WorldWideScience

Sample records for gibberellin-deficient ga-2 mutant

  1. Hormonal regulation of seed development and germination in tomato : studies on abscisic acid- and gibberellin-deficient mutants

    NARCIS (Netherlands)

    Groot, S.P.C.

    1987-01-01

    The role of endogenous gibberellins (GAs) and abscisic acid (ABA) in seed development and germination of tomato, was studied with the use of GA- and/or ABA-deficient mutants.

    GAs are indispensable for the development of fertile flowers. Fertility of GA-deficient flowers is restored

  2. Hormonal control of seed development in gibberellin- and ABA-deficient tomato (Lycopersicon esculentum Mill. cv. Moneymaker) mutants

    NARCIS (Netherlands)

    Castro, de R.D.; Hilhorst, H.W.M.

    2006-01-01

    Developing seeds of tomato gibberellin (GA)-deficient gib1 and abscisic acid (ABA)-deficient sitw mutants enabled us to analyze the role of GA in the regulation of embryo histo-differentiation, and the role of ABA in the regulation of maturation and quiescence. Our data show that DNA synthesis and

  3. Effects of gibberellin mutations on in vitro shoot bud regeneration of ...

    African Journals Online (AJOL)

    hormone in regulating plant growth and development. It is interesting to know the effects of gibberellin and its signalling pathway on plant regeneration. In this report Arabidopsis thaliana landsberg (wild type), ga1-3 (gibberellin biosynthesis deficiency mutant), gai (gibberellin insensitive mutant), penta mutant (lacking GA1, ...

  4. Proteomics of Arabidopsis Seed Germination : a Comparative Study of Wild-Type and Gibberellin-Deficient Seeds

    NARCIS (Netherlands)

    Gallardo, K.; Job, C.; Groot, S.P.C.; Puype, M.; Vandekerckhove, J.; Job, D.

    2002-01-01

    We examined the role of gibberellins (GAs) in germination of Arabidopsis seeds by a proteomic approach. For that purpose, we used two systems. The first system consisted of seeds of the GA-deficient ga1 mutant, and the second corresponded to wild-type seeds incubated in paclobutrazol, a specific GA

  5. Mapping of a Cellulose-Deficient Mutant Named dwarf1-1 in Sorghum bicolor to the Green Revolution Gene gibberellin20-oxidase Reveals a Positive Regulatory Association between Gibberellin and Cellulose Biosynthesis.

    Science.gov (United States)

    Petti, Carloalberto; Hirano, Ko; Stork, Jozsef; DeBolt, Seth

    2015-09-01

    Here, we show a mechanism for expansion regulation through mutations in the green revolution gene gibberellin20 (GA20)-oxidase and show that GAs control biosynthesis of the plants main structural polymer cellulose. Within a 12,000 mutagenized Sorghum bicolor plant population, we identified a single cellulose-deficient and male gametophyte-dysfunctional mutant named dwarf1-1 (dwf1-1). Through the Sorghum propinquum male/dwf1-1 female F2 population, we mapped dwf1-1 to a frameshift in GA20-oxidase. Assessment of GAs in dwf1-1 revealed ablation of GA. GA ablation was antagonistic to the expression of three specific cellulose synthase genes resulting in cellulose deficiency and growth dwarfism, which were complemented by exogenous bioactive gibberellic acid application. Using quantitative polymerase chain reaction, we found that GA was positively regulating the expression of a subset of specific cellulose synthase genes. To cross reference data from our mapped Sorghum sp. allele with another monocotyledonous plant, a series of rice (Oryza sativa) mutants involved in GA biosynthesis and signaling were isolated, and these too displayed cellulose deficit. Taken together, data support a model whereby suppressed expansion in green revolution GA genes involves regulation of cellulose biosynthesis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid

    NARCIS (Netherlands)

    Debeaujon, I.; Koornneef, M.

    2000-01-01

    The mechanisms imposing a gibberellin (GA) requirement to promote the germination of dormant and non-dormant Arabidopsis seeds were analyzed using the GA-deficient mutant ga1, several seed coat pigmentation and structure mutants, and the abscisic acid (ABA)-deficient mutant aba1. Testa mutants,

  7. The differential gene expression of key enzyme in the gibberellin pathway in the potato (solanum tuberosum) mutant

    International Nuclear Information System (INIS)

    Shi, J.B.; Ye, G.J.; Yang, Y.Z.; Wang, F.; Zhou, Y; Wang, J.

    2016-01-01

    In the present study, the expression patterns of the key genes in the gibberellin synthesis pathway in the potato dwarf mutant M4P-9 were detected using quantitative real-time PCR. Using Actin as an internal control, CPS1, KS, KO, GA20ox1, and GA2ox1, genes for key gibberellin synthesis enzymes, were evaluated, along with a gibberellin receptor gene. The standard curves were obtained from dilutions of PCR product; the correlation coefficient for Actin was 0.995, and those for the target genes varied from 0.994 to 1.000. The expression patterns of gibberellin pathway genes in different growth stages and tissues were calculated according to the method of Pfaffl. These genes showed expression patterns that varied based on growth stage and tissue type. The higher expression levels of CPS1 and GA2ox1 in roots, the lower expression levels of GA20ox1 in roots during tuber formation stage; as well as the increased expression of GA20ox1 and GA2ox1 genes in stems during the tuber formation stage, likely play key roles in the plant height phenotype in M4P-9 mutant materials. This article provides a basis for researching the mechanism of gibberellin synthesis in potato. (author)

  8. Methylation of Gibberellins by Arabidopsis GAMT1 and GAMT2

    Energy Technology Data Exchange (ETDEWEB)

    Varbanova,M.; Yamaguchi, S.; Yang, Y.; McKelvey, K.; Hanada, A.; Borochov, R.; Yu, F.; Jikumaru, Y.; Ross, J.; et al

    2007-01-01

    Arabidopsis thaliana GAMT1 and GAMT2 encode enzymes that catalyze formation of the methyl esters of gibberellins (GAs). Ectopic expression of GAMT1 or GAMT2 in Arabidopsis, tobacco (Nicotiana tabacum), and petunia (Petunia hybrida) resulted in plants with GA deficiency and typical GA deficiency phenotypes, such as dwarfism and reduced fertility. GAMT1 and GAMT2 are both expressed mainly in whole siliques (including seeds), with peak transcript levels from the middle until the end of silique development. Within whole siliques, GAMT2 was previously shown to be expressed mostly in developing seeds, and we show here that GAMT1 expression is also localized mostly to seed, suggesting a role in seed development. Siliques of null single GAMT1 and GAMT2 mutants accumulated high levels of various GAs, with particularly high levels of GA1 in the double mutant. Methylated GAs were not detected in wild-type siliques, suggesting that methylation of GAs by GAMT1 and GAMT2 serves to deactivate GAs and initiate their degradation as the seeds mature. Seeds of homozygous GAMT1 and GAMT2 null mutants showed reduced inhibition of germination, compared with the wild type, when placed on plates containing the GA biosynthesis inhibitor ancymidol, with the double mutant showing the least inhibition. These results suggest that the mature mutant seeds contained higher levels of active GAs than wild-type seeds.

  9. Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants

    International Nuclear Information System (INIS)

    Talon, M.; Zeevaart, J.A.D.; Koornneef, M.

    1990-01-01

    Twenty gibberellins (GAs) have been identified in extracts from shoots of the Landsberg erecta line of Arabidopsis thaliana by full-scan gas chromatography-mass spectrometry and Kovats retention indices. Eight of them are members of the early-13-hydroxylation pathway (GA 53 , GA 44 , GA 19 , GA 17 , GA 20 , GA 1 , GA 29 , and GA 8 ), six are members of the early-3-hydroxylation pathway (GA 37 , GA 27 , GA 36 , GA 13 , GA 4 , and GA 34 ), and the remaining six are members of the non-3,13-hydroxylation pathway (GA 12 , GA 15 , GA 24 , GA 25 , GA 9 , and GFA 51 ). Seven of these GAs were quantified in the Landsberg erecta line of Arabidopsis and in the semidwarf ga4 and ga5 mutants by gas chromatography-selected ion monitoring (SIM) using internal standards. The relative levels of the remaining 13 GAs were compared by the use of ion intensities only. The growth-response data, as well as the accumulation of GA 9 in the ga4 mutant, indicate that GA 9 is not active in Arabidopsis, but it must be 3β-hydroxytlated to GA 4 to become bioactive. It is concluded that the reduced levels of the 3β-hydroxy-GAs, GA 1 and GA 4 , are the cause of the semidwarf growth habit of both mutants

  10. Azospirillum brasilense and Azospirillum lipoferum Hydrolyze Conjugates of GA20 and Metabolize the Resultant Aglycones to GA1 in Seedlings of Rice Dwarf Mutants1

    Science.gov (United States)

    Cassán, Fabricio; Bottini, Rubén; Schneider, Gernot; Piccoli, Patricia

    2001-01-01

    Azospirillum species are plant growth-promotive bacteria whose beneficial effects have been postulated to be partially due to production of phytohormones, including gibberellins (GAs). In this work, Azospirillum brasilense strain Cd and Azospirillum lipoferum strain USA 5b promoted sheath elongation growth of two single gene GA-deficient dwarf rice (Oryza sativa) mutants, dy and dx, when the inoculated seedlings were supplied with [17,17-2H2]GA20-glucosyl ester or [17,17- 2H2]GA20-glucosyl ether. Results of capillary gas chromatography-mass spectrometry analysis show that this growth was due primarily to release of the aglycone [17,17-2H2]GA20 and its subsequent 3β-hydroxylation to [17,17-2H2]GA1 by the microorganism for the dy mutant, and by both the rice plant and microorganism for the dx mutant. PMID:11299384

  11. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa).

    Science.gov (United States)

    Wang, Baolan; Wei, Haifang; Xue, Zhen; Zhang, Wen-Hao

    2017-04-01

    Gibberellins (GAs) are a class of plant hormones with diverse functions. However, there has been little information on the role of GAs in response to plant nutrient deficiency. To evaluate the roles of GAs in regulation of Fe homeostasis, the effects of GA on Fe accumulation and Fe translocation in rice seedlings were investigated using wild-type, a rice mutant ( eui1 ) displaying enhnaced endogenous GA concentrations due to a defect in GA deactivation, and transgenic rice plants overexpressing OsEUI . Exposure to Fe-deficient medium significantly reduced biomass of rice plants. Both exogenous application of GA and an endogenous increase of bioactive GA enhanced Fe-deficiency response by exaggerating foliar chlorosis and reducing growth. Iron deficiency significantly suppressed production of GA 1 and GA 4 , the biologically active GAs in rice. Exogenous application of GA significantly decreased leaf Fe concentration regardless of Fe supply. Iron concentration in shoot of eui1 mutants was lower than that of WT plants under both Fe-sufficient and Fe-deficient conditions. Paclobutrazol, an inhibitor of GA biosynthesis, alleviated Fe-deficiency responses, and overexpression of EUI significantly increased Fe concentration in shoots and roots. Furthermore, both exogenous application of GA and endogenous increase in GA resulting from EUI mutation inhibited Fe translocation within shoots by suppressing OsYSL2 expression, which is involved in Fe transport and translocation. The novel findings provide compelling evidence to support the involvement of GA in mediation of Fe homeostasis in strategy II rice plants by negatively regulating Fe transport and translocation. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Transcriptional mechanisms associated with seed dormancy and dormancy loss in the gibberellin-insensitive sly1-2 mutant of Arabidopsis thaliana

    Science.gov (United States)

    While widespread transcriptome changes have been previously observed with seed dormancy loss, this study specifically characterized transcriptional changes associated with the increased seed dormancy and dormancy loss of the gibberellin (GA) hormone-insensitive sleepy1-2 (sly1-2) mutant. The SLY1 g...

  13. Cryptochrome and phytochrome cooperatively but independently reduce active gibberellin content in rice seedlings under light irradiation.

    Science.gov (United States)

    Hirose, Fumiaki; Inagaki, Noritoshi; Hanada, Atsushi; Yamaguchi, Shinjiro; Kamiya, Yuji; Miyao, Akio; Hirochika, Hirohiko; Takano, Makoto

    2012-09-01

    In contrast to a wealth of knowledge about the photoregulation of gibberellin metabolism in dicots, that in monocots remains largely unclear. In this study, we found that a blue light signal triggers reduction of active gibberellin content in rice seedlings with simultaneous repression of two gibberellin 20-oxidase genes (OsGA20ox2 and OsGA20ox4) and acute induction of four gibberellin 2-oxidase genes (OsGA2ox4-OsGA2ox7). For further examination of the regulation of these genes, we established a series of cryptochrome-deficient lines through reverse genetic screening from a Tos17 mutant population and construction of knockdown lines based on an RNA interference technique. By using these lines and phytochrome mutants, we elucidated that cryptochrome 1 (cry1), consisting of two species in rice plants (cry1a and cry1b), is indispensable for robust induction of the GA2ox genes. On the other hand, repression of the GA20ox genes is mediated by phytochromes. In addition, we found that the phytochromes also mediate the repression of a gibberellin 3-oxidase gene (OsGA3ox2) in the light. These results imply that, in rice seedlings, phytochromes mediate the repression of gibberellin biosynthesis capacity, while cry1 mediates the induction of gibberellin inactivation capacity. The cry1 action was demonstrated to be dominant in the reduction of active gibberellin content, but, in rice seedlings, the cumulative effects of these independent actions reduced active gibberellin content in the light. This pathway design in which different types of photoreceptors independently but cooperatively regulate active gibberellin content is unique from the viewpoint of dicot research. This redundancy should provide robustness to the response in rice plants.

  14. Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.).

    Science.gov (United States)

    Huang, Jian; Tang, Ding; Shen, Yi; Qin, Baoxiang; Hong, Lilan; You, Aiqing; Li, Ming; Wang, Xin; Yu, Hengxiu; Gu, Minghong; Cheng, Zhukuan

    2010-01-01

    Gibberellin (GA) 2-oxidase plays a key role in the GA catabolic pathway through 2beta-hydroxylation. In the present study, we isolated a CaMV 35S-enhancer activation tagged mutant, H032. This mutant exhibited a dominant dwarf and GA-deficient phenotype, with a final stature that was less than half of its wild-type counterpart. The endogenous bioactive GAs are markedly decreased in the H032 mutant, and application of bioactive GAs (GA(3) or GA(4)) can reverse the dwarf phenotype. The integrated T-DNA was detected 12.8 kb upstream of the OsGA2ox6 in the H032 genome by TAIL-PCR. An increased level of OsGA2ox6 mRNA was detected at a high level in the H032 mutant, which might be due to the enhancer role of the CaMV 35S promoter. RNAi and ectopic expression analysis of OsGA2ox6 indicated that the dwarf trait and the decreased levels of bioactive GAs in the H032 mutant were a result of the up-regulation of the OsGA2ox6 gene. BLASTP analysis revealed that OsGA2ox6 belongs to the class III of GA 2-oxidases, which is a novel type of GA2ox that uses C20-GAs (GA(12) and/or GA(53)) as the substrates. Interestingly, we found that a GA biosynthesis inhibitor, paclobutrazol, positively regulated the OsGA2ox6 gene. Unlike the over-expression of OsGA2ox1, which led to a high rate of seed abortion, the H032 mutant retained normal flowering and seed production. These results indicate that OsGA2ox6 mainly affects plant stature, and the dominant dwarf trait of the H032 mutant can be used as an efficient dwarf resource in rice breeding. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  15. Gibberellin regulates pollen viability and pollen tube growth in rice.

    Science.gov (United States)

    Chhun, Tory; Aya, Koichiro; Asano, Kenji; Yamamoto, Eiji; Morinaka, Yoichi; Watanabe, Masao; Kitano, Hidemi; Ashikari, Motoyuki; Matsuoka, Makoto; Ueguchi-Tanaka, Miyako

    2007-12-01

    Gibberellins (GAs) play many biological roles in higher plants. We collected and performed genetic analysis on rice (Oryza sativa) GA-related mutants, including GA-deficient and GA-insensitive mutants. Genetic analysis of the mutants revealed that rice GA-deficient mutations are not transmitted as Mendelian traits to the next generation following self-pollination of F1 heterozygous plants, although GA-insensitive mutations are transmitted normally. To understand these differences in transmission, we examined the effect of GA on microsporogenesis and pollen tube elongation in rice using new GA-deficient and GA-insensitive mutants that produce semifertile flowers. Phenotypic analysis revealed that the GA-deficient mutant reduced pollen elongation1 is defective in pollen tube elongation, resulting in a low fertilization frequency, whereas the GA-insensitive semidominant mutant Slr1-d3 is mainly defective in viable pollen production. Quantitative RT-PCR revealed that GA biosynthesis genes tested whose mutations are transmitted to the next generation at a lower frequency are preferentially expressed after meiosis during pollen development, but expression is absent or very low before the meiosis stage, whereas GA signal-related genes are actively expressed before meiosis. Based on these observations, we predict that the transmission of GA-signaling genes occurs in a sporophytic manner, since the protein products and/or mRNA transcripts of these genes may be introduced into pollen-carrying mutant alleles, whereas GA synthesis genes are transmitted in a gametophytic manner, since these genes are preferentially expressed after meiosis.

  16. Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway.

    Science.gov (United States)

    Margis-Pinheiro, Marcia; Zhou, Xue-Rong; Zhu, Qian-Hao; Dennis, Elizabeth S; Upadhyaya, Narayana M

    2005-03-01

    We have isolated a severe dwarf transposon (Ds) insertion mutant in rice (Oryza sativa L.), which could be differentiated early in the seedling stage by reduced shoot growth and dark green leaves, and later by severe dwarfism and failure to initiate flowering. These mutants, however, showed normal seed germination and root growth. One of the sequences flanking Ds, rescued from the mutant, was of a chromosome 4-located putative ent-kaurene synthase (KS) gene, encoding the enzyme catalyzing the second step of the gibberellin (GA) biosynthesis pathway. Dwarf mutants were always homozygous for this Ds insertion and no normal plants homozygous for this mutation were recovered in the segregating progeny, indicating that the Ds insertion mutation is recessive. As mutations in three recently reported rice GA-responsive dwarf mutant alleles and the dwarf mutation identified in this study mapped to the same locus, we designate the corresponding gene OsKS1. The osks1 mutant seedlings were responsive to exogenous gibberellin (GA3). OsKS1 transcripts of about 2.3 kb were detected in leaves and stem of wild-type plants, but not in germinating seeds or roots, suggesting that OsKS1 is not involved in germination or root growth. There are at least five OsKS1-like genes in the rice genome, four of which are also represented in rice expressed sequence tag (EST) databases. All OsKS1-like genes are transcribed with different expression patterns. ESTs corresponding to all six OsKS genes are represented in other cereal databases including barley, wheat and maize, suggesting that they are biologically active.

  17. Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant.

    Science.gov (United States)

    Ueguchi-Tanaka, Miyako; Hirano, Ko; Hasegawa, Yasuko; Kitano, Hidemi; Matsuoka, Makoto

    2008-09-01

    The rice (Oryza sativa) DELLA protein SLR1 acts as a repressor of gibberellin (GA) signaling. GA perception by GID1 causes SLR1 protein degradation involving the F-box protein GID2; this triggers GA-associated responses such as shoot elongation and seed germination. In GA-insensitive and GA biosynthesis mutants, SLENDER RICE1 (SLR1) accumulates to high levels, and the severity of dwarfism is usually correlated with the level of SLR1 accumulation. An exception is the GA-insensitive F-box mutant gid2, which shows milder dwarfism than mutants such as gid1 and cps even though it accumulates higher levels of SLR1. The level of SLR1 protein in gid2 was decreased by loss of GID1 function or treatment with a GA biosynthesis inhibitor, and dwarfism was enhanced. Conversely, overproduction of GID1 or treatment with GA(3) increased the SLR1 level in gid2 and reduced dwarfism. These results indicate that derepression of SLR1 repressive activity can be accomplished by GA and GID1 alone and does not require F-box (GID2) function. Evidence for GA signaling without GID2 was also provided by the expression behavior of GA-regulated genes such as GA-20oxidase1, GID1, and SLR1 in the gid2 mutant. Based on these observations, we propose a model for the release of GA suppression that does not require DELLA protein degradation.

  18. Strigolactones Stimulate Internode Elongation Independently of Gibberellins1[C][W

    Science.gov (United States)

    de Saint Germain, Alexandre; Ligerot, Yasmine; Dun, Elizabeth A.; Pillot, Jean-Paul; Ross, John J.; Beveridge, Christine A.; Rameau, Catherine

    2013-01-01

    Strigolactone (SL) mutants in diverse species show reduced stature in addition to their extensive branching. Here, we show that this dwarfism in pea (Pisum sativum) is not attributable to the strong branching of the mutants. The continuous supply of the synthetic SL GR24 via the root system using hydroponics can restore internode length of the SL-deficient rms1 mutant but not of the SL-response rms4 mutant, indicating that SLs stimulate internode elongation via RMS4. Cytological analysis of internode epidermal cells indicates that SLs control cell number but not cell length, suggesting that SL may affect stem elongation by stimulating cell division. Consequently, SLs can repress (in axillary buds) or promote (in the stem) cell division in a tissue-dependent manner. Because gibberellins (GAs) increase internode length by affecting both cell division and cell length, we tested if SLs stimulate internode elongation by affecting GA metabolism or signaling. Genetic analyses using SL-deficient and GA-deficient or DELLA-deficient double mutants, together with molecular and physiological approaches, suggest that SLs act independently from GAs to stimulate internode elongation. PMID:23943865

  19. Isolation and characterisation of a dwarf rice mutant exhibiting defective gibberellins biosynthesis.

    Science.gov (United States)

    Ji, S H; Gururani, M A; Lee, J W; Ahn, B-O; Chun, S-C

    2014-03-01

    We have isolated a severe dwarf mutant derived from a Ds (Dissociation) insertion mutant rice (Oryza sativa var. japonica c.v. Dongjin). This severe dwarf phenotype, has short and dark green leaves, reduced shoot growth early in the seedling stage, and later severe dwarfism with failure to initiate flowering. When treated with bioactive GA3 , mutants are restored to the normal wild-type phenotype. Reverse transcription PCR analyses of 22 candidate genes related to the gibberellin (GA) biosynthesis pathway revealed that among 22 candidate genes tested, a dwarf mutant transcript was not expressed only in one OsKS2 gene. Genetic analysis revealed that the severe dwarf phenotype was controlled by recessive mutation of a single nuclear gene. The putative OsKS2 gene was a chromosome 4-located ent-kaurene synthase (KS), encoding the enzyme that catalyses an early step of the GA biosynthesis pathway. Sequence analysis revealed that osks2 carried a 1-bp deletion in the ORF region of OsKS2, which led to a loss-of-function mutation. The expression pattern of OsKS2 in wild-type cv Dongjin, showed that it is expressed in all organs, most prominently in the stem and floral organs. Morphological characteristics of the dwarf mutant showed dramatic modifications in internal structure and external morphology. We propose that dwarfism in this mutant is caused by a point mutation in OsKS2, which plays a significant role in growth and development of higher plants. Further investigation on OsKS2 and other OsKS-like proteins is underway and may yield better understanding of the putative role of OsKS in severe dwarf mutants. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Identification of a novel ga-related bush mutant in pumpkin (cucurbita moschata duchesne)

    International Nuclear Information System (INIS)

    Wu, T.; Cao, J.

    2015-01-01

    Pumpkin (Cucurbita moschata Duchesne) bush mutant plants were characterized by short stems. The sensitivity of pumpkin bush mutant plants to exogenous hormones was identified in this study. Results revealed that internode elongation of bush mutant plants could respond to gibberellins (GA4+7 and GA3), but not to indole acetic acid (IAA) and brassinosteroids (BR); by contrast, the mutant phenotype of bush mutant plants could not be fully rescued by GA4+7 and GA3. The internode of bush mutant plants yielded a lower KS expression level than that of vine plants. Therefore, pumpkin bush mutant plants were designated as GA-related mutant plants eliciting a partial response to GAs; the action of IAA and BR might not be involved in the internode growth of pumpkin bush mutant plants, specifically Cucurbita moschata Duch. (author)

  1. SHOEBOX Modulates Root Meristem Size in Rice through Dose-Dependent Effects of Gibberellins on Cell Elongation and Proliferation.

    Science.gov (United States)

    Li, Jintao; Zhao, Yu; Chu, Huangwei; Wang, Likai; Fu, Yanru; Liu, Ping; Upadhyaya, Narayana; Chen, Chunli; Mou, Tongmin; Feng, Yuqi; Kumar, Prakash; Xu, Jian

    2015-08-01

    Little is known about how the size of meristem cells is regulated and whether it participates in the control of meristem size in plants. Here, we report our findings on shoebox (shb), a mild gibberellin (GA) deficient rice mutant that has a short root meristem size. Quantitative analysis of cortical cell length and number indicates that shb has shorter, rather than fewer, cells in the root meristem until around the fifth day after sowing, from which the number of cortical cells is also reduced. These defects can be either corrected by exogenous application of bioactive GA or induced in wild-type roots by a dose-dependent inhibitory effect of paclobutrazol on GA biosynthesis, suggesting that GA deficiency is the primary cause of shb mutant phenotypes. SHB encodes an AP2/ERF transcription factor that directly activates transcription of the GA biosynthesis gene KS1. Thus, root meristem size in rice is modulated by SHB-mediated GA biosynthesis that regulates the elongation and proliferation of meristem cells in a developmental stage-specific manner.

  2. SHOEBOX Modulates Root Meristem Size in Rice through Dose-Dependent Effects of Gibberellins on Cell Elongation and Proliferation.

    Directory of Open Access Journals (Sweden)

    Jintao Li

    2015-08-01

    Full Text Available Little is known about how the size of meristem cells is regulated and whether it participates in the control of meristem size in plants. Here, we report our findings on shoebox (shb, a mild gibberellin (GA deficient rice mutant that has a short root meristem size. Quantitative analysis of cortical cell length and number indicates that shb has shorter, rather than fewer, cells in the root meristem until around the fifth day after sowing, from which the number of cortical cells is also reduced. These defects can be either corrected by exogenous application of bioactive GA or induced in wild-type roots by a dose-dependent inhibitory effect of paclobutrazol on GA biosynthesis, suggesting that GA deficiency is the primary cause of shb mutant phenotypes. SHB encodes an AP2/ERF transcription factor that directly activates transcription of the GA biosynthesis gene KS1. Thus, root meristem size in rice is modulated by SHB-mediated GA biosynthesis that regulates the elongation and proliferation of meristem cells in a developmental stage-specific manner.

  3. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties.

    Science.gov (United States)

    Okuno, Ayako; Hirano, Ko; Asano, Kenji; Takase, Wakana; Masuda, Reiko; Morinaka, Yoichi; Ueguchi-Tanaka, Miyako; Kitano, Hidemi; Matsuoka, Makoto

    2014-01-01

    Traditional breeding for high-yielding rice has been dependent on the widespread use of fertilizers and the cultivation of gibberellin (GA)-deficient semi-dwarf varieties. The use of semi-dwarf plants facilitates high grain yield since these varieties possess high levels of lodging resistance, and thus could support the high grain weight. Although this approach has been successful in increasing grain yield, it is desirable to further improve grain production and also to breed for high biomass. In this study, we re-examined the effect of GA on rice lodging resistance and biomass yield using several GA-deficient mutants (e.g. having defects in the biosynthesis or perception of GA), and high-GA producing line or mutant. GA-deficient mutants displayed improved bending-type lodging resistance due to their short stature; however they showed reduced breaking-type lodging resistance and reduced total biomass. In plants producing high amounts of GA, the bending-type lodging resistance was inferior to the original cultivars. The breaking-type lodging resistance was improved due to increased lignin accumulation and/or larger culm diameters. Further, these lines had an increase in total biomass weight. These results show that the use of rice cultivars producing high levels of GA would be a novel approach to create higher lodging resistance and biomass.

  4. Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding

    OpenAIRE

    Ordonio, Reynante L.; Ito, Yusuke; Hatakeyama, Asako; Ohmae-Shinohara, Kozue; Kasuga, Shigemitsu; Tokunaga, Tsuyoshi; Mizuno, Hiroshi; Kitano, Hidemi; Matsuoka, Makoto; Sazuka, Takashi

    2014-01-01

    Regulation of symmetrical cell growth in the culm is important for proper culm development. So far, the involvement of gibberellin (GA) in this process has not yet been demonstrated in sorghum. Here, we show that GA deficiency resulting from any loss-of-function mutation in four genes (SbCPS1, SbKS1, SbKO1, SbKAO1) involved in the early steps of GA biosynthesis, not only results in severe dwarfism but also in abnormal culm bending. Histological analysis of the bent culm revealed that the intr...

  5. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice.

    Science.gov (United States)

    Lo, Shuen-Fang; Yang, Show-Ya; Chen, Ku-Ting; Hsing, Yue-Ie; Zeevaart, Jan A D; Chen, Liang-Jwu; Yu, Su-May

    2008-10-01

    Gibberellin 2-oxidases (GA2oxs) regulate plant growth by inactivating endogenous bioactive gibberellins (GAs). Two classes of GA2oxs inactivate GAs through 2beta-hydroxylation: a larger class of C(19) GA2oxs and a smaller class of C(20) GA2oxs. In this study, we show that members of the rice (Oryza sativa) GA2ox family are differentially regulated and act in concert or individually to control GA levels during flowering, tillering, and seed germination. Using mutant and transgenic analysis, C(20) GA2oxs were shown to play pleiotropic roles regulating rice growth and architecture. In particular, rice overexpressing these GA2oxs exhibited early and increased tillering and adventitious root growth. GA negatively regulated expression of two transcription factors, O. sativa homeobox 1 and TEOSINTE BRANCHED1, which control meristem initiation and axillary bud outgrowth, respectively, and that in turn inhibited tillering. One of three conserved motifs unique to the C(20) GA2oxs (motif III) was found to be important for activity of these GA2oxs. Moreover, C(20) GA2oxs were found to cause less severe GA-defective phenotypes than C(19) GA2oxs. Our studies demonstrate that improvements in plant architecture, such as semidwarfism, increased root systems and higher tiller numbers, could be induced by overexpression of wild-type or modified C(20) GA2oxs.

  6. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice.

    Science.gov (United States)

    Magome, Hiroshi; Nomura, Takahito; Hanada, Atsushi; Takeda-Kamiya, Noriko; Ohnishi, Toshiyuki; Shinma, Yuko; Katsumata, Takumi; Kawaide, Hiroshi; Kamiya, Yuji; Yamaguchi, Shinjiro

    2013-01-29

    Bioactive gibberellins (GAs) control many aspects of growth and development in plants. GA(1) has been the most frequently found bioactive GA in various tissues of flowering plants, but the enzymes responsible for GA(1) biosynthesis have not been fully elucidated due to the enzymes catalyzing the 13-hydroxylation step not being identified. Because of the lack of mutants defective in this enzyme, biological significance of GA 13-hydroxylation has been unknown. Here, we report that two cytochrome P450 genes, CYP714B1 and CYP714B2, encode GA 13-oxidase in rice. Transgenic Arabidopsis plants that overexpress CYP714B1 or CYP714B2 show semidwarfism. There was a trend that the levels of 13-OH GAs including GA(1) were increased in these transgenic plants. Functional analysis using yeast or insect cells shows that recombinant CYP714B1 and CYP714B2 proteins can convert GA(12) into GA(53) (13-OH GA(12)) in vitro. Moreover, the levels of 13-OH GAs including GA(1) were decreased, whereas those of 13-H GAs including GA(4) (which is more active than GA(1)) were increased, in the rice cyp714b1 cyp714b2 double mutant. These results indicate that CYP714B1 and CYP714B2 play a predominant role in GA 13-hydroxylation in rice. The double mutant plants appear phenotypically normal until heading, but show elongated uppermost internode at the heading stage. Moreover, CYP714B1 and CYP714B2 expression was up-regulated by exogenous application of bioactive GAs. Our results suggest that GA 13-oxidases play a role in fine-tuning plant growth by decreasing GA bioactivity in rice and that they also participate in GA homeostasis.

  7. Two rice GRAS family genes responsive to N -acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: evidence for cross-talk between elicitor and gibberellin signaling in rice cells.

    Science.gov (United States)

    Day, R Bradley; Tanabe, Shigeru; Koshioka, Masaji; Mitsui, Toshiaki; Itoh, Hironori; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Kaku, Hanae; Shibuya, Naoto; Minami, Eiichi

    2004-01-01

    In this study, we present data showing that two members of the GRAS family of genes from rice, CIGR1 and CIGR2 (chitin-inducible gibberellin-responsive), inducible by the potent elicitor N -acetylchitooligosaccharide (GN), are rapidly induced by exogenous gibberellins. The pattern of mRNA accumulation was dependent on the dose and biological activity of the gibberellins, suggesting that the induction of the genes by gibberellin is mediated by a biological receptor capable of specific recognition and signal transduction upon perception of the phytoactive compounds. Further pharmacological analysis revealed that the CIGR1 and CIGR2 mRNA accumulation by treatment with gibberellin is dependent upon protein phosphorylation/dephosphorylation events. In rice calli derived from slender rice 1, a constitutive gibberellin-responsive mutant, or d1, a mutant deficient in the alpha -subunit of the heterotrimeric G-protein, CIGR1 and CIGR2 were induced by a GN elicitor, yet not by gibberellin. Neither gibberellin nor GN showed related activities in defense or development, respectively. These results strongly suggested that the signal transduction cascade from gibberellin is independent of that from GN, and further implied that CIGR1 and CIGR2 have dual, distinct roles in defense and development.

  8. OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice.

    Science.gov (United States)

    Liu, Yaju; Xu, Yunyuan; Xiao, Jun; Ma, Qibin; Li, Dan; Xue, Zhen; Chong, Kang

    2011-07-01

    The A20/AN1 zinc-finger proteins (ZFPs) play pivotal roles in animal immune responses and plant stress responses. From previous gibberellin (GA) microarray data and A20/AN1 ZFP family member association, we chose Oryza sativa dwarf rice with overexpression of gibberellin-induced gene (OsDOG) to examine its function in the GA pathway. OsDOG was induced by gibberellic acid (GA(3)) and repressed by the GA-synthesis inhibitor paclobutrazol. Different transgenic lines with constitutive expression of OsDOG showed dwarf phenotypes due to deficiency of cell elongation. Additional GA(1) and real-time PCR quantitative assay analyses confirmed that the decrease of GA(1) in the overexpression lines resulted from reduced expression of GA3ox2 and enhanced expression of GA2ox1 and GA2ox3. Adding exogenous GA rescued the constitutive expression phenotypes of the transgenic lines. OsDOG has a novel function in regulating GA homeostasis and in negative maintenance of plant cell elongation in rice. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties.

    Directory of Open Access Journals (Sweden)

    Ayako Okuno

    Full Text Available Traditional breeding for high-yielding rice has been dependent on the widespread use of fertilizers and the cultivation of gibberellin (GA-deficient semi-dwarf varieties. The use of semi-dwarf plants facilitates high grain yield since these varieties possess high levels of lodging resistance, and thus could support the high grain weight. Although this approach has been successful in increasing grain yield, it is desirable to further improve grain production and also to breed for high biomass. In this study, we re-examined the effect of GA on rice lodging resistance and biomass yield using several GA-deficient mutants (e.g. having defects in the biosynthesis or perception of GA, and high-GA producing line or mutant. GA-deficient mutants displayed improved bending-type lodging resistance due to their short stature; however they showed reduced breaking-type lodging resistance and reduced total biomass. In plants producing high amounts of GA, the bending-type lodging resistance was inferior to the original cultivars. The breaking-type lodging resistance was improved due to increased lignin accumulation and/or larger culm diameters. Further, these lines had an increase in total biomass weight. These results show that the use of rice cultivars producing high levels of GA would be a novel approach to create higher lodging resistance and biomass.

  10. Mechanism of internal browning of pineapple: The role of gibberellins catabolism gene (AcGA2ox) and GAs

    Science.gov (United States)

    Zhang, Qin; Rao, Xiuwen; Zhang, Lubin; He, Congcong; Yang, Fang; Zhu, Shijiang

    2016-01-01

    Internal browning (IB), a physiological disorder (PD) that causes severe losses in harvested pineapple, can be induced by exogenous gibberellins (GAs). Over the years, studies have focused on roles of Gibberellin 2-oxidase (GA2oxs), the major GAs catabolic enzyme in plants, in the regulation of changes in morphology or biomass. However, whether GA2oxs could regulate PD has not been reported. Here, a full-length AcGA2ox cDNA was isolated from pineapple, with the putative protein sharing 23.59% to 72.92% identity with GA2oxs from five other plants. Pineapples stored at 5 °C stayed intact, while those stored at 20 °C showed severe IB. Storage at 5 °C enhanced AcGA2ox expression and decreased levels of a GAs (GA4) ‘compared with storage at 20 °C. However, at 20 °C, exogenous application of abscisic acid (ABA) significantly suppressed IB. ABA simultaneously upregulated AcGA2ox and reduced GA4. Ectopic expression of AcGA2ox in Arabidopsis resulted in reduced GA4, lower seed germination, and shorter hypocotyls and roots, all of which were restored by exogenous GA4/7. Moreover, in pineapple, GA4/7 upregulated polyphenol oxidase, while storage at 5 °C and ABA downregulated it. These results strongly suggest the involvement of AcGA2ox in regulation of GAs levels and a role of AcGA2ox in regulating IB. PMID:27982026

  11. A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins.

    Science.gov (United States)

    Yamamoto, Yuko; Hirai, Takaaki; Yamamoto, Eiji; Kawamura, Mayuko; Sato, Tomomi; Kitano, Hidemi; Matsuoka, Makoto; Ueguchi-Tanaka, Miyako

    2010-11-01

    To investigate gibberellin (GA) signaling using the rice (Oryza sativa) GA receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) mutant gid1-8, we isolated a suppressor mutant, Suppressor of gid1-1 (Sgd-1). Sgd-1 is an intragenic mutant containing the original gid1-8 mutation (L45F) and an additional amino acid substitution (P99S) in the loop region. GID1(P99S) interacts with the rice DELLA protein SLENDER RICE1 (SLR1), even in the absence of GA. Substitution of the 99th Pro with other amino acids revealed that substitution with Ala (P99A) caused the highest level of GA-independent interaction. Physicochemical analysis using surface plasmon resonance revealed that GID1(P99A) has smaller K(a) (association) and K(d) (dissociation) values for GA(4) than does wild-type GID1. This suggests that the GID1(P99A) lid is at least partially closed, resulting in both GA-independent and GA-hypersensitive interactions with SLR1. One of the three Arabidopsis thaliana GID1s, At GID1b, can also interact with DELLA proteins in the absence of GA, so we investigated whether GA-independent interaction of At GID1b depends on a mechanism similar to that of rice GID1(P99A). Substitution of the loop region or a few amino acids of At GID1b with those of At GID1a diminished its GA-independent interaction with GAI while maintaining the GA-dependent interaction. Soybean (Glycine max) and Brassica napus also have GID1s similar to At GID1b, indicating that these unique GID1s occur in various dicots and may have important functions in these plants.

  12. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB.

    Science.gov (United States)

    Aya, Koichiro; Ueguchi-Tanaka, Miyako; Kondo, Maki; Hamada, Kazuki; Yano, Kentaro; Nishimura, Mikio; Matsuoka, Makoto

    2009-05-01

    Gibberellins (GAs) play important roles in regulating reproductive development, especially anther development. Our previous studies revealed that the MYB transcriptional factor GAMYB, an important component of GA signaling in cereal aleurone cells, is also important for anther development. Here, we examined the physiological functions of GA during anther development through phenotypic analyses of rice (Oryza sativa) GA-deficient, GA-insensitive, and gamyb mutants. The mutants exhibited common defects in programmed cell death (PCD) of tapetal cells and formation of exine and Ubisch bodies. Microarray analysis using anther RNAs of these mutants revealed that rice GAMYB is involved in almost all instances of GA-regulated gene expression in anthers. Among the GA-regulated genes, we focused on two lipid metabolic genes, a cytochrome P450 hydroxylase CYP703A3 and beta-ketoacyl reductase, both of which might be involved in providing a substrate for exine and Ubisch body. GAMYB specifically interacted with GAMYB binding motifs in the promoter regions in vitro, and mutation of these motifs in promoter-beta-glucuronidase (GUS) transformants caused reduced GUS expression in anthers. Furthermore, a knockout mutant for CYP703A3 showed gamyb-like defects in exine and Ubisch body formation. Together, these results suggest that GA regulates exine formation and the PCD of tapetal cells and that direct activation of CYP703A3 by GAMYB is key to exine formation.

  13. Comprehensive gene expression analysis of rice aleurone cells: probing the existence of an alternative gibberellin receptor.

    Science.gov (United States)

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-02-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. © 2015 American Society of Plant Biologists. All Rights Reserved.

  14. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice.

    Science.gov (United States)

    Lo, Shuen-Fang; Ho, Tuan-Hua David; Liu, Yi-Lun; Jiang, Mirng-Jier; Hsieh, Kun-Ting; Chen, Ku-Ting; Yu, Lin-Chih; Lee, Miin-Huey; Chen, Chi-Yu; Huang, Tzu-Pi; Kojima, Mikiko; Sakakibara, Hitoshi; Chen, Liang-Jwu; Yu, Su-May

    2017-07-01

    A major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2-oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors. We identified three conserved domains in a unique class of C 20 GA2ox, GA2ox6, which is known to regulate the architecture and function of rice plants. We mutated nine specific amino acids in these conserved domains and observed a gradient of effects on plant height. Ectopic expression of some of these GA2ox6 mutants moderately lowered GA levels and reprogrammed transcriptional networks, leading to reduced plant height, more productive tillers, expanded root system, higher WUE and photosynthesis rate, and elevated abiotic and biotic stress tolerance in transgenic rice. Combinations of these beneficial traits conferred not only drought and disease tolerance but also increased grain yield by 10-30% in field trials. Our studies hold the promise of manipulating GA levels to substantially improve plant architecture, stress tolerance and grain yield in rice and possibly in other major crops. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Comprehensive Gene Expression Analysis of Rice Aleurone Cells: Probing the Existence of an Alternative Gibberellin Receptor1

    Science.gov (United States)

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-01-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. PMID:25511432

  16. A Rice gid1 Suppressor Mutant Reveals That Gibberellin Is Not Always Required for Interaction between Its Receptor, GID1, and DELLA Proteins[W][OA

    Science.gov (United States)

    Yamamoto, Yuko; Hirai, Takaaki; Yamamoto, Eiji; Kawamura, Mayuko; Sato, Tomomi; Kitano, Hidemi; Matsuoka, Makoto; Ueguchi-Tanaka, Miyako

    2010-01-01

    To investigate gibberellin (GA) signaling using the rice (Oryza sativa) GA receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) mutant gid1-8, we isolated a suppressor mutant, Suppressor of gid1-1 (Sgd-1). Sgd-1 is an intragenic mutant containing the original gid1-8 mutation (L45F) and an additional amino acid substitution (P99S) in the loop region. GID1P99S interacts with the rice DELLA protein SLENDER RICE1 (SLR1), even in the absence of GA. Substitution of the 99th Pro with other amino acids revealed that substitution with Ala (P99A) caused the highest level of GA-independent interaction. Physicochemical analysis using surface plasmon resonance revealed that GID1P99A has smaller Ka (association) and Kd (dissociation) values for GA4 than does wild-type GID1. This suggests that the GID1P99A lid is at least partially closed, resulting in both GA-independent and GA-hypersensitive interactions with SLR1. One of the three Arabidopsis thaliana GID1s, At GID1b, can also interact with DELLA proteins in the absence of GA, so we investigated whether GA-independent interaction of At GID1b depends on a mechanism similar to that of rice GID1P99A. Substitution of the loop region or a few amino acids of At GID1b with those of At GID1a diminished its GA-independent interaction with GAI while maintaining the GA-dependent interaction. Soybean (Glycine max) and Brassica napus also have GID1s similar to At GID1b, indicating that these unique GID1s occur in various dicots and may have important functions in these plants. PMID:21098733

  17. Reduction of gibberellin by low temperature disrupts pollen development in rice.

    Science.gov (United States)

    Sakata, Tadashi; Oda, Susumu; Tsunaga, Yuta; Shomura, Hikaru; Kawagishi-Kobayashi, Makiko; Aya, Koichiro; Saeki, Kenichi; Endo, Takashi; Nagano, Kuniaki; Kojima, Mikiko; Sakakibara, Hitoshi; Watanabe, Masao; Matsuoka, Makoto; Higashitani, Atsushi

    2014-04-01

    Microsporogenesis in rice (Oryza sativa) plants is susceptible to moderate low temperature (LT; approximately 19°C) that disrupts pollen development and causes severe reductions in grain yields. Although considerable research has been invested in the study of cool-temperature injury, a full understanding of the molecular mechanism has not been achieved. Here, we show that endogenous levels of the bioactive gibberellins (GAs) GA4 and GA7, and expression levels of the GA biosynthesis genes GA20ox3 and GA3ox1, decrease in the developing anthers by exposure to LT. By contrast, the levels of precursor GA12 were higher in response to LT. In addition, the expression of the dehydration-responsive element-binding protein DREB2B and SLENDER RICE1 (SLR1)/DELLA was up-regulated in response to LT. Mutants involved in GA biosynthetic and response pathways were hypersensitive to LT stress, including the semidwarf mutants sd1 and d35, the gain-of-function mutant slr1-d, and gibberellin insensitive dwarf1. The reduction in the number of sporogenous cells and the abnormal enlargement of tapetal cells occurred most severely in the GA-insensitive mutant. Application of exogenous GA significantly reversed the male sterility caused by LT, and simultaneous application of exogenous GA with sucrose substantially improved the extent of normal pollen development. Modern rice varieties carrying the sd1 mutation are widely cultivated, and the sd1 mutation is considered one of the greatest achievements of the Green Revolution. The protective strategy achieved by our work may help sustain steady yields of rice under global climate change.

  18. Expression of novel rice gibberellin 2-oxidase gene is under homeostatic regulation by biologically active gibberellins.

    Science.gov (United States)

    Sakai, Miho; Sakamoto, Tomoaki; Saito, Tamio; Matsuoka, Makoto; Tanaka, Hiroshi; Kobayashi, Masatomo

    2003-04-01

    We have cloned two genes for gibberellin (GA) 2-oxidase from rice ( Oryza sativa L.). Expression of OsGA2ox2 was not observed. The other gene, OsGA2ox3, was expressed in every tissue examined and was enhanced by the application of biologically active GA. Recombinant OsGA2ox3 protein catalyzed the metabolism of GA(1) to GA(8) and GA(20) to GA(29)-catabolite. These results indicate that OsGA2ox3 is involved in the homeostatic regulation of the endogenous level of biologically active GA in rice.

  19. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice.

    Science.gov (United States)

    Qin, Xue; Liu, Jun Hua; Zhao, Wen Sheng; Chen, Xu Jun; Guo, Ze Jian; Peng, You Liang

    2013-02-01

    Gibberellin (GA) 20-oxidase (GA20ox) catalyses consecutive steps of oxidation in the late part of the GA biosynthetic pathway. A T-DNA insertion mutant (17S-14) in rice, with an elongated phenotype, was isolated. Analysis of the flanking sequences of the T-DNA insertion site revealed that an incomplete T-DNA integration resulted in enhanced constitutively expression of downstream OsGA20ox3 in the mutant. The accumulation of bioactive GA(1) and GA(4) were increased in the mutant in comparison with the wild-type plant. Transgenic plants overexpressing OsGA20ox3 showed phenotypes similar to those of the 17S-14 mutant, and the RNA interference (RNAi) lines that had decreased OsGA20ox3 expression exhibited a semidwarf phenotype. Expression of OsGA20ox3 was detected in the leaves and roots of young seedlings, immature panicles, anthers, and pollens, based on β-glucuronidase (GUS) activity staining in transgenic plants expressing the OsGA20ox3 promoter fused to the GUS gene. The OsGA20ox3 RNAi lines showed enhanced resistance against rice pathogens Magnaporthe oryzae (causing rice blast) and Xanthomonas oryzae pv. oryzae (causing bacterial blight) and increased expression of defense-related genes. Conversely, OsGA20ox3-overexpressing plants were more susceptible to these pathogens comparing with the wild-type plants. The susceptibility of wild-type plants to X. oryzae pv. oryzae was increased by exogenous application of GA(3) and decreased by S-3307 treatment. Together, the results provide direct evidence for a critical role of OsGA20ox3 in regulating not only plant stature but also disease resistance in rice.

  20. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.

    Science.gov (United States)

    Foo, Eloise; McAdam, Erin L; Weller, James L; Reid, James B

    2016-04-01

    The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis

    KAUST Repository

    Kim, Dongjin; Abdelaziz, Mohamad E.; Ntui, Valentine Otang; Guo, Xiujie; Al-Babili, Salim

    2017-01-01

    Piriformospora indica is an endophytic fungus colonizing roots of a wide variety of plants. Previous studies showed that P. indica promotes early flowering and plant growth in the medicinal plant Coleus forskohlii. To determine the impact of P. indica on flowering time in Arabidopsis, we co-cultivated the plants with P. indica under long day condition. P. indica inoculated Arabidopsis plants displayed significant early flowering phenotype. qRT-PCR analysis of colonized plants revealed an up-regulation of flowering regulatory (FLOWERING LOCUS T, LEAFY, and APETALA1) and gibberellin biosynthetic (Gibberellin 20-Oxidase2, Gibberellin 3-Oxidase1 and Gibberellin requiring1) genes, while the flowering-repressing gene FLOWERING LOCUS C was down regulated. Quantification of gibberellins content showed that the colonization with P. indica caused an increase in GA4 content. Compared to wild-type plants, inoculation of the Arabidopsis ga5 mutant affected in gibberellin biosynthetic gene led to less pronounced changes in the expression of genes regulating flowering and to a lower increase in GA4 content. Taken together, our data indicate that P. indica promotes early flowering in Arabidopsis likely by increasing gibberellin content.

  2. Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis

    KAUST Repository

    Kim, Dongjin

    2017-06-28

    Piriformospora indica is an endophytic fungus colonizing roots of a wide variety of plants. Previous studies showed that P. indica promotes early flowering and plant growth in the medicinal plant Coleus forskohlii. To determine the impact of P. indica on flowering time in Arabidopsis, we co-cultivated the plants with P. indica under long day condition. P. indica inoculated Arabidopsis plants displayed significant early flowering phenotype. qRT-PCR analysis of colonized plants revealed an up-regulation of flowering regulatory (FLOWERING LOCUS T, LEAFY, and APETALA1) and gibberellin biosynthetic (Gibberellin 20-Oxidase2, Gibberellin 3-Oxidase1 and Gibberellin requiring1) genes, while the flowering-repressing gene FLOWERING LOCUS C was down regulated. Quantification of gibberellins content showed that the colonization with P. indica caused an increase in GA4 content. Compared to wild-type plants, inoculation of the Arabidopsis ga5 mutant affected in gibberellin biosynthetic gene led to less pronounced changes in the expression of genes regulating flowering and to a lower increase in GA4 content. Taken together, our data indicate that P. indica promotes early flowering in Arabidopsis likely by increasing gibberellin content.

  3. Pengaruh Gibberellin (GA4 terhadap Waktu Perkecambahan dan Pertumbuhan Tinggi Semai Cendana (Santalum Album Linn.

    Directory of Open Access Journals (Sweden)

    Asri Insiana Putri

    2008-07-01

    Full Text Available Effect of Gibberellins (GA4 on Germination Time and Height of Cendana (Santalum album Linn.  The hemiparasite Santalum album Linn. (cendana grows very slow, in nature the rare and difficult seeds need stimulation to germinate. Gibberellins (including GA4 are growth regulators, usually used to increase growth as well as to break seed dormancy. The objectives of this research were to investigate the influence of gibberellins on germination percentage and height of cendana growth. Experiment was laid out in a Completely Randomized Design with 3 replicates of 300 seeds for germination percentage and 3 replicates of 10 seeds for seedling growth. Gibberellin was applied as treatment with 100, 300, and 500 ppm. The seed germination was recorded until 9 weeks, and height of plants measured until 8 months at the greenhouse. The results showed that the addition of gibberellins at all treatment increased the percentage of germination and caused the seeds germinated four weeks earlier than the control. In the first 4 months, 500 ppm gibberellins gave the highest acceleration of germination, afterward all treatments have relatively the same influences. Gibberellins gave positive effect on height of cendana growth. After 7 months, the growth decreased although all gibberellin treatments gave higher growth than the control.

  4. Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Lee, In-Jung

    2016-12-01

    The nutritional quality of green leafy vegetables can be enhanced by application of plant beneficial micro-organisms. The present study was aimed to increase the food values of lettuce leaves by bacterial treatment. We isolated bacterial strain KE2 from Kimchi food and identified as Bacillus methylotrophicus by phylogenetic analysis. The beneficial effect of B. methylotrophicus KE2 on plants was confirmed by increasing the percentage of seed germination of Lactuca sativa L., Cucumis melo L., Glycine max L. and Brassica juncea L. It might be the secretion of array of gibberellins (GA 1 , GA 3 , GA 7 , GA 8 , GA 9 , GA 12 , GA 19 , GA 20 , GA 24 , GA 34 and GA 53 ) and indole-acetic acid from B. methylotrophicus KE2. The mechanism of plant growth promotion via their secreted metabolites was confirmed by a significant increase of GA deficient mutant rice plant growth. Moreover, the bacterial association was favor to enhance shoot length, shoot fresh weight and leaf width of lettuce. The higher concentration of protein, amino acids (Asp, Thr, Ser, Glu, Gly, Ala, Leu, Tyr and His), gama-aminobutric acid and fructose was found in bacterial culture (KE2) applied plants. The macro and micro minerals such as K, Mg, Na, P, Fe, Zn and N were also detected as significantly higher quantities in bacteria treated plants than untreated control plants. In addition, the carotenoids and chlorophyll a were also increased in lettuce at bacterial inoculation. The results of this study suggest that B. methylotrophicus KE2 application to soil helps to increase the plant growth and food values of lettuce. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Overexpression of Jatropha Gibberellin 2-oxidase 6 (JcGA2ox6 Induces Dwarfism and Smaller Leaves, Flowers and Fruits in Arabidopsis and Jatropha

    Directory of Open Access Journals (Sweden)

    Ying-Xiong Hu

    2017-12-01

    Full Text Available Gibberellins (GAs are plant hormones that play fundamental roles in plant growth and development. Gibberellin 2-oxidase (GA2ox plays a direct role in determining the levels of bioactive GAs by catalyzing bioactive GAs or their immediate precursors to inactive forms. In this study, a GA2ox gene, designated JcGA2ox6, was isolated from Jatropha curcas. JcGA2ox6 is expressed in all tissues of adult Jatropha, with the highest expression level in male flowers and the lowest expression level in young leaves. Overexpression of JcGA2ox6 in Arabidopsis resulted in a typical dwarf phenotype, along with late flowering, smaller leaves and flowers, shorter siliques and smaller seeds. Similarly, when JcGA2ox6 was overexpressed in Jatropha, the transgenic plants exhibited a dwarf phenotype with dark-green leaves and smaller inflorescences, flowers, fruits and seeds. However, the flowering time of Jatropha was not affected by overexpression of JcGA2ox6, unlike that in the transgenic Arabidopsis. Moreover, the number of flowers per inflorescence, the weight of 10 seeds and the seed oil content were significantly decreased in transgenic Jatropha. The results indicated that overexpression of JcGA2ox6 had a great impact on the vegetative and reproductive growth of transgenic Jatropha. Furthermore, we found that the dwarf phenotype of transgenic Jatropha was caused by a decrease in endogenous bioactive GA4, which was correlated with the degree of dwarfism.

  6. Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice.

    Science.gov (United States)

    Zhang, Yingying; Zhu, Yongyou; Peng, Yu; Yan, Dawei; Li, Qun; Wang, Jianjun; Wang, Linyou; He, Zuhua

    2008-03-01

    The rice Eui (ELONGATED UPPERMOST INTERNODE) gene encodes a cytochrome P450 monooxygenase that deactivates bioactive gibberellins (GAs). In this study, we investigated controlled expression of the Eui gene and its role in plant development. We found that Eui was differentially induced by exogenous GAs and that the Eui promoter had the highest activity in the vascular bundles. The eui mutant was defective in starch granule development in root caps and Eui overexpression enhanced starch granule generation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Experiments using embryoless half-seeds revealed that RAmy1A and GAmyb were highly upregulated in eui aleurone cells in the absence of exogenous GA. In addition, the GA biosynthesis genes GA3ox1 and GA20ox2 were downregulated and GA2ox1 was upregulated in eui seedlings. These results indicate that EUI is involved in GA homeostasis, not only in the internodes at the heading stage, but also in the seedling stage, roots and seeds. Disturbing GA homeostasis affected the expression of the GA signaling genes GID1 (GIBBERELLIN INSENSITIVE DWARF 1), GID2 and SLR1. Transgenic RNA interference of the Eui gene effectively increased plant height and improved heading performance. By contrast, the ectopic expression of Eui under the promoters of the rice GA biosynthesis genes GA3ox2 and GA20ox2 significantly reduced plant height. These results demonstrate that a slight increase in Eui expression could dramatically change rice morphology, indicating the practical application of the Eui gene in rice molecular breeding for a high yield potential.

  7. Reduction of Gibberellin by Low Temperature Disrupts Pollen Development in Rice1[W][OPEN

    Science.gov (United States)

    Sakata, Tadashi; Oda, Susumu; Tsunaga, Yuta; Shomura, Hikaru; Kawagishi-Kobayashi, Makiko; Aya, Koichiro; Saeki, Kenichi; Endo, Takashi; Nagano, Kuniaki; Kojima, Mikiko; Sakakibara, Hitoshi; Watanabe, Masao; Matsuoka, Makoto; Higashitani, Atsushi

    2014-01-01

    Microsporogenesis in rice (Oryza sativa) plants is susceptible to moderate low temperature (LT; approximately 19°C) that disrupts pollen development and causes severe reductions in grain yields. Although considerable research has been invested in the study of cool-temperature injury, a full understanding of the molecular mechanism has not been achieved. Here, we show that endogenous levels of the bioactive gibberellins (GAs) GA4 and GA7, and expression levels of the GA biosynthesis genes GA20ox3 and GA3ox1, decrease in the developing anthers by exposure to LT. By contrast, the levels of precursor GA12 were higher in response to LT. In addition, the expression of the dehydration-responsive element-binding protein DREB2B and SLENDER RICE1 (SLR1)/DELLA was up-regulated in response to LT. Mutants involved in GA biosynthetic and response pathways were hypersensitive to LT stress, including the semidwarf mutants sd1 and d35, the gain-of-function mutant slr1-d, and gibberellin insensitive dwarf1. The reduction in the number of sporogenous cells and the abnormal enlargement of tapetal cells occurred most severely in the GA-insensitive mutant. Application of exogenous GA significantly reversed the male sterility caused by LT, and simultaneous application of exogenous GA with sucrose substantially improved the extent of normal pollen development. Modern rice varieties carrying the sd1 mutation are widely cultivated, and the sd1 mutation is considered one of the greatest achievements of the Green Revolution. The protective strategy achieved by our work may help sustain steady yields of rice under global climate change. PMID:24569847

  8. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling.

    Science.gov (United States)

    Dai, Cheng; Xue, Hong-Wei

    2010-06-02

    The plant hormone gibberellin (GA) is crucial for multiple aspects of plant growth and development. To study the relevant regulatory mechanisms, we isolated a rice mutant earlier flowering1, el1, which is deficient in a casein kinase I that has critical roles in both plants and animals. el1 had an enhanced GA response, consistent with the suppression of EL1 expression by exogenous GA(3). Biochemical characterization showed that EL1 specifically phosphorylates the rice DELLA protein SLR1, proving a direct evidence for SLR1 phosphorylation. Overexpression of SLR1 in wild-type plants caused a severe dwarf phenotype, which was significantly suppressed by EL1 deficiency, indicating the negative effect of SLR1 on GA signalling requires the EL1 function. Further studies showed that the phosphorylation of SLR1 is important for maintaining its activity and stability, and mutation of the candidate phosphorylation site of SLR1 results in the altered GA signalling. This study shows EL1 a novel and key regulator of the GA response and provided important clues on casein kinase I activities in GA signalling and plant development.

  9. OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress.

    Directory of Open Access Journals (Sweden)

    Chi Shan

    Full Text Available Gibberellin (GA 2-oxidases play an important role in the GA catabolic pathway through 2β-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C₁₉-GA2oxs and a smaller class of C₂₀-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5, was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C₂₀-GA2oxs subfamily, a subfamily of GA2oxs acting on C₂₀-GAs (GA₁₂, GA₅₃. Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GA-deficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 µM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice.

  10. Gibberellins and gravitropism in maize shoots: endogenous gibberellin-like substances and movement and metabolism of [3H]Gibberellin A20

    Science.gov (United States)

    Rood, S. B.; Kaufman, P. B.; Abe, H.; Pharis, R. P.

    1987-01-01

    [3H]Gibberellin A20 (GA20) of high specific radioactivity (49.9 gigabecquerel per millimole) was applied equilaterally in a ring of microdrops to the internodal pulvinus of shoots of 3-week-old gravistimulated and vertical normal maize (Zea mays L.), and to a pleiogravitropic (prostrate) maize mutant, lazy (la). All plants converted the [3H]GA20 to [3H]GA1- and [3H]GA29-like metabolites as well as to several metabolites with the partitioning and chromatographic behavior of glucosyl conjugates of [3H]GA1, [3H]GA29, and [3H]GA8. The tentative identification of these putative [3H]GA glucosyl conjugates was further supported by the release of the free [3H]GA moiety after cleavage with cellulase. Within 12 hours of the [3H]GA20 feed, there was a significantly higher proportion of total radioactivity in lower than in upper halves of internode and leaf sheath pulvini in gravistimulated normal maize. Further, there was a significantly higher proportion of putative free GA metabolites of [3H]GA20, especially [3H]GA1, in the lower halves of normal maize relative to upper halves. The differential localization of the metabolites between upper and lower halves was not apparent in the pleiogravitropic mutant, la. Endogenous GA-like substances were also examined in gravistimulated maize shoots. Forty-eight hours after gravistimulation of 3-week-old maize seedlings, endogenous free GA-like substances in upper and lower leaf sheath and internode pulvini halves were extracted, chromatographed, and bioassayed using the "Tanginbozu" dwarf rice microdrop assay. Lower halves contained consistently higher total levels of GA-like activity. The qualitative elution profile of GA-like substances differed consistently, upper halves containing principally a GA20-like substance and lower halves containing principally a GA20-like substance and lower halves containing mainly GA1-like and GA19-like substances. Gibberellins A1 (10 nanograms per gram) and A20 (5 nanograms per gram) were identified

  11. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice.

