WorldWideScience

Sample records for giant resonance model

  1. Isoscalar giant resonances in a relativistic model

    International Nuclear Information System (INIS)

    L'Huillier, M.; Nguyen Van Giai.

    1988-07-01

    Isoscalar giant resonances in finite nuclei are studied in a relativistic Random Phase Approximation (RRPA) approach. The model is self-consistent in the sense that one set of coupling constants generates the Dirac-Hartree single-particle spectrum and the residual particle-hole interaction. The RRPA is used to calculate response functions of multipolarity L = 0,2,3, and 4 in light and medium nuclei. It is found that monopole and quadrupole modes exhibit a collective character. The peak energies are overestimated, but not as much as one might think if the bulk properties (compression modulus, effective mass) were the only relevant quantities

  2. The sympletic model for giant monopole resonances

    International Nuclear Information System (INIS)

    Oliveira, M.M.B.M.

    1985-01-01

    Following recently published articles, it's investigated how to apply the sympletic model to the study of giant monopole resonances in spherical nuclei. The results obtained agree with those already published for monopole mode energies, wave functions, radii and nuclear incompressibility of 16 O and 40 Ca nuclei. An analyse of how the spurious center-of-mass motion influence resonance energies is made. The sum rules of the monopole operator, m-bar e , o ≤ e ≤ 3, are calculated, demonstrating at first that they are conserved in the sympletic model. Then it's studied, for those sum rules, the importance of n-boson correlations in the fundamental state, which is an extension of those sum rules, of the analysis for the nuclear incompressibility, performed in above mentioned articles. (Author) [pt

  3. Hybrid model for the decay of nuclear giant resonances

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1986-12-01

    The decay properties of nuclear giant multipole resonances are discussed within a hybrid model that incorporates, in a unitary consistent way, both the coherent and statistical features. It is suggested that the 'direct' decay of the GR is described with continuum first RPA and the statistical decay calculated with a modified Hauser-Feshbach model. Application is made to the decay of the giant monopole resonance in 208 Pb. Suggestions are made concerning the calculation of the mixing parameter using the statistical properties of the shell model eigenstates at high excitation energies. (Author) [pt

  4. Relativistic Coulomb excitation of giant resonances in the hydrodynamic model

    International Nuclear Information System (INIS)

    Vasconcellos Gomes, Ana Cristina de.

    1990-05-01

    We investigate the Coulomb excitation of giant dipole resonances in relativistic heavy ion collisions using a macroscopic hydrodynamical model for the harmonic vibrations of the nuclear fluid. The motion is treated as a combination of the Goldhaber-Teller displacement mode and the Steinwedel-Jensen acoustic mode, and the restoring forces are calculated using the droplet model. This model is used as input to study the characteristics of multiple excitation of giant dipole resonances in nuclei. Possible signatures for the existence of such states are also discussed quantitatively. (author). 52 refs., 14 figs., 3 tabs

  5. Giant resonance of electrical multipole from droplet model

    International Nuclear Information System (INIS)

    Tauhata, L.

    1984-01-01

    The formalism of the electrical multipole resonance developed from the Droplet nuclear model is presented. It combines the approaches of Goldhaber-Teller (GT) and Steinwedel-Jensen (SJ) and it shows the relative contribution of Coulomb, superficial and neutron excess energies. It also discusses the calculation of half-width. The model evaluates correctly the resonance energies as a function of nuclear mass and allows, through the Mixture Index, the prediction of the complementary participation of modes SJ and GT in the giant nuclear resonance. Values of the mixture index, for each multipolarity, reproduce well the form factors obtained from experiments of charged particle inelastic scattering. The formalism presented for the calculation of the half-width gives a macroscopic description of the friction mechanism. The establishment of the macroscopic structure of the Dissipation Function is used as a reference in the comparison of microscopic calculations. (Author) [pt

  6. The Droplet model of the Giant Fipole Resonance

    International Nuclear Information System (INIS)

    Myers, W.D.; Kodama, T.; El-Jaick, L.J.; Hilf, E.R.

    1976-10-01

    The nuclear Giant Dipole Resonance (GDR) energies are calculated using a macroscopic hydronamical model with two new features. The motion is treated as a combination of the usual Goldhaber-Teller (GT) and Steinwedel-Jensen (SJ) modes, and the restoring forces are all calculated using the Droplet Model. The A dependence of the resonance energies is well reproduced without any adjustable parameters, and the measured magnitude of the energies serves to fix the value of the effective mass m* used in the theory. The GDR is found to consist mainly of a GT-type motion with the SJ-mode becoming more important for heavy nuclei. The width P of the GDR is also estimated on the basis of an expression for one-body damping [pt

  7. Isotopic effect giant resonances

    International Nuclear Information System (INIS)

    Buenerd, M.; Lebrun, D.; Martin, P.; Perrin, G.; Saintignon, P. de; Chauvin, J.; Duhamel, G.

    1981-10-01

    The systematics of the excitation energy of the giant dipole, monopole, and quadrupole resonances are shown to exhibit an isotopic effect. For a given element, the excitation energy of the transition decreases faster with the increasing neutron number than the empirical laws fitting the overall data. This effect is discussed in terms of the available models

  8. Isoscalar giant resonances

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, D. H. [Texas A and M Univ., College Station (USA). Cyclotron Inst.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    The current status of the knowledges of giant quadrupole resonance (GQR), low energy octupole resonance (LEOR), and giant monopole resonance (GMR), is described. In the lowest order of multipole resonance, both isoscalar and isovector modes can occur. The characteristics of the GQR in light nuclei are apparent in the experimental result for Mg-24. All of the isoscalar E2 strength are known in Mg-24. The Goldhaber-Teller model is preferred over the Steinwedel-Jensen model for the giant dipole resonance (GDR) transition density. A few interesting and puzzling features have been seen in Pb-208. There is some conflict between inelastic alpha and electron scatterings. About LEOR, the RPA calculation of Liu and Brown was compared to the data for 3/sup -/ strength in Ca-40, Zr-90 and Pb-208. The calculation was employed the residual interaction of the Skyrme type. The agreement in Zr-90 was excellent. The effect of quadrupole deformation on the LEOR in Sm isotopes was large. The inelastic alpha scattering data on Al-27, Ca-40, Ti-48, Ni-58, Zn-64 and 66, Zr-90, Sn-116, 118, 120 and 124, Sm-144, 148 and 154, and Pb-208 were utilized in order to identify the GMR, and the GMR parameters were obtained. The GMR exhausting a large fraction of the sum rule was apparent in the nuclei with mass larger than 90. The splitting of the GDR and the broadening of the GQR in permanently deformed nuclei were established. The splitting of GMR was seen in Sm-154. The studies with heavy ions are also described.

  9. Giant nuclear resonances

    International Nuclear Information System (INIS)

    Snover, K.A.

    1989-01-01

    Giant nuclear resonances are elementary mods of oscillation of the whole nucleus, closely related to the normal modes of oscillation of coupled mechanical systems. They occur systematically in most if not all nuclei, with oscillation energies typically in the range 10-30 MeV. One of the best - known examples is the giant electric dipole (El) resonance, in which all the protons and all the neutrons oscillate with opposite phase, producing a large time - varying electric dipole moment which acts as an effective antenna for radiating gamma ray. This paper discusses this mode as well as quadrupole and monopole modes

  10. Giant resonances: reaction theory approach

    International Nuclear Information System (INIS)

    Toledo Piza, A.F.R. de; Foglia, G.A.

    1989-09-01

    The study of giant resonances through the use of reaction theory approach is presented and discussed. Measurements of cross-sections to the many available decay channels following excitation of giant multipole resonances (GMR) led one to view these phenomena as complicated dynamical syndromes so that theoretical requirements for their study must be extended beyond the traditional bounds of nuclear structure models. The spectra of decay products following GMR excitation in heavy nuclei are well described by statistical model (Hauser-Feshback, HF) predictions indicated that spreading of the collective modes plays a major role in shaping exclusive cross-sections. (A.C.A.S.) [pt

  11. A collective model description of the low lying and giant dipole resonant properties of 40424446Ca

    International Nuclear Information System (INIS)

    Weise, J.I.

    1982-01-01

    The low-lying and giant dipole resonant properties of the even-even calcium isotopes are calculated within the framework of the Gneuss-Greiner model and compared with the experimental data. In the low energy region, comparison is also made with the predictions of a coexistence model

  12. Giant first-forbidden resonances

    International Nuclear Information System (INIS)

    Krmpotic, F.; Nakayama, K.; Sao Paulo Univ.; Pio Galeao, A.; Sao Paulo Univ.

    1983-01-01

    Recent experimental data on first-forbidden charge-exchange resonances are discussed in the framework of a schematic model. We also evaluate the screening of the weak coupling constants induced by both the giant resonances and the δ-isobar. It is shown that the last effect does not depend on the multipolarity of the one-particle moment. Due to the same reason, the fraction of the reaction strength pushed up into the δ-resonance region is always the same regardless of the quantum numbers carried by the excitation. Simple expressions are derived for the dependence of the excitation energies of the first-forbidden giant resonances on the mass number and isospin of the target. The model reproduces consistently both the Gamow-Teller and the first-forbidden resonances. (orig.)

  13. Multipole giant resonances of 12C nucleus electro excitation in intermediate coupling model

    International Nuclear Information System (INIS)

    Goncharova, N.G.; Zhivopistsev, F.A.

    1977-01-01

    Multipole giant resonances in 12 C electroexcitation are considered using the shell model with coupling. Cross sections are calculated for the states of 1 - , 2 - , 3 - , 4 - , at T=1. The distributions of the transverse form factor at transferred momenta equal to q approximately 0.75, 1.04, 1.22 and 1.56 Fm -1 and the longitudinal form factor for q = 0.75, 1.04, 1.56 Fm -1 are presented. For the excitation energies in the range from 18 to 28 MeV positive-parity states have a small contribution in the cross section. The distribution of the total form factor in the excitation energies is given. It is concluded that the multipole giant resonances of anomalous parity levels calculated within the interatomic-coupling shell model show a satisfactorily close agreement with the behavior of experimental form factors in the excitation energy range from 18 to 28 MeV

  14. Multipole giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Xia Keding; Cai Yanhuang

    1989-01-01

    The isoscalar giant surface resonance and giant dipole resonance in highly excited nuclei are discussed. Excitation energies of the giant modes in 208 Pb are calculated in a simplified model, using the concept of energy wieghted sum rule (EWSR), and the extended Thomas-Fermi approximation at the finite temperature is employed to describe the finite temperature is employed to describe the finite temperature equilibrium state. It is shown that EWSR and the energy of the resonance depend only weakly on temperature in the system. This weak dependence is analysed

  15. Hadron excitation of giant resonances

    International Nuclear Information System (INIS)

    Morsch, H.-P.

    1985-01-01

    A review is given on giant resonance studies in heavy nuclei using scattering of different hadronic probes. Concerning isoscalar giant resonances compression modes are discussed with the possibility to obtain more detailed structure information. From detailed studies of α scattering the distribution of isoscalar strengths of multipolarity up to L=6 was obtained. Some recent aspects of heavy ion excitation of collective modes are mentioned. The possibility to study isovector giant resonances in hadron charge exchange reactions is discussed. Finally, a comparison is made between α and 200 MeV proton scattering from which isoscalar and spin-isospin continuum response are extracted. (orig.)

  16. Damping width of giant dipole resonances of cold and hot nuclei: A macroscopic model

    International Nuclear Information System (INIS)

    Mughabghab, S.F.; Sonzogni, A.A.

    2002-01-01

    A phenomenological macroscopic model of the giant dipole resonance (GDR) damping width of cold and hot nuclei with ground-state spherical and near-spherical shapes is developed. The model is based on a generalized Fermi liquid model which takes into account the nuclear surface dynamics. The temperature dependence of the GDR damping width is accounted for in terms of surface and volume components. Parameter-free expressions for the damping width and the effective deformation are obtained. The model is validated with GDR measurements of the following nuclides: 39,40 K, 42 Ca, 45 Sc, 59,63 Cu, 109-120 Sn, 147 Eu, 194 Hg, and 208 Pb, and is compared with the predictions of other models

  17. Statistical decay of giant resonances

    International Nuclear Information System (INIS)

    Dias, H.; Teruya, N.; Wolynec, E.

    1986-01-01

    Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the resutls on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monople giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excelent agreement with recent experimental data, showing that the decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt

  18. Statistical decay of giant resonances

    International Nuclear Information System (INIS)

    Dias, H.; Teruya, N.; Wolynec, E.

    1986-02-01

    Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the results on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monopole giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excellent agreement with recent experimental data, showing that decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt

  19. The description of neutron and giant resonances within the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1978-01-01

    The general assumptions of the quasiparticle-phonon model of complex nuclei are given. The choice of the model Hamiltonian as an average field and residual forces is discussed. The phonon description and quasiparticle-phonon interaction are presented. The system of basic equations and their approximate solutions are obtained. The approximation is chosen so as to obtain the most correct description of few-quasiparticle components rather than of the whole wave function. The method of strength functions is presented, which plays a decisive role in practical realization of the quasiparticle-phonon model for the description of some properties of complex nuclei. The range of applicability of the quasiparticle-phonon nuclear model is determined as few-quasiparticle components of the wave functions at low, intermediate and high excitation energies averaged in a certain energy interval. The fragmentation of single-particle states in deformed nuclei is studied within this model. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reactions of the type (d,p) and (d,t). The s - ,p - , and d-wave neutron strength functions are calculated at the neutron binding energy Bsub(n). A satisfactory agreement with experiment is obtained. A correct description of the radiative strength functions in spherical nuclei is obtained. The influence of the tail of the giant dipole resonance on the E1-strength functions is studied. The energies and EΛ-strength functions for giant multipole resonances in spherical and deformed nuclei are calculated. A correct description of their widths is obtained. (author)

  20. Giant dipole resonances in hot nuclear matter in the model of self-relaxing mean field

    International Nuclear Information System (INIS)

    Okolowicz, J.; Ploszajczak, M.; Drozdz, S.; Caurier, E.

    1989-01-01

    The extended time-dependent Hartree-Fock approach is applied for the description of the isovector giant dipole resonance in 40 Ca at finite temperatures. The thermalization process is described using the relaxation-time ansatz for the collision integral. Strong inhibition of the giant-dipole-resonance γ-decay is found due to the fast vaporization of the nuclear surface for thermal excitation energies above E * /A ≅ 4.5 MeV. This pre-equilibrium emission of particles in the vapor phase is associated with the radial expansion of nucleus and with the vanishing particle binding energies mainly for protons. (orig.)

  1. Excitation of giant resonances in heavy ion collisions

    International Nuclear Information System (INIS)

    Kuehn, W.

    1991-01-01

    Introduction: What are Giant Resonances? General Features of Giant Resonances, Macroscopic Description and Classification, Basic Excitation Mechanisms, Decay Modes, Giant Resonances Built on Excited States, Relativistic Coulomb Excitation of Giant Resonances, Experimental Situation. (orig.)

  2. Interacting sp-boson model with isospin: an unified description of giant multipole resonances and other collective motions

    International Nuclear Information System (INIS)

    Chen, C.H.-T.

    1980-10-01

    A unified description of the following classes of nuclear collective states in terms of an interacting sp-boson model is proposed: (i) Low-lying collective states in the light nuclei, both odd-odd and even-even; (ii) Giant multipole resonances (GMR), and (iii) pairing collective motions. (Author) [pt

  3. Giant multipole resonances: perspectives after ten years

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1980-01-01

    Nearly ten years ago evidence was published for the first of the so-called giant multipole resonances, the giant quadrupole resonance. During the ensuing years research in this field has spread to many nuclear physics laboratories throughout the world. The present status of electric giant multipole resonances is reviewed. 24 figures, 1 table

  4. Giant resonances on excited states

    International Nuclear Information System (INIS)

    Besold, W.; Reinhard, P.G.; Toepffer, C.

    1984-01-01

    We derive modified RPA equations for small vibrations about excited states. The temperature dependence of collective excitations is examined. The formalism is applied to the ground state and the first excited state of 90 Zr in order to confirm a hypothesis which states that not only the ground state but every excited state of a nucleus has a giant resonance built upon it. (orig.)

  5. Determination of giant resonance strengths

    International Nuclear Information System (INIS)

    Serr, F.E.

    1983-01-01

    Using theoretical strength functions to describe the different giant resonances expected at excitation energies of the order of (60-85)/Asup(1/3) MeV, we calculate the double differential cross sections d 2 sigma/dΩ dE associated with the reactions 208 Pb(α, α') and 90 Zr(α, α') (Esub(α) = 152 MeV). The angular distributions for the giant quadrupole and giant monopole resonances obtained from fits to these spectra, making simple, commonly used assumptions for the peak shapes and background, are compared to the original angular distributions. The differences between them are an indication of some of the uncertainties affecting the giant resonance strengths extracted from hadron inelastic scattering data. Fits to limited angular regions lead to errors of up to 50% in the value of the energy-weighted sum rule, depending on the angles examined. While it seems possible to extract the correct EWSR for the GMR by carrying out the analyses at 0 0 , no single privileged angle seems to exist in the case of the GQR. (orig.)

  6. Stability of the giant dipole resonance

    International Nuclear Information System (INIS)

    Espino, J.M.; Gallardo, M.

    1987-01-01

    The Giant Dipole Resonance (GDR), because of its stability and its typical period of vibration, can be used as a test for compound nucleus reactions at high temperatures. This stability is studied in a simple model up to 6 MeV of temperature. The experimental methods for getting the properties of the GDR at T ≠ 0 are also commented. (author)

  7. Macroscopic description of isoscalar giant multipole resonances

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1980-01-01

    On the basis of a simple macroscopic model, we calculate the isoscalar giant-resonance energy as a function of mass number and multipole degree. The restoring force is determined from the distortion of the Fermi surface, and the inertia is determined for the incompressible, irrotational flow of nucleons with unit effective mass. With no adjustable parameters, the resulting closed expression reproduces correctly the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole energy and the magnitude of the giant octupole energy for 208 Pb. We also calculate the isoscalar giant-resonance width as a function of mass number and multipole degree for various macroscopic damping mechanisms, including two-body viscosity, one-body dissipation, and modified one-body dissipation. None of these damping mechanisms reproduces correctly all features of the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole width and the magnitude of the giant octupole width for 208 Pb

  8. On Landau Vlasov simulations of giant resonances

    International Nuclear Information System (INIS)

    Pi, M.; Schuck, P.; Suraud, E.; Gregoire, C.; Remaud, B.; Sebille, F.

    1987-05-01

    We present VUU calculations of giant resonances obtained in energetic heavy ion collisions. Also is considered the case of the giant dipole in 40 Ca and the possibility of studying the effects of rotation on such collective modes

  9. Electroexcitation of giant resonances in 181Ta

    International Nuclear Information System (INIS)

    Hicks, R.S.; Auer, I.P.; Bergstrom, J.C.; Caplan, H.S.

    1977-01-01

    The giant resonance region of 181 Ta has been investigated by means of inelastic electron scattering with primary electron energies of 79.1 to 118.3 MeV. A peak-fitting procedure was employed to separate the measured spectrum into nine different resonance components. Multipolarity and strength assignments were deduced using DWBA analysis with the Goldhaber-Teller and Steinwedel-Jensen models. In addition to the well-known giant dipole structure, other resonances were identified at 23.2+-0.3 MeV (E2), 9.5+-0.2 and 11.5+-0.2 MeV (E2 or E0), 19.5+-0.8 MeV (E3), 3.70+-0.14 MeV (E3 or E4), and 5.40+-0.15 MeV (E4 or E5). The model dependence of the analysis is discussed. (Auth.)

  10. Giant multipole resonances: an experimental review

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1979-01-01

    During the past several years experimental evidence has been published for the existance of nondipole giant resonances. These giant multipole resonances, the so-called new giant resonances were first observed through inelastic hadron and electron scattering and such measurements have continued to provide most of the information in this field. A summary is provided of the experimental evidence for these new resonances. The discussion deals only with results from inelastic scattering and only with the electric multipoles. Emphasis is placed on the recent observations of the giant monopole resonance. Results from recent heavy-ion and pion inelastic scattering are discussed. 38 references

  11. Giant resonances in heavy-ion reactions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1982-11-01

    The several roles of multipole giant resonances in heavy-ion reactions are discussed. In particular, the modifications in the effective ion-ion potencial due to the virtual excitation of giant resonances at low energies, are considered and estimated for several systems. Real excitation of giant resonances in heavy-ion reactions at intermediate energies are then discussed and their importance in the approach phase of deeply inelastic processes in emphasized. Several demonstrative examples are given. (Author) [pt

  12. Giant dipole resonance in hot nuclei

    International Nuclear Information System (INIS)

    Mau, N.V.

    1993-01-01

    Giant resonances built on an excited state of the nucleus at a finite temperature T are studied. The following questions are investigated: how long such collective effects occur in a nucleus when T increases. How the properties of the giant resonances vary when the temperature increases. How the study of giant resonances in hot nuclei can give information on the structure of the nucleus in a highly excited state. The special case of the giant dipole resonance is studied. Some of the experimental results are reviewed and in their theoretical interpretation is discussed. (K.A.). 56 refs., 20 figs., 4 tabs

  13. A particle-hole-rotator coupling model for the giant resonance of carbon-12

    International Nuclear Information System (INIS)

    McDougall, A.; Spicer, B.M.

    1975-01-01

    A collective correlations calculation has been made for the giant resonance of 12 C. The low-lying states are treated as members of two rotational bands, and higher energy low-lying states are included in the coupling procedure in an attempt to examine the connection of these states with structure in the 30-35 MeV region, and to examine a proposed rotational band of states built on the 7.65 MeV (0 + ) level. The calculation fails to transfer strength to the extent expected. (author)

  14. Electromagnetic decay of giant resonances

    International Nuclear Information System (INIS)

    Beene, J.R.; Bertrand, F.E.; Halbert, M.L.; Auble, R.L.; Hensley, D.C.; Horen, D.J.; Robinson, R.L.; Sayer, R.O.; Sjoreen, T.P.

    1985-01-01

    Coincidence experiments were done to investigate the photon and neutron emission from the giant resonance regions of 208 Pb and 90 Zr using the ORNL Spin Spectrometer, a 72-segment NaI detector system. We have determined the total gamma-decay probability, the ground-state gamma branching ratio, and the branching ratios to a number of low-lying states as a function of excitation energy in 208 Pb to approx.15 MeV. Similar data were also obtained on 90 Zr. The total yield of ground-state E2 gamma radiation in 208 Pb and the comparative absence of such radiation in 90 Zr can only be understood if decay of compound (damped) states is considered. Other observations in 208 Pb include the absence of a significant branch from the giant quadrupole resonance (GQR) to the 3 - state at 2.6 MeV, a strong branch to a 3 - state at 4.97 MeV from the same region, and transitions to various 1 - states between 5 to 7 MeV from the E* approx. 14 MeV region (EO resonance)

  15. Photon scattering by the giant dipole resonance

    International Nuclear Information System (INIS)

    Bowles, T.J.; Holt, R.J.; Jackson, H.E.; McKeown, R.D.; Specht, J.R.

    1979-01-01

    Although many features of the giant dipole resonance are well known, the coupling between the basic dipole oscillation and other nuclear collective degrees of freedom such as surface vibrations and rotations is poorly understood. This aspect was investigated by elastic and inelastic bremsstrahlung scattering of tagged photons over the energy range 15 to 22 MeV. Target nuclei were 60 Ni, 52 Cr, 56 Fe, 92 Mo, and 96 Mo. Scattering and absorption cross sections are tabulated, along with parameters obtained from a two-Lorentzian analysis of the scattering cross sections; measured spectra are shown. It was necessary to remove Thomson scattering from the experimental results. It was found that coupling to surface vibrations in the giant dipole resonance is much weaker than the dynamic collective model suggests. The elastic scattering cross section for all targets but 60 Ni showed structure that is not evident in the absorption cross section measurement. 12 figures, 2 tables

  16. Electromagnetic decay of giant resonances

    International Nuclear Information System (INIS)

    Beene, J.R.; Bertrand, F.E.; Halbert, M.L.; Auble, R.L.; Hensley, D.C.; Horen, D.J.; Robinson, R.L.; Sayer, R.O.; Sjoreen, T.P.

    1985-01-01

    Coincidence experiments are carried out to investigate the photon and neutron emission from the giant resonance regions of 208 Pb and 90 Zr using the ORNL Spin Spectrometer, a 72-segment NaI detector system. The authors determined the total gamma-decay probability, the ground-state gamma branching ratio, and the branching ratios to a number of low-lying states as a function of excitation energy in 208 Pb to ∼15 MeV. Similar data were also obtained on 90 Zr. The total yield of ground-state E2 gamma radiation in 208 Pb and the comparative absence of such radiation in 90 Zr can only be understood if decay of compound (damped) states is considered. (Auth.)

  17. Static electromagnetic properties of giant resonances

    International Nuclear Information System (INIS)

    Koo, W.K.

    1986-03-01

    Static electric monopole and quadrupole matrix elements, which are related to the mean square radius and quadrupole moment respectively, are derived for giant resonances of arbitrary multipolarity. The results furnish information on the size and shape of the nucleus in the excited giant states. (author)

  18. Temperature dependence of giant dipole resonance width

    International Nuclear Information System (INIS)

    Vdovin, A.I.; Storozhenko, A.N.

    2005-01-01

    The quasiparticle-phonon nuclear model extended to finite temperature within the framework of the thermo field dynamics is applied to calculate a temperature dependence of the spreading width Γ d own of a giant dipole resonance. Numerical calculations are made for 12S n and 208 Pb nuclei. It is found that the width Γ d own increases with T. The reason of this effect is discussed as well as a relation of the present approach to other ones existing in the literature

  19. Collective Hamiltonians for dipole giant resonances

    International Nuclear Information System (INIS)

    Weiss, L.I.

    1991-07-01

    The collective hamiltonian for the Giant Dipole resonance (GDR), in the Goldhaber-Teller-Model, is analytically constructed using the semiclassical and generator coordinates method. Initially a conveniently parametrized set of many body wave functions and a microscopic hamiltonian, the Skyrme hamiltonian - are used. These collective Hamiltonians are applied to the investigation of the GDR, in He 4 , O 16 and Ca 40 nuclei. Also the energies and spectra of the GDR are obtained in these nuclei. The two sets of results are compared, and the zero point energy effects analysed. (author)

  20. Excitation of giant monopole and quadrupole resonances

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, H. [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Yamagata, T.; Tanaka, M. [and others; Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    Recent studies on the giant monopole resonance (GMR) and the giant quadrupole resonance (GQR) in /sup 144/Sm and /sup 208/Pb using the ..cap alpha..-scattering performed at RCNP are summarized. The observed angular range covered 1.6/sup 0/ -- 7/sup 0/ with a coupled system of a dipole and a triplet quadrupole magnet. The incident energy was changed from 84 to 119 MeV. The resonance shapes and energy-weighted sum-rule strengths of the GMR and the GQR were reliably deduced as a function of incident energy. The quadrupole strength of --20% was found in the GMR region. The observed excitation function of the GMR was compared with the DWBA calculation, in which the Satchler's Version I was used as a form factor representing the compressional motion of the nucleus. It was found that the experimental excitation function of the GMR shows steeper decrease as lowering the incident energy than the DWBA prediction whereas that of the GQR is successfully described by the DWBA. This suggests that examination of the model describing the GMR is necessary.

  1. Looking inside giant resonance fine structure

    International Nuclear Information System (INIS)

    Ponomarev, V.Yu.; Voronov, V.V.

    1993-01-01

    Microscopic calculations of the fine structure of giant resonances for spherical nuclei are presented. Excited states are treated by wave function which takes into account coupling of simple one-phonon configurations with more complex ones. Nuclear structure calculations are applied to the description of the γ-decay of resonances into the ground and low-lying excited states. 16 refs.; 4 figs

  2. Excitation of giant resonances through inelastic scattering

    International Nuclear Information System (INIS)

    Kailas, S.

    1981-01-01

    In the last few years, exciting developments have taken place in the study of giant resonances (GR). In addition to the already well known gjant dipole resonance (GDR), the presence of at least two more new GRs viz. giant quadrupole resonance (GQR) and giant monopole resonance (GMR) has been experimentally established. The systematics covering these GRs is found to be consistent with the theoretical expectation. Though the existence of higher multipoles has been predjcted by theory, so far only some of these have been found to be excited experimentally. Various probe particles - electrons, protons (polarized and unpolarized), light and heavy ions and pions - at different bombarding energies have been used to excite the GR region, primarily through the inelastic scattering process. Detailed experiments, looking at the decay modes of GR region, have also been performed. These studies have contributed significantly to a better understanding of the phenomenon of nuclear collective excitation. In this report, the current status of 'GR' research is reviewed. (author)

  3. Collective motion and giant resonances

    International Nuclear Information System (INIS)

    Wilhelmi, Z.; Kicinska-Habior, M.

    1984-01-01

    The report contains 15 papers devoted to problems of giant collective excitations of nuclei, heavy-ion induced reactions and their bearing on various aspects of nuclear structure. In some of them the numerical data are given. (A.S.)

  4. Features of the giant E1 resonance

    International Nuclear Information System (INIS)

    Bergere, R.

    1976-01-01

    Since most of the available experimental data concerning the giant dipole E1 resonance (GDR) have been obtained with real photons, the characteristics of real photon sources are reviewed with an attempt to connect the experimental particularities of each of them to the specific parameters of the GDR which it is best suited to reach. Some systematic properties gathered from experimental data of GDR (average energy, splitting and broadening of the GDR) are compared with the predictions of the static and dynamic collective models of the nuclei. The position in energy and the fine structure of the GDR are more closely connected to shell model predictions as nuclei get lighter, the various experimental integrated cross sections being also more easily understood by comparisons with microscopic models. Most of the reported data refer to the doorway state through which GDR is excited, however the competition between the decay channels for GDR states is also emphasized

  5. Isovector giant quadrupole resonance in 63Cu

    International Nuclear Information System (INIS)

    Wolynec, E.; Pastura, V.F.S.; Martins, M.N.

    1988-01-01

    The decay of the isovector E2 giant resonance in 63 Cu has been studied by measuring the (e,2n) cross section, in the incident electron energy range 22-45 MeV. The photodisintegration induced by bremsstrahlung was also measured. The electrodisintegration results have been analyzed using the distorted wave Born approximation E1 and E2 virtual photon spectra to obtain these multipole components in the corresponding (γ,2n) cross section. It is found that the isovector E2 giant resonance decays dominantly by two-neutron emission in 63 Cu. This decay channel exhausts 65 percent of the energy weighted E2 sum. (author0 [pt

  6. The direct neutron decay of giant resonances in 208Pb

    International Nuclear Information System (INIS)

    Bracco, A.

    1988-01-01

    The neutron decay of the giant multipole resonance region from 9 to 15 MeV of excitation energy in 208 Pb has been studied. Neutron branching ratios for the decay to the ground state and to the low-lying excited states of 207 Pb were measured as a function of the excitation energy of 208 Pb and compared to Hauser-Feshbach calculations. While the neutron branching ratios from the energy region of the isoscalar giant quadrupole resonance are reproduced by the calculations, the ratios from the energy region of the isoscalar giant monopole resonance show a conspicuous excess with respect to the statistical model predictions. The neutron yield from this energy region was analysed in terms of a multistep model of the compound nucleus which includes collective doorway channels. The total direct escape width as well as the associated direct partial escape widths to the lowest five valence hole states of 207 Pb were determined. (orig.)

  7. Giant monopole resonance in transitional and deformed nuclei

    International Nuclear Information System (INIS)

    Garg, U.; Bogucki, P.; Bronson, J.D.; Lui, Y.; Youngblood, D.H.

    1984-01-01

    Small-angle inelastic α-scattering measurements have been made at E/sub α/ = 129 MeV on /sup 144,148/Sm and /sup 142,146,150/Nd to investigate the giant monopole resonance in transitional and deformed nuclei. The experimental data reveal a mixing of L = 0 and L = 2 modes in 148 Sm resulting in almost identical angular distributions for the two components of the giant resonance peaks in the angular range 2 0 --6 0 . A ''splitting'' of the giant monopole resonance is observed in 150 Nd; the extent of this splitting is smaller than that reported for 154 Sm. Comparison is made with the predictions of various theoretical models

  8. Study of giant resonances with pions

    International Nuclear Information System (INIS)

    Baer, H.W.

    1984-01-01

    Recent results on giant resonances obtained with pion-inelastic scattering and with single- and double-charge-exchange scattering are reviewed. The states discussed are isobaric analog states, double-isobaric analog states, and isovector L = 0, 1, and 2 collective states. 36 references

  9. Giant resonances in the deformed continuum

    International Nuclear Information System (INIS)

    Nakatsukasa, T.; Yabana, K.

    2004-01-01

    Giant resonances in the continuum for deformed nuclei are studied with the time-dependent Hartree-Fock (TDHF) theory in real time and real space. The continuum effect is effectively taken into account by introducing a complex Absorbing Boundary Condition (ABC). (orig.)

  10. Giant dipole resonances built on excited states

    International Nuclear Information System (INIS)

    Snover, K.A.

    1983-01-01

    The properties of giant dipole resonances built on excited nuclear states are reviewed, with emphasis on recent results. Nonstatistical (p,γ) reactions in light nuclei, and statistical complex-particle reactions in light and heavy nuclei are discussed. 27 references

  11. Giant dipole resonance by many levels theory

    International Nuclear Information System (INIS)

    Mondaini, R.P.

    1977-01-01

    The many levels theory is applied to photonuclear effect, in particular, in giant dipole resonance. A review about photonuclear dipole absorption, comparing with atomic case is done. The derivation of sum rules; their modifications by introduction of the concepts of effective charges and mass and the Siegert theorem. The experimental distributions are compared with results obtained by curve adjustment. (M.C.K.) [pt

  12. Study of giant resonances in heavy nuclei

    International Nuclear Information System (INIS)

    Cataldi, M.I.C.

    1986-01-01

    The electrodisintegration cross section for 181 Ta, 208 Pb and 209 Bi was measured by counting the emitted neutrons, with incident electrons in the energy range 8-22 MeV. The data was analysed using the virtual photon method, in order to obtain a multipole decomposition and the intensities of Magnetic Dipole and Electric Quadrupole, isoscalar and isovector, in the Giant Resonance. The results obtained for the isovector Giant Quadrupole Resonance are compared with the measured photodisintegration cross section, using data from Saclay and Livermore. This comparision indicates that the photodisintegration data can be well explained assuming an isovector E2 Resonance located between 120 and 130 A -1/3 MeV, with an intensity of one isovector E2 sum. (author) [pt

  13. Giant dipole resonance in hot rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, D.R. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Dinh Dang, N. [RIKEN, Nishina Centre for Accelerator-based Science, Saitama (Japan); VINATOM, Institute of Nuclear Science and Technique, Hanoi (Viet Nam); Datar, V.M. [Tata Institute of Fundamental Research, INO Cell, Mumbai (India)

    2016-05-15

    Over the last several decades, extensive experimental and theoretical work has been done on the giant dipole resonance (GDR) in excited nuclei covering a wide range of temperature (T), angular momentum (J) and nuclear mass. A reasonable stability of the GDR centroid energy and an increase of the GDR width with T (in the range∝1-3 MeV) and J are the two well-established results. Some experiments have indicated the saturation of the GDR width at high T. The gradual disappearance of the GDR vibration at much higher T has been observed. Experiments on the Jacobi transition and the GDR built on superdeformed shapes at high rotational frequencies have been reported in a few cases. Theoretical calculations on the damping of the collective dipole vibration, characterised by the GDR width, have been carried out within various models such as the thermal shape fluctuation model and the phonon damping model. These models offer different interpretations of the variation of the GDR width with T and J and have met with varying degrees of success in explaining the experimental data. In this review, the present experimental and theoretical status in this field is discussed along with the future outlook. The interesting phenomenon of the pre-equilibrium GDR excitation in nuclear reactions is briefly addressed. (orig.)

  14. Triple Giant Resonance Excitations: A Microscopic Approach

    International Nuclear Information System (INIS)

    Lanza, E.G.; Andres, M.V.; Catara, F.; Chomaz, Ph.; Fallot, M.; Scarpaci, J.A.

    2007-01-01

    We present, for the first time, microscopic calculations of inelastic cross sections of the triple excitation of giant resonances induced by heavy ion probes. We start from a microscopic approach based on RPA. The mixing of three-phonon states among themselves and with two- and one-phonon states is considered within a boson expansion with Pauli corrections. In this way we go beyond the standard harmonic approximations and get anharmonic excitation spectra. At the same time we also introduce non-linearities in the external field. The calculations are done by solving semiclassical coupled channel equations, the channels being superpositions of one-, two- and three-phonon states. Previous calculations for the Double Giant Resonance excitation show good agreement with experimental cross sections. The inclusion of the three phonon components confirms the previous results for the DGR and produces a strong increase in the Triple GR energy region

  15. Giant resonance effects in radiative capture

    International Nuclear Information System (INIS)

    Snover, K.A.

    1979-01-01

    The technique of capture reaction studies of giant resonance properties is described, and a number of examples are given. Most of the recent work of interest has been in proton capture, in part because of the great utility (and availability) of polarized beams; most of the discussion concerns this reaction. Alpha capture, which has been a useful tool for exploring isoscalar E2 strength, and neutron capture are, however, also treated. 46 references, 14 figures

  16. Isotopic dependence of giant multipole resonances

    International Nuclear Information System (INIS)

    Bar Touv, J.; Moalem, A.; Shlomo, S.

    1980-01-01

    A procedure is presented which allows the application of linear response theory and the random phase approximation to an open shell. The procedure is applied to Ca isotopes. The general features of giant multipole resonances are found to vary smoothly with the mass. The resonances exhibit more structure in the open lfsub(7/2) shell nuclei. While the energy-weighted dipole sum is practically constant in all isotopes, the isoscalar quadrupole and octupole energy weighted sums increase continuously by approx. 30% from 40 Ca to 48 Ca. (orig.)

  17. High temperature giant dipole and isoscalar resonances

    International Nuclear Information System (INIS)

    Navarro, J.; Barranco, M.; Garcias, F.; Suraud, E.

    1990-01-01

    We present a systematic study of the Giant Dipole Resonance (GDR) at high temperatures (T > ∼ 4 MeV) in the framework of a semi-classical approximation that uses the m 1 and m 3 RPA sum rules to estimate the GDR mean energy. We focus on the evolution with T of the collective nature of the GDR and of the L = 0,2,3 and 4 isoscalar resonances. We find that the GDR remains particularly collective at high T, suggesting that it might be possible to observe it experimentally even at temperatures close to the maximum one a nucleus can sustain

  18. Actual problems of giant resonance physics

    International Nuclear Information System (INIS)

    Zhalov, M.B.; Sliv, L.A.

    1982-01-01

    The raper deals with the discussion of theoretical problems associated with investigation into nuclear giant multipole resoonances (GMR). Analysis of test data on inelastic scattering of particles on nuclei is carried out to obtain the main GMR characteristics from the present experimental data. Giant isoscalar resonances and their structures in the random phase approximatmion (RPA) with Skyrm forces described by the microscopic theory are discussed. Cross section of 40 Ca excitation in reaction of α-particle inelastic scattering calculated in RPA with exact accountancy of one-nucleon continuum is graphically displayed as an example. Modified RPA used for calculation of GMR width is suggested. Conducted is comparison of energies of 40 Ca, 58 Ni, 90 Zr, 208 Pb nuclei isoscalar resonances calculated in RPA and their contributions to energy weighted sum rule the results of which are tabulated. Integral strength of resonance excitation in RPA by inelastic-scattered α particles and protons on 40 Ca and 208 Pb nuclei is considered. Channels of GMR disintegration are discussed. The most significant theoretical and experimental problems the solution of which is necessary for complete investigation of GMR are pointed out

  19. Fragmentation of giant dipole resonance at finite temperature

    International Nuclear Information System (INIS)

    Vdovin, A.

    2005-01-01

    It is well known that the main part of a width of a collective giant resonance built on the ground state in heavy nuclei is due to coupling of one-phonon vibrational states with more complex ones like two phonon or two-particle - two-hole. So it seems natural that the same idea was also explored in studying of the formation and dependence on temperature of a width of giant resonances built on a compound nuclear state. The first microscopic calculations of a giant dipole resonance width at finite temperature have demonstrated its weak dependence on T whereas the experimental width Γ exp strongly increases up to T≤3 MeV. The observed thermal behaviour of Γ exp was attributed mainly to thermal fluctuations of a nuclear shape at finite T . However, further theoretical studies of the problem have shown a strengthening of the GDR spreading with T. We calculate a fragmentation of the giant dipole resonance in hot spherical nuclei within the approach based on the quasiparticle-phonon model extended to finite temperature in with the formalism of thermofield dynamics. The fragmentation of collective giant dipole vibrations at finite T is due to the coupling with 'two-thermal phonon' configurations. The energies and structures of thermal phonon states are calculated from the thermal RPA temperature dependence of the variance σ th of a theoretical E1 strength function and the experimental GDR width Γ exp in 120 Sn. The coupling of thermal phonons is determined by their fermionic structure. The variance σ th of the E1 strength function is found continuously increasing with temperature. The main reason of this behavior is the coupling of the dipole phonons with very low-lying particle-particle (hole-hole) thermal phonons. These phonons are noncollective ones and they appear only at T≠0. The calculated T dependence of σ th is quite similar to that of the experimental width Γ exp in 120 Sn and 208 Pb

  20. Monopole Giant Resonances and TDHF boundary conditions

    International Nuclear Information System (INIS)

    Stevenson, P.D.; Almehed, D.; Reinhard, P.-G.; Maruhn, J.A.

    2007-01-01

    Using time-dependent Hartree-Fock, we induce isoscalar and isovector monopole vibrations and follow the subsequent vibrations of both the same and opposite isospin nature in the N Z nucleus 132 Sn. By suitable scaling of the proton and neutron parts of the excitation operators, the coupling between the modes is studied, and the approximate normal modes found. Chaotic dynamics are then analysed in the isoscalar giant monopole resonance by using reflecting boundaries in a large space to build up a large number of 0 + states whose spacings are then analysed. A Wigner-like distribution is found

  1. Evidence for deformation effect on the giant monopole resonance

    International Nuclear Information System (INIS)

    Buenerd, M.; Lebrun, D.; Martin, P.; de Saintignon, P.; Perrin, C.

    1980-01-01

    The giant monopole resonance in the region of deformed nuclei has been investigated by inelastic scattering of 108.5 MeV 3 He at very small scattering angles. Evidence is reported for coupling between the giant monopole and giant quadrupole vibrations, based both on energy shift and transition strength

  2. Electroexcitation of giant multipole resonances in 208Pb

    International Nuclear Information System (INIS)

    Sasao, M.; Torizuka, Y.

    1977-01-01

    Electroexcitation of the nuclear continuum for 208 Pb at excitation energies up to 100 MeV has been measured at momentum transfers in the range from 0.45 to 1.2 fm -1 . Unfolding of the radiation tail was performed using a tail function which takes into account the multiple-photon emission effect. The spectra at these momentum transfers deviate significantly from the prediction of the Fermi-gas model but are consistent with the sum of the multipole strengths of the random-phase approximation; the excess cross section on the low excitation energy side indicates the excitation of multipole resonances. A series of 208 Pb spectra at low momentum transfers was expanded into E1, E2 (E0), E3, and higher multipole components using the q dependence of the Tassie model for isoscalar modes and the Goldhaber-Teller or Steinwedel-Jensen model for isovector modes. The giant dipole resonance thus obtained is consistent with that from photoreactions. Isoscalar and isovector giant quadrupole resonances are seen, respectively, at 11 and 22.5 MeV and an octupole resonance at 16 MeV. A monopole resonance is suggested at 13.5 MeV. The reduced 2 > 2 , B (E1), B (E2), and B (E3) consume most of the corresponding energy weighted sum rule if the q dependences of the Tassie and Goldhaber-Teller models are assumed. The results with these models are consistent with the random-phase approximation

  3. Statistical decay of giant monopole resonance in 208Pb

    International Nuclear Information System (INIS)

    Dias, H.; Wolynec, E.

    1984-01-01

    The neutron spectrum from the decay of the monopole giant resonance in 208 Pb is calculated using the known energy levels of 207 Pb. The particle vibrator model is used to assign spins parities to the measured 207 Pb levels, where these were not avaliable from experiments. The results of the Hauser-Feshbach calculation is in excellent agreement with the experimental spectrum, showing that the observed fast neutrons can be completely explained assuming a statistical decay. (Author) [pt

  4. The width of the giant dipole resonance at finite temperature

    International Nuclear Information System (INIS)

    Mau, N.V.

    1992-01-01

    A method is proposed to evaluate the effect of the change of the Fermi sea on the width of the giant dipole resonance at finite temperature. In a schematic model it is found that, indeed, in 208 Pb the width increases very sharply up to about T=4 MeV but shows a much weaker variation for higher temperature. (author) 26 refs., 7 figs., 2 tabs

  5. Temperature dependence of spreading width of giant dipole resonance

    International Nuclear Information System (INIS)

    Storozhenko, A.N.; Vdovin, A.I.; Ventura, A.; Blokhin, A.I.

    2002-01-01

    The Quasiparticle-Phonon Nuclear Model extended to finite temperature within the framework of Thermo Field Dynamics is applied to calculate a temperature dependence of the spreading width Γ ↓ of a giant dipole resonance. Numerical calculations are made for 120 Sn and 208 Pb nuclei. It is found that Γ ↓ increases with T. The reason of this effect is discussed as well as a relation of the present approach to other ones, existing in the literature

  6. Statistical decay of the E1 giant resonance

    International Nuclear Information System (INIS)

    Teruya, N.; Dias, H.; Wolynec, E.

    1987-10-01

    Available esperimental data on neutron decay spectra from the E1 giant resonances in 208 Pb and 209 Bi are compared with the predicted spectra for statistical decay. The calculations are performed using the Hauser-Feshbach formalism with the experimental levels of the residual nuclei. The particle-vibrator model is used to assign spins and parities to experimental levels when those are unknown and also to predict the levels where there is not enough experimental information. (author) [pt

  7. Giant resonances in hot rotating nuclei

    International Nuclear Information System (INIS)

    Ring, P.

    1992-01-01

    Present theoretical descriptions of the giant resonances in hot rotating nuclei are reviewed. Mean field theory is used as a basis for the description of the hot compound states. Starting from the static solution at finite temperature and with fixed angular momentum small amplitude collective vibrations are calculated in the frame work of finite temperature random phase approximation for quasi-particles. The effect of pairing at low temperatures as well as the effect of rotations on the position of the resonance maxima are investigated. Microscopic and phenomenological descriptions of the damping mechanisms are reviewed. In particular it turns out that fluctuations play an important role in understanding of the behaviour of the width as a function of the temperature. Motional narrowing is critically discussed. (author). 99 refs., 5 figs

  8. Condensed matter view of giant resonance phenomena

    International Nuclear Information System (INIS)

    Zangwill, A.

    1987-01-01

    The intent of this article is to present a view of giant resonance phenomena (an essentially atomic phenomenon) from the perspective of a condensed matter physicist with an interest in the optical properties of matter. As we shall see, this amounts to a particular prejudice about how one should think about many-body effects in a system of interacting electrons. Some of these effects are special to condensed matter systems and will be dealt with in the second half of this paper. However, it turns out that the authors view of the main ingredient to a giant resonance differs significantly from that normally taken by scientists trained in the traditional methods of atomic physics. Therefore, in the first section the author will take advantage of the fact that his contribution to this volume was composed and delivered to the publishers somewhat after the conclusion of the School (rather than before as requested by the organizers) and try to clearly distinguish the differences of opinion presented by the lecturers from the unalterable experimental facts. 46 references, 9 figures

  9. Decay of giant resonance E2 isoscalar in heavy nuclei

    International Nuclear Information System (INIS)

    Herdade, S.B.

    1980-01-01

    In this work, it is made a study of the giant resonance E2 isoscalar, in heavy nuclei. Fission probabilities for this resonance were determined by various authors, in different experiments, for 238 U. (A.C.A.S.) [pt

  10. Electron inelastic scattering by compound nuclei and giant multipole resonances

    International Nuclear Information System (INIS)

    Dzhavadov, A.V.; Mukhtarov, A.I.; Mirabutalybov, M.M.

    1980-01-01

    Multipole giant resonances in heavy nuclei have been investigated with the application of the Danos-Greiner dynamic collective theory to the Tassi model. The monopole giant resonance has been studied in 158 Gd, 166 Er, 184 W, 232 Th and 238 V nuclei at the incident electron energy E=200 MeV. Dependences of the form factor square of electron scattering by a 166 Er nucleus on the scattering angle obtained in the distorted-wave high-energy approximation (DWHEA) are presented. Giant dipole and quadrupole resonances in 60 Ni and 90 Zr nuclei have been studied. A comparison has been made of theoretical results obtained in the DWHEA for the dependence of the form factor square on the effective momentum transfer with the experimental data. The analysis of the obtained results led to the following conclusions. To draw a conclusion about the validity of one or another nuclear model and methods for calculating form factors, it is necessary to investigate, both theoretically and experimentally, electron scattering at great angles (THETA>=70 deg). To obtain a good agreement it is necessary to take account of the actual proton and neutron distributions in the ground state and their dynamic properties in an excited state [ru

  11. New properties of giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Morsch, H.P.

    1991-01-01

    Studies on the giant dipole resonance in very hot nuclei investigated in heavy ion-induced particle-γ coincidence experiments are reviewed. A signature is found in the γ-decay of excited nuceli which shows direct decay of the giant dipole resonance. This provides a new dimension in giant resonance studies and the possibility to study the dependence of giant resonance energy, width and sum rule strength on excitation energy and rotation of the system. Further, the fact that the giant resonance splits in deformed nuclei provides a unique way to get information on the shape of hot nuclei. First results are obtained on the following questions: (i)What is the nuclear shape at high temperature (T≥2 MeV)? (ii)Is there a phase transition in the nuclear shape at T∼1.7 MeV? (iii)Does motional narrowing exist in hot nuclei? (author). 19 refs., 11 figs

  12. Semimicroscopic description of the giant quadrupole resonances in deformed nuclei

    International Nuclear Information System (INIS)

    Kurchev, G.; Malov, L.A.; Nesterenko, V.O.; Soloviev, V.G.

    1976-01-01

    The calculation results of the giant quadrupole isoscalar and isovector resonances performed within the random phase approximation are represented. The strength functions for E2-transitions are calculated for doubly even deformed nuclei in the regions 150 (<=) A < 190 and 228 (<=) A < 248 in the energy interval (0-40) MeV. The following integral characteristics of giant quadrupole resonances are obtained: the position, widths, the contribution to the energy weighted sum rule and the contribution to the total cross section of photoabsorption. The calculations have shown that giant quadrupole resonances are common for all the considered nuclei. The calculated characteristics of the isoscalar giant quadrupole resonance agree with the available experimental data. The calculations also show that the semimicroscopic theory can be successfully applied for the description of giant multipole resonances

  13. Nuclear isovector giant resonances excited by pion single charge exchange

    International Nuclear Information System (INIS)

    King, B.H.

    1993-07-01

    This thesis is an experimental study of isovector giant resonances in light nuclei excited by pion single charge exchange reactions. Giant dipole resonances in light nuclei are known to be highly structured. For the mass 9 and 13 giant dipole resonances, isospin considerations were found to be very important to understanding this structure. by comparing the excitation functions from cross section measurements of the (π + , π 0 ) and (π, π 0 ) inclusive reactions, the authors determined the dominant isospin structure of the analog IVGR's. The comparison was made after decomposing the cross section into resonant and non-resonant components. This decomposition is made in the framework of strong absorption and quasi-free scattering. Measurements in the region of the isovector giant dipole resonances (IVGDR) were made to cover the inclusive angular distributions out to the second minimum. Study of the giant resonance decay process provides further understanding of the resonances. This study was carried out by observing the (π + , π 0 p) coincident reactions involving the resonances of 9 B and 13 N excited from 9 Be and 13 C nuclei. These measurements determined the spectra of the decay protons. This method also permitted a decomposition of the giant resonances into their isospin components. The multipolarities of the resonances were revealed by the decay proton angular correlations which, for dipoles, are of the form 1 + A 2 P 2 (cos θ)

  14. Spin isovector giant resonances in (n,p) reactions

    International Nuclear Information System (INIS)

    Spicer, B.M.

    1997-01-01

    The present status of the study of spin-flip isovector giant resonances, using the (n,p) charge exchange reaction, is reviewed. After a brief history of the discovery of these giant resonances, a critical appraisal of the interpretation of the data in terms of giant resonances is given, along with some of the theoretical advances that impact on the interpretation of these data. A sampling of the results obtained for typical targets is given, followed by the interpretation of these results. A brief statement is made concerning the way forward in experimental technique for nuclear structure research using charge exchange reactions

  15. Statistical contribution in the giant multipolar resonance decay in hevay nuclei

    International Nuclear Information System (INIS)

    Teruya, N.

    1986-01-01

    Statistical calculations are made for the decay in the electric monopole giant resonance in 208 Pb and electric dipole giant resonance in 209 Bi, using the Hauser-Feshbach formalism. Calculations are done using the experimental energy levels of the corresponding residual nuclei. The particle-vibrator model is used for those experimental levels without spin and parity determination. The influence of different parametrizations of the optical potential in the statistical calculation result is also studied. (L.C.) [pt

  16. Influence of complex particle emission on properties of giant dipole resonance of hot nuclei

    International Nuclear Information System (INIS)

    Wen Wanxin; Jin Genming

    2003-01-01

    The possible reasons for the discrepancy between calculation results based on the statistical evaporation model and experimental data of giant dipole resonance of very hot nuclei are discussed. Both of simulations with the standard CASCADE code and the code coupling complex particle emission are carried out. It is shown that the complex particle emission affects the properties of giant dipole resonance of very hot nuclei

  17. Excitation of giant resonances via charge exchange reactions

    International Nuclear Information System (INIS)

    Goodman, C.D.

    1979-01-01

    Charge-exchange reactions can be useful for identifying isovector resonances. At present the most promising use of charge-exchange reactions with respect to giant resonances is to locate and study Gamow-Teller (GT) resonances. Detailed comparisons between GT and M1 strengths can yield further structure information. 7 figures

  18. Fission decay properties of nuclear giant multipole resonances

    International Nuclear Information System (INIS)

    Dias, H.; Arruda Neto, J.D.T.; Hussein, M.S.; Carlson, B.V.

    1986-05-01

    The statistical fission decay properties of the giant dipole, quadrupole and monopole resonances in 236 U are investigated with the aid of the Hauser-Feshbach model. It is found, contrary to several recent claims, that the GQR fission decay probability is as large as that of the GDR, at energies higher than the fission barrier. At energies close to the f.b., the GQR fission probability is found to be appreciably larger than that of the GDR. The GMR fission probability follows closely that of the GQR. (Author) [pt

  19. Nuclear elasticity applied to giant resonances of fast rotating nuclei

    International Nuclear Information System (INIS)

    Jang, S.; Bouyssy, A.

    1987-06-01

    Isoscalar giant resonances in fast rotating nuclei are investigated within the framework of nuclear elasticity by solving the equation of motion of elastic nuclear medium in a rotating frame of reference. Both Coriolis and centrifugal forces are taken into account. The nuclear rotation removes completely the azimuthal degeneracy of the giant resonance energies. Realistic large values of the angular velocity, which are still small as compared to the giant resonance frequencies, are briefly reviewed in relation to allowed high angular momenta. It is shown that for the A=150 region, the Coriolis force is dominating for small values (< ∼ 0.05) of the ratio of angular velocity to resonance frequency, whereas the centrifugal force plays a prominent part in the shift of the split resonance energies for larger values of the ratio. Typical examples of the resonance energies and their fragmentation due to both rotation and deformation are given

  20. Fluid dynamics of giant resonances on high spin states

    International Nuclear Information System (INIS)

    Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.

    1983-01-01

    We describe giant resonances built on high spin states along the yrast line as scaling solutions of a linearized Vlasov equation in a rotating frame obtained from a TDHF theory in phase space. For oblate cranked solutions we get a shift and a splitting of the isoscalar giant resonances in terms of the angular velocity. Results are shown for 40 Ca and 168 Er. The relative CM strengths are also calculated. (orig.)

  1. Giant resonances in free atoms and in clusters

    International Nuclear Information System (INIS)

    Brechignac, C.; Connerade, J.P.

    1994-01-01

    A review of recent developments in the study of giant resonances in free atoms and in clusters is presented, with particular emphasis on the transition from free atoms to atoms in the condensed phase. Giant resonances in alkali and related metallic clusters due to the excitation of closed shells of delocalized electrons are also reviewed and the relation between different types of collective oscillations is discussed. (author)

  2. Direct vs statistical decay of nuclear giant multipole resonances

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Carlson, B.V.; Merchant, A.C.; Adhikari, S.K.

    1986-01-01

    A theoretical framework for the description of the decay of giant multipole resonances id developed. Besides the direct decay, both the pre-equilibrium and statistical (compound) decays are taken into account in a consistent way. It is shown that the statistical decay of the giant resonance is not necessarily described by the Hauser-Feshbach theory owing to the presence of a mixing parameter, which measures the degree of fragmentation. Applications are made to several cases. (Author) [pt

  3. Giant 4p-quadrupole resonances in the Rare Earths

    International Nuclear Information System (INIS)

    Matthew, J.A.D.; Netzer, F.P.; Clark, C.W.; Morar, J.F.

    1987-01-01

    X-ray absorption of Ce obtained by partial secondary yield, is compared with previously obtained electron-energy loss measurements in reflection mode. The absence of a strong feature below 4p 3/2 threshold in photon absorption provides confirmation that the peak in EELS is nondipole in character. Theoretical analysis supports interpretation in terms of a p-f giant quadrupole resonance, a result which broadens the analogy between giant resonances in atomic and nuclear physics

  4. Giant resonances in atoms and in fluorine cage molecules

    International Nuclear Information System (INIS)

    Mansfield, M.W.D.

    1987-01-01

    Giant resonances in the photoabsorption spectra of atoms occur in the extreme ultraviolet region of the electromagnetic spectrum. In order to observe absorption spectra in this region it is necessary to generate columns of atomic vapor which will often by very hot and chemically aggressive, and to contain them without solid windows between two regions of high vacuum, the spectrometer and the light source, usually an electron synchrotron. The technical problems are often formidable so that although it had long been recognized that giant resonances in solid lanthanides were essentially atomic phenomena (Fomichev et al. 1967, Dehmer et al. 1971) earlier investigations of giant resonances in atoms were limited to the more manageable elements which precede the transition rows, the inert gases, alkali and alkaline earth elements. In this paper the authors discusses the spectra of transition row atoms in order of decreasing localization (Smith and Kmetko 1983) viz. 4d → f, 5d → f, 3p → d, 4p → d and 5p → d. He tends to avoid discussion of the giant resonances themselves because their profiles and interpretation will be discussed comprehensively by other contributors. Instead he concentrates on the detailed analyses which have been attempted of the discrete structure which usually accompanies giant resonances in atoms. Interpretation of this structure can provide accurate determinations of thresholds for inner shell excitation in atoms and can also be used to anticipate structure which may overlie the giant resonances and distort their profiles. 75 references, 21 figures

  5. Excitation and photon decay of giant multipole resonances

    International Nuclear Information System (INIS)

    Bertrand, F.E.; Beene, J.R.

    1990-01-01

    A brief review of the excitation of giant multipole resonances via Coulomb excitation is given which emphasizes the very large cross sections that can be realized through this reaction for both isoscalar and isovector resonances. Discussion and results where available, are provide for the measurement of the photon decay of one and two phonon giant resonances. It is pointed out throughout the presentation that the use of E1 photons as a ''tag'' provides a means to observe weakly excited resonances that cannot be observed in the singles spectra. 14 refs., 12 figs., 1 tab

  6. Role of giant resonance excitation in heavy ion collisions

    International Nuclear Information System (INIS)

    Catara, F.; Chomaz, Ph.

    1987-01-01

    In this paper we discuss several aspects of heavy ion collisions involving collective vibrational modes. In our approach the relative motion is treated in a semiclassical approximation, while the intrinsic degrees of freedom are described microscopically within the RPA. The differences with respect to macroscopic models are analyzed in the appendix. First we present some results on the inelastic scattering cross section and we show that the structures observed experimentally can be explained in terms of multiple excitation of the Giant Quadrupole Resonance. After we calculate an adiabatic polarization potential describing the coupling to the collective vibrational modes and show that it produces a strong enhancement of the subbarrier fusion cross section. This enhancement is found to be enough to reproduce the experimental data for symmetric systems, while for asymmetric reactions the coupling to other degrees of freedom, like transfer, is needed. Finally we report some preliminary results on a dynamical calculation of the real and imaginary parts of the polarization potential. We show that at high incident energies (E/A > 20MeV) the role of the Giant Quadrupole Resonance becomes dominant

  7. New results on multiple excitations of giant resonances

    International Nuclear Information System (INIS)

    Mordechai, S.; Texas Univ., Austin, TX; Moore, C.F.

    1993-01-01

    Exotic excitations like the double giant dipole were predicted for many years but not observed experimentally until recently. Several experiments have been carried out at Los Alamos National laboratory to search for these new collective modes of the nucleus. The results discover two previously unobserved types of double giant resonances. This work presents the recent pion double charge exchange data and the analysis that support the existence of two such exotic vibrational nuclear modes

  8. Recent Results From Skyrme-TDHF: Giant Resonances and Collisions

    International Nuclear Information System (INIS)

    Stevenson, Paul D.

    2007-01-01

    Using fully three-dimensional Time-Dependent Hartree-Fock with Skyrme forces allows one to explore small and large amplitude collective motion in nuclei using only an effective interaction fitted to ground state and nuclear matter properties as input. In this talk, results are presented for TDHF calculations of giant resonances and nuclear collisions. We examine deformation splitting of the giant dipole resonance on ground and excited intrinsic superdeformed states, showing the interplay between Landau splitting and deformation splitting, including effects of triaxiality[1]. In the case of giant monopole resonances, isospin-mixing is examined, showing that the isovector and isoscalar parts of strength functions are strongly coupled [2]. The role of absorption in the TDHF approach to linear and nonlinear regimes is examined[3]. Calculations of nuclear collisions are also explored, showing that the effects of fully relaxed symmetry produce new modes of energy loss not found in previous calculations [4]. (Author)

  9. Is There a Pronounced Giant Dipole Resonance in 4He?

    International Nuclear Information System (INIS)

    Efros, V.D.; Efros, V.D.; Leidemann, W.; Orlandini, G.; Orlandini, G.

    1997-01-01

    A four-nucleon calculation of the total 4 He photodisintegration cross section is performed. The full final-state interaction is taken into account for the first time. This is achieved via the method of the Lorentz integral transform. Semirealistic NN interactions are employed. Different from the known partial two-body 4 He( γ,n) 3 He and 4 He( γ,p) 3 H cross sections our total cross section exhibits a pronounced giant resonance. Thus, in contrast to older (γ,np) data, we predict quite a strong contribution of the (γ,np) channel at the giant resonance peak energy. copyright 1997 The American Physical Society

  10. A Boltzmann equation approach to the damping of giant resonances in nuclei

    International Nuclear Information System (INIS)

    Schuck, P.; Winter, J.

    1983-01-01

    The Vlasov equation plus collision term (Boltzmann equation) represents an appropriate frame for the treatment of giant resonances (zero sound modes) in nuclei. With no adjustable parameters we obtain correct positions and widths for the giant quadrupole resonances. (author)

  11. A self-consistent semiclassical sum rule approach to the average properties of giant resonances

    International Nuclear Information System (INIS)

    Li Guoqiang; Xu Gongou

    1990-01-01

    The average energies of isovector giant resonances and the widths of isoscalar giant resonances are evaluated with the help of a self-consistent semiclassical Sum rule approach. The comparison of the present results with the experimental ones justifies the self-consistent semiclassical sum rule approach to the average properties of giant resonances

  12. Direct neutron decay from the giant monopole resonance in 208Pb

    International Nuclear Information System (INIS)

    Bracco, A.; Beene, J.R.; Van Giai, N.; Bortignon, P.F.; Zardi, F.; Broglia, R.A.

    1988-01-01

    Experimental values of partial direct escape widths for the giant monopole resonance (GMR) in 208 Pb are presented and compared with predictions from various RPA models. It is found that different model Hamiltonians that reproduce equally well the energy and strength of the GMR in 208 Pb lead to direct escape width which may differ by a large factor. 1 tab

  13. Structure of the giant dipole resonance in 208Pb

    International Nuclear Information System (INIS)

    El Naggar, N.M.

    1977-01-01

    A new scheme is devised to study the giant resonance in the heavy magic nucleus 208 Pb. The effect of the 4 + and 5 - collective excitations of the nucleus core is demonstrated. The calculated cross section is compared with the experimental data. (author)

  14. A sum rule description of giant resonances at finite temperature

    International Nuclear Information System (INIS)

    Meyer, J.; Quentin, P.; Brack, M.

    1983-01-01

    A generalization of the sum rule approach to collective motion at finite temperature is presented. The m 1 and msub(-1) sum rules for the isovector dipole and the isoscalar monopole electric modes have been evaluated with the modified SkM force for the 208 Pb nucleus. The variation of the resulting giant resonance energies with temperature is discussed. (orig.)

  15. Isovector giant monopole resonances: A sum-rule approach

    International Nuclear Information System (INIS)

    Goeke, K.; Bonn Univ.; Castel, B.

    1980-01-01

    Several useful sum rules associated with isovector giant monopole resonances are calculated for doubly closed shell nuclei. The calculation is based on techniques known from constrained and adiabatic time-dependent Hartree-Fock theories and assume various Skyrme interactions. The results obtained form, together with the compiled literature, the basis for a quantitative description of the RPA strength distribution in terms of energy-weighted moments. These, together with strength distribution properties, are determined by a hierarchy of determinantal relations between moments. The isovector giant monopole resonance turns out to be a rather broad resonance centered at E = 46 Asup(-1/10) MeV with an extended width of more than 16 MeV. The consequences regarding isospin impurities in the nuclear ground state are discussed. (orig.)

  16. The natural line shape of the giant dipole resonance

    International Nuclear Information System (INIS)

    Gordon, E.F.; Pitthan, R.

    1977-01-01

    Investigation of photoabsorption experiments in the spherical nucleus 141 Pr, the quasispherical dynamically deformed 197 Au, and the statically deