission spectra were characterized through Commission International d'Eclairage (CIE) 1931 chromaticity diagram to explore its suitability for WLED applications.

  4. Calcium Phosphate as a Key Material for Socially Responsible Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Vuk Uskoković

    2016-06-01

    Full Text Available Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review we demonstrate that such compositional simplifications are meaningful when it comes to the design of a solution for osteomyelitis, a disease that is in its natural, non-postoperative form particularly prevalent in the underdeveloped parts of the world wherein poverty, poor sanitary conditions, and chronically compromised defense lines of the immune system are the norm. We show that calcium phosphate nanoparticles, which are inexpensive to make, could be chemically designed to possess the same functionality as a hypothetic mixture additionally composed of: (a a bone growth factor; (b an antibiotic for prophylactic or anti-infective purposes; (c a bisphosphonate as an antiresorptive compound; (d a viral vector to enable the intracellular delivery of therapeutics; (e a luminescent dye; (f a radiographic component; (g an imaging contrast agent; (h a magnetic domain; and (i polymers as viscous components enabling the injectability of the material and acting as carriers for the sustained release of a drug. In particular, calcium phosphates could: (a produce tunable drug release profiles; (b take the form of viscous and injectable, self-setting pastes; (c be naturally osteo-inductive and inhibitory for osteoclastogenesis

  5. Antibacterial properties of laser spinning glass nanofibers.

    Science.gov (United States)

    Echezarreta-López, M M; De Miguel, T; Quintero, F; Pou, J; Landin, M

    2014-12-30

    A laser-spinning technique has been used to produce amorphous, dense and flexible glass nanofibers of two different compositions with potential utility as reinforcement materials in composites, fillers in bone defects or scaffolds (3D structures) for tissue engineering. Morphological and microstructural analyses have been carried out using SEM-EDX, ATR-FTIR and TEM. Bioactivity studies allow the nanofibers with high proportion in SiO2 (S18/12) to be classified as a bioinert glass and the nanofibers with high proportion of calcium (ICIE16) as a bioactive glass. The cell viability tests (MTT) show high biocompatibility of the laser spinning glass nanofibers. Results from the antibacterial activity study carried out using dynamic conditions revealed that the bioactive glass nanofibers show a dose-dependent bactericidal effect on Sthaphylococcus aureus (S. aureus) while the bioinert glass nanofibers show a bacteriostatic effect also dose-dependent. The antibacterial activity has been related to the release of alkaline ions, the increase of pH of the medium and also the formation of needle-like aggregates of calcium phosphate at the surface of the bioactive glass nanofibers which act as a physical mechanism against bacteria. The antibacterial properties give an additional value to the laser-spinning glass nanofibers for different biomedical applications, such as treating or preventing surgery-associated infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan [University of Duisburg-Essen, Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Nalbant, Perihan [University of Duisburg-Essen, Faculty of Biology, Institute of Molecular Cell Biology (Germany); Buer, Jan; Knuschke, Torben; Westendorf, Astrid M. [University Hospital Essen, University of Duisburg-Essen, Institute of Medical Microbiology (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-06-15

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100-250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  7. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    Science.gov (United States)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan; Nalbant, Perihan; Buer, Jan; Knuschke, Torben; Westendorf, Astrid M.; Epple, Matthias

    2012-06-01

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100-250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  8. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    International Nuclear Information System (INIS)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan; Nalbant, Perihan; Buer, Jan; Knuschke, Torben; Westendorf, Astrid M.; Epple, Matthias

    2012-01-01

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100–250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  9. Higher Fe{sup 2+}/total Fe ratio in iron doped phosphate glass melted by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Ashis K., E-mail: ashis@cgcri.res.in [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Sinha, Prasanta K. [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Das, Dipankar [UGC-DAE Consortium for Scientific Research, Kolkata 700098 (India); Guha, Chandan [Department of Chemical Engineering, Jadavpur University, Kolkata 700032 (India); Sen, Ranjan [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2015-03-15

    Highlights: • Iron doped phosphate glasses prepared using microwave heating and conventional heating under air and reducing atmosphere. • Presence of iron predominantly in the ferrous oxidation state in all the glasses. • Significant concentrations of iron in the ferrous oxidation state on both octahedral and tetrahedral sites in all the glasses. • Ratio of Fe{sup 2+} with total iron is found higher in microwave prepared glasses in comparison to conventional prepared glasses. - Abstract: Iron doped phosphate glasses containing P{sub 2}O{sub 5}–MgO–ZnO–B{sub 2}O{sub 3}–Al{sub 2}O{sub 3} were melted using conventional resistance heating and microwave heating in air and under reducing atmosphere. All the glasses were characterised by UV–Vis–NIR spectroscopy, Mössbauer spectroscopy, thermogravimetric analysis and wet colorimetry analysis. Mössbauer spectroscopy revealed presence of iron predominantly in the ferrous oxidation state on two different sites in all the glasses. The intensity of the ferrous absorption peaks in UV–Vis–NIR spectrum was found to be more in glasses prepared using microwave radiation compared to the glasses prepared in a resistance heating furnace. Thermogravimetric analysis showed increasing weight gain on heating under oxygen atmosphere for glass corroborating higher ratio of FeO/(FeO + Fe{sub 2}O{sub 3}) in glass melted by direct microwave heating. Wet chemical analysis also substantiated the finding of higher ratio Fe{sup +2}/ΣFe in microwave melted glasses. It was found that iron redox ratio was highest in the glasses prepared in a microwave furnace under reducing atmosphere.

  10. Polyelectrolyte addition effect on the properties of setting hydraulic cements based on calcium phosphate

    International Nuclear Information System (INIS)

    Santos, Luis A. dos; Oliveira, Luci C. de; Rigo, Eliana C.S.; Boschi, Anselmo Ortega; Carrodeguas, Raul Gracia

    1997-01-01

    In the present work the effects of the addition of some poly electrolytes (sodium alginate and poly acrylic acid) on the solubility, crystalline phases, pH and mechanical strength under compression of three calcium phosphate cements were studied. (author)

  11. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg2+ in the m-SBF on its bioactivity

    International Nuclear Information System (INIS)

    Zhang, Jie; Dai, Changsong; Wei, Jie; Wen, Zhaohui; Zhang, Shujuan; Lin, Lemin

    2013-01-01

    The purpose of this study was to investigate the effect of different concentration of Mg 2+ in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg 2+ for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg 2+ concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg 2+ concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg 2+ increasing from 1× Mg to 10× Mg. Over all, with the Mg 2+ concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.

  12. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg2+ in the m-SBF on its bioactivity

    Science.gov (United States)

    Zhang, Jie; Dai, Changsong; Wei, Jie; Wen, Zhaohui; Zhang, Shujuan; Lin, Lemin

    2013-09-01

    The purpose of this study was to investigate the effect of different concentration of Mg2+ in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg2+ for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg2+ concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg2+ concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg2+ increasing from 1× Mg to 10× Mg. Over all, with the Mg2+ concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.

  13. Structural studies of calcium phosphate doped with titanium and zirconium obtained by high-energy mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C C; Sombra, A S B [Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Physics Department, Federal University of Ceara, Campus do Pii, Postal Code 6030, 60455-760, Fortaleza-Ceara (Brazil)], E-mail: sombra@fisica.ufc.br

    2009-12-15

    In this paper, we present a new variation of the solid-state procedure on the synthesis of bioceramics with titanium (CapTi) and zirconium (CapZr), considering that zirconium (ZrO{sub 2}) and titanium oxide (TiO{sub 2}) are strengthening agents, due to their superb force and fracture toughness. The high efficiency of the calcination process opens a new way of producing commercial amounts of nanocrystalline bioceramics. In this work, a new variation of the solid-state procedure method was used to produce nanocrystalline powders of titanium and zirconium, using two different experimental chemical routes: CapTi: Ca(H{sub 2}PO{sub 4}){sub 2}+TiO{sub 2} and CapZr: Ca(H{sub 2}PO{sub 4}){sub 2}+ZrO{sub 2}. The powders were submitted to calcination processes (CapTic and CapZrc) at 800, 900 and 1000 deg. C. The calcium titanium phosphate phase, CaTi{sub 4}P{sub 6}O{sub 24}, was obtained in the CapTic reaction and the calcium zirconium phosphate, CaZr{sub 4}P{sub 6}O{sub 24}, was obtained in the CapZrc reaction. The obtained ceramics were characterized by x-ray powder diffraction (XRD), infrared (IR) spectroscopy, Raman scattering spectroscopy (RSS) and scanning electron microscopy (SEM) analysis. This method was compared with the milling process (CapTim and CapZrm), where in the last process the melting is not necessary and the powder obtained is nanocrystalline. The calcium titanium phosphate phase, CaTi{sub 4}P{sub 6}O{sub 24}, was obtained in the reaction CapTim, but in CapZrm the formation of any calcium phosphate phase even after 15 h of dry mechanical alloying was not observed.