    Science.gov (United States)

    Luo, Anding; Qian, Qian; Yin, Hengfu; Liu, Xiaoqiang; Yin, Changxi; Lan, Ying; Tang, Jiuyou; Tang, Zuoshun; Cao, Shouyun; Wang, Xiujie; Xia, Kai; Fu, Xiangdong; Luo, Da; Chu, Chengcai

    2006-02-01

    Elongation of rice internodes is one of the most important agronomic traits, which determines the plant height and underlies the grain yield. It has been shown that the elongation of internodes is under genetic control, and various factors are implicated in the process. Here, we report a detailed characterization of an elongated uppermost internode1 (eui1) mutant, which has been used in hybrid rice breeding. In the eui1-2 mutant, the cell lengths in the uppermost internodes are significantly longer than that of wild type and thus give rise to the elongated uppermost internode. It was found that the level of active gibberellin was elevated in the mutant, whereas its growth in response to gibberellin is similar to that of the wild type, suggesting that the higher level accumulation of gibberellin in the eui1 mutant causes the abnormal elongation of the uppermost internode. Consistently, the expression levels of several genes which encode gibberellin biosynthesis enzymes were altered. We cloned the EUI1 gene, which encodes a putative cytochrome P450 monooxygenase, by map-based cloning and found that EUI1 was weakly expressed in most tissues, but preferentially in young panicles. To confirm its function, transgenic experiments with different constructs of EUI1 were conducted. Overexpression of EUI1 gave rise to the gibberellin-deficient-like phenotypes, which could be partially reversed by supplementation with gibberellin. Furthermore, apart from the alteration of expression levels of the gibberellin biosynthesis genes, accumulation of SLR1 protein was found in the overexpressing transgenic plants, indicating that the expression level of EUI1 is implicated in both gibberellin-mediated SLR1 destruction and a feedback regulation in gibberellin biosynthesis. Therefore, we proposed that EUI1 plays a negative role in gibberellin-mediated regulation of cell elongation in the uppermost internode of rice.

  12. Gibberellins and gravitropism in maize shoots: endogenous gibberellin-like substances and movement and metabolism of [3]gibberellin A

    International Nuclear Information System (INIS)

    Rood, S.B.; Kaufman, P.B.; Abe, H.; Pharis, R.P.

    1987-01-01

    [ 3 H]Gibberellin A 20 (GA 20 ) of high specific radioactivity was applied equilaterally in a ring of microdrops to the internodal pulvinus of shoots of 3-week-old vertical normal maize (Zea mays L.), and to a pleiogravitropic (prostrate) maize mutant, lazy (la). All plants converted the [ 3 H]GA 1 - and [ 3 H]GA 29 -like metabolites as well as to several metabolites with the partitioning and chromatographic behavior of glucosyl conjugates of [ 3 H]GA 1 [ 3 H]GA 29 , and [ 3 H]GA 8 . The tentative identification of these putative [ 3 H]GA glucosyl conjugates was further supported by the release of the free [ 3 H]GA moiety after cleavage with cellulase. Within 12 hours of the [ 3 H]GA 20 feed, there was a significantly higher proportion of total radioactivity in lower than in upper halves of internode and leaf sheaf pulvini in gravistimulated normal maize. Further, there was a significantly higher proportion of putative free GA metabolites of [ 3 H]GA 20 , especially [ 3 H] GA 1 , in the lower halves of normal maize relative to upper halves. The differential localization of the metabolites between upper and lower halves was not apparent in the pleiogravitropic mutant, la. Endogenous GA-like substances were also examined in gravistimulated maize shoots. Forty-eight hours after gravistimulation of 3-week-old maize seedlings, endogenous free GA-like substances in upper and lower leaf sheath and internode pulvini halves were extracted, chromatographed, and bioassayed using the Tanginbozu dwarf rice microdroassay. Lower halves contained higher total levels of GA-like activity

  13. Regulation effects of exogenous gibberellin acid (GA 3 ) on the ...

    African Journals Online (AJOL)

    To fully understand the regulation effects of gibberellin on tomato (Solanum Lycoperscium) ovary locule formation and the fasciated transcription, two varieties: multi-locule 'MLK1' and few- locule 'FL1' which were highly different in locule number and fasciated transcriptional levels, were used in this study. By spraying GA3 ...

  14. Rht18 Semidwarfism in Wheat Is Due to Increased GA 2-oxidaseA9 Expression and Reduced GA Content

    Czech Academy of Sciences Publication Activity Database

    Ford, B. A.; Foo, E.; Sharwood, R.; Karafiátová, Miroslava; Vrána, Jan; MacMillan, C.; Nichols, D. S.; Steuernagel, B.; Uauy, C.; Doležel, Jaroslav; Chandler, M.; Spielmeyer, W.

    2018-01-01

    Roč. 177, č. 1 (2018), s. 168-180 ISSN 0032-0889 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : green-revolution * gibberellin biosynthesis * ectopic expression * common wheat * gene * rice * barley * mutant * chromosomes Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 6.456, year: 2016

  15. Evidence for the Translocation of Gibberellin A_3 and Gibberellin-Like Substances in Grafts between Normal, Dwarf_1 and Dwarf_5 Seedlings of Zea mays L.

    OpenAIRE

    M., Katsumi; D.E., Foard; B.O., Phinney; Biology Department, International Christian University; Department of Botany and Plant Pathology, Purdue University; Department of Biology, University of California

    1983-01-01

    Approach grafts were made between the cut surfaces of mesocotyls from normal and dwarf seedlings of Zea mays L. (maize). The dwarfs were the non-allelic single gene gibberellin mutants, dwarf_1 and dwarf_5. The graft combinations were normal-normal, normal-dwarf_1, normal-dwarf_5, dwarf_1-dwarf_1, dwarf_5-dwarf_5, and dwarf_1-dwarf_5. The grafts were used to demonstrate the movement of gibberellin-like substances across the union. GA_3, added to one member of the graft, resulted in leaf-sheat...

  16. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway.

    Science.gov (United States)

    Mimura, Manaki; Nagato, Yasuo; Itoh, Jun-Ichi

    2012-05-01

    Rice PLASTOCHRON 1 (PLA1) and PLA2 genes regulate leaf maturation and plastochron, and their loss-of-function mutants exhibit small organs and rapid leaf emergence. They encode a cytochrome P450 protein CYP78A11 and an RNA-binding protein, respectively. Their homologs in Arabidopsis and maize are also associated with plant development/organ size. Despite the importance of PLA genes in plant development, their molecular functions remain unknown. Here, we investigated how PLA1 and PLA2 genes are related to phytohormones. We found that gibberellin (GA) is the major phytohormone that promotes PLA1 and PLA2 expression. GA induced PLA1 and PLA2 expression, and conversely the GA-inhibitor uniconazole suppressed PLA1 and PLA2 expression. In pla1-4 and pla2-1 seedlings, expression levels of GA biosynthesis genes and the signal transduction gene were similar to those in wild-type seedlings. GA treatment slightly down-regulated the GA biosynthesis gene GA20ox2 and up-regulated the GA-catabolizing gene GA2ox4, whereas the GA biosynthesis inhibitor uniconazole up-regulated GA20ox2 and down-regulated GA2ox4 both in wild-type and pla mutants, suggesting that the GA feedback mechanism is not impaired in pla1 and pla2. To reveal how GA signal transduction affects the expression of PLA1 and PLA2, PLA expression in GA-signaling mutants was examined. In GA-insensitive mutant, gid1 and less-sensitive mutant, Slr1-d1, PLA1 and PLA2 expression was down-regulated. On the other hand, the expression levels of PLA1 and PLA2 were highly enhanced in a GA-constitutive-active mutant, slr1-1, causing ectopic overexpression. These results indicate that both PLA1 and PLA2 act downstream of the GA signal transduction pathway to regulate leaf development.

  17. Exogenous GA3 application can compensate the morphogenetic effects of the GA-responsive dwarfing gene Rht12 in bread wheat.

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available The most common dwarfing genes in wheat, Rht-B1b and Rht-D1b, classified as gibberellin-insensitive (GAI dwarfing genes due to their reduced response to exogenous GA, have been verified as encoding negative regulators of gibberellin signaling. In contrast, the response of gibberellin-responsive (GAR dwarfing genes, such as Rht12, to exogenous GA is still unclear and the role of them, if any, in GA biosynthesis or signaling is unknown. The responses of Rht12 to exogenous GA3 were investigated on seedling vigour, spike phenological development, plant height and other agronomic traits, using F2 ∶ 3 and F3 ∶ 4 lines derived from a cross between Ningchun45 and Karcagi-12 in three experiments. The application of exogenous GA3 significantly increased coleoptile length and seedling leaf 1 length and area. While there was no significant difference between the dwarf and the tall lines at the seedling stage in the responsiveness to GA3, plant height was significantly increased, by 41 cm (53% averaged across the three experiments, in the GA3-treated Rht12 dwarf lines. Plant height of the tall lines was not affected significantly by GA3 treatment (<10 cm increased. Plant biomass and seed size of the GA3-treated dwarf lines was significantly increased compared with untreated dwarf plants while there was no such difference in the tall lines. GA3-treated Rht12 dwarf plants with the dominant Vrn-B1 developed faster than untreated plants and reached double ridge stage 57 days, 11 days and 50 days earlier and finally flowered earlier by almost 7 days while the GA3-treated tall lines flowering only 1-2 days earlier than the untreated tall lines. Thus, it is clear that exogenous GA3 can break the masking effect of Rht12 on Vrn-B1 and also restore other characters of Rht12 to normal. It suggested that Rht12 mutants may be deficient in GA biosynthesis rather than in GA signal transduction like the GA-insensitive dwarfs.

  18. Gibberellin biosynthesis in cell-free extracts from developing Cucurbita maxima embryos and the identification of new endogenous gibberellins.

    Science.gov (United States)

    Lange, T; Hedden, P; Graebe, J E

    1993-03-01

    Gibberellin (GA) biosynthetic pathways from GA12-aldehyde, GA12 and GA53 were investigated in cell-free systems from developing embryos of Cucurbita maxima L. Gibberellin A12-aldehyde and GA12 were converted to GA25, putative 12α-hydroxyGA25, GA13 and GA39 as main products. Minor products were GA4, GA34 and, when GA12 was the substrate, putative 12α-hydroxyGA12. The intermediates GA15 and GA24 accumulated at low protein concentrations. The influence of various factors on GA12 metabolism was examined. At low 2-oxoglutarate and ascorbate concentrations, or at acid pH, 3β-hydroxylated products predominated, whereas with increasing 2-oxoglutarate and ascorbate concentrations, or at neutral pH, the yield of 12α-hydroxylated GAs increased. Gibberellin A53 was metabolised mainly to the C20-GAs GA44, GA19, GA17, GA23 and GA28, with the C19-GAs GA20, GA1 and GA8 as minor products. Only C19-GAs were 2β-hydroxylated, which is a main characteristic of the embryo systems. In addition to GA13, GA25, GA39, GA43, GA49, GA58, GA74, 12α-hydroxyGA25 and GA39 3-isovalerate, which were known previously from embryos of C. maxima, GA1, GA4, GA17, GA28, GA37, GA38, GA48, GA85, 12α-hydroxyGA37 and putative 12α-hydroxyGA43 were identified as endogenous components by full-scan capillary gas chromatography-mass spectrometry and Kovats retention indices. Evidence for putative 2β-hydroxyGA28 and GA23 was also obtained but it was less conclusive because of contamination.

  19. Cryptochrome and Phytochrome Cooperatively but Independently Reduce Active Gibberellin Content in Rice Seedlings under Light Irradiation

    OpenAIRE

    Hirose, Fumiaki; Inagaki, Noritoshi; Hanada, Atsushi; Yamaguchi, Shinjiro; Kamiya, Yuji; Miyao, Akio; Hirochika, Hirohiko; Takano, Makoto

    2012-01-01

    In contrast to a wealth of knowledge about the photoregulation of gibberellin metabolism in dicots, that in monocots remains largely unclear. In this study, we found that a blue light signal triggers reduction of active gibberellin content in rice seedlings with simultaneous repression of two gibberellin 20-oxidase genes (OsGA20ox2 and OsGA20ox4) and acute induction of four gibberellin 2-oxidase genes (OsGA2ox4–OsGA2ox7). For further examination of the regulation of these genes, we establishe...

  20. Further identification of endogenous gibberellins in the shoots of pea, line G2

    International Nuclear Information System (INIS)

    Halinska, A.; Davies, P.J.; Lee, J.W.; Zhu, Yuxian

    1989-01-01

    To interpret the metabolism of radiolabeled gibberellins A 12 -aldehyde and A 12 in shoots of pea (Pisum sativum L.), the identity of the radiolabeled peaks has to be determined and the endogenous presence of the gibberellins demonstrated. High specific activity [ 14 C]GA 12 and [ 14 C]GA 12 -aldehyde were synthesized using a pumpkin endosperm enzyme preparation, and purified by high performance liquid chromatography (HPLC). [ 14 C]GA 12 was supplied to upper shoots of pea, line G2, to produce radiolabeled metabolites on the 13-OH pathway. Endogenous compounds copurifying with the [ 14 C]GAs on HPLC were analyzed by gas chromatography-mass spectrometry. The endogenous presence of GA 53 , GA 44 , GA 19 and GA 20 was demonstrated and their HPLC peak identity ascertained. The 14 C was progressively diluted in GAs further down the pathway, proportional to the levels found in the tissue and inversely proportional to the speed of metabolism, ranging from 63% in GA 53 to 4% in GA 20 . Calculated levels of GA 20 , GA 19 , GA 44 , and GA 53 were 42, 8, 10, and 0.5 nanograms/gram, respectively

  1. Biosynthesis of 12α-and 13-hydroxylated gibberellins in a cell-free system from Cucurbita maxima endosperm and the identification of new endogenous gibberellins.

    Science.gov (United States)

    Lange, T; Hedden, P; Graebe, J E

    1993-03-01

    Gibberellin (GA) biosynthesis in cell-free systems from Cucurbita maxima L. endosperm was reinvestigated using incubation conditions different from those employed in previous work. The metabolism of GA12 yielded GA13, GA43 and 12α-hydroxyGA43 as major products, GA4, GA37, GA39, GA46 and four unidentified compounds as minor products. The intermediates GA15, GA24 and GA25 accumulated at low protein concentrations. The structure of the previously uncharacterised 12α-hydroxyGA43 was inferred from its mass spectrum and by its formation from both GA39 and GA43. Gibberellin A39 and 12α-hydroxyGA43 were formed by a soluble 12α-hydroxylase that had not been detected before. Gibberellin A12-aldehyde was metabolised to essentially the same products as GA12 but with less efficiency. A new 13-hydroxylation pathway was found. Gibberellin A53, formed from GA12 by a microsomal oxidase, was converted by soluble 2-oxoglutarate-dependent oxidases to GA1 GA23, GA28, GA44, and putative 2β-hydroxyGA28. Minor products were GA19, GA20, GA38 and three unidentified GAs. Microsomal 13-hydroxylation (the formation of GA53) was suppressed by the cofactors for 2-oxoglutarate-dependent enzymes. Reinvestigation of the endogenous GAs confirmed the significance of the new metabolic products. In addition to the endogenous GAs reported by Blechschmidt et al. (1984, Phytochemistry 23, 553-558), GA1, GA8, GA25, GA28, GA36, GA48 and 12α-hydroxyGA43 were identified by full-scan capillary gas chromatography-mass spectrometry and Kovats retention indices. Thus both the 12α-hydroxylation and the 13-hydroxylation pathways found in the cell-free system operate also in vivo, giving rise to 12α-hydroxyGA43 and GA1 (or GA8), respectively, as their end products. Evidence for endogenous GA20 and GA24 was also obtained but it was less conclusive due to interference.

  2. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion.

    Science.gov (United States)

    Lee, Ko-Eun; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Joo, Gil-Jae; Lee, In-Jung; Ko, Jae-Hwan; Kim, Jin-Ho

    2015-09-01

    The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

  3. Comparison of Effect of Brassinosteroid and Gibberellin Biosynthesis Inhibitors on Growth of Rice Seedlings

    OpenAIRE

    Matusmoto, Tadashi; Yamada, Kazuhiro; Yoshizawa, Yuko; Oh, Keimei

    2016-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two predominant plant hormones that regulate plant cell elongation. Mutants disrupt the biosynthesis of these hormones and display different degrees of dwarf phenotypes in rice. Although the role of each plant hormone in promoting the longitudinal growth of plants has been extensively studied using genetic methods, their relationship is still poorly understood. In this study, we used two specific inhibitors targeting BR and GA biosynthesis to inve...

  4. Transformation of a Dwarf "Arabidopsis" Mutant Illustrates Gibberellin Hormone Physiology and the Function of a Green Revolution Gene

    Science.gov (United States)

    Molina, Isabel; Weber, Katrin; Alves Cursino dos Santos, Deborah Y.; Ohlrogge, John

    2009-01-01

    The introduction of dwarfing traits into crops was a major factor in increased grain yields during the "Green Revolution." In most cases those traits were the consequence of altered synthesis or response to the gibberellin (GA) plant hormones. Our current understanding of GA synthesis and physiology has been facilitated by the characterization of…

  5. Comparison of Effect of Brassinosteroid and Gibberellin Biosynthesis Inhibitors on Growth of Rice Seedlings

    Directory of Open Access Journals (Sweden)

    Tadashi Matusmoto

    2016-01-01

    Full Text Available Brassinosteroid (BR and gibberellin (GA are two predominant plant hormones that regulate plant cell elongation. Mutants disrupt the biosynthesis of these hormones and display different degrees of dwarf phenotypes in rice. Although the role of each plant hormone in promoting the longitudinal growth of plants has been extensively studied using genetic methods, their relationship is still poorly understood. In this study, we used two specific inhibitors targeting BR and GA biosynthesis to investigate the roles of BR and GA in growth of rice seedlings. Yucaizol, a specific inhibitor of BR biosynthesis, and Trinexapac-ethyl, a commercially available inhibitor of GA biosynthesis, were used. The effect of Yucaizol on rice seedlings indicated that Yucaizol significantly retarded stem elongation. The IC50 value was found to be approximately 0.8 μmol/L. Yucaizol also induced small leaf angle phenocopy in rice seedlings, similarly to BR-deficient rice, while Trinexapac-ethyl did not. When Yucaizol combined with Trinexapac-ethyl was applied to the rice plants, the mixture of these two inhibitors retarded stem elongation of rice at lower doses. Our results suggest that the use of a BR biosynthesis inhibitor combined with a GA biosynthesis inhibitor may be useful in the development of new technologies for controlling rice plant height.

  6. Genome-wide identification and expression profiling reveal tissue-specific expression and differentially-regulated genes involved in gibberellin metabolism between Williams banana and its dwarf mutant.

    Science.gov (United States)

    Chen, Jingjing; Xie, Jianghui; Duan, Yajie; Hu, Huigang; Hu, Yulin; Li, Weiming

    2016-05-27

    Dwarfism is one of the most valuable traits in banana breeding because semi-dwarf cultivars show good resistance to damage by wind and rain. Moreover, these cultivars present advantages of convenient cultivation, management, and so on. We obtained a dwarf mutant '8818-1' through EMS (ethyl methane sulphonate) mutagenesis of Williams banana 8818 (Musa spp. AAA group). Our research have shown that gibberellins (GAs) content in 8818-1 false stems was significantly lower than that in its parent 8818 and the dwarf type of 8818-1 could be restored by application of exogenous GA3. Although GA exerts important impacts on the 8818-1 dwarf type, our understanding of the regulation of GA metabolism during banana dwarf mutant development remains limited. Genome-wide screening revealed 36 candidate GA metabolism genes were systematically identified for the first time; these genes included 3 MaCPS, 2 MaKS, 1 MaKO, 2 MaKAO, 10 MaGA20ox, 4 MaGA3ox, and 14 MaGA2ox genes. Phylogenetic tree and conserved protein domain analyses showed sequence conservation and divergence. GA metabolism genes exhibited tissue-specific expression patterns. Early GA biosynthesis genes were constitutively expressed but presented differential regulation in different tissues in Williams banana. GA oxidase family genes were mainly transcribed in young fruits, thus suggesting that young fruits were the most active tissue involved in GA metabolism, followed by leaves, bracts, and finally approximately mature fruits. Expression patterns between 8818 and 8818-1 revealed that MaGA20ox4, MaGA20ox5, and MaGA20ox7 of the MaGA20ox gene family and MaGA2ox7, MaGA2ox12, and MaGA2ox14 of the MaGA2ox gene family exhibited significant differential expression and high-expression levels in false stems. These genes are likely to be responsible for the regulation of GAs content in 8818-1 false stems. Overall, phylogenetic evolution, tissue specificity and differential expression analyses of GA metabolism genes can provide a

  7. Rare sugar D-allose suppresses gibberellin signaling through hexokinase-dependent pathway in Oryza sativa L.

    Science.gov (United States)

    Fukumoto, Takeshi; Kano, Akihito; Ohtani, Kouhei; Yamasaki-Kokudo, Yumiko; Kim, Bong-Gyu; Hosotani, Kouji; Saito, Miu; Shirakawa, Chikage; Tajima, Shigeyuki; Izumori, Ken; Ohara, Toshiaki; Shigematsu, Yoshio; Tanaka, Keiji; Ishida, Yutaka; Nishizawa, Yoko; Tada, Yasuomi; Ichimura, Kazuya; Gomi, Kenji; Akimitsu, Kazuya

    2011-12-01

    One of the rare sugars, D-allose, which is the epimer of D-glucose at C3, has an inhibitory effect on rice growth, but the molecular mechanisms of the growth inhibition by D-allose were unknown. The growth inhibition caused by D-allose was prevented by treatment with hexokinase inhibitors, D-mannoheptulose and N-acetyl-D-glucosamine. Furthermore, the Arabidopsis glucose-insensitive2 (gin2) mutant, which is a loss-of-function mutant of the glucose sensor AtHXK1, showed a D-allose-insensitive phenotype. D-Allose strongly inhibited the gibberellin-dependent responses such as elongation of the second leaf sheath and induction of α-amylase in embryo-less half rice seeds. The growth of the slender rice1 (slr1) mutant, which exhibits a constitutive gibberellin-responsive phenotype, was also inhibited by D-allose, and the growth inhibition of the slr1 mutant by D-allose was also prevented by D-mannoheptulose treatment. The expressions of gibberellin-responsive genes were down-regulated by D-allose treatment, and the down-regulations of gibberellin-responsive genes were also prevented by D-mannoheptulose treatment. These findings reveal that D-allose inhibits the gibberellin-signaling through a hexokinase-dependent pathway.

  8. A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery.

    Science.gov (United States)

    Kim, Joonyup; Wilson, Rebecca L; Case, J Brett; Binder, Brad M

    2012-11-01

    Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa 'Nipponbare') seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics.

  9. Detection of endogenous gibberellins and their relationship to hypocotyl elongation in soybean seedlings

    International Nuclear Information System (INIS)

    Bensen, R.J.; Beall, F.D.; Mullet, J.E.; Morgan, P.W.

    1990-01-01

    Four gibberellins, GA 53 , GA 19 , GA 20 , and GA 1 , were detected by bioassay, chromatography in two HPLC systems, and combined gas chromatography-mass spectroscopy-selected ion monitoring (GC-MS-SIM) in etiolated soybean (Glycine max [L.] Merr.) hypocotyls. GC-MS-SIM employed [ 2 H 2 ]-labeled standards for each endogenous gibberellin detected, and quantities estimated from bioassays and GC-MS-SIM were similar. This result plus the tentative detection of GA 44 and GA 8 (standards not available) indicates that the early-C-13-hydroxylation pathway for gibberellin biosynthesis predominates in soybean hypocotyls. Other gibberellins were not detected. Growth rates decreased after transfer to low water potential (ψ w ) vermiculite and were completely arrested 24 hours after transfer. The GA 1 content in the elongating region of hypocotyls had declined to 38% of the 0 time value at 24 hours after transfer to low ψ w vermiculite, a level which was only 13% of the GA 1 content in control seedlings at the same time (24 hours posttransfer). Seedlings were growth responsive to exogenous GA 3 , and this GA 3 -promoted growth was inhibited by exogenous ABA. The data are consistent with the hypothesis that changes in GA 1 and ABA levels play a role in adjusting hypocotyl elongation rates. However, the changes observed are not of sufficient magnitude nor do they occur rapidly enough to suggest they are the primary regulators of elongation rate responses to rapidly changing plant water status

  10. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice.

    Science.gov (United States)

    Tong, Hongning; Xiao, Yunhua; Liu, Dapu; Gao, Shaopei; Liu, Linchuan; Yin, Yanhai; Jin, Yun; Qian, Qian; Chu, Chengcai

    2014-11-01

    Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana. © 2014 American Society of Plant Biologists. All rights reserved.

  11. Evolutionary conservation of plant gibberellin signalling pathway components

    Directory of Open Access Journals (Sweden)

    Reski Ralf

    2007-11-01

    Full Text Available Abstract Background: Gibberellins (GA are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. Results: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. Conclusion: Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth.

  12. Plant-specific Histone Deacetylases HDT½ Regulate GIBBERELLIN 2-OXIDASE 2 Expression to Control Arabidopsis Root Meristem Cell Number

    KAUST Repository

    Li, Huchen

    2017-08-31

    Root growth is modulated by environmental factors and depends on cell production in the root meristem (RM). New cells in the meristem are generated by stem cells and transit-amplifying cells, which together determine RM cell number. Transcription factors and chromatin-remodelling factors have been implicated in regulating the switch from stem cells to transit-amplifying cells. Here we show that two Arabidopsis thaliana paralogs encoding plant-specific histone deacetylases, HDT1 and HDT2, regulate a second switch from transit-amplifying cells to expanding cells. Knockdown of HDT½ (hdt1,2i) results in an earlier switch and causes a reduced RM cell number. Our data show that HDT½ negatively regulate the acetylation level of the C19-GIBBERELLIN 2-OXIDASE 2 (GA2ox2) locus and repress the expression of GA2ox2 in the RM and elongation zone. Overexpression of GA2ox2 in the RM phenocopies the hdt1,2i phenotype. Conversely, knockout of GA2ox2 partially rescues the root growth defect of hdt1,2i. These results suggest that by repressing the expression of GA2ox2, HDT½ likely fine-tune gibberellin metabolism and they are crucial for regulating the switch from cell division to expansion to determine RM cell number. We propose that HDT½ function as part of a mechanism that modulates root growth in response to environmental factors.

  13. Opposing effects of external gibberellin and Daminozide on Stevia growth and metabolites.

    Science.gov (United States)

    Karimi, Mojtaba; Hashemi, Javad; Ahmadi, Ali; Abbasi, Alireza; Pompeiano, Antonio; Tavarini, Silvia; Guglielminetti, Lorenzo; Angelini, Luciana G

    2015-01-01

    Steviol glycosides (SVglys) and gibberellins are originated from the shared biosynthesis pathway in Stevia (Stevia rebaudiana Bertoni). In this research, two experiments were conducted to study the opposing effects of external gibberellin (GA3) and Daminozide (a gibberellin inhibitor) on Stevia growth and metabolites. Results showed that GA3 significantly increased the stem length and stem dry weight in Stevia. Total soluble sugar content increased while the SVglys biosynthesis was decreased by external GA3 applying in Stevia leaves. In another experiment, the stem length was reduced by Daminozide spraying on Stevia shoots. The Daminozide did not affect the total SVglys content, while in 30 ppm concentration, significantly increased the soluble sugar production in Stevia leaves. Although the gibberellins biosynthesis pathway has previously invigorated in Stevia leaf, the Stevia response to external gibberellins implying on high precision regulation of gibberellins biosynthesis in Stevia and announces that Stevia is able to kept endogenous gibberellins in a low quantity away from SVglys production. Moreover, the assumption that the internal gibberellins were destroyed by Daminozide, lack of Daminozide effects on SVglys production suggests that gibberellins biosynthesis could not act as a competitive factor for SVglys production in Stevia leaves.

  14. Salinity Inhibits Rice Seed Germination by Reducing α-Amylase Activity via Decreased Bioactive Gibberellin Content

    Directory of Open Access Journals (Sweden)

    Li Liu

    2018-03-01

    Full Text Available Seed germination plays important roles in the establishment of seedlings and their subsequent growth; however, seed germination is inhibited by salinity, and the inhibitory mechanism remains elusive. Our results indicate that NaCl treatment inhibits rice seed germination by decreasing the contents of bioactive gibberellins (GAs, such as GA1 and GA4, and that this inhibition can be rescued by exogenous bioactive GA application. To explore the mechanism of bioactive GA deficiency, the effect of NaCl on GA metabolic gene expression was investigated, revealing that expression of both GA biosynthetic genes and GA-inactivated genes was up-regulated by NaCl treatment. These results suggest that NaCl-induced bioactive GA deficiency is caused by up-regulated expression of GA-inactivated genes, and the up-regulated expression of GA biosynthetic genes might be a consequence of negative feedback regulation of the bioactive GA deficiency. Moreover, we provide evidence that NaCl-induced bioactive GA deficiency inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression. Additionally, exogenous bioactive GA rescues NaCl-inhibited seed germination by enhancing α-amylase activity. Thus, NaCl treatment reduces bioactive GA content through promotion of bioactive GA inactivation, which in turn inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression.

  15. OsGA2ox5, a Gibberellin Metabolism Enzyme, Is Involved in Plant Growth, the Root Gravity Response and Salt Stress

    Science.gov (United States)

    Cai, Weiming; Shan, Chi

    Gibberellin (GA) 2-oxidases play an important role in the GA catabolic pathway through 2b-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C19-GA2oxs and a smaller class of C20-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5), was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C20-GA2oxs subfamily, a subfamily of GA2oxs acting on C20-GAs (GA12, GA53). Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GAdeficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 mM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice.

  16. A Comparative Study of Ethylene Growth Response Kinetics in Eudicots and Monocots Reveals a Role for Gibberellin in Growth Inhibition and Recovery1[W][OA

    Science.gov (United States)

    Kim, Joonyup; Wilson, Rebecca L.; Case, J. Brett; Binder, Brad M.

    2012-01-01

    Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa ‘Nipponbare’) seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics. PMID:22977279

  17. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice.

    Science.gov (United States)

    Hirano, Ko; Asano, Kenji; Tsuji, Hiroyuki; Kawamura, Mayuko; Mori, Hitoshi; Kitano, Hidemi; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2010-08-01

    The DELLA protein SLENDER RICE1 (SLR1) is a repressor of gibberellin (GA) signaling in rice (Oryza sativa), and most of the GA-associated responses are induced upon SLR1 degradation. It is assumed that interaction between GIBBERELLIN INSENSITIVE DWARF1 (GID1) and the N-terminal DELLA/TVHYNP motif of SLR1 triggers F-box protein GID2-mediated SLR1 degradation. We identified a semidominant dwarf mutant, Slr1-d4, which contains a mutation in the region encoding the C-terminal GRAS domain of SLR1 (SLR1(G576V)). The GA-dependent degradation of SLR1(G576V) was reduced in Slr1-d4, and compared with SLR1, SLR1(G576V) showed reduced interaction with GID1 and almost none with GID2 when tested in yeast cells. Surface plasmon resonance of GID1-SLR1 and GID1-SLR1(G576V) interactions revealed that the GRAS domain of SLR1 functions to stabilize the GID1-SLR1 interaction by reducing its dissociation rate and that the G576V substitution in SLR1 diminishes this stability. These results suggest that the stable interaction of GID1-SLR1 through the GRAS domain is essential for the recognition of SLR1 by GID2. We propose that when the DELLA/TVHYNP motif of SLR1 binds with GID1, it enables the GRAS domain of SLR1 to interact with GID1 and that the stable GID1-SLR1 complex is efficiently recognized by GID2.

  18. The genetics of some planthormones and photoreceptors in Arabidopsis thaliana (L.) Heynh.

    NARCIS (Netherlands)

    Koornneef, M.

    1982-01-01

    This thesis describes the isolation and characterization in Arabidopsis thaliana (L.) Heynh. of induced mutants, deficient for gibberellins (GA's), abscisic acid (ABA) and photoreceptors.

    These compounds are known to regulate various facets of plant growth and

  19. The α-Amylase Induction in Endosperm during Rice Seed Germination Is Caused by Gibberellin Synthesized in Epithelium1

    Science.gov (United States)

    Kaneko, Miyuki; Itoh, Hironori; Ueguchi-Tanaka, Miyako; Ashikari, Motoyuki; Matsuoka, Makoto

    2002-01-01

    We recently isolated two genes (OsGA3ox1 and OsGA3ox2) from rice (Oryza sativa) encoding 3β-hydroxylase, which catalyzes the final step of active gibberellin (GA) biosynthesis (H. Itoh, M. Ueguchi-Tanaka, N. Sentoku, H. Kitano, M. Matsuoka, M. Kobayashi [2001] Proc Natl Acad Sci USA 98: 8909–8914). Using these cloned cDNAs, we analyzed the temporal and spatial expression patterns of the 3β-hydroxylase genes and also an α-amylase gene (RAmy1A) during rice seed germination to investigate the relationship between GA biosynthesis and α-amylase expression. Northern-blot analyses revealed that RAmy1A expression in the embryo occurs before the induction of 3β-hydroxylase expression, whereas in the endosperm, a high level of RAmy1A expression occurs 1 to 2 d after the peak of OsGA3ox2 expression and only in the absence of uniconazol. Based on the analysis of an OsGA3ox2 null mutant (d18-Akibare dwarf), we determined that 3β-hydroxylase produced by OsGA3ox2 is important for the induction of RAmy1A expression and that the OsGA3ox1 product is not essential for α-amylase induction. The expression of OsGA3ox2 was localized to the shoot region and epithelium of the embryo, strongly suggesting that active GA biosynthesis occurs in these two regions. The synthesis of active GA in the epithelium is important for α-amylase expression in the endosperm, because an embryonic mutant defective in shoot formation, but which developed epithelium cells, induced α-amylase expression in the endosperm, whereas a mutant defective in epithelium development did not. PMID:11950975

  20. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism.

    Science.gov (United States)

    Dai, Mingqiu; Zhao, Yu; Ma, Qian; Hu, Yongfeng; Hedden, Peter; Zhang, Qifa; Zhou, Dao-Xiu

    2007-05-01

    Gibberellin (GA) biosynthesis is regulated by feedback control providing a mechanism for GA homeostasis in plants. However, regulatory elements involved in the feedback control are not known. In this report, we show that a rice (Oryza sativa) YABBY1 (YAB1) gene had a similar expression pattern as key rice GA biosynthetic genes GA3ox2 and GA20ox2. Overexpression of YAB1 in transgenic rice resulted in a semidwarf phenotype that could be fully rescued by applied GA. Quantification of the endogenous GA content revealed increases of GA(20) and decreases of GA(1) levels in the overexpression plants, in which the transcripts of the biosynthetic gene GA3ox2 were decreased. Cosuppression of YAB1 in transgenic plants induced expression of GA3ox2. The repression of GA3ox2 could be obtained upon treatment by dexamethasone of transgenic plants expressing a YAB1-glucocorticoid receptor fusion. Importantly, we show that YAB1 bound to a GA-responsive element within the GA3ox2 promoter. In addition, the expression of YAB1 was deregulated in GA biosynthesis and signaling mutants and could be either transiently induced by GA or repressed by a GA inhibitor. Finally, either overexpression or cosuppression of YAB1 impaired GA-mediated repression of GA3ox2. These data together suggest that YAB1 is involved in the feedback regulation of GA biosynthesis in rice.

  1. Gibberellin-induced changes in the populations of translatable mRNAs and accumulated polypeptides in dwarfs of maize and pea

    International Nuclear Information System (INIS)

    Chory, J.; Voytas, D.F.; Olszewski, N.E.; Ausubel, F.M.

    1987-01-01

    Two-dimensional gel electrophoresis was used to characterize the molecular mechanism of gibberellin-induced stem elongation in maize and pea. Dwarf mutants of maize and pea lack endogenous gibberellin (GA 1 ) but become phenotypically normal with exogenous applications of this hormone. Sections from either etiolated maize or green pea seedlings were incubated in the presence of [ 35 S] methionine for 3 hours with or without gibberellin. Labeled proteins from soluble and particulate fractions were analyzed by two-dimensional gel electrophoresis and specific changes in the patterns of protein synthesis were observed upon treatment with gibberellin. Polyadenylated mRNAs from etiolated or green maize shoots and green pea epicotyls treated or not with gibberellin (a 0.5 to 16 hour time course) were assayed by translation in a rabbit reticulocyte extract and separation of products by two-dimensional gel electrophoresis. Both increases and decreases in the levels of specific polypeptides were seen for pea and corn, and these changes were observed within 30 minutes of treatment with gibberellin. Together, these data indicate that gibberellin induces changes in the expression of a subset of gene products within elongating dwarfs. This may be due to changes in transcription rate, mRNA stability, or increased efficiency of translation of certain mRNAs

  2. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant.

    Science.gov (United States)

    Sakowska, Karolina; Alberti, Giorgio; Genesio, Lorenzo; Peressotti, Alessandro; Delle Vedove, Gemini; Gianelle, Damiano; Colombo, Roberto; Rodeghiero, Mirco; Panigada, Cinzia; Juszczak, Radosław; Celesti, Marco; Rossini, Micol; Haworth, Matthew; Campbell, Benjamin W; Mevy, Jean-Philippe; Vescovo, Loris; Cendrero-Mateo, M Pilar; Rascher, Uwe; Miglietta, Franco

    2018-03-02

    The photosynthetic, optical, and morphological characteristics of a chlorophyll-deficient (Chl-deficient) "yellow" soybean mutant (MinnGold) were examined in comparison with 2 green varieties (MN0095 and Eiko). Despite the large difference in Chl content, similar leaf photosynthesis rates were maintained in the Chl-deficient mutant by offsetting the reduced absorption of red photons by a small increase in photochemical efficiency and lower non-photochemical quenching. When grown in the field, at full canopy cover, the mutants reflected a significantly larger proportion of incoming shortwave radiation, but the total canopy light absorption was only slightly reduced, most likely due to a deeper penetration of light into the canopy space. As a consequence, canopy-scale gross primary production and ecosystem respiration were comparable between the Chl-deficient mutant and the green variety. However, total biomass production was lower in the mutant, which indicates that processes other than steady state photosynthesis caused a reduction in biomass accumulation over time. Analysis of non-photochemical quenching relaxation and gas exchange in Chl-deficient and green leaves after transitions from high to low light conditions suggested that dynamic photosynthesis might be responsible for the reduced biomass production in the Chl-deficient mutant under field conditions. © 2018 John Wiley & Sons Ltd.

  3. Brassinosteroid Regulates Cell Elongation by Modulating Gibberellin Metabolism in Rice[C][W][OPEN

    Science.gov (United States)

    Tong, Hongning; Xiao, Yunhua; Liu, Dapu; Gao, Shaopei; Liu, Linchuan; Yin, Yanhai; Jin, Yun; Qian, Qian; Chu, Chengcai

    2014-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana. PMID:25371548

  4. Barley Brassinosteroid Mutants Provide an Insight into Phytohormonal Homeostasis in Plant Reaction to Drought Stress

    Czech Academy of Sciences Publication Activity Database

    Gruszka, D.; Janeczko, A.; Dziurka, M.; Pociecha, E.; Oklešťková, Jana; Szarejko, I.

    2016-01-01

    Roč. 7, DEC 2 (2016), č. článku 1824. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : abscisic- acid * arabidopsis-thaliana * jasmonic - acid * gibberellin biosynthesis * constitutive activation * abiotic stresses * brassica-napus * rice * responses * tolerance * barley * brassinosteroids * drought * homeostasis * mutants * phytohormones Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.298, year: 2016

  5. Characterization of the Molecular Mechanism Underlying Gibberellin Perception Complex Formation in Rice[C][W

    Science.gov (United States)

    Hirano, Ko; Asano, Kenji; Tsuji, Hiroyuki; Kawamura, Mayuko; Mori, Hitoshi; Kitano, Hidemi; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2010-01-01

    The DELLA protein SLENDER RICE1 (SLR1) is a repressor of gibberellin (GA) signaling in rice (Oryza sativa), and most of the GA-associated responses are induced upon SLR1 degradation. It is assumed that interaction between GIBBERELLIN INSENSITIVE DWARF1 (GID1) and the N-terminal DELLA/TVHYNP motif of SLR1 triggers F-box protein GID2-mediated SLR1 degradation. We identified a semidominant dwarf mutant, Slr1-d4, which contains a mutation in the region encoding the C-terminal GRAS domain of SLR1 (SLR1G576V). The GA-dependent degradation of SLR1G576V was reduced in Slr1-d4, and compared with SLR1, SLR1G576V showed reduced interaction with GID1 and almost none with GID2 when tested in yeast cells. Surface plasmon resonance of GID1-SLR1 and GID1-SLR1G576V interactions revealed that the GRAS domain of SLR1 functions to stabilize the GID1-SLR1 interaction by reducing its dissociation rate and that the G576V substitution in SLR1 diminishes this stability. These results suggest that the stable interaction of GID1-SLR1 through the GRAS domain is essential for the recognition of SLR1 by GID2. We propose that when the DELLA/TVHYNP motif of SLR1 binds with GID1, it enables the GRAS domain of SLR1 to interact with GID1 and that the stable GID1-SLR1 complex is efficiently recognized by GID2. PMID:20716699

  6. Ectopic expression of GA 2-oxidase 6 from rapeseed (Brassica napus L.) causes dwarfism, late flowering and enhanced chlorophyll accumulation in Arabidopsis thaliana.

    Science.gov (United States)

    Yan, Jindong; Liao, Xiaoying; He, Reqing; Zhong, Ming; Feng, Panpan; Li, Xinmei; Tang, Dongying; Liu, Xuanming; Zhao, Xiaoying

    2017-02-01

    Gibberellins (GAs) are endogenous hormones that play an important role in higher plant growth and development. GA2-oxidase (GA2ox) promotes catabolism and inactivation of bioactive GAs or their precursors. In this study, we identified the GA2-oxidase gene, BnGA2ox6, and found it to be highly expressed in the silique and flower. Overexpression of BnGA2ox6 in Arabidopsis resulted in GA-deficiency symptoms, including inhibited elongation of the hypocotyl and stem, delayed seed germination, and late flowering. BnGA2ox6 overexpression reduced silique growth, but had no effect on seed development. Additionally, BnGA2ox6 overexpression enhanced chlorophyll b and total chlorophyll accumulation, and downregulated mRNA expression levels of the CHL1 and RCCR genes, which are involved in the chlorophyll degradation. These findings suggest that BnGA2ox6 regulates plant hight, silique development, flowering and chlorophyll accumulation in transgenic Arabidopsis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Identification of gibberellin acid-responsive proteins in rice leaf sheath using proteomics.

    Science.gov (United States)

    Gu, Jia-Yu; Wang, Ye; Zhang, Xu; Zhang, Shi-Hua; Gao, Yin; An, Cheng-Cai

    2010-06-01

    The phytohormone gibberellin acid (GA) controls many aspects of plant development. In this study, we identified proteins that are differentially expressed between the rice (Oryza sativa L.) GA-deficient cultivar, Aijiaonante, and its parental line, Nante. Proteins were extracted from rice leaf sheath and examined by 2DGE. Among more than 1200 protein spots reproducibly detected on each gel, 29 were found to be highly up-regulated by GAs in Nante, and 6 were down-regulated by GAs in Aijiaonante. These 35 proteins were identified by MALDI-TOF MS and were classified into three groups based on their putative function in metabolism, stress/defense processes and signal transduction. These data suggest that metabolic pathways are the main target of regulation by GAs during rice development. Our results provide new information about the involvement of GAs in rice development.

  8. Bending patterns of chlamydomonas flagella: III. A radial spoke head deficient mutant and a central pair deficient mutant.

    Science.gov (United States)

    Brokaw, C J; Luck, D J

    1985-01-01

    Flash photomicrography at frequencies up to 300 Hz and computer-assisted image analysis have been used to obtain parameters describing the flagellar bending patterns of mutants of Chlamydomonas reinhardtii. All strains contained the uni1 mutation, to facilitate photography. The radial spoke head deficient mutant pf17, and the central pair deficient mutant, pf15, in combination with suppressor mutations that restore motility without restoring the ultrastructural or biochemical deficiencies, both generate forward mode bending patterns with increased shear amplitude and decreased asymmetry relative to the "wild-type" uni1 flagella described previously. In the reverse beating mode, the suppressed pf17 mutants generate reverse bending patterns with large shear amplitudes. Reverse beating of the suppressed pf15 mutants is rare. There is a reciprocal relationship between increased shear amplitude and decreased beat frequency, so that the velocity of sliding between flagellar microtubules is not increased by an increase in shear amplitude. The suppressor mutations alone cause decreased frequency and sliding velocity in both forward and reverse mode beating, with little change in shear amplitude or symmetry.

  9. Enzymatic and structural characterization of hydrolysis of gibberellin A4 glucosyl ester by a rice β-D-glucosidase.

    Science.gov (United States)

    Hua, Yanling; Sansenya, Sompong; Saetang, Chiraporn; Wakuta, Shinji; Ketudat Cairns, James R

    2013-09-01

    In order to identify a rice gibberellin ester β-D-glucosidase, gibberellin A4 β-D-glucosyl ester (GA4-GE) was synthesized and used to screen rice β-glucosidases. Os3BGlu6 was found to have the highest hydrolysis activity to GA4-GE among five recombinantly expressed rice glycoside hydrolase family GH1 enzymes from different phylogenic clusters. The kinetic parameters of Os3BGlu6 and its mutants E178Q, E178A, E394D, E394Q and M251N for hydrolysis of p-nitrophenyl β-D-glucopyranoside (pNPGlc) and GA4-GE confirmed the roles of the catalytic acid/base and nucleophile for hydrolysis of both substrates and suggested M251 contributes to binding hydrophobic aglycones. The activities of the Os3BGlu6 E178Q and E178A acid/base mutants were rescued by azide, which they transglucosylate to produce β-D-glucopyranosyl azide, in a pH-dependent manner, while acetate also rescued Os3BGlu6 E178A at low pH. High concentrations of sodium azide (200-400 mM) inhibited Os3BGlu6 E178Q but not Os3BGlu6 E178A. The structures of Os3BGlu6 E178Q crystallized with either GA4-GE or pNPGlc had a native α-D-glucosyl moiety covalently linked to the catalytic nucleophile, E394, which showed the hydrogen bonding to the 2-hydroxyl in the covalent intermediate. These data suggest that a GH1 β-glucosidase uses the same retaining catalytic mechanism to hydrolyze 1-O-acyl glucose ester and glucoside. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Hormones and tomato seed germination

    NARCIS (Netherlands)

    Liu, Y.

    1996-01-01

    Using GA- and ABA-deficient mutants, exogenous gibberellins (GAs), abscisic acid (ABA) and osmoticum, we studied the roles of GAs and ABA in the induction of cell cycle activities, internal free space formation and changes in water relations during seed development and imbibition in tomato. First of

  11. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio.

    Science.gov (United States)

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-10-03

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represses soybean seed germination by enhancing ABA biosynthesis, while impairing GA biogenesis, and finally decreasing GA 1 /ABA and GA 4 /ABA ratios. Microscope observation showed that auxin treatment delayed rupture of the soybean seed coat and radicle protrusion. qPCR assay revealed that transcription of the genes involved in ABA biosynthetic pathway was up-regulated by application of auxin, while expression of genes involved in GA biosynthetic pathway was down-regulated. Accordingly, further phytohormone quantification shows that auxin significantly increased ABA content, whereas the active GA 1 and GA 4 levels were decreased, resulting insignificant decreases in the ratiosGA 1 /ABA and GA 4 /ABA.Consistent with this, ABA biosynthesis inhibitor fluridone reversed the delayed-germination phenotype associated with auxin treatment, while paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Altogether, exogenous auxin represses soybean seed germination by mediating ABA and GA biosynthesis.

  12. Genome-Wide Analysis of the Biosynthesis and Deactivation of Gibberellin-Dioxygenases Gene Family in Camellia sinensis (L. O. Kuntze

    Directory of Open Access Journals (Sweden)

    Cheng Pan

    2017-09-01

    Full Text Available Gibberellins (GAs, a class of diterpenoid phytohormones, play a key role in regulating diverse processes throughout the life cycle of plants. Bioactive GA levels are rapidly regulated by Gibberellin-dioxygenases (GAox, which are involved in the biosynthesis and deactivation of gibberellin. In this manuscript, a comprehensive genome-wide analysis was carried out to find all GAox in Camellia sinensis. For the first time in a tea plant, 14 CsGAox genes, containing two domains, DIOX_N (PF14226 and 2OG-FeII_Oxy, were identified (PF03171. These genes all belong to 2-oxoglutarate-dependent dioxygenases (2-ODD, including four CsGA20ox (EC: 1.14.11.12, three CsGA3ox (EC: 1.14.11.15, and seven CsGA2ox (EC: 1.14.11.13. According to the phylogenetic classification as in Arabidopsis, the CsGAox genes spanned five subgroups. Each CsGAox shows tissue-specific expression patterns, although these vary greatly. Some candidate genes, which may play an important role in response to external abiotic stresses, have been identified with regards to patterns, such as CsGA20ox2, CsGA3ox2, CsGA3ox3, CsGA2ox1, CsGA2ox2, and CsGA2ox4. The bioactive GA levels may be closely related to the GA20ox, GA3ox and GA2ox genes. In addition, the candidate genes could be used as marker genes for abiotic stress resistance breeding in tea plants.

  13. Hormonal regulation of gluconeogenesis in cereal aleurone is strongly cultivar-dependent and gibberellin action involves SLENDER1 but not GAMYB.

    Science.gov (United States)

    Eastmond, Peter J; Jones, Russell L

    2005-11-01

    Storage oil is a major constituent in the cereal aleurone layer. The aim of this study was to investigate how gibberellin (GA) and abscisic acid (ABA) regulate conversion of oil to sugar in barley aleurone. The activity of the glyoxylate cycle enzyme isocitrate lyase (ICL) was surveyed in eight barley cultivars. Surprisingly, some cultivars do not require GA for the induction of ICL (e.g. Himalaya), whereas some do (e.g. Golden Promise). Furthermore, in Golden Promise, GA also stimulates triacylglycerol breakdown and enhances the net flux of carbon from acetate to sugar. In contrast, ABA strongly represses ICL activity and the flux of carbon from oil to sugar in both Golden Promise and Himalaya. Biolistics using a promoter reporter showed that GA and ABA regulate ICL at the level of transcription. Studies using barley and rice mutants and pharmacological agents show that GA-dependent induction of ICL activity is mediated by SLENDER1 and requires cGMP, but does not involve the transcription factor GAMYB. Gibberellin and ABA therefore act antagonistically to regulate gluconeogenesis in the aleurone layer as well as controlling the production and secretion of hydrolases into the starchy endosperm. We suggest that the variation between different barley cultivars might be a result of selective breeding to alter seed dormancy.

  14. APETALA 2-domain-containing transcription factors: focusing on abscisic acid and gibberellins antagonism.

    Science.gov (United States)

    Shu, Kai; Zhou, Wenguan; Yang, Wenyu

    2018-02-01

    The phytohormones abscisic acid (ABA) and gibberellin (GA) antagonistically mediate diverse plant developmental processes including seed dormancy and germination, root development, and flowering time control, and thus the optimal balance between ABA and GA is essential for plant growth and development. Although more than a half and one century have passed since the initial discoveries of ABA and GA, respectively, the precise mechanisms underlying ABA-GA antagonism still need further investigation. Emerging evidence indicates that two APETALA 2 (AP2)-domain-containing transcription factors (ATFs), ABI4 in Arabidopsis and OsAP2-39 in rice, play key roles in ABA and GA antagonism. These two transcription factors precisely regulate the transcription pattern of ABA and GA biosynthesis or inactivation genes, mediating ABA and GA levels. In this Viewpoint article, we try to shed light on the effects of ATFs on ABA-GA antagonism, and summarize the overlapping but distinct biological functions of these ATFs in the antagonism between ABA and GA. Finally, we strongly propose that further research is needed into the detailed roles of additional numerous ATFs in ABA and GA crosstalk, which will improve our understanding of the antagonism between these two phytohormones. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Carbohydrates and gibberellins relationship in potato tuberization

    Czech Academy of Sciences Publication Activity Database

    Ševčíková, H.; Mašková, P.; Tarkowská, Danuše; Mašek, T.; Lipavská, H.

    2017-01-01

    Roč. 214, JUL (2017), s. 53-63 ISSN 0176-1617 R&D Projects: GA ČR GA14-34792S Institutional support: RVO:61389030 Keywords : Carbohydrate distribution * Gibberellin * Photoautotrophic cultivation * Potato * Tuberization Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Plant sciences, botany Impact factor: 3.121, year: 2016

  16. Study on ionizing radiosensitivity of respiratory deficiency yeast mutants

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei

    2006-01-01

    The radiosensitivity of respiratory deficiency yeast mutants has been studied in this work. The mutants which were screened from the yeasts after ionizing irradiation were irradiated with 12 C 6+ at different doses. Because of the great change in its mitochondria and mitochondrial DNA, the respiratory deficiency yeast mutants show radio-sensitivity at dose less than 1 Gy and radioresistance at doses higher than 1 Gy. (authors)

  17. Isolation of glutathione-deficient mutants of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kistler, M.; Eckardt, F.; Summer, K.-H.

    1986-01-01

    Glutathione-deficient (gsh - ) mutants of the yeast Saccharomyces cerevisiae were isolated after UV treatment using MNNG as selective agent. For genetic and biochemical characterization 5 mutant strains were chosen which exhibited considerably decreased residual GSH contents varying from 2 to 6% of the wild-type levels. All 5 isolates showed a 2:2 segregation of the gsh - :GSH + phenotypes alluding to a monogenic recessive mutation. Complementation analysis indicates that all gsh - mutants belong to one complementation group. (Auth.)

  18. The occurrence of gibberellin-binding protein(s) in pea

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.H.

    1988-01-01

    In vitro gibberellin (GA) binding properties of a cytosol fraction from epicotyls of dwarf pea (Pisum sativum L. cv. Progress No. 9) and tall pea (Pisum sativum L. cv. Alaska) were investigated using ({sup 3}H)GA{sub 4} in a DEAE filter paper assay at 0-3 C. The binding obtained is saturable, reversible, and temperature labile in dwarf pea, and has a half-life of dissociation of 5-6 min. By varying the concentration of ({sup 3}H)GA{sub 4} in the incubation medium the Kd was estimated to be 120-140 nM in dwarf pea and 70 nM in tall pea. The number of binding sites (n) was estimated to be 0.66 and 0.43 pmole mg{sup {minus}1} soluble protein in dwarf pea and in tall pea, respectively. In competition binding assays, biologically active GAs, such as GA{sub 3} and GA{sub 4} could reduce the level of ({sup 3}H)GA{sub 4} binding much more than the biologically inactive GA{sub 4} methyl ester and epi-GA{sub 4}. Changes in gibberellin-binding protein(s) were studied during seed germination. While the Kd of the binding protein(s) for ({sup 3}H)GA{sub 4} remained the same, there was a marked increase in the number of binding sites from 24 h soaked seed to 8-day old seedlings. Also, the Kd and the number of binding sites in the GA-responsive apical part and in the nonresponsive basal part in the epicotyl were similar. The effect of light on gibberellin-binding protein in dwarf pea was also studied. The GA-binding protein in dwarf pea was partially purified by gel filtration and ion exchange chromatography.

  19. Map-Based Cloning of Seed Dormancy1-2 Identified a Gibberellin Synthesis Gene Regulating the Development of Endosperm-Imposed Dormancy in Rice.

    Science.gov (United States)

    Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S; Cao, Zhuanqin; Beighley, Donn H; Yang, Jianchang; Gu, Xing-You

    2015-11-01

    Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Gibberellin Deficiency Confers Both Lodging and Drought Tolerance in Small Cereals

    Directory of Open Access Journals (Sweden)

    Sonia ePlaza-Wüthrich

    2016-05-01

    Full Text Available Tef [Eragrostis tef (Zucc. Trotter] and finger millet [Eleusine coracana Gaertn] are staple cereal crops in Africa and Asia with several desirable agronomic and nutritional properties. Tef is becoming a life-style crop as it is gluten-free while finger millet has a low glycemic index which makes it an ideal food for diabetic patients. However, both tef and finger millet have extremely low grain yields mainly due to moisture scarcity and susceptibility of the plants to lodging. In this study, the effects of gibberellic acid (GA inhibitors particularly paclobutrazol (PBZ on diverse physiological and yield-related parameters were investigated and compared to GA mutants in rice (Oryza sativa L.. The application of PBZ to tef and finger millet significantly reduced the plant height and increased lodging tolerance. Remarkably, PBZ also enhanced the tolerance of both tef and finger millet to moisture deficit. Under moisture scarcity, tef plants treated with PBZ did not exhibit drought-related symptoms and their stomatal conductance was unaltered, leading to higher shoot biomass and grain yield. Semi-dwarf rice mutants altered in GA biosynthesis, were also shown to have improved tolerance to dehydration. The combination of traits (drought tolerance, lodging tolerance and increased yield that we found in plants with altered GA pathway is of importance to breeders who would otherwise rely on extensive crossing to introgress each trait individually. The key role played by PBZ in the tolerance to both lodging and drought calls for further studies using mutants in the GA biosynthesis pathway in order to obtain candidate lines which can be incorporated into crop-breeding programs to create lodging tolerant and climate-smart crops.

  1. Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice.

    Science.gov (United States)

    Li, Wenqiang; Wu, Jianguo; Weng, Shili; Zhang, Yujiang; Zhang, Dapeng; Shi, Chunhai

    2010-11-01

    A dwarf mutant, dwarf 62 (d62), was isolated from rice cultivar 93-11 by mutagenesis with γ-rays. Under normal growth conditions, the mutant had multiple abnormal phenotypes, such as dwarfism, wide and dark-green leaf blades, reduced tiller numbers, late and asynchronous heading, short roots, partial male sterility, etc. Genetic analysis indicated that the abnormal phenotypes were controlled by the recessive mutation of a single nuclear gene. Using molecular markers, the D62 gene was fine mapped in 131-kb region at the short arm of chromosome 6. Positional cloning of D62 gene revealed that it was the same locus as DLT/OsGRAS-32, which encodes a member of the GRAS family. In previous studies, the DLT/OsGRAS-32 is confirmed to play positive roles in brassinosteroid (BR) signaling. Sequence analysis showed that the d62 carried a 2-bp deletion in ORF region of D62 gene which led to a loss-of-function mutation. The function of D62 gene was confirmed by complementation experiment. RT-PCR analysis and promoter activity analysis showed that the D62 gene expressed in all tested tissues including roots, stems, leaves and panicles of rice plant. The d62 mutant exhibited decreased activity of α-amylase in endosperm and reduced content of endogenous GA(1). The expression levels of gibberellin (GA) biosynthetic genes including OsCPS1, OsKS1, OsKO1, OsKAO, OsGA20ox2/SD1 and OsGA2ox3 were significantly increased in d62 mutant. Briefly, these results demonstrated that the D62 (DLT/OsGRAS-32) not only participated in the regulation of BR signaling, but also influenced GA metabolism in rice.

  2. A gibberellin-stimulated transcript, OsGASR1, controls seedling growth and α-amylase expression in rice.

    Science.gov (United States)

    Lee, Sang-Choon; Kim, Soo-Jin; Han, Soon-Ki; An, Gynheung; Kim, Seong-Ryong

    2017-07-01

    From a T-DNA-tagging population in rice, we identified OsGASR1 (LOC_Os03g55290), a member of the GAST (gibberellin (GA)-Stimulated Transcript) family that is induced by salt stress and ABA treatment. This gene was highly expressed in the regions of cell proliferation and panicle development, as revealed by a GUS assay of the mutant line. In the osgasr1 mutants, the second leaf blades were much longer than those of the segregating wild type due to an increase in cell length. In addition, five α-amylase genes were up-regulated in the mutants, implying that OsGASR1 is a negative regulator of those genes. These results suggest that OsGASR1 plays important roles in seedling growth and α-amylase gene expression. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Gibberellic Acid-Stimulated Arabidopsis6 Serves as an Integrator of Gibberellin, Abscisic Acid, and Glucose Signaling during Seed Germination in Arabidopsis.

    Science.gov (United States)

    Zhong, Chunmei; Xu, Hao; Ye, Siting; Wang, Shiyi; Li, Lingfei; Zhang, Shengchun; Wang, Xiaojing

    2015-11-01

    The DELLA protein REPRESSOR OF ga1-3-LIKE2 (RGL2) plays an important role in seed germination under different conditions through a number of transcription factors. However, the functions of the structural genes associated with RGL2-regulated germination are less defined. Here, we report the role of an Arabidopsis (Arabidopsis thaliana) cell wall-localized protein, Gibberellic Acid-Stimulated Arabidopsis6 (AtGASA6), in functionally linking RGL2 and a cell wall loosening expansin protein (Arabidopsis expansin A1 [AtEXPA1]), resulting in the control of embryonic axis elongation and seed germination. AtGASA6-overexpressing seeds showed precocious germination, whereas transfer DNA and RNA interference mutant seeds displayed delayed seed germination under abscisic acid, paclobutrazol, and glucose (Glc) stress conditions. The differences in germination rates resulted from corresponding variation in cell elongation in the hypocotyl-radicle transition region of the embryonic axis. AtGASA6 was down-regulated by RGL2, GLUCOSE INSENSITIVE2, and ABSCISIC ACID-INSENSITIVE5 genes, and loss of AtGASA6 expression in the gasa6 mutant reversed the insensitivity shown by the rgl2 mutant to paclobutrazol and the gin2 mutant to Glc-induced stress, suggesting that it is involved in regulating both the gibberellin and Glc signaling pathways. Furthermore, it was found that the promotion of seed germination and length of embryonic axis by AtGASA6 resulted from a promotion of cell elongation at the embryonic axis mediated by AtEXPA1. Taken together, the data indicate that AtGASA6 links RGL2 and AtEXPA1 functions and plays a role as an integrator of gibberellin, abscisic acid, and Glc signaling, resulting in the regulation of seed germination through a promotion of cell elongation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Map-Based Cloning of Seed Dormancy1-2 Identified a Gibberellin Synthesis Gene Regulating the Development of Endosperm-Imposed Dormancy in Rice1

    Science.gov (United States)

    Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S.; Cao, Zhuanqin; Beighley, Donn H.; Yang, Jianchang; Gu, Xing-You

    2015-01-01

    Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. PMID:26373662

  5. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Rodermel, Steven

    2015-11-16

    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  6. Gibberellin-Abscisic Acid Balances during Arbuscular Mycorrhiza Formation in Tomato

    Czech Academy of Sciences Publication Activity Database

    Martin-Rodriguez, J.A.; Huertas, R.; Ho-Plagaro, T.; Ocampo, J.A.; Turečková, Veronika; Tarkowská, Danuše; Ludwig-Mueller, J.; Garcia-Garrido, J.M.

    2016-01-01

    Roč. 7, AUG 23 (2016), s. 1273 ISSN 1664-462X R&D Projects: GA ČR GA14-34792S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : arbuscular mycorrhiza * plant hormones * gibberellins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.298, year: 2016

  7. [Effects of fluridone, gibberellin acid and germination temperature on dormancy-breaking for Epimedium wushanense].

    Science.gov (United States)

    Su, He; Wang, Yue; Yang, Yang; Dong, Xue-Hui

    2016-07-01

    We introduced Epimedium wushanense seed which has been stratified for 90 days at 10/20 ℃ as experimental materials, with which we studied the effects of fluridone, gibberellin acid and temperature on E. wushanense germination. The results were suggested as shown below. ①Temperature, fluridone and gibberellin acid can both solely or jointly affect germination energy, germination rate significantly. Among those factors, fluridone affect germination rate and germination energy the most, followed by gibberellin acid and temperature. The highest germination rate under 4 ℃ and 10/20 ℃ stratification are 79.3%, 72.0% respectively, which resulted from treatment of F10GA300 and F20GA200 respectively. The highest germination energy under 4 ℃ and 10/20 ℃ stratification are 52.7%, 52.0%, respectively, which both resulted from F20GA200. ②Compared with 4 ℃ germination, seed could not germinate at 10/20 ℃ germination. Nontheless, application of fluridone can lead E. wushanense seeds to germinating.③The effects of gibberellin acid and interaction between gibberellin acid and fluridone significantly affect seed rotten rate during germination. In addition, soaking is another remarkable factor which increased seed rotten rate. As a result, it is feasible to promote E. wushanense dormancy releasing with gibberellin acid and fluridone associating with a proper germination temperature. Further, it is necessary taking actions to avoid seed rotten rate for saving E. wushanense nurseries'cost. Copyright© by the Chinese Pharmaceutical Association.

  8. ELONGATED UPPERMOST INTERNODE Encodes a Cytochrome P450 Monooxygenase That Epoxidizes Gibberellins in a Novel Deactivation Reaction in RiceW⃞

    Science.gov (United States)

    Zhu, Yongyou; Nomura, Takahito; Xu, Yonghan; Zhang, Yingying; Peng, Yu; Mao, Bizeng; Hanada, Atsushi; Zhou, Haicheng; Wang, Renxiao; Li, Peijin; Zhu, Xudong; Mander, Lewis N.; Kamiya, Yuji; Yamaguchi, Shinjiro; He, Zuhua

    2006-01-01

    The recessive tall rice (Oryza sativa) mutant elongated uppermost internode (eui) is morphologically normal until its final internode elongates drastically at the heading stage. The stage-specific developmental effect of the eui mutation has been used in the breeding of hybrid rice to improve the performance of heading in male sterile cultivars. We found that the eui mutant accumulated exceptionally large amounts of biologically active gibberellins (GAs) in the uppermost internode. Map-based cloning revealed that the Eui gene encodes a previously uncharacterized cytochrome P450 monooxygenase, CYP714D1. Using heterologous expression in yeast, we found that EUI catalyzed 16α,17-epoxidation of non-13-hydroxylated GAs. Consistent with the tall and dwarfed phenotypes of the eui mutant and Eui-overexpressing transgenic plants, respectively, 16α,17-epoxidation reduced the biological activity of GA4 in rice, demonstrating that EUI functions as a GA-deactivating enzyme. Expression of Eui appeared tightly regulated during plant development, in agreement with the stage-specific eui phenotypes. These results indicate the existence of an unrecognized pathway for GA deactivation by EUI during the growth of wild-type internodes. The identification of Eui as a GA catabolism gene provides additional evidence that the GA metabolism pathway is a useful target for increasing the agronomic value of crops. PMID:16399803

  9. A Study of Gibberellin Homeostasis and Cryptochrome-Mediated Blue Light Inhibition of Hypocotyl Elongation1[W][OA

    Science.gov (United States)

    Zhao, Xiaoying; Yu, Xuhong; Foo, Eloise; Symons, Gregory M.; Lopez, Javier; Bendehakkalu, Krishnaprasad T.; Xiang, Jing; Weller, James L.; Liu, Xuanming; Reid, James B.; Lin, Chentao

    2007-01-01

    Cryptochromes mediate blue light-dependent photomorphogenic responses, such as inhibition of hypocotyl elongation. To investigate the underlying mechanism, we analyzed a genetic suppressor, scc7-D (suppressors of cry1cry2), which suppressed the long-hypocotyl phenotype of the cry1cry2 (cryptochrome1/cryptochrome2) mutant in a light-dependent but wavelength-independent manner. scc7-D is a gain-of-expression allele of the GA2ox8 gene encoding a gibberellin (GA)-inactivating enzyme, GA 2-oxidase. Although scc7-D is hypersensitive to light, transgenic seedlings expressing GA2ox at a level higher than scc7-D showed a constitutive photomorphogenic phenotype, confirming a general role of GA2ox and GA in the suppression of hypocotyl elongation. Prompted by this result, we investigated blue light regulation of mRNA expression of the GA metabolic and catabolic genes. We demonstrated that cryptochromes are required for the blue light regulation of GA2ox1, GA20ox1, and GA3ox1 expression in transient induction, continuous illumination, and photoperiodic conditions. The kinetics of cryptochrome induction of GA2ox1 expression and cryptochrome suppression of GA20ox1 or GA3ox1 expression correlate with the cryptochrome-dependent transient reduction of GA4 in etiolated wild-type seedlings exposed to blue light. Therefore we propose that in deetiolating seedlings, cryptochromes mediate blue light regulation of GA catabolic/metabolic genes, which affect GA levels and hypocotyl elongation. Surprisingly, no significant change in the GA4 content was detected in the whole shoot samples of the wild-type or cry1cry2 seedlings grown in the dark or continuous blue light, suggesting that cryptochromes may also regulate GA responsiveness and/or trigger cell- or tissue-specific changes of the level of bioactive GAs. PMID:17644628

  10. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice.

    Science.gov (United States)

    Wang, Li; Wang, Zhen; Xu, Yunyuan; Joo, Se-Hwan; Kim, Seong-Ki; Xue, Zhen; Xu, Zhihong; Wang, Zhiyong; Chong, Kang

    2009-02-01

    Gibberellins (GAs) and brassinosteroids (BRs), two growth-promoting phytohormones, regulate many common physiological processes. Their interactions at the molecular level remain unclear. Here, we demonstrate that OsGSR1, a member of the GAST (GA-stimulated transcript) gene family, is induced by GA and repressed by BR. RNA interference (RNAi) transgenic rice plants with reduced OsGSR1 expression show phenotypes similar to plants deficient in BR, including short primary roots, erect leaves and reduced fertility. The OsGSR1 RNAi transgenic rice shows a reduced level of endogenous BR, and the dwarf phenotype could be rescued by the application of brassinolide. The yeast two-hybrid assay revealed that OsGSR1 interacts with DIM/DWF1, an enzyme that catalyzes the conversion from 24-methylenecholesterol to campesterol in BR biosynthesis. These results suggest that OsGSR1 activates BR synthesis by directly regulating a BR biosynthetic enzyme at the post-translational level. Furthermore, OsGSR1 RNAi plants show a reduced sensitivity to GA treatment, an increased expression of the GA biosynthetic gene OsGA20ox2, which is feedback inhibited by GA signaling, and an elevated level of endogenous GA: together, these suggest that OsGSR1 is a positive regulator of GA signaling. These results demonstrate that OsGSR1 plays important roles in both BR and GA pathways, and also mediates an interaction between the two signaling pathways.

  11. Characterization of a Thermo-Inducible Chlorophyll-Deficient Mutant in Barley

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2017-11-01

    Full Text Available Leaf color is an important trait for not only controlling crop yield but also monitoring plant status under temperature stress. In this study, a thermo-inducible chlorophyll-deficient mutant, named V-V-Y, was identified from a gamma-radiated population of the barley variety Vlamingh. The leaves of the mutant were green under normal growing temperature but turned yellowish under high temperature in the glasshouse experiment. The ratio of chlorophyll a and chlorophyll b in the mutant declined much faster in the first 7–9 days under heat treatment. The leaves of V-V-Y turned yellowish but took longer to senesce under heat stress in the field experiment. Genetic analysis indicated that a single nuclear gene controlled the mutant trait. The mutant gene (vvy was mapped to the long arm of chromosome 4H between SNP markers 1_0269 and 1_1531 with a genetic distance of 2.2 cM and a physical interval of 9.85 Mb. A QTL for grain yield was mapped to the same interval and explained 10.4% of the yield variation with a LOD score of 4. This QTL is coincident with the vvy gene interval that is responsible for the thermo-inducible chlorophyll-deficient trait. Fine mapping, based on the barley reference genome sequence, further narrowed the vvy gene to a physical interval of 0.428 Mb with 11 annotated genes. This is the first report of fine mapping a thermo-inducible chlorophyll-deficient gene in barley.

  12. Posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin in germinating rice seeds.

    Science.gov (United States)

    Nanjo, Yohei; Asatsuma, Satoru; Itoh, Kimiko; Hori, Hidetaka; Mitsui, Toshiaki; Fujisawa, Yukiko

    2004-06-01

    Hormonal regulation of expression of alpha-amylase II-4 that lacks the gibberellin-response cis-element (GARE) in the promoter region of the gene was studied in germinating rice (Oryza sativa L.) seeds. Temporal and spatial expression of alpha-amylase II-4 in the aleurone layer were essentially identical to those of alpha-amylase I-1 whose gene contains GARE, although these were distinguishable in the embryo tissues at the early stage of germination. The gibberellin-responsible expression of alpha-amylase II-4 was also similar to that of alpha-amylase I-1. However, the level of alpha-amylase II-4 mRNA was not increased by gibberellin, indicating that the transcriptional enhancement of alpha-amylase II-4 expression did not occur in the aleurone. Gibberellin stimulated the accumulation of 45Ca2+ into the intracellular secretory membrane system. In addition, several inhibitors for Ca2+ signaling, such as EGTA, neomycin, ruthenium red (RuR), and W-7 prevented the gibberellin-induced expression of alpha-amylase II-4 effectively. While the gibberellin-induced expression of alpha-amylase II-4 occurred normally in the aleurone layer of a rice dwarf mutant d1 which is defective in the alpha subunit of the heterotrimeric G protein. Based on these results, it was concluded that the posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin operates in the aleurone layer of germinating rice seed, which is mediated by Ca2+ but not the G protein.

  13. Gibberellin hormone signal perception: down-regulating DELLA repressors of plant growth and development

    Science.gov (United States)

    The gibberellin (GA) hormone signal is perceived by a receptor with homology to hormone sensitive lipases, GID1 (GA-INSENSITIVE DWARF1). This leads to GA-stimulated responses including stem elongation, seed germination, and the transition to flowering. GA-binding enables GID1 to interact with and ...

  14. Mycothiol-Deficient Mycobacterium smegmatis Mutants Are Hypersensitive to Alkylating Agents, Free Radicals, and Antibiotics

    Science.gov (United States)

    Rawat, Mamta; Newton, Gerald L.; Ko, Mary; Martinez, Gladys J.; Fahey, Robert C.; Av-Gay, Yossef

    2002-01-01

    Mycothiol (MSH; 1d-myo-inosityl 2-[N-acetyl-l-cysteinyl]amido-2-deoxy-α-d-glucopyranoside) is the major low-molecular-weight thiol produced by mycobacteria. Mutants of Mycobacterium smegmatis mc2155 deficient in MSH production were produced by chemical mutagenesis as well as by transposon mutagenesis. One chemical mutant (mutant I64) and two transposon mutants (mutants Tn1 and Tn2) stably deficient in MSH production were isolated by screening for reduced levels of MSH content. The MSH contents of transposon mutants Tn1 and Tn2 were found to be less than 0.1% that of the parent strain, and the MSH content of I64 was found to be 1 to 5% that of the parent strain. All three strains accumulated 1d-myo-inosityl 2-deoxy-α-d-glucopyranoside to levels 20- to 25-fold the level found in the parent strain. The cysteine:1d-myo-inosityl 2-amino-2-deoxy-α-d-glucopyranoside ligase (MshC) activities of the three mutant strains were ≤2% that of the parent strain. Phenotypic analysis revealed that these MSH-deficient mutants possess increased susceptibilities to free radicals and alkylating agents and to a wide range of antibiotics including erythromycin, azithromycin, vancomycin, penicillin G, rifamycin, and rifampin. Conversely, the mutants possess at least 200-fold higher levels of resistance to isoniazid than the wild type. We mapped the mutation in the chemical mutant by sequencing the mshC gene and showed that a single amino acid substitution (L205P) is responsible for reduced MSH production and its associated phenotype. Our results demonstrate that there is a direct correlation between MSH depletion and enhanced sensitivity to toxins and antibiotics. PMID:12384335

  15. UV and gamma-ray sensitivity of meiosis-deficient mutants in Podospora anserina

    International Nuclear Information System (INIS)

    Simonet, J.M.

    1976-01-01

    Two mutants, mei1 and mei2, were isolated by screening for deficiencies occurring in the meiotic process. The sensitivity of mei1 and mei2 mutant strains to UV irradiation showed a significant increase as compared with that of the wild-type stock, hwhereas the sensitivity to γ-rays remained unchanged. The double-mutant strains were no more sensitive than each single mutant. The data indicate that both mei1 and mei2 loci are probably involved in the same pathway of excision-repair of UV-induced lesions

  16. Exposure to red light, temperature and exogenous gibberellins ...

    African Journals Online (AJOL)

    Red light, temperature and gibberellins are well known for their capacity to induce higher germination in dormant seeds of several plant species. In the current study, we investigated the effect of various temperature (10, 13, 16, 19, 22 and 25°C) and gibberellic acid (GA3) and GA4+7 concentrations (0.1, 1, 10, and 100 uM) ...

  17. Purification and partial amino-acid sequence of gibberellin 20-oxidase from Cucurbita maxima L. endosperm.

    Science.gov (United States)

    Lange, T

    1994-01-01

    Gibberellin (GA) 20-oxidase was purified to apparent homogeneity from Cucurbita maxima endosperm by fractionated ammonium-sulphate precipitation, gel-filtration chromatography and anion-exchange and hydrophobic-interaction high-performance liquid chromatography (HPLC). Average purification after the last step was 55-fold with 3.9% of the activity recovered. The purest single fraction was enriched 101-fold with 0.2% overall recovery. Apparent relative molecular mass of the enzyme was 45 kDa, as determined by gel-filtration HPLC and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, indicating that GA 20-oxidase is probably a monomeric enzyme. The purified enzyme degraded on two-dimensional gel electrophoresis, giving two protein spots: a major one corresponding to a molecular mass of 30 kDa and a minor one at 45 kDa. The isoelectric point for both was 5.4. The amino-acid sequences of the amino-terminus of the purified enzyme and of two peptides from a tryptic digest were determined. The purified enzyme catalysed the sequential conversion of [14C]GA12 to [14C]GA15, [14C]GA24 and [14C]GA25, showing that carbon atom 20 was oxidised to the corresponding alcohol, aldehyde and carboxylic acid in three consecutive reactions. [14C]Gibberellin A53 was similarly converted to [14C]GA44, [14C]GA19, [14C]GA17 and small amounts of a fourth product, which was preliminarily identified as [14C]GA20, a C19-gibberellin. All GAs except [14C]GA20 were identified by combined gas chromatography-mass spectrometry. The cofactor requirements in the absence of dithiothreitol were essentially as in its presence (Lange et al., Planta 195, 98-107, 1994), except that ascorbate was essential for enzyme activity and the optimal concentration of catalase was lower.

  18. Impaired renal secretion of substrates for the multidrug resistance protein 2 in mutant transport-deficient (TR-) rats.

    NARCIS (Netherlands)

    Masereeuw, R.; Notenboom, S.; Smeets, P.H.E.; Wouterse, A.C.; Russel, F.G.M.

    2003-01-01

    Previous studies with mutant transport-deficient rats (TR(-)), in which the multidrug resistance protein 2 (Mrp2) is lacking, have emphasized the importance of this transport protein in the biliary excretion of a wide variety of glutathione conjugates, glucuronides, and other organic anions. Mrp2 is

  19. Gibberellins – terpenoid plant hormones: Biological importance and chemical analysis

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Terezie; Tarkowská, Danuše; Strnad, Miroslav; Hedden, P.

    2011-01-01

    Roč. 76, č. 12 (2011), s. 1669-1686 ISSN 0010-0765 R&D Projects: GA AV ČR KAN200380801; GA MŠk ED0007/01/01 Keywords : Gibberellins * Biosynthesis * Signaling * Profiling * Extraction * Purification * Mass spectrometry * Liquid chromatography Subject RIV: EF - Botanics Impact factor: 1.283, year: 2011

  20. Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice

    DEFF Research Database (Denmark)

    Guo, L T; Zhang, X U; Kuang, W

    2003-01-01

    2, lacking domain VI. Interestingly, all mutants lack laminin alpha2 in peripheral nerve. We have demonstrated previously, that overexpression of the human laminin alpha2 in skeletal muscle in dy(2J)/dy(2J) and dy(W)/dy(W) mice under the control of a striated muscle-specific creatine kinase promoter......Deficiency of laminin alpha2 is the cause of one of the most severe muscular dystrophies in humans and other species. It is not yet clear how particular mutations in the laminin alpha2 chain gene affect protein expression, and how abnormal levels or structure of the protein affect disease. Animal...

  1. Decreased panicle-derived indole-3-acetic acid reduces gibberellin A1 level in the uppermost internode, causing panicle enclosure in male sterile rice Zhenshan 97A.

    Science.gov (United States)

    Yin, Changxi; Gan, Lijun; Ng, Denny; Zhou, Xie; Xia, Kai

    2007-01-01

    Cytoplasmic male sterile (CMS) rice Zhenshan 97A (ZS97A) has been widely used in hybrid rice production in China. However, ZS97A suffers from serious panicle enclosure, which blocks normal pollination and greatly reduces seed production of hybrid rice. Little is known about the cause of panicle closure in ZS97A. In this study, it was found that the occurrence of cytoplasmic male sterility caused a deficiency of indole-3-acetic acid (IAA) in ZS97A panicles, and less IAA was provided to the uppermost internode (UI). Further, it was found that the decreased panicle-derived IAA caused a gibberellin A(1) (GA(1)) deficiency in the UI by the down-regulation of OsGA3ox2 transcript level. Reduced GA(1) level in the UI led to decreases of both cell number and cell elongation, resulting in a shortened UI. The shortened UI was unable to push the panicle out of the flag leaf sheath that remained normal, which resulted in panicle enclosure in ZS97A. These findings suggest that decreased panicle-derived IAA reduces the GA(1) level in the UI, causing panicle enclosure in CMS rice ZS97A.

  2. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.

    Science.gov (United States)

    Salinas, Thalia; Larosa, Véronique; Cardol, Pierre; Maréchal-Drouard, Laurence; Remacle, Claire

    2014-05-01

    Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Gibberellin influence on the morphogenesis of the moss Bryum argenteum Hedw. in in vitro conditions

    Directory of Open Access Journals (Sweden)

    Sabovljević Aneta

    2010-01-01

    Full Text Available The moss Bryum argenteum Hedw. was treated with gibberellins as well as some inhibitors of gibberellin biosynthesis in order to investigate their influence on B. argenteum morphogenesis. Generally, gibberellins have not been chemically identified in bryophytes, while other groups of classical phytohormones (auxins, cytokinins, abscisic acid and ethylene have been chemically identified in these plants. The in vitro culture of the moss Bryum argenteum was established from sterilized spores. The apical shoots of untreated gametophytes grown in vitro were used to investigate the influence of different substances on secondary protonema and on the growth and multiplication of the gametophytes. B. argenteum reacts differently to the growth regulators applied. Both gibberellins applied in vitro (GA3 and GA7 have a positive effect on B. argenteum morphogenesis. Shoot multiplication was negatively affected by three tested growth retardants (ancymidol, BX-112 and chlorocholine chloride, while these substances did not have such strong effects on the moss protonema development.

  4. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees.

    Directory of Open Access Journals (Sweden)

    Christine Zawaski

    Full Text Available Survival and productivity of perennial plants in temperate zones are dependent on robust responses to prolonged and seasonal cycles of unfavorable conditions. Here we report whole-genome microarray, expression, physiological, and transgenic evidence in hybrid poplar (Populus tremula × Populus alba showing that gibberellin (GA catabolism and repressive signaling mediates shoot growth inhibition and physiological adaptation in response to drought and short-day (SD induced bud dormancy. Both water deprivation and SDs elicited activation of a suite of poplar GA2ox and DELLA encoding genes. Poplar transgenics with up-regulated GA 2-oxidase (GA2ox and DELLA domain proteins showed hypersensitive growth inhibition in response to both drought and SDs. In addition, the transgenic plants displayed greater drought resistance as evidenced by increased pigment concentrations (chlorophyll and carotenoid and reductions in electrolyte leakage (EL. Comparative transcriptome analysis using whole-genome microarray showed that the GA-deficiency and GA-insensitivity, SD-induced dormancy, and drought response in poplar share a common regulon of 684 differentially-expressed genes, which suggest GA metabolism and signaling plays a role in plant physiological adaptations in response to alterations in environmental factors. Our results demonstrate that GA catabolism and repressive signaling represents a major route for control of growth and physiological adaptation in response to immediate or imminent adverse conditions.

  5. Analysis of Transcriptional Responses of the Inflorescence Meristems in Jatropha curcas Following Gibberellin Treatment

    Directory of Open Access Journals (Sweden)

    Wen-Kai Hui

    2018-02-01

    Full Text Available Jatropha curcas L. seeds an oilseed plant with great potential for biodiesel production. However, low seed yield, which was limited by its lower female flowers, was a major drawback for its utilization. Our previous study found that the flower number and female-to-male ratio were increased by gibberellin treatment. Here, we compared the transcriptomic profiles of inflorescence meristem at different time points after gibberellic acid A3 (GA3 treatment. The present study showed that 951 differentially expressed genes were obtained in response to gibberellin treatment, compared with control samples. The 6-h time point was an important phase in the response to exogenous gibberellin. Furthermore, the plant endogenous gibberellin, auxin, ethylene, abscisic acid, and brassinolide-signaling transduction pathways were repressed, whereas the genes associated with cytokinin and jasmonic acid signaling were upregulated for 24-h time point following GA3 treatment. In addition, the floral meristem determinacy genes (JcLFY, JcSOC1 and floral organ identity genes (JcAP3, JcPI, JcSEP1-3 were significantly upregulated, but their negative regulator (JcSVP was downregulated after GA3 treatment. Moreover, the effects of phytohormone, which was induced by exogenous plant growth regulator, mainly acted on the female floral differentiation process. To the best of our knowledge, this data is the first comprehensive analysis of the underlying transcriptional response mechanism of floral differentiation following GA3 treatment in J. curcas, which helps in engineering high-yielding varieties of Jatropha.

  6. Regulation of Strigolactone Biosynthesis by Gibberellin Signaling.

    Science.gov (United States)

    Ito, Shinsaku; Yamagami, Daichi; Umehara, Mikihisa; Hanada, Atsushi; Yoshida, Satoko; Sasaki, Yasuyuki; Yajima, Shunsuke; Kyozuka, Junko; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Shirasu, Ken; Yamaguchi, Shinjiro; Asami, Tadao

    2017-06-01

    Strigolactones (SLs) are a class of plant hormones that regulate diverse physiological processes, including shoot branching and root development. They also act as rhizosphere signaling molecules to stimulate the germination of root parasitic weeds and the branching of arbuscular mycorrhizal fungi. Although various types of cross talk between SLs and other hormones have been reported in physiological analyses, the cross talk between gibberellin (GA) and SLs is poorly understood. We screened for chemicals that regulate the level of SLs in rice ( Oryza sativa ) and identified GA as, to our knowledge, a novel SL-regulating molecule. The regulation of SL biosynthesis by GA is dependent on the GA receptor GID1 and F-box protein GID2. GA treatment also reduced the infection of rice plants by the parasitic plant witchers weed ( Striga hermonthica ). These data not only demonstrate, to our knowledge, the novel plant hormone cross talk between SL and GA, but also suggest that GA can be used to control parasitic weed infections. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice[OPEN

    Science.gov (United States)

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-01-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. PMID:26002868

  8. Genetics of dwarfness in induced mutants of hexaploid triticale and its response to exogenous GA3

    International Nuclear Information System (INIS)

    Reddy, V.D.; Reddy, G.M.

    1991-01-01

    Genetics of dwarfism in two induced mutant (d 1 and d 2 ) of hexaploid triticale, DTS 330, revealed that this trait is governed by single recessive gene. Both d 1 and d 2 were allelic to each other and d 1 was dominant over d 2 . Both d 1 , d 2 and their F 1 showed no response to exogenous GA 3 , whereas, DTS 330, d 1 x DTS 330 and d 2 x DTS 330 were responsive. The endogenous levels of GA 3 were more in the dwarf mutants than control, suggesting that dwarfness in these may be due to a partial block in the GA utilizing mechanism, rather than a block in GA biosynthesis. (author). 5 refs., 2 tabs

  9. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family.

    Science.gov (United States)

    Pearce, Stephen; Huttly, Alison K; Prosser, Ian M; Li, Yi-dan; Vaughan, Simon P; Gallova, Barbora; Patil, Archana; Coghill, Jane A; Dubcovsky, Jorge; Hedden, Peter; Phillips, Andrew L

    2015-06-05

    The gibberellin (GA) pathway plays a central role in the regulation of plant development, with the 2-oxoglutarate-dependent dioxygenases (2-ODDs: GA20ox, GA3ox, GA2ox) that catalyse the later steps in the biosynthetic pathway of particularly importance in regulating bioactive GA levels. Although GA has important impacts on crop yield and quality, our understanding of the regulation of GA biosynthesis during wheat and barley development remains limited. In this study we identified or assembled genes encoding the GA 2-ODDs of wheat, barley and Brachypodium distachyon and characterised the wheat genes by heterologous expression and transcript analysis. The wheat, barley and Brachypodium genomes each contain orthologous copies of the GA20ox, GA3ox and GA2ox genes identified in rice, with the exception of OsGA3ox1 and OsGA2ox5 which are absent in these species. Some additional paralogs of 2-ODD genes were identified: notably, a novel gene in the wheat B genome related to GA3ox2 was shown to encode a GA 1-oxidase, named as TaGA1ox-B1. This enzyme is likely to be responsible for the abundant 1β-hydroxylated GAs present in developing wheat grains. We also identified a related gene in barley, located in a syntenic position to TaGA1ox-B1, that encodes a GA 3,18-dihydroxylase which similarly accounts for the accumulation of unusual GAs in barley grains. Transcript analysis showed that some paralogs of the different classes of 2-ODD were expressed mainly in a single tissue or at specific developmental stages. In particular, TaGA20ox3, TaGA1ox1, TaGA3ox3 and TaGA2ox7 were predominantly expressed in developing grain. More detailed analysis of grain-specific gene expression showed that while the transcripts of biosynthetic genes were most abundant in the endosperm, genes encoding inactivation and signalling components were more highly expressed in the seed coat and pericarp. The comprehensive expression and functional characterisation of the multigene families encoding the 2-ODD

  10. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice.

    Science.gov (United States)

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-06-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. © 2015 American Society of Plant Biologists. All rights reserved.

  11. Gibberellins in shoots and developing capsules of Populus species.

    Science.gov (United States)

    Pearce, David W; Hutt, Oliver E; Rood, Stewart B; Mander, Lewis N

    2002-03-01

    Extracts of stems of growing shoots of Populus deltoides and P. trichocarpa, and developing capsules of P. deltoides were analysed for gibberellins (GAs) by gas chromatography-mass spectrometry. The following known GAs were identified by comparison of their Kovats retention indices (KRIs) and mass spectra with those of standards: GA1, GA8, GA9, GA19, GA20, 16 beta,17-dihydro-17-hydroxy GA20, GA23, GA28, GA29, GA34, GA44, and GA97. Several of these have not been previously reported from Populus. In addition, two new GAs were identified as 12 beta-hydroxy GA53 (GA127) and 16 beta,17-dihydro-17-hydroxy GA53 and their structures were confirmed by partial synthesis. Evidence was found of 16,17-dihydro-16,17-dihydroxy GA9, 16,17-dihydro-16,17-dihydroxy GA12, 12-hydroxy GA14, and GA34-catabolite by comparison of mass spectra and KRIs with published data. Several putative GAs (hydroxy- and dihydroxy-GA12-like) were also found. The catabolites of active GAs or of key precursors, hydroxylated at C-2 in stems and either C-2, C-12, C-17, or C-16,17 in capsules, were the major proportion of the GAs.

  12. Studies on reduced height mutants in rice

    International Nuclear Information System (INIS)

    Narahari, P.; Bhagwat, S.G.

    1984-01-01

    Two cross-bred derivatives of the mutant TR5xTR17 and TR21 continued to show promise and were advanced to wider scale testing. TR5 was found to carry a semi-dwarfing gene different from that in IR8. New semi-dwarf mutants were screened from M 2 through M 4 from two separate radiation experiments. The gibberellin response of seedlings of mutant and tester strains was evaluated and crosses of tester stocks and mutant semi-dwarfs were made for genetic analyses. (author)

  13. Recombination-deficient mutants of Bacillus subtilis

    International Nuclear Information System (INIS)

    Sadaie, Y.; Kada, T.

    1976-01-01

    Two mutant strains of Bacillus subtilis Marburg, NIG43 and NIG45, were isolated. They showed high sensitivities to gamma rays, ultraviolet light (uv), and chemicals. Deficiencies in genetic recombination of these two mutants were shown by the experiments on their capacity in transformation, SPO2 transfection, and PBS1 phage transduction, as well as on their radiation and drug sensitivities and their Hcr + capacity for uv-exposed phage M2. Some of these characteristics were compared with those of the known strains possessing the recA1 or recB2 alleles. Mapping studies revealed that the mutation rec-43 of strain NIG43 lies in the region of chromosome replication origin. The order was purA dna-8132 rec-43. Another mutation, rec-45, of strain NIG45 was found to be tightly linked to recA1. The mutation rec-43 reduced mainly the frequency of PBS1 transduction. On the other hand, the mutation rec-45 reduced the frequency of recombination involved both in transformation and PBS1 tranduction. The mutation rec-43 of strain NIG43 is conditional, but rec-45 of strain NIG45 is not. The uv impairment in cellular survival of strain NIG43 was gradually reverted at higher salt or sucrose concentrations, suggesting cellular possession of a mutated gene product whose function is conditional. In contrast to several other recombination-deficient strains, SPO2 lysogens of strains NIG43 and NIG45 were not inducible, indicating involvement of rec-43 + or rec-45 + gene product in the development of SPO2 prophage to a vegetative form. The uv-induced deoxyribonucleic acid degradation in vegetative cells was higher in rec-43 and rec-45 strains

  14. Regulation of Strigolactone Biosynthesis by Gibberellin Signaling1[OPEN

    Science.gov (United States)

    Ito, Shinsaku; Yamagami, Daichi; Umehara, Mikihisa; Hanada, Atsushi; Sasaki, Yasuyuki; Yajima, Shunsuke; Kyozuka, Junko; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Yamaguchi, Shinjiro

    2017-01-01

    Strigolactones (SLs) are a class of plant hormones that regulate diverse physiological processes, including shoot branching and root development. They also act as rhizosphere signaling molecules to stimulate the germination of root parasitic weeds and the branching of arbuscular mycorrhizal fungi. Although various types of cross talk between SLs and other hormones have been reported in physiological analyses, the cross talk between gibberellin (GA) and SLs is poorly understood. We screened for chemicals that regulate the level of SLs in rice (Oryza sativa) and identified GA as, to our knowledge, a novel SL-regulating molecule. The regulation of SL biosynthesis by GA is dependent on the GA receptor GID1 and F-box protein GID2. GA treatment also reduced the infection of rice plants by the parasitic plant witchers weed (Striga hermonthica). These data not only demonstrate, to our knowledge, the novel plant hormone cross talk between SL and GA, but also suggest that GA can be used to control parasitic weed infections. PMID:28404726

  15. Studies on the role of gibberellins in the regulation of spermatogenesis in Chara vulgaris L.

    Directory of Open Access Journals (Sweden)

    Maria Kwiatkowska

    2014-01-01

    Full Text Available Antheridia from isolated nodes of Chara vulgaris, developing in the presence of either AMO-1618 or GA3, were studied. AMO-1618 which lowers the level of endogenous gibberellins causes a significant, proportional to the concentration, reduction in: 1 the number of antheridial filaments formed in antheridia, 2 spermatid number within a filament, as a result of eliminating one mitotic division at the first stage of spermatogenesis. Exogenous GA3 at the concentration 10-5 M evokes opposite effect i.e. increase in the number of antheridial filaments and increase in the number of spermatids within filament. Total number of spermatids within an antheridium decreases under the influence of 10-4M AMO-1618 three times in comparison with the control, whereas it increases twice following 10-5M GA3 treatment. It has been suggested that the normal course of spermatogenesis requires precisely determined level of endogenous gibberellins.

  16. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease.

    Directory of Open Access Journals (Sweden)

    Min Peng

    2008-04-01

    Full Text Available Coenzyme Q (CoQ is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2(kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2(kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2(loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2(loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment.

  17. Gibberellin A3 Is Biosynthesized from Gibberellin A20 via Gibberellin A5 in Shoots of Zea mays L. 1

    Science.gov (United States)

    Fujioka, Shozo; Yamane, Hisakazu; Spray, Clive R.; Phinney, Bernard O.; Gaskin, Paul; MacMillan, Jake; Takahashi, Nobutaka

    1990-01-01

    [17-13C,3H]-Labeled gibberellin A20 (GA20), GA5, and GA1 were fed to homozygous normal (+/+), heterozygous dominant dwarf (D8/+), and homozygous dominant dwarf (D8/D8) seedlings of Zea mays L. (maize). 13C-Labeled GA29, GA8, GA5, GA1, and 3-epi-GA1, as well as unmetabolized [13C]GA20, were identified by gas chromatography-selected ion monitoring (GC-SIM) from feeds of [17-13C, 3H]GA20 to all three genotypes. 13C-Labeled GA8 and 3-epi-G1, as well as unmetabolized [13C]GA1, were identified by GC-SIM from feeds of [17-13C, 3H]GA1 to all three genotypes. From feeds of [17-13C, 3H]GA5, 13C-labeled GA3 and the GA3-isolactone, as well as unmetabolized [13C]GA5, were identified by GC-SIM from +/+ and D8/D8, and by full scan GC-MS from D8/+. No evidence was found for the metabolism of [17-13C, 3H]GA5 to [13C]GA1, either by full scan GC-mass spectrometry or by GC-SIM. The results demonstrate the presence in maize seedlings of three separate branches from GA20, as follows: (a) GA20 → GA1 → GA8; (b) GA20 → GA5 → GA3; and (c) GA20 → GA29. The in vivo biogenesis of GA3 from GA5, as well as the origin of GA5 from GA20, are conclusively established for the first time in a higher plant (maize shoots). PMID:16667678

  18. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10

    Directory of Open Access Journals (Sweden)

    Khan Abdul

    2012-01-01

    Full Text Available Abstract Background Endophytic fungi are little known for exogenous secretion of phytohormones and mitigation of salinity stress, which is a major limiting factor for agriculture production worldwide. Current study was designed to isolate phytohormone producing endophytic fungus from the roots of cucumber plant and identify its role in plant growth and stress tolerance under saline conditions. Results We isolated nine endophytic fungi from the roots of cucumber plant and screened their culture filtrates (CF on gibberellins (GAs deficient mutant rice cultivar Waito-C and normal GAs biosynthesis rice cultivar Dongjin-byeo. The CF of a fungal isolate CSH-6H significantly increased the growth of Waito-C and Dongjin-byeo seedlings as compared to control. Analysis of the CF showed presence of GAs (GA1, GA3, GA4, GA8, GA9, GA12, GA20 and GA24 and indole acetic acid. The endophyte CSH-6H was identified as a strain of Paecilomyces formosus LHL10 on the basis of phylogenetic analysis of ITS sequence similarity. Under salinity stress, P. formosus inoculation significantly enhanced cucumber shoot length and allied growth characteristics as compared to non-inoculated control plants. The hypha of P. formosus was also observed in the cortical and pericycle regions of the host-plant roots and was successfully re-isolated using PCR techniques. P. formosus association counteracted the adverse effects of salinity by accumulating proline and antioxidants and maintaining plant water potential. Thus the electrolytic leakage and membrane damage to the cucumber plants was reduced in the association of endophyte. Reduced content of stress responsive abscisic acid suggest lesser stress convened to endophyte-associated plants. On contrary, elevated endogenous GAs (GA3, GA4, GA12 and GA20 contents in endophyte-associated cucumber plants evidenced salinity stress modulation. Conclusion The results reveal that mutualistic interactions of phytohormones secreting endophytic

  19. Cloning of gibberellin 3 beta-hydroxylase cDNA and analysis of endogenous gibberellins in the developing seeds in watermelon.

    Science.gov (United States)

    Kang, Hong-Gyu; Jun, Sung-Hoon; Kim, Joonyul; Kawaide, Hiroshi; Kamiya, Yuji; An, Gynheung

    2002-02-01

    We have isolated Cv3h, a cDNA clone from the developing seeds of watermelon, and have demonstrated significant amino acid homology with gibberellin (GA) 3 beta-hydroxylases. This cDNA clone was expressed in Escherichia coli as a fusion protein that oxidized GA(9) and GA(12) to GA(4) and GA(14), respectively. The Cv3h protein had the highest similarity with pumpkin GA 2 beta,3 beta-hydroxylase, but did not possess 2 beta-hydroxylation function. RNA blot analysis showed that the gene was expressed primarily in the inner parts of developing seeds, up to 10 d after pollination (DAP). In the parthenocarpic fruits induced by treatment with 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU), the embryo and endosperm of the seeds were undeveloped, whereas the integumental tissues, of maternal origin, showed nearly normal development. Cv3h mRNA was undetectable in the seeds of CPPU-treated fruits, indicating that the GA 3 beta-hydroxylase gene was expressed in zygotic cells. In our analysis of endogenous GAs from developing seeds, GA(9) and GA(4) were detected at high levels but those of GA(20) and GA(1) were very low. This demonstrates that GA biosynthesis in seeds prefers a non-13-hydroxylation pathway over an early 13-hydroxylation pathway. We also analyzed endogenous GAs from seeds of the parthenocarpic fruits. The level of bioactive GA(4 )was much lower there than in normal seeds, indicating that bioactive GAs, unconnected with Cv3h, exist in integumental tissues during early seed development.

  20. 2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis.

    Science.gov (United States)

    Araújo, Wagner L; Martins, Auxiliadora O; Fernie, Alisdair R; Tohge, Takayuki

    2014-01-01

    The tricarboxylic acid (TCA) cycle intermediate 2-oxoglutarate (2-OG) is used as an obligatory substrate in a range of oxidative reactions catalyzed by 2-OG-dependent dioxygenases. These enzymes are widespread in nature being involved in several important biochemical processes. We have recently demonstrated that tomato plants in which the TCA cycle enzyme 2-OG dehydrogenase (2-ODD) was antisense inhibited were characterized by early senescence and modified fruit ripening associated with differences in the levels of bioactive gibberellin (GA). Accordingly, there is now compelling evidence that the TCA cycle plays an important role in modulating the rate of flux from 2-OG to amino acid metabolism. Here we discuss recent advances in the biochemistry and molecular biology of 2-OG metabolism occurring in different biological systems indicating the importance of 2-OG and 2-OG dependent dioxygenases not only in glucosinolate, flavonoid and alkaloid metabolism but also in GA and amino acid metabolism. We additionally summarize recent findings regarding the impact of modification of 2-OG metabolism on biosynthetic pathways involving 2-ODDs.

  1. Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation.

    Science.gov (United States)

    Zhang, Yingying; Zhang, Baichen; Yan, Dawei; Dong, Weixin; Yang, Weibing; Li, Qun; Zeng, Longjun; Wang, Jianjun; Wang, Linyou; Hicks, Leslie M; He, Zuhua

    2011-07-01

    The rice gene ELONGATED UPPERMOST INTERNODE1 (EUI1) encodes a P450 monooxygenase that epoxidizes gibberellins (GAs) in a deactivation reaction. The Arabidopsis genome contains a tandemly duplicated gene pair ELA1 (CYP714A1) and ELA2 (CYP714A2) that encode EUI homologs. In this work, we dissected the functions of the two proteins. ELA1 and ELA2 exhibited overlapping yet distinct gene expression patterns. We showed that while single mutants of ELA1 or ELA2 exhibited no obvious morphological phenotype, simultaneous elimination of ELA1 and ELA2 expression in ELA1-RNAi/ela2 resulted in increased biomass and enlarged organs. By contrast, transgenic plants constitutively expressing either ELA1 or ELA2 were dwarfed, similar to those overexpressing the rice EUI gene. We also discovered that overexpression of ELA1 resulted in a severe dwarf phenotype, while overexpression of ELA2 gave rise to a breeding-favored semi-dwarf phenotype in rice. Consistent with the phenotypes, we found that the ELA1-RNAi/ela2 plants increased amounts of biologically active GAs that were decreased in the internodes of transgenic rice with ELA1 and ELA2 overexpression. In contrast, the precursor GA(12) slightly accumulated in the transgenic rice, and GA(19) highly accumulated in the ELA2 overexpression rice. Taken together, our study strongly suggests that the two Arabidopsis EUI homologs subtly regulate plant growth most likely through catalyzing deactivation of bioactive GAs similar to rice EUI. The two P450s may also function in early stages of the GA biosynthetic pathway. Our results also suggest that ELA2 could be an excellent tool for molecular breeding for high yield potential in cereal crops. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  2. QTL analysis of internode elongation in response to gibberellin in deepwater rice

    OpenAIRE

    Nagai, Keisuke; Kondo, Yuma; Kitaoka, Takuya; Noda, Tomonori; Kuroha, Takeshi; Angeles-Shim, Rosalyn B.; Yasui, Hideshi; Yoshimura, Atsushi; Ashikari, Motoyuki

    2014-01-01

    Gibberellin (GA) is a plant hormone that has important roles in numerous plant developmental phases. Rice plants known as deepwater rice respond to flooding by elongating their internodes to avoid anoxia. Previous studies reported that GA is essential for internode elongation in deepwater rice. Quantitative trait locus (QTL) analyses identified QTLs regulating internode elongation in response to deepwater conditions. However, the interaction between internode elongation and regulators of GA s...

  3. A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division.

    Science.gov (United States)

    Nelissen, Hilde; Rymen, Bart; Jikumaru, Yusuke; Demuynck, Kirin; Van Lijsebettens, Mieke; Kamiya, Yuji; Inzé, Dirk; Beemster, Gerrit T S

    2012-07-10

    Plant growth rate is largely determined by the transition between the successive phases of cell division and expansion. A key role for hormone signaling in determining this transition was inferred from genetic approaches and transcriptome analysis in the Arabidopsis root tip. We used the developmental gradient at the maize leaf base as a model to study this transition, because it allows a direct comparison between endogenous hormone concentrations and the transitions between dividing, expanding, and mature tissue. Concentrations of auxin and cytokinins are highest in dividing tissues, whereas bioactive gibberellins (GAs) show a peak at the transition zone between the division and expansion zone. Combined metabolic and transcriptomic profiling revealed that this GA maximum is established by GA biosynthesis in the division zone (DZ) and active GA catabolism at the onset of the expansion zone. Mutants defective in GA synthesis and signaling, and transgenic plants overproducing GAs, demonstrate that altering GA levels specifically affects the size of the DZ, resulting in proportional changes in organ growth rates. This work thereby provides a novel molecular mechanism for the regulation of the transition from cell division to expansion that controls organ growth and size. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis

    NARCIS (Netherlands)

    Curaba, J.; Moritz, T.; Blervaque, R.; Parcy, F.; Raz, V.; Herzog, M.; Vachon, G.

    2004-01-01

    Embryonic regulators LEC2 (LEAFY COTYLEDON2) and FUS3 (FUSCA3) are involved in multiple aspects of Arabidopsis (Arabidopsis thaliana) seed development, including repression of leaf traits and premature germination and activation of seed storage protein genes. In this study, we show that gibberellin

  5. The rice YABBY4 gene regulates plant growth and development through modulating the gibberellin pathway.

    Science.gov (United States)

    Yang, Chao; Ma, Yamei; Li, Jianxiong

    2016-10-01

    YABBY genes encode seed plant-specific transcription factors that play pivotal roles in diverse aspects of leaf, shoot, and flower development. Members of the YABBY gene family are primarily expressed in lateral organs in a polar manner and function to specify abaxial cell fate in dicotyledons, but this polar expression is not conserved in monocotyledons. The function of YABBY genes is therefore not well understood in monocotyledons. Here we show that overexpression of the rice (Oryza sativa L.) YABBY4 gene (OsYABBY4) leads to a semi-dwarf phenotype, abnormal development in the uppermost internode, an increased number of floral organs, and insensitivity to gibberellin (GA) treatment. We report on an important role for OsYABBY4 in negative control of the expression of a GA biosynthetic gene by binding to the promoter region of the gibberellin 20-oxidase 2 gene (GA20ox2), which is a direct target of SLR1 (the sole DELLA protein negatively controlling GA responses in rice). OsYABBY4 also suppresses the expression level of SLR1 and interacts with SLR1 protein. The interaction inhibits GA-dependent degradation of SLR1 and therefore leads to GA insensitivity. These data together suggest that OsYABBY4 serves as a DNA-binding intermediate protein for SLR1 and is associated with the GA signaling pathway regulating gene expression during plant growth and development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Exogenous gibberellins inhibit coffee (Coffea arabica cv. Rubi) seed germination and cause cell death in the embryo

    NARCIS (Netherlands)

    Silva, Da E.A.A.; Toorop, P.E.; Nijsse, J.; Bewley, J.D.; Hilhorst, H.W.M.

    2005-01-01

    The mechanism of inhibition of coffee (Coffea arabica cv. Rubi) seed germination by exogenous gibberellins (GAs) and the requirement of germination for endogenous GA were studied. Exogenous GA4+7 inhibited coffee seed germination. The response to GA4+7 showed two sensitivity thresholds: a lower one

  7. [Mutual Effect on Determination of Gibberellins and Glyphosate in Groundwater by Spectrophotometry].

    Science.gov (United States)

    Zhang, Li; Chen, Liang; Liu, Fei

    2015-04-01

    In the present study, a spectrophotometry method for the simultaneous determination of gibberellins (GA3) and glyphosate in groundwater was established and optimized. In addition, the mutual effect on simultaneous determination of GA3 and glyphosate was studied. Based on the experiment, good linearity (R2 > 0.99) was obtained for GA3 in the range of 0-20 and 0-100 µg and for glyphosate in the range of 0-8 and 5-15 µg. The method's detection limit (MDL) of GA3 and glyphosate was 0.48 and 0.82 µg, respectively; and the recovery rates of 15 to 150 µg GA3 and 3 to 10 µg glyphosate in all samples at a spiked level were 71.3% ± 1.9% and 98.4% ± 8.1%, respectively. No obvious influence of glyphosate (0-100 mg · L(-1)) on the recovery rates of GA3 was observed, but the presence of glyphosate could cause slight determination precision decrease of GA3. Meanwhile, adding 2 mg · L(-1) GA3 can increase the recovery rate of glyphosate.

  8. Use of induced chlorophyll deficient mutants to identify 'heterotic blocks' in pearl millet chromosomes

    International Nuclear Information System (INIS)

    Burton, G.W.

    1989-01-01

    Full text: Chlorophyll deficient mutant stocks induced in 'Tift 23' of pearl millet (Pennisetum americanum L. Leeke) were crossed with 'Tift 23' and 5 other normal inbreds to study the effect of these deleterious recessive genes on yield. The difference between near-isogenic S 1 (F 2 ) populations homozygous or heterozygous for the chlorophyll deficiency was not significant. However among 69 S 1 progenies from crosses with other inbreds the heterozygotes were higher yielding than the homozygotes in 53 cases, 15 of which were significant. A mutant like 'M5' identified a high yield 'heterotic block' in 'Inbred 104' and a very low yield 'heterotic block' in 'Inbred 186'. (author)

  9. Interplay between cytochrome c and gibberellins during Arabidopsis vegetative development

    Czech Academy of Sciences Publication Activity Database

    Racca, S.; Welchen, E.; Gras, D. E.; Tarkowská, Danuše; Turečková, Veronika; Maurino, V. G.; Gonzalez, D. H.

    2018-01-01

    Roč. 94, č. 1 (2018), s. 105-121 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * cytochrome c * DELLA protein * gibberellin * mitochondrion Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 5.901, year: 2016

  10. Bacillus subtilis mutants deficient in the adaptive response to simple alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Morohoshi, F.; Munakata, N.

    1985-03-01

    Three mutant strains exhibiting hyper-sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine, but not to methyl methanesulfonate, were selected by a replica method from mutagenized spores of Bacillus subtilis. All three were totally deficient in the adaptive response to N-methyl-N'-nitro-N-nitrosoguanidine with regard to both lethality and mutagenesis. The activity to destroy O/sup 6/-methylguanine residues in the methylated DNA was not elevated in the mutant cells by the pretreatment with sublethal concentrations of N-methyl-N-nitro-N-nitrosoguanidine. This deficiency corresponded to the persistance of O/sup 6/-methylguanine residues in the DNA of both control and pretreated mutant cells challenged with the drug. The lethal and mutagenic sensitivity of the mutant strains were observed only for methyl- or ethyl-nitroso compounds that are thought to be active as inducers and are also active in O-alkylation. Except for the insensitivity to methyl methanesulfonate, the phenotypes of these mutants look very similar to those of ada mutants isolated previously in Escherichia coli.

  11. Expression Studies of Gibberellin Oxidases in Developing Pumpkin Seeds1

    Science.gov (United States)

    Frisse, Andrea; Pimenta, Maria João; Lange, Theo

    2003-01-01

    Two cDNA clones, 3-ox and 2-ox, have been isolated from developing pumpkin (Cucurbita maxima) embryos that show significant amino acid homology to gibberellin (GA) 3-oxidases and 2-oxidases, respectively. Recombinant fusion protein of clone 3-ox converted GA12-aldehyde, GA12, GA15, GA24, GA25, and GA9 to GA14-aldehyde, GA14, GA37, GA36, GA13, and GA4, respectively. Recombinant 2-ox protein oxidized GA9, GA4, and GA1 to GA51, GA34, and GA8, respectively. Previously cloned GA 7-oxidase revealed additional 3β-hydroxylation activity of GA12. Transcripts of this gene were identified in endosperm and embryo of the developing seed by quantitative reverse transcriptase-polymerase chain reaction and localized in protoderm, root apical meristem, and quiescent center by in situ hybridization. mRNA of the previously cloned GA 20-oxidase from pumpkin seeds was localized in endosperm and in tissues of protoderm, ground meristem, and cotyledons of the embryo. However, transcripts of the recently cloned GA 20-oxidase from pumpkin seedlings were found all over the embryo, and in tissues of the inner seed coat at the micropylar end. Previously cloned GA 2β,3β-hydroxylase mRNA molecules were specifically identified in endosperm tissue. Finally, mRNA molecules of the 3-ox and 2-ox genes were found in the embryo only. 3-ox transcripts were localized in tissues of cotyledons, protoderm, and inner cell layers of the root apical meristem, and 2-ox transcripts were found in all tissues of the embryo except the root tips. These results indicate tissue-specific GA-biosynthetic pathways operating within the developing seed. PMID:12644672

  12. Identification of a Gravitropism-Deficient Mutant in Rice

    Directory of Open Access Journals (Sweden)

    He Yan

    2017-03-01

    Full Text Available A gravitropism-deficient mutant M96 was isolated from a mutant bank, generated by ethyl methane sulfonate (EMS mutagenesis of indica rice accession ZJ100. The mutant was characterized as prostrate growth at the beginning of germination, and the prostrate growth phenotype ran through the whole life duration. Tiller angle and tiller number of M96 increased significantly in comparison with the wild type. Tissue section observation analysis indicated that asymmetric stem growth around the second node occurred in M96. Genetic analysis and gene mapping showed that M96 was controlled by a single recessive nuclear gene, tentatively termed as gravitropism-deficient M96 (gdM96, which was mapped to a region of 506 kb flanked by markers RM5960 and InDel8 on the long arm of chromosome 11. Sequencing analysis of the open reading frames in this region revealed a nucleotide substitution from G to T in the third exon of LOC_Os11g29840. Additionally, real-time fluorescence quantitative PCR analysis showed that the expression level of LOC_Os11g29840 in the stems was much higher than in the roots and leaves in M96. Furthermore, the expression level was more than four times in M96 stem than in the wild type stem. Our results suggested that the mutant gene was likely a new allele to the reported gene LAZY1. Isolation of this new allele would facilitate the further characterization of LAZY1.

  13. The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms.

    Science.gov (United States)

    Zhu, Shifeng; Gao, Feng; Cao, Xuesong; Chen, Mao; Ye, Gongyin; Wei, Chunhong; Li, Yi

    2005-12-01

    The mechanisms of viral diseases are a major focus of biology. Despite intensive investigations, how a plant virus interacts with host factors to cause diseases remains poorly understood. The Rice dwarf virus (RDV), a member of the genus Phytoreovirus, causes dwarfed growth phenotypes in infected rice (Oryza sativa) plants. The outer capsid protein P2 is essential during RDV infection of insects and thus influences transmission of RDV by the insect vector. However, its role during RDV infection within the rice host is unknown. By yeast two-hybrid and coimmunoprecipitation assays, we report that P2 of RDV interacts with ent-kaurene oxidases, which play a key role in the biosynthesis of plant growth hormones gibberellins, in infected plants. Furthermore, the expression of ent-kaurene oxidases was reduced in the infected plants. The level of endogenous GA1 (a major active gibberellin in rice vegetative tissues) in the RDV-infected plants was lower than that in healthy plants. Exogenous application of GA3 to RDV-infected rice plants restored the normal growth phenotypes. These results provide evidence that the P2 protein of RDV interferes with the function of a cellular factor, through direct physical interactions, that is important for the biosynthesis of a growth hormone leading to symptom expression. In addition, the interaction between P2 and rice ent-kaurene oxidase-like proteins may decrease phytoalexin biosynthesis and make plants more competent for virus replication. Moreover, P2 may provide a novel tool to investigate the regulation of GA metabolism for plant growth and development.

  14. Forward genetic screen for auxin-deficient mutants by cytokinin

    Czech Academy of Sciences Publication Activity Database

    Wu, L.; Luo, P.; Di, D.W.; Wang, L.; Wang, M.; Lu, C.K.; Wei, S.D.; Zhang, L.; Zhang, T.Z.; Amakorová, Petra; Strnad, Miroslav; Novák, Ondřej; Guo, G.Q.

    2015-01-01

    Roč. 5, JUL 6 (2015) ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : ETHYLENE-INSENSITIVE MUTANTS * YUCCA FLAVIN MONOOXYGENASES * ARABIDOPSIS-THALIANA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.228, year: 2015

  15. Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Terezie; Tarkowská, Danuše; Novák, Ondřej; Hedden, P.; Strnad, M.

    2013-01-01

    Roč. 112, č. 2013 (2013), s. 85-94 ISSN 0039-9140 R&D Projects: GA AV ČR KAN200380801 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : Gibberellins * Brassica napus * Arabidopsis thaliana Subject RIV: EC - Immunology Impact factor: 3.511, year: 2013

  16. Screening and identification of respiration deficiency mutants of yeasts (Saccharomyces Cerevisiae) induced by heavy ion irradiation

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei; Zhang Hong

    2006-01-01

    A screen of respiration deficiency mutants of Saccharomyces Cerevisiae induced by 5.19 MeV/u 22 Ne 5- ion irradiation is studied. Some respiration deficiency mutants, which are white colony phenotype in the selective culture of TTC medium, are obtained. The mutants are effectively identified by means of a new and simplified restriction analysis method. (authors)

  17. Chemical screening and development of novel gibberellin mimics.

    Science.gov (United States)

    Jiang, Kai; Shimotakahara, Hiroaki; Luo, Ming; Otani, Masato; Nakamura, Hidemitsu; Moselhy, Said Salama; Abualnaja, Khalid Omer; Al-Malki, Abdulrahman Labeed; Kumosani, Taha Abduallah; Kitahata, Nobutaka; Nakano, Takeshi; Nakajima, Masatoshi; Asami, Tadao

    2017-08-15

    Gibberellin (GA) plays versatile roles in the regulation of plant growth and development and therefore is widely used as a regulator in agriculture. We performed a chemical library screening and identified a chemical, named 67D, as a stimulator of seed germination that was suppressed by paclobutrazol (PAC), a GA biosynthesis inhibitor. In vitro binding assays indicated that 67D binds to the GID1 receptor. Further studies on the structure-activity relationship identified a chemical, named chemical 6, that strongly promoted seed germination suppressed by PAC. Chemical 6 was further confirmed to promote the degradation of RGA (for repressor of ga1-3), a DELLA protein, and suppress the expression levels of GA3ox1 in the same manner as GA does. 67D and its analogs are supposed to be agonists of GID1 and are expected to be utilized in agriculture and basic research as an alternative to GA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling

    Czech Academy of Sciences Publication Activity Database

    Shahnejat-Bushehri, S.; Tarkowská, Danuše; Sakuraba, Y.; Balazadeh, S.

    2016-01-01

    Roč. 2, č. 3 (2016), č. článku 16013. ISSN 2055-026X R&D Projects: GA MŠk LK21306; GA MŠk(CZ) LO1204; GA ČR GA14-34792S Institutional support: RVO:61389030 Keywords : gibberellins * brassinosteroids * signalling Subject RIV: EF - Botanics Impact factor: 10.300, year: 2016

  19. Characteristics of the repair - deficient mutants 1435 plague microbe strain

    International Nuclear Information System (INIS)

    Temiralieva, G.A.

    1977-01-01

    Repair-deficient mutants 1435 A uvr - hcr - , 1435-17 uvr - hcr + and 1435-35 lon have been obtained from 1435 plague microbe strain, isolated from a large gerbil living in the Central Asian desert region. The mutants have the same cultural-morphological and enzymatic characteristics, the same need in growth factors and similar virulence determinants as the original strain, but they do not cause death of the experimental animals

  20. Helminthosporic acid functions as an agonist for gibberellin receptor.

    Science.gov (United States)

    Miyazaki, Sho; Jiang, Kai; Kobayashi, Masatomo; Asami, Tadao; Nakajima, Masatoshi

    2017-11-01

    Helminthosporol was isolated from a fungus, Helminthosporium sativum, as a natural plant growth regulator in 1963. It showed gibberellin-like bioactivity that stimulated the growth of the second leaf sheath of rice. After studying the structure-activity relationship between the compound and some synthesized analogs, it was found that helminthosporic acid (H-acid) has higher gibberellin-like activity and chemical stability than helminthosporol. In this study, we showed that (1) H-acid displays gibberellin-like activities not only in rice but also in Arabidopsis, (2) it regulates the expression of gibberellin-related genes, (3) it induces DELLA degradation through binding with a gibberellin receptor (GID1), and (4) it forms the GID1-(H-acid)-DELLA complex to transduce the gibberellin signal in the same manner as gibberellin. This work shows that the H-acid mode of action acts as an agonist for gibberellin receptor.

  1. Rice black streaked dwarf virus P7-2 forms a SCF complex through binding to Oryza sativa SKP1-like proteins, and interacts with GID2 involved in the gibberellin pathway.

    Science.gov (United States)

    Tao, Tao; Zhou, Cui-Ji; Wang, Qian; Chen, Xiang-Ru; Sun, Qian; Zhao, Tian-Yu; Ye, Jian-Chun; Wang, Ying; Zhang, Zong-Ying; Zhang, Yong-Liang; Guo, Ze-Jian; Wang, Xian-Bing; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2017-01-01

    As a core subunit of the SCF complex that promotes protein degradation through the 26S proteasome, S-phase kinase-associated protein 1 (SKP1) plays important roles in multiple cellular processes in eukaryotes, including gibberellin (GA), jasmonate, ethylene, auxin and light responses. P7-2 encoded by Rice black streaked dwarf virus (RBSDV), a devastating viral pathogen that causes severe symptoms in infected plants, interacts with SKP1 from different plants. However, whether RBSDV P7-2 forms a SCF complex and targets host proteins is poorly understood. In this study, we conducted yeast two-hybrid assays to further explore the interactions between P7-2 and 25 type I Oryza sativa SKP1-like (OSK) proteins, and found that P7-2 interacted with eight OSK members with different binding affinity. Co-immunoprecipitation assay further confirmed the interaction of P7-2 with OSK1, OSK5 and OSK20. It was also shown that P7-2, together with OSK1 and O. sativa Cullin-1, was able to form the SCF complex. Moreover, yeast two-hybrid assays revealed that P7-2 interacted with gibberellin insensitive dwarf2 (GID2) from rice and maize plants, which is essential for regulating the GA signaling pathway. It was further demonstrated that the N-terminal region of P7-2 was necessary for the interaction with GID2. Overall, these results indicated that P7-2 functioned as a component of the SCF complex in rice, and interaction of P7-2 with GID2 implied possible roles of the GA signaling pathway during RBSDV infection.

  2. Rice black streaked dwarf virus P7-2 forms a SCF complex through binding to Oryza sativa SKP1-like proteins, and interacts with GID2 involved in the gibberellin pathway.

    Directory of Open Access Journals (Sweden)

    Tao Tao

    Full Text Available As a core subunit of the SCF complex that promotes protein degradation through the 26S proteasome, S-phase kinase-associated protein 1 (SKP1 plays important roles in multiple cellular processes in eukaryotes, including gibberellin (GA, jasmonate, ethylene, auxin and light responses. P7-2 encoded by Rice black streaked dwarf virus (RBSDV, a devastating viral pathogen that causes severe symptoms in infected plants, interacts with SKP1 from different plants. However, whether RBSDV P7-2 forms a SCF complex and targets host proteins is poorly understood. In this study, we conducted yeast two-hybrid assays to further explore the interactions between P7-2 and 25 type I Oryza sativa SKP1-like (OSK proteins, and found that P7-2 interacted with eight OSK members with different binding affinity. Co-immunoprecipitation assay further confirmed the interaction of P7-2 with OSK1, OSK5 and OSK20. It was also shown that P7-2, together with OSK1 and O. sativa Cullin-1, was able to form the SCF complex. Moreover, yeast two-hybrid assays revealed that P7-2 interacted with gibberellin insensitive dwarf2 (GID2 from rice and maize plants, which is essential for regulating the GA signaling pathway. It was further demonstrated that the N-terminal region of P7-2 was necessary for the interaction with GID2. Overall, these results indicated that P7-2 functioned as a component of the SCF complex in rice, and interaction of P7-2 with GID2 implied possible roles of the GA signaling pathway during RBSDV infection.

  3. The Rice Dwarf Virus P2 Protein Interacts with ent-Kaurene Oxidases in Vivo, Leading to Reduced Biosynthesis of Gibberellins and Rice Dwarf Symptoms1

    Science.gov (United States)

    Zhu, Shifeng; Gao, Feng; Cao, Xuesong; Chen, Mao; Ye, Gongyin; Wei, Chunhong; Li, Yi

    2005-01-01

    The mechanisms of viral diseases are a major focus of biology. Despite intensive investigations, how a plant virus interacts with host factors to cause diseases remains poorly understood. The Rice dwarf virus (RDV), a member of the genus Phytoreovirus, causes dwarfed growth phenotypes in infected rice (Oryza sativa) plants. The outer capsid protein P2 is essential during RDV infection of insects and thus influences transmission of RDV by the insect vector. However, its role during RDV infection within the rice host is unknown. By yeast two-hybrid and coimmunoprecipitation assays, we report that P2 of RDV interacts with ent-kaurene oxidases, which play a key role in the biosynthesis of plant growth hormones gibberellins, in infected plants. Furthermore, the expression of ent-kaurene oxidases was reduced in the infected plants. The level of endogenous GA1 (a major active gibberellin in rice vegetative tissues) in the RDV-infected plants was lower than that in healthy plants. Exogenous application of GA3 to RDV-infected rice plants restored the normal growth phenotypes. These results provide evidence that the P2 protein of RDV interferes with the function of a cellular factor, through direct physical interactions, that is important for the biosynthesis of a growth hormone leading to symptom expression. In addition, the interaction between P2 and rice ent-kaurene oxidase-like proteins may decrease phytoalexin biosynthesis and make plants more competent for virus replication. Moreover, P2 may provide a novel tool to investigate the regulation of GA metabolism for plant growth and development. PMID:16299167

  4. Screening of respiration deficiency mutants of yeasts (Saccharomyces cerevisiae) induced by ion irradiation and the mtDNA restriction analysis

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei; Ma Qiufeng; Gu Ying

    2005-01-01

    Screening of the respiration deficiency mutants of Saccharomyces cerevisiae induced by 5.19 MeV/u 22 Ne 5+ ion irradiation is reported in this paper. Some respiration deficiency mutants of white colony phenotype, in a condition of selective culture of TTC medium, were obtained. A new and simplified method based on mtDNA restriction analysis is described. The authors found that there are many obvious differences in mtDNAs between wild yeasts and the respiration deficiency mutants. The mechanism of obtaining the respiration deficiency mutants induced by heavy ion irradiation is briefly discussed. (authors)

  5. Identical substitutions in magnesium chelatase paralogs result in chlorophyll deficient soybean mutants

    Science.gov (United States)

    The soybean (Glycine max (L.) Merr.) chlorophyll deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a non-synonymous nucleotide substitution in the third exon of a Mg-chelat...

  6. Control of gibberellin A(l) levels by 2, beta-hydroxylation during growth of dwarf Oryza sativa L. var. Tan-ginbozu

    International Nuclear Information System (INIS)

    Railton, I.D.

    1978-01-01

    Seedlings of dwarf rice (Oryza sativa L. var. Tan-ginbozu) exhibit a marked growth response to applied gibberellin A(1) and convert this compound into gibberellin A(8). In this study attempts were made to correlate the metabolism of 1,2[ 3 H] gibberellin A(1) and in particular the production of gibberellin A(8) with rice leaf sheath growth

  7. Arabidopsis scaffold protein RACK1A modulates rare sugar D-allose regulated gibberellin signaling.

    Science.gov (United States)

    Fennell, Herman; Olawin, Abdulquadri; Mizanur, Rahman M; Izumori, Ken; Chen, Jin-Gui; Ullah, Hemayet

    2012-11-01

    As energy sources and structural components, sugars are the central regulators of plant growth and development. In addition to the abundant natural sugars in plants, more than 50 different kinds of rare sugars exist in nature, several of which show distinct roles in plant growth and development. Recently, one of the rare sugars, D-allose, an epimer of D-glucose at C3, is found to suppress plant hormone gibberellin (GA) signaling in rice. Scaffold protein RACK1A in the model plant Arabidopsis is implicated in the GA pathway as rack1a knockout mutants show insensitivity to GA in GA-induced seed germination. Using genetic knockout lines and a reporter gene, the functional role of RACK1A in the D-allose pathway was investigated. It was found that the rack1a knockout seeds showed hypersensitivity to D-allose-induced inhibition of seed germination, implicating a role for RACK1A in the D-allose mediated suppression of seed germination. On the other hand, a functional RACK1A in the background of the double knockout mutations in the other two RACK1 isoforms, rack1b/rack1c, showed significant resistance to the D-allose induced inhibition of seed germination. The collective results implicate the RACK1A in the D-allose mediated seed germination inhibition pathway. Elucidation of the rare sugar signaling mechanism will help to advance understanding of this less studied but important cellular signaling pathway.

  8. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in arabidopsis.

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2013-06-01

    Full Text Available Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA and Gibberellins (GA are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks germinated significantly more quickly than Wild-Type (WT, and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months. The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC, a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key

  9. Gibberellin control of stamen development: a fertile field.

    Science.gov (United States)

    Plackett, Andrew R G; Thomas, Stephen G; Wilson, Zoe A; Hedden, Peter

    2011-10-01

    Stamen development is governed by a conserved genetic pathway, within which the role of hormones has been the subject of considerable recent research. Our understanding of the involvement of gibberellin (GA) signalling in this developmental process is further advanced than for the other phytohormones, and here we review recent experimental results in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) that have provided insight into the timing and mechanisms of GA regulation of stamen development, identifying the tapetum and developing pollen as major targets. GA signalling governs both tapetum secretory functions and entry into programmed cell death via the GAMYB class of transcription factor, the targets of which integrate with the established genetic framework for the regulation of tapetum function at multiple hierarchical levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Dormancy in Peach (Prunus persica L.) Flower Buds : I. Floral Morphogenesis and Endogenous Gibberellins at the End of the Dormancy Period.

    Science.gov (United States)

    Luna, V; Lorenzo, E; Reinoso, H; Tordable, M C; Abdala, G; Pharis, R P; Bottini, R

    1990-05-01

    Flower buds of peach (Prunus persica L.) trees, cv Novedad de Cordoba (Argentina), were collected near the end of the dormant period and immediately before anthesis. After removal of scale leaves, morphological observations of representative buds, made on transverse and longitudinal microtome sections, showed that all verticils making up the flower are present in an undifferentiated form during the dormant period (June). Flower buds collected at the end of dormant period (August) showed additional growth and differentiation, at which time formation of two ovules was beginning in the unicarpelar gynoecium. Dehiscence of anthers had not yet occurred 10 days before full bloom, and the ovules were still developing. Free endogenous gibberellin (GA)-like substances were quantified by bioassay (Tan-ginbozu dwarf rice microdrop) after SiO(2) partition column chromatography, reversed phase C18-high performance liquid chromatography, and finally Nucleosil [N(CH(3))(2)]high performance liquid chromatography. Bioactive fractions were then subjected to capillary gas chromatography-mass spectrometry-selected ion monitoring (GC-MS-SIM). Gibberellins A(1), A(3), and A(8) were tentatively identified in peach flower buds using GC-SIM and Kovat's retention indices, and relative amounts approximated by GC-SIM (2:8:6 for GA(1), GA(3), and GA(8), respectively). The highest concentration (330 nanograms per gram dry weight) of free GA(1)/GA(3) was found in dormant buds (June) and diminished thereafter. The concentration free of GA(1)/GA(3) did not increase immediately prior to bud break. However, high GA(1)/GA(3) concentrations occurred during stages where rate of growth and cellular differentiation of (mainly fertile) verticils can be influenced.

  11. Excision-repair in mutants of Escherichia coli deficient in DNA polymerase I and/or its associated 5'. -->. 3' exonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, P [Stanford Univ., Calif. (USA). Dept. of Biological Sciences

    1977-01-01

    The UV sensitivity of E.coli mutants deficient in the 5'..-->..3' exonuclease activity of DNA polymerase I is intermediate between that of pol/sup +/ strains and mutants which are deficient in the polymerizing activity of pol I (polA1). Like polA1 mutants, the 5'-econuclease deficient mutants exhibit increased UV-induced DNA degradation and increased repair synthesis compared to a pol/sup +/ strain, although the increase is not as great as in polA1 or in the conditionally lethal mutant BT4113ts deficient in both polymerase I activities. When dimer excision was measured at UV doses low enough to avoid interference from extensive DNA degradation, all three classes of polymerase I deficient mutants were found to remove dimers efficiently from their DNA. We conclude that enzymes alternative to polymerase I can operate in both the excision and resynthesis steps of excision repair and that substitution for either of the polymerase I functions results in longer patches of repair. A model is proposed detailing the possible events in the alternative pathways.

  12. Mutation of Rice BC12/GDD1, Which Encodes a Kinesin-Like Protein That Binds to a GA Biosynthesis Gene Promoter, Leads to Dwarfism with Impaired Cell Elongation[W][OA

    Science.gov (United States)

    Li, Juan; Jiang, Jiafu; Qian, Qian; Xu, Yunyuan; Zhang, Cui; Xiao, Jun; Du, Cheng; Luo, Wei; Zou, Guoxing; Chen, Mingluan; Huang, Yunqing; Feng, Yuqi; Cheng, Zhukuan; Yuan, Ming; Chong, Kang

    2011-01-01

    The kinesins are a family of microtubule-based motor proteins that move directionally along microtubules and are involved in many crucial cellular processes, including cell elongation in plants. Less is known about kinesins directly regulating gene transcription to affect cellular physiological processes. Here, we describe a rice (Oryza sativa) mutant, gibberellin-deficient dwarf1 (gdd1), that has a phenotype of greatly reduced length of root, stems, spikes, and seeds. This reduced length is due to decreased cell elongation and can be rescued by exogenous gibberellic acid (GA3) treatment. GDD1 was cloned by a map-based approach, was expressed constitutively, and was found to encode the kinesin-like protein BRITTLE CULM12 (BC12). Microtubule cosedimentation assays revealed that BC12/GDD1 bound to microtubules in an ATP-dependent manner. Whole-genome microarray analysis revealed the expression of ent-kaurene oxidase (KO2), which encodes an enzyme involved in GA biosynthesis, was downregulated in gdd1. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that GDD1 bound to the element ACCAACTTGAA in the KO2 promoter. In addition, GDD1 was shown to have transactivation activity. The level of endogenous GAs was reduced in gdd1, and the reorganization of cortical microtubules was altered. Therefore, BC12/GDD1, a kinesin-like protein with transcription regulation activity, mediates cell elongation by regulating the GA biosynthesis pathway in rice. PMID:21325138

  13. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system

    Science.gov (United States)

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-01-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na+, (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na+/K+ homeostasis and hormonal balance. PMID:23299430

  14. Lack of chemically induced mutation in repair-deficient mutants of yeast

    International Nuclear Information System (INIS)

    Prakash, L.

    1974-01-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), β-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents. (auth)

  15. Lack of chemically induced mutation in repair-deficient mutants of yeast.

    Science.gov (United States)

    Prakash, L

    1974-12-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), beta-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents.

  16. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination

    Czech Academy of Sciences Publication Activity Database

    Graeber, K.; Linkies, A.; Steinbrecher, T.; Tarkowská, Danuše; Turečková, Veronika; Ignatz, M.; Voegele, A.; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard

    2014-01-01

    Roč. 111, č. 34 (2014), E3571-E3580 ISSN 0027-8424 R&D Projects: GA ČR GD522/08/H003; GA MŠk LK21306; GA MŠk(CZ) LO1204; GA ČR GA14-34792S Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional support: RVO:61389030 Keywords : dormancy gene DOG1 * gibberellin metabolism * germination temperature Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.674, year: 2014

  17. Bacterial Gibberellins Induce Systemic Resistance of Plants

    Directory of Open Access Journals (Sweden)

    I. N. FEKLISTOVA

    2014-06-01

    Full Text Available It is generally agreed today that some rhizosphere bacteria can ensure induced systemic resistance to pathogens. In this paper we tested the ability of gibberellins produced by rhizosphere non-pathogenic bacteria Pseudomonas aurantiaca to induce systemic resistance to alternariosis agent – Alternaria brassicicola – in oilseed rape plants.Oilseed rape (Brássica nápus is one of the most promising oil-bearing croppers. It allows improving the supply of population with vegetable oil, animal and poultry industries with high quality vegetable protein. It is used for biofuel production as well.Gibberellin preparation was isolated from liquid culture of strain Pseudomonas aurantiaca grown in 250 mL of M9 medium (48 h, 28 °C under darkroom conditions. Gibberellins were extracted according procedure described by Tien et al. (1979. Gibberellins concentration in the medium was determined by fluorometric method.Elicitor activity of bacterial metabolites – gibberellins – was analyzed in model system of artificial inoculation of oilseed rape germs with phytopathogenic fungi Alternaria brassicicola. The elicitor action efficiency was evaluated on the 15th day of oilseed rape cultivation based on the percentage of leaf surface covered by necrotic lesions.Gibberellins were shown to induce systemic resistance resulted in decreasing of oil seed plants   vulnerability by 52.7%.It is known that under the unfavorable conditions plants synthesis the reactive oxygen intermediates   which activate destructive processes. One of the first organism reactions to stress action is the change of the lipid peroxidation level. It was shown that treatment of the soil with gibberellins resulted in decreasing of the lipid peroxidation level twofold.Gibberellins were shown to have a similar effect on permeability of cell membranes for free nucleotides. The permeability of cell membranes in leaves decreased 2.8-fold at room temperature. We suggest that gibberellins

  18. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells

    KAUST Repository

    Sauret-Gü eto, Susanna; Calder, Grant; Harberd, Nicholas P.

    2011-01-01

    The phytohormone gibberellin (GA) promotes plant growth by stimulating cellular expansion. Whilst it is known that GA acts by opposing the growth-repressing effects of DELLA proteins, it is not known how these events promote cellular expansion. Here

  19. The protein kinase MBK-1 contributes to lifespan extension in daf-2 mutant and germline-deficient Caenorhabditis elegans.

    Science.gov (United States)

    Mack, Hildegard I D; Zhang, Peichuan; Fonslow, Bryan R; Yates, John R

    2017-05-25

    In Caenorhabditis elegans , reduction of insulin/IGF-1 like signaling and loss of germline stem cells both increase lifespan by activating the conserved transcription factor DAF-16 (FOXO). While the mechanisms that regulate DAF-16 nuclear localization in response to insulin/IGF-1 like signaling are well characterized, the molecular pathways that act in parallel to regulate DAF-16 transcriptional activity, and the pathways that couple DAF-16 activity to germline status, are not fully understood at present. Here, we report that inactivation of MBK-1, the C. elegans ortholog of the human FOXO1-kinase DYRK1A substantially shortens the prolonged lifespan of daf-2 and glp-1 mutant animals while decreasing wild-type lifespan to a lesser extent. On the other hand, lifespan-reduction by mutation of the MBK-1-related kinase HPK-1 was not preferential for long-lived mutants. Interestingly, mbk-1 loss still allowed for DAF-16 nuclear accumulation but reduced expression of certain DAF-16 target genes in germline-less, but not in daf-2 mutant animals. These findings indicate that mbk-1 and daf-16 functionally interact in the germline- but not in the daf-2 pathway. Together, our data suggest mbk-1 as a novel regulator of C. elegans longevity upon both, germline ablation and DAF-2 inhibition, and provide evidence for mbk-1 regulating DAF-16 activity in germline-deficient animals.

  20. A novel two-step method for screening shade tolerant mutant plants via dwarfism

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-10-01

    Full Text Available When subjected to shade, plants undergo rapid shoot elongation, which often makes them more prone to disease and mechanical damage. Shade-tolerant plants can be difficult to breed; however, they offer a substantial benefit over other varieties in low-light areas. Although perennial ryegrass (Lolium perenne L. is a popular species of turf grasses because of their good appearance and fast establishment, the plant normally does not perform well under shade conditions. It has been reported that, in turfgrass, induced dwarfism can enhance shade tolerance. Here we describe a two-step procedure for isolating shade tolerant mutants of perennial ryegrass by first screening for dominant dwarf mutants, and then screening dwarf plants for shade tolerance. The two-step screening process to isolate shade tolerant mutants can be done efficiently with limited space at early seedling stages, which enables quick and efficient isolation of shade tolerant mutants, and thus facilitates development of shade tolerant new cultivars of turfgrasses. Using the method, we isolated 136 dwarf mutants from 300,000 mutagenized seeds, with 65 being shade tolerant (0.022%. When screened directly for shade tolerance, we recovered only four mutants from a population of 150,000 (0.003% mutagenized seeds. One shade tolerant mutant, shadow-1, was characterized in detail. In addition to dwarfism, shadow-1 and its sexual progeny displayed high degrees of tolerance to both natural and artificial shade. We showed that endogenous gibberellin (GA content in shadow-1 was higher than wild-type controls, and shadow-1 was also partially GA insensitive. Our novel, simple and effective two-step screening method should be applicable to breeding shade tolerant cultivars of turfgrasses, ground covers, and other economically important crop plants that can be used under canopies of existing vegetation to increase productivity per unit area of land.

  1. Stamen-derived bioactive gibberellin is essential for male flower development of Cucurbita maxima L.

    Science.gov (United States)

    Pimenta Lange, Maria João; Knop, Nicole; Lange, Theo

    2012-04-01

    Gibberellin (GA) signalling during pumpkin male flower development is highly regulated, including biosynthetic, perception, and transduction pathways. GA 20-oxidases, 3-oxidases, and 2-oxidases catalyse the final part of GA synthesis. Additionally, 7-oxidase initiates this part of the pathway in some cucurbits including Cucurbita maxima L. (pumpkin). Expression patterns for these GA-oxidase-encoding genes were examined by competitive reverse transcription-PCR (RT-PCR) and endogenous GA levels were determined during pumpkin male flower development. In young flowers, GA20ox3 transcript levels are high in stamens, followed by high levels of the GA precursor GA(9). Later, just before flower opening, transcript levels for GA3ox3 and GA3ox4 increase in the hypanthium and stamens, respectively. In the stamen, following GA3ox4 expression, bioactive GA(4) levels rise dramatically. Accordingly, catabolic GA2ox2 and GA2ox3 transcript levels are low in developing flowers, and increase in mature flowers. Putative GA receptor GID1b and DELLA repressor GAIPb transcript levels do not change in developing flowers, but increase sharply in mature flowers. Emasculation arrests floral development completely and leads to abscission of premature flowers. Application of GA(4) (but not of its precursors GA(12)-aldehyde or GA(9)) restores normal growth of emasculated flowers. These results indicate that de novo GA(4) synthesis in the stamen is under control of GA20ox3 and GA3ox4 genes just before the rapid flower growth phase. Stamen-derived bioactive GA is essential and sufficient for male flower development, including the petal and the pedicel growth.

  2. Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers.

    Directory of Open Access Journals (Sweden)

    Wen-Qin Bai

    Full Text Available Bioactive gibberellins (GAs comprise an important class of natural plant growth regulators and play essential roles in cotton fiber development. To date, the molecular base of GAs' functions in fiber development is largely unclear. To address this question, the endogenous bioactive GA levels in cotton developing fibers were elevated by specifically up-regulating GA 20-oxidase and suppressing GA 2-oxidase via transgenic methods. Higher GA levels in transgenic cotton fibers significantly increased micronaire values, 1000-fiber weight, cell wall thickness and cellulose contents of mature fibers. Quantitative RT-PCR and biochemical analysis revealed that the transcription of sucrose synthase gene GhSusA1 and sucrose synthase activities were significantly enhanced in GA overproducing transgenic fibers, compared to the wild-type cotton. In addition, exogenous application of bioactive GA could promote GhSusA1 expression in cultured fibers, as well as in cotton hypocotyls. Our results suggested that bioactive GAs promoted secondary cell wall deposition in cotton fibers by enhancing sucrose synthase expression.

  3. Deoxyribonucleic acid repair in Escherichia coli mutants deficient in the 5'----3' exonuclease activity of deoxyribonucleic acid polymerase I and exonuclease VII

    International Nuclear Information System (INIS)

    Chase, J.W.; Masker, W.E.

    1977-01-01

    A series of Escherichia coli strains deficient in the 5'----3' exonuclease activity associated with deoxyribonucleic acid (DNA) polymerase I (exonuclease VI) and exonuclease VII has been constructed. Both of these enzymes are capable of pyrimidine dimer excision in vitro. These strains were examined for conditional lethality, sensitivity to ultraviolet (UV) and X-irradiation, postirradiation DNA degradation, and ability to excise pyrimidine dimers. It was found that strains deficient in both exonuclease VI (polAex-) and exonuclease VII (xseA-) are significantly reduced in their ability to survive incubation at elevated temperature (43 degrees C) beyond the reduction previously observed for the polAex single mutants. The UV and X-ray sensitivity of the exonuclease VI-deficient strains was not increased by the addition of the xseA7 mutation. Mutants deficient in both enzymes are about as efficient as wild-type strains at excising dimers produced by up to 40 J/m2 UV. At higher doses strains containing only polAex- mutations show reduced ability to excise dimers; however, the interpretation of dimer excision data at these doses is complicated by extreme postirradiation DNA degradation in these strains. The additional deficiency in the polAex xseA7 double-mutant strains has no significant effect on either postirradiation DNA degradation or the apparent deficiency in dimer excision at high UV doses observed in polAex single mutants

  4. Divergence and adaptive evolution of the gibberellin oxidase genes in plants.

    Science.gov (United States)

    Huang, Yuan; Wang, Xi; Ge, Song; Rao, Guang-Yuan

    2015-09-29

    The important phytohormone gibberellins (GAs) play key roles in various developmental processes. GA oxidases (GAoxs) are critical enzymes in GA synthesis pathway, but their classification, evolutionary history and the forces driving the evolution of plant GAox genes remain poorly understood. This study provides the first large-scale evolutionary analysis of GAox genes in plants by using an extensive whole-genome dataset of 41 species, representing green algae, bryophytes, pteridophyte, and seed plants. We defined eight subfamilies under the GAox family, namely C19-GA2ox, C20-GA2ox, GA20ox,GA3ox, GAox-A, GAox-B, GAox-C and GAox-D. Of these, subfamilies GAox-A, GAox-B, GAox-C and GAox-D are described for the first time. On the basis of phylogenetic analyses and characteristic motifs of GAox genes, we demonstrated a rapid expansion and functional divergence of the GAox genes during the diversification of land plants. We also detected the subfamily-specific motifs and potential sites of some GAox genes, which might have evolved under positive selection. GAox genes originated very early-before the divergence of bryophytes and the vascular plants and the diversification of GAox genes is associated with the functional divergence and could be driven by positive selection. Our study not only provides information on the classification of GAox genes, but also facilitates the further functional characterization and analysis of GA oxidases.

  5. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    Science.gov (United States)

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta

  6. Nature of mutants induced by ionizing radiation in cultured hamster cells. II. Antigenic response and reverse mutation of HPRT-deficient mutants induced by. gamma. -rays or ethyl methanesulphonate

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R; Stretch, A; Thacker, J

    1986-04-01

    A large series of independent mutants deficient in HPRT enzyme activity, isolated from V79-4 hamster cells, were assessed for properties which reflect the nature of the genetic changes induced. A total of 88 mutants were screened, 43 isolated from ..gamma..-ray-treated cultures and 45 induced by ethyl methanesulphonate (EMS). Firstly, each mutant was assayed for the presence of protein with the antigenic response of HPRT. In a competitive inhibition assay, 31% of EMS-induced mutants were CRM-positive compared to 7% of the ..gamma..-ray series. Secondly, each mutant was tested for ability to revert to HPRT proficiency. All except 2 of the EMS-induced mutants reverted with ethyl nitrosourea ENU, and many reverted spontaneously, under the given conditions. However reversion was not detected in about 80% of ..gamma..-ray-induced mutants, suggesting that the types of forward mutation caused by ionizing radiation differ qualitatively from those caused by EMS. (Auth.). 30 refs.; 6 figs.; 2 tabs.

  7. CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.

    Science.gov (United States)

    Ma, Xiaoding; Ma, Jian; Zhai, Honghong; Xin, Peiyong; Chu, Jinfang; Qiao, Yongli; Han, Longzhi

    2015-01-01

    CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483) exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

  8. CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.

    Directory of Open Access Journals (Sweden)

    Xiaoding Ma

    Full Text Available CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483 exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

  9. Graviresponsiveness and abscisic-acid content of roots of carotenoid-deficient mutants of Zea mays L

    Science.gov (United States)

    Moore, R.; Smith, J. D.

    1985-01-01

    The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g-1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g-1 FW, +/- standard deviation): w-3, 279 +/- 43; vp-5, 237 +/- 26; vp-7, 338 +/- 61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necessary for positive gravitropism by primary roots of Z. mays.

  10. Functional Characterization of Gibberellin-Regulated Genes in Rice Using Microarray System

    OpenAIRE

    Jan, Asad; Komatsu, Setsuko

    2006-01-01

    Gibberellin (GA) is collectively referred to a group of diterpenoid acids, some of which act as plant hormones and are essential for normal plant growth and development. DNA microarray technology has become the standard tool for the parallel quantification of large numbers of messenger RNA transcripts. The power of this approach has been demonstrated in dissecting plant physiology and development, and in unraveling the underlying cellular signaling pathways. To understand the molecular mechan...

  11. Microarray and Proteomic Analysis of Brassinosteroid- and Gibberellin-Regulated Gene and Protein Expression in Rice

    OpenAIRE

    Yang, Guangxiao; Komatsu, Setsuko

    2016-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two groups of plant growth regulators essential for normal plant growth and development. To gain insight into the molecular mechanism by which BR and GA regulate the growth and development of plants, especially the monocot plant rice, it is necessary to identify and analyze more genes and proteins that are regulated by them. With the availability of draft sequences of two major types, japonica and indica rice, it has become possible to analyze exp...

  12. Effect of iron deficiency on the biodistribution and tumor uptake of Ga-67 citrate in animals: concise communication

    International Nuclear Information System (INIS)

    Bradley, W.P.; Alderson, P.O.; Weiss, J.F.

    1979-01-01

    To investigate the effect of iron deficiency on the biodistribution and tumor uptake of Ga-67 citrate, 20 weanling Sprague-Dawley rats were maintained for 6 to 8 weeks on a low-iron diet. Eighteen littermates were maintained on a normal iron diet and served as controls. Animals received 10 μCi Ga-67 citrate, and urine and feces were collected for 48 h. The animals were then killed, tissue samples were obtained, and serum iron and unsaturated iron-binding capacity (UIBC) were measured. The accumulation of Ga-67 in the liver and spleen (% injected dose) was markedly increased in iron-deficient animals and urinary excretion was reduced. Tumor uptake was not significantly different in iron-deficient and control animals, but tumor-to-blood ratios were elevated (p < 0.001) in the iron-deficient animals because of low blood levels of Ga-67. The liver and spleen accumulation of Ga-67 correlated significantly (p < 0.001) with the UIBC. The results show that iron deficiency alters the distribution of Ga-67 citrate, and suggest that the variable liver-spleen uptake seen in clinical Ga-67 images may be explained, in part, by changes in serum iron and UIBC

  13. Interactive Effects of Jasmonic Acid, Salicylic Acid, and Gibberellin on Induction of Trichomes in Arabidopsis1

    Science.gov (United States)

    Traw, M. Brian; Bergelson, Joy

    2003-01-01

    Leaf trichomes protect plants from attack by insect herbivores and are often induced following damage. Hormonal regulation of this plant induction response has not been previously studied. In a series of experiments, we addressed the effects of artificial damage, jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Artificial damage and jasmonic acid caused significant increases in trichome production of leaves. The jar1-1 mutant exhibited normal trichome induction following treatment with jasmonic acid, suggesting that adenylation of jasmonic acid is not necessary. Salicylic acid had a negative effect on trichome production and consistently reduced the effect of jasmonic acid, suggesting negative cross-talk between the jasmonate and salicylate-dependent defense pathways. Interestingly, the effect of salicylic acid persisted in the nim1-1 mutant, suggesting that the Npr1/Nim1 gene is not downstream of salicylic acid in the negative regulation of trichome production. Last, we found that gibberellin and jasmonic acid had a synergistic effect on the induction of trichomes, suggesting important interactions between these two compounds. PMID:14551332

  14. Gibberellin Promotes Shoot Branching in the Perennial Woody Plant Jatropha curcas.

    Science.gov (United States)

    Ni, Jun; Gao, Congcong; Chen, Mao-Sheng; Pan, Bang-Zhen; Ye, Kaiqin; Xu, Zeng-Fu

    2015-08-01

    Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  15. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice.

    Science.gov (United States)

    Yaish, Mahmoud W; El-Kereamy, Ashraf; Zhu, Tong; Beatty, Perrin H; Good, Allen G; Bi, Yong-Mei; Rothstein, Steven J

    2010-09-09

    The interaction between phytohormones is an important mechanism which controls growth and developmental processes in plants. Deciphering these interactions is a crucial step in helping to develop crops with enhanced yield and resistance to environmental stresses. Controlling the expression level of OsAP2-39 which includes an APETALA 2 (AP2) domain leads to phenotypic changes in rice. Overexpression of OsAP2-39 leads to a reduction in yield by decreasing the biomass and the number of seeds in the transgenic rice lines. Global transcriptome analysis of the OsAP2-39 overexpression transgenic rice revealed the upregulation of a key abscisic acid (ABA) biosynthetic gene OsNCED-I which codes for 9-cis-epoxycarotenoid dioxygenase and leads to an increase in the endogenous ABA level. In addition to OsNCED-1, the gene expression analysis revealed the upregulation of a gene that codes for the Elongation of Upper most Internode (EUI) protein, an enzyme that catalyzes 16α, 17-epoxidation of non-13-hydroxylated GAs, which has been shown to deactivate gibberellins (GAs) in rice. The exogenous application of GA restores the wild-type phenotype in the transgenic line and ABA application induces the expression of EUI and suppresses the expression of OsAP2-39 in the wild-type line. These observations clarify the antagonistic relationship between ABA and GA and illustrate a mechanism that leads to homeostasis of these hormones. In vivo and in vitro analysis showed that the expression of both OsNCED-1 and EUI are directly controlled by OsAP2-39. Together, these results reveal a novel mechanism for the control of the ABA/GA balance in rice which is regulated by OsAP2-39 that in turn regulates plant growth and seed production.

  16. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice.

    Directory of Open Access Journals (Sweden)

    Mahmoud W Yaish

    2010-09-01

    Full Text Available The interaction between phytohormones is an important mechanism which controls growth and developmental processes in plants. Deciphering these interactions is a crucial step in helping to develop crops with enhanced yield and resistance to environmental stresses. Controlling the expression level of OsAP2-39 which includes an APETALA 2 (AP2 domain leads to phenotypic changes in rice. Overexpression of OsAP2-39 leads to a reduction in yield by decreasing the biomass and the number of seeds in the transgenic rice lines. Global transcriptome analysis of the OsAP2-39 overexpression transgenic rice revealed the upregulation of a key abscisic acid (ABA biosynthetic gene OsNCED-I which codes for 9-cis-epoxycarotenoid dioxygenase and leads to an increase in the endogenous ABA level. In addition to OsNCED-1, the gene expression analysis revealed the upregulation of a gene that codes for the Elongation of Upper most Internode (EUI protein, an enzyme that catalyzes 16α, 17-epoxidation of non-13-hydroxylated GAs, which has been shown to deactivate gibberellins (GAs in rice. The exogenous application of GA restores the wild-type phenotype in the transgenic line and ABA application induces the expression of EUI and suppresses the expression of OsAP2-39 in the wild-type line. These observations clarify the antagonistic relationship between ABA and GA and illustrate a mechanism that leads to homeostasis of these hormones. In vivo and in vitro analysis showed that the expression of both OsNCED-1 and EUI are directly controlled by OsAP2-39. Together, these results reveal a novel mechanism for the control of the ABA/GA balance in rice which is regulated by OsAP2-39 that in turn regulates plant growth and seed production.

  17. Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2015-08-01

    Full Text Available Apolipoprotein C-II (APOC2 is an obligatory activator of lipoprotein lipase. Human patients with APOC2 deficiency display severe hypertriglyceridemia while consuming a normal diet, often manifesting xanthomas, lipemia retinalis and pancreatitis. Hypertriglyceridemia is also an important risk factor for development of cardiovascular disease. Animal models to study hypertriglyceridemia are limited, with no Apoc2-knockout mouse reported. To develop a genetic model of hypertriglyceridemia, we generated an apoc2 mutant zebrafish characterized by the loss of Apoc2 function. apoc2 mutants show decreased plasma lipase activity and display chylomicronemia and severe hypertriglyceridemia, which closely resemble the phenotype observed in human patients with APOC2 deficiency. The hypertriglyceridemia in apoc2 mutants is rescued by injection of plasma from wild-type zebrafish or by injection of a human APOC2 mimetic peptide. Consistent with a previous report of a transient apoc2 knockdown, apoc2 mutant larvae have a minor delay in yolk consumption and angiogenesis. Furthermore, apoc2 mutants fed a normal diet accumulate lipid and lipid-laden macrophages in the vasculature, which resemble early events in the development of human atherosclerotic lesions. In addition, apoc2 mutant embryos show ectopic overgrowth of pancreas. Taken together, our data suggest that the apoc2 mutant zebrafish is a robust and versatile animal model to study hypertriglyceridemia and the mechanisms involved in the pathogenesis of associated human diseases.

  18. Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes.

    Science.gov (United States)

    Ma, Qian; Hedden, Peter; Zhang, Qifa

    2011-08-01

    Despite the accumulation of data on the genetic and molecular understanding of heterosis, there is little information on the regulation of heterosis at the physiological level. In this study, we performed a quantitative analysis of endogenous gibberellin (GA) content and expression profiling of the GA metabolism and signaling genes to investigate the possible relationship between GA signaling and heterosis for seedling development in rice (Oryza sativa). The materials used were an incomplete diallele set of 3 × 3 crosses and the six parents. In the growing shoots of the seedlings at 20 d after sowing, significant positive correlations between the contents of some GA species and performance and heterosis based on shoot dry mass were detected. Expression analyses of GA-related genes by real-time reverse transcription-polymerase chain reaction revealed that 13 out of the 16 GA-related genes examined exhibited significant differential expression among the F1 hybrid and its parents, acting predominantly in the modes of overdominance and positive dominance. Expression levels of nine genes in the hybrids displayed significant positive correlations with the heterosis of shoot dry mass. These results imply that GAs play a positive role in the regulation of heterosis for rice seedling development. In shoots plus root axes of 4-d-old germinating seeds that had undergone the deetiolation, mimicking normal germination in soil, the axis dry mass was positively correlated with the content of GA₂₉ but negatively correlated with that of GA₁₉. Our findings provide supporting evidence for GAs playing an important regulatory role in heterosis for rice seedling development.

  19. Light Regulation of Gibberellin Biosynthesis and Mode of Action.

    Science.gov (United States)

    García-Martinez, José Luis; Gil, Joan

    2001-12-01

    Some phenotypic effects produced in plants by light are very similar to those induced by hormones. In this review, the light-gibberellin (GA) interaction in germination, de-etiolation, stem growth, and tuber formation (process regulated by GAs) are discussed. Germination of lettuce and Arabidopsis seeds depends on red irradiation (R), which enhances the expression of GA 3-oxidase genes (GA3ox) and leads to an increase in active GA content. De-etiolation of pea seedling alters the expression of GA20ox and GA3ox genes and induces a rapid decrease of GA1 content. Stem growth of green plants is also affected by diverse light irradiation characteristics. Low light intensity increases stem elongation and active GA content in pea and Brassica. Photoperiod controls active GA levels in long-day rosette (spinach and Silene) and in woody plants (Salix and hybrid aspen) by regulating different steps of GA biosynthesis, mainly through transcript levels of GA20ox and GA3ox genes. Light modulation of stem elongation in light-grown plants is controlled by phytochrome, which modifies GA biosynthesis and catabolism (tobacco, potato, cowpea, Arabidopsis) and GA-response (pea, cucumber, Arabidopsis). In Arabidopsis and tobacco, ATH1 (a gene encoding an homeotic transcription factor) is a positive mediator of a phyB-specific signal transduction cascade controlling GA levels by regulating the expression of GA20ox and GA3ox. Tuber formation in potato is controlled by photoperiod (through phyB) and GAs. Inductive short-day conditions alter the diurnal rhythm of GA20ox transcript abundance, and increases the expression of a new protein (PHOR1) that plays a role in the photoperiod-GA interaction.

  20. Gibberellin-regulated gene in the basal region of rice leaf sheath encodes basic helix-loop-helix transcription factor.

    Science.gov (United States)

    Komatsu, Setsuko; Takasaki, Hironori

    2009-07-01

    Genes regulated by gibberellin (GA) during leaf sheath elongation in rice seedlings were identified using the transcriptome approach. mRNA from the basal regions of leaf sheaths treated with GA3 was analyzed by high-coverage gene expression profiling. 33,004 peaks were detected, and 30 transcripts showed significant changes in the presence of GA3. Among these, basic helix-loop-helix transcription factor (AK073385) was significantly upregulated. Quantitative PCR analysis confirmed that expression of AK073385 was controlled by GA3 in a time- and dose-dependent manner. Basic helix-loop-helix transcription factor (AK073385) is therefore involved in the regulation of gene expression by GA3.

  1. Repair-defective mutants of Alteromonas espejiana, the host for bacteriophage PM2

    International Nuclear Information System (INIS)

    Zerler, B.R.; Wallace, S.S.

    1984-01-01

    The in vivo repair processes of Alteromonas espejiana, the host for bacteriophage PM2, were characterized, and UV- and methyl methanesulfonate (MMS)-sensitive mutants were isolated. Wild-type A. espejiana cells were capable of photoreactivation, excision, recombination, and inducible repair. There was no detecttable pyrimidine dimer-DNA N-glycosylase activity, and pyrimidine dimer removal appeared to occur by a pathway analogous to the Escherichia coli Uvr pathway. The UV- and MMS-sensitive mutants of A. espejiana included three groups, each containing at least one mutation involved with excision, recombination, or inducible repair. One group that was UV sensitive but not sensitive to MMS or X rays showed a decreased ability to excise pyrimidine dimers. Mutants in this group were also sensitive to psoralen plus near-UV light and were phenotypically analogous to the E. coli uvr mutants. A second group was UV and MMS sensitive but not sensitive to X rays and appeared to contain mutations in a gene(s) involved in recombination repair. These recombination-deficient mutants differed from the E. coli rec mutants, which are MMS and X-ray sensitive. The third group of A. espejiana mutants was sensitive to UV, MMS, and X rays. These mutants were recombination deficient, lacked inducible repair, and were phenotypically similar to E. coli recA mutants

  2. Heterosis in Rice Seedlings: Its Relationship to Gibberellin Content and Expression of Gibberellin Metabolism and Signaling Genes1[W][OA

    Science.gov (United States)

    Ma (马谦), Qian; Hedden, Peter; Zhang (张启发), Qifa

    2011-01-01

    Despite the accumulation of data on the genetic and molecular understanding of heterosis, there is little information on the regulation of heterosis at the physiological level. In this study, we performed a quantitative analysis of endogenous gibberellin (GA) content and expression profiling of the GA metabolism and signaling genes to investigate the possible relationship between GA signaling and heterosis for seedling development in rice (Oryza sativa). The materials used were an incomplete diallele set of 3 × 3 crosses and the six parents. In the growing shoots of the seedlings at 20 d after sowing, significant positive correlations between the contents of some GA species and performance and heterosis based on shoot dry mass were detected. Expression analyses of GA-related genes by real-time reverse transcription-polymerase chain reaction revealed that 13 out of the 16 GA-related genes examined exhibited significant differential expression among the F1 hybrid and its parents, acting predominantly in the modes of overdominance and positive dominance. Expression levels of nine genes in the hybrids displayed significant positive correlations with the heterosis of shoot dry mass. These results imply that GAs play a positive role in the regulation of heterosis for rice seedling development. In shoots plus root axes of 4-d-old germinating seeds that had undergone the deetiolation, mimicking normal germination in soil, the axis dry mass was positively correlated with the content of GA29 but negatively correlated with that of GA19. Our findings provide supporting evidence for GAs playing an important regulatory role in heterosis for rice seedling development. PMID:21693671

  3. Functional PAK-2 knockout and replacement with a caspase cleavage-deficient mutant in mice reveals differential requirements of full-length PAK-2 and caspase-activated PAK-2p34.

    Science.gov (United States)

    Marlin, Jerry W; Chang, Yu-Wen E; Ober, Margaret; Handy, Amy; Xu, Wenhao; Jakobi, Rolf

    2011-06-01

    p21-Activated protein kinase 2 (PAK-2) has both anti- and pro-apoptotic functions depending on its mechanism of activation. Activation of full-length PAK-2 by the monomeric GTPases Cdc42 or Rac stimulates cell survival, whereas caspase activation of PAK-2 to the PAK-2p34 fragment is involved in the apoptotic response. In this study we use functional knockout of PAK-2 and gene replacement with the caspase cleavage-deficient PAK-2D212N mutant to differentiate the biological functions of full-length PAK-2 and caspase-activated PAK-2p34. Knockout of PAK-2 results in embryonic lethality at early stages before organ development, whereas replacement with the caspase cleavage-deficient PAK-2D212N results in viable and healthy mice, indicating that early embryonic lethality is caused by deficiency of full-length PAK-2 rather than lack of caspase activation to the PAK-2p34 fragment. However, deficiency of caspase activation of PAK-2 decreased spontaneous cell death of primary mouse embryonic fibroblasts and increased cell growth at high cell density. In contrast, stress-induced cell death by treatment with the anti-cancer drug cisplatin was not reduced by deficiency of caspase activation of PAK-2, but switched from an apoptotic to a nonapoptotic, caspase-independent mechanism. Homozygous PAK-2D212N primary mouse embryonic fibroblasts that lack the ability to generate the proapoptotic PAK-2p34 show less activation of the effector caspase 3, 6, and 7, indicating that caspase activation of PAK-2 amplifies the apoptotic response through a positive feedback loop resulting in more activation of effector caspases.

  4. Microwave synthesis of gibberellin acid 3 magnetic molecularly imprinted polymer beads for the trace analysis of gibberellin acids in plant samples by liquid chromatography-mass spectrometry detection.

    Science.gov (United States)

    Zhang, Zhuomin; Tan, Wei; Hu, Yuling; Li, Gongke; Zan, Song

    2012-02-21

    In this study, novel GA3 magnetic molecularly imprinted polymer (mag-MIP) beads were synthesized by a microwave irradiation method, and the beads were applied for the trace analysis of gibberellin acids (GAs) in plant samples including rice and cucumber coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS). The microwave synthetic procedure was optimized in detail. In particular, the interaction between GA3 and functional monomers was further studied for the selection of the optimal functional monomers during synthesis. It can be seen that the interaction between GA3 and acrylamide (AM) finally selected was stronger than that between GA3 and other functional monomers. GA3 mag-MIP beads were characterized by a series of physical tests. GA3 mag-MIP beads had a porous and homogeneous surface morphology with stable chemical, thermal and magnetic properties. Moreover, GA3 mag-MIP beads demonstrated selective and specific absorption behavior for the target compounds during unsaturated extraction, which resulted in a higher extraction capacity (∼708.4 pmol for GA3) and selectivity than GA3 mag-non-imprinted polymer beads. Finally, an analytical method of GA3 mag-AM-MIP bead extraction coupled with HPLC-MS detection was established and applied for the determination of trace GA1, GA3, GA4 and GA7 in rice and cucumber samples. It was satisfactory that GA4 could be actually found to be 121.5 ± 1.4 μg kg(-1) in real rice samples by this novel analytical method. The recoveries of spiked rice and cucumber samples were found to be 76.0-109.1% and 79.9-93.6% with RSDs of 2.8-8.8% and 3.1-7.7% (n = 3), respectively. The proposed method is efficient and applicable for the trace analysis of GAs in complicated plant samples.

  5. Myrigalone A Inhibits Lepidium sativum Seed Germination by Interference with Gibberellin Metabolism and Apoplastic Superoxide Production Required for Embryo Extension Growth and Endosperm Rupture

    Czech Academy of Sciences Publication Activity Database

    Oracz, K.; Voegele, A.; Tarkowská, Danuše; Jacquemoud, D.; Turečková, Veronika; Urbanová, Terezie; Strnad, Miroslav; Sliwinska, E.; Leubner-Metzger, G.

    2012-01-01

    Roč. 53, č. 1 (2012), s. 81-95 ISSN 0032-0781 R&D Projects: GA AV ČR KAN200380801; GA MŠk ED0007/01/01; GA ČR GD522/08/H003 Keywords : Embryo cell extension growth * Endoreduplication * Endosperm rupture * Gibberellin metabolism * Lepidium sativum * Myrica gale * Phytotoxicity * Reactive oxygen species Subject RIV: EF - Botanics Impact factor: 4.134, year: 2012

  6. The role of gibberellins in improving the resistance of tebuconazole-coated maize seeds to chilling stress by microencapsulation.

    Science.gov (United States)

    Yang, Lijuan; Yang, Daibin; Yan, Xiaojing; Cui, Li; Wang, Zhenying; Yuan, Huizhu

    2016-11-07

    Chilling stress during germination often causes severe injury. In the present study, maize seed germination and shoot growth under chilling stress were negatively correlated with the dose of tebuconazole in an exponential manner as predicted by the model Y = A + B × e (-x/k) . Microencapsulation was an effective means of eliminating potential phytotoxic risk. The gibberellins (GAs) contents were higher after microencapsulation treatment than after conventional treatment when the dose of tebuconazole was higher than 0.12 g AI (active ingredient) kg -1 seed. Further analysis indicated that microencapsulation can stimulate ent-kaurene oxidase (KO) activity to some extent, whereas GA 3-oxidase (GA3ox) and GA 2-oxidase (GA2ox) activities remained similar to those in the control. Genes encoding GA metabolic enzymes exhibited different expression patterns. Transcript levels of ZmKO1 increased in the microcapsule treatments compared to the control. Even when incorporated into microcapsules, tebuconazole led to the upregulation of ZmGA3ox1 at doses of less than 0.12 g AI kg -1 seed and to the upregulation of ZmGA3ox2 when the dose was higher than 0.12 g AI kg -1 seed. With increasing doses of microencapsulated tebuconazole, the transcript levels of ZmGA2ox4, ZmGA2ox5 and ZmGA2ox6 exhibited upward trends, whereas the transcript levels of ZmGA2ox7 exhibited a downward trend.

  7. A Novel Gibberellin-Induced Gene from Rice and Its Potential Regulatory Role in Stem Growth1

    Science.gov (United States)

    van der Knaap, Esther; Kim, Jeong Hoe; Kende, Hans

    2000-01-01

    Os-GRF1 (Oryza sativa-GROWTH-REGULATING FACTOR1) was identified in a search for genes that are differentially expressed in the intercalary meristem of deepwater rice (Oryza sativa L.) internodes in response to gibberellin (GA). Os-GRF1 displays general features of transcription factors, contains a functional nuclear localization signal, and has three regions with similarities to sequences in the database. One of these regions is similar to a protein interaction domain of SWI2/SNF2, which is a subunit of a chromatin-remodeling complex in yeast. The two other domains are novel and found only in plant proteins of unknown function. To study its role in plant growth, Os-GRF1 was expressed in Arabidopsis. Stem elongation of transformed plants was severely inhibited, and normal growth could not be recovered by the application of GA. Our results indicate that Os-GRF1 belongs to a novel class of plant proteins and may play a regulatory role in GA-induced stem elongation. PMID:10712532

  8. In vitro gibberellin A1 binding in Zea mays L

    International Nuclear Information System (INIS)

    Keith, B.; Rappaport, L.

    1987-01-01

    The first and second leaf sheaths of Zea mays L. cv Golden Jubilee were extracted and the extract centrifuged at 100,000g to yield a supernatant or cytosol fraction. Binding of [ 3 H]gibberellin A 1 (GA 1 ) to a soluble macromolecular component present in the cytosol was demonstrated at 4 0 C by Sephadex G-200 chromatography. The binding component was of high molecular weight (HMW) and greater than 500 kilodaltons. The HMW component was shown to be a protein and the 3 H-activity bound to this protein was largely [ 3 H]GA 1 and not a metabolite. Binding was pH sensitive but only a small percentage (20%) appeared to be exchangeable on addition of unlabeled GA 1 . Both biologically active and inactive GAs and non-GAs were able to inhibit GA 1 binding. [ 3 H]GA 1 binding to an intermediate molecular weight (IMW) fraction (40-100 kilodaltons) was also detected, provided cytosol was first desalted using Sephadex G-200 chromatography. Gel filtration studies suggest that the HMW binding component is an aggregate derived from the IMW fraction. The HMW binding fraction can be separated into two components using anion exchange chromatography

  9. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast.

    Science.gov (United States)

    Eckardt, F; Haynes, R H

    1977-06-01

    We have found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 X 10(-3) mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis we conclude that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. As others have concluded for wild-type strains we find also in the rad2 strain that pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. We conclude that heteroduplex repair is a crucial step in pure mutant clone formation and we examine the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis.

  10. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast

    International Nuclear Information System (INIS)

    Eckardt, F.; Haynes, R.H.

    1977-01-01

    It was found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 x 10 -3 mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis it is concluded that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. In agreement with conclusions of others, it was also found that for wild-type strains in the rad2 strain pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. It is concluded that heteroduplex repair is a crucial step in pure mutant clone formation and the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis is examined

  11. Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene.

    Science.gov (United States)

    Qi, Weiwei; Sun, Fan; Wang, Qianjie; Chen, Mingluan; Huang, Yunqing; Feng, Yu-Qi; Luo, Xiaojin; Yang, Jinshui

    2011-09-01

    Plant height is a decisive factor in plant architecture. Rice (Oryza sativa) plants have the potential for rapid internodal elongation, which determines plant height. A large body of physiological research has shown that ethylene and gibberellin are involved in this process. The APETALA2 (AP2)/Ethylene-Responsive Element Binding Factor (ERF) family of transcriptional factors is only present in the plant kingdom. This family has various developmental and physiological functions. A rice AP2/ERF gene, OsEATB (for ERF protein associated with tillering and panicle branching) was cloned from indica rice variety 9311. Bioinformatic analysis suggested that this ERF has a potential new function. Ectopic expression of OsEATB showed that the cross talk between ethylene and gibberellin, which is mediated by OsEATB, might underlie differences in rice internode elongation. Analyses of gene expression demonstrated that OsEATB restricts ethylene-induced enhancement of gibberellin responsiveness during the internode elongation process by down-regulating the gibberellin biosynthetic gene, ent-kaurene synthase A. Plant height is negatively correlated with tiller number, and higher yields are typically obtained from dwarf crops. OsEATB reduces rice plant height and panicle length at maturity, promoting the branching potential of both tillers and spikelets. These are useful traits for breeding high-yielding crops.

  12. Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice.

    Science.gov (United States)

    Li, Li; Qiu, Guozhen; Ding, Shengyuan; Zhou, Fu-Ming

    2013-01-23

    The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinson's disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.

    Science.gov (United States)

    Lü, Peitao; Zhang, Changqing; Liu, Jitao; Liu, Xiaowei; Jiang, Guimei; Jiang, Xinqiang; Khan, Muhammad Ali; Wang, Liangsheng; Hong, Bo; Gao, Junping

    2014-05-01

    Rose (Rosa hybrida) is one of the most important ornamental plants worldwide; however, senescence of its petals terminates the ornamental value of the flower, resulting in major economic loss. It is known that the hormones abscisic acid (ABA) and ethylene promote petal senescence, while gibberellins (GAs) delay the process. However, the molecular mechanisms underlying the antagonistic effects amongst plant hormones during petal senescence are still unclear. Here we isolated RhHB1, a homeodomain-leucine zipper I transcription factor gene, from rose flowers. Quantitative RT-PCR and GUS reporter analyses showed that RhHB1 was strongly expressed in senescing petals, and its expression was induced by ABA or ethylene in petals. ABA or ethylene treatment clearly accelerated rose petal senescence, while application of the gibberellin GA3 delayed the process. However, silencing of RhHB1 delayed the ABA- or ethylene-mediated senescence, and resulted in higher petal anthocyanin levels and lower expression of RhSAG12. Moreover, treatment with paclobutrazol, an inhibitor of GA biosynthesis, repressed these delays. In addition, silencing of RhHB1 blocked the ABA- or ethylene-induced reduction in expression of the GA20 oxidase encoded by RhGA20ox1, a gene in the GA biosynthetic pathway. Furthermore, RhHB1 directly binds to the RhGA20ox1 promoter, and silencing of RhGA20ox1 promoted petal senescence. Eight senescence-related genes showed substantial differences in expression in petals after treatment with GA3 or paclobutrazol. These results suggest that RhHB1 mediates the antagonistic effect of GAs on ABA and ethylene during rose petal senescence, and that the promotion of petal senescence by ABA or ethylene operates through an RhHB1-RhGA20ox1 regulatory checkpoint. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  14. A midgut lysate of the Riptortus pedestris has antibacterial activity against LPS O-antigen-deficient Burkholderia mutants.

    Science.gov (United States)

    Jang, Ho Am; Seo, Eun Sil; Seong, Min Young; Lee, Bok Luel

    2017-02-01

    Riptortus pedestris, a common pest in soybean fields, harbors a symbiont Burkholderia in a specialized posterior midgut region of insects. Every generation of second nymphs acquires new Burkholderia cells from the environment. We compared in vitro cultured Burkholderia with newly in vivo colonized Burkholderia in the host midgut using biochemical approaches. The bacterial cell envelope of in vitro cultured and in vivo Burkholderia differed in structure, as in vivo bacteria lacked lipopolysaccharide (LPS) O-antigen. The LPS O-antigen deficient bacteria had a reduced colonization rate in the host midgut compared with that of the wild-type Burkholderia. To determine why LPS O-antigen-deficient bacteria are less able to colonize the host midgut, we examined in vitro survival rates of three LPS O-antigen-deficient Burkholderia mutants and lysates of five different midgut regions. The LPS O-antigen-deficient mutants were highly susceptible when cultured with the lysate of a specific first midgut region (M1), indicating that the M1 lysate contains unidentified substance(s) capable of killing LPS O-antigen-deficient mutants. We identified a 17 kDa protein from the M1 lysate, which was enriched in the active fractions. The N-terminal sequence of the protein was determined to be a soybean Kunitz-type trypsin inhibitor. These data suggest that the 17 kDa protein, which was originated from a main soybean source of the R. pedestris host, has antibacterial activity against the LPS O-antigen deficient (rough-type) Burkholderia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Transcriptomic Analysis of Gibberellin- and Paclobutrazol-Treated Rice Seedlings under Submergence

    Directory of Open Access Journals (Sweden)

    Jing Xiang

    2017-10-01

    Full Text Available Submergence stress is a limiting factor for rice growing in rainfed lowland areas of the world. It is known that the phytohormone gibberellin (GA has negative effects on submergence tolerance in rice, while its inhibitor paclobutrazol (PB does the opposite. However, the physiological and molecular basis underlying the GA- and PB-regulated submergence response remains largely unknown. In this study, we reveal that PB could significantly enhance rice seedling survival by retaining a higher level of chlorophyll content and alcohol dehydrogenase activity, and decelerating the consumption of non-structure carbohydrate when compared with the control and GA-treated samples. Further transcriptomic analysis identified 3936 differentially expressed genes (DEGs among the GA- and PB-treated samples and control, which are extensively involved in the submergence and other abiotic stress responses, phytohormone biosynthesis and signaling, photosynthesis, and nutrient metabolism. The results suggested that PB enhances rice survival under submergence through maintaining the photosynthesis capacity and reducing nutrient metabolism. Taken together, the current study provided new insight into the mechanism of phytohormone-regulated submergence response in rice.

  16. Original Research

    African Journals Online (AJOL)

    2013-09-18

    Sep 18, 2013 ... on Vegetative Growth, Fruit Anatomy and Seed Setting of Tomato. (Lycopersicon .... have effects on seed germination, shoot and root growth, side branch ...... development of tomato: Studies with a gibberellin- deficient mutant.

  17. Abscisic Acid and Gibberellins Antagonistically Mediate Plant Development and Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2018-03-01

    Full Text Available Phytohormones regulate numerous important biological processes in plant development and biotic/abiotic stress response cascades. More than 50 and 100 years have passed since the initial discoveries of the phytohormones abscisic acid (ABA and gibberellins (GA, respectively. Over the past several decades, numerous elegant studies have demonstrated that ABA and GA antagonistically regulate many plant developmental processes, including seed maturation, seed dormancy and germination, root initiation, hypocotyl and stem elongation, and floral transition. Furthermore, as a well-established stress hormone, ABA plays a key role in plant responses to abiotic stresses, such as drought, flooding, salinity and low temperature. Interestingly, recent evidence revealed that GA are also involved in plant response to adverse environmental conditions. Consequently, the complex crosstalk networks between ABA and GA, mediated by diverse key regulators, have been extensively investigated and documented. In this updated mini-review, we summarize the most recent advances in our understanding of the antagonistically regulatory roles of ABA and GA in different stages of plant development and in various plant–environment interactions, focusing on the crosstalk between ABA and GA at the levels of phytohormone metabolism and signal transduction.

  18. JcDREB2, a Physic Nut AP2/ERF Gene, Alters Plant Growth and Salinity Stress Responses in Transgenic Rice.

    Science.gov (United States)

    Tang, Yuehui; Liu, Kun; Zhang, Ju; Li, Xiaoli; Xu, Kedong; Zhang, Yi; Qi, Jing; Yu, Deshui; Wang, Jian; Li, Chengwei

    2017-01-01

    Transcription factors of the AP2/ERF family play important roles in plant growth, development, and responses to biotic and abiotic stresses. In this study, a physic nut AP2/ERF gene, JcDREB2 , was functionally characterized. Real-time PCR analysis revealed that JcDREB2 was expressed mainly in the leaf and could be induced by abscisic acid but suppressed by gibberellin (GA) and salt. Transient expression of a JcDREB2-YFP fusion protein in Arabidopsis protoplasts cells suggested that JcDREB2 is localized in the nucleus. Rice plants overexpressing JcDREB2 exhibited dwarf and GA-deficient phenotypes with shorter shoots and roots than those of wild-type plants. The dwarfism phenotype could be rescued by the application of exogenous GA 3 . The expression levels of GA biosynthetic genes including OsGA20ox1 , OsGA20ox2 , OsGA20ox4 , OsGA3ox2, OsCPS1 , OsKO2 , and OsKAO were significantly reduced in plants overexpressing JcDREB2 . Overexpression of JcDREB2 in rice increased sensitivity to salt stress. Increases in the expression levels of several salt-tolerance-related genes in response to salt stress were impaired in JcDREB2 -overexpressing plants. These results demonstrated not only that JcDREB2 influences GA metabolism, but also that it can participate in the regulation of the salt stress response in rice.

  19. Human surfactant protein A2 gene mutations impair dimmer/trimer assembly leading to deficiency in protein sialylation and secretion.

    Directory of Open Access Journals (Sweden)

    Yi Song

    Full Text Available Surfactant protein A2 (SP-A2 plays an essential role in surfactant metabolism and lung host defense. SP-A2 mutations in the carbohydrate recognition domain have been related to familial pulmonary fibrosis and can lead to a recombinant protein secretion deficiency in vitro. In this study, we explored the molecular mechanism of protein secretion deficiency and the subsequent biological effects in CHO-K1 cells expressing both wild-type and several different mutant forms of SP-A2. We demonstrate that the SP-A2 G231V and F198S mutants impair the formation of dimmer/trimer SP-A2 which contributes to the protein secretion defect. A deficiency in sialylation, but not N-linked glycosylation, is critical to the observed dimmer/trimer impairment-induced secretion defect. Furthermore, both mutant forms accumulate in the ER and form NP-40-insoluble aggregates. In addition, the soluble mutant SP-A2 could be partially degraded through the proteasome pathway but not the lysosome or autophagy pathway. Intriguingly, 4-phenylbutyrate acid (4-PBA, a chemical chaperone, alleviates aggregate formation and partially rescued the protein secretion of SP-A2 mutants. In conclusion, SP-A2 G231V and F198S mutants impair the dimmer/trimer assembly, which contributes to the protein sialylation and secretion deficiency. The intracellular protein mutants could be partially degraded through the proteasome pathway and also formed aggregates. The treatment of the cells with 4-PBA resulted in reduced aggregation and rescued the secretion of mutant SP-A2.

  20. Rice homeobox transcription factor HOX1a positively regulates gibberellin responses by directly suppressing EL1.

    Science.gov (United States)

    Wen, Bi-Qing; Xing, Mei-Qing; Zhang, Hua; Dai, Cheng; Xue, Hong-Wei

    2011-11-01

    Homeobox transcription factors are involved in various aspects of plant development, including maintenance of the biosynthesis and signaling pathways of different hormones. However, few direct targets of homeobox proteins have been identified. We here show that overexpression of rice homeobox gene HOX1a resulted in enhanced gibberellin (GA) response, indicating a positive effect of HOX1a in GA signaling. HOX1a is induced by GA and encodes a homeobox transcription factor with transcription repression activity. In addition, HOX1a suppresses the transcription of early flowering1 (EL1), a negative regulator of GA signaling, and further electrophoretic mobility shift assay and chromatin immunoprecipitation analysis revealed that HOX1a directly bound to the promoter region of EL1 to suppress its expression and stimulate GA signaling. These results demonstrate that HOX1a functions as a positive regulator of GA signaling by suppressing EL1, providing informative hints on the study of GA signaling. © 2011 Institute of Botany, Chinese Academy of Sciences.

  1. The different phenotypes of phot- photosynthetic deficient mutants in Euglena gracilis: the frequency of production by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Nicolas, Paul; Heizmann, Philippe; Nigon, Victor

    1982-01-01

    In Euglena gracilis, pigment-less mutants appear spontaneously with a frequency of about 2-5x10 -3 . Ultraviolet-irradiation increases the proportion of chlorophyll-less colonies to an upper limit where green colonies represent 4x10 -4 of the surviving ones. This limit might indicate the occurrence of processes involving repair of the chloroplastic DNA. Most of the photosynthetic-deficient (phot - ) mutants induced by ultraviolet irradiation are characterized by the presence of a reduced number of chloroplast DNA molecules showing deletions (phi - class). Most of the phi - mutants present the phenotype phi - chlo - car - , where neither chlorophyll nor carotenoids are obvious: the phi - chlo - car + mutants, devoid of chlorophyll but containing carotenoids, are obtained among the phi - strains with a frequency lower than 10 -3 . The phot - mutants which belong to the cp - class are characterized by the maintenance of a great number of chloroplastic DNA molecules, where large deletions are absent: their occurrence after ultraviolet irradiation is low [fr

  2. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism.

    Science.gov (United States)

    Zhao, Yongteng; Li, Dafei; Xu, Jun-Wei; Zhao, Peng; Li, Tao; Ma, Huixian; Yu, Xuya

    2018-07-01

    In this study, melatonin (MT) promoted lipid accumulation in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. The lipid accumulation increased 1.22- and 1.36-fold compared with a nitrogen-starved medium and a normal BG-11 medium, respectively. The maximum lipid content was 51.38%. The reactive oxygen species (ROS) level in the presence of melatonin was lower than that in the control group, likely because of the high antioxidant activities. The application of melatonin upregulated the gibberellin acid (GA) production and rbcL and accD expression levels but downregulated the abscisic acid (ABA) content and pepc expression levels. These findings demonstrated that exogenous melatonin could further improve the lipid production in Monoraphidium sp. QLY-1 by regulating antioxidant systems, signalling molecules, and lipid biosynthesis-related gene expression under nitrogen deficiency conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    OpenAIRE

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interest...

  4. Genetic and Biochemical Analysis of Intragenic Complementation Events among Nitrate Reductase Apoenzyme-Deficient Mutants of Nicotiana Plumbaginifolia

    OpenAIRE

    Pelsy, F.; Gonneau, M.

    1991-01-01

    Intragenic complementation has been observed between apoenzyme nitrate reductase-deficient mutants (nia) of Nicotiana plumbaginifolia. In vivo as in vitro, the NADH-nitrate reductase (NR) activity in plants heterozygous for two different nia alleles was lower than in the wild type plant, but the plants were able to grow on nitrate as a sole nitrogen source. NR activity, absent in extracts of homozygous nia mutants was restored by mixing extracts from two complementing nia mutants. These obser...

  5. Erythrocyte pyruvate kinase deficiency in the Ohio Amish: origin and characterization of the mutant enzyme.

    OpenAIRE

    Muir, W A; Beutler, E; Wasson, C

    1984-01-01

    We have identified eight individuals in an Amish population in Geauga County, Ohio, who have a congenital hemolytic anemia and red cell pyruvate kinase (PK) deficiency. The mutant enzyme is a low Km phosphoenolpyruvate (PEP) variant associated with a slower (77.5% of normal) electrophoretic mobility in starch gel. Because of the high consanguinity in this population, we assume the affected individuals are homozygous for the mutant gene. Genealogical records allow us to trace all eight cases b...

  6. Dissecting the Mechanisms of Drug Resistance in BRCA1/2-Mutant Breast Cancers

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0600 TITLE: Dissecting the Mechanisms of Drug Resistance in BRCA1/2-Mutant Breast Cancers PRINCIPAL INVESTIGATOR: Dr...2017 4. TITLE AND SUBTITLE Dissecting the Mechanisms of Drug Resistance in BRCA1/2- Mutant Breast Cancers 5a. CONTRACT NUMBER W81XWH-16-1-0600 5b...therapeutic modality for targeting homologous recombination (HR) deficient tumors such as BRCA1 and BRCA2-mutated triple negative breast cancers

  7. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa.

    Science.gov (United States)

    Wu, Jiahe; Zhu, Chuanfeng; Pang, Jinhuan; Zhang, Xiangrong; Yang, Chunlin; Xia, Guixian; Tian, Yingchuan; He, Chaozu

    2014-12-01

    Seed germination is a key developmental process in the plant life cycle that is influenced by various environmental cues and phytohormones through gene expression and a series of metabolism pathways. In the present study, we investigated a C2C2-type finger protein, OsLOL1, which promotes gibberellin (GA) biosynthesis and affects seed germination in Oryza sativa (rice). We used OsLOL1 antisense and sense transgenic lines to explore OsLOL1 functions. Seed germination timing in antisense plants was restored to wild type when exogenous GA3 was applied. The reduced expression of the GA biosynthesis gene OsKO2 and the accumulation of ent-kaurene were observed during germination in antisense plants. Based on yeast two-hybrid and firefly luciferase complementation analyses, OsLOL1 interacted with the basic leucine zipper protein OsbZIP58. The results from electrophoretic mobility shift and dual-luciferase reporter assays showed that OsbZIP58 binds the G-box cis-element of the OsKO2 promoter and activates LUC reporter gene expression, and that interaction between OsLOL1 and OsbZIP58 activates OsKO2 gene expression. In addition, OsLOL1 decreased SOD1 gene expression and accelerated programmed cell death (PCD) in the aleurone layer of rice grains. These findings demonstrate that the interaction between OsLOL1 and OsbZIP58 influences GA biosynthesis through the activation of OsKO2 via OsbZIP58, thereby stimulating aleurone PCD and seed germination. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  8. Cloning and molecular analyses of a gibberellin 20-oxidase gene expressed specifically in developing seeds of watermelon.

    Science.gov (United States)

    Kang, H G; Jun, S H; Kim, J; Kawaide, H; Kamiya, Y; An, G

    1999-10-01

    To understand the biosynthesis and functional role of gibberellins (GAs) in developing seeds, we isolated Cv20ox, a cDNA clone from watermelon (Citrullus lanatus) that shows significant amino acid homology with GA 20-oxidases. The complementary DNA clone was expressed in Escherichia coli as a fusion protein, which oxidized GA(12) at C-20 to the C(19) compound GA(9), a precursor of bioactive GAs. RNA-blot analysis showed that the Cv20ox gene was expressed specifically in developing seeds. The gene was strongly expressed in the integument tissues, and it was also expressed weakly in inner seed tissues. In parthenocarpic fruits induced by 1-(2-chloro-4-pyridyl)-3-phenylurea treatment, the expression pattern of Cv20ox did not change, indicating that the GA 20-oxidase gene is expressed primarily in the maternal cells of developing seeds. The promoter of Cv20ox was isolated and fused to the beta-glucuronidase (GUS) gene. In a transient expression system, beta-glucuronidase staining was detectable only in the integument tissues of developing watermelon seeds.

  9. Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice.

    Science.gov (United States)

    Ye, Nenghui; Zhang, Jianhua

    2012-05-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. In the associated study, we investigated the relationship among ABA, reactive oxygen species (ROS), ascorbic acid (ASC) and GA during rice seed germination. ROS production is reduced by ABA, which hence results in decreasing ASC accumulation during imbibition. GA accumulation was also suppressed by a reduced ROS and ASC level, whereas application of exogenous ASC can partially rescue seed germination from ABA treatment. Further results show that production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. These studies reveal a new role for ASC in mediating the antagonism between ABA and GA during seed germination in rice.

  10. Overexpression of AtDREB1A causes a severe dwarf phenotype by decreasing endogenous gibberellin levels in soybean [Glycine max (L. Merr].

    Directory of Open Access Journals (Sweden)

    Haicui Suo

    Full Text Available Gibberellic acids (GAs are plant hormones that play fundamental roles in plant growth and developmental processes. Previous studies have demonstrated that three key enzymes of GA20ox, GA3ox, and GA2ox are involved in GA biosynthesis. In this study, the Arabidopsis DREB1A gene driven by the CaMV 35S promoter was introduced into soybean plants by Agrobacterium- mediated transformation. The results showed that the transgenic soybean plants exhibited a typical phenotype of GA-deficient mutants, such as severe dwarfism, small and dark-green leaves, and late flowering compared to those of the non-transgenic plants. The dwarfism phenotype was rescued by the application of exogenous GA(3 once a week for three weeks with the concentrations of 144 µM or three times in one week with the concentrations of 60 µM. Quantitative RT-PCR analysis revealed that the transcription levels of the GA synthase genes were higher in the transgenic soybean plants than those in controls, whereas GA-deactivated genes except GmGA2ox4 showed lower levels of expression. The transcript level of GmGA2ox4 encoding the only deactivation enzyme using C(20-GAs as the substrates in soybean was dramatically enhanced in transgenic plants compared to that of wide type. Furthermore, the contents of endogenous bioactive GAs were significantly decreased in transgenic plants than those of wide type. The results suggested that AtDREB1A could cause dwarfism mediated by GA biosynthesis pathway in soybean.

  11. Overexpression of AtDREB1A causes a severe dwarf phenotype by decreasing endogenous gibberellin levels in soybean [Glycine max (L.) Merr].

    Science.gov (United States)

    Suo, Haicui; Ma, Qibin; Ye, Kaixin; Yang, Cunyi; Tang, Yujuan; Hao, Juan; Zhang, Zhanyuan J; Chen, Mingluan; Feng, Yuqi; Nian, Hai

    2012-01-01

    Gibberellic acids (GAs) are plant hormones that play fundamental roles in plant growth and developmental processes. Previous studies have demonstrated that three key enzymes of GA20ox, GA3ox, and GA2ox are involved in GA biosynthesis. In this study, the Arabidopsis DREB1A gene driven by the CaMV 35S promoter was introduced into soybean plants by Agrobacterium- mediated transformation. The results showed that the transgenic soybean plants exhibited a typical phenotype of GA-deficient mutants, such as severe dwarfism, small and dark-green leaves, and late flowering compared to those of the non-transgenic plants. The dwarfism phenotype was rescued by the application of exogenous GA(3) once a week for three weeks with the concentrations of 144 µM or three times in one week with the concentrations of 60 µM. Quantitative RT-PCR analysis revealed that the transcription levels of the GA synthase genes were higher in the transgenic soybean plants than those in controls, whereas GA-deactivated genes except GmGA2ox4 showed lower levels of expression. The transcript level of GmGA2ox4 encoding the only deactivation enzyme using C(20)-GAs as the substrates in soybean was dramatically enhanced in transgenic plants compared to that of wide type. Furthermore, the contents of endogenous bioactive GAs were significantly decreased in transgenic plants than those of wide type. The results suggested that AtDREB1A could cause dwarfism mediated by GA biosynthesis pathway in soybean.

  12. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    Science.gov (United States)

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  13. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio

    OpenAIRE

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-01-01

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represse...

  14. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection.

    Science.gov (United States)

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host-virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 ( ne219 ) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 ( ne219 ) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 ( ne219 ) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  15. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection

    Directory of Open Access Journals (Sweden)

    Yuanyuan Guo

    2017-05-01

    Full Text Available The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host–virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 (ne219 strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 (ne219 mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 (ne219 mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  16. Plant growth promotion and Penicillium citrinum

    Directory of Open Access Journals (Sweden)

    Choo Yeon-Sik

    2008-12-01

    Full Text Available Abstract Background Endophytic fungi are known plant symbionts. They produce a variety of beneficial metabolites for plant growth and survival, as well as defend their hosts from attack of certain pathogens. Coastal dunes are nutrient deficient and offer harsh, saline environment for the existing flora and fauna. Endophytic fungi may play an important role in plant survival by enhancing nutrient uptake and producing growth-promoting metabolites such as gibberellins and auxins. We screened roots of Ixeris repenes (L. A. Gray, a common dune plant, for the isolation of gibberellin secreting endophytic fungi. Results We isolated 15 endophytic fungi from the roots of Ixeris repenes and screened them for growth promoting secondary metabolites. The fungal isolate IR-3-3 gave maximum plant growth when applied to waito-c rice and Atriplex gemelinii seedlings. Analysis of the culture filtrate of IR-3-3 showed the presence of physiologically active gibberellins, GA1, GA3, GA4 and GA7 (1.95 ng/ml, 3.83 ng/ml, 6.03 ng/ml and 2.35 ng/ml, respectively along with other physiologically inactive GA5, GA9, GA12, GA15, GA19, GA20 and, GA24. The plant growth promotion and gibberellin producing capacity of IR-3-3 was much higher than the wild type Gibberella fujikuroi, which was taken as control during present study. GA5, a precursor of bioactive GA3 was reported for the first time in fungi. The fungal isolate IR-3-3 was identified as a new strain of Penicillium citrinum (named as P. citrinum KACC43900 through phylogenetic analysis of 18S rDNA sequence. Conclusion Isolation of new strain of Penicillium citrinum from the sand dune flora is interesting as information on the presence of Pencillium species in coastal sand dunes is limited. The plant growth promoting ability of this fungal strain may help in conservation and revegetation of the rapidly eroding sand dune flora. Penicillium citrinum is already known for producing mycotoxin citrinin and cellulose digesting

  17. Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice.

    Science.gov (United States)

    Iglesias, Ainhoa; Murga, Matilde; Laresgoiti, Usua; Skoudy, Anouchka; Bernales, Irantzu; Fullaondo, Asier; Moreno, Bernardino; Lloreta, José; Field, Seth J; Real, Francisco X; Zubiaga, Ana M

    2004-05-01

    E2F transcription factors are thought to be key regulators of cell growth control. Here we use mutant mouse strains to investigate the function of E2F1 and E2F2 in vivo. E2F1/E2F2 compound-mutant mice develop nonautoimmune insulin-deficient diabetes and exocrine pancreatic dysfunction characterized by endocrine and exocrine cell dysplasia, a reduction in the number and size of acini and islets, and their replacement by ductal structures and adipose tissue. Mutant pancreatic cells exhibit increased rates of DNA replication but also of apoptosis, resulting in severe pancreatic atrophy. The expression of genes involved in DNA replication and cell cycle control was upregulated in the E2F1/E2F2 compound-mutant pancreas, suggesting that their expression is repressed by E2F1/E2F2 activities and that the inappropriate cell cycle found in the mutant pancreas is likely the result of the deregulated expression of these genes. Interestingly, the expression of ductal cell and adipocyte differentiation marker genes was also upregulated, whereas expression of pancreatic cell marker genes were downregulated. These results suggest that E2F1/E2F2 activity negatively controls growth of mature pancreatic cells and is necessary for the maintenance of differentiated pancreatic phenotypes in the adult.

  18. Cloning and Molecular Analyses of a Gibberellin 20-Oxidase Gene Expressed Specifically in Developing Seeds of Watermelon1

    Science.gov (United States)

    Kang, Hong-Gyu; Jun, Sung-Hoon; Kim, Junyul; Kawaide, Hiroshi; Kamiya, Yuji; An, Gynheung

    1999-01-01

    To understand the biosynthesis and functional role of gibberellins (GAs) in developing seeds, we isolated Cv20ox, a cDNA clone from watermelon (Citrullus lanatus) that shows significant amino acid homology with GA 20-oxidases. The complementary DNA clone was expressed in Escherichia coli as a fusion protein, which oxidized GA12 at C-20 to the C19 compound GA9, a precursor of bioactive GAs. RNA-blot analysis showed that the Cv20ox gene was expressed specifically in developing seeds. The gene was strongly expressed in the integument tissues, and it was also expressed weakly in inner seed tissues. In parthenocarpic fruits induced by 1-(2-chloro-4-pyridyl)-3-phenylurea treatment, the expression pattern of Cv20ox did not change, indicating that the GA 20-oxidase gene is expressed primarily in the maternal cells of developing seeds. The promoter of Cv20ox was isolated and fused to the β-glucuronidase (GUS) gene. In a transient expression system, β-glucuronidase staining was detectable only in the integument tissues of developing watermelon seeds. PMID:10517828

  19. C. elegans germline-deficient mutants respond to pathogen infection using shared and distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Michael TeKippe

    2010-07-01

    Full Text Available Reproduction extracts a cost in resources that organisms are then unable to utilize to deal with a multitude of environmental stressors. In the nematode C. elegans, development of the germline shortens the lifespan of the animal and increases its susceptibility to microbial pathogens. Prior studies have demonstrated germline-deficient nematodes to have increased resistance to gram negative bacteria. We show that germline-deficient strains display increased resistance across a broad range of pathogens including gram positive and gram negative bacteria, and the fungal pathogen Cryptococcus neoformans. Furthermore, we show that the FOXO transcription factor DAF-16, which regulates longevity and immunity in C. elegans, appears to be crucial for maintaining longevity in both wild-type and germline-deficient backgrounds. Our studies indicate that germline-deficient mutants glp-1 and glp-4 respond to pathogen infection using common and different mechanisms that involve the activation of DAF-16.

  20. Rice Ethylene-Response AP2/ERF Factor OsEATB Restricts Internode Elongation by Down-Regulating a Gibberellin Biosynthetic Gene1[W][OA

    Science.gov (United States)

    Qi, Weiwei; Sun, Fan; Wang, Qianjie; Chen, Mingluan; Huang, Yunqing; Feng, Yu-Qi; Luo, Xiaojin; Yang, Jinshui

    2011-01-01

    Plant height is a decisive factor in plant architecture. Rice (Oryza sativa) plants have the potential for rapid internodal elongation, which determines plant height. A large body of physiological research has shown that ethylene and gibberellin are involved in this process. The APETALA2 (AP2)/Ethylene-Responsive Element Binding Factor (ERF) family of transcriptional factors is only present in the plant kingdom. This family has various developmental and physiological functions. A rice AP2/ERF gene, OsEATB (for ERF protein associated with tillering and panicle branching) was cloned from indica rice variety 9311. Bioinformatic analysis suggested that this ERF has a potential new function. Ectopic expression of OsEATB showed that the cross talk between ethylene and gibberellin, which is mediated by OsEATB, might underlie differences in rice internode elongation. Analyses of gene expression demonstrated that OsEATB restricts ethylene-induced enhancement of gibberellin responsiveness during the internode elongation process by down-regulating the gibberellin biosynthetic gene, ent-kaurene synthase A. Plant height is negatively correlated with tiller number, and higher yields are typically obtained from dwarf crops. OsEATB reduces rice plant height and panicle length at maturity, promoting the branching potential of both tillers and spikelets. These are useful traits for breeding high-yielding crops. PMID:21753115

  1. Influence of water table decline on growth allocation and endogenous gibberellins in black cottonwood

    Energy Technology Data Exchange (ETDEWEB)

    Rood, S.B.; Zanewich, K.; Stefura, C. [Lethbridge Univ., Lethbridge, AB (Canada). Dept. of Biological Sciences; Mahoney, J.M. [Alberta Environmental Protection, Lethbridge, AB (Canada)

    2000-06-01

    Cottonwoods have shown an adaptation to the riparian zone by coordinating root elongation to maintain contact with the water table, whose depth varies with the elevation of the adjacent river. The rate of water decline on growth allocation and concentrations of endogenous gibberellins (GAs) in black cottonwood saplings were studied at the University of Lethbridge, Alberta. Water declines were achieved by using rhizopods, and root elongation approximately doubled in response whereas leaf area was reduced. At some point, a greater water decline rate led to water stress resulting in reduced growth, increased leaf diffusive resistance, decreased water potential, and leaf senescence and abscission. After extraction of endogenous GAs, they were purified and analysed by gas chromatography-selected ion monitoring with internal ({sup 2}H{sub 2})GA standards. The results showed that GAs were higher in shoot tips and sequentially lower in basal stems, root tips, leaves and upper roots. Noticeable relationships did not appear between GA concentration and growth allocation across the water decline treatments. Only GA{sub 8} showed a consistent reduction in plants experiencing water table decline. This research did not permit the authors to conclude whether endogenous GAs play a primary role in the regulation of root elongation in response to water table decline. 7 figs., 25 refs.

  2. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency.

    Science.gov (United States)

    Garone, Caterina; Garcia-Diaz, Beatriz; Emmanuele, Valentina; Lopez, Luis C; Tadesse, Saba; Akman, Hasan O; Tanji, Kurenai; Quinzii, Catarina M; Hirano, Michio

    2014-08-01

    Autosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2(-/-)) knock-in mouse model from postnatal day 4, when mutant mice are phenotypically normal, but biochemically affected. Assessment of 13-day-old Tk2(-/-) mice treated with dCMP+dTMP 200 mg/kg/day each (Tk2(-/-200dCMP/) (dTMP)) demonstrated that in mutant animals, the compounds raise dTTP concentrations, increase levels of mtDNA, ameliorate defects of mitochondrial respiratory chain enzymes, and significantly prolong their lifespan (34 days with treatment versus 13 days untreated). A second trial of dCMP+dTMP each at 400 mg/kg/day showed even greater phenotypic and biochemical improvements. In conclusion, dCMP/dTMP supplementation is the first effective pharmacologic treatment for Tk2 deficiency. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Overexpression of a Protein Phosphatase 2C from Beech Seeds in Arabidopsis Shows Phenotypes Related to Abscisic Acid Responses and Gibberellin Biosynthesis1

    Science.gov (United States)

    Reyes, David; Rodríguez, Dolores; González-García, Mary Paz; Lorenzo, Oscar; Nicolás, Gregorio; García-Martínez, José Luis; Nicolás, Carlos

    2006-01-01

    A functional abscisic acid (ABA)-induced protein phosphatase type 2C (PP2C) was previously isolated from beech (Fagus sylvatica) seeds (FsPP2C2). Because transgenic work is not possible in beech, in this study we overexpressed this gene in Arabidopsis (Arabidopsis thaliana) to provide genetic evidence on FsPP2C2 function in seed dormancy and other plant responses. In contrast with other PP2Cs described so far, constitutive expression of FsPP2C2 in Arabidopsis, under the cauliflower mosaic virus 35S promoter, produced enhanced sensitivity to ABA and abiotic stress in seeds and vegetative tissues, dwarf phenotype, and delayed flowering, and all these effects were reversed by gibberellic acid application. The levels of active gibberellins (GAs) were reduced in 35S:FsPP2C2 plants, although transcript levels of AtGA20ox1 and AtGA3ox1 increased, probably as a result of negative feedback regulation, whereas the expression of GASA1 was induced by GAs. Additionally, FsPP2C2-overexpressing plants showed a strong induction of the Responsive to ABA 18 (RAB18) gene. Interestingly, FsPP2C2 contains two nuclear targeting sequences, and transient expression assays revealed that ABA directed this protein to the nucleus. Whereas other plant PP2Cs have been shown to act as negative regulators, our results support the hypothesis that FsPP2C2 is a positive regulator of ABA. Moreover, our results indicate the existence of potential cross-talk between ABA signaling and GA biosynthesis. PMID:16815952

  4. Evolutionary rate patterns of the Gibberellin pathway genes

    Directory of Open Access Journals (Sweden)

    Zhang Fu-min

    2009-08-01

    Full Text Available Abstract Background Analysis of molecular evolutionary patterns of different genes within metabolic pathways allows us to determine whether these genes are subject to equivalent evolutionary forces and how natural selection shapes the evolution of proteins in an interacting system. Although previous studies found that upstream genes in the pathway evolved more slowly than downstream genes, the correlation between evolutionary rate and position of the genes in metabolic pathways as well as its implications in molecular evolution are still less understood. Results We sequenced and characterized 7 core structural genes of the gibberellin biosynthetic pathway from 8 representative species of the rice tribe (Oryzeae to address alternative hypotheses regarding evolutionary rates and patterns of metabolic pathway genes. We have detected significant rate heterogeneity among 7 GA pathway genes for both synonymous and nonsynonymous sites. Such rate variation is mostly likely attributed to differences of selection intensity rather than differential mutation pressures on the genes. Unlike previous argument that downstream genes in metabolic pathways would evolve more slowly than upstream genes, the downstream genes in the GA pathway did not exhibited the elevated substitution rate and instead, the genes that encode either the enzyme at the branch point (GA20ox or enzymes catalyzing multiple steps (KO, KAO and GA3ox in the pathway had the lowest evolutionary rates due to strong purifying selection. Our branch and codon models failed to detect signature of positive selection for any lineage and codon of the GA pathway genes. Conclusion This study suggests that significant heterogeneity of evolutionary rate of the GA pathway genes is mainly ascribed to differential constraint relaxation rather than the positive selection and supports the pathway flux theory that predicts that natural selection primarily targets enzymes that have the greatest control on fluxes.

  5. Arabidopsis scaffold protein RACK1A modulates rare sugar D-allose regulated gibberellin signaling

    OpenAIRE

    Fennell, Herman; Olawin, Abdulquadri; Mizanur, Rahman M.; Izumori, Ken; Chen, Jin-Gui; Ullah, Hemayet

    2012-01-01

    As energy sources and structural components, sugars are the central regulators of plant growth and development. In addition to the abundant natural sugars in plants, more than 50 different kinds of rare sugars exist in nature, several of which show distinct roles in plant growth and development. Recently, one of the rare sugars, D-allose, an epimer of D-glucose at C3, is found to suppress plant hormone gibberellin (GA) signaling in rice. Scaffold protein RACK1A in the model plant Arabidopsis ...

  6. Measurement of in vivo HGPRT-deficient mutant cell frequency using a modified method for cloning human peripheral blood T-lymphocytes

    International Nuclear Information System (INIS)

    Hakoda, Masayuki; Akiyama, Mitoshi; Kyoizumi, Seishi; Kobuke, Kyoko; Awa, A.A.

    1987-07-01

    Approximately 80 % of human peripheral blood T-lymphocytes could be cloned in the presence of crude Interleukin-2, phytohemagglutinin, and X-irradiated autologous lymphocytes and Raji B-cells. This modified cloning method was used to measure the in vivo frequency of HGPRT-deficient mutant T-lymphocytes. Repeated experiments using blood from the same individuals revealed that the frequency of mutant cells was almost constant for each individual even though the cloning efficiency of lymphocytes varied somewhat from experiment to experiment. Approximately 80 % of both wild-type unselected and 6-thioguanine-resistant colonies had helper/inducer and about 20 % had suppressor/cytotoxic T-lymphocyte markers. No difference was observed in the distribution of lymphocyte subsets between wild and mutant lymphocyte colonies. (author)

  7. Characterization of ent-kaurene synthase and kaurene oxidase involved in gibberellin biosynthesis from Scoparia dulcis.

    Science.gov (United States)

    Yamamura, Yoshimi; Taguchi, Yukari; Ichitani, Kei; Umebara, Io; Ohshita, Ayako; Kurosaki, Fumiya; Lee, Jung-Bum

    2018-03-01

    Gibberellins (GAs) are ubiquitous diterpenoids in higher plants, whereas some higher plants produce unique species-specific diterpenoids. In GA biosynthesis, ent-kaurene synthase (KS) and ent-kaurene oxidase (KO) are key players which catalyze early step(s) of the cyclization and oxidation reactions. We have studied the functional characterization of gene products of a KS (SdKS) and two KOs (SdKO1 and SdKO2) involved in GA biosynthesis in Scoparia dulcis. Using an in vivo heterologous expression system of Escherichia coli, we found that SdKS catalyzed a cyclization reaction from ent-CPP to ent-kaurene and that the SdKOs oxidized ent-kaurene to ent-kaurenoic acid after modification of the N-terminal region for adaptation to the E. coli expression system. The real-time PCR results showed that the SdKS, SdKO1 and SdKO2 genes were mainly expressed in the root and lateral root systems, which are elongating tissues. Based on these results, we suggest that these three genes may be responsible for the metabolism of GAs in S. dulcis.

  8. Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin.

    Science.gov (United States)

    Hartmann, Anja; Senning, Melanie; Hedden, Peter; Sonnewald, Uwe; Sonnewald, Sophia

    2011-02-01

    Reactivation of dormant meristems is of central importance for plant fitness and survival. Due to their large meristem size, potato (Solanum tuberosum) tubers serve as a model system to study the underlying molecular processes. The phytohormones cytokinins (CK) and gibberellins (GA) play important roles in releasing potato tuber dormancy and promoting sprouting, but their mode of action in these processes is still obscure. Here, we established an in vitro assay using excised tuber buds to study the dormancy-releasing capacity of GA and CK and show that application of gibberellic acid (GA(3)) is sufficient to induce sprouting. In contrast, treatment with 6-benzylaminopurine induced bud break but did not support further sprout growth unless GA(3) was administered additionally. Transgenic potato plants expressing Arabidopsis (Arabidopsis thaliana) GA 20-oxidase or GA 2-oxidase to modify endogenous GA levels showed the expected phenotypical changes as well as slight effects on tuber sprouting. The isopentenyltransferase (IPT) from Agrobacterium tumefaciens and the Arabidopsis cytokinin oxidase/dehydrogenase1 (CKX) were exploited to modify the amounts of CK in transgenic potato plants. IPT expression promoted earlier sprouting in vitro. Strikingly, CKX-expressing tubers exhibited a prolonged dormancy period and did not respond to GA(3). This supports an essential role of CK in terminating tuber dormancy and indicates that GA is not sufficient to break dormancy in the absence of CK. GA(3)-treated wild-type and CKX-expressing tuber buds were subjected to a transcriptome analysis that revealed transcriptional changes in several functional groups, including cell wall metabolism, cell cycle, and auxin and ethylene signaling, denoting events associated with the reactivation of dormant meristems.

  9. Comparison of the role of gibberellins and ethylene in response to submergence of two lowland rice cultivars, Senia and Bomba.

    Science.gov (United States)

    Dubois, Vincent; Moritz, Thomas; García-Martínez, José L

    2011-02-15

    We examined the gibberellin (GA) and ethylene regulation of submergence-induced elongation in seedlings of the submergence-tolerant lowland rice (Oryza sativa L.) cvs Senia and Bomba. Elongation was enhanced after germination to facilitate water escape and reach air. We found that submergence-induced elongation depends on GA because it was counteracted by paclobutrazol (an inhibitor of GA biosynthesis), an effect that was negated by GA(3). Moreover, in the cv Senia, submergence increased the content of active GA(1) and its immediate precursors (GA(53), GA(19) and GA(20)) by enhancing expression of several GA biosynthesis genes (OsGA20ox1 and -2, and OsGA3ox2), but not by decreasing expression of several OsGA2ox (GA inactivating genes). Senia seedlings, in contrast to Bomba seedlings, did not elongate in response to ethylene or 1-aminocyclopropane-1-carboxylic-acid (ACC; an ethylene precursor) application, and submergence-induced elongation was not reduced in the presence of 1-methylcyclopropene (1-MCP; an ethylene perception inhibitor). Ethylene emanation was similar in Senia seedlings grown in air and in submerged-grown seedlings following de-submergence, while it increased in Bomba. The expression of ethylene biosynthesis genes (OsACS1, -2 and -3, and OsACO1) was not affected in Senia, but expression of OsACS5 was rapidly enhanced in Bomba upon submergence. Our results support the conclusion that submergence elongation enhancement of lowland rice is due to alteration of GA metabolism leading to an increase in active GA (GA(1)) content. Interestingly, in the cv Senia, in contrast to cv Bomba, this was triggered through an ethylene-independent mechanism. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant.

    Science.gov (United States)

    Bonawitz, Nicholas D; Kim, Jeong Im; Tobimatsu, Yuki; Ciesielski, Peter N; Anderson, Nickolas A; Ximenes, Eduardo; Maeda, Junko; Ralph, John; Donohoe, Bryon S; Ladisch, Michael; Chapple, Clint

    2014-05-15

    Lignin is a phenylpropanoid-derived heteropolymer important for the strength and rigidity of the plant secondary cell wall. Genetic disruption of lignin biosynthesis has been proposed as a means to improve forage and bioenergy crops, but frequently results in stunted growth and developmental abnormalities, the mechanisms of which are poorly understood. Here we show that the phenotype of a lignin-deficient Arabidopsis mutant is dependent on the transcriptional co-regulatory complex, Mediator. Disruption of the Mediator complex subunits MED5a (also known as REF4) and MED5b (also known as RFR1) rescues the stunted growth, lignin deficiency and widespread changes in gene expression seen in the phenylpropanoid pathway mutant ref8, without restoring the synthesis of guaiacyl and syringyl lignin subunits. Cell walls of rescued med5a/5b ref8 plants instead contain a novel lignin consisting almost exclusively of p-hydroxyphenyl lignin subunits, and moreover exhibit substantially facilitated polysaccharide saccharification. These results demonstrate that guaiacyl and syringyl lignin subunits are largely dispensable for normal growth and development, implicate Mediator in an active transcriptional process responsible for dwarfing and inhibition of lignin biosynthesis, and suggest that the transcription machinery and signalling pathways responding to cell wall defects may be important targets to include in efforts to reduce biomass recalcitrance.

  11. Establishment of HeLa cell mutants deficient in sphingolipid-related genes using TALENs.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Yamaji

    Full Text Available Sphingolipids are essential components in eukaryotes and have various cellular functions. Recent developments in genome-editing technologies have facilitated gene disruption in various organisms and cell lines. We here show the disruption of various sphingolipid metabolic genes in human cervical carcinoma HeLa cells by using transcription activator-like effector nucleases (TALENs. A TALEN pair targeting the human CERT gene (alternative name COL4A3BP encoding a ceramide transport protein induced a loss-of-function phenotype in more than 60% of HeLa cells even though the cell line has a pseudo-triploid karyotype. We have isolated several loss-of-function mutant clones for CERT, UGCG (encoding glucosylceramide synthase, and B4GalT5 (encoding the major lactosylceramide synthase, and also a CERT/UGCG double-deficient clone. Characterization of these clones supported previous proposals that CERT primarily contributes to the synthesis of SM but not GlcCer, and that B4GalT5 is the major LacCer synthase. These newly established sphingolipid-deficient HeLa cell mutants together with our previously established stable transfectants provide a 'sphingolipid-modified HeLa cell panel,' which will be useful to elucidate the functions of various sphingolipid species against essentially the same genomic background.

  12. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    Science.gov (United States)

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  13. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    Science.gov (United States)

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-02-23

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  14. Using a minigene approach to characterize a novel splice site mutation in human F7 gene causing inherited factor VII deficiency in a Chinese pedigree.

    Science.gov (United States)

    Yu, T; Wang, X; Ding, Q; Fu, Q; Dai, J; Lu, Y; Xi, X; Wang, H

    2009-11-01

    Factor VII deficiency which transmitted as an autosomal recessive disorder is a rare haemorrhagic condition. The aim of this study was to identify the molecular genetic defect and determine its functional consequences in a Chinese pedigree with FVII deficiency. The proband was diagnosed as inherited coagulation FVII deficiency by reduced plasma levels of FVII activity (4.4%) and antigen (38.5%). All nine exons and their flanking sequence of F7 gene were amplified by polymerase chain reaction (PCR) for the proband and the PCR products were directly sequenced. The compound heterozygous mutations of F7 (NM_000131.3) c.572-1G>A and F7 (NM_000131.3) c.1165T>G; p.Cys389Gly were identified in the proband's F7 gene. To investigate the splicing patterns associated with F7 c.572-1G>A, ectopic transcripts in leucocytes of the proband were analyzed. F7 minigenes, spanning from intron 4 to intron 7 and carrying either an A or a G at position -1 of intron 5, were constructed and transiently transfected into human embryonic kidney (HEK) 293T cells, followed by RT-PCR analysis. The aberrant transcripts from the F7 c.572-1G>A mutant allele were not detected by ectopic transcription study. Sequencing of the RT-PCR products from the mutant transfectant demonstrated the production of an erroneously spliced mRNA with exon 6 skipping, whereas a normal splicing occurred in the wide type transfectant. The aberrant mRNA produced from the F7 c.572-1G>A mutant allele is responsible for the factor VII deficiency in this pedigree.

  15. Rasal2 deficiency reduces adipogenesis and occurrence of obesity-related disorders

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhu

    2017-06-01

    Full Text Available Objective: Identification of additional regulatory factors involved in the onset of obesity is important to understand the mechanisms underlying this prevailing disease and its associated metabolic disorders and to develop therapeutic strategies. Through isolation and analysis of a mutant, we aimed to uncover the function of a Ras-GAP gene, Rasal2 (Ras protein activator like 2, in the development of obesity and related metabolic disorders and to obtain valuable insights regarding the mechanism underlying the function. Methods: An obesity-based genetic screen was performed to identify an insertional mutation that disrupts the expression of Rasal2 (Rasal2PB/PB mice. Important metabolic parameters, such as fat mass and glucose tolerance, were measured in Rasal2PB/PB mice. The impact of Rasal2 on adipogenesis was evaluated in the mutant mice and in 3T3-L1 preadipocytes treated with Rasal2 siRNA. Ras and ERK activities were then evaluated in Rasal2-deficient preadipocytes or mice, and their functional relationships with Rasal2 on adipogenesis were investigated by employing Ras and MEK inhibitors. Results: Rasal2PB/PB mice showed drastic decrease in Rasal2 expression and a lean phenotype. The mutant mice displayed decreased adiposity and resistance to high-fat diet induced metabolic disorders. Further analysis indicated that Rasal2 deficiency leads to impaired adipogenesis in vivo and in vitro. Moreover, while Rasal2 deficiency resulted in increased activity of both Ras and ERK in preadipocytes, reducing Ras, but not ERK, suppressed the impaired adipogenesis. Conclusions: Rasal2 promotes adipogenesis, which may critically contribute to its role in the development of obesity and related metabolic disorders and may do so by repressing Ras activity in an ERK-independent manner. Keywords: Ras, ERK, Ras-GAP, Glucose tolerance, High-fat diet, Diabetes

  16. Semi-dwarf mutants in triticale and wheat breeding

    International Nuclear Information System (INIS)

    Driscoll, C.J.

    1984-01-01

    The triticale lines Beagle and DR-IRA have been subjected to ionizing irradiation and chemical mutagenesis in order to produce semi-dwarf mutants. Beagle is 100 cm tall and DR-IRA 80 cm under average field conditions. A bulk then pedigree method is currently represented by 158 single plots of M 6 (or in some cases M 7 ) mutants that are from 5 to 35 cm shorter than the control variety. The shortest mutants are 65 cm in height. Forty of these mutants are also earlier flowering than the control varieties. Replicated yield testing will be conducted on confirmed mutants in 1983. Response to gibberellic acid of these mutants will also be determined. The Cornerstone male-sterility mutant (ms1c) on chromosome arm 4Aα has been combined with the GA-insensitive/reduced height gene Gai/Rht1 which is also on chromosome arm 4Aα. The ms1c mutant has also been combined with Gai/Rht2 on chromosome 4D and with both Gai/Rht1 and Gai/Rht2. The combination ms1c and Gai/Rht1 has been chosen as the basis of a composite cross. Thirteen varieties were tested with GA 3 and seven (Warigal, Aroona, Oxley, Banks, Avocet, Matipo and Toquifen) which contain Gai/Rht1 were crossed with ms1c Gai/Rht1 and entered into an interpollinating F 2 . The entire composite is homozygous for this semi-dwarf allele and selection will be practiced for increased height on a GA-insensitive background. (author)

  17. The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning.

    Science.gov (United States)

    Plackett, Andrew R G; Powers, Stephen J; Phillips, Andy L; Wilson, Zoe A; Hedden, Peter; Thomas, Stephen G

    2018-06-01

    Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only. This phenomenon is demonstrated by mutants partially impaired in the biosynthesis of the phytohormone gibberellin (GA), in which floral organ growth is retarded in the first flowers to be produced but has recovered spontaneously by the 10th flower. We presently lack systematic data from multiple flowers across the Arabidopsis inflorescence to explain such changes. Using mutants of the GA 20-OXIDASE (GA20ox) GA biosynthesis gene family to manipulate endogenous GA levels, we investigated the dynamics of changing floral organ growth across the early Arabidopsis inflorescence (flowers 1-10). Modelling of floral organ lengths identified a significant, GA-independent gradient of increasing stamen length relative to the pistil in the wild-type inflorescence that was separable from other, GA-dependent effects. It was also found that the first flowers exhibited unstable organ patterning in contrast to later flowers and that this instability was prolonged by exogenous GA treatment. These findings indicate that the development of individual flowers is influenced by hitherto unknown factors acting across the inflorescence and also suggest novel functions for GA in floral patterning.

  18. Developmental landmarks during floral ontogeny of jalapeño chili pepper (Capsicum annuum L.) and the effect of gibberellin on ovary growth.

    Science.gov (United States)

    Sandoval-Oliveros, R; Guevara-Olvera, L; Beltrán, J P; Gómez-Mena, C; Acosta-García, G

    2017-09-01

    Pepper (Capsicum annuum L.) is an important horticultural crop in many regions of the world. The final shape and size of the fruit are known to be determined at a very early step of flower development. During flower development hormonal treatments using gibberellins seem to promote growth resulting in higher yield and fruit quality. However, the morphological changes that occur in the pepper flowers after these treatments are largely unknown. In the present study, we provide a description of floral development landmarks of jalapeño chili pepper (cultivar Huichol), divided in nine representative stages from its initiation until the opening of the bud. We established a correlation among external flower development and the time and pattern of reproductive organogenesis. Male and female gametogenesis progression was used to define specific landmarks during flower maturation. The pattern of expression of key genes involved in gibberellin metabolism and response was also evaluated in the nine flower stages. The proposed development framework was used to analyze the effect of gibberellin treatments in the development of the flower. We observed both an effect of the treatment in the histology of the ovary tissue and an increase in the level of expression of CaGA2ox1 and CaGID1b genes. The developmental stages we defined for this species are very useful to analyze the molecular and morphological changes after hormonal treatments.

  19. Participation of gibberellin in the control of apical dominance in soybean and redwood

    Energy Technology Data Exchange (ETDEWEB)

    Ruddat, M.; Pharis, R.P.

    1966-01-01

    Loss of apical dominance in soybeans and redwood was increased when the plants were treated with the growth retardant AMO-1618. Simultaneous application of gibberellin reduced the number of elongating buds and promoted growth of the first or second uppermost auxillary bud, thus restoring apical dominance. It is concluded that gibberellin participates in the expression of apical dominance. 30 references, 2 tables.

  20. Adventitious staminate flower formation in gibberellin treated gynoecious cucumber plants

    International Nuclear Information System (INIS)

    Fuchs, E.; Atsmon, D.; Halevy, A.H.

    1977-01-01

    Single gibberellin (A sub(4 + 7)) treatments induced the appearance of staminate floral buds in several consecutive nodes on the main stem of genetically female cucumber (Cucumis sativus L.). The staminate buds appeared next to pistillate buds which showed various degrees of degeneration. Similarly, repeated GA treatments induced the appearance of staminate flowers in otherwise strictly hermaphrodite plants, next to bisexual flowers. However, the bisexual buds, unlike the pistillate ones, did not show any deleterious effects of the GA treatment. Therefore, it is inferred that the hormonally induced staminate buds did not develop by sexual reversion of would-be pistillate or bisexual buds, but rather, represent adventitious buds which, in normally grown female or hermaphrodite plants, never develop. It thus seems that predetermined pistillate or bisexual buds do not change into staminate ones, while change in the reverse direction has been demonstrated in the past (at least for the gynoecious ones). The effectiveness of the GA treatment in the gynoecious plants showed an acropetal gradient both within the affected region, as well as along the main stem. Autoradiographic histological examinations showed that the course of development of the induced staminate floral bud did not differ from that of normally developing buds. (auth.)

  1. Hollow fiber-based liquid-liquid-liquid micro-extraction with osmosis: II. Application to quantification of endogenous gibberellins in rice plant.

    Science.gov (United States)

    Wu, Qian; Wu, Dapeng; Duan, Chunfeng; Shen, Zheng; Guan, Yafeng

    2012-11-23

    The phenomenon and benefits of osmosis in hollow fiber-based liquid-liquid-liquid micro-extraction (HF-LLLME) were theoretically discussed in part I of this study. In this work, HF-LLLME with osmosis was coupled with high performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-triple quadrupole MS/MS) to analyze eight gibberellins (gibberellin A(1), gibberellin A(3), gibberellin A(4), gibberellin A(7), gibberellin A(8), gibberellin A(9), gibberellin A(19) and gibberellin A(20)) in rice plant samples. According to the theory of HF-LLLME with osmosis, single factor experiments, orthogonal design experiments and mass transfer simulation of extraction process were carried out to select the optimal conditions. Cyclohexanol - n-octanol (1:3, v/v) was selected as organic membrane. Donor phase of 12 mL was adjusted to pH 2 and 20% NaCl (w/v) was added. Acceptor phase with an initial volume of 20 μL was the solution of 0.12 mol L(-1) Na(2)CO(3)-NaHCO(3) buffer (pH 9). Temperature was chosen to be 30 °C and extraction time was selected to be 90 min. Under optimized conditions, this method provided good linearity (r, 0.99552-0.99991) and low limits of detection (0.0016-0.061 ng mL(-1)). Finally, this method was applied to the analysis of endogenous gibberellins from plant extract which was obtained with traditional solvent extraction of rice plant tissues, and the relative recoveries were from 62% to 166%. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Local motifs in GeS{sub 2}–Ga{sub 2}S{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pethes, I., E-mail: pethes.ildiko@wigner.mta.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O. 49 (Hungary); Nazabal, V.; Chahal, R.; Bureau, B. [Institut Sciences Chimiques de Rennes, UMR-CNRS 6226, Campus de Beaulieu, Université de Rennes 1, 35042 Rennes, Cedex (France); Kaban, I. [IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, 01069 Dresden (Germany); Belin, S. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif sur Yvette (France); Jóvári, P. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O. 49 (Hungary)

    2016-07-15

    The structure of (GeS{sub 2}){sub 0.75}(Ga{sub 2}S{sub 3}){sub 0.25} and (GeS{sub 2}){sub 0.83}(Ga{sub 2}S{sub 3}){sub 0.17} glasses was investigated by Raman scattering, high energy X-ray diffraction and extended X-ray absorption fine structure (EXAFS) measurements at the Ga and Ge K-edges. The reverse Monte Carlo simulation technique (RMC) was used to obtain structural models compatible with diffraction and EXAFS datasets. It was found that the coordination number of Ga is close to four. While Ge atoms have only S neighbors, Ga binds to S as well as to Ga atoms showing a violation of chemical ordering in GeS{sub 2}–Ga{sub 2}S{sub 3} glasses. Analysis of the corner- and edge-sharing between [GeS{sub 4/2}] units revealed that about 30% of germanium atoms participate in the edge-shared tetrahedra. - Highlights: • Structural models of GeS{sub 2}–Ga{sub 2}S{sub 3} glasses consistent with XRD + EXAFS data are created. • Chemical order is respected but Ga–Ga bonds are present caused by S-deficiency. • The coordination number of Ga is 3.7 ± 0.3. • The frequency and geometry of corner/edge-sharing [GeS{sub 4/2}] units were determined.

  3. Heterozygous inactivation of tsc2 enhances tumorigenesis in p53 mutant zebrafish

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2013-07-01

    Tuberous sclerosis complex (TSC is a multi-organ disorder caused by mutations of the TSC1 or TSC2 genes. A key function of these genes is to inhibit mTORC1 (mechanistic target of rapamycin complex 1 kinase signaling. Cells deficient for TSC1 or TSC2 have increased mTORC1 signaling and give rise to benign tumors, although, as a rule, true malignancies are rarely seen. In contrast, other disorders with increased mTOR signaling typically have overt malignancies. A better understanding of genetic mechanisms that govern the transformation of benign cells to malignant ones is crucial to understand cancer pathogenesis. We generated a zebrafish model of TSC and cancer progression by placing a heterozygous mutation of the tsc2 gene in a p53 mutant background. Unlike tsc2 heterozygous mutant zebrafish, which never exhibited cancers, compound tsc2;p53 mutants had malignant tumors in multiple organs. Tumorigenesis was enhanced compared with p53 mutant zebrafish. p53 mutants also had increased mTORC1 signaling that was further enhanced in tsc2;p53 compound mutants. We found increased expression of Hif1-α, Hif2-α and Vegf-c in tsc2;p53 compound mutant zebrafish compared with p53 mutant zebrafish. Expression of these proteins probably underlies the increased angiogenesis seen in compound mutant zebrafish compared with p53 mutants and might further drive cancer progression. Treatment of p53 and compound mutant zebrafish with the mTORC1 inhibitor rapamycin caused rapid shrinkage of tumor size and decreased caliber of tumor-associated blood vessels. This is the first report using an animal model to show interactions between tsc2, mTORC1 and p53 during tumorigenesis. These results might explain why individuals with TSC rarely have malignant tumors, but also suggest that cancer arising in individuals without TSC might be influenced by the status of TSC1 and/or TSC2 mutations and be potentially treatable with mTORC1 inhibitors.

  4. Differences and similarities in the photoregulation of gibberellin metabolism between rice and dicots.

    Science.gov (United States)

    Hirose, Fumiaki; Inagaki, Noritoshi; Takano, Makoto

    2013-03-01

    In rice seedlings, elongation of leaf sheaths is suppressed by light stimuli. The response is mediated by two classes of photoreceptors, phytochromes and cryptochromes. However, it remains unclear how these photoreceptors interact in the process. Our recent study using phytochrome mutants and novel cryptochrome RNAi lines revealed that cryptochromes and phytochromes function cooperatively, but independently to reduce active GA contents in seedlings in visible light. Blue light captured by cryptochrome 1 (cry1a and cry1b) induces robust expression of GA 2-oxidase genes (OsGA2ox4-7). In parallel, phytochrome B with auxiliary action of phytochrome A mediates repression of GA 20-oxidase genes (OsGA20ox2 and OsGA20ox4). The independent effects cumulatively reduce active GA contents, leading to a suppression of leaf sheath elongation. These regulatory mechanisms are distinct from phytochrome B function in dicots. We discuss reasons why the distinct system appeared in rice, and advantages of the rice system in early photomorphogenesis.

  5. Cadophora malorum Cs-8-1 as a new fungal strain producing gibberellins isolated from Calystegia soldanella.

    Science.gov (United States)

    You, Young-Hyun; Yoon, Hyeokjun; Kang, Sang-Mo; Woo, Ju-Ri; Choo, Yeon-Sik; Lee, In-Jung; Shin, Jae-Ho; Kim, Jong-Guk

    2013-07-01

    Fourteen endophytic fungi with different colony morphologies were isolated from the roots of Calystegia soldanella. Endophytic fungi isolated from C. soldanella were identified by internal transcribed spacer (ITS) region. To verify plant growth promotion (PGP), culture filtrates of isolated endophytic fungi were treated in Waito-c rice (WR) and C. soldanella seedlings. Culture filtrates of Cs-8-1 fungal strain had advanced PGP activity. The presence of physiologically bioactive gibberellins (GA) GA(1) (1.213 ng ml(-1)), GA(3) (1.292 ng ml(-1)), GA(4) (3.6 ng ml(-1)), GA(7) (1.328 ng ml(-1)), other inactive GA(9) (0.796 ng ml(-1)) and GA(12) (0.417 ng ml(-1)), GA(20) (0.302 ng ml(-1)), GA(24) (1.351 ng ml(-1)), GA(34) (0.076 ng ml(-1)), and GA(53) (0.051 ng ml(-1)) in culture filtrates of Cs-8-1 fungal strain was detected. The Cs-8-1 fungal strain was confirmed as a producer of GAs. Molecular analysis of sequences showed high similarity of 99% to Cadophora malorum. Consequentially, the Cs-8-1 fungal strain was identified as a new C. malorum producing GAs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nature of mutants induced by ionizing radiation in cultured hamster cells. III. Molecular characterization of HPRT-deficient mutants induced by. gamma. -rays or. cap alpha. -particles showing that the majority have deletions of all or part of the hprt gene

    Energy Technology Data Exchange (ETDEWEB)

    Thacker, J

    1986-05-01

    DNA from 58 independent HPRT-deficient mutants of V79 hamster cells induced by ionizing radiation was analysed by Southern blot hybridization to a full-length hamster hprt cDNA. About half of the ..gamma..-ray-induced mutants (20/43) were apparently total gene deletions, because they lacked all functional hprt gene sequences hybridizing to the cDNA probe. Another 10 mutants showed various partial deletions and/or rearrangements of the hprt gene. The remaining 13 mutants showed no detectable change in comparison to the structure of the normal gene, which correlated well with previous characterization of these mutants indicating that most carry point mutations in the hprt gene. Thus, 70% or more of radiation-induced HPRT-deficient mutants arise through large genetic changes, especially deletions of all or part of the hprt gene. 16 references, 4 figures, 1 table.

  7. Effect of salt on a thermosensitive mutant of Bacillus subtilis deficient in uracil and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, N; Nagai, K; Tamura, G

    1976-01-01

    A thermosensitive uracil requiring mutant of Bacillus subtilis Marburg 168 thy trp/sub 2/ ts42 was examined as to the colony forming ability at the permissive and nonpermissive temperatures. The viability of the mutant cells decreased rapidly at the restrictive temperature in the modified Woese's (MW) medium. However, the cells retained viability when sodium succinate or potassium chloride was added to the medium at that temperature although uracil deficiency was unchanged. A little but significant incorporation of adenine-8-/sup 14/C into RNA still continued even after the incorporation of N-acetyl-/sup 3/H-D-glucosamine into acid insoluble fraction of the cells terminated in the MW medium at 48/sup 0/C. Both incorporations as well as increase of absorbance were slowed down in the presence of sodium succinate at 48/sup 0/C. This mutant, ts-42, was more sensitive to deoxycholate (DOC) than the parent strain. The restoration of colony forming ability after the temperature shift back to 37/sup 0/C was suppressed by the addition of DOC to the medium. However, the cell became resistant to DOC when uracil was added to the medium prior to the temperature shift.

  8. Action of Gibberellins on Growth and Metabolism of Arabidopsis Plants Associated with High Concentration of Carbon Dioxide1[W

    Science.gov (United States)

    Ribeiro, Dimas M.; Araújo, Wagner L.; Fernie, Alisdair R.; Schippers, Jos H.M.; Mueller-Roeber, Bernd

    2012-01-01

    Although the positive effect of elevated CO2 concentration [CO2] on plant growth is well known, it remains unclear whether global climate change will positively or negatively affect crop yields. In particular, relatively little is known about the role of hormone pathways in controlling the growth responses to elevated [CO2]. Here, we studied the impact of elevated [CO2] on plant biomass and metabolism in Arabidopsis (Arabidopsis thaliana) in relation to the availability of gibberellins (GAs). Inhibition of growth by the GA biosynthesis inhibitor paclobutrazol (PAC) at ambient [CO2] (350 µmol CO2 mol−1) was reverted by elevated [CO2] (750 µmol CO2 mol−1). Thus, we investigated the metabolic adjustment and modulation of gene expression in response to changes in growth of plants imposed by varying the GA regime in ambient and elevated [CO2]. In the presence of PAC (low-GA regime), the activities of enzymes involved in photosynthesis and inorganic nitrogen assimilation were markedly increased at elevated [CO2], whereas the activities of enzymes of organic acid metabolism were decreased. Under ambient [CO2], nitrate, amino acids, and protein accumulated upon PAC treatment; however, this was not the case when plants were grown at elevated [CO2]. These results suggest that only under ambient [CO2] is GA required for the integration of carbohydrate and nitrogen metabolism underlying optimal biomass determination. Our results have implications concerning the action of the Green Revolution genes in future environmental conditions. PMID:23090585

  9. An unusual spliced variant of DELLA protein, a negative regulator of gibberellin signaling, in lettuce.

    Science.gov (United States)

    Sawada, Yoshiaki; Umetsu, Asami; Komatsu, Yuki; Kitamura, Jun; Suzuki, Hiroyuki; Asami, Tadao; Fukuda, Machiko; Honda, Ichiro; Mitsuhashi, Wataru; Nakajima, Masatoshi; Toyomasu, Tomonobu

    2012-01-01

    DELLA proteins are negative regulators of the signaling of gibberellin (GA), a phytohormone regulating plant growth. DELLA degradation is triggered by its interaction with GID1, a soluble GA receptor, in the presence of bioactive GA. We isolated cDNA from a spliced variant of LsDELLA1 mRNA in lettuce, and named it LsDELLA1sv. It was deduced that LsDELLA1sv encodes truncated LsDELLA1, which has DELLA and VHYNP motifs at the N terminus but lacks part of the C-terminal GRAS domain. The recombinant LsDELLA1sv protein interacted with both Arabidopsis GID1 and lettuce GID1s in the presence of GA. A yeast two-hybrid assay suggested that LsDELLA1sv interacted with LsDELLA1. The ratio of LsDELLA1sv to LsDELLA1 transcripts was higher in flower samples at the late reproductive stage and seed samples (dry seeds and imbibed seeds) than in the other organ samples examined. This study suggests that LsDELLA1sv is a possible modulator of GA signaling in lettuce.

  10. Energetics of cellular repair processes in a respiratory-deficient mutant of yeast

    International Nuclear Information System (INIS)

    Jain, V.K.; Gupta, I.; Lata, K.

    1982-01-01

    Repair of potentially lethal damage induced by cytoxic agents like UV irradiation (254 nm), psorelen-plus-UVA (365 mn), and methyl methanesulfonate has been studied in the presence of a glucose analog, 2-deoxy-D-glucose, in yeast cells. Simultaneously, effects of 2-deoxy-D-glucose were also investigated on parameters of energy metabolism like glucose utilization, rate of ATP production, and ATP content of cells. The following results were obtained. (i) 2-Deoxy-D-glucose is able to inhibit repair of potentially lethal damage induced by all the cytotoxic agents tested. The 2-deoxy-D-glucose-induced inhibition of repair depends upon the type of lesion and the pattern of cellular energy metabolism, the inhibition being greater in respiratory-deficient mutants than in the wild type. (ii) A continuous energy flow is necessary for repair of potentially lethal damage in yeast cells. Energy may be supplied by the glycolytic and/or the respiratory pathway; respiratory metabolism is not essential for this purpose. (iii) The magnitude of repair correlates with the rate of ATP production in a sigmoid manner

  11. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice.

    Science.gov (United States)

    Ayano, Madoka; Kani, Takahiro; Kojima, Mikiko; Sakakibara, Hitoshi; Kitaoka, Takuya; Kuroha, Takeshi; Angeles-Shim, Rosalyn B; Kitano, Hidemi; Nagai, Keisuke; Ashikari, Motoyuki

    2014-10-01

    Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  12. DNA repair in DNA-polymerase-deficient mutants of Escherichia coli

    International Nuclear Information System (INIS)

    Smith, D.W.; Tait, R.C.; Harris, A.L.

    1975-01-01

    Escherichia coli mutants deficient in DNA polymerase I, in DNA polymerases I and II, or in DNA polymerase III can efficiently and completely execute excision-repair and postreplication repair of the uv-damaged DNA at 30 0 C and 43 0 C when assayed by alkaline sucrose gradients. Repair by Pol I - and Pol I - , Pol II - cells is inhibited by 1-β-D-arabinofuranosylcytosine (araC) at 43 0 C but not at 30 0 C, whereas that by Pol III - cells is insensitive to araC at any temperature. Thus, either Pol I or Pol III is required for complete and efficient repair, and in their absence Pol II mediates a limited, incomplete dark repair of uv-damaged DNA

  13. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency

    OpenAIRE

    Garone, Caterina; Garc??a-D??az, Beatriz; Emmanuele, Valentina; L??pez Garc??a, Luis Carlos; Tadesse, Saba; Akman, Hasan O.; Tanji, Kurenai; Quinzii, Catarina M.; Hirano, Michio

    2014-01-01

    Autosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2 −/− ) knock-in mouse model from postnatal day 4, when mutant mice are phenotypically normal, but biochemically affected. Assessment of 13-day-...

  14. Expression of OsSPY and 14-3-3 genes involved in plant height variations of ion-beam-induced KDML 105 rice mutants

    Energy Technology Data Exchange (ETDEWEB)

    Phanchaisri, Boonrak [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Samsang, Nuananong [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, Liang Deng; Singkarat, Somsorn [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, Somboon, E-mail: soanu.1@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2012-06-01

    The culm length of two semidwarf rice mutants (PKOS1, HyKOS1) obtained from low-energy N-ion beam bombardments of dehusked Thai jasmine rice (Oryza sativa L. cv. KDML 105) seeds showed 25.7% and 21.5% height reductions and one spindly rice mutant (TKOS4) showed 21.4% increase in comparison with that of the KDML 105 control. A cDNA-RAPD analysis identified differential gene expression in internode tissues of the rice mutants. Two genes identified from the cDNA-RAPD were OsSPY and 14-3-3, possibly associated with stem height variations of the semidwarf and spindly mutants, respectively. The OsSPY gene encoded the SPY protein which is considered to be a negative regulator of gibberellin (GA). On the other hand, the 14-3-3 encoded a signaling protein which can bind and prevent the RSG (repression of shoot growth) protein function as a transcriptional repressor of the kaurene oxidase (KO) gene in the GA biosynthetic pathway. Expression analysis of OsSPY, 14-3-3, RSG, KO, and SLR1 was confirmed in rice internode tissues during the reproductive stage of the plants by semi-quantitative RT-PCR technique. The expression analysis showed a clear increase of the levels of OsSPY transcripts in PKOS1 and HyKOS1 tissue samples compared to that of the KDML 105 and TKOS4 samples at the age of 50-60 days which were at the ages of internode elongation. The 14-3-3 expression had the highest increase in the TKOS4 samples compared to those in KDML 105, PKOS1 and HyKOS1 samples. The expression analysis of RSG and KO showed an increase in TKOS4 samples compared to that of the KDML 105 and that of the two semidwarf mutants. These results indicate that changes of OsSPY and 14-3-3 expression could affect internode elongation and cause the phenotypic changes of semidwarf and spindly rice mutants, respectively.

  15. Expression of OsSPY and 14-3-3 genes involved in plant height variations of ion-beam-induced KDML 105 rice mutants

    International Nuclear Information System (INIS)

    Phanchaisri, Boonrak; Samsang, Nuananong; Yu, Liang Deng; Singkarat, Somsorn; Anuntalabhochai, Somboon

    2012-01-01

    The culm length of two semidwarf rice mutants (PKOS1, HyKOS1) obtained from low-energy N-ion beam bombardments of dehusked Thai jasmine rice (Oryza sativa L. cv. KDML 105) seeds showed 25.7% and 21.5% height reductions and one spindly rice mutant (TKOS4) showed 21.4% increase in comparison with that of the KDML 105 control. A cDNA-RAPD analysis identified differential gene expression in internode tissues of the rice mutants. Two genes identified from the cDNA-RAPD were OsSPY and 14-3-3, possibly associated with stem height variations of the semidwarf and spindly mutants, respectively. The OsSPY gene encoded the SPY protein which is considered to be a negative regulator of gibberellin (GA). On the other hand, the 14-3-3 encoded a signaling protein which can bind and prevent the RSG (repression of shoot growth) protein function as a transcriptional repressor of the kaurene oxidase (KO) gene in the GA biosynthetic pathway. Expression analysis of OsSPY, 14-3-3, RSG, KO, and SLR1 was confirmed in rice internode tissues during the reproductive stage of the plants by semi-quantitative RT-PCR technique. The expression analysis showed a clear increase of the levels of OsSPY transcripts in PKOS1 and HyKOS1 tissue samples compared to that of the KDML 105 and TKOS4 samples at the age of 50–60 days which were at the ages of internode elongation. The 14-3-3 expression had the highest increase in the TKOS4 samples compared to those in KDML 105, PKOS1 and HyKOS1 samples. The expression analysis of RSG and KO showed an increase in TKOS4 samples compared to that of the KDML 105 and that of the two semidwarf mutants. These results indicate that changes of OsSPY and 14-3-3 expression could affect internode elongation and cause the phenotypic changes of semidwarf and spindly rice mutants, respectively.

  16. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-02-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato.

    Science.gov (United States)

    Fos, Mariano; Proaño, Karina; Nuez, Fernando; García-Martínez, José L.

    2001-04-01

    The role of gibberellins (GAs) in the induction of parthenocarpic fruit-set and growth by the pat-3/pat-4 genetic system in tomato (Lycopersicon esculentum Mill.) was investigated using wild type (WT; Cuarenteno) and a near-isogenic line derived from the German line RP75/59 (the source of pat-3/pat-4 parthenocarpy). Unpollinated WT ovaries degenerated but GA3 application induced parthenocarpic fruit growth. On the contrary, parthenocarpic growth of pat-3/pat-4 fruits, which occurs in the absence of pollination and hormone treatment, was not affected by applied GA3. Unpollinated pat-3/pat-4 fruit growth was negated by paclobutrazol, an inhibitor of ent-kaurene oxidase, and this inhibitory effect was negated by GA3. The quantification of the main GAs of the early 13-hydroxylation pathway (GA1, GA8, GA19, GA20, GA29 and GA44) in unpollinated ovaries at 3 developmental stages (flower bud, FB; pre-anthesis, PR; and anthesis, AN), by gas chromatography-selected ion monitoring, showed that the concentration of most of them was higher in pat-3/pat-4 than in WT ovaries at PR and AN stages. The concentration of GA1, suggested previously to be the active GA in tomate, was 2-4 times higher. Unpollinated pat-3/pat-4 ovaries at FB, PR and AN stages also contained relatively high amounts (5-12 ng g-1) of GA3, a GA found at less than 0.5 ng g-1 in WT ovaries. It is concluded that the mutations pat-3/pat-4 may induce natural facultative parthenocarpy capacity in tomato by increasing the concentration of GA1 and GA3 in the ovaries before pollination.

  18. Intrinsic ZnO films fabricated by DC sputtering from oxygen-deficient targets for Cu(In,Ga)Se2 solar cell application

    Institute of Scientific and Technical Information of China (English)

    Chongyin Yang; DongyunWan; Zhou Wang; Fuqiang Huang

    2011-01-01

    Intrinsic zinc oxide films, normally deposited by radio frequency (RF) sputtering, are fabricated by direct current (DC) sputtering. The oxygen-deficient targets are prepared via a newly developed double crucible method. The 800-nm-thick film obtaines significantly higher carrier mobility compareing with that of the 800-nm-thick ZnO film. This is achieved by the widely used RF sputtering, which favors the prevention of carrier recombination at the interfaces and reduction of the series resistance of solar cells. The optimal ZnO film is used in a Cu (In, Ga) Se2 (CIGS) solar cell with a high efficiency of 11.57%. This letter demonstrates that the insulating ZnO films can be deposited by DC sputtering from oxygen-deficient ZnO targets to lower the cost of thin film solar cells.%Intrinsic zinc oxide films,normally deposited by radio frequency (RF) sputtering,are fabricated by direct current (DC) sputtering.The oxygen-deficient targets are prepared via a newly developed double crucible method.The 800-nm-thick film obtaines significantly higher carrier mobility compareing with that of the 800-nm-thick ZnO film.This is achieved by the widely used RF sputtering,which favors the prevention of carrier recombination at the interfaces and reduction of the series resistance of solar cells.The optimal ZnO film is used in a Cu (In,Ga) Se2 (C1GS) solar cell with a high efficiency of 11.57%.This letter demonstrates that the insulating ZnO films can be deposited by DC sputtering from oxygen-deficient ZnO targets to lower the cost of thin film solar cells.High resistance transparent intrinsic zinc oxide (i-ZnO)thin film has been widely nsed as the front electrode in transparent electronics and photovoltaic devices because of its low cost and nontoxicity.Owing to its unique characteristics of high transparency and adjustable resistivity in a certain range,the use of i-ZnO thin films as diffusion barrier layers of a-Si/μc-Si,CdTe,and CIGS thin-film solar cells has been advantageous

  19. Identification and characterization of a gibberellin-regulated protein, which is ASR5, in the basal region of rice leaf sheaths.

    Science.gov (United States)

    Takasaki, Hironori; Mahmood, Tariq; Matsuoka, Makoto; Matsumoto, Hiroshi; Komatsu, Setsuko

    2008-04-01

    Gibberellins (GAs) regulate growth and development in higher plants. To identify GA-regulated proteins during rice leaf sheath elongation, a proteomic approach was used. Proteins from the basal region of leaf sheath in rice seedling treated with GA(3) were analyzed by fluorescence two-dimensional difference gel electrophoresis. The levels of abscisic acid-stress-ripening-inducible 5 protein (ASR5), elongation factor-1 beta, translationally controlled tumor protein, fructose-bisphosphate aldolase and a novel protein increased; whereas the level of RuBisCO subunit binding-protein decreased by GA(3) treatment. ASR5 out of these six proteins was significantly regulated by GA(3) at the protein level but not at the mRNA level in the basal region of leaf sheaths. Since this protein is regulated not only by abscisic acid but also by GA(3), these results indicate that ASR5 might be involved in plant growth in addition to stress in the basal regions of leaf sheaths.

  20. Properties of different temperature annealed Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films prepared by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhou; Liu Lian; Yan Yong; Zhang Yanxia; Li Shasha; Yan Chuanpeng; Zhang Yong [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhao Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The Cu(In,Ga)Se{sub 2} and Cu(In,Ga)2Se{sub 3.5} films follow different process to form CIGS phase. Black-Right-Pointing-Pointer Composition loss of the annealed Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films are different. Black-Right-Pointing-Pointer Hexagonal CuSe phase exhibits unique transport feature. Black-Right-Pointing-Pointer Conductivity of the CIGS films is affected by the 'variable range hopping' mechanism. - Abstract: We have investigated the effect of annealing temperature on structural, compositional, electrical properties of the one-step RF sputtered Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films. After the annealing at various temperatures, loss of Se element is significant for the Cu(In,Ga)Se{sub 2} films and meanwhile composition of the annealed Cu(In,Ga){sub 2}Se{sub 3.5} films keeps almost constant. The as-deposited Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films show amorphous structure and they follow different transformation process to form chalcopyrite structure. Electrical conductivity of the annealed CIGS films related to their chemical composition. Cu(In,Ga)Se{sub 2} films annealed at 150 Degree-Sign C show unique electron transport mechanism for the formation of hexagonal CuSe phase. Electrical conductivity of the chalcopyrite structure films are dominated by the 'variable range hopping' transport mechanism. The annealed Cu(In,Ga){sub 2}Se{sub 3.5} films present higher density of disorders than the annealed Cu(In,Ga)Se{sub 2} films for their significant Cu deficient composition.

  1. Effect of salt on a thermosensitive mutant of Bacillus subtilis deficient in uracil and cell division

    International Nuclear Information System (INIS)

    Miyazaki, Nobuyoshi; Nagai, Kazuo; Tamura, Gakuzo

    1976-01-01

    A thermosensitive mutant ts 42, of Bacillus subtilis Marburg 168 thy trp2 which requires uracil, was examined as to the colony-forming ability at the permissive and nonpermissive temperatures. The viability of the mutant cells decreased rapidly at the restrictive temperature in modified woese's medium. However, the cells retained the viability when sodium succinate or potassium chloride was added to the medium at that temperature, although uranil deficiency was unchanged. A little but significant incorporation of adenine-8- 14 C into RNA still continued even after the incorporation of N-acetyl- 3 H-D-glucosamine into the acid-insoluble fraction of the cells terminated in the modified Woese's medium at 48 0 C. Both incorporations as well as the increase of absorbance were slowed down in the presence of sodium succinate at 48 0 C. This mutant, ts42, was more sensitive to deoxycholate than the parent wild strain. The resoration of the colony-forming ability after the temperature shifted back from 48 0 to 37 0 C was suppressed by the addition of deoxycholate to the medium. However, the cells became resistant to deoxycholate when uracil had been added to the medium prior to the temperature shift. (Kobatake, H.)

  2. Two new Np--Ga phases: α-NpGa2 and metastable m-NpGa2

    International Nuclear Information System (INIS)

    Giessen, B.C.; Elliott, R.O.

    1976-01-01

    Following an earlier study of metastable Np-rich Np--Ga alloys, rapidly quenched Np--Ga alloys with 63 to 80 at. pct. Ga were prepared and studied. Two new NpGa 2 phases, both with an AlB 2 type structure, were found: α-NpGa 2 , with a = 4.246A, c = 4.060A, c/a = 0.956, and m-NpGa 2 , with a = 4.412A, c = 3.642A, c/a = 0.825. While m-NpGa 2 was observed only in very fast quenched (splat cooled) samples and appears to be metastable, α-NpGa 2 is probably an equilibrium phase. In a splat cooled alloy with 75 at. pct. Ga, another, unidentified, metastable phase was observed. Crystal chemical discussions of atomic volumes, interatomic distances and axial ratios are given; the volume difference between the two forms of NpGa 2 is correlated with a valence change of Np

  3. Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in Lotus japonicus1

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-01-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. PMID:25527715

  4. Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency.

    Science.gov (United States)

    Navarro-León, Eloy; Albacete, Alfonso; Torre-González, Alejandro de la; Ruiz, Juan M; Blasco, Begoña

    2016-10-01

    Phytohormones, structurally diverse compounds, are involved in multiple processes within plants, such as controlling plant growth and stress response. Zn is an essential micronutrient for plants and its deficiency causes large economic losses in crops. Therefore, the purpose of this study was to analyse the role of phytohormones in the Zn-deficiency response of two economically important species, i.e. Lactuca sativa and Brassica oleracea. For this, these two species were grown hydroponically with different Zn-application rates: 10 μM Zn as control and 0.1 μM Zn as deficiency treatment and phytohormone concentration was determined by U-HPLC-MS. Zn deficiency resulted in a substantial loss of biomass in L. sativa plants that was correlated with a decline in growth-promoting hormones such as indole-3-acetic acid (IAA), cytokinins (CKs), and gibberellins (GAs). However these hormones increased or stabilized their concentrations in B. oleracea and could help to maintain the biomass in this species. A lower concentration of stress-signaling hormones such as ethylene precursor aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) and also CKs might be involved in Zn uptake in L. sativa while a rise in GA4, isopentenyl adenine (iP), and ACC and a fall in JA and SA might contribute to a better Zn-utilization efficiency (ZnUtE), as observed in B. oleracea plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis.

    Science.gov (United States)

    Falbel, T G; Meehl, J B; Staehelin, L A

    1996-10-01

    Analyses of a series of allelic chlorina mutants of wheat (Triticum aestivum L.), which have partial blocks in chlorophyll (Chl) synthesis and, therefore, a limited Chl supply, reinforce the principle that Chl is required for the stable accumulation of Chl-binding proteins and that only reaction centers accumulate when the supply of Chl is severely limited. Depending on the rate of Chl accumulation (determined by the severity of the mutation) and on the rate of turnover of Chl and its precursors (determined by the environment in which the plant is grown), the mutants each reach an equilibrium of Chl synthesis and degradation. Together these mutants generate a spectrum of phenotypes. Under the harshest conditions (high illumination), plants with moderate blocks in Chl synthesis have membranes with very little Chl and Chl-proteins and membrane stacks resembling the thylakoids of the lethal xantha mutants of barely grown at low to medium light intensities (which have more severe blocks). In contrast, when grown under low-light conditions the same plants with moderate blocks have thylakoids resembling those of the wild type. The wide range of phenotypes of Chl b-deficient mutants has historically produced more confusion than enlightenment, but incomparable growth conditions can now explain the discrepancies reported in the literature.

  6. Rice Ovate Family Protein 2 (OFP2) alters hormonal homeostasis and vasculature development.

    Science.gov (United States)

    Schmitz, Aaron J; Begcy, Kevin; Sarath, Gautam; Walia, Harkamal

    2015-12-01

    OFP (Ovate Family Protein) is a transcription factor family found only in plants. In dicots, OFPs control fruit shape and secondary cell wall biosynthesis. OFPs are also thought to function through interactions with KNOX and BELL transcription factors. Here, we have functionally characterized OsOFP2, a member of the OFP subgroup associated with regulating fruit shape. OsOFP2 was found to localize to the nucleus and to the cytosol. A putative nuclear export signal was identified within the OVATE domain and was required for the localization of OsOFP2 to distinct cytosolic spots. Rice plants overexpressing OsOFP2 were reduced in height and exhibited altered leaf morphology, seed shape, and positioning of vascular bundles in stems. Transcriptome analysis indicated disruptions of genes associated with vasculature development, lignin biosynthesis, and hormone homeostasis. Reduced expression of the gibberellin biosynthesis gene GA 20-oxidase 7 coincided with lower gibberellin content in OsOFP2 overexpression lines. Also, we found that OsOFP2 was expressed in plant vasculature and determined that putative vascular development KNOX and BELL proteins interact with OsOFP2. KNOX and BELL genes are known to suppress gibberellin biosynthesis through GA20ox gene regulation and can restrict lignin biosynthesis. We propose that OsOFP2 could modulate KNOX-BELL function to control diverse aspects of development including vasculature development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit.

    Science.gov (United States)

    Ding, Yang; Zhao, Jinhong; Nie, Ying; Fan, Bei; Wu, Shujuan; Zhang, Yu; Sheng, Jiping; Shen, Lin; Zhao, Ruirui; Tang, Xuanming

    2016-11-02

    Effects of salicylic acid (SA) on gibberellin (GA) homeostasis, C-repeat/dehydration-responsive element binding factor (CBF) pathway, and antioxidant enzyme systems linked to chilling- and oxidative-stress tolerance in tomato fruit were investigated. Mature green tomatoes (Solanum lycopersicum L. cv. Moneymaker) were treated with 0, 0.5, and 1 mM SA solution for 15 min before storage at 4 °C for 28 days. In comparison to 0 or 0.5 mM SA, 1 mM SA significantly decreased the chilling injury (CI) index in tomato fruit. In the SA-treated fruit, the upregulation of GA biosynthetic gene (GA3ox1) expression was followed by gibberellic acid (GA 3 ) surge and DELLA protein degradation. CBF1 participated in the SA-modulated tolerance and stimulated the expression of GA catabolic gene (GA2ox1). Furthermore, 1 mM SA enhanced activities of antioxidant enzymes and, thus, reduced reactive oxygen species accumulation. Our findings suggest that SA might protect tomato fruit from CI and oxidative damage through regulating GA metabolism, CBF1 gene expression, and antioxidant enzyme activities.

  8. Ca2Cr0.5Ga1.5O5—An extremely redox-stable brownmillerite phase

    International Nuclear Information System (INIS)

    Luo, Kun; Amano Patino, Midori; Hayward, Michael A.

    2015-01-01

    Investigation of the Ca 2 Cr x Ga 2−x O 5 compositional series reveals a maximum chromium solubility of 25%. The most chromium rich composition, Ca 2 Cr 0.5 Ga 1.5 O 5 , adopts a brownmillerite-type anion deficient perovskite structure described in space group Pnma (a=5.368 Å, b=14.547 Å, c=5.593 Å). Neutron powder diffraction data reveals rigorous B-site cation order, with all of the tetrahedral coordination sites occupied exclusively by gallium and the octahedral coordination sites occupied by gallium or chromium. Annealing studies reveals Ca 2 Cr 0.5 Ga 1.5 O 5 is stable in both oxidizing (100% O 2 ) and reducing (5% H 2 in N 2 ) conditions up to 800 °C, suggesting it could find application as a stable host lattice for fuel cell electrodes or electrolytes with suitable doping to enhance catalytic behaviour and/or anionic conductivity. - Graphical abstract: Ca 2 Cr 0.5 Ga 1.5 O 5 , adopts a brownmillerite-type anion deficient perovskite structure yet it is stable in both oxidizing (100% O 2 ) and reducing (5% H 2 in N 2 ) conditions up to 800 °C. - Highlights: • Anion deficient oxide stable to both oxidation and reduction up to 800 °C. • Cation-ordered brownmillerite structure determined by powder neutron diffraction. • Low solubility of Cr 3+ in framework due to spherical d 3 electron configuration

  9. Helminthosporic acid functions as an agonist for gibberellin receptor

    OpenAIRE

    Miyazaki, Sho; Jiang, Kai; Kobayashi, Masatomo; Asami, Tadao; Nakajima, Masatoshi

    2017-01-01

    Helminthosporol was isolated from a fungus, Helminthosporium sativum, as a natural plant growth regulator in 1963. It showed gibberellin-like bioactivity that stimulated the growth of the second leaf sheath of rice. After studying the structure–activity relationship between the compound and some synthesized analogs, it was found that helminthosporic acid (H-acid) has higher gibberellin-like activity and chemical stability than helminthosporol. In this study, we showed that (1) H-acid displays...

  10. Gibberellins Promote Brassinosteroids Action and Both Increase Heterosis for Plant Height in Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Songlin Hu

    2017-06-01

    Full Text Available Brassinosteroids (BRs and Gibberellins (GAs are two classes of plant hormones affecting plant height (PHT. Thus, manipulation of BR and GA levels or signaling enables optimization of crop grain and biomass yields. We established backcross (BC families, selected for increased PHT, in two elite maize inbred backgrounds. Various exotic accessions used in the germplasm enhancement in maize project served as donors. BC1-derived doubled haploid lines in the same two elite maize inbred backgrounds established without selection for plant height were included for comparison. We conducted genome-wide association studies to explore the genetic control of PHT by BR and GA. In addition, we used BR and GA inhibitors to compare the relationship between PHT, BR, and GA in inbred lines and heterozygotes from a physiological and biological perspective. A total of 73 genomic loci were discovered to be associated with PHT, with seven co-localized with GA, and two co-localized with BR candidate genes. PHT determined in field trials was significantly correlated with seedling stage BR and GA inhibitor responses. However, this observation was only true for maize heterozygotes, not for inbred lines. Path analysis results suggest that heterozygosity increases GA levels, which in turn promote BR levels. Thus, at least part of heterosis for PHT in maize can be explained by increased GA and BR levels, and seedling stage hormone inhibitor response is promising to predict heterosis for PHT.

  11. Role of gibberellins and cytokinins in regulation of germination during development and ripening of Triticale caryopses

    Directory of Open Access Journals (Sweden)

    Stanisław Weidner

    2014-01-01

    Full Text Available The germination of caryopses of M-T3 Triticale generation, which were freshly harvested in different growth and developmental phases has been studied. A significant influence of the abscisic acid (ABA accumulation on the increment of number of germinating caryopses has been found. Already in the first phase af the embryogenesis considerable stimulating effects of kinetin and gibberellin-A3 (GA3 on the germination of embryos which were isolated from freshly collected grains have been shown. When both stimulators were used together marked synergetic reaction occurred. It has been also determined that in the initial period of embryogensis premature germination occurs, to a higher extent, under the action of cytokinins than! Whether in the further phases of the caryopse development, when embryo develop mainly through the cell elongation, mostly gibberellins seem to be responsible for the activation of germination processes. The more mature were seeds the quicker germinated whole caryopses and embryos isolated from them at different ripeness, after 3-month storage. The highest stimulation of germination by phytohormones has been found for the most mature caryopses. The action of gibberellic acid has been particulary strong.

  12. Interaction of a gibberellin-induced factor with the upstream region of an alpha-amylase gene in rice aleurone tissue.

    OpenAIRE

    Ou-Lee, T M; Turgeon, R; Wu, R

    1988-01-01

    The interaction between the DNA sequences of an alpha-amylase (EC 3.2.1.1) gene and a tissue-specific factor induced in rice (Oryza sativa L.) aleurone tissue by gibberellin was studied. DNA mobility-shift during electrophoresis indicated that a 500-base-pair sequence (HS500) of a rice alpha-amylase genomic clone (OSamy-a) specifically interacted with a factor from gibberellin-induced rice aleurone tissue. The amount of complex formed between the HS500 DNA fragment and the gibberellin-induced...

  13. Productive mutants of niger

    International Nuclear Information System (INIS)

    Misra, R.C.

    2001-01-01

    Seeds of six niger (Guizotia abyssinica Cass.) varieties ('GA-10', 'ONS-8', 'IGP-72', 'N-71', 'NB-9' and 'UN-4') were treated with 0.5, 0.75 and 1% ethyl methanesulphonate. After four generations of selection, 29 mutant lines were developed and those were evaluated from 1990-92 during Kharif (July to October) and Rabi (December to March) seasons. Average plant characteristics and yield data of four high yielding mutants along with 'IGP-76' (National Check), GA-10 (Zonal Check) and 'Semiliguda Local' (Local Check) are presented

  14. Changes in endogenous gibberellin-like substances in onion bulbs (Allium cepa L. cv. Sochaczewska during storage

    Directory of Open Access Journals (Sweden)

    Elżbieta Kielak

    2013-12-01

    Full Text Available Onions cv. Sochaczewska were dried up under an umbrella roof till October 15th or till November 15th and thereafter stored in a cold room at 0-1°C until May 15th. During 4-year of experiment gibberellin activity was determined each month during storage. Three periods of high activity of gibberellins were found in most cases: in December, in February-March and in late spring. In general, onions dried longer (till November 15th, showed lower gibberellin activity than onions dried shorter. Gibberellin-like substances under investigation are localized in almost all Rf zones of chromatogram. Sprouting and rooting was related to gibberellin activity.

  15. Evaluation of semi-dwarf mutants in triticale and wheat breeding programmes

    International Nuclear Information System (INIS)

    Driscoll, C.J.

    1982-01-01

    A number of short-statured triticale plants were selected in M 4 following gamma-ray or EMS treatment of seed of Beagle and DR-IRA triticales. Selection for homozygous mutants will be attempted in M 5 . The Cornerstone male sterility mutant mslc is being combined with the three GA-insensitive, reduced-height mutants Gai/Rht1, Gai/Rht2 and Gai/Rht3 in order to establish a composite cross based on homozygosity of a given Gai/Rht allele. This would allow selection for minor genes for increased height on a GA-insensitive, reduced-height background. (author)

  16. Growth of GaN layers using Ga2O vapor obtained from Ga and H2O vapor

    International Nuclear Information System (INIS)

    Sumi, Tomoaki; Taniyama, Yuuki; Takatsu, Hiroaki; Juta, Masami; Kitamoto, Akira; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke; Isemura, Masashi

    2015-01-01

    In this study, we performed growth of GaN layers using Ga 2 O vapor synthesized from Ga and H 2 O vapor. In this process, we employed H 2 O vapor instead of HCl gas in hydride vapor phase epitaxy (HVPE) to synthesize Ga source gas. In the synthesis reaction of Ga 2 O, a Ga 2 O 3 whisker formed and covered Ga, which impeded the synthesis reaction of Ga 2 O. The formation of the Ga 2 O 3 whisker was suppressed in H 2 ambient at high temperatures. Then, we adopted this process to supply a group III precursor and obtained an epitaxial layer. X-ray diffraction (XRD) measurement revealed that the epitaxial layer was single-crystalline GaN. Growth rate increased linearly with Ga 2 O partial pressure and reached 104 µm/h. (author)

  17. Cell size and cell number in dwarf mutants of barley (Hordeum vulgare)

    International Nuclear Information System (INIS)

    Blonstein, A.D.; Gale, M.D.

    1984-01-01

    Sixteen height mutants, induced by sodium azide treatment of the two-rowed barley variety Proctor, have been used to investigate the relationship between the extent and nature of stem shortening with alterations in cell size and cell number, and the pleiotropic effects of dwarfing genes on vegetative development and agronomic performance. The studies on epidermal cell number and cell length in the developmentally earliest and latest elongated vegetative tissues - the coleoptile and peduncle resprectively - suggest that cell number may be the primary determinant of plant height. One semi-prostrate and one erectoides mutant are used to illustrate different cell number/cell size strategies and their relationships with gibberellin sensitivity, growth rate and lodging resistance are discussed. (author)

  18. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    Science.gov (United States)

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  19. Gibberellin mediates daylength-controlled differentiation of vegetative meristems in strawberry (Fragaria × ananassa Duch

    Directory of Open Access Journals (Sweden)

    Moritz Thomas

    2009-02-01

    Full Text Available Abstract Background Differentiation of long and short shoots is an important developmental trait in several species of the Rosaceae family. However, the physiological mechanisms controlling this differentiation are largely unknown. We have studied the role of gibberellin (GA in regulation of shoot differentiation in strawberry (Fragaria × ananassa Duch. cv. Korona. In strawberry, differentiation of axillary buds to runners (long shoot or to crown branches (short shoot is promoted by long-day and short-day conditions, respectively. Formation of crown branches is a prerequisite for satisfactory flowering because inflorescences are formed from the apical meristems of the crown. Results We found that both prohexadione-calcium and short photoperiod inhibited runner initiation and consequently led to induction of crown branching. In both cases, this correlated with a similar decline in GA1 level. Exogenous GA3 completely reversed the effect of prohexadione-calcium in a long photoperiod, but was only marginally effective in short-day grown plants. However, transfer of GA3-treated plants from short days to long days restored the normal runner formation. This did not occur in plants that were not treated with GA3. We also studied GA signalling homeostasis and found that the expression levels of several GA biosynthetic, signalling and target genes were similarly affected by prohexadione-calcium and short photoperiod in runner tips and axillary buds, respectively. Conclusion GA is needed for runner initiation in strawberry, and the inhibition of GA biosynthesis leads to the formation of crown branches. Our findings of similar changes in GA levels and in GA signalling homeostasis after prohexadione-calcium and short-day treatments, and photoperiod-dependent responsiveness of the axillary buds to GA indicate that GA plays a role also in the photoperiod-regulated differentiation of axillary buds. We propose that tightly regulated GA activity may control

  20. Fruit development, pigmentation and biochemical properties of wax apple as affected by localized Application of GA3 under field conditions

    OpenAIRE

    Khandaker, Mohammad Moneruzzaman; Boyce, Amru Nasrulhaq; Osman, Normaniza; Golam, Faruq; Rahman, M. Motior; Sofian-Azirun, M.

    2013-01-01

    This study investigated the effects of gibberellin (GA3) on the fruit development, pigmentation and biochemical properties of wax apple. The wax apple trees were rubbing treated with 0, 20, 50 and 100 mgGA3/l under field conditions. The localized application (rubbing) of 50 mg GA3/l significantly increased the fruit set, fruit length and diameter, color development, weight and yieldcompared to the control. In addition, GA3 treatments significantly reduced the fruit drop. With regard to the fr...

  1. Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin.

    Science.gov (United States)

    Tanimoto, Eiichi

    2012-07-01

    Since the plant hormone gibberellin (GA) was discovered as a fungal toxin that caused abnormal elongation of rice shoots, the physiological function of GA has mainly been investigated in relation to the regulation of plant height. However, an indispensable role for GA in root growth has been elucidated by using severely GA-depleted plants, either with a gene mutation in GA biosynthesis or which have been treated by an inhibitor of GA biosynthesis. The molecular sequence of GA signalling has also been studied to understand GA functions in root growth. This review addresses research progress on the physiological functions of GA in root growth. Concentration-dependent stimulation of elongation growth by GA is important for the regulation of plant height and root length. Thus the endogenous level of GA and/or the GA sensitivity of shoots and roots plays a role in determining the shoot-to-root ratio of the plant body. Since the shoot-to-root ratio is an important parameter for agricultural production, control of GA production and GA sensitivity may provide a strategy for improving agricultural productivity. The sequence of GA signal transduction has recently been unveiled, and some component molecules are suggested as candidate in planta regulatory sites and as points for the artificial manipulation of GA-mediated growth control. This paper reviews: (1) the breakthrough dose-response experiments that show that root growth is regulated by GA in a lower concentration range than is required for shoot growth; (2) research on the regulation of GA biosynthesis pathways that are known predominantly to control shoot growth; and (3) recent research on GA signalling pathways, including GA receptors, which have been suggested to participate in GA-mediated growth regulation. This provides useful information to suggest a possible strategy for the selective control of shoot and root growth, and to explain how GA plays a role in rosette and liana plants with tall or short, and slender

  2. Examination of two lowland rice cultivars reveals that gibberellin-dependent early response to submergence is not necessarily mediated by ethylene.

    Science.gov (United States)

    Dubois, Vincent; Moritz, Thomas; García-Martínez, José L

    2011-01-01

    Using two lowland rice (Oryza sativa L.) cultivars we found that in both cases submerged-induced elongation early after germination depends on gibberellins (GAs). Submergence increases the content of the active GA 1 by enhancing the expression of GA biosynthesis genes, thus facilitating the seedlings to escape from the water and preventing asphyxiation. However, the two cultivars differ in their response to ethylene. The cultivar Senia (short), by contrast to cultivar Bomba (tall), does not elongate after ethylene application, and submerged-induced elongation is not negated by an inhibitor of ethylene perception. Also, while ethylene emanation in Senia is not altered by submergence, Bomba seedlings emanate more ethylene upon de-submergence, associated with enhanced expression of the ethylene biosynthesis gene OsACS5. The cultivar Senia thus allows the possibility of clarifying the role of ethylene and other factors as triggers of GA biosynthesis enhancement in rice seedlings under submergence.

  3. Gallium-containing Heusler phases ScRh{sub 2}Ga, ScPd{sub 2}Ga, TmRh{sub 2}Ga and LuRh{sub 2}Ga. Magnetic and solid state NMR-spectroscopic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Heletta, Lukas; Seidel, Stefan; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher [Leipzig Univ. (Germany). Inst. fuer Mineralogie, Kristallographie und Materialwissenschaften; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Sao Paulo Univ., Sao Carlos (Brazil). Inst. of Physics

    2017-10-01

    The gallium-containing Heusler phases ScRh{sub 2}Ga, ScPd{sub 2}Ga, TmRh{sub 2}Ga and LuRh{sub 2}Ga have been synthesized by arc-melting of the elements followed by different annealing sequences to improve phase purity. The samples have been studied by powder X-ray diffraction. The structures of Lu{sub 0.97}Rh{sub 2}Ga{sub 1.03} (Fm3m, a=632.94(5) pm, wR2=0.0590, 46 F{sup 2} values, seven variables) and Sc{sub 0.88}Rh{sub 2}Ga{sub 1.12} (a=618.91(4) pm, wR2=0.0284, 44 F{sup 2} values, six variables) have been refined from single crystal X-ray diffractometer data. Both gallides show structural disorder through Lu/Ga and Sc/Ga mixing. Temperature dependent magnetic susceptibility measurements showed Pauli paramagnetism for ScRh{sub 2}Ga, ScPd{sub 2}Ga, and LuRh{sub 2}Ga and Curie-Weiss paramagnetism for TmRh{sub 2}Ga. {sup 45}Sc and {sup 71}Ga solid state MAS NMR spectroscopic investigations of the Sc containing compounds confirmed the site mixing effects typically observed for Heusler phases. The data indicate that the effect of mixed Sc/Ga occupancy is significantly stronger in ScRh{sub 2}Ga than in ScPd{sub 2}Ga.

  4. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    Science.gov (United States)

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  5. The role of phytochrome A and gibberellins in growth under long and short day conditions: Studies in hybrid aspen

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, M.E. [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Forest Genetics and Plant Physiology

    2000-07-01

    This thesis addresses questions concerning the regulation of growth and, specifically, the cessation of growth in response to short days in deciduous tree species. The model tree used in the studies was hybrid aspen (Populus tremula L. x P. tremuloides Michx.). We have exploited the possibility of transforming this species to modulate the level of expression of target genes using over-expression and antisense techniques. The target genes in the studies were the photoreceptor phytochrome A (phyA) and gibberellin 20-oxidase (GA 20-oxidase), the latter being a highly regulated enzyme involved in the biosynthesis of gibberellins (GAs). The photoreceptor phyA has been implicated in photoperiodic regulation of growth, while GAs may regulate the physiological response further downstream. The endogenous expression of these genes has been investigated in parallel with studies of various plants with ectopic and reduced levels of expression. The main focus has been on the early stages of induction of growth cessation and its physiological and molecular mechanisms. Studies of hybrid aspen plants with an increased or reduced expression of phyA, show this receptor to mediate the photoperiodic regulation of growth. Plants with ectopic expression could not stop growing despite drastically shortened photoperiods, while the antisense plants showed the reverse phenotype, with a higher sensitivity resulting in earlier cessation of growth. The role of GAs in growth inhibition was also addressed using plants with a reduction in GA levels. These plants showed early cessation of growth and dormancy, and thus an increased sensitivity toward daylength. Conversely, plants with increased rates of GA biosynthesis showed increased growth and stopped growing much later. Furthermore, increases in GA biosynthesis, resulting in high levels of GAs have a major impact on growth. Plants with high GA levels have increased elongation and diameter growth, due to higher rates of cell production in the

  6. Modifying action of gibberellin on the cytogenetic effect of radiation in Crepis capillaris L

    International Nuclear Information System (INIS)

    Avakyan, V.A.; Vardanyan, A.A.

    1979-01-01

    Radioprotactive properties of gibberellin were studied during treating the Crepic capillaris seeds before irradiation. The radioprotective effect observed did not depend on the interphase stage. Gibberellin was shown to unduce no chromosome mutations

  7. A single amino acid mutation in Spo0A results in sporulation deficiency of Paenibacillus polymyxa SC2.

    Science.gov (United States)

    Hou, Xiaoyang; Yu, Xiaoning; Du, Binghai; Liu, Kai; Yao, Liangtong; Zhang, Sicheng; Selin, C; Fernando, W G D; Wang, Chengqiang; Ding, Yanqin

    2016-01-01

    Sporulating bacteria such as Bacillus subtilis and Paenibacillus polymyxa exhibit sporulation deficiencies during their lifetime in a laboratory environment. In this study, spontaneous mutants SC2-M1 and SC2-M2, of P. polymyxa SC2 lost the ability to form endospores. A global genetic and transcriptomic analysis of wild-type SC2 and spontaneous mutants was carried out. Genome resequencing analysis revealed 14 variants in the genome of SC2-M1, including three insertions and deletions (indels), 10 single nucleotide variations (SNVs) and one intrachromosomal translocation (ITX). There were nine variants in the genome of SC2-M2, including two indels and seven SNVs. Transcriptomic analysis revealed that 266 and 272 genes showed significant differences in expression in SC2-M1 and SC2-M2, respectively, compared with the wild-type SC2. Besides sporulation-related genes, genes related to exopolysaccharide biosynthesis (eps), antibiotic (fusaricidin) synthesis, motility (flgB) and other functions were also affected in these mutants. In SC2-M2, reversion of spo0A resulted in the complete recovery of sporulation. This is the first global analysis of mutations related to sporulation deficiency in P. polymyxa. Our results demonstrate that a SNV within spo0A caused the sporulation deficiency of SC2-M2 and provide strong evidence that an arginine residue at position 211 is essential for the function of Spo0A. Copyright © 2016 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.

  8. Gibberellin influence on the morphogenesis of the moss Bryum argenteum Hedw. in in vitro conditions

    OpenAIRE

    Sabovljević Aneta; Sabovljević Marko; Grubišić D.

    2010-01-01

    The moss Bryum argenteum Hedw. was treated with gibberellins as well as some inhibitors of gibberellin biosynthesis in order to investigate their influence on B. argenteum morphogenesis. Generally, gibberellins have not been chemically identified in bryophytes, while other groups of classical phytohormones (auxins, cytokinins, abscisic acid and ethylene) have been chemically identified in these plants. The in vitro culture of the moss Bryum argenteum was established from sterilized spores. Th...

  9. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa.

    Science.gov (United States)

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Asaf, Sajjad; Khan, Muhammad Aaqil; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2016-09-01

    Some microorganisms are adapted to an endophytic mode, living symbiotically with plants through vertical transmission in seeds. The role of plant growth-promoting endophytes has been well studied, but those of seed-associated endophytic bacteria are less understood. The current study aimed to isolate and identify bacterial endophytes associated with rice (Oryza sativa L. 'Jin so mi') seeds, their potential to produce gibberellins (GAs), and role in improving host-plant physiology. The isolated bacterial endophyte RWL-1 was identified as Bacillus amyloliquefaciens by using 16S rRNA sequencing and phylogenetic analysis. The pure culture of B. amyloliquefaciens RWL-1, supplied with deuterated internal standards, was subjected to gas chromatography and mass spectrometric selected ion monitoring (GC-MS/SIM) for quantification of GAs. Results showed the presence of GAs in various quantities (ng/mL) viz., GA20 (17.88 ± 4.04), GA36 (5.75 ± 2.36), GA24 (5.64 ± 2.46), GA4 (1.02 ± 0.16), GA53 (0.772 ± 0.20), GA9 (0.12 ± 0.09), GA19 (0.093 ± 0.13), GA5 (0.08 ± 0.04), GA12 (0.014 ± 0.34), and GA8 (0.013 ± 0.01). Since endogenous seed GAs are essential for prolonged seed growth and subsequent plant development, we used exogenous GA3 as a positive control and water as a negative control for comparative analysis of the application of B. amyloliquefaciens RWL-1 to rice plants. The growth parameters of rice plants treated with endophytic bacterial cell application was significantly increased compared to the plants treated with exogenous GA3 and water. This was also revealed by the significant up-regulation of endogenous GA1 (17.54 ± 2.40 ng), GA4 (310 ± 5.41 ng), GA7 (192.60 ± 3.32 ng), and GA9 (19.04 ± 2.49 ng) as compared to results of the positive and negative control treatments. Rice plants inoculated with B. amyloliquefaciens RWL-1 exhibited significantly higher endogenous salicylic acid (1615.06 ± 10.81 μg), whereas

  10. Bioconversion of Gibberellin Fermentation Residue into Feed Supplement and Organic Fertilizer Employing Housefly (Musca domestica L. Assisted by Corynebacterium variabile.

    Directory of Open Access Journals (Sweden)

    Sen Yang

    Full Text Available The accumulation of a considerable quantity of gibberellin fermentation residue (GFR during gibberellic acid A3 (GA3 production not only results in the waste of many resources, but also poses a potential hazard to the environment, indicating that the safe treatment of GFR has become an urgent issue for GA3 industry. The key to recycle GFR is converting it into an available resource and removing the GA3 residue. To this end, we established a co-bioconversion process in this study using house fly larvae (HFL and microbes (Corynebacterium variabile to convert GFR into insect biomass and organic fertilizer. About 85.5% GA3 in the GFR was removed under the following optimized solid-state fermentation conditions: 60% GFR, 40% rice straw powder, pH 8.5 and 6 days at 26 °C. A total of 371 g housefly larvae meal and 2,064 g digested residue were bio-converted from 3,500 g raw GFR mixture contaning1, 400 g rice straw in the unit of (calculated dry matter. HFL meal derived from GFR contained 56.4% protein, 21.6% fat, and several essential amino acids, suggesting that it is a potential alternative animal feed protein source. Additionally, the digested GFR could be utilized as an organic fertilizer with a content of 3.2% total nitrogen, 2.0% inorganic phosphorus, 1.3% potassium and 91.5% organic matter. This novel GFR bio-conversion method can mitigate potential environmental pollution and recycle the waste resources.

  11. Bioconversion of Gibberellin Fermentation Residue into Feed Supplement and Organic Fertilizer Employing Housefly (Musca domestica L.) Assisted by Corynebacterium variabile

    Science.gov (United States)

    Yang, Sen; Xie, Jiufeng; Hu, Nan; Liu, Yixiong; Zhang, Jiner; Ye, Xiaobin; Liu, Ziduo

    2015-01-01

    The accumulation of a considerable quantity of gibberellin fermentation residue (GFR) during gibberellic acid A3 (GA3) production not only results in the waste of many resources, but also poses a potential hazard to the environment, indicating that the safe treatment of GFR has become an urgent issue for GA3 industry. The key to recycle GFR is converting it into an available resource and removing the GA3 residue. To this end, we established a co-bioconversion process in this study using house fly larvae (HFL) and microbes (Corynebacterium variabile) to convert GFR into insect biomass and organic fertilizer. About 85.5% GA3 in the GFR was removed under the following optimized solid-state fermentation conditions: 60% GFR, 40% rice straw powder, pH 8.5 and 6 days at 26°C. A total of 371g housefly larvae meal and 2,064g digested residue were bio-converted from 3,500g raw GFR mixture contaning1, 400g rice straw in the unit of (calculated) dry matter. HFL meal derived from GFR contained 56.4% protein, 21.6% fat, and several essential amino acids, suggesting that it is a potential alternative animal feed protein source. Additionally, the digested GFR could be utilized as an organic fertilizer with a content of 3.2% total nitrogen, 2.0% inorganic phosphorus, 1.3% potassium and 91.5% organic matter. This novel GFR bio-conversion method can mitigate potential environmental pollution and recycle the waste resources. PMID:25992605

  12. Mast cell deficiency attenuates acupuncture analgesia for mechanical pain using c-kit gene mutant rats.

    Science.gov (United States)

    Cui, Xiang; Liu, Kun; Xu, Dandan; Zhang, Youyou; He, Xun; Liu, Hao; Gao, Xinyan; Zhu, Bing

    2018-01-01

    Acupuncture therapy plays a pivotal role in pain relief, and increasing evidence demonstrates that mast cells (MCs) may mediate acupuncture analgesia. The present study aims to investigate the role of MCs in acupuncture analgesia using c-kit gene mutant-induced MC-deficient rats. WsRC-Ws/Ws rats and their wild-type (WT) littermates (WsRC-+/+) were used. The number of MCs in skin of ST36 area was compared in two rats after immunofluorescence labeling. Mechanical withdrawal latency (MWL), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL) were measured on bilateral plantar for pain threshold evaluation before and after each stimulus. Acupuncture- and moxibustion-like stimuli (43°C, 46°C heat, 1 mA electroacupuncture [EA], 3 mA EA, and manual acupuncture [MA]) were applied randomly on different days. Fewer MCs were observed in the skin of ST36 in mutant rats compared to WT rats ( P 0.05). Bilateral MWL and MWT in WsRC-+/+ rats increased significantly after each stimulus compared to baseline ( P <0.01, P <0.001). In WsRC-Ws/Ws rats, only noxious stimuli could produce anti-nociceptive effects for mechanical pain (46°C, 3 mA EA, MA) ( P <0.01, P <0.001). Additionally, the net increases in MWL and MWT induced by most stimuli were greater in WT than in mutant rats ( P <0.05). For thermal nociception, either high- or low-intensity stimuli could significantly augment TWL in two rats ( P <0.001), and the net increases of TWL evoked by most stimuli were to the same extent in two genetic variants. MCs influence the basic mechanical but not thermal pain threshold. MCs participate in acupuncture analgesia in mechanical but not in thermal nociception, in that MC deficiency may attenuate the mechanical analgesia evoked by high-intensity stimuli and eliminate analgesia provoked by low-intensity stimuli.

  13. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    Science.gov (United States)

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  14. BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana.

    Science.gov (United States)

    Hindt, Maria N; Akmakjian, Garo Z; Pivarski, Kara L; Punshon, Tracy; Baxter, Ivan; Salt, David E; Guerinot, Mary Lou

    2017-07-19

    Iron (Fe) is required for plant health, but it can also be toxic when present in excess. Therefore, Fe levels must be tightly controlled. The Arabidopsis thaliana E3 ligase BRUTUS (BTS) is involved in the negative regulation of the Fe deficiency response and we show here that the two A. thaliana BTS paralogs, BTS LIKE1 (BTSL1) and BTS LIKE2 (BTSL2) encode proteins that act redundantly as negative regulators of the Fe deficiency response. Loss of both of these E3 ligases enhances tolerance to Fe deficiency. We further generated a triple mutant with loss of both BTS paralogs and a partial loss of BTS expression that exhibits even greater tolerance to Fe-deficient conditions and increased Fe accumulation without any resulting Fe toxicity effects. Finally, we identified a mutant carrying a novel missense mutation of BTS that exhibits an Fe deficiency response in the root when grown under both Fe-deficient and Fe-sufficient conditions, leading to Fe toxicity when plants are grown under Fe-sufficient conditions.

  15. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1.

    Science.gov (United States)

    Li, Xiaojie; Han, Bing; Xu, Manyu; Han, Liping; Zhao, Yanying; Liu, Zhilan; Dong, Hansong; Zhang, Chunling

    2014-04-01

    The harpin protein Hpa1 produced by the bacterial blight pathogen of rice induces several growth-promoting responses in plants, activating the ethylene signaling pathway, increasing photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby enhancing the vegetative growth. This study was attempted to analyze any mechanistic connections among the above and the role of gibberellin in these responses. Hpa1-induced growth enhancement was evaluated in Arabidopsis, tomato, and rice. And growth-promoting responses were determined mainly as an increase of chlorophyll a/b ratio, which indicates a potential elevation of photosynthesis rates, and enhancements of photosynthesis and EXP expression in the three plant species. In Arabidopsis, Hpa1-induced growth-promoting responses were partially compromised by a defect in ethylene perception or gibberellin biosynthesis. In tomato and rice, compromises of Hpa1-induced growth-promoting responses were caused by a pharmacological treatment with an ethylene perception inhibitor or a gibberellin biosynthesis inhibitor. In the three plant species, moreover, Hpa1-induced growth-promoting responses were significantly impaired, but not totally eliminated, by abolishing ethylene perception or gibberellin synthesis. However, simultaneous nullifications in both ethylene perception and gibberellin biosynthesis almost canceled the full effects of Hpa1 on plant growth, photosynthesis, and EXP2 expression. Theses results suggest that ethylene and gibberellin coregulate Hpa1-induced plant growth enhancement and associated physiological and molecular responses.

  16. Effect of cotyledons and epicotyl upon the activity of endogenous gibberellins in roots of flax (Linum usitatissimum L. seedlings

    Directory of Open Access Journals (Sweden)

    Krystyna M. Janas

    2013-12-01

    Full Text Available In 11-day-old flax seedlings, the level of endogenous gibberellins in roots decreased within 12 hours after the excision of cotyledons and the epicotyl; however, 24 to 48 hours after excision the gibberellin level increased again. The decrease in the gibberellin level within the first 12 hours after excision suggests a participation of the cotyledons and the epicotyl in the biosynthesis of endogenous gibberellins.

  17. Analysis of Yellow Striped Mutants of Zea mays Reveals Novel Loci Contributing to Iron Deficiency Chlorosis

    Directory of Open Access Journals (Sweden)

    David Chan-Rodriguez

    2018-02-01

    Full Text Available The micronutrient iron (Fe is essential for photosynthesis, respiration, and many other processes, but it is only sparingly soluble in aqueous solution, making adequate acquisition by plants a serious challenge. Fe is a limiting factor for plant growth on approximately 30% of the world’s arable lands. Moreover, Fe deficiency in humans is a global health issue, affecting 1.62 billion people, or about 25% of the world’s population. It is imperative that we gain a better understanding of the mechanisms that plants use to regulate iron homeostasis, since these will be important targets for future biofortification and crop improvement strategies. Grasses and non-grasses have evolved independent mechanisms for primary iron uptake from the soil. The grasses, which include most of the world’s staple grains, have evolved a distinct ‘chelation’ mechanism to acquire iron from the soil. Strong iron chelators called phytosiderophores (PSs are synthesized by grasses and secreted into the rhizosphere where they bind and solubilize Fe(III. The Fe(III-PS complex is then taken up into root cells via transporters specific for the Fe(III-PS complex. In this study, 31 novel, uncharacterized striped maize mutants available through the Maize Genetics Cooperation Stock Center (MGCSC were analyzed to determine whether their mutant phenotypes are caused by decreased iron. Many of these proved to be either pale yellow or white striped mutants. Complementation tests were performed by crossing the MGCSC mutants to ys1 and ys3 reference mutants. This allowed assignment of 10 ys1 alleles and 4 ys3 alleles among the novel mutants. In addition, four ys∗ mutant lines were identified that are not allelic to either ys1 or ys3. Three of these were characterized as being non-allelic to each other and as having low iron in leaves. These represent new genes involved in iron acquisition by maize, and future cloning of these genes may reveal novel aspects of the grass iron

  18. CvADH1, a member of short-chain alcohol dehydrogenase family, is inducible by gibberellin and sucrose in developing watermelon seeds.

    Science.gov (United States)

    Kim, Joonyul; Kang, Hong-Gyu; Jun, Sung-Hoon; Lee, Jinwon; Yim, Jieun; An, Gynheung

    2003-01-01

    To understand the molecular mechanisms that control seed formation, we selected a seed-preferential gene (CvADH1) from the ESTs of developing watermelon seeds. RNA blot analysis and in situ localization showed that CvADH1 was preferentially expressed in the nucellar tissue. The CvADH1 protein shared about 50% homology with short-chain alcohol dehydrogenase including ABA2 in Arabidopsis thaliana, stem secoisolariciresinol dehydrogenase in Forsythia intermedia, and 3beta-hydroxysterol dehydrogenase in Digitalis lanata. We investigated gene-expression levels in seeds from both normally pollinated fruits and those made parthenocarpic via N-(2-chloro-4-pyridyl)-N'-phenylurea treatment, the latter of which lack zygotic tissues. Whereas the transcripts of CvADH1 rapidly started to accumulate from about the pre-heart stage in normal seeds, they were not detectable in the parthenocarpic seeds. Treating the parthenogenic fruit with GA(3) strongly induced gene expression, up to the level accumulated in pollinated seeds. These results suggest that the CvADH1 gene is induced in maternal tissues by signals made in the zygotic tissues, and that gibberellin might be one of those signals. We also observed that CvADH1 expression was induced by sucrose in the parthenocarpic seeds. Therefore, we propose that the CvADH1 gene is inducible by gibberellin, and that sucrose plays an important role in the maternal tissues of watermelon during early seed development.

  19. Effects of chilling and ABA on [3H]gibberellin A4 metabolism in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele)

    International Nuclear Information System (INIS)

    Pearce, D.; Pharis, R.P.; Rajasekaran, K.; Mullins, M.G.

    1987-01-01

    Previous work has indicated that changes in gibberellin (GA) metabolism may be involved in chilling-induced release from dormancy in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele). The authors have chilled somatic embryos of grape for 2, 4, or 8 weeks, then incubated them with [ 3 H]GA 4 (of high specific activity, 4.81 x 10 19 becquerel per millimole) for 48 hours at 26 0 C. Chilling had little effect on the total amount of free [ 3 H]GA-like metabolites formed during incubation at 26 0 C, but did change the relative proportions of individual metabolites. The amount of highly water-soluble [ 3 H] metabolites formed at 26 0 C decreased in embryos chilled for 4 or 8 weeks. The concentration of endogeneous GA precursors (e.g., GA 12 aldehyde-, kaurene, and kaurenoic acid-like substances) increased in embryos chilled for 4 or 8 weeks. Treatment with abscisic acid (ABA) (known to inhibit germination in grape embryos) concurrent with [ 3 H]GA 4 treatment at 26 0 C, reduced the uptake of [ 3 H] GA 4 but had little effect on the qualitative spectrum of metabolites. However, in the embryos chilled for 8 weeks and then treated with ABA for 48 hours at 26 0 C, there was a higher concentration of GA precursors than in untreated control embryos. Chilled embryos thus have an enhanced potential for an increase in free GAs through synthesis from increased amounts of GA precursors, or through a reduced ability to form highly water-soluble GA metabolites (i.e., GA conjugates or polyhydroxylated free GAs)

  20. Bile acid treatment alters hepatic disease and bile acid transport in peroxisome-deficient PEX2 Zellweger mice

    NARCIS (Netherlands)

    Keane, Megan H.; Overmars, Henk; Wikander, Thomas M.; Ferdinandusse, Sacha; Duran, Marinus; Wanders, Ronald J. A.; Faust, Phyllis L.

    2007-01-01

    The marked deficiency of peroxisomal organelle assembly in the PEX2(-/-) mouse model for Zellweger syndrome provides a unique opportunity to developmentally and biochemically characterize hepatic disease progression and bile acid products. The postnatal survival of homozygous mutants enabled us to

  1. Gibberellin Is Involved in Inhibition of Cucumber Growth and Nitrogen Uptake at Suboptimal Root-Zone Temperatures.

    Directory of Open Access Journals (Sweden)

    Longqiang Bai

    Full Text Available Suboptimal temperature stress often causes heavy yield losses of vegetables by suppressing plant growth during winter and early spring. Gibberellin acid (GA has been reported to be involved in plant growth and acquisition of mineral nutrients. However, no studies have evaluated the role of GA in the regulation of growth and nutrient acquisition by vegetables under conditions of suboptimal temperatures in greenhouse. Here, we investigated the roles of GA in the regulation of growth and nitrate acquisition of cucumber (Cucumis sativus L. plants under conditions of short-term suboptimal root-zone temperatures (Tr. Exposure of cucumber seedlings to a Tr of 16°C led to a significant reduction in root growth, and this inhibitory effect was reversed by exogenous application of GA. Expression patterns of several genes encoding key enzymes in GA metabolism were altered by suboptimal Tr treatment, and endogenous GA concentrations in cucumber roots were significantly reduced by exposure of cucumber plants to 16°C Tr, suggesting that inhibition of root growth by suboptimal Tr may result from disruption of endogenous GA homeostasis. To further explore the mechanism underlying the GA-dependent cucumber growth under suboptimal Tr, we studied the effect of suboptimal Tr and GA on nitrate uptake, and found that exposure of cucumber seedlings to 16°C Tr led to a significant reduction in nitrate uptake rate, and exogenous application GA can alleviate the down-regulation by up regulating the expression of genes associated with nitrate uptake. Finally, we demonstrated that N accumulation in cucumber seedlings under suboptimal Tr conditions was improved by exogenous application of GA due probably to both enhanced root growth and nitrate absorption activity. These results indicate that a reduction in endogenous GA concentrations in roots due to down-regulation of GA biosynthesis at transcriptional level may be a key event to underpin the suboptimal Tr

  2. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    Directory of Open Access Journals (Sweden)

    Andreia Michelle Smith-Moritz

    2015-08-01

    Full Text Available The CELLULOSE SYNTHASE-LIKE F6 (CslF6 gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG, a cell wall polysaccharide that is hypothesized to be a tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of three day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell was of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.

  3. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice.

    Science.gov (United States)

    Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P

    1996-09-01

    The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.

  4. Functional phenotypic rescue of Caenorhabditis elegans neuroligin-deficient mutants by the human and rat NLGN1 genes.

    Directory of Open Access Journals (Sweden)

    Fernando Calahorro

    Full Text Available Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C and worm NLG-1 (R437C proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA, both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1 or pan-muscular (myo-3 specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders.

  5. Production of nutritionally-deficient mutants of the axenic blue-green alga Anabaena flos-aquae NRC-44-1 by ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H D; Gorham, P R

    1975-01-01

    Anabaena flos-aquae NRC-44-1 is a freshwater nitrogen fixing blue-green alga of some ecological significance because of its toxicity. In axenic culture and possibly also in nature, the alga is highly susceptible to lysis at certain stages of its growth. Nothing is known about genetic phenomena governing toxin production, nitrogen fixation or other characteristics of this organism, mainly because of unavailability of mutant strains that could be utilized in genetic experiments. With the object of overcoming this obstacle to the eventual study of genetics of Anabaena flos-aquae, attempts were made to produce and isolate nutritionally-deficient mutants of this species.

  6. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    DEFF Research Database (Denmark)

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas

    2010-01-01

    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  7. Thermosensitive mutant of Bacillus subtilis deficient in uracil and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, K; Some, H; Tamura, G

    1976-01-01

    Thermonsensitive division mutants were derived from Bacillus subtilis Marburg 168 thy trp/sub 2/ by means of membrane filtration after nitrosoguanidine mutagenesis. Among them, ts42 requiring uracil for normal growth at 48/sup 0/C was investigated. In the absence of uracil, the mutant cells grew normally at 37/sup 0/C and stopped dividing after temperature shift to 48/sup 0/C resulting in filaments of two to four times length of normal rods. The total cell number after the temperature shift increased two to three fold in 90 min and remained constant thereafter. The viable count after the temperature shift to 48/sup 0/C, increased 1.5 to 2 fold in initial 60 min and then decreased exponentially. A rapid restoration of colony forming ability was shown when the mutant cells were shifted back to the permissive temperature after 120 to 180 min of incubation at 48/sup 0/C or when uracil was introduced to the culture at 48/sup 0/C. This recovery of viability was partly observed even in the presence of chloramphenicol. The synthesis of RNA of this mutant was shown to decline 20 min after the temperature shift to 48/sup 0/C whereas the syntheses of DNA and protein proceeded for more than 80 min at that temperature. No newly isolated uracil requiring mutants formed filaments in the medium lacking uracil or showed growth pattern like ts42.

  8. Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation.

    Science.gov (United States)

    Dorado, Beatriz; Area, Estela; Akman, Hasan O; Hirano, Michio

    2011-01-01

    Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2-/-). Although normal until postnatal day 8, Tk2-/- mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2-/- mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2-/- heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2-/- heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency.

  9. Inactivation of normal and mutant Neurospora crassa conidia by visible light and near-UV: role of 1O2, carotenoid composition and sensitizer location

    International Nuclear Information System (INIS)

    Thomas, S.A.; Sargent, M.L.; Tuveson, R.W.

    1981-01-01

    Inactivation of Neurospora crassa conidia from wild-type and mutant strains by visible and near-ultraviolet light was investigated in the presence and absence of photosensitizing dyes. Inactivation by near-UV was virtually unchanged by the presence of deuterium oxide or azide suggesting that, contrary to the situation with visible light and photosensitizing dyes, 1 O 2 is not involved in any substantial way in the formation of lethal lesions. Carotenoid deficient strains were similar to wild-type strains in sensitivity to near-UV inactivation which is consistent with 1 O 2 not being involved. Photodynamic inactivation of conidia by visible light occurred in the presence of methylene blue (MB), toluidine blue O (TB), or acridine orange (AO). Carotenoid deficient strains were more sensitive to such inactivation only when MB and TB were used. This suggests that MB and TB mediated damage involves the cell membrane where carotenoids are available for quenching, whereas AO mediated damage occurs in the nucleus sequestered from the protective influence of carotenoids. A newly isolated, lemon-yellow mutant exhibited sensitivities to photodynamic inactivation similar to other pure-white mutants. The sensitivity of this pigmented mutant is apparently related to insufficient unsaturation of the two coloured carotenoids produced by the mutant. (author)

  10. Leishmania major glycosylation mutants require phosphoglycans (lpg2- but not lipophosphoglycan (lpg1- for survival in permissive sand fly vectors.

    Directory of Open Access Journals (Sweden)

    Anna Svárovská

    2010-01-01

    Full Text Available Sand fly species able to support the survival of the protozoan parasite Leishmania have been classified as permissive or specific, based upon their ability to support a wide or limited range of strains and/or species. Studies of a limited number of fly/parasite species combinations have implicated parasite surface molecules in this process and here we provide further evidence in support of this proposal. We investigated the role of lipophosphoglycan (LPG and other phosphoglycans (PGs in sand fly survival, using Leishmania major mutants deficient in LPG (lpg1(-, and the phosphoglycan (PG-deficient mutant lpg2(-. The sand fly species used were the permissive species Phlebotomus perniciosus and P. argentipes, and the specific vector P. duboscqi, a species resistant to L. infantum development.The lpg2(- mutants did not survive well in any of the three sand fly species, suggesting that phosphoglycans and/or other LPG2-dependent molecules are required for parasite development. In vitro, all three L. major lines were equally resistant to proteolytic activity of bovine trypsin, suggesting that sand fly-specific hydrolytic proteases or other factors are the reason for the early lpg2(- parasite killing. The lpg1(- mutants developed late-stage infections in two permissive species, P. perniciosus and P. argentipes, where their infection rates and intensities of infections were comparable to the wild type (WT parasites. In contrast, in P. duboscqi the lpg1(- mutants developed significantly worse than the WT parasites.In combination with previous studies, the data establish clearly that LPG is not required for Leishmania survival in permissive species P. perniciosus and P. argentipes but plays an important role in the specific vector P. duboscqi. With regard to PGs other than LPG, the data prove the importance of LPG2-related molecules for survival of L. major in the three sand fly species tested.

  11. Cu deficiency in multi-stage co-evaporated Cu(In,Ga)Se{sub 2} for solar cells applications: Microstructure and Ga in-depth alloying

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, R., E-mail: raquel.caballero@helmholtz-berlin.de [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Izquierdo-Roca, V. [M-2E/XaRMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain); Fontane, X. [IREC, Catalonia Institute for Energy Research, C. Joseph Pla 2 B2, 08019 Barcelona (Spain); Kaufmann, C.A. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Alvarez-Garcia, J. [Centre de Recerca i Investigacio de Catalunya (CRIC), Trav. de Gracia 108, 08012 Barcelona (Spain); Eicke, A. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Industriestrasse 6, 70565 Stuttgart (Germany); Calvo-Barrio, L. [Lab. Analisis de Superficies, SCT, Universitat de Barcelona, Lluis Sole i Sabaris 1-3, 08028 Barcelona (Spain); Perez-Rodriguez, A. [M-2E/XaRMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain)] [IREC, Catalonia Institute for Energy Research, C. Joseph Pla 2 B2, 08019 Barcelona (Spain); Schock, H.W. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Morante, J.R. [M-2E/XaRMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain)] [IREC, Catalonia Institute for Energy Research, C. Joseph Pla 2 B2, 08019 Barcelona (Spain)

    2010-05-15

    The objective of this work is to study the influence of the maximum Cu content during the deposition of Cu(In,Ga)Se{sub 2} (CIGSe) by multi-stage co-evaporation on the phases present in the final film, the film structure and the electrical properties of resulting solar cell devices. The variation of the composition is controlled by the Cu content in stage 2 of the deposition process. The different phases are identified by Raman spectroscopy. The in-depth Ga gradient distribution is investigated by in-depth resolved Raman scattering and secondary neutral mass spectroscopy. The morphology of the devices is studied by scanning electron microscopy. Efficiencies of 9.2% are obtained for ordered-vacancy-compound-based cells with a Cu/(In + Ga) ratio = 0.35, showing the system's flexibility. This work supports the current growth model: a small amount of Cu excess during the absorber process is required to obtain a quality microstructure and high performance devices.

  12. PBP1a-deficiency causes major defects in cell division, growth and biofilm formation by Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Zezhang T Wen

    Full Text Available Streptococcus mutans, a key etiological agent of human dental caries, lives almost exclusively on the tooth surface in plaque biofilms and is known for its ability to survive and respond to various environmental insults, including low pH, and antimicrobial agents from other microbes and oral care products. In this study, a penicillin-binding protein (PBP1a-deficient mutant, strain JB467, was generated by allelic replacement mutagenesis and analyzed for the effects of such a deficiency on S. mutans' stress tolerance response and biofilm formation. Our results so far have shown that PBP1a-deficiency in S. mutans affects growth of the deficient mutant, especially at acidic and alkaline pHs. As compared to the wild-type, UA159, the PBP1a-deficient mutant, JB467, had a reduced growth rate at pH 6.2 and did not grow at all at pH 8.2. Unlike the wild-type, the inclusion of paraquat in growth medium, especially at 2 mM or above, significantly reduced the growth rate of the mutant. Acid killing assays showed that the mutant was 15-fold more sensitive to pH 2.8 than the wild-type after 30 minutes. In a hydrogen peroxide killing assay, the mutant was 16-fold more susceptible to hydrogen peroxide (0.2%, w/v after 90 minutes than the wild-type. Relative to the wild-type, the mutant also had an aberrant autolysis rate, indicative of compromises in cell envelope integrity. As analyzed using on 96-well plate model and spectrophotometry, biofilm formation by the mutant was decreased significantly, as compared to the wild-type. Consistently, Field Emission-SEM analysis also showed that the PBP1a-deficient mutant had limited capacity to form biofilms. TEM analysis showed that PBP1a mutant existed primarily in long rod-like cells and cells with multiple septa, as compared to the coccal wild-type. The results presented here highlight the importance of pbp1a in cell morphology, stress tolerance, and biofilm formation in S. mutans.

  13. Auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism

    Science.gov (United States)

    Cai, Weiming; Hu, Liwei; Hu, Xiangyang; Cui, Dayong; Cai, Weiming

    Gravitropism is the asymmetric growth or curvature of plant organs in response to gravistimulation. There is a complex signal transduction cascade which involved in the differential growth of plants in response to changes in the gravity vector. The role of auxin in gravitropism has been demonstrated by many experiments, but little is known regarding the molecular details of such effects. In our studies before, mediation of the gravitropic bending of soybean roots and rice leaf sheath bases by nitric oxide, cGMP and gibberellins, are induced by auxin. The asymmetrical distribution of nitric oxide, cGMP and gibberellins resulted from the asymmetrical synthesis of them in bending sites. In soybean roots, inhibitions of NO and cGMP synthesis reduced differential NO and cGMP accumulation respectively, which both of these effects can lead to the reduction of gravitropic bending. Gibberellin-induced OsXET, OsEXPA4 and OsRWC3 were also found involved in the gravitropic bending. These data indicated that auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism. More experiments need to prove the more detailed mechanism of them.

  14. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency.

    Science.gov (United States)

    Liu, Wei; Li, Qiwei; Wang, Yi; Wu, Ting; Yang, Yafei; Zhang, Xinzhong; Han, Zhenhai; Xu, Xuefeng

    2017-09-23

    Ethylene regulates the plant's response to stress caused by iron (Fe) deficiency. However, specific roles of ERF proteins in response to Fe deficiency remain poorly understood. Here, we investigated the role of ERF72 in response to iron deficiency in Arabidopsis thaliana. In this study, the levels of the ethylene response factor AtERF72 increased in leaves and roots induced under the iron deficient conditions. erf72 mutant plants showed increased growth compared to wild type (WT) when grown in iron deficient medium for 5 d. erf72 mutants had increased root H + velocity and the ferric reductase activity, and increase in the expression of the iron deficiency response genes iron-regulated transporter 1 (IRT1) and H + -ATPase (HA2) levels in iron deficient conditions. Compared to WT plants, erf72 mutants retained healthy chloroplast structure with significantly higher Fe and Mg content, and decreased chlorophyll degradation gene pheophorbide a oxygenase (PAO) and chlorophyllase (CLH1) expression when grown in iron deficient media. Yeast one-hybrid analysis showed that ERF72 could directly bind to the promoter regions of iron deficiency responses genes IRT1, HA2 and CLH1. Based on our results, we suggest that ethylene released from plants under iron deficiency stress can activate the expression of ERF72, which responds to iron deficiency in the negative regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Characterization and genetic mapping of eceriferum-ym (cer-ym), a cutin deficient barley mutant with impaired leaf water retention capacity.

    Science.gov (United States)

    Li, Chao; Liu, Cheng; Ma, Xiaoying; Wang, Aidong; Duan, Ruijun; Nawrath, Christiane; Komatsuda, Takao; Chen, Guoxiong

    2015-09-01

    The cuticle covers the aerial parts of land plants, where it serves many important functions, including water retention. Here, a recessive cuticle mutant, eceriferum-ym (cer-ym), of Hordeum vulgare L. (barley) showed abnormally glossy spikes, sheaths, and leaves. The cer-ym mutant plant detached from its root system was hypersensitive to desiccation treatment compared with wild type plants, and detached leaves of mutant lost 41.8% of their initial weight after 1 h of dehydration under laboratory conditions, while that of the wild type plants lost only 7.1%. Stomata function was not affected by the mutation, but the mutant leaves showed increased cuticular permeability to water, suggesting a defective leaf cuticle, which was confirmed by toluidine blue staining. The mutant leaves showed a substantial reduction in the amounts of the major cutin monomers and a slight increase in the main wax component, suggesting that the enhanced cuticle permeability was a consequence of cutin deficiency. cer-ym was mapped within a 0.8 cM interval between EST marker AK370363 and AK251484, a pericentromeric region on chromosome 4H. The results indicate that the desiccation sensitivity of cer-ym is caused by a defect in leaf cutin, and that cer-ym is located in a chromosome 4H pericentromeric region.

  16. Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Takaaki Daimon

    Full Text Available Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs. JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.

  17. Biology in the Dry Seed: Transcriptome Changes Associated with Dry Seed Dormancy and Dormancy Loss in the Arabidopsis GA-Insensitive sleepy1-2 Mutant

    Directory of Open Access Journals (Sweden)

    Sven K. Nelson

    2017-12-01

    Full Text Available Plant embryos can survive years in a desiccated, quiescent state within seeds. In many species, seeds are dormant and unable to germinate at maturity. They acquire the capacity to germinate through a period of dry storage called after-ripening (AR, a biological process that occurs at 5–15% moisture when most metabolic processes cease. Because stored transcripts are among the first proteins translated upon water uptake, they likely impact germination potential. Transcriptome changes associated with the increased seed dormancy of the GA-insensitive sly1-2 mutant, and with dormancy loss through long sly1-2 after-ripening (19 months were characterized in dry seeds. The SLY1 gene was needed for proper down-regulation of translation-associated genes in mature dry seeds, and for AR up-regulation of these genes in germinating seeds. Thus, sly1-2 seed dormancy may result partly from failure to properly regulate protein translation, and partly from observed differences in transcription factor mRNA levels. Two positive regulators of seed dormancy, DELLA GAI (GA-INSENSITIVE and the histone deacetylase HDA6/SIL1 (MODIFIERS OF SILENCING1 were strongly AR-down-regulated. These transcriptional changes appeared to be functionally relevant since loss of GAI function and application of a histone deacetylase inhibitor led to decreased sly1-2 seed dormancy. Thus, after-ripening may increase germination potential over time by reducing dormancy-promoting stored transcript levels. Differences in transcript accumulation with after-ripening correlated to differences in transcript stability, such that stable mRNAs appeared AR-up-regulated, and unstable transcripts AR-down-regulated. Thus, relative transcript levels may change with dry after-ripening partly as a consequence of differences in mRNA turnover.

  18. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway.

    Science.gov (United States)

    Hsieh, Wei-Yu; Liao, Jo-Chien; Wang, Hsin-Tzu; Hung, Tzu-Huan; Tseng, Ching-Chih; Chung, Tsui-Yun; Hsieh, Ming-Hsiun

    2017-07-01

    Thiamin diphosphate (TPP, vitamin B 1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    International Nuclear Information System (INIS)

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai; Hu, Ji-Wei; Ouyang, Pin

    2014-01-01

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB +/− mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity

  20. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  1. Malonyl CoA decarboxylase deficiency: C to T transition in intron 2 of the MCD gene.

    Science.gov (United States)

    Surendran, S; Sacksteder, K A; Gould, S J; Coldwell, J G; Rady, P L; Tyring, S K; Matalon, R

    2001-09-15

    Malonyl CoA decarboxylase (MCD) is an enzyme involved in the metabolism of fatty acids synthesis. Based on reports of MCD deficiency, this enzyme is particular important in muscle and brain metabolism. Mutations in the MCD gene result in a deficiency of MCD activity, that lead to psychomotor retardation, cardiomyopathy and neonatal death. To date however, only a few patients have been reported with defects in MCD. We report here studies of a patient with MCD deficiency, who presented with hypotonia, cardiomyopathy and psychomotor retardation. DNA sequencing of MCD revealed a homozygous intronic mutation, specifically a -5 C to T transition near the acceptor site for exon 3. RT-PCR amplification of exons 2 and 3 revealed that although mRNA from a normal control sample yielded one major DNA band, the mutant mRNA sample resulted in two distinct DNA fragments. Sequencing of the patient's two RT-PCR products revealed that the larger molecular weight fragments contained exons 2 and 3 as well as the intervening intronic sequence. The smaller size band from the patient contained the properly spliced exons, similar to the normal control. Western blotting analysis of the expressed protein showed only a faint band in the patient sample in contrast to a robust band in the control. In addition, the enzyme activity of the mutant protein was lower than that of the control protein. The data indicate that homozygous mutation in intron 2 disrupt normal splicing of the gene, leading to lower expression of the MCD protein and MCD deficiency. Copyright 2001 Wiley-Liss, Inc.

  2. Tryptophan provision by dietary supplementation of a Bacillus subtilis mutant strain in piglets

    DEFF Research Database (Denmark)

    Torres-Pitarch, A; Nielsen, B.; Canibe, Nuria

    2015-01-01

    Supplementing Bacillus (B.) subtilis mutants selected to overproduce a specific amino acid (AA) may be an alternative method to provide essential AA in pig diets. Two experiments on a B. subtilis strain selected to overproduce Trp were conducted using 8-kg pigs fed Trp-deficient diets for 20 d. B....... subtilis were supplied in a low or high dose in Experiments 1 and 2, respectively. The Trp-deficient diet (0.15 SID Trp:Lys) reduced (p subtilis strain was not able...... to counterbalance the Trp deficiency in any of the two experiments. No effect of B. subtilis supplementation to piglet diets was observed on the plasma AA profile. In conclusion, this mutant strain of B. subtilis was not able to compensate a Trp deficiency in the tested doses....

  3. Uvm mutants of Escherichia coli K 12 deficient in UV mutagenesis. Pt. 1

    International Nuclear Information System (INIS)

    Steinborn, G.

    1978-01-01

    Selection for defective reversion induction, after UV treatment of E. coli K 12, yielded uvm mutants. These mutants exhibited highly reduced or no UV mutability for all loci tested although they were moderately and normally mutable by X-rays and EMS, respectively. Uvm mutations confer only a slight sensitivity to killing by UV and X-rays and no clear sensitivity to the lethal effect of HN2, EMS or MMS. Growth and viability of untreated uvm cells were normal. The properties of uvm mutants are discussed in relation to those of other relevant mutant types and to some actual problems of induced mutagenesis. (orig.) 891 AJ [de

  4. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.

    Science.gov (United States)

    Field, H J; Wildy, P

    1978-10-01

    The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain.

  5. Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis1[W

    Science.gov (United States)

    Lozano-Juste, Jorge; León, José

    2010-01-01

    Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. Despite its reported regulatory functions, it remains unclear how NO is synthesized in plants. We have generated a triple nia1nia2noa1-2 mutant that is impaired in nitrate reductase (NIA/NR)- and Nitric Oxide-Associated1 (AtNOA1)-mediated NO biosynthetic pathways. NO content in roots of nia1nia2 and noa1-2 plants was lower than in wild-type plants and below the detection limit in nia1nia2noa1-2 plants. NIA/NR- and AtNOA1-mediated biosynthesis of NO were thus active and responsible for most of the NO production in Arabidopsis (Arabidopsis thaliana). The nia1nia2noa1-2 plants displayed reduced size, fertility, and seed germination potential but increased dormancy and resistance to water deficit. The increasing deficiency in NO of nia1nia2, noa1-2, and nia1nia2noa1-2 plants correlated with increased seed dormancy, hypersensitivity to abscisic acid (ABA) in seed germination and establishment, as well as dehydration resistance. In nia1nia2noa1-2 plants, enhanced drought tolerance was due to a very efficient stomata closure and inhibition of opening by ABA, thus uncoupling NO from ABA-triggered responses in NO-deficient guard cells. The NO-deficient mutants in NIA/NR- and AtNOA1-mediated pathways in combination with the triple mutant will be useful tools to functionally characterize the role of NO and the contribution of both biosynthetic pathways in regulating plant development and defense. PMID:20007448

  6. Ca{sub 2}Cr{sub 0.5}Ga{sub 1.5}O{sub 5}—An extremely redox-stable brownmillerite phase

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Kun; Amano Patino, Midori; Hayward, Michael A., E-mail: michael.hayward@chem.ox.ac.uk

    2015-02-15

    Investigation of the Ca{sub 2}Cr{sub x}Ga{sub 2−x}O{sub 5} compositional series reveals a maximum chromium solubility of 25%. The most chromium rich composition, Ca{sub 2}Cr{sub 0.5}Ga{sub 1.5}O{sub 5}, adopts a brownmillerite-type anion deficient perovskite structure described in space group Pnma (a=5.368 Å, b=14.547 Å, c=5.593 Å). Neutron powder diffraction data reveals rigorous B-site cation order, with all of the tetrahedral coordination sites occupied exclusively by gallium and the octahedral coordination sites occupied by gallium or chromium. Annealing studies reveals Ca{sub 2}Cr{sub 0.5}Ga{sub 1.5}O{sub 5} is stable in both oxidizing (100% O{sub 2}) and reducing (5% H{sub 2} in N{sub 2}) conditions up to 800 °C, suggesting it could find application as a stable host lattice for fuel cell electrodes or electrolytes with suitable doping to enhance catalytic behaviour and/or anionic conductivity. - Graphical abstract: Ca{sub 2}Cr{sub 0.5}Ga{sub 1.5}O{sub 5}, adopts a brownmillerite-type anion deficient perovskite structure yet it is stable in both oxidizing (100% O{sub 2}) and reducing (5% H{sub 2} in N{sub 2}) conditions up to 800 °C. - Highlights: • Anion deficient oxide stable to both oxidation and reduction up to 800 °C. • Cation-ordered brownmillerite structure determined by powder neutron diffraction. • Low solubility of Cr{sup 3+} in framework due to spherical d{sup 3} electron configuration.

  7. Molecular Mechanisms Underlying Abscisic Acid/Gibberellin Balance in the Control of Seed Dormancy and Germination in Cereals

    Directory of Open Access Journals (Sweden)

    Pham A. Tuan

    2018-05-01

    Full Text Available Seed dormancy is an adaptive trait that does not allow the germination of an intact viable seed under favorable environmental conditions. Non-dormant seeds or seeds with low level of dormancy can germinate readily under optimal environmental conditions, and such a trait leads to preharvest sprouting, germination of seeds on the mother plant prior to harvest, which significantly reduces the yield and quality of cereal crops. High level of dormancy, on the other hand, may lead to non-uniform germination and seedling establishment. Therefore, intermediate dormancy is considered to be a desirable trait as it prevents the problems of sprouting and allows uniformity of postharvest germination of seeds. Induction, maintenance, and release of seed dormancy are complex physiological processes that are influenced by a wide range of endogenous and environmental factors. Plant hormones, mainly abscisic acid (ABA and gibberellin (GA, are the major endogenous factors that act antagonistically in the control of seed dormancy and germination; ABA positively regulates the induction and maintenance of dormancy, while GA enhances germination. Significant progress has been made in recent years in the elucidation of molecular mechanisms regulating ABA/GA balance and thereby dormancy and germination in cereal seeds, and this review summarizes the current state of knowledge on the topic.

  8. Molecular Mechanisms Underlying Abscisic Acid/Gibberellin Balance in the Control of Seed Dormancy and Germination in Cereals

    Science.gov (United States)

    Tuan, Pham A.; Kumar, Rohit; Rehal, Pawanpuneet K.; Toora, Parneet K.; Ayele, Belay T.

    2018-01-01

    Seed dormancy is an adaptive trait that does not allow the germination of an intact viable seed under favorable environmental conditions. Non-dormant seeds or seeds with low level of dormancy can germinate readily under optimal environmental conditions, and such a trait leads to preharvest sprouting, germination of seeds on the mother plant prior to harvest, which significantly reduces the yield and quality of cereal crops. High level of dormancy, on the other hand, may lead to non-uniform germination and seedling establishment. Therefore, intermediate dormancy is considered to be a desirable trait as it prevents the problems of sprouting and allows uniformity of postharvest germination of seeds. Induction, maintenance, and release of seed dormancy are complex physiological processes that are influenced by a wide range of endogenous and environmental factors. Plant hormones, mainly abscisic acid (ABA) and gibberellin (GA), are the major endogenous factors that act antagonistically in the control of seed dormancy and germination; ABA positively regulates the induction and maintenance of dormancy, while GA enhances germination. Significant progress has been made in recent years in the elucidation of molecular mechanisms regulating ABA/GA balance and thereby dormancy and germination in cereal seeds, and this review summarizes the current state of knowledge on the topic. PMID:29875780

  9. Study of GaN nanorods converted from β-Ga2O3

    Science.gov (United States)

    Li, Yuewen; Xiong, Zening; Zhang, Dongdong; Xiu, Xiangqian; Liu, Duo; Wang, Shuang; Hua, Xuemei; Xie, Zili; Tao, Tao; Liu, Bin; Chen, Peng; Zhang, Rong; Zheng, Youdou

    2018-05-01

    We report here high-quality β-Ga2O3 nanorods (NRs) grown on sapphire substrates by hydrothermal method. Ammoniating the β-Ga2O3 NRs results in strain-free wurtzite gallium nitride (GaN) NRs. It was shown by XRD and Raman spectroscopy that β-Ga2O3 was partially converted to GaN/β-Ga2O3 at 1000 °C and then completely converted to GaN NRs at 1050 °C, as confirmed by high-resolution transmission electron microscopy (HRTEM). There is no band-edge emission of β-Ga2O3 in the cathodoluminescence spectrum, and only a deep-level broad emission observed at 3.68-3.73 eV. The band edge emission (3.39 eV) of GaN NRs converted from β-Ga2O3 can also be observed.

  10. Storage behavior and changes in concentrations of abscisic acid and gibberellins during dormancy break and germination in seeds of Phellodendron amurense var. wilsonii (Rutaceae).

    Science.gov (United States)

    Chen, Shun-Ying; Chien, Ching-Te; Baskin, Jerry M; Baskin, Carol C

    2010-02-01

    The medicinal Asian plant genus Phellodendron is known to contain several very important compounds that have biological action. The main purpose of this study was to determine whether seeds of Phellodendron amurense var. wilsonii can be stored and to characterize their dormancy. Seeds of this taxon stored at -20 and -80 degrees C and in liquid nitrogen retained their high germinability, indicating that they have orthodox storage behavior. Intact seeds from freshly collected fruits were dormant and required 12 weeks of cold stratification at 4 degrees C for complete germination. Scarifying the seed coat was partially effective in breaking seed dormancy. Exogenous gibberellins (GA(3), GA(4) and GA(4+7)) promoted germination of scarified seeds, GA(4) and GA(4+7) being more effective than GA(3). Fluridone, an abscisic acid (ABA) biosynthesis inhibitor, was efficient in breaking dormancy, but it was less effective than GA(4) or GA(4+7) alone. Paclobutrazol, a GA biosynthesis inhibitor, inhibited seed germination, and the inhibitory effect was reversed completely by GA(4) and by GA(4+7). ABA content of seeds subjected to cold stratification or to incubation at 35/10 degrees C, which enhanced seed germination, was reduced about four- to sixfold compared to that of fresh seeds. Higher concentrations of GA(3), GA(4) and GA(7) were detected in nondormant seeds and in seeds with an emerged radicle than in fresh seeds. Present results seem to indicate that dormancy in P. amurense var. wilsonii seeds is imposed partially by the seed coat and partially by high ABA content. ABA content decreased and GA(3), GA(4) and GA(7) content increased during germination.

  11. In vitro binding of Sorghum bicolor transcription factors ABI4 and ABI5 to a conserved region of a GA 2-OXIDASE promoter: possible role of this interaction in the expression of seed dormancy.

    Science.gov (United States)

    Cantoro, Renata; Crocco, Carlos Daniel; Benech-Arnold, Roberto Luis; Rodríguez, María Verónica

    2013-12-01

    The precise adjustment of the timing of dormancy release according to final grain usage is still a challenge for many cereal crops. Grain sorghum [Sorghum bicolor (L.) Moench] shows wide intraspecific variability in dormancy level and susceptibility to pre-harvest sprouting (PHS). Both embryo sensitivity to abscisic acid (ABA) and gibberellin (GA) metabolism play an important role in the expression of dormancy of the developing sorghum grain. In previous works, it was shown that, simultaneously with a greater embryo sensitivity to ABA and higher expression of SbABA-INSENSITIVE 4 (SbABI4) and SbABA-INSENSITIVE 5 (SbABI5), dormant grains accumulate less active GA4 due to a more active GA catabolism. In this work, it is demonstrated that the ABA signalling components SbABI4 and SbABI5 interact in vitro with a fragment of the SbGA 2-OXIDASE 3 (SbGA2ox3) promoter containing an ABA-responsive complex (ABRC). Both transcription factors were able to bind the promoter, although not simultaneously, suggesting that they might compete for the same cis-acting regulatory sequences. A biological role for these interactions in the expression of dormancy of sorghum grains is proposed: either SbABI4 and/or SbABI5 activate transcription of the SbGA2ox3 gene in vivo and promote SbGA2ox3 protein accumulation; this would result in active degradation of GA4, thus preventing germination of dormant grains. A comparative analysis of the 5'-regulatory region of GA2oxs from both monocots and dicots is also presented; conservation of the ABRC in closely related GA2oxs from Brachypodium distachyon and rice suggest that these species might share the same regulatory mechanism as proposed for grain sorghum.

  12. Role of the dimensionality of the [GaX]2 network in the Zintl phases EuGa2X2

    KAUST Repository

    Singh, Nirpendra

    2012-11-28

    The structural, electronic, magnetic, optical, and thermoelectric properties of EuGa2X2 (X = P, As, and Sb) are investigated using first principles calculations (taking into account the onsite Coulomb interaction) and the semi-classical Boltzmanntheory. The divalent nature of Eu fulfils the Zintl principle as is confirmed by the calculated total magnetic moments of ∼7 μB. A metallic behavior is obtained for all compounds. The optical spectra originate mainly from the transitions between occupied Eu 4f states and unoccupied Eu 5d states. It is demonstrated that the two-dimensional [Ga(P/As)]2 network in EuGa2P2 and EuGa2As2 is favorable for thermoelectric applications as compared to the three-dimensional [GaSb]2 network in EuGa2Sb2.

  13. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa).

    Science.gov (United States)

    Zhang, Ye; Lan, Hongxia; Shao, Qiaolin; Wang, Ruqin; Chen, Hui; Tang, Haijuan; Zhang, Hongsheng; Huang, Ji

    2016-01-01

    The plant hormones gibberellins (GA) and abscisic acid (ABA) play important roles in plant development and stress responses. Here we report a novel A20/AN1-type zinc finger protein ZFP185 involved in GA and ABA signaling in the regulation of growth and stress response. ZFP185 was constitutively expressed in various rice tissues. Overexpression of ZFP185 in rice results in a semi-dwarfism phenotype, reduced cell size, and the decrease of endogenous GA3 content. By contrast, higher GA3 content was observed in RNAi plants. The application of exogenous GA3 can fully rescue the semi-dwarfism phenotype of ZFP185 overexpressing plants, suggesting the negative role of ZFP185 in GA biosynthesis. Besides GA, overexpression of ZFP185 decreased ABA content and expression of several ABA biosynthesis-related genes. Moreover, it was found that ZFP185, unlike previously known A20/AN1-type zinc finger genes, increases sensitivity to drought, cold, and salt stresses, implying the negative role of ZFP185 in stress tolerance. ZFP185 was localized in the cytoplasm and lacked transcriptional activation potential. Our study suggests that ZFP185 regulates plant growth and stress responses by affecting GA and ABA biosynthesis in rice. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Functional characterization of the spf/ash splicing variation in OTC deficiency of mice and man.

    Directory of Open Access Journals (Sweden)

    Ana Rivera-Barahona

    Full Text Available The spf/ash mouse model of ornithine transcarbamylase (OTC deficiency, a severe urea cycle disorder, is caused by a mutation (c.386G>A; p.R129H in the last nucleotide of exon 4 of the Otc gene, affecting the 5' splice site and resulting in partial use of a cryptic splice site 48 bp into the adjacent intron. The equivalent nucleotide change and predicted amino acid change is found in OTC deficient patients. Here we have used liver tissue and minigene assays to dissect the transcriptional profile resulting from the "spf/ash" mutation in mice and man. For the mutant mouse, we confirmed liver transcripts corresponding to partial intron 4 retention by the use of the c.386+48 cryptic site and to normally spliced transcripts, with exon 4 always containing the c.386G>A (p.R129H variant. In contrast, the OTC patient exhibited exon 4 skipping or c.386G>A (p.R129H-variant exon 4 retention by using the natural or a cryptic splice site at nucleotide position c.386+4. The corresponding OTC tissue enzyme activities were between 3-6% of normal control in mouse and human liver. The use of the cryptic splice sites was reproduced in minigenes carrying murine or human mutant sequences. Some normally spliced transcripts could be detected in minigenes in both cases. Antisense oligonucleotides designed to block the murine cryptic +48 site were used in minigenes in an attempt to redirect splicing to the natural site. The results highlight the relevance of in depth investigations of the molecular mechanisms of splicing mutations and potential therapeutic approaches. Notably, they emphasize the fact that findings in animal models may not be applicable for human patients due to the different genomic context of the mutations.

  15. Heterozygosity for an in-frame deletion causes glutaryl-CoA dehydrogenase deficiency in a patient detected by newborn screening: investigation of the effect of the mutant allele

    DEFF Research Database (Denmark)

    Bross, Peter; Frederiksen, Jane B; Bie, Anne S

    2012-01-01

    the proband were consistent with a mild biochemical GA-1 phenotype. Recombinant expression of the mutant variant in E. coli showed that the GCDH-(p.Gly185_Ser190del) protein displayed severely decreased assembly into tetramers and enzyme activity. To discover a potential dominant negative effect of the mutant...... with the hypothesis that heterozygosity for this mutation confers a dominant negative effect resulting in a GCDH enzyme activity that is significantly lower than the expected 50%....

  16. Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity

    International Nuclear Information System (INIS)

    Kunst, L.; Browse, J.; Somerville, C.

    1988-01-01

    The leaf membrane lipids of many plant species, including Arabidopsis thaliana (L.) Heynh., are synthesized by two complementary pathways that are associated with the chloroplast and the endoplasmic reticulum. By screening directly for alterations in lipid acyl-group composition, the authors have identified several mutants of Arabidopsis that lack the plastid pathway because of a deficiency in activity of the first enzyme in the plastid pathway of glycerolipid synthesis, acyl-ACP:sn-glycerol-3-phosphate acyltransferase. The lesion results in an increased synthesis of lipids by the cytoplasmic pathway that largely compensates for the loss of the plastid pathway and provides nearly normal amounts of all the lipids required for chloroplast biogenesis. However, the fatty acid composition of the leaf membrane lipids of the mutants is altered because the acyltransferases associated with the two pathways normally exhibit different substrate specificities. The remarkable flexibility of the system provides an insight into the nature of the regulatory mechanisms that allocate lipids for membrane biogenesis

  17. Surface Morphology Evolution Mechanisms of InGaN/GaN Multiple Quantum Wells with Mixture N2/H2-Grown GaN Barrier.

    Science.gov (United States)

    Zhou, Xiaorun; Lu, Taiping; Zhu, Yadan; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Yang, Yongzhen; Chen, Yongkang; Xu, Bingshe

    2017-12-01

    Surface morphology evolution mechanisms of InGaN/GaN multiple quantum wells (MQWs) during GaN barrier growth with different hydrogen (H 2 ) percentages have been systematically studied. Ga surface-diffusion rate, stress relaxation, and H 2 etching effect are found to be the main affecting factors of the surface evolution. As the percentage of H 2 increases from 0 to 6.25%, Ga surface-diffusion rate and the etch effect are gradually enhanced, which is beneficial to obtaining a smooth surface with low pits density. As the H 2 proportion further increases, stress relaxation and H 2 over- etching effect begin to be the dominant factors, which degrade surface quality. Furthermore, the effects of surface evolution on the interface and optical properties of InGaN/GaN MQWs are also profoundly discussed. The comprehensive study on the surface evolution mechanisms herein provides both technical and theoretical support for the fabrication of high-quality InGaN/GaN heterostructures.

  18. T-cell-mediated immunity to lymphocytic choriomeningitis virus in beta2-integrin (CD18)- and ICAM-1 (CD54)-deficient mice

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1996-01-01

    The T-cell response to lymphocytic choriomeningitis virus was studied in mice with deficient expression of beta2-integrins or ICAM-1. In such mice, the generation of virus-specific cytotoxic T lymphocytes was only slightly impaired and bystander activation was as extensive as that observed in wild-type...... mice. T-cell-mediated inflammation, assessed as primary footpad swelling and susceptibility to intracerebral infection, was slightly compromised only in beta2-integrin-deficient mice. However, adoptive immunization of mutant mice soon after local infection did reveal a reduced capacity to support...... the inflammatory reaction, indicating that under conditions of more limited immune activation both molecules do play a role in formation of the inflammatory exudate. Finally, virus control was found to be somewhat impaired in both mutant strains. In conclusion, our results indicate that although LFA-1-ICAM-1...

  19. Influence of ammonia flow rate for improving properties of polycrystalline GaN

    Science.gov (United States)

    Ariff, A.; Ahmad, M. A.; Hassan, Z.; Zainal, N.

    2018-06-01

    Post-annealing treatment in ammonia ambient is widely accepted for GaN material, but less works have been done to investigate the influence of the ammonia (NH3) flow rate for reducing the N-deficiency as well as improving the quality of the material. In this work, we investigated the influence of NH3 flow rate at 1, 2, 3, and 4 slm in improving properties of a ∼1 μm thick polycrystalline GaN layer. Our simulation work suggested that the uniformity of temperature and pressure gradient of the NH3 gas did not lead to the reduction of N-deficiency of the polycrystalline GaN layer. Instead, it was found that the mitigation of the N-deficiency was strongly influenced by the fluid velocity of the NH3 gas, which had passed over the layer. Either at lower or higher fluid velocity, the chance for the active N atoms to incorporate into the GaN lattice structure was low. Therefore, the N-deficiency on the polycrystalline GaN layer could not be minimized under these conditions. As measured by EDX, the N atoms incorporation was the most effective when the NH3 flow rate at 3 slm, suggesting the flow rate significantly improved the N-deficiency of the polycrystalline GaN layer. Furthermore, it favored the formation of larger hexagonal faceted grains, with the smallest FWHM of XRD peaks from the GaN diffractions in (10 1 bar 0), (0002) and (10 1 bar 1) orientations, while allowing the polycrystalline GaN layer to show sharp and intense emissions peak of NBE in a PL spectrum.

  20. Mutant p53 interactions with supercoiled DNA

    Czech Academy of Sciences Publication Activity Database

    Brázdová, Marie; Němcová, Kateřina; Činčárová, Lenka; Šebest, Peter; Pivoňková, Hana; Brázda, Václav; Fojta, Miroslav; Paleček, Emil

    2007-01-01

    Roč. 24, č. 6 (2007), s. 639-640 ISSN 0739-1102. [Alban 2007: The 15th Conversation . 19.06.2007-23.06.2007, Albany] R&D Projects: GA MŠk(CZ) 1K04119; GA ČR(CZ) GP204/06/P369; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : mutant p53 * supercoiled DNA * cancer Subject RIV: BO - Biophysics

  1. Assessment of Ga2O3 technology

    Science.gov (United States)

    2016-09-15

    this article has given the emerging technology of GaN a valuable push in term of encouragement to stay with it while the painful technology development...Ga2O3 α-Ga2O3 β-Ga2O3 β-Ga2O3 β-Ga2O3 poly - Ga2O3 β-Ga2O3 Epi-layer Growth Method MBE (ozone) MBE (ozone) MBE (ozone) Mist-CVD MBE (ozone... pains to treat the wafer surface with BCl3 RIE to create charges at the interface. The gate contact was also barely a Schottky contact evidenced by

  2. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses.

    Science.gov (United States)

    Khan, Abdul Latif; Waqas, Muhammad; Lee, In-Jung

    2015-03-01

    Understanding how endophytic fungi mitigate abiotic stresses in plants will be important in a changing global climate. A few endophytes can produce phytohormones, but their ability to induce physiological changes in host plants during extreme environmental conditions are largely unexplored. In the present study, we investigated the ability of Penicillium resedanum LK6 to produce gibberellins and its role in improving the growth of Capsicum annuum L. under salinity, drought, and heat stresses. These effects were compared with exogenous application of gibberellic acid (GA3). Endophyte treatment significantly increased shoot length, biomass, chlorophyll content, and the photosynthesis rate compared with the uninfected control during abiotic stresses. The endophyte and combined endophyte + GA3 treatments significantly ameliorated the negative effects of stresses compared with the control. Stress-responsive endogenous abscisic acid and its encoding genes, such as zeaxanthin epoxidase, 9-cis-epoxycarotenoid dioxygenase 3, and ABA aldehyde oxidase 3, were significantly reduced in endophyte-treated plants under stress. Conversely, salicylic acid and biosynthesis-related gene (isochorismate synthase) had constitutive expressions while pathogenesis related (PR1 and PR5) genes showed attenuated responses during endophyte treatment under abiotic stresses. The present findings suggest that endophytes have effects comparable to those of exogenous GA3; both can significantly increase plant growth and yield under changing environmental conditions by reprogramming the host plant's physiological responses.

  3. Runx2 is required for early stages of endochondral bone formation but delays final stages of bone repair in Axin2-deficient mice

    Science.gov (United States)

    McGee-Lawrence, Meghan E.; Carpio, Lomeli R.; Bradley, Elizabeth W.; Dudakovic, Amel; Lian, Jane B.; van Wijnen, Andre J.; Kakar, Sanjeev; Hsu, Wei; Westendorf, Jennifer J.

    2014-01-01

    Runx2 and Axin2 regulate skeletal development. We recently determined that Axin2 and Runx2 molecularly interact in differentiating osteoblasts to regulate intramembranous bone formation, but the relationship between these factors in endochondral bone formation was unresolved. To address this, we examined the effects of Axin2 deficiency on the cleidocranial dysplasia (CCD) phenotype of Runx2+/− mice, focusing on skeletal defects attributed to improper endochondral bone formation. Axin2 deficiency unexpectedly exacerbated calvarial components of the CCD phenotype in the Runx2+/− mice; the endocranial layer of the frontal suture, which develops by endochondral bone formation, failed to mineralize in the Axin2−/−:Runx2+/− mice, resulting in a cartilaginous, fibrotic and larger fontanel than observed in Runx2+/− mice. Transcripts associated with cartilage development (e.g., Acan, miR140) were expressed at higher levels, whereas blood vessel morphogenesis transcripts (e.g., Slit2) were suppressed in Axin2−/−:Runx2+/− calvaria. Cartilage maturation was impaired, as primary chondrocytes from double mutant mice demonstrated delayed differentiation and produced less calcified matrix in vitro. The genetic dominance of Runx2 was also reflected during endochondral fracture repair, as both Runx2+/− and double mutant Axin2−/−:Runx2+/− mice had enlarged fracture calluses at early stages of healing. However, by the end stages of fracture healing, double mutant animals diverged from the Runx2+/− mice, showing smaller calluses and increased torsional strength indicative of more rapid end stage bone formation as seen in the Axin2−/− mice. Taken together, our data demonstrate a dominant role for Runx2 in chondrocyte maturation, but implicate Axin2 as an important modulator of the terminal stages of endochondral bone formation. PMID:24973690

  4. Gamma-radiation Mutagenesis in Genetically Unstable Barley Mutants. Pt. 2. Comparison of Various Mutants

    International Nuclear Information System (INIS)

    Balchiuniene, L.

    1995-01-01

    Spontaneous and gamma-induced mutability was compared in two groups of genetically unstable barley ear structure mutants - tweaky spike (tw) and branched ear (be). Instability in different loci causes different levels of spontaneous and gamma-induced mutability. A high spontaneous level of chlorophyll mutations is peculiar to be-ust mutants. It is suggested that the high level of induced chlorophyll mutations in allelic tw mutants is a result of better surviving of chlorophyll mutation carriers in the genotypical-physiological environment created by mutant tw alleles. (author). 6 refs., 2 tabs

  5. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    OpenAIRE

    Kai Shu; Ying Qi; Feng Chen; Yongjie Meng; Xiaofeng Luo; Haiwei Shuai; Wenguan Zhou; Jun Ding; Junbo Du; Jiang Liu; Feng Yang; Qiang Wang; Weiguo Liu; Taiwen Yong; Xiaochun Wang

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease i...

  6. Gibberellin Application at Pre-Bloom in Grapevines Down-Regulates the Expressions of VvIAA9 and VvARF7, Negative Regulators of Fruit Set Initiation, during Parthenocarpic Fruit Development

    Science.gov (United States)

    Jung, Chan Jin; Hur, Youn Young; Yu, Hee-Ju; Noh, Jung-Ho; Park, Kyo-Sun; Lee, Hee Jae

    2014-01-01

    Fruit set is initiated only after fertilization and is tightly regulated primarily by gibberellins (GAs) and auxins. The application of either of these hormones induces parthenocarpy, fruit set without fertilization, but the molecular mechanism underlying this induction is poorly understood. In the present study, we have shown that the parthenocarpic fruits induced by GA application at pre-bloom result from the interaction of GA with auxin signaling. The transcriptional levels of the putative negative regulators of fruit set initiation, including Vitis auxin/indole-3-acetic acid transcription factor 9 (VvIAA9), Vitis auxin response factor 7 (VvARF7), and VvARF8 were monitored during inflorescence development in seeded diploid ‘Tamnara’ grapevines with or without GA application. Without GA application, VvIAA9, VvARF7, and VvARF8 were expressed at a relatively high level before full bloom, but decreased thereafter following pollination. After GA application at 14 days before full bloom (DBF); however, the expression levels of VvIAA9 and VvARF7 declined at 5 DBF prior to pollination. The effects of GA application on auxin levels or auxin signaling were also analyzed by monitoring the expression patterns of auxin biosynthesis genes and auxin-responsive genes with or without GA application. Transcription levels of the auxin biosynthesis genes Vitis anthranilate synthase β subunit (VvASB1-like), Vitis YUCCA2 (VvYUC2), and VvYUC6 were not significantly changed by GA application. However, the expressions of Vitis Gretchen Hagen3.2 (VvGH3.2) and VvGH3.3, auxin-responsive genes, were up-regulated from 2 DBF to full bloom with GA application. Furthermore, the Vitis GA signaling gene, VvDELLA was up-regulated by GA application during 12 DBF to 7 DBF, prior to down-regulation of VvIAA9 and VvARF7. These results suggest that VvIAA9 and VvARF7 are negative regulators of fruit set initiation in grapevines, and GA signaling is integrated with auxin signaling via VvDELLA during

  7. Genetic analyses of nonfluorescent root mutants induced by mutagenesis in soybean

    International Nuclear Information System (INIS)

    Sawada, S.; Palmer, R.G.

    1987-01-01

    Nonfluorescent root mutants in soybean [Glycine max (L.) Merr.] are useful as markers in genetic studies and in tissue culture research. Our objective was to obtain mutagen-induced nonfluorescent root mutants and to conduct genetic studies with them. Thirteen nonfluorescent mutants were detected among 154016 seedlings derived from soybean lines treated with six mutagens. One of these mutants, derived from Williams treated with 20 kR gamma rays, did not correspond to any of the known (standard) nonfluorescent spontaneous mutants. This is the first mutagen-induced nonfluorescent root mutant in soybean. It was assigned Genetic Type Collection no. T285 and the gene symbol fr5 fr5. The fr5 allele was not located on trisomics A, B, or C and was not linked to five chlorophyll-deficient mutants (y9, y11, y12, y13, and y20-k2) or flower color mutant w1. The remaining nonfluorescent root mutants were at the same loci as known spontaneous mutants; i.e., four had the fr1 allele, five had the fr2 allele, and three had the fr4 allele

  8. High optical and structural quality of GaN epilayers grown on ( 2¯01) β-Ga2O3

    KAUST Repository

    Mumthaz Muhammed, Mufasila; Peres, M.; Yamashita, Y.; Morishima, Y.; Sato, S.; Franco, N.; Lorenz, K.; Kuramata, A.; Roqan, Iman S.

    2014-01-01

    Producing highly efficient GaN-based optoelectronic devices has been a challenge for a long time due to the large lattice mismatch between III-nitride materials and the most common substrates, which causes a high density of threading dislocations. Therefore, it is essential to obtain alternative substrates with small lattice mismatches, appropriate structural, thermal and electrical properties, and a competitive price. Our results show that (2̄01) oriented β-Ga2O3 has the potential to be used as a transparent and conductive substrate for GaN-growth. Photoluminescence spectra of thick GaN layers grown on (2̄01) oriented β-Ga 2O3 are found to be dominated by intense bandedge emission. Atomic force microscopy studies show a modest threading dislocation density of ∼108cm-2. X-ray diffraction studies show the high quality of the single-phase wurtzite GaN thin film on (2̄01) β-Ga2O3 with in-plane epitaxial orientation relationships between the β-Ga2O3 and the GaN thin film defined by (010) β-Ga2O3 || (112̄0) GaN and (2̄01) β-Ga2O3 || (0001) GaN leading to a lattice mismatch of ∼4.7%. Complementary Raman spectroscopy indicates that the quality of the GaN epilayer is high. © 2014 AIP Publishing LLC.

  9. High optical and structural quality of GaN epilayers grown on ( 2¯01) β-Ga2O3

    KAUST Repository

    Mumthaz Muhammed, Mufasila

    2014-07-28

    Producing highly efficient GaN-based optoelectronic devices has been a challenge for a long time due to the large lattice mismatch between III-nitride materials and the most common substrates, which causes a high density of threading dislocations. Therefore, it is essential to obtain alternative substrates with small lattice mismatches, appropriate structural, thermal and electrical properties, and a competitive price. Our results show that (2̄01) oriented β-Ga2O3 has the potential to be used as a transparent and conductive substrate for GaN-growth. Photoluminescence spectra of thick GaN layers grown on (2̄01) oriented β-Ga 2O3 are found to be dominated by intense bandedge emission. Atomic force microscopy studies show a modest threading dislocation density of ∼108cm-2. X-ray diffraction studies show the high quality of the single-phase wurtzite GaN thin film on (2̄01) β-Ga2O3 with in-plane epitaxial orientation relationships between the β-Ga2O3 and the GaN thin film defined by (010) β-Ga2O3 || (112̄0) GaN and (2̄01) β-Ga2O3 || (0001) GaN leading to a lattice mismatch of ∼4.7%. Complementary Raman spectroscopy indicates that the quality of the GaN epilayer is high. © 2014 AIP Publishing LLC.

  10. Radiation-induced mutagenicity in repair deficient Chinese hamster ovary (CHO) mutants

    International Nuclear Information System (INIS)

    Tesmer, J.G.; Saunders, E.H.; Chen, D.J.

    1987-01-01

    To determine if there is a relationship between DNA double-strand break repair and mutagenicity the authors utilized two x-ray sensitive mutants of Chinese hamster ovary cells along with the parental line K1. The two mutant lines xrs-5 and xrs-6, which have different DSB repair capabilities, were used to determine cell killing and 6-thioguanine resistance (6TG/sup r/) mutation frequencies induced by either x-rays of α-particles, x-ray survival data indicated the two mutant lines have similar sensitivity and are 5-7 fold more sensitive than the parental line K1. The mutant lines are also sensitive to α-particles but to a lesser extent. The authors' 6TG mutation data indicated that the two mutant lines are hypermutable. When mutation frequencies were plotted against the log of survival, mutation frequency at a given survival level was greater in mutant cell population than in parental K1 cells. Their results support the notion that repair of DSB play an important role in the expression of radiation-induced cell killing and mutagenicity

  11. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  12. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT∗3A, TPMT∗2): Mechanisms for the genetic polymorphism of TPMT activity

    OpenAIRE

    Tai, Hung-Liang; Krynetski, Eugene Y.; Schuetz, Erin G.; Yanishevski, Yuri; Evans, William E.

    1997-01-01

    TPMT is a cytosolic enzyme that catalyzes the S-methylation of aromatic and heterocyclic sulfhydryl compounds, including medications such as mercaptopurine and thioguanine. TPMT activity exhibits autosomal codominant genetic polymorphism, and patients inheriting TPMT deficiency are at high risk of potentially fatal hematopoietic toxicity. The most prevalent mutant alleles associated with TPMT deficiency in humans have been cloned and characterized (TPMT∗2 and TPMT∗3A), but the mechanisms for ...

  13. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells.

    Science.gov (United States)

    Zhang, Zhong-Lin; Shin, Margaret; Zou, Xiaolu; Huang, Jianzhi; Ho, Tun-hua David; Shen, Qingxi J

    2009-05-01

    Abscisic acid (ABA) and gibberellins (GAs) control several developmental processes including seed maturation, dormancy, and germination. The antagonism of these two hormones is well-documented. However, recent data from transcription profiling studies indicate that they can function as agonists in regulating the expression of many genes although the underlying mechanism is unclear. Here we report a rice WRKY gene, OsWRKY24, which encodes a protein that functions as a negative regulator of both GA and ABA signaling. Overexpression of OsWRKY24 via particle bombardment-mediated transient expression in aleurone cells represses the expression of two reporter constructs: the beta-glucuronidase gene driven by the GA-inducible Amy32b alpha-amylase promoter (Amy32b-GUS) and the ABA-inducible HVA22 promoter (HVA22-GUS). OsWRKY24 is unlikely a general repressor because it has little effect on the expression of the luciferase reporter gene driven by a constitutive ubiquitin promoter (UBI-Luciferase). As to the GA signaling, OsWRKY24 differs from OsWRKY51 and -71, two negative regulators specifically function in the GA signaling pathway, in several ways. First, OsWRKY24 contains two WRKY domains while OsWRKY51 and -71 have only one; both WRKY domains are essential for the full repressing activity of OsWRKY24. Second, binding of OsWRKY24 to the Amy32b promoter appears to involve sequences in addition to the TGAC cores of the W-boxes. Third, unlike OsWRKY71, OsWRKY24 is stable upon GA treatment. Together, these data demonstrate that OsWRKY24 is a novel type of transcriptional repressor that inhibits both GA and ABA signaling.

  14. Heme oxygenase-1 delays gibberellin-induced programmed cell death of rice aleurone layers subjected to drought stress by interacting with nitric oxide

    Directory of Open Access Journals (Sweden)

    Huangming eWu

    2016-01-01

    Full Text Available Cereal aleurone layers undergo a gibberellin (GA-regulated process of programmed cell death (PCD following germination. Heme oxygenase-1 (HO-1 is known as a rate-liming enzyme in the degradation of heme to biliverdin IXα (BV, carbon monoxide (CO, and free iron ions (Fe2+. It is a critical component in plant development and adaptation to environment stresses. Our previous studies confirmed that HO-1 inducer hematin (Ht promotes the germination of rice seeds in drought (20% polyethylene glycol-6000, PEG conditions, but the corresponding effects of HO-1 on the alleviation of germination-triggered PCD in GA-treated rice aleurone layers remain unknown. The present study has determined that GA co-treated with PEG results in lower HO-1 transcript levels and HO activity, which in turn results in the development of vacuoles in aleurone cells, followed by PCD. The pharmacology approach illustrated that up- or down-regulated HO-1 gene expression and HO activity delayed or accelerated GA-induced PCD. Furthermore, the application of the HO-1 inducer hematin and nitric oxide (NO donor sodium nitroprusside (SNP not only activated HO-1 gene expression, HO activity, and endogenous NO content, but also blocked GA-induced rapid vacuolation and accelerated aleurone layers PCD under drought stress. However, both HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX and NO scavenger 2-(4-carboxyphenyl0-4, 4, 5, 5-tetramethylimidazoline-l-oxyl-3-oxide potassium salt (cPTIO reserved the effects of hematin and SNP on rice aleurone layer PCD under drought stress by down-regulating endogenous HO-1 and NO, respectively. The inducible effects of hematin and SNP on HO-1 gene expression, HO activity, and NO content were blocked by cPTIO. Together, these results clearly suggest that HO-1 is involved in the alleviation of GA-induced PCD of drought-triggered rice aleurone layers by associating with NO.

  15. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells

    KAUST Repository

    Sauret-Güeto, Susanna

    2011-11-25

    The phytohormone gibberellin (GA) promotes plant growth by stimulating cellular expansion. Whilst it is known that GA acts by opposing the growth-repressing effects of DELLA proteins, it is not known how these events promote cellular expansion. Here we present a time-lapse analysis of the effects of a single pulse of GA on the growth of Arabidopsis hypocotyls. Our analyses permit kinetic resolution of the transient growth effects of GA on expanding cells. We show that pulsed application of GA to the relatively slowly growing cells of the unexpanded light-grown Arabidopsis hypocotyl results in a transient burst of anisotropic cellular growth. This burst, and the subsequent restoration of initial cellular elongation rates, occurred respectively following the degradation and subsequent reappearance of a GFP-tagged DELLA (GFP-RGA). In addition, we used a GFP-tagged α-tubulin 6 (GFP-TUA6) to visualise the behaviour of microtubules (MTs) on the outer tangential wall (OTW) of epidermal cells. In contrast to some current hypotheses concerning the effect of GA on MTs, we show that the GA-induced boost of hypocotyl cell elongation rate is not dependent upon the maintenance of transverse orientation of the OTW MTs. This confirms that transverse alignment of outer face MTs is not necessary to maintain rapid elongation rates of light-grown hypocotyls. Together with future studies on MT dynamics in other faces of epidermal cells and in cells deeper within the hypocotyl, our observations advance understanding of the mechanisms by which GA promotes plant cell and organ growth. © 2011 Blackwell Publishing Ltd.

  16. Germination induction of dormant Avena fatua caryopses by KAR(1) and GA(3) involving the control of reactive oxygen species (H2O2 and O2(·-)) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers.

    Science.gov (United States)

    Cembrowska-Lech, Danuta; Koprowski, Marek; Kępczyński, Jan

    2015-03-15

    Avena fatua L. caryopses did not germinate at 20 °C in darkness because they were dormant. However, they were able to germinate in the presence of karrikinolide (KAR1), a key bioactive compound present in smoke, and also in the presence of gibberellin A3 (GA3), a commonly known stimulator of seed germination. The aim of this study was to collect information on a possible relationship between the above regulators and abscisic acid (ABA), reactive oxygen species (ROS) and ROS scavenging antioxidants in the regulation of dormant caryopses germination. KAR1 and GA3 caused complete germination of dormant A. fatua caryopses. Hydrogen peroxide (H2O2), compounds generating the superoxide (O2(·-)), i.e. menadione (MN), methylviologen (MV) and an inhibitor of catalase activity, aminotriazole (AT), induced germination of dormant caryopses. KAR1, GA3, H2O2 and AT decreased ABA content in embryos. Furthermore, KAR1, GA3, H2O2, MN, MV and AT increased α-amylase activity in caryopses. The effect of KAR1 and GA3 on ROS (H2O2, O2(·-)) and activities of the superoxide dismutase (SOD) and catalase (CAT) were determined in caryopses, embryos and aleurone layers. SOD was represented by four isoforms and catalase by one. In situ localization of ROS showed that the effect of KAR1 and GA3 was associated with the localization of hydrogen peroxide mainly on the coleorhiza. However, the superoxide was mainly localized on the surface of the scutellum. Superoxide was also detected in the protruding radicle. Germination induction of dormant caryopses by KAR1 and GA3 was related to an increasing content of H2O2, O2(·-)and activities of SOD and CAT in embryos, thus ROS homeostasis was probably required for the germination of dormant caryopses. The above regulators increased the content of ROS in aleurone layers and decreased the activities of SOD and CAT, probably leading to the programmed cell death. The presented data provide new insights into the germination induction of A. fatua dormant

  17. Multiple antibiotic susceptibility of polyphosphate kinase mutants (ppk1 and ppk2 from Pseudomonas aeruginosa PAO1 as revealed by global phenotypic analysis

    Directory of Open Access Journals (Sweden)

    Javiera Ortiz-Severín

    2015-01-01

    Full Text Available BACKGROUND: Pseudomonas aeruginosa is known to be a multidrug resistant opportunistic pathogen. Particularly, P. aeruginosa PAO1 polyphosphate kinase mutant (ppk1 is deficient in motility, quorum sensing, biofilm formation and virulence FINDINGS: By using Phenotypic Microarrays (PM we analyzed near 2000 phenotypes of P. aeruginosa PAO1 polyP kinase mutants (ppk1 and ppk2. We found that both ppk mutants shared most of the phenotypic changes and interestingly many of them related to susceptibility toward numerous and different type of antibiotics such as Ciprofloxacin, Chloramphenicol and Rifampicin CONCLUSIONS: Combining the fact that ppk1 mutants have reduced virulence and are more susceptible to antibiotics, polyP synthesis and particularly PPK1, is a good target for the design of molecules with anti-virulence and anti-persistence properties.

  18. In vitro binding of Sorghum bicolor transcription factors ABI4 and ABI5 to a conserved region of a GA 2-OXIDASE promoter: possible role of this interaction in the expression of seed dormancy

    OpenAIRE

    Cantoro, Renata; Crocco, Carlos Daniel; Benech-Arnold, Roberto Luis; Rodr?guez, Mar?a Ver?nica

    2013-01-01

    The precise adjustment of the timing of dormancy release according to final grain usage is still a challenge for many cereal crops. Grain sorghum [Sorghum bicolor (L.) Moench] shows wide intraspecific variability in dormancy level and susceptibility to pre-harvest sprouting (PHS). Both embryo sensitivity to abscisic acid (ABA) and gibberellin (GA) metabolism play an important role in the expression of dormancy of the developing sorghum grain. In previous works, it was shown that, simultaneous...

  19. The performance of spinel bulk-like oxygen-deficient CoGa2O4 as an air-cathode catalyst in microbial fuel cell

    Science.gov (United States)

    Liu, Di; Mo, Xiaoping; Li, Kexun; Liu, Yi; Wang, Junjie; Yang, Tingting

    2017-08-01

    Nano spinel bulk-like CoGa2O4 prepared via a facile hydrothermal method is used as a high efficient electrochemical catalyst in activated carbon (AC) air-cathode microbial fuel cell (MFC). The maximum power density of the modified MFC is 1911 ± 49 mW m-2, 147% higher than the MFC of untreated AC cathode. Transmission electron microscope (TEM) and X-ray diffraction (XRD) exhibit the morphology and crystal structure of CoGa2O4. Rotating disk electrode (RDE) confirms the four-electron pathway at the cathode during the oxygen reduction reaction (ORR). Thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) illustrate that the high rate oxygen vacancy exist in the CoGa2O4. The oxygen vacancy of CoGa2O4 plays an important role in catalytic activity. In a word, the prepared nano spinel bulk-like CoGa2O4 provides an alternative to the costly Pt in air-cathode for power output.

  20. Inflammatory response of TLR4 deficient spleen macrophages (CRL 2471) to Brucella abortus S19 and an isogenic ΔmglA deletion mutant.

    Science.gov (United States)

    Jacob, Jens; Makou, Patricia; Finke, Antje; Mielke, Martin

    2016-05-01

    Brucellosis is a worldwide distributed zoonosis caused by members of the genus Brucella. One of them, Brucella abortus, is the etiological agent of bovine brucellosis. With the attenuated strain B. abortus S19 a vaccine is available. However, both, virulence (safety) and the ability to induce a protective B and T cell response (efficacy) have to be tested in suitable assays before successful use in the field. For this purpose, several macrophage cell lines of various origins have been used while splenic macrophages are the preferred host cells in vivo. We here characterized the in vitro response of the murine splenic macrophage cell line CRL 2471(I-13.35) to B. abortus. This cell line still depends on the presence of colony-stimulating factor 1 (CSF1) and is derived from LPS resistant (TLR4 deficient) C3H/HeJ mice. For infection the vaccine strain B. abortus S19A as well as the formerly described isogenic deletion mutant B. abortus S19A ΔmglA 3.14 were used. While numbers of viable bacteria did not differ significantly between the vaccine strain and the deletion mutant at 6h post infection, a higher bacterial load was measured in case of the mutant at 24h and 48h after infection. This was also true, when IFNγ was used for macrophage activation. A comprehensive gene expression profile of macrophages was analysed 6 and 24h after infection by means of an RT-PCR based gene expression array. The mutant strain B. abortus S19A ΔmglA 3.14 elicited a stronger cellular response of the splenic macrophages as compared to the parental vaccine strain. This was most prominent for the pro-inflammatory cytokines IL-1α, IL-1β, TNF-α and IL6 as well as for the chemokine ligands CXCL1, CXCL2, CXCL10, CCL2, CCL5, CCL7, CCL17 and the co-stimulatory molecules CD40 and ICAM1. While these differences were also present in IFNγ-stimulated macrophages, an addition of IFNγ after infection not only resulted in a dramatic increase of the translation of the afore mentioned genes but also

  1. Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor

    Science.gov (United States)

    Krishnamoorthy, Sriram; Xia, Zhanbo; Joishi, Chandan; Zhang, Yuewei; McGlone, Joe; Johnson, Jared; Brenner, Mark; Arehart, Aaron R.; Hwang, Jinwoo; Lodha, Saurabh; Rajan, Siddharth

    2017-07-01

    Modulation-doped heterostructures are a key enabler for realizing high mobility and better scaling properties for high performance transistors. We report the realization of a modulation-doped two-dimensional electron gas (2DEG) at the β-(Al0.2Ga0.8)2O3/Ga2O3 heterojunction by silicon delta doping. The formation of a 2DEG was confirmed using capacitance voltage measurements. A modulation-doped 2DEG channel was used to realize a modulation-doped field-effect transistor. The demonstration of modulation doping in the β-(Al0.2Ga0.8)2O3/Ga2O3 material system could enable heterojunction devices for high performance electronics.

  2. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation

    International Nuclear Information System (INIS)

    Hwang, Jih-Shang; Liu, Tai-Yan; Chen, Han-Wei; Chattopadhyay, Surjit; Hsu, Geng-Ming; Basilio, Antonio M; Hsu, Yu-Kuei; Tu, Wen-Hsun; Lin, Yan-Gu; Chen, Kuei-Hsien; Li, Chien-Cheng; Wang, Sheng-Bo; Chen, Hsin-Yi; Chen, Li-Chyong

    2013-01-01

    Enhanced photoelectrochemical (PEC) performances of Ga 2 O 3 and GaN nanowires (NWs) grown in situ from GaN were demonstrated. The PEC conversion efficiencies of Ga 2 O 3 and GaN NWs have been shown to be 0.906% and 1.09% respectively, in contrast to their 0.581% GaN thin film counterpart under similar experimental conditions. A low crystallinity buffer layer between the grown NWs and the substrate was found to be detrimental to the PEC performance, but the layer can be avoided at suitable growth conditions. A band bending at the surface of the GaN NWs generates an electric field that drives the photogenerated electrons and holes away from each other, preventing recombination, and was found to be responsible for the enhanced PEC performance. The enhanced PEC efficiency of the Ga 2 O 3 NWs is aided by the optical absorption through a defect band centered 3.3 eV above the valence band of Ga 2 O 3 . These findings are believed to have opened up possibilities for enabling visible absorption, either by tailoring ion doping into wide bandgap Ga 2 O 3 NWs, or by incorporation of indium to form InGaN NWs. (paper)

  3. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation.

    Science.gov (United States)

    Hwang, Jih-Shang; Liu, Tai-Yan; Chattopadhyay, Surjit; Hsu, Geng-Ming; Basilio, Antonio M; Chen, Han-Wei; Hsu, Yu-Kuei; Tu, Wen-Hsun; Lin, Yan-Gu; Chen, Kuei-Hsien; Li, Chien-Cheng; Wang, Sheng-Bo; Chen, Hsin-Yi; Chen, Li-Chyong

    2013-02-08

    Enhanced photoelectrochemical (PEC) performances of Ga(2)O(3) and GaN nanowires (NWs) grown in situ from GaN were demonstrated. The PEC conversion efficiencies of Ga(2)O(3) and GaN NWs have been shown to be 0.906% and 1.09% respectively, in contrast to their 0.581% GaN thin film counterpart under similar experimental conditions. A low crystallinity buffer layer between the grown NWs and the substrate was found to be detrimental to the PEC performance, but the layer can be avoided at suitable growth conditions. A band bending at the surface of the GaN NWs generates an electric field that drives the photogenerated electrons and holes away from each other, preventing recombination, and was found to be responsible for the enhanced PEC performance. The enhanced PEC efficiency of the Ga(2)O(3) NWs is aided by the optical absorption through a defect band centered 3.3 eV above the valence band of Ga(2)O(3). These findings are believed to have opened up possibilities for enabling visible absorption, either by tailoring ion doping into wide bandgap Ga(2)O(3) NWs, or by incorporation of indium to form InGaN NWs.

  4. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems

    International Nuclear Information System (INIS)

    Shen, J; Cha, J J; Song, Y; Lee, M L

    2014-01-01

    InGaAs quantum dots (QDs) on GaP are promising for monolithic integration of optoelectronics with Si technology. To understand and improve the optical properties of InGaAs/GaP QD systems, detailed measurements of the QD atomic structure as well as the spatial distributions of each element at high resolution are crucial. This is because the QD band structure, band alignment, and optical properties are determined by the atomic structure and elemental composition. Here, we directly measure the inhomogeneous distributions of In and As in InGaAs QDs grown on GaAs and GaP substrates at the nanoscale using energy dispersive x-ray spectral mapping in a scanning transmission electron microscope. We find that the In distribution is broader on GaP than on GaAs, and as a result, the QDs appear to be In-poor using a GaP matrix. Our findings challenge some of the assumptions made for the concentrations and distributions of In within InGaAs/GaAs or InGaAs/GaP QD systems and provide detailed structural and elemental information to modify the current band structure understanding. In particular, the findings of In deficiency and inhomogeneous distribution in InGaAs/GaP QD systems help to explain photoluminescence spectral differences between InGaAs/GaAs and InGaAs/GaP QD systems. (paper)

  5. Electrical compensation by Ga vacancies in Ga2O3

    OpenAIRE

    Korhonen, Esa; Tuomisto, F.; Gogova, D.; Wagner, G.; Baldini, M.; Galazka, Z.; Schewski, R.; Albrecht, M.

    2015-01-01

    The authors have applied positron annihilation spectroscopy to study the vacancy defects in undoped and Si-doped Ga2O3 thin films. The results show that Ga vacancies are formed efficiently during metal-organic vapor phase epitaxy growth of Ga2O3 thin films. Their concentrations are high enough to fully account for the electrical compensation of Si doping. This is in clear contrast to another n-type transparent semiconducting oxide In2O3, where recent results show that n-type conductivity is n...

  6. Expression analysis revealing destabilizing mutations in phosphomannomutase 2 deficiency (PMM2-CDG): expression analysis of PMM2-CDG mutations.

    Science.gov (United States)

    Vega, Ana Isabel; Pérez-Cerdá, Celia; Abia, David; Gámez, Alejandra; Briones, Paz; Artuch, Rafael; Desviat, Lourdes R; Ugarte, Magdalena; Pérez, Belén

    2011-08-01

    Deficiency of phosphomannomutase (PMM2, MIM#601785) is the most common congenital disorder of glycosylation. Herein we report the genetic analysis of 22 Spanish PMM2 deficient patients and the functional analysis of 14 nucleotide changes in a prokaryotic expression system in order to elucidate their molecular pathogenesis. PMM2 activity assay revealed the presence of six protein changes with no enzymatic activities (p.R123Q, p.R141H, p.F157S, p.P184T, p.F207S and p.D209G) and seven mild protein changes with residual activities ranging from 16 to 54% (p.L32R, p.V44A p.D65Y, p.P113L p.T118S, p.T237M and p.C241S) and also one variant change with normal activity (p.E197A). The results obtained from Western blot analysis, degradation time courses of 11 protein changes and structural analysis of the PMM2 protein, suggest that the loss-of-function of most mutant proteins is based on their increased susceptibility to degradation or aggregation compared to the wild type protein, considering PMM2 deficiency as a conformational disease. We have identified exclusively catalytic protein change (p.D209G), catalytic protein changes affecting protein stability (p.R123Q and p.R141H), two protein changes disrupting the dimer interface (p.P113L and p.T118S) and several misfolding changes (p.L32R, p.V44A, p.D65Y, p.F157S, p.P184T, p.F207S, p.T237M and p.C241S). Our current work opens a promising therapeutic option using pharmacological chaperones to revert the effect of the characterized misfolding mutations identified in a wide range of PMM2 deficient patients.

  7. High resolution x-ray diffraction analyses of GaN/LiGaO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Matyi, R.J. [Department of Materials Science and Engineering University of Wisconsin, Madison, WI (United States); Doolittle, W.A.; Brown, A.S. [School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA (United States)

    1999-05-21

    Lithium gallate (LiGaO{sub 2}) is gaining increasing attention as a potential substrate for the growth of the important semiconductor GaN. In order to better understand this material we have performed high-resolution double- and triple-axis x-ray diffraction analyses of both the starting LiGaO{sub 2} and GaN/LiGaO{sub 2} following epitaxial growth. A high-resolution triple-axis reciprocal space map of the substrate showed a sharp, well-defined crystal truncation rod and a symmetric streak of intensity perpendicular to q{sub 002}, suggesting high structural quality with mosaic spread. Triple-axis scans following GaN growth showed (1) the development of isotropic diffuse scatter around the LiGaO{sub 2} (002) reflection, (2) the presence of a semi-continuous intensity streak between the LiGaO{sub 2} (002) and GaN (0002) reflections, and (3) a compact pattern of diffuse scatter around the GaN (0002) reflection that becomes increasingly anisotropic as the growth temperature is increased. These results suggest that LiGaO{sub 2} permits the epitaxial growth of GaN with structural quality that may be superior to that observed when growth is performed on SiC or Al{sub 2}O{sub 3}. (author)

  8. Two new FUT2 (fucosyltransferase 2 gene) missense polymorphisms, 739G-->A and 839T-->C, are partly responsible for non-secretor status in a Caucasian population from Northern Portugal.

    Science.gov (United States)

    Serpa, Jacinta; Mendes, Nuno; Reis, Celso A; Santos Silva, Luis F; Almeida, Raquel; Le Pendu, Jacques; David, Leonor

    2004-11-01

    Secretor status is defined by the expression of H type 1 antigen on gastric surface epithelium and external secretions. The H type 1 structure, and other fucosylated carbohydrates (Le(a), sialyl-Le(a), Le(b), Le(x), sialyl-Le(x) and Le(y)), can serve as ligands for several pathogens, including Helicobacter pylori, and are cancer-associated antigens. Secretor individuals are more susceptible to some bacterial and viral infections of the genito-urinary and digestive tracts. The aim of the present study was to examine FUT2 (fucosyltransferase 2 gene) polymorphisms in a Caucasian population of non-secretor individuals (n=36) from northern Portugal and to evaluate the activity of the mutant FUT2 enzymes. The secretor status was determined by UEAI [Ulex europaeus (gorse) lectin] histochemistry in gastric mucosa, and FUT2 polymorphisms were studied by restriction-fragment-length polymorphism and direct sequencing. The majority of non-secretors (88.9%) were homozygous for 428G-->A polymorphism; 5.6% were homozygous for 571C-->T and 5.6% were homozygous for two new missense polymorphisms, 739G-->A (2.8%) and 839T-->C (2.8%). By kinetic studies it was demonstrated that the two new FUT2 mutants (739G-->A and 839T-->C) are almost inactive and are responsible for some non-secretor cases.

  9. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling.

    Science.gov (United States)

    Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A; Puig, Sergi; Peñarrubia, Lola

    2013-05-01

    Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.

  10. Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT

    International Nuclear Information System (INIS)

    Lenka, T. R.; Panda, A. K.

    2011-01-01

    Growth of wide bandgap material over narrow bandgap material, results into a two dimensional electron gas (2DEG) at the heterointerface due to the conduction band discontinuity. In this paper the 2DEG transport properties of AlGaN/GaN-based high electron mobility transistor (HEMT) is discussed and its effect on various characteristics such as 2DEG density, C-V characteristics and Sheet resistances for different mole fractions are presented. The obtained results are also compared with AlGaAs/GaAs-based HEMT for the same structural parameter as like AlGaN/GaN-based HEMT. The calculated results of electron sheet concentration as a function of the Al mole fraction are in excellent agreement with some experimental data available in the literature.

  11. Photoelectric characteristics of metal-Ga{sub 2}O{sub 3}-GaAs structures

    Energy Technology Data Exchange (ETDEWEB)

    Kalygina, V. M., E-mail: Kalygina@ngs.ru; Vishnikina, V. V.; Petrova, Yu. S.; Prudaev, I. A.; Yaskevich, T. M. [National Research Tomsk State University (Russian Federation)

    2015-03-15

    We investigate the effect of thermal annealing in argon and of oxygen plasma processing on the photoelectric properties of GaAs-Ga{sub 2}O{sub 3}-Me structures. Gallium-oxide films are fabricated by photostimulated electrochemical oxidation of epitaxial gallium-arsenide layers with n-type conductivity. The as-deposited films were amorphous, but their processing in oxygen plasma led to the nucleation of β-Ga{sub 2}O{sub 3} crystallites. The unannealed films are nontransparent in the visible and ultraviolet (UV) ranges and there is no photocurrent in structures based on them. After annealing at 900°C for 30 min, the gallium-oxide films contain only β-Ga{sub 2}O{sub 3} crystallites and become transparent. Under illumination of the Ga{sub 2}O{sub 3}-GaAs structures with visible light, the photocurrent appears. This effect can be attributed to radiation absorption in GaAs. The photocurrent and its voltage dependence are determined by the time of exposure to the oxygen plasma. In the UV range, the sensitivity of the structures increases with decreasing radiation wavelength, starting at λ ≤ 230 nm. This is due to absorption in the Ga{sub 2}O{sub 3} film. Reduction in the structure sensitivity with an increase in the time of exposure to oxygen plasma can be caused by the incorporation of defects both at the Ga{sub 2}O{sub 3}-GaAs interface and in the Ga{sub 2}O{sub 3} film.

  12. Differential Impact of LPG-and PG-Deficient Leishmania major Mutants on the Immune Response of Human Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Michelle A Favila

    2015-12-01

    Full Text Available Leishmania major infection induces robust interleukin-12 (IL12 production in human dendritic cells (hDC, ultimately resulting in Th1-mediated immunity and clinical resolution. The surface of Leishmania parasites is covered in a dense glycocalyx consisting of primarily lipophosphoglycan (LPG and other phosphoglycan-containing molecules (PGs, making these glycoconjugates the likely pathogen-associated molecular patterns (PAMPS responsible for IL12 induction.Here we explored the role of parasite glycoconjugates on the hDC IL12 response by generating L. major Friedlin V1 mutants defective in LPG alone, (FV1 lpg1-, or generally deficient for all PGs, (FV1 lpg2-. Infection with metacyclic, infective stage, L. major or purified LPG induced high levels of IL12B subunit gene transcripts in hDCs, which was abrogated with FV1 lpg1- infections. In contrast, hDC infections with FV1 lpg2- displayed increased IL12B expression, suggesting other PG-related/LPG2 dependent molecules may act to dampen the immune response. Global transcriptional profiling comparing WT, FV1 lpg1-, FV1 lpg2- infections revealed that FV1 lpg1- mutants entered hDCs in a silent fashion as indicated by repression of gene expression. Transcription factor binding site analysis suggests that LPG recognition by hDCs induces IL-12 in a signaling cascade resulting in Nuclear Factor κ B (NFκB and Interferon Regulatory Factor (IRF mediated transcription.These data suggest that L. major LPG is a major PAMP recognized by hDC to induce IL12-mediated protective immunity and that there is a complex interplay between PG-baring Leishmania surface glycoconjugates that result in modulation of host cellular IL12.

  13. Gas sensing with AlGaN/GaN 2DEG channels

    NARCIS (Netherlands)

    Offermans, P.; Vitushinsky, R.; Crego-Calama, M.; Brongersma, S.H.

    2011-01-01

    AlGaN/GaN shows great promise as a generic platform for (bio-)chemical sensing because of its robustness and intrinsic sensitivity to surface charge or dipoles. Here, we employ the two-dimensional electron gas (2DEG) formed at the interface of AlGaN/GaN layers grown on Si substrates for the

  14. Biochemical evidence for deficient DNA repair leading to enhanced G2 chromatid radiosensitivity and susceptibility to cancer

    International Nuclear Information System (INIS)

    Gantt, R.; Parshad, R.; Price, F.M.; Sanford, K.K.

    1986-01-01

    Human tumor cells and cells from cancer-prone individuals, compared with those from normal individuals, show a significantly higher incidence of chromatid breaks and gaps seen in metaphase cells immediately after G2 X irradiation. Previous studies with DNA repair-deficient mutants and DNA repair inhibitors strongly indicate that the enhancement results from a G2 deficiency(ies) in DNA repair. We report here biochemical evidence for a DNA repair deficiency that correlates with the cytogenetic studies. In the alkaline elution technique, after a pulse label with radioactive thymidine in the presence of 3-acetylaminobenzamide (a G2-phase blocker) and X irradiation, DNA from tumor or cancer-prone cells elutes more rapidly during the postirradiation period than that from normal cells. These results indicate that the DNA of tumor and cancer-prone cells either repairs more slowly or acquires more breaks than that of normal cells; breaks can accumulate during incomplete or deficient repair processes. The kinetic difference between normal and tumor or cancer-prone cells in DNA strand-break repair reaches a maximum within 2 h, and this maximum corresponds to the kinetic difference in chromatid aberration incidence following X irradiation reported previously. These findings support the concept that cells showing enhanced G2 chromatid radiosensitivity are deficient in DNA repair. The findings could also lead to a biochemical assay for cancer susceptibility

  15. Serine:glyoxylate aminotransferase mutant of barley

    International Nuclear Information System (INIS)

    Blackwell, R.; Murray, A.; Joy, K.; Lea, P.

    1987-01-01

    A photorespiratory mutant of barley (LaPr 85/84), deficient in both of the major peaks of serine:glyoxylate aminotransferase activity detected in the wild type, also lacks serine:pyruvate and asparagine:glyoxylate aminotransferase activities. Genetic analysis of the mutation demonstrated that these three activities are all carried on the same enzyme. The mutant, when placed in air, accumulated a large pool of serine, showed the expected rate (50%) of ammonia release during photorespiration but produced CO 2 at twice the wild type rate when it was fed [ 14 C] glyoxylate. Compared with the wild type, LaPr 85/84 exhibited abnormal transient changes in chlorophyll a fluorescence when the CO 2 concentration of the air was altered, indicating that the rates of the fluorescence quenching mechanisms were affected in vivo by the lack of this enzyme

  16. Spinster homolog 2 (spns2 deficiency causes early onset progressive hearing loss.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2014-10-01

    Full Text Available Spinster homolog 2 (Spns2 acts as a Sphingosine-1-phosphate (S1P transporter in zebrafish and mice, regulating heart development and lymphocyte trafficking respectively. S1P is a biologically active lysophospholipid with multiple roles in signalling. The mechanism of action of Spns2 is still elusive in mammals. Here, we report that Spns2-deficient mice rapidly lost auditory sensitivity and endocochlear potential (EP from 2 to 3 weeks old. We found progressive degeneration of sensory hair cells in the organ of Corti, but the earliest defect was a decline in the EP, suggesting that dysfunction of the lateral wall was the primary lesion. In the lateral wall of adult mutants, we observed structural changes of marginal cell boundaries and of strial capillaries, and reduced expression of several key proteins involved in the generation of the EP (Kcnj10, Kcnq1, Gjb2 and Gjb6, but these changes were likely to be secondary. Permeability of the boundaries of the stria vascularis and of the strial capillaries appeared normal. We also found focal retinal degeneration and anomalies of retinal capillaries together with anterior eye defects in Spns2 mutant mice. Targeted inactivation of Spns2 in red blood cells, platelets, or lymphatic or vascular endothelial cells did not affect hearing, but targeted ablation of Spns2 in the cochlea using a Sox10-Cre allele produced a similar auditory phenotype to the original mutation, suggesting that local Spns2 expression is critical for hearing in mammals. These findings indicate that Spns2 is required for normal maintenance of the EP and hence for normal auditory function, and support a role for S1P signalling in hearing.

  17. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    Science.gov (United States)

    2011-01-01

    Background Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA) and abscisic acid (ABA) are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. Results The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up-regulated by both GA and seed

  18. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    Directory of Open Access Journals (Sweden)

    Lin Li

    2011-06-01

    Full Text Available Abstract Background Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA and abscisic acid (ABA are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. Results The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up

  19. Effects of exogenous application of CPPU, NAA and GA4+7 on parthenocarpy and fruit quality in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Qian, Chunlu; Ren, Nannan; Wang, Jingye; Xu, Qiang; Chen, Xuehao; Qi, Xiaohua

    2018-03-15

    In protected vegetable fields, plant growth regulators are often used to improve cucumber fruit growth. However, the effects of plant growth regulators on the appearance and nutritional quality of cucumber (Cucumis sativus L.) remain largely unknown. In the present study, 100 mg/L N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU), naphthaleneacetic acid (NAA) or gibberellin A4+A7 (GA 4+7 ) was applied to the female cucumber flowers 1 day before anthesis and at anthesis. The CPPU, NAA and GA 4+7 treatments resulted in parthenocarpic fruits with similar weights, sizes and shapes as the pollinated fruits. NAA treatment did not affect the appearance and nutritional characteristics of cucumber at harvest and after storage. CPPU treatment increased the flesh firmness at harvest but decreased phenolic acid and vitamin C contents after storage. GA 4+7 treatment decreased the flesh firmness but increased total flavonoids and protein content after storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Susceptibility of germ-free pigs to challenge with protease mutants of Salmonella enterica serovar Typhimurium

    Czech Academy of Sciences Publication Activity Database

    Šplíchal, Igor; Rychlík, I.; Gregorová, D.; Šebková, A.; Trebichavský, Ilja; Šplíchalová, Alla; Muneta, Y.; Mori, Y.

    2007-01-01

    Roč. 212, - (2007), s. 577-582 ISSN 0171-2985 R&D Projects: GA ČR GA524/05/2248 Grant - others:CZ(CZ) 1B4400020 Institutional research plan: CEZ:AV0Z50200510 Source of funding: V - iné verejné zdroje Keywords : salmonella * protease mutants * pig Subject RIV: EE - Microbiology, Virology Impact factor: 2.886, year: 2007

  1. Investigation of plant hormone level changes in shoot tips of longan (Dimocarpus longan Lour.) treated with potassium chlorate by liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Susawaengsup, Chanthana; Rayanakorn, Mongkon; Wongpornchai, Sugunya; Wangkarn, Sunanta

    2011-08-15

    The endogenous levels of indole-3-acetic acid (IAA), gibberellins (GAs), abscisic acid (ABA) and cytokinins (CKs) and their changes were investigated in shoot tips of ten longan (Dimocarpus longan Lour.) trees for off-season flowering until 60 days after potassium chlorate treatment in comparison with those of ten control (untreated) longan trees. These analytes were extracted and interfering matrices removed with a single mixed-mode solid phase extraction under optimum conditions. The recoveries at three levels of concentration were in the range of 72-112%. The endogenous plant hormones were separated and quantified by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Detection limits based on the signal-to-noise ratio ranged from 10 ng mL(-1) for gibberellin A4 (GA4) to 200 ng mL(-1) for IAA. Within the first week after potassium chlorate treatment, dry weight (DW) amounts in the treated longan shoot tips of four gibberellins, namely: gibberellin A1(GA1), gibberellic acid (GA3), gibberellin A19 (GA19) and gibberellin A20 (GA20), were found to increase to approximately 25, 50, 20 and 60 ng g(-1) respectively, all of which were significantly higher than those of the controls. In contrast, gibberellin A8 (GA8) obtained from the treated longan was found to decrease to approximately 20 ng g(-1)DW while that of the control increased to around 80 ng g(-1)DW. Certain CKs which play a role in leaf bud induction, particularly isopentenyl adenine (iP), isopentenyl adenosine (iPR) and dihydrozeatin riboside (DHZR), were found to be present in amounts of approximately 20, 50 and 60 ng g(-1)DW in the shoot tips of the control longan. The analytical results obtained from the two-month off-season longan flowering period indicate that high GA1, GA3, GA19 and GA20 levels in the longan shoot tips contribute to flower bud induction while high levels of CKs, IAA and ABA in the control longan contribute more to the vegetative development. Copyright © 2011

  2. Core level photoelectron spectroscopy of LiGaS2 and Ga-S bonding in complex sulfides

    International Nuclear Information System (INIS)

    Atuchin, V.V.; Isaenko, L.I.; Kesler, V.G.; Lobanov, S.I.

    2010-01-01

    The electronic parameters of the lithium thiogallate LiGaS 2 have been evaluated by X-ray photoelectron spectroscopy (XPS). Spectral features of all constituent element core levels and Auger lines have been considered. The Ga-S bonding effects in Ga-bearing sulfide crystals have been discussed using binding energy difference Δ 2p (S-Ga) = BE(S 2p) - BE(Ga 3d) as a representative parameter to quantify the valence electron shift from gallium to sulfur atoms. The value Δ 2p (S-Ga) = 141.9 eV found for LiGaS 2 is very close to that evaluated for AgGaS 2 . This relation is an indicator of closely coincident ionicity of Ga-S bonds in LiGaS 2 and AgGaS 2 .

  3. Density of Ga2O3 Liquid

    OpenAIRE

    Dingwell, Donald B.

    1992-01-01

    The density of Ga2O3 liquid in equilibrium with air has been measured at 18000 to 19000C using an Ir double-bob Archimedean method. The data yield the following description of the density of Ga2O3 liquid: ρ= 4.8374(84)–0.00065(12)(T −18500C). This density-temperature relationship is compared with the partial molar volume of Ga2O3 in glasses in the systems CaO–Ga2O3–SiO2 and Na2O–Ga2O3–SiO2, corrected to the glass transition temperature using thermal expansivities. The comparison illustrates t...

  4. Roles of gibberellins and abscisic acid in regulating germination of Suaeda salsa dimorphic seeds under salt stress

    Directory of Open Access Journals (Sweden)

    Weiqiang eLi

    2016-01-01

    Full Text Available Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs and abscisic acid (ABA in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA

  5. The COP9 Signalosome regulates seed germination by facilitating protein degradation of RGL2 and ABI5.

    Directory of Open Access Journals (Sweden)

    Dan Jin

    2018-02-01

    Full Text Available The control of seed germination and seed dormancy are critical for the successful propagation of plant species, and are important agricultural traits. Seed germination is tightly controlled by the balance of gibberellin (GA and abscisic acid (ABA, and is influenced by environmental factors. The COP9 Signalosome (CSN is a conserved multi-subunit protein complex that is best known as a regulator of the Cullin-RING family of ubiquitin E3 ligases (CRLs. Multiple viable mutants of the CSN showed poor germination, except for csn5b-1. Detailed analyses showed that csn1-10 has a stronger seed dormancy, while csn5a-1 mutants exhibit retarded seed germination in addition to hyperdormancy. Both csn5a-1 and csn1-10 plants show defects in the timely removal of the germination inhibitors: RGL2, a repressor of GA signaling, and ABI5, an effector of ABA responses. We provide genetic evidence to demonstrate that the germination phenotype of csn1-10 is caused by over-accumulation of RGL2, a substrate of the SCF (CRL1 ubiquitin E3 ligase, while the csn5a-1 phenotype is caused by over-accumulation of RGL2 as well as ABI5. The genetic data are consistent with the hypothesis that CSN5A regulates ABI5 by a mechanism that may not involve CSN1. Transcriptome analyses suggest that CSN1 has a more prominent role than CSN5A during seed maturation, but CSN5A plays a more important role than CSN1 during seed germination, further supporting the functional distinction of these two CSN genes. Our study delineates the molecular targets of the CSN complex in seed germination, and reveals that CSN5 has additional functions in regulating ABI5, thus the ABA signaling pathway.

  6. Defective FANCI binding by a fanconi anemia-related FANCD2 mutant.

    Directory of Open Access Journals (Sweden)

    Koichi Sato

    Full Text Available FANCD2 is a product of one of the genes associated with Fanconi anemia (FA, a rare recessive disease characterized by bone marrow failure, skeletal malformations, developmental defects, and cancer predisposition. FANCD2 forms a complex with FANCI (ID complex and is monoubiquitinated, which facilitates the downstream interstrand crosslink (ICL repair steps, such as ICL unhooking and nucleolytic end resection. In the present study, we focused on the chicken FANCD2 (cFANCD2 mutant harboring the Leu234 to Arg (L234R substitution. cFANCD2 L234R corresponds to the human FANCD2 L231R mutation identified in an FA patient. We found that cFANCD2 L234R did not complement the defective ICL repair in FANCD2-/- DT40 cells. Purified cFANCD2 L234R did not bind to chicken FANCI, and its monoubiquitination was significantly deficient, probably due to the abnormal ID complex formation. In addition, the histone chaperone activity of cFANCD2 L234R was also defective. These findings may explain some aspects of Fanconi anemia pathogenesis by a FANCD2 missense mutation.

  7. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds

    Czech Academy of Sciences Publication Activity Database

    Lee, K. P.; Piskurewicz, U.; Turečková, Veronika; Strnad, Miroslav; Lopez-Molina, L.

    2010-01-01

    Roč. 107, č. 44 (2010), s. 19108-19113 ISSN 0027-8424 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : gibberellins * seed dormancy * DELLA Subject RIV: EF - Botanics Impact factor: 9.771, year: 2010

  8. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair

    Energy Technology Data Exchange (ETDEWEB)

    Siede, W.; Eckardt, F.

    1986-01-01

    A double mutant being thermoconditionally defective in mutation induction as well as in repair of pre-lethal UV-induced DNA damage (rev2ts) and deficient in excision repair (rad3-2) was studied in temperature-shift experiments. The influence of inhibitors of DNA replication (hydroxyurea, aphidicolin) was determined. Additionally, an analysis of the dose-response pattern of mutation induction (mutation kinetics) at several ochre alleles was carried out. It was concluded that the UV-inducible REV2 dependent mutagenic repair process is not induced in excision-deficient cells. In excision-deficient cells, REV2 dependent mutation fixation is slow and mostly post-replicative though not dependent on DNA replication. The REV2 mediated mutagenic process could be separated from the repair function.

  9. MOVPE growth of violet GaN LEDs on β-Ga2O3 substrates

    Science.gov (United States)

    Li, Ding; Hoffmann, Veit; Richter, Eberhard; Tessaro, Thomas; Galazka, Zbigniew; Weyers, Markus; Tränkle, Günther

    2017-11-01

    We report that a H2-free atmosphere is essential for the initial stage of metalorganic vapour phase epitaxy (MOVPE) growth of GaN on β-Ga2O3 to prevent the surface from damage. A simple growth method is proposed that can easily transfer established GaN growth recipes from sapphire to β-Ga2O3 with both (-2 0 1) and (1 0 0) orientations. This method features a thin AlN nucleation layer grown below 900 °C in N2 atmosphere to protect the surface of β-Ga2O3 from deterioration during further growth under the H2 atmosphere. Based on this, we demonstrate working violet vertical light emitting diodes (VLEDs) on n-conductive β-Ga2O3 substrates.

  10. Serum cholinesterases are differentially regulated in normal and dystrophin-deficient mutant mice

    Directory of Open Access Journals (Sweden)

    Andrea R. Durrant

    2012-06-01

    Full Text Available The cholinesterases, acetylcholinesterase and butyrylcholinesterase (pseudocholinesterase, are abundant in the nervous system and in other tissues. The role of acetylcholinesterase in terminating transmitter action in the peripheral and central nervous system is well understood. However, both knowledge of the function(s of the cholinesterases in serum, and of their metabolic and endocrine regulation under normal and pathological conditions, is limited. This study investigates acetylcholinesterase and butyrylcholinesterase in sera of dystrophin-deficient mdx mutant mice, an animal model for the human Duchenne muscular dystrophy and in control healthy mice. The data show systematic and differential variations in the concentrations of both enzymes in the sera, and specific changes dictated by alteration of hormonal balance in both healthy and dystrophic mice. While acetylcholinesterase in mdx-sera is elevated, butyrylcholinesterase is markedly diminished, resulting in an overall cholinesterase decrease compared to sera of healthy controls. The androgen testosterone (T is a negative modulator of butyrylcholinesterase, but not of acetylcholinesterase, in male mouse sera. T-removal elevated both butyrylcholinesterase activity and the butyrylcholinesterase/acetylcholinesterase ratio in mdx male sera to values resembling those in healthy control male mice. Mechanisms of regulation of the circulating cholinesterases and their impairment in the dystrophic mice are suggested, and clinical implications for diagnosis and treatment are considered.

  11. DFT and CCSD(T) study of the A2H3- (A = Al, Ga) isomerization, [Ga2(μ-H)(μ-H2)]- and [Ga2(μ-H3)]- unprecedented hydrido-bimetallic structures

    International Nuclear Information System (INIS)

    Guermoune, Abdeladim; Jarid, Abdellah

    2007-01-01

    Total potential energy surfaces (PES) are scanned in order to study the isomerization of the A 2 H 3 - (A = Al, Ga) anions. Al 2 H 3 - PES is characterized by six minima and seven transition structures which are connectable with themselves. Indeed of these 12 same extrema, the Ga 2 H 3 - PES has three other minima and four TSs. These structures exhibit an activated H 2 molecule in one or both Ga atoms coordination sphere where the Ga atom seems imply its metallic character via its occupied d-orbital. We have also localized two unusual structures: a minimum having M 2 (μ-H)(μ-H 2 )-like structure and a transition with M 2 (μ-H 3 )-like arrangement where the H 3 entity is coordinated to both Ga atoms. The connectivity of all these extrema brings to the fore an eventual fluxional behaviour of these compounds

  12. Brachiaria seeds germination under different concentration of gibberellinGerminação de sementes de braquiária sob diferentes concentrações de giberelina

    Directory of Open Access Journals (Sweden)

    Adriano Bortolotti da Silva

    2013-05-01

    Full Text Available Dormancy in tropical grasses is associated with physiological or physical causes present in freshly harvested seeds. The aim of this study was to evaluate the effect of different concentrations of GA3 in the percentage of germination and suppuration of dormancy of Brachiaria brizantha. Seeds of B. brizantha ‘Marandu’ and ‘MG5’ were immersed in different concentrations of GA3 (0, 25, 50, 75 and 100 mg.L-1 for 2h. After this process, the germination and viability of seed were determinated. The design was completely randomized consisting of 5 treatments with 4 replications for both cultivars. Germination was affected by different concentrations of gibberellins and best results were obtained with the use of 62 and 57 mg.L-1 GA3 for ‘Marandu’ and ‘MG 5’, respectively. A dormência em gramíneas forrageiras está associada às causas fisiológicas ou físicas presentes em sementes recém-colhidas. Este trabalho teve o objetivo de avaliar o efeito de diferentes concentrações de giberelina (GA3 na germinação e superação da dormência das sementes de Brachiaria brizantha. As sementes de B. brizantha ‘Marandu’ e ‘MG 5’ foram imersas nas diferentes concentrações (0, 25, 50, 75 e 100 mg.L-1 do regulador de crescimento GA3 por um período de 2 horas. Após esse processo, foram determinadas a germinação e a viabilidade das sementes. O delineamento foi o inteiramente casualizado, constando de 5 tratamentos com 4 repetições, para ambas as cultivares. A germinação foi afetada pelas diferentes concentrações de giberelinas e os melhores resultados foram obtidos com emprego de 62 e 57 mg.L-1 de GA3, para as cultivares Marandu e MG 5, respectivamente.

  13. Auxin-dependent microtubule responses and seedling development are affected in a rice mutant resistant to EPC

    International Nuclear Information System (INIS)

    Nick, P.; Yatou, O.; Furuya, M.; Lambert, A.M.

    1994-01-01

    Mutants in rice (Oryza sativa L. cv. japonica) were used to study the role of the cytoskeleton in signal-dependent morphogenesis. Mutants obtained by gamma ray irradiation were selected that failed to show inhibition of coleoptile elongation by the anti microtubular drug ethyl-N-phenylcarbamate (EPC). The mutation EPC-Resistant 31 (ER31), isolated from such a screen, caused lethality in putatively homozygous embryos. Heterozygotes exhibited drug resistance, impaired development of crown roots, and characteristic changes in the pattern of cell elongation: cell elongation was enhanced in mesocotyls and leaf sheaths, but inhibited in coleoptiles. The orientation of cortical microtubules changed correspondingly: for etiolated seedlings, compared with the wild-type, they were more transverse with respect to the long cell axis in mesocotyls and leaf sheaths, but more longitudinal in coleoptiles. In mutant coleoptiles, in contrast to wild-type, microtubules did not reorient in response to auxin, and their response to microtubule-eliminating and microtubule-stabilizing drugs was conspicuously reduced. In contrast, they responded normally to other stimuli such as gibberellins or red light. Auxin sensitivity as assayed by the dose-response for callus induction did not show any significant differences between wild-type and mutant. The mutant phenotype is interpreted in terms of an interrupted link between auxin-triggered signal transduction and microtubule reorientation. (author)

  14. A comparative transcriptome analysis of a wild purple potato and its red mutant provides insight into the mechanism of anthocyanin transformation.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available In this study, a red mutant was obtained through in vitro regeneration of a wild purple potato. High-performance liquid chromatography and Mass spectrometry analysis revealed that pelargonidin-3-O-glucoside and petunidin-3-O-glucoside were main anthocyanins in the mutant and wild type tubers, respectively. In order to thoroughly understand the mechanism of anthocyanin transformation in two materials, a comparative transcriptome analysis of the mutant and wild type was carried out through high-throughput RNA sequencing, and 295 differentially expressed genes (DEGs were obtained. Real-time qRT-PCR validation of DEGs was consistent with the transcriptome date. The DEGs mainly influenced biological and metabolic pathways, including phenylpropanoid biosynthesis and translation, and biosynthesis of flavone and flavonol. In anthocyanin biosynthetic pathway, the analysis of structural genes expressions showed that three genes, one encoding phenylalanine ammonia-lyase, one encoding 4-coumarate-CoA ligase and one encoding flavonoid 3',5'-hydroxylasem were significantly down-regulated in the mutant; one gene encoding phenylalanine ammonia-lyase was significantly up-regulated. Moreover, the transcription factors, such as bZIP family, MYB family, LOB family, MADS family, zf-HD family and C2H2 family, were significantly regulated in anthocyanin transformation. Response proteins of hormone, such as gibberellin, abscisic acid and brassinosteroid, were also significantly regulated in anthocyanin transformation. The information contributes to discovering the candidate genes in anthocyanin transformation, which can serve as a comprehensive resource for molecular mechanism research of anthocyanin transformation in potatoes.

  15. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant.

    Science.gov (United States)

    Romero, Paco; Rodrigo, María J; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T

    2012-04-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage.

  16. Deficient and Null Variants of SERPINA1 Are Proteotoxic in a Caenorhabditis elegans Model of α1-Antitrypsin Deficiency.

    Directory of Open Access Journals (Sweden)

    Erin E Cummings

    Full Text Available α1-antitrypsin deficiency (ATD predisposes patients to both loss-of-function (emphysema and gain-of-function (liver cirrhosis phenotypes depending on the type of mutation. Although the Z mutation (ATZ is the most prevalent cause of ATD, >120 mutant alleles have been identified. In general, these mutations are classified as deficient (<20% normal plasma levels or null (<1% normal levels alleles. The deficient alleles, like ATZ, misfold in the ER where they accumulate as toxic monomers, oligomers and aggregates. Thus, deficient alleles may predispose to both gain- and loss-of-function phenotypes. Null variants, if translated, typically yield truncated proteins that are efficiently degraded after being transiently retained in the ER. Clinically, null alleles are only associated with the loss-of-function phenotype. We recently developed a C. elegans model of ATD in order to further elucidate the mechanisms of proteotoxicity (gain-of-function phenotype induced by the aggregation-prone deficient allele, ATZ. The goal of this study was to use this C. elegans model to determine whether different types of deficient and null alleles, which differentially affect polymerization and secretion rates, correlated to any extent with proteotoxicity. Animals expressing the deficient alleles, Mmalton, Siiyama and S (ATS, showed overall toxicity comparable to that observed in patients. Interestingly, Siiyama expressing animals had smaller intracellular inclusions than ATZ yet appeared to have a greater negative effect on animal fitness. Surprisingly, the null mutants, although efficiently degraded, showed a relatively mild gain-of-function proteotoxic phenotype. However, since null variant proteins are degraded differently and do not appear to accumulate, their mechanism of proteotoxicity is likely to be different to that of polymerizing, deficient mutants. Taken together, these studies showed that C. elegans is an inexpensive tool to assess the proteotoxicity of

  17. Rice HOX12 Regulates Panicle Exsertion by Directly Modulating the Expression of ELONGATED UPPERMOST INTERNODE1[OPEN

    Science.gov (United States)

    Gao, Shaopei; Fang, Jun; Xu, Fan; Wang, Wei

    2016-01-01

    Bioactive gibberellins (GAs) are key endogenous regulators of plant growth. Previous work identified ELONGATED UPPERMOST INTERNODE1 (EUI1) as a GA-deactivating enzyme that plays an important role in panicle exsertion from the flag leaf sheath in rice (Oryza sativa). However, the mechanism that regulates EUI1 activity during development is still largely unexplored. In this study, we identified the dominant panicle enclosure mutant regulator of eui1 (ree1-D), whose phenotype is caused by the activation of the homeodomain-leucine zipper transcription factor HOX12. Diminished HOX12 expression by RNA interference enhanced panicle exsertion, mimicking the eui1 phenotype. HOX12 knockdown plants contain higher levels of the major biologically active GAs (such as GA1 and GA4) than the wild type. The expression of EUI1 is elevated in the ree1-D mutant but reduced in HOX12 knockdown plants. Interestingly, both HOX12 and EUI1 are predominantly expressed in panicles, where GA4 is highly accumulated. Yeast one-hybrid, electrophoretic mobility shift assay, and chromatin immunoprecipitation analyses showed that HOX12 physically interacts with the EUI1 promoter both in vitro and in vivo. Furthermore, plants overexpressing HOX12 in the eui1 mutant background retained the elongated uppermost internode phenotype. These results indicate that HOX12 acts directly through EUI1 to regulate panicle exsertion in rice. PMID:26977084

  18. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice.

    Science.gov (United States)

    Du, Hao; Chang, Yu; Huang, Fei; Xiong, Lizhong

    2015-11-01

    Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Gibberellic acid (GA) and abscisic acid (ABA) play critical roles in the developmental programs and environmental responses, respectively, through complex signaling and metabolism networks. However, crosstalk between the two phytohormones in stress responses remains largely unknown. In this study, we report that GIBBERELLIN-INSENSITIVE DWARF 1 (GID1), a soluble receptor for GA, regulates stomatal development and patterning in rice (Oryza sativa L.). The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions, but it exhibited enhanced sensitivity to exogenous ABA. Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions. Interestingly, the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions, and showed enhanced reactive oxygen species (ROS)-scavenging ability and submergence tolerance compared with the wild-type. Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA, and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption. Taken together, these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice. © 2014 Institute of Botany, Chinese Academy of Sciences.

  19. Solid solutions of thallium in TlGaSe2, TlGaS2, and TlInS2

    International Nuclear Information System (INIS)

    Voroshilov, Yu. V.; Potorii, M.V.; Shevchenko, S.V.

    1986-01-01

    The authors study the nature of the dissolution of thallium in ternary phases. They have synthesized alloys of the stoichiometric compositions TlGaS 2 , TlGaSe 2 , and T1InS 2 , and their solid solutions, maximally enriched in thallium, the compositions of which were Tl /SUB 1.34/ GA /SUB 0.89/ S 2 , Tl /SUB 1.31/ Ga /SUB 0.90/ Se 2 , and Tl /SUB 1.15/ In /SUB 0.95/ S /SUB 2./ . Samples were synthesized from the elemental components of the following purities: gallium of V4 grade; indium of V4 grade; thallium of T1000 grade; selenium of special purity 22-4 grade, and sulfur of special purity garde. The compositions were checked by x-ray-phase-(DRON-0.5) and microstructural-analyses with simultaneous determination of the density and microhardness of the samples. It is found that the lattic parameter increases and the increase in the density and microhardness points to strengthening of the structure during the formation of the solid solutions

  20. Highly Sensitive and High-Throughput Analysis of Plant Hormones Using MS-Probe Modification and Liquid Chromatography–Tandem Mass Spectrometry: An Application for Hormone Profiling in Oryza sativa

    Science.gov (United States)

    Kojima, Mikiko; Kamada-Nobusada, Tomoe; Komatsu, Hirokazu; Takei, Kentaro; Kuroha, Takeshi; Mizutani, Masaharu; Ashikari, Motoyuki; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Suzuki, Koji; Sakakibara, Hitoshi

    2009-01-01

    We have developed a highly sensitive and high-throughput method for the simultaneous analysis of 43 molecular species of cytokinins, auxins, ABA and gibberellins. This method consists of an automatic liquid handling system for solid phase extraction and ultra-performance liquid chromatography (UPLC) coupled with a tandem quadrupole mass spectrometer (qMS/MS) equipped with an electrospray interface (ESI; UPLC-ESI-qMS/MS). In order to improve the detection limit of negatively charged compounds, such as gibberellins, we chemically derivatized fractions containing auxin, ABA and gibberellins with bromocholine that has a quaternary ammonium functional group. This modification, that we call ‘MS-probe’, makes these hormone derivatives have a positive ion charge and permits all compounds to be measured in the positive ion mode with UPLC-ESI-qMS/MS in a single run. Consequently, quantification limits of gibberellins increased up to 50-fold. Our current method needs 180 plant samples simultaneously. Application of this method to plant hormone profiling enabled us to draw organ distribution maps of hormone species in rice and also to identify interactions among the four major hormones in the rice gibberellin signaling mutants, gid1-3, gid2-1 and slr1. Combining the results of hormone profiling data with transcriptome data in the gibberellin signaling mutants allows us to analyze relationships between changes in gene expression and hormone metabolism. PMID:19369275

  1. Mast cell deficiency attenuates acupuncture analgesia for mechanical pain using c-kit gene mutant rats

    Directory of Open Access Journals (Sweden)

    Cui X

    2018-03-01

    Full Text Available Xiang Cui,1,2,* Kun Liu,1,* Dandan Xu,1,3 Youyou Zhang,1,4 Xun He,1 Hao Liu,1,5 Xinyan Gao,1 Bing Zhu1 1Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China; 2College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China; 3Classic TCM Department, The Affiliated Hospital of Shandong University of TCM, Jinan, China; 4Acupuncture and Massage Department, Hangzhou Qihuang Traditional Chinese Medicine Clinic, Hangzhou, China; 5TCM and Rehabilitation Department, The Third Hospital of Ulanchap, Ulanchap, China *These authors contributed equally to this work Background: Acupuncture therapy plays a pivotal role in pain relief, and increasing evidence demonstrates that mast cells (MCs may mediate acupuncture analgesia. The present study aims to investigate the role of MCs in acupuncture analgesia using c-kit gene mutant–induced MC-deficient rats. Materials and methods: WsRC-Ws/Ws rats and their wild-type (WT littermates (WsRC-+/+ were used. The number of MCs in skin of ST36 area was compared in two rats after immunofluorescence labeling. Mechanical withdrawal latency (MWL, mechanical withdrawal threshold (MWT, and thermal withdrawal latency (TWL were measured on bilateral plantar for pain threshold evaluation before and after each stimulus. Acupuncture- and moxibustion-like stimuli (43°C, 46°C heat, 1 mA electroacupuncture [EA], 3 mA EA, and manual acupuncture [MA] were applied randomly on different days. Results: Fewer MCs were observed in the skin of ST36 in mutant rats compared to WT rats (P<0.001. For pain thresholds, MWL and MWT were higher in WsRC-Ws/Ws compared to WsRC-+/+ on bilateral paws (P<0.05, but TWL was not different between the two rats (P>0.05. Bilateral MWL and MWT in WsRC-+/+ rats increased significantly after each stimulus compared to baseline (P<0.01, P<0.001. In WsRC-Ws/Ws rats, only noxious stimuli could produce antinociceptive

  2. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots

    Science.gov (United States)

    Wu, L. L.; Mitchell, J. P.; Cohn, N. S.; Kaufman, P. B.

    1993-01-01

    The invertase (EC 3.2.1.26) purified from cell walls of dwarf pea stems to homogeneity has a molecular mass of 64 kilodaltons (kD). Poly(A)+RNA was isolated from shoots of dwarf pea plants, and a cDNA library was constructed using lambda gt11 as an expression vector. The expression cDNA library was screened with polyclonal antibodies against pea cell wall invertase. One invertase cDNA clone was characterized as a full-length cDNA with 1,863 base pairs. Compared with other known invertases, one homologous region in the amino acid sequence was found. The conserved motif, Asn-Asp-Pro-Asn-Gly, is located near the N-terminal end of invertase. Northern blot analysis showed that the amount of invertase mRNA (1.86 kb) was rapidly induced to a maximal level 4 h after GA3 treatment, then gradually decreased to the control level. The mRNA level at 4 h in GA3-treated peas was fivefold higher than that of the control group. The maximal increase in activity of pea cell wall invertase elicited by GA3 occcured at 8 h after GA3 treatment. This invertase isoform was shown immunocytochemically to be localized in the cell walls, where a 10-fold higher accumulation occurred in GA3-treated tissue compared with control tissue. This study indicates that the expression of the pea shoot cell-wall invertase gene could be regulated by GA3 at transcriptional and/or translational levels.

  3. Superconducting properties of Zr1+xNi2-xGa and Zr1-xNi2+xGa Heusler compounds

    Directory of Open Access Journals (Sweden)

    Saad Alzahrani

    2017-05-01

    Full Text Available The superconducting properties of a series of Zr1+xNi2-xGa and Zr1-xNi2+xGa compounds have been investigated by x-ray diffraction, electrical resistivity, dc magnetization, and ac susceptibility measurements. While the parent compound, ZrNi2Ga, exhibited the cubic L21 Heusler structure, multiple non-cubic structures formed in the Zr and Ni rich doped materials. For x ≤ 0.3, all Zr1-xNi2+xGa compounds demonstrated superconducting behavior, but no superconductivity was observed in the Zr1+xNi2-xGa alloys for x > 0.2. The magnetization data revealed that all materials in both Zr1+xNi2-xGa and Zr1-xNi2+xGa series exhibited type-II superconductivity. With increasing doping concentration x, the paramagnetic ordering were enhanced in both systems while the superconducting properties were found to weaken. The observations are discussed considering the structural disorders in the systems.

  4. Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2¯01).

    Science.gov (United States)

    Kollmannsberger, Sebastian L; Walenta, Constantin A; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli

    2017-09-28

    In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α-H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga 2 O 3 (2¯01) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

  5. Membrane-localized extra-large G proteins and Gbg of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis.

    Science.gov (United States)

    Maruta, Natsumi; Trusov, Yuri; Brenya, Eric; Parekh, Urvi; Botella, José Ramón

    2015-03-01

    In animals, heterotrimeric G proteins, comprising Ga, Gb, and Gg subunits, are molecular switches whose function tightly depends on Ga and Gbg interaction. Intriguingly, in Arabidopsis (Arabidopsis thaliana), multiple defense responses involve Gbg, but not Ga. We report here that the Gbg dimer directly partners with extra-large G proteins (XLGs) to mediate plant immunity. Arabidopsis mutants deficient in XLGs, Gb, and Gg are similarly compromised in several pathogen defense responses, including disease development and production of reactive oxygen species. Genetic analysis of double, triple, and quadruple mutants confirmed that XLGs and Gbg functionally interact in the same defense signaling pathways. In addition, mutations in XLG2 suppressed the seedling lethal and cell death phenotypes of BRASSINOSTEROID INSENSITIVE1-associated receptor kinase1-interacting receptor-like kinase1 mutants in an identical way as reported for Arabidopsis Gb-deficient mutants. Yeast (Saccharomyces cerevisiae) three-hybrid and bimolecular fluorescent complementation assays revealed that XLG2 physically interacts with all three possible Gbg dimers at the plasma membrane. Phylogenetic analysis indicated a close relationship between XLGs and plant Ga subunits, placing the divergence point at the dawn of land plant evolution. Based on these findings, we conclude that XLGs form functional complexes with Gbg dimers, although the mechanism of action of these complexes, including activation/deactivation, must be radically different form the one used by the canonical Ga subunit and are not likely to share the same receptors. Accordingly, XLGs expand the repertoire of heterotrimeric G proteins in plants and reveal a higher level of diversity in heterotrimeric G protein signaling.

  6. The Effect of Gibberellin on Plant Growth and Development

    Science.gov (United States)

    1960-11-04

    8217P? 1O cerh bi; ncv tnd the ntanber of berries In e-.c ch bunch. The &ver-r.j? c -vjeirht of-’a berry ::wes then derived for each bt/mchyaoD...gibberellin web strongly in evidence. In the " :* : control bunches/of the Mrran|P’variety the^er/age/weight : ,of .8. berry was 1.08 g,: fend

  7. Free radical scavenging and the expression of potentially lethal damage in X-irradiated repair-deficient Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1987-01-01

    When cells are exposed to ionizing radiation, they suffer lethal damage (LD), potentially lethal damage (PLD), and sublethal damage (SLD). All three forms of damage may be caused by direct or indirect radiation action or by the interaction of indirect radiation products with direct DNA damage. In this report I examine the expression of LD and PLD caused by the indirect action of X rays in isogenic, repair-deficient Escherichia coli. The radiosensitivity of a recA mutant, deficient both in pre- and post replication recombination repair and SOS induction (inducible error-prone repair), was compared to that of a recB mutant which is recombination deficient but SOS proficient and to a previously studied DNA polymerase 1-deficient mutant (polA) which lacks the excision repair pathway. Indirect damage by water radicals (primarily OH radicals) was circumvented by the presence of 2 M glycerol during irradiation. Indirect X-ray damage by water radicals accounts for at least 85% of the PLD found in exposed repair-deficient cells. The DNA polymerase 1-deficient mutant is most sensitive to indirect damage with the order of sensitivity polA1 greater than recB greater than or equal to recA greater than wild type. For the direct effects of X rays the order of sensitivity is recA greater than recB greater than polA1 greater than wild type. The significance of the various repair pathways in mitigating PLD by direct and indirect damage is discussed

  8. Core level photoelectron spectroscopy of LiGaS{sub 2} and Ga-S bonding in complex sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.r [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, 13, Lavrentieva Ave., Novosibirsk 90, 630090 (Russian Federation); Isaenko, L.I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Kesler, V.G. [Laboratory of Physical Bases of Integrated Microelectronics, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Lobanov, S.I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2010-05-14

    The electronic parameters of the lithium thiogallate LiGaS{sub 2} have been evaluated by X-ray photoelectron spectroscopy (XPS). Spectral features of all constituent element core levels and Auger lines have been considered. The Ga-S bonding effects in Ga-bearing sulfide crystals have been discussed using binding energy difference {Delta}{sub 2p}(S-Ga) = BE(S 2p) - BE(Ga 3d) as a representative parameter to quantify the valence electron shift from gallium to sulfur atoms. The value {Delta}{sub 2p}(S-Ga) = 141.9 eV found for LiGaS{sub 2} is very close to that evaluated for AgGaS{sub 2}. This relation is an indicator of closely coincident ionicity of Ga-S bonds in LiGaS{sub 2} and AgGaS{sub 2}.

  9. Radiation studies in Cajanus cajan: meiotic behaviour in some M/sub 2/ mutants

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S.S.N.; Akhaury, S.B. (Ranchi Univ. (India). Dept. of Botany)

    1982-01-01

    A qualitative study of the mutants produced in M/sub 2/ generation has been made. The mutants were classified as: (1) chlorophyll mutant, (2) morphological mutant, (3) pollen mutant, (4) semi-sterile and (5) sterile mutant. Cytological investigations of pollen mutants, sterile and semi-sterile mutants have revealed that these mutants generally arise at higher dose levels (20 Kr and 25 Kr).

  10. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid : Growth profiles and catalase activities in relation to microbody proliferation

    NARCIS (Netherlands)

    Klei, Ida J. van der; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two

  11. Repair of UV-irradiated plasmid DNA in excision repair deficient mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ikai, K.; Tano, K.; Ohnishi, T.; Nozu, K.

    1985-01-01

    The repair of UV-irradiated DNA of plasmid YEp13 was studied in the incision defective strains by measurement of cell transformation frequency. In Saccharomyces cerevisiae, rad1,2,3 and 4 mutants could repair UV-damaged plasmid DNA. In Escherichia coli, uvrA mutant was unable to repair UV-damaged plasmid DNA; however, pretreatment of the plasmid with Micrococcus luteus endonuclease increased repair. It was concluded that all the mutations of yeast were probably limited only to the nuclear DNA. (author)

  12. Red-blue effect in Cu(In,Ga)Se2-based devices revisited

    International Nuclear Information System (INIS)

    Igalson, M.; Urbaniak, A.; Zabierowski, P.; Maksoud, H. Abdel; Buffiere, M.; Barreau, N.; Spiering, S.

    2013-01-01

    The controversial issue of a source for the fill factor losses in Cu(In,Ga)Se 2 -based solar cells observed under red light is discussed. Experimental evidence is presented that removal of the fill factor loss by blue light is accompanied by a decrease in capacitance. Similar kinetics for both effects are observed. This effect is demonstrated not only on CdS-buffered devices but also on Zn(O,S)- and In 2 S 3 -buffered cells. The explanation, supported by simulations, is based on a model of a reduction of the p + layer by holes photogenerated in the buffer. This effect might be differentiated from the effect of a photosensitive secondary barrier in the buffer-window part of the junction by a sign of the capacitance change under blue light. - Highlights: ► High-energy photons improve fill factor in Cu(In,Ga)Se 2 -based solar cells. ► The effect is demonstrated on three types of buffer layers. ► Fill factor improvement under blue light is correlated with a decrease of doping. ► p + layer is the main cause of fill factor deficiency under red light

  13. Identification of rice Os4BGlu13 as a β-glucosidase which hydrolyzes gibberellin A4 1-O-β-d-glucosyl ester, in addition to tuberonic acid glucoside and salicylic acid derivative glucosides.

    Science.gov (United States)

    Hua, Yanling; Ekkhara, Watsamon; Sansenya, Sompong; Srisomsap, Chantragan; Roytrakul, Sittiruk; Saburi, Wataru; Takeda, Ryosuke; Matsuura, Hideyuki; Mori, Haruhide; Ketudat Cairns, James R

    2015-10-01

    Gibberellin 1-O-β-d-glucose ester hydrolysis activity has been detected in rice seedling extracts, but no enzyme responsible for this activity has ever been purified and identified. Therefore, gibberellin A4 glucosyl ester (GA4-GE) β-d-glucosidase activity was purified from ten-day rice seedling stems and leaves. The family 1 glycoside hydrolase Os4BGlu13 was identified in the final purification fraction. The Os4BGlu13 cDNA was amplified from rice seedlings and expressed as an N-terminal thioredoxin-tagged fusion protein in Escherichia coli. The purified recombinant Os4BGlu13 protein (rOs4BGlu13) had an optimum pH of 4.5, for hydrolysis of p-nitrophenyl β-d-glucopyranoside (pNPGlc), which was the best substrate identified, with a kcat/Km of 637 mM(-1) s(-1). rOs4BGlu13 hydrolyzed helicin best among natural glycosides tested (kcat/Km of 74.4 mM(-1) s(-1)). Os4BGlu13 was previously designated tuberonic acid glucoside (TAG) β-glucosidase (TAGG), and here the kcat/Km of rOsBGlu13 for TAG was 6.68 mM(-1) s(-1), while that for GA4-GE was 3.63 mM(-1) s(-1) and for salicylic acid glucoside (SAG) is 0.88 mM(-1) s(-1). rOs4BGlu13 also hydrolyzed oligosaccharides, with preference for short β-(1 → 3)-linked over β-(1 → 4)-linked glucooligosaccharides. The enzymatic data suggests that Os4BGlu13 may contribute to TAG, SAG, oligosaccharide and GA4-GE hydrolysis in the rice plant, although helicin or a similar compound may be its primary target. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Optical characteristics of BaGa2S4:Ho3+ and BaGa2Se4:Ho3+ single crystals

    International Nuclear Information System (INIS)

    Choe, Sung-Hyu; Jin, Moon-Seog; Kim, Wha-Tek

    2005-01-01

    BaGa 2 S 4 , BaGa 2 S 4 :Ho 3+ , BaGa 2 Se 4 , and BaGa 2 Se 4 :Ho 3+ single crystals were grown by using the chemical transport reaction method. The optical energy gaps of the single crystals were investigated in the temperature region from 11 K to 300 K. The temperature dependence of the optical energy gap was well fitted by the Varshni equation. Two broad emission bands were observed in the photoluminescence spectra of the single crystals. These bands were attributed to donor-acceptor pair recombinations. Sharp emission peaks were observed in the BaGa 2 S 4 :Ho 3+ and the BaGa 2 Se 4 :Ho 3+ single crystals and were assigned to radiation recombination between split Stark levels of Ho 3+ .

  15. The Drosophila Neurally Altered Carbohydrate Mutant Has a Defective Golgi GDP-fucose Transporter*

    Science.gov (United States)

    Geisler, Christoph; Kotu, Varshika; Sharrow, Mary; Rendić, Dubravko; Pöltl, Gerald; Tiemeyer, Michael; Wilson, Iain B. H.; Jarvis, Donald L.

    2012-01-01

    Studying genetic disorders in model organisms can provide insights into heritable human diseases. The Drosophila neurally altered carbohydrate (nac) mutant is deficient for neural expression of the HRP epitope, which consists of N-glycans with core α1,3-linked fucose residues. Here, we show that a conserved serine residue in the Golgi GDP-fucose transporter (GFR) is substituted by leucine in nac1 flies, which abolishes GDP-fucose transport in vivo and in vitro. This loss of function is due to a biochemical defect, not to destabilization or mistargeting of the mutant GFR protein. Mass spectrometry and HPLC analysis showed that nac1 mutants lack not only core α1,3-linked, but also core α1,6-linked fucose residues on their N-glycans. Thus, the nac1 Gfr mutation produces a previously unrecognized general defect in N-glycan core fucosylation. Transgenic expression of a wild-type Gfr gene restored the HRP epitope in neural tissues, directly demonstrating that the Gfr mutation is solely responsible for the neural HRP epitope deficiency in the nac1 mutant. These results validate the Drosophila nac1 mutant as a model for the human congenital disorder of glycosylation, CDG-IIc (also known as LAD-II), which is also the result of a GFR deficiency. PMID:22745127

  16. Gibberellin and auxin influence the diurnal transcription pattern of photoreceptor genes via CRY1a in tomato.

    Directory of Open Access Journals (Sweden)

    Paolo Facella

    Full Text Available Plant photoreceptors, phytochromes and cryptochromes, regulate many aspects of development and growth, such as seed germination, stem elongation, seedling de-etiolation, cotyledon opening, flower induction and circadian rhythms. There are several pieces of evidence of interaction between photoreceptors and phyto-hormones in all of these physiological processes, but little is known about molecular and genetic mechanisms underlying hormone-photoreceptor crosstalk.In this work, we investigated the molecular effects of exogenous phyto-hormones to photoreceptor gene transcripts of tomato wt, as well as transgenic and mutant lines with altered cryptochromes, by monitoring day/night transcript oscillations. GA and auxin alter the diurnal expression level of different photoreceptor genes in tomato, especially in mutants that lack a working form of cryptochrome 1a: in those mutants the expression of some (IAA or most (GA photoreceptor genes is down regulated by these hormones.Our results highlight the presence of molecular relationships among cryptochrome 1a protein, hormones, and photoreceptors' gene expression in tomato, suggesting that manipulation of cryptochromes could represent a good strategy to understand in greater depth the role of phyto-hormones in the plant photoperceptive mechanism.

  17. Utility of 67Ga scintigraphy and bronchial washings in the diagnosis and treatment of Pneumocystis carinii pneumonia in patients with the acquired immune deficiency syndrome

    International Nuclear Information System (INIS)

    Tuazon, C.U.; Delaney, M.D.; Simon, G.L.; Witorsch, P.; Varma, V.M.

    1985-01-01

    Twenty patients with the acquired immune deficiency syndrome (AIDS) and suspected Pneumocystis carinii pneumonia were evaluated by 67 Ga scintigraphy and fiberoptic bronchoscopy for initial diagnosis and response to therapy. Lung uptake of 67 Ga was demonstrated in 100% of AIDS patients with P. carinii pneumonia, including those with subclinical infection. Fiberoptic bronchoscopy identified P. carinii in the bronchial washings of 100% of cases (19 patients), whereas only 13 of 16 (81%) patients had P. carinii in lung tissue obtained by transbronchial biopsy. Repeat fiberoptic bronchoscopy was performed in 16 of 20 patients. After 2 to 4 wk of therapy, P. carinii was identified in bronchial washings in 8 of 16 (50%) patients and in transbronchial biopsy in 1 of 10 (10%) patients examined. Bronchial washing has a higher yield than transbronchial biopsy in demonstrating P. carinii in patients with AIDS and may evolve as the procedure of choice in such patients. Based on the clinical course and results of 67 Ga scintigraphy and fiberoptic bronchoscopy in AIDS patients with P. carinii pneumonia, optimal therapy may require at least 3 wk of treatment

  18. Structure of (Ga2O3)2(ZnO)13 and a unified description of the homologous series (Ga2O3)2(ZnO)(2n + 1).

    Science.gov (United States)

    Michiue, Yuichi; Kimizuka, Noboru; Kanke, Yasushi; Mori, Takao

    2012-06-01

    The structure of (Ga(2)O(3))(2)(ZnO)(13) has been determined by a single-crystal X-ray diffraction technique. In the monoclinic structure of the space group C2/m with cell parameters a = 19.66 (4), b = 3.2487 (5), c = 27.31 (2) Å, and β = 105.9 (1)°, a unit cell is constructed by combining the halves of the unit cell of Ga(2)O(3)(ZnO)(6) and Ga(2)O(3)(ZnO)(7) in the homologous series Ga(2)O(3)(ZnO)(m). The homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) is derived and a unified description for structures in the series is presented using the (3+1)-dimensional superspace formalism. The phases are treated as compositely modulated structures consisting of two subsystems. One is constructed by metal ions and another is by O ions. In the (3 + 1)-dimensional model, displacive modulations of ions are described by the asymmetric zigzag function with large amplitudes, which was replaced by a combination of the sawtooth function in refinements. Similarities and differences between the two homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) and Ga(2)O(3)(ZnO)(m) are clarified in (3 + 1)-dimensional superspace. The validity of the (3 + 1)-dimensional model is confirmed by the refinements of (Ga(2)O(3))(2)(ZnO)(13), while a few complex phenomena in the real structure are taken into account by modifying the model.

  19. Regulation of the subunit composition of plastidic glutamine synthetase of the wild-type and of the phytochrome-deficient aurea mutant of tomato by blue/UV-A- or by UV-B-light

    International Nuclear Information System (INIS)

    Migge, A.; Carrayol, E.; Hirel, B.; Lohmann, M.; Meya, G.; Becker, T.W.

    1998-01-01

    The photomorphogenetic aurea mutant of tomato severely deficient in spectrophotometrically active phytochromes was used to study the light-regulation of the single-copy nuclear gene encoding plastidic glutamine synthetase (GS-2; EC 6.1.3.2). The de-etiolation of dark-grown aurea mutant seedling cotyledons showed an obligatory dependency on blue light. A limited red light-responsiveness of etiolated aurea cotyledons is, however, retained as seen by the stimulation of both the GS-2 transcript and protein level in the cotyledons of aurea seedlings during growth in red light. The subunits of the octameric GS-2 enzyme were represented by polypeptides with similar electrophoretic mobilities (polypeptides a) in etiolated wild-type or aurea mutant cotyledons. GS-2 proteins with similar apparent molecular masses were also seen in the cotyledons of red light-grown aurea mutant seedlings. In contrast, GS-2 polypeptides with different apparent molecular masses (polypeptides a and b) were detected in the cotyledons of wild-type seedlings grown in red light. This difference indicates that the (post-translational) modification of tomato GS-2 subunit composition is mediated by the photoreceptor phytochrome. The il