  14. Calcium phosphate thin films enhance the response of human mesenchymal stem cells to nanostructured titanium surfaces

    Directory of Open Access Journals (Sweden)

    Mura M McCafferty

    2014-05-01

    Full Text Available The development of biomaterial surfaces possessing the topographical cues that can promote mesenchymal stem cell recruitment and, in particular, those capable of subsequently directing osteogenic differentiation is of increasing importance for the advancement of tissue engineering. While it is accepted that it is the interaction with specific nanoscale topography that induces mesenchymal stem cell differentiation, the potential for an attendant bioactive chemistry working in tandem with such nanoscale features to enhance this effect has not been considered to any great extent. This article presents a study of mesenchymal stem cell response to conformal bioactive calcium phosphate thin films sputter deposited onto a polycrystalline titanium nanostructured surface with proven capability to directly induce osteogenic differentiation in human bone marrow–derived mesenchymal stem cells. The sputter deposited surfaces supported high levels of human bone marrow–derived mesenchymal stem cell adherence and proliferation, as determined by DNA quantification. Furthermore, they were also found to be capable of directly promoting significant levels of osteogenic differentiation. Specifically, alkaline phosphatase activity, gene expression and immunocytochemical localisation of key osteogenic markers revealed that the nanostructured titanium surfaces and the bioactive calcium phosphate coatings could direct the differentiation towards an osteogenic lineage. Moreover, the addition of the calcium phosphate chemistry to the topographical profile of the titanium was found to induce increased human bone marrow–derived mesenchymal stem cell differentiation compared to that observed for either the titanium or calcium phosphate coating without an underlying nanostructure. Hence, the results presented here highlight that a clear benefit can be achieved from a surface engineering strategy that combines a defined surface topography with an attendant, conformal

  15. Thermoluminescence characteristics of Cu2O doped Calcium Lithium borate glass irradiated with the cobalt-60 gamma rays

    International Nuclear Information System (INIS)

    Rammadhan, Ismail; Taha, Saddon; Wagiran, H.

    2017-01-01

    The aim of this study is to prepare and investigate the thermoluminescence characteristics for the un-doped and Cu 2 O doped calcium lithium borate glass upon adding various Cu 2 O concentrations of 0.005% to 0.1 mol%. The glasses were prepared by melt quenching method and irradiated with 60 CO gamma-ray having different doses in the range of (0.5–4) Gy, (5–10) Gy, and (20–100) Gy. The amorphous phases were identified for optimization glass samples, effect of heating rate, glowing curves, linearity, sensitivity, fading, reproducibility of response and minimum detectable dose are also studied. The TL sample with 0.02 mol% Cu 2 O concentration has higher response compared to the other samples concentration for a delivered dose of 50 Gy, The recorded glow curves consist a dominant peak at 187 °C for a heating rate of 5 °C s −1 . However, the value of effective atomic number Z eff is 8.84 for 0.02Cu 2 O doped which are near to the atomic number of soft tissue. - Highlights: •We have prepared and investigate the crystalline structure for the un-doped and Cu 2 O doped calcium lithium borate glass are carried out. •Investigate the amorphous structure of calcium lithium borate glass. •Determine the best setting of annealing temperature, annealing time and heating rate for Cu 2 O doped calcium lithium borate glass. •The doping effects of Cu 2 O on the thermoluminescence properties of calcium lithium borate glass subjected gamma radiations. •The new dosimeter showed simple glow curve with single prominent peak centred at 187 °C and linear dose–response range 0.5–100 Gy, good reproducibility, the fading of the signal is relatively slow. •Effective atomic number for Cu 2 O doped Calcium lithium borate close to the effective atomic number of soft tissue.

  16. Investigations of the luminescence of phosphate glasses with respect to their application as solid dosemeters

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1977-03-01

    A comprehensive presentation of the luminescent properties of phosphate glass is worked out. The extensive investigations show an essential enlargement of the knowledge on the luminescence of phosphate glass existing hitherto. These results form the basis for a detailed discussion of the luminescence mechanism. By applying additional results of measurements concerning optical and paramagnetic absorption, enabling the access to the atomic effect, propositions were developed for models of absorption, excitation and luminous centers relevant for dosimetry for which Ag ++ was found to be the constituent determining the centers. The interpretation of the luminescence phenomena within the frame of these models leads to considerable corrections on the existing concepts. At the same time the comparability of Ag-doped phosphate glasses and alkali halogenides is shown with respect to their luminescence behaviour, and with it an argument for the existence of crystal-like short-order regions in the amorphous glass is provided. This result serves as a basis for a discussion of the centers in the band model. Further investigations dealt with the quantities of influence for the practical application of the dosemeter. By interpretation of these results explanations are given for the effect of irradiation and evaluation temperatures, of LET, the dose, and UV light on the measuring signal. The phenomenon of 'pre-dose', for which especially surface effects have been detected as cause, is discussed under the aspect of a boundary layer theory. (orig./HP) [de

  17. Calcium-phosphate and parathyroid intradialytic profiles: A potential aid for tailoring the dialysate calcium content of patients on different hemodialysis schedules.

    Science.gov (United States)

    Ferraresi, Martina; Pia, Anna; Guzzo, Gabriella; Vigotti, Federica Neve; Mongilardi, Elena; Nazha, Marta; Aroasio, Emiliano; Gonella, Cinzia; Avagnina, Paolo; Piccoli, Giorgina Barbara

    2015-10-01

    Severe hyperparathyroidism is a challenge on hemodialysis. The definition of dialysate calcium (Ca) is a pending issue with renewed importance in cases of individualized dialysis schedules and of portable home dialysis machines with low-flow dialysate. Direct measurement of calcium mass transfer is complex and is imprecisely reflected by differences in start-to-end of dialysis Ca levels. The study was performed in a dialysis unit dedicated to home hemodialysis and to critical patients with wide use of daily and tailored schedules. The Ca-phosphate (P)-parathyroid hormone (PTH) profile includes creatinine, urea, total and ionized Ca, albumin, sodium, potassium, P, PTH levels at start, mid, and end of dialysis. "Severe" secondary hyperparathyroidism was defined as PTH > 300 pg/mL for ≥3 months. Four schedules were tested: conventional dialysis (polysulfone dialyzer 1.8-2.1 m(2) ), with dialysate Ca 1.5 or 1.75 mmol/L, NxStage (Ca 1.5 mmol/L), and NxStage plus intradialytic Ca infusion. Dosages of vitamin D, calcium, phosphate binders, and Ca mimetic agents were adjusted monthly. Eighty Ca-P-PTH profiles were collected in 12 patients. Serum phosphate was efficiently reduced by all techniques. No differences in start-to-end PTH and Ca levels on dialysis were observed in patients with PTH levels dialysis on all schedules except on Nxstage (P dialysis, in "severe" secondary hyperparathyroid patients in order to increase the therapeutic potentials of the new dialysis techniques. © 2015 International Society for Hemodialysis.

  18. Biomimetic synthesis of modified calcium phosphate fine powders and their in vitro studies

    Energy Technology Data Exchange (ETDEWEB)

    Gergulova, R., E-mail: rumigg@yahoo.com; Tepavitcharova, S., E-mail: rumigg@yahoo.com; Rabadjieva, D., E-mail: rumigg@yahoo.com; Sezanova, K., E-mail: rumigg@yahoo.com; Ilieva, R., E-mail: rumigg@yahoo.com [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 11, 1113 Sofia (Bulgaria); Alexandrova, R.; Andonova-Lilova, B. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, BAS, Acad. G. Bonchev Str., Bl. 25, Sofia (Bulgaria)

    2013-12-16

    Biomimetic approach and subsequent high-temperature treatment were used to synthesize ion modified calcium phosphate fine powders. Thus, using Simulated Body Fluid (SBF) as an ion modifier, a bi-phase mixture of ion modified β-tricalcium phosphate and hydroxyapatite (β-TCP + HA) was prepared. The use of SBF electrolyte solution enriched with Mg{sup 2+} or Zn{sup 2+} yielded monophase β-tricalcium phosphate additionally modified with Mg{sup 2+} or Zn{sup 2+} (Mg-β-TCP or Zn-β-TCP). The in vitro behavior of the prepared powders on cell viability and proliferation of murine BALB/c 3T3 fibroblasts and of human Lep 3 cells was studied by MTT test assays and Mosmann method after 72 h incubation. The relative cell viability was calculated.

  19. Surface acidity of calcium phosphate and calcium hydroxyapatite: FTIR spectroscopic study of low-temperature CO adsorption

    International Nuclear Information System (INIS)

    Pekounov, Yassen; Chakarova, Kristina; Hadjiivanov, Konstantin

    2009-01-01

    The surface properties of calcium phosphate precursor (CP) and crystalline calcium hydroxyapatite (HA) prepared biomimetically have been studied by IR spectroscopy of adsorbed CO. Both samples are characterized by the absence of Bronsted acidity. Low-temperature CO adsorption on CP evacuated at 523 K leads to formation of only one family of Ca 2+ -CO species (2168 cm -1 ). The analysis indicates that the respective calcium ions on the surface are not isolated. Similar spectra were obtained with HA evacuated at 573 K. In this case, however, the Ca 2+ -CO band was detected at 2165 cm -1 due to enhanced lateral interaction between the adsorbed CO molecules. Another family of Ca 2+ sites (Ca 2+ -CO band at 2178 cm -1 ) was created after evacuation of the HA sample at 673 K. These sites were assumed to be a result of sample dehydroxylation. The results demonstrate the absence of any protonic acidity of the samples (i.e. P-OH surface groups) and weak electrostatic Lewis acidity caused by coordinatively unsaturated Ca 2+ cations.

  20. Development of large scale production of Nd-doped phosphate glasses for megajoule-scale laser systems

    International Nuclear Information System (INIS)

    Ficini, G.; Campbell, J.H.

    1996-01-01

    Nd-doped phosphate glasses are the preferred gain medium for high-peak-power lasers used for Inertial Confinement Fusion research because they have excellent energy storage and extraction characteristics. In addition, these glasses can be manufactured defect-free in large sizes and at relatively low cost. To meet the requirements of the future mega-joule size lasers, advanced laser glass manufacturing methods are being developed that would enable laser glass to be continuously produced at the rate of several thousand large (790 x 440 x 44 mm 3 ) plates of glass per year. This represents more than a 10 to 100-fold improvement in the scale of the present manufacturing technology

  1. The Properties of Sintered Calcium Phosphate with [Ca]/[P] = 1.50

    Directory of Open Access Journals (Sweden)

    Moo-Chin Wang

    2012-10-01

    Full Text Available In order to obtain the properties of the sintered as-dried calcium phosphate with [Ca]/[P] = 1.50, the characteristics of sintered pellets have been investigated using X-ray diffraction (XRD, inductively coupled plasma-mass spectrometry (ICP-MS, Fourier-transform infrared (FT-IR spectra, Vickers hardness indentation and scanning electron microscopy (SEM. When the pellet samples were sintered between 700 °C and 1200 °C for 4 h, the hydroxyapatite (Ca10(PO46(OH2, HA still maintained the major phase, accompanied with the rhenanite (NaCaPO4 as the secondary phase and β-tricalcium phosphate (β-Ca3(PO42, β-TCP as the minor phases. In addition, the HA partially transformed to α-tricalcium phosphate (α-Ca3(PO42, α-TCP and tetracalcium phosphate (Ca4(PO42O, TTCP, when the pellet samples were sintered at 1300 °C and 1400 °C, respectively, for 4 h. The maximum density and Vickers Hardness (HV of sintered pellet samples were 2.85 g/cm3 (90.18% theoretical density (T.D. and 407, which appeared at 1200 °C and 900 °C, respectively.

  2. Fabrication of planar optical waveguides by 6.0 MeV silicon ion implantation in Nd-doped phosphate glasses

    Science.gov (United States)

    Shen, Xiao-Liang; Dai, Han-Qing; Zhang, Liao-Lin; Wang, Yue; Zhu, Qi-Feng; Guo, Hai-Tao; Li, Wei-Nan; Liu, Chun-Xiao

    2018-04-01

    We report the fabrication of a planar optical waveguide by silicon ion implantation into Nd-doped phosphate glass at an energy of 6.0 MeV and a dose of 5.0 × 1014 ions/cm2. The change in the surface morphology of the glass after the implantation can be clearly observed by scanning electron microscopy. The measurement of the dark mode spectrum of the waveguide is conducted using a prism coupler at 632.8 nm. The refractive index distribution of the waveguide is reconstructed by the reflectivity calculation method. The near-field optical intensity profile of the waveguide is measured using an end-face coupling system. The waveguide with good optical properties on the glass matrix may be valuable for the application of the Nd-doped phosphate glass in integrated optical devices.

  3. Microstructural investigation into calcium phosphate biomaterials by spatially resolved cathodoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Goetze, J.; Heimann, R.B.; Hildebrandt, H. [Freiberg Univ. of Mining and Technology (Germany). Dept. of Mineralogy; Gburek, U. [Wuerzburg Univ. (Germany). Dept. of Experimental Dentistry

    2001-02-01

    From cathodoluminescence (CL) investigations of synthetic and natural calcium phosphates it can be concluded that the CL of pure synthetic apatite is mainly characterized by intrinsic luminescence, whereas the luminescence of naturally occurring apatites is frequently activated by trace elements. CL revealed internal structures within plasma-sprayed hydroxyapatite coatings which were not discernible by SEM-BSE imaging. However, cathodoluminescence microscopy alone can presently not be used in every case to characterize synthetic calcium phosphate biomaterials because of the dominant intrinsic blue CL emission. In the future, optimum results will likely be achieved by using a combination of CL microscopy and spectroscopy with other spatially resolved analytical methods such as SEM-BSE, SEM-CL or micro-Raman spectroscopy. In the present study, different types of tetracalcium phosphate dental cements could be distinguished due to varying CL colours and CL spectra that are caused by a different content of impurity Mn. These results emphasize the advantages of spectral CL measurements for spatially resolved detection of trace elements in solids. (orig.) [German] Ergebnisse von Kathodolumineszenz- (KL-) Untersuchungen synthetischer und natuerlicher Apatite zeigen, dass die KL synthetischer Apatite vorrangig durch intrinsische Lumineszenz gekennzeichnet ist, waehrend die KL natuerlicher Apatite meist durch Spurenlemente aktiviert wird. Mittels KL koennen Internstrukturen in plasmagespritzten Hydroxylapatit-Schichten sichtbar gemacht werden, die im REM-BSE nicht nachweisbar sind. Allerdings kann die KL-Mikroskopie aufgrund der dominierenden blauen intrinsischen Lumineszenz gegenwaertig nicht als alleinige Untersuchungsmethode zur Charakterisierung von Calciumphosphat Biomaterialien eingesetzt werden. Optimale Resultate werden zukuenftig durch Kombination von KL-Mikrroskopie und -spektroskopie mit anderen ortsaufgeloesten analytischen Methoden wie REM-BSE, REM-KL oder Mikro

  4. Luminescence studies on Dy3+ doped calcium boro-tellurite glasses for White light applications

    Science.gov (United States)

    Karthikeyan, P.; Vijayakumar, R.; Marimuthu, K.

    2017-09-01

    A new series of Dy3+ doped calcium boro-tellurite glasses have been prepared by melt quenching technique and their spectroscopic properties were studied through FTIR, absorption luminescence and lifetime spectral measurements. FTIR studies have been made to explore the presence of various stretching and bending vibrations of different borate and tellurite groups in the prepared glasses. The bonding parameter values were estimated from the absorption band positions using Nephelauxetic ratios to examine the nature of the metal-ligand bond. The optical band gap and Urbach energy (ΔE) values were obtained from the absorption spectra to explore the electronic band structure of the studied glasses. Judd-Ofelt (JO) theory have been used to determine the JO intensity parameters (Ω2, Ω4, Ω6) following the least square fitting procedure between the experimental and calculated oscillator strength values. The luminescence spectra of the Dy3+ doped calcium boro-tellurite glasses exhibit two intense emission bands corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions. Further, they exhibit less intense emission band due to the 4F9/2→6H11/2 transition. Luminescence spectra were characterized through CIE 1931 chromaticity diagram to obtain the dominant emission color of the prepared glasses. The JO intensity parameters and refractive index values have been used to calculate the radiative parameters such as transition probabilities (AR), branching ratios (βR) and stimulated emission cross-section (σPE) values for the observed transitions in the luminescence spectra. The decay curves of all the studied glasses found to exhibit non-exponential behavior and further to understand the energy transfer process takes place between the Dy3+ ions, the decay curves were fitted to the Inokuti-Hirayama (IH) model. The structural and optical properties of the Dy3+ doped calcium boro-tellurite glasses have been studied as a function of different metal cations (Zn, Cd, Pb and

  5. Coating electrospun poly(epsilon-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering.

    Science.gov (United States)

    Li, Xiaoran; Xie, Jingwei; Yuan, Xiaoyan; Xia, Younan

    2008-12-16

    Electrospinning was employed to fabricate fibrous scaffolds of poly(epsilon-caprolactone) in the form of nonwoven mats. The surfaces of the fibers were then coated with gelatin through layer-by-layer self-assembly, followed by functionalization with a uniform coating of bonelike calcium phosphate by mineralization in the 10 times concentrated simulated body fluid for 2 h. Transmission electron microscopy, water contact angle, and scanning electron microscopy measurements confirmed the presence of gelatin and calcium phosphate coating layers, and X-ray diffraction results suggested that the deposited mineral phase was a mixture of dicalcium phosphate dehydrate (a precursor to apatite) and apatite. It was also demonstrated that the incorporation of gelatin promoted nucleation and growth of calcium phosphate. The porous scaffolds could mimic the structure, composition, and biological function of bone extracellular matrix. It was found that the preosteoblastic MC3T3-E1 cells attached, spread, and proliferated well with a flat morphology on the mineralized scaffolds. The proliferation rate of the cells on the mineralized scaffolds was significantly higher (by 1.9-fold) than that on the pristine fibrous scaffolds after culture for 7 days. These results indicated that the hybrid system containing poly(epsilon-caprolactone), gelatin, and calcium phosphate could serve as a new class of biomimetic scaffolds for bone tissue engineering.

  6. The effect of serum proteins on apatite growth for 45S5 Bioglass and common sol-gel derived glass in SBF

    Directory of Open Access Journals (Sweden)

    Lin Sen

    2018-02-01

    Full Text Available The inhibitive effects of serum proteins on apatite growth was compared between melt-derived 45S5 Bioglass® and sol-gel derived bioactive glass of the 70S30C (70 mol% SiO2, 30 mol% CaO. By using techniques of XRD, TEM and Raman spectroscopy, the transformation of amorphous calcium phosphate to crystalline apatite, and the resulting size and aspect ratio of the crystals, in simulated body fluid (SBF, was seen to decrease in the presence of serum. XRD showed more rapid HA formation on Bioglass particles, compared to that forming on 70S30C particles, however TEM showed similar size and frequency of the needle-like crystals. Phosphate reduction in SBF was similar for Bioglass and 70S30C. Calcium carbonate formation was more likely on the phosphate-free sol-gel glass than on Bioglass.

  7. Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure.

    Science.gov (United States)

    Vella, Joseph B; Trombetta, Ryan P; Hoffman, Michael D; Inzana, Jason; Awad, Hani; Benoit, Danielle S W

    2018-03-01

    Biphasic calcium phosphate scaffolds formed via three dimensional (3D) printing technology to exhibit porosity and chemical resorbability to promote osseointegration often lack the strength and toughness required to withstand loading in bone tissue engineering applications. Herein, sintering and CaP:poly(caprolactone) (PCL) composite formation were explored to improve 3D printed scaffold strength and toughness. Hydroxyapatite and α-tricalcium phosphate (α-TCP) biphasic calcium powders were printed using phosphoric acid binder, which generated monetite and hydroxyapatite scaffolds. Upon sintering, evolution of β-TCP was observed along with an increase in flexural strength and modulus but no effect on fracture toughness was observed. Furthermore, scaffold porosity increased with sintering. Additionally, two techniques of PCL composite formation were employed: postprint precipitation and 3D print codeposition to further augment scaffold mechanical properties. While both techniques significantly improved flexural strength, flexural modulus, and fracture toughness under most conditions explored, precipitation yielded more substantial increases in these properties, which is attributed to better continuity of the PCL phase. However, precipitation also compromised surface porosity due to PCL passivation of the calcium phosphate surface, which may subsequently hinder scaffold integration and bone regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 663-672, 2018. © 2017 Wiley Periodicals, Inc.

  8. Synthesis and characterization of the aluminium phosphates modified with ammonium, calcium and molybdenum by hydrothermal method

    Directory of Open Access Journals (Sweden)

    Łuczka Kinga

    2016-06-01

    Full Text Available Synthesis and characterization of the aluminum phosphates modified with ammonium, calcium and molybdenum were conducted. The influence of process parameters (reactive pressure and molar ratios in the reaction mixture were studied. The contents of the individual components in the products were in the range of: 10.97–17.31 wt% Al, 2.65–13.32 wt% Ca, 0.70–3.11 wt% Mo, 4.36–8.38 wt% NH3, and 35.12–50.54 wt% P2O5. The materials obtained in the experiments were characterized by various physicochemical parameters. The absorption oil number was in the range from 67 to 89 of oil/100 g of product, the surface area was within the range of 4–76 m2/g, whereas the average particle size of products reached 282–370 nm. The Tafel tests revealed comparable anticorrosive properties of aluminum phosphates modified with ammonium, calcium, molybdenum in comparison with commercial phosphate.

  9. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    Science.gov (United States)

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Nonlinear optical characterization of phosphate glasses based on ZnO using the Z-scan technique

    International Nuclear Information System (INIS)

    Mojdehi Masoumeh Shokati; Yunus Wan Mahmood Mat; Talib Zainal Abidin; Tamchek, N.; Fhan Khor Shing

    2013-01-01

    The nonlinear optical properties of a phosphate vitreous system [(ZnO) x − (MgO) 30−x − (P 2 O 5 ) 70 ], where x = 8, 10, 15, 18, and 20 mol% synthesized through the melt-quenching technique have been investigated by using the Z-scan technique. In the experiment, a continuous-wave laser with a wavelength of 405 nm was utilized to determine the sign and value of the nonlinear refractive (NLR) index and the absorption coefficient with closed and opened apertures of the Z-scan setup. The NLR index was found to increase with the ZnO concentration in the glass samples by an order of 10 −10 cm 2 ·W −1 . The real and imaginary parts of the third-order nonlinear susceptibility were calculated by referring to the NLR index (n 2 ) and absorption coefficient (β) of the samples. The value of the third-order nonlinear susceptibility was presented by nonlinear refractive or absorptive behavior of phosphate glasses for proper utilization in nonlinear optical devices. Based on the measurement, the positive sign of the NLR index shows a self-focusing phenomenon. The figures of merit for each sample were calculated to judge the potential of phosphate glasses for application in optical switching

  11. Accelerated Lifetime Testing of Organic-Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene.

    Science.gov (United States)

    Shi, Lei; Young, Trevor L; Kim, Jincheol; Sheng, Yun; Wang, Lei; Chen, Yifeng; Feng, Zhiqiang; Keevers, Mark J; Hao, Xiaojing; Verlinden, Pierre J; Green, Martin A; Ho-Baillie, Anita W Y

    2017-08-02

    Metal halide perovskite solar cells (PSCs) have undergone rapid progress. However, unstable performance caused by sensitivity to environmental moisture and high temperature is a major impediment to commercialization of PSCs. In the present work, a low-temperature, glass-glass encapsulation technique using high performance polyisobutylene (PIB) as the moisture barrier is investigated on planar glass/FTO/TiO 2 /FAPbI 3 /PTAA/gold perovskite solar cells. PIB was applied as either an edge seal or blanket layer. Electrical connections to the encapsulated PSCs were provided by either the FTO or Au layers. Results of a "calcium test" demonstrated that a PIB edge-seal effectively prevents moisture ingress. A shelf life test was performed and the PIB-sealed PSC was stable for at least 200 days. Damp heat and thermal cycling tests, in compliance with IEC61215:2016, were used to evaluate different encapsulation methods. Current-voltage measurements were performed regularly under simulated AM1.5G sunlight to monitor changes in PCE. The best results we have achieved to date maintained the initial efficiency after 540 h of damp heat testing and 200 thermal cycles. To the best of the authors' knowledge, these are among the best damp heat and thermal cycle test results for perovskite solar cells published to date. Given the modest performance of the cells (8% averaged from forward and reverse scans) especially with the more challenging FAPbI 3 perovskite material tested in this work, it is envisaged that better stability results can be further achieved when higher performance perovskite solar cells are encapsulated using the PIB packaging techniques developed in this work. We propose that heat rather than moisture was the main cause of our PSC degradation. Furthermore, we propose that preventing the escape of volatile decomposition products from the perovskite solar cell materials is the key for stability. PIB encapsulation is a very promising packaging solution for perovskite

  12. Assessment of bone healing ability of calcium phosphate cements loaded with platelet lysate in rat calvarial defects.

    Science.gov (United States)

    Babo, Pedro S; Carvalho, Pedro P; Santo, Vítor E; Faria, Susana; Gomes, Manuela E; Reis, Rui L

    2016-11-01

    Injectable calcium phosphate cements have been used as a valid alternative to autologous bone grafts for bone augmentation with the additional advantage of enabling minimally invasive implantation procedures and for perfectly fitting the tissue defect. Nevertheless, they have low biodegradability and lack adequate biochemical signaling to promote bone healing and remodeling. In previous in vitro studies, we observed that the incorporation of platelet lysate directly into the cement paste or loaded in hyaluronic acid microspheres allowed to modulate the cement degradation and the in vitro expression of osteogenic markers in seeded human adipose derived stem cells. The present study aimed at investigating the possible effect of this system in new bone formation when implanted in calvarial bilateral defects in rats. Different formulations were assessed, namely plain calcium phosphate cements, calcium phosphate cements loaded with human platelet lysate, hybrid injectable formulations composed of the calcium phosphate cement incorporating hyaluronin acid non-loaded microparticles (20% hyaluronin acid) or with particles loaded with platelet lysate. The degradability and new bone regrowth were evaluated in terms of mineral volume in the defect, measured by micro-computed tomography and histomorphometric analysis upon 4, 8 and 12 weeks of implantation. We observed that the incorporation of hyaluronin acid microspheres induced an overly rapid cement degradation, impairing the osteoconductive properties of the cement composites. Moreover, the incorporation of platelet lysate induced higher bone healing than the materials without platelet lysate, up to four weeks after surgery. Nevertheless, this effect was not found to be significant when compared to the one observed in the sham-treated group. © The Author(s) 2016.

  13. Low-intensity pulsed ultrasound (LIPUS) stimulates mineralization of MC3T3-E1 cells through calcium and phosphate uptake.

    Science.gov (United States)

    Tassinary, João Alberto Fioravante; Lunardelli, Adroaldo; Basso, Bruno de Souza; Dias, Henrique Bregolin; Catarina, Anderson Velasque; Stülp, Simone; Haute, Gabriela Viegas; Martha, Bianca Andrade; Melo, Denizar Alberto da Silva; Nunes, Fernanda Bordignon; Donadio, Márcio Vinícius Fagundes; Oliveira, Jarbas Rodrigues de

    2018-03-01

    The present study aimed to evaluate the effect of low-intensity pulsed ultrasound (LIPUS) on pre-osteoblast mineralization using in vitro bioassays. Pre-osteoblastic MC3T3-E1 cells were exposed to LIPUS at 1 MHz frequency, 0.2 W/cm 2 intensity and 20% duty cycle for 30 min. The analyses were carried out up to 336 h (14 days) after exposure. The concentration of collagen, phosphate, alkaline phosphatase, calcium and transforming growth factor beta 1 (TGF-β1) in cell supernatant and the presence of calcium deposits in the cells were analyzed. Our results showed that LIPUS promotes mineralized nodules formation. Collagen, phosphate, and calcium levels were decreased in cell supernatant at 192 h after LIPUS exposure. However, alkaline phosphatase and TGF-β1 concentrations remained unchanged. Therapeutic pulsed ultrasound is capable of stimulating differentiation and mineralization of pre-osteoblastic MC3T3-E1 cells by calcium and phosphate uptake with consequent hydroxyapatite formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Potentiostatic pulse-deposition of calcium phosphate on magnesium alloy for temporary implant applications--an in vitro corrosion study.

    Science.gov (United States)

    Kannan, M Bobby; Wallipa, O

    2013-03-01

    In this study, a magnesium alloy (AZ91) was coated with calcium phosphate using potentiostatic pulse-potential and constant-potential methods and the in vitro corrosion behaviour of the coated samples was compared with the bare metal. In vitro corrosion studies were carried out using electrochemical impedance spectroscopy and potentiodynamic polarization in simulated body fluid (SBF) at 37 °C. Calcium phosphate coatings enhanced the corrosion resistance of the alloy, however, the pulse-potential coating performed better than the constant-potential coating. The pulse-potential coating exhibited ~3 times higher polarization resistance than that of the constant-potential coating. The corrosion current density obtained from the potentiodynamic polarization curves was significantly less (~60%) for the pulse-deposition coating as compared to the constant-potential coating. Post-corrosion analysis revealed only slight corrosion on the pulse-potential coating, whereas the constant-potential coating exhibited a large number of corrosion particles attached to the coating. The better in vitro corrosion performance of the pulse-potential coating can be attributed to the closely packed calcium phosphate particles. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effect of reducing conditions of synthesis on the character of the crystallization of phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, I.P.; Karapetyan, G.O.; Milyukov, E.M.; Rusan, V.V.

    1986-03-01

    The authors investigate the effect of synthesis conditions on the properties of phosphate glasses with a high concentration of rare-earth elements (REE) which are promising materials for quantum electronics. Particular attention was paid to the character of the crystallization of the glasses. A model glass of the composition La/sub 2/O/sub 3/ X 3P/sub 2/O/sub 5/ was studied which is transparent in the visible and near-IR regions of the spectrum and produced commercially.

  16. Calcific tendinitis of the shoulder in basic calcium phosphate crystal deposition disease

    International Nuclear Information System (INIS)

    Scutellari, P.N.; Mazzilli, M.P.; Orzincolo, C.

    1986-01-01

    Basic calcium phosphate (BCP) crystal deposition can lead to periarticular collections associated with typical radiographic findings, most frequently observed in the shoulder. Moreover, these deposits may be revealed in other articular sites (i.e.,wrist, hand, foot, elbow, hip, etc.). Initially, the calcium deposits may appear poorly defined (cloudlike); sequently, they may reveal different patterns (linear, triangular or circular areas), changing in size, configuration and site. Adjacent bone may be normal, altough osteoporosis, cystic lesions and reactive sclerosis are reported. The radiographic appearance of calcifications will depend upon the exact location of the deposits in the specific tendon of the rotator cuff, the adjacent bursae and the soft tissues

  17. Pulsed electrodeposition for the synthesis of strontium-substituted calcium phosphate coatings with improved dissolution properties.

    Science.gov (United States)

    Drevet, Richard; Benhayoune, Hicham

    2013-10-01

    Strontium-substituted calcium phosphate coatings are synthesized by pulsed electrodeposition on titanium alloy (Ti6Al4V) substrates. Experimental conditions of the process are optimized in order to obtain a coating with a 5% atomic substitution of calcium by strontium which corresponds to the best observations on the osteoblast cells activity and on the osteoclast cells proliferation. The physical and chemical characterizations of the obtained coating are carried out by scanning electron microscopy associated to energy dispersive X-ray spectroscopy (EDXS) for X-ray microanalysis and the structural characterization of the coating is carried out by X-ray diffraction. The in vitro dissolution/precipitation properties of the coated substrates are investigated by immersion into Dulbecco's Modified Eagle Medium (DMEM) from 1h to 14 days. The calcium, phosphorus and strontium concentrations variations in the biological liquid are assessed by Induced Coupled Plasma - Atomic Emission Spectroscopy for each immersion time. The results show that under specific experimental conditions, the electrodeposition process is suitable to synthesize strontium-substituted calcium phosphate coatings. Moreover, the addition of hydrogen peroxide (H2O2) into the electrolytic solution used in the process allows us to observe a control of the strontium release during the immersion of the prosthetic materials into DMEM. © 2013.

  18. Investigation on the biomimetic influence of biopolymers on calcium phosphate precipitation-Part 1: Alginate

    International Nuclear Information System (INIS)

    Oliveira de Lima, Daniel; Gomes Aimoli, Cassiano; Beppu, Marisa Masumi

    2009-01-01

    The understanding of how macromocules act in precipitation of inorganic phases is the key knowledge that is needed to establish the foundation to mimic nature and produce materials with high mechanical modulus besides outstanding optical and thermal properties. This study investigated how addition of small amounts of alginate (7-70 ppm), that presents many carboxylic groups, affects phase distribution and morphology of calcium phosphates, obtained through precipitation and further submitted to calcination and sintering. The results lead to the conclusion that alginate action is dynamic, where alginate molecules act as templates to nucleation, and most of the biopolymer remains in solution even when all calcium phosphate has precipitated. However, despite the effect on phase composition being mainly related to the system's kinetics, alginate does present thermodynamic interaction with the precipitates. It is probable that it acts by reducing the free energy of nucleation, as in heterogeneous nucleation processes.

  19. Corrosion resistance of biomimetic calcium phosphate coatings on magnesium due to varying pretreatment time

    Energy Technology Data Exchange (ETDEWEB)

    Waterman, J., E-mail: jay.waterman@pg.canterbury.ac.nz [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand); Pietak, A. [Department of Anatomy and Structural Biology, University of Otago, Dunedin (New Zealand); Birbilis, N. [Department of Materials Engineering, Monash University (Australia); Woodfield, T. [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand); Department of Orthopaedic Surgery, University of Otago, Christchurch (New Zealand); Dias, G. [Department of Anatomy and Structural Biology, University of Otago, Dunedin (New Zealand); Staiger, M.P., E-mail: mark.staiger@canterbury.ac.nz [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand)

    2011-12-15

    Calcium phosphate coatings were prepared on magnesium substrates via a biomimetic coating process. The effects of a magnesium hydroxide pretreatment on the formation and the ultimate corrosion protection of the coatings were studied. The pretreatment layer was found to affect the amount of defects present in the coatings. Corrosion resistance of the coatings was studied in vitro using two simulated body fluids, 0.8% NaCl and Hanks solution. In NaCl, the resistance to corrosion of all samples decreases with time as corrosion proceeded through cracks and other defects in the coatings. Samples with no pretreatment displayed the highest corrosion resistance as these samples had the fewest defects in the coating. However, in Hanks solution, corrosion resistance increased with time due to additional nucleation of calcium phosphate from the fluid on to the substrate. In this solution, additional pretreatment time was beneficial to the overall corrosion resistance.

  20. Effect of radiative trapping on measurement of the spectroscopic properties of Yb sup 3 sup + :phosphate glasses

    CERN Document Server

    Dai Shi Xun; Wen Lei; Hu Li Li; Jiang Zhong Hon

    2003-01-01

    The effect of radiative trapping on measurement of the spectroscopic properties of Yb sup 3 sup + -doped phosphate glasses was investigated as a function of Yb sup 3 sup + concentration at different thicknesses. It was found that radiative trapping exists generally in Yb sup 3 sup + :phosphate glasses, even at low concentration. As a result, the measured lifetime of Yb sup 3 sup + in phosphate glasses is usually larger than the calculated one. The maximum discrepancies between them at high concentration are found to be <42%. The calculated lifetime should be used as a reference in determining the true value of the measured lifetime because of it being lengthened largely by radiative trapping. On the other hand, the shape of fluorescence spectrum exhibits remarkable changes due to the radiative trapping. What is more, the intensity increase of DELTA lambda sub e sub f sub f at high concentration is greater than that of low doping. The DELTA lambda sub e sub f sub f increases 36% from 53 to 72 nm with thickn...

  1. Fe++/Fe+++ concentration relationship and mechanical properties of phosphate glasses useful for wastes immobilization

    International Nuclear Information System (INIS)

    Garcia, D.A.; Prado, Miguel O.

    2007-01-01

    Under different melting conditions, glasses with different Fe(II)/Fe(III) concentration relationship were prepared within each type of glass 43Fe 2 O 3 -57P 2 O 5 and 33,33Fe 2 O 3 - 66,67P 2 O 5 . Using Moessbauer spectroscopy Fe(II)/Fe(III) concentration values were determined. Vickers and Knoop indentations were used for determining their hardness, toughness, Young modulus and brittleness. The same measurements were carried on some silicate and aluminosilicate glasses. Also Weibull statistics was done to determine the characteristics (Weibull modulus and and fracture probability) of glass fracture. We found that silicate glasses (SG) are harder than phosphate glasses (PG). Toughness values for PG, are in the same range than for SG, although for the same density exhibit larger values or smaller brittleness than silicate glasses. For one of the glasses it was found that the mechanical load P 0 needed for a fracture probability of 63% increases with the Fe(II) content. (author)

  2. Lead-iron phosophate glass

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1988-01-01

    The lead-iron phosphate nuclear waste glasses (LIPNWG) are the subject of the present chapter. They were discovered in 1984 while the authors were attempting to find a sintering aid for certain types of crystalline monazite ceramic high-level nuclear waste forms. In the present chapter, the term waste glass is synonymous with nuclear waste glass (NWG), and the acronym LIP is often used for lead-iron phosphate. Lead-iron phosphate glasses, like many of the previously studied phosphate glasses, are corrosion resistant in aqueous solutions at temperatures below 100 degrees C, and they can be melted and poured at temperatures that are relatively low in comparison with the processing temperatures required for current silicate glass compositions. Unlike the phosphate glasses investigated previously, however, LIPNWGs do not suffer from alteration due to devitrification during realistic and readily, achievable cooling periods. Additionally, lead-iron phosphate glass melts are not nearly as corrosive as the sodium phosphate melts investigated during the 1960s; and, therefore, they can be melted and processed using crucibles made from a variety of materials

  3. Pump-induced refractive index changes in Tb{sup 3+} doped glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, T.A.; Santos, J.F.M. dos; Auad, Y.M; Nunes, L.A.O. [Instituto de Física de São Carlos, Universidade de São Paulo, SP (Brazil); Astrath, N.G.C; Baesso, M.L. [Departamento de Física, Universidade Estadual de Maringá, PR (Brazil); Catunda, T., E-mail: tomaz@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, SP (Brazil)

    2016-01-15

    It now well known in laser materials, that a refractive index change appears when the active ions are pumped from ground to excited state due to the polarizability difference between ground and excited states (metastable). In this paper this effect was investigated in Tb{sup 3+} doped glasses: calcium alumino phosphate (CAP), low-silica calcium aluminosilicate (LSCAS) and calcium aluminosilicate (CAS). The measurements were performed using the time resolved Z-scan technique, with an Ar{sup +} laser at 488 nm, close to the resonance of {sup 7}F{sub 6}→{sup 5}D{sub 4} absorption line, where {sup 5}D{sub 4} is a metastable state. We obtained for low-silica calcium aluminosilicate glass Δα{sub p}~10{sup −24} cm{sup 3} which is the highest value ever reported for a RE doped material. - Highlights: • Time resolved Z-scan measurements in 3 different Tb{sup 3+} doped glass. • Very high polarizability difference (Δα{sub p}), typically 1 order of magnitude higher than other rare earth ions. • Observations of higher order nonlinearities, such as-third, fifth and senventh order effects.

  4. Preparation of Calcium Phosphate/pDNA Nanoparticles for Exogenous Gene Delivery by Co-Precipitation Method: Optimization of Formulation Variables Using Box-Behnken Design.

    Science.gov (United States)

    Li, Wenpan; Zhang, Xirui; Jing, Shasha; Xin, Xiu; Chen, Kang; Chen, Dawei; Hu, Haiyang

    2017-08-01

    This research focused on optimizing the preparations of pDNA-loaded calcium phosphate (CaP) nanoparticles by employing a 3-factor, 3-level Box-Behnken design. Results indicated that a Ca/P ratio of 189.56, pH of 7.82, and a stirring speed of 528.83 rpm were the optimum conditions for preparation of the nanoparticles. The size of the optimized CaP/pDNA nanoparticles was 61.3 ± 3.64 nm, with a polydispersity index of 0.341 and an encapsulation efficiency of up to 92.11%. The optimized CaP/pDNA nanoparticles had high transfection efficiency and demonstrated good biocompatibility in vitro. Therefore, the Box-Behnken design method was successful in providing desirable CaP nanoparticle pDNA delivery systems by optimizing the experimental factors. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg{sup 2+} in the m-SBF on its bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Pharmacy College, Jiamusi University, Jiamusi 154007 (China); Dai, Changsong, E-mail: changsd@hit.edu.cn [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wei, Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Chemistry and Bioengineering, Suzhou Science Technology University, Suzhou 215009 (China); Wen, Zhaohui, E-mail: wenzhaohui1968@163.com [Department of neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, Shujuan; Lin, Lemin [Department of neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2013-09-01

    The purpose of this study was to investigate the effect of different concentration of Mg{sup 2+} in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg{sup 2+} for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg{sup 2+} concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg{sup 2+} concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg{sup 2+} increasing from 1× Mg to 10× Mg. Over all, with the Mg{sup 2+} concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.

  6. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    Science.gov (United States)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  7. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    International Nuclear Information System (INIS)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-01-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity. (letter)

  8. Formation of calcium phosphate layer on ceramics with different reactivities

    International Nuclear Information System (INIS)

    Ribeiro, C.; Rigo, E.C.S.; Sepulveda, P.; Bressiani, J.C.; Bressiani, A.H.A.

    2004-01-01

    Biphasic ceramic samples of different biological reactivity are prepared by using hydroxyapatite (HAp) and tricalcium phosphate (TCP) in various ratios. Different parameters for sintering in an air atmosphere furnace were defined after dilatometric studies. An increased densification with decreased TCP content was observed. The sintered bodies were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dissolution kinetics and in vitro reactivity were investigated using simulated body fluid (SBF) at 37 deg. C for a maximum period of 3 weeks. The surfaces of the ceramics were analyzed by Fourier transform infrared spectroscopy (FTIR) and SEM in order to observe the formation of a calcium phosphate layer, which indicates the samples bioactivity. Dissolution in SBF demonstrated that layers with different kinetics on the samples surface were formed during the immersion period. The biphasic ceramics show bioactive behavior, even if the resorbable TCP is incorporated

  9. Water-Soluble Cellulose Derivatives Are Sustainable Additives for Biomimetic Calcium Phosphate Mineralization

    Directory of Open Access Journals (Sweden)

    Andreas Taubert

    2016-10-01

    Full Text Available The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the starting solution, hydroxyapatite or brushite precipitates form. Infrared and Raman spectroscopy also show that significant amounts of nitrate ions are incorporated in the precipitates. Energy dispersive X-ray spectroscopy shows that the Ca/P ratio varies throughout the samples and resembles that of other bioinspired calcium phosphate hybrid materials. Elemental analysis shows that the carbon (i.e., polymer contents reach 10% in some samples, clearly illustrating the formation of a true hybrid material. Overall, the data indicate that a higher polymer concentration in the reaction mixture favors the formation of polymer-enriched materials, while lower polymer concentrations or high precursor concentrations favor the formation of products that are closely related to the control samples precipitated in the absence of polymer. The results thus highlight the potential of (water-soluble cellulose derivatives for the synthesis and design of bioinspired and bio-based hybrid materials.

  10. Chapter 9: Model Systems for Formation and Dissolution of Calcium Phosphate Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Orme, C A; Giocondi, J L

    2006-07-29

    Calcium phosphates are the mineral component of bones and teeth. As such there is great interest in understanding the physical mechanisms that underlie their growth, dissolution, and phase stability. Control is often achieved at the cellular level by the manipulation of solution states and the use of crystal growth modulators such as peptides or other organic molecules. This chapter begins with a discussion of solution speciation in body fluids and relates this to important crystal growth parameters such as the supersaturation, pH, ionic strength and the ratio of calcium to phosphate activities. We then discuss the use of scanning probe microscopy as a tool to measure surface kinetics of mineral surfaces evolving in simplified solutions. The two primary themes that we will touch on are the use of microenvironments that temporally evolve the solution state to control growth and dissolution; and the use of various growth modifiers that interact with the solution species or with mineral surfaces to shift growth away from the lowest energy facetted forms. The study of synthetic minerals in simplified solution lays the foundation for understand mineralization process in more complex environments found in the body.

  11. Thermoluminescence characteristics of Cu{sub 2}O doped Calcium Lithium borate glass irradiated with the cobalt-60 gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Rammadhan, Ismail, E-mail: ismail.rammadhan@koyauniversity.org [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Physics, Faculty of Sciences and Health, Koya University, Danielle Mitterrand Boulevard, Koya 45, Kurdistan Region (Iraq); Taha, Saddon [Department of Physics, Faculty of Sciences and Health, Koya University, Danielle Mitterrand Boulevard, Koya 45, Kurdistan Region (Iraq); Wagiran, H. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2017-06-15

    The aim of this study is to prepare and investigate the thermoluminescence characteristics for the un-doped and Cu{sub 2}O doped calcium lithium borate glass upon adding various Cu{sub 2}O concentrations of 0.005% to 0.1 mol%. The glasses were prepared by melt quenching method and irradiated with {sup 60}CO gamma-ray having different doses in the range of (0.5–4) Gy, (5–10) Gy, and (20–100) Gy. The amorphous phases were identified for optimization glass samples, effect of heating rate, glowing curves, linearity, sensitivity, fading, reproducibility of response and minimum detectable dose are also studied. The TL sample with 0.02 mol% Cu{sub 2}O concentration has higher response compared to the other samples concentration for a delivered dose of 50 Gy, The recorded glow curves consist a dominant peak at 187 °C for a heating rate of 5 °C s{sup −1}. However, the value of effective atomic number Z{sub eff} is 8.84 for 0.02Cu{sub 2}O doped which are near to the atomic number of soft tissue. - Highlights: •We have prepared and investigate the crystalline structure for the un-doped and Cu{sub 2}O doped calcium lithium borate glass are carried out. •Investigate the amorphous structure of calcium lithium borate glass. •Determine the best setting of annealing temperature, annealing time and heating rate for Cu{sub 2}O doped calcium lithium borate glass. •The doping effects of Cu{sub 2}O on the thermoluminescence properties of calcium lithium borate glass subjected gamma radiations. •The new dosimeter showed simple glow curve with single prominent peak centred at 187 °C and linear dose–response range 0.5–100 Gy, good reproducibility, the fading of the signal is relatively slow. •Effective atomic number for Cu{sub 2}O doped Calcium lithium borate close to the effective atomic number of soft tissue.

  12. Development of phosphate glass microspheres containing holmium for selective internal radiotherapy

    International Nuclear Information System (INIS)

    Barros Filho, Eraldo Cordeiro

    2016-01-01

    The selective internal radiotherapy is an alternative for some kinds of cancer as the hepatocellular carcinoma (HCC) or primary liver cancer treatment. In this treatment, glass or polymer microspheres containing radionuclides inside their structure are introduced in the liver through hepatic artery and trapped at the arterioles that feed the tumor. In this work, the development of phosphate glasses containing holmium for production of microspheres and their application in Brazil are proposed. The developed glasses presented suitable chemical durability, density of 2,7(3) g/cm 3 , high thermal stability and the impurities contained therein do not preclude the treatment. The microspheres were produced by the flame method and the gravitational fall method, and were characterized by means of several techniques to evaluate shape, average particle size, activity and biocompatibility suitable for selective internal radiotherapy. Based in the main results, the submission to in vivo tests is proposed. (author)

  13. Synthesis and characterization of Ag-containing calcium phosphates with various Ca/P ratios

    International Nuclear Information System (INIS)

    Gokcekaya, Ozkan; Ueda, Kyosuke; Narushima, Takayuki; Ergun, Celaletdin

    2015-01-01

    Ag-containing calcium phosphate (CaP) powders were synthesized by a precipitation method using aqueous solutions of calcium nitrate, silver nitrate, and ammonium phosphate. The powders were sintered at temperatures ranging from 1173 to 1473 K. The charged atomic ratios of (Ca + Ag)/P and Ag/(Ca + Ag) in solution were varied from 1.33 to 1.67 and from 0 to 0.30, respectively. The Ag content in the as-precipitated CaP powders increased with the charged Ag/(Ca + Ag) atomic ratio in solution and was lower than the charged Ag/(Ca + Ag) value. The as-precipitated CaP powders consisted of hydroxyapatite (HA) as the main phase. Ag nanoparticles were observed on the as-precipitated HA particles under all conditions of Ag addition. After the sintering, HA, β-TCP (tricalcium phosphate), α-TCP, and β-CPP (calcium pyrophosphate) were mainly detected as CaPs on the basis of the Ca/P atomic ratio of the as-precipitated powders. The addition of Ag stabilized the β-TCP phase, and the distribution of Ag in β-TCP was homogeneous. A metallic Ag phase coexisted with HA. The solubility of Ag in HA was estimated to be 0.0019–0.0061 (Ag/(Ca + Ag)) atomic ratio, which was lower than that in β-TCP (higher than 0.0536) and higher than that of β-CPP (below the detection limit of analyses). - Highlights: • The HA powders with Ag nanoparticles were synthesized by a precipitation method. • Metallic Ag particles were detected with the HA phase after sintering. • The distribution of Ag in β-TCP was homogeneous after sintering. • The addition of Ag stabilized the β-ΤCP phase. • β-TCP exhibited higher solubility of Ag than HA and β-CPP

  14. Synthesis and characterization of Ag-containing calcium phosphates with various Ca/P ratios

    Energy Technology Data Exchange (ETDEWEB)

    Gokcekaya, Ozkan, E-mail: gokcekaya@dc.tohoku.ac.jp [Department of Materials Processing, Tohoku University, 6-6-02 Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Ueda, Kyosuke; Narushima, Takayuki [Department of Materials Processing, Tohoku University, 6-6-02 Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Ergun, Celaletdin [Faculty of Mechanical Engineering, Istanbul Technical University, 65 Inonu Street, Gumussuyu, Istanbul 34437 (Turkey)

    2015-08-01

    Ag-containing calcium phosphate (CaP) powders were synthesized by a precipitation method using aqueous solutions of calcium nitrate, silver nitrate, and ammonium phosphate. The powders were sintered at temperatures ranging from 1173 to 1473 K. The charged atomic ratios of (Ca + Ag)/P and Ag/(Ca + Ag) in solution were varied from 1.33 to 1.67 and from 0 to 0.30, respectively. The Ag content in the as-precipitated CaP powders increased with the charged Ag/(Ca + Ag) atomic ratio in solution and was lower than the charged Ag/(Ca + Ag) value. The as-precipitated CaP powders consisted of hydroxyapatite (HA) as the main phase. Ag nanoparticles were observed on the as-precipitated HA particles under all conditions of Ag addition. After the sintering, HA, β-TCP (tricalcium phosphate), α-TCP, and β-CPP (calcium pyrophosphate) were mainly detected as CaPs on the basis of the Ca/P atomic ratio of the as-precipitated powders. The addition of Ag stabilized the β-TCP phase, and the distribution of Ag in β-TCP was homogeneous. A metallic Ag phase coexisted with HA. The solubility of Ag in HA was estimated to be 0.0019–0.0061 (Ag/(Ca + Ag)) atomic ratio, which was lower than that in β-TCP (higher than 0.0536) and higher than that of β-CPP (below the detection limit of analyses). - Highlights: • The HA powders with Ag nanoparticles were synthesized by a precipitation method. • Metallic Ag particles were detected with the HA phase after sintering. • The distribution of Ag in β-TCP was homogeneous after sintering. • The addition of Ag stabilized the β-ΤCP phase. • β-TCP exhibited higher solubility of Ag than HA and β-CPP.

  15. Effect of composition and temperature on the second harmonic generation in silver phosphate glasses

    Science.gov (United States)

    Konidakis, I.; Psilodimitrakopoulos, S.; Kosma, K.; Lemonis, A.; Stratakis, E.

    2018-01-01

    We herein employ nonlinear laser imaging microscopy to explicitly study the dynamics of second harmonic generation (SHG) in silver iodide phosphate glasses. While glasses of this family have gained extensive scientific attention over the years due to their superior conducting properties, considerably less attention has been paid to their unique nonlinear optical characteristics. In the present study, firstly, it is demonstrated that SHG signal intensity is enhanced upon increasing silver content due to the random formation of silver microstructures within the glass network. Secondly, the SHG temperature dynamics were explored near the glass transition temperature (Tg) regime, where significant glass relaxation phenomena occur. It is found that heating towards the Tg improves the SHG efficiency, whereas above Tg, the capacity of glasses to generate second harmonic radiation is drastically suppressed. The novel findings of this work are considered important in terms of the potential employment of these glasses for the realization of advanced photonic applications like optical-switches and wavelength conversion devices.

  16. Concentration dependent spectroscopic properties of Dy{sup 3+} ions doped boro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mariyappan, M.; Marimuthu, K., E-mail: mari-ram2000@yahoo.com [Department of Physics, Gandhigram Rural Institute - Deemed University, Gandhigram – 624 302 (India)

    2016-05-23

    Dy{sup 3+} ions doped boro-phosphate glasses have been synthesized by melt quenching method and characterized through FTIR, absorption and luminescence spectral measurements. The presence of various stretching and bending vibrations of different borate and phosphate groups were identified from the FTIR spectra. In order to examine the electronic band structure of the studied glasses, Optical energy gap (E{sub opt}) and Urbach energy (ΔE) values were estimated from the absorption spectra. The Judd-Ofelt (JO) intensity parameters were calculated to examine the symmetry of the ligand environment around the Dy{sup 3+} ions site. The emission spectra exhibit two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponding to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transitions respectively. The emission spectra were characterized through Commission International d’Eclairage (CIE) 1931 chromaticity diagram to explore its suitability for WLED applications.

  17. Performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation in pig manure composting.

    Science.gov (United States)

    Li, Yun; Luo, Wenhai; Li, Guoxue; Wang, Kun; Gong, Xiaoyan

    2018-02-01

    This study investigated the performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation during pig manure composting with cornstalk as the bulking agent. Results show that phosphogypsum increased nitrous oxide (N 2 O) emission, but significantly reduced ammonia (NH 3 ) emission and thus enhanced the mineral and total nitrogen (TN) contents in compost. Although N 2 O emission could be reduced by adding calcium magnesium phosphate fertilizer, NH 3 emission was considerably increased, resulting in an increase in TN loss during composting. By blending these two additives, both NH 3 and N 2 O emissions could be mitigated, achieving effective nitrogen conservation in composting. More importantly, with the addition of 20% TN of the mixed composting materials, these two additives could synergistically improve the compost maturity and quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Simultaneous recovery of calcium phosphate granules and methane in anaerobic treatment of black water

    NARCIS (Netherlands)

    Cunha Costa, da J.M.R.; Tervahauta, T.; Weijden, van der R.D.; Hernández Leal, L.; Zeeman, G.; Buisman, C.J.N.

    2017-01-01

    Calcium phosphate (CaP) granules were discovered in the anaerobic treatment of vacuum collected black water (BW), using upflow anaerobic sludge blanket (UASB) technology. This allows simultaneous recovery of CaP granules and methane in the UASB reactor. However, the role of BW composition on CaP

  19. Self-assembly of calcium phosphate nanoparticles into hollow spheres induced by dissolved amino acids

    NARCIS (Netherlands)

    Hagmeyer, D.; Ganesan, K.; Ruesing, J.; Schunk, D.; Mayer, C.; Dey, A.; Sommerdijk, N.A.J.M.; Epple, M.

    2011-01-01

    Nanoparticles of calcium phosphate assemble spontaneously within a few seconds into hollow spheres with a diameter around 200–300 nm in the presence of dissolved amino acids and dipeptides. The process of formation was followed by cryo-transmission electron microscopy (cryoTEM), proving their hollow

  20. Multiple prismatic calcium phosphate layers in the jaws of present-day sharks (Chondrichthyes; Selachii).

    Science.gov (United States)

    Dingerkus, G; Séret, B; Guilbert, E

    1991-01-15

    Jaws of large individuals, over 2 m in total length, of the shark species Carcharodon carcharias (great white shark) and Isurus oxyrinchus (mako shark) of the family Lamnidae, and Galeocerdo cuvieri (tiger shark) and Carcharhinus leucas (bull shark) of the family Carcharhinidae were found to have multiple, up to five, layers of prismatic calcium phosphate surrounding the cartilages. Smaller individuals of these species and other known species of living chondrichthyans have only one layer of prismatic calcium phosphate surrounding the cartilages, as also do most species of fossil chondrichthyans. Two exceptions are the fossil shark genera Xenacanthus and Tamiobatis. Where it is found in living forms, this multiple layered calcification does not appear to be phylogenetic, as it appears to be lacking in other lamnid and carcharhinid genera and species. Rather it appears to be functional, only appearing in larger individuals and species of these two groups, and hence may be necessary to strengthen the jaw cartilages of such individuals for biting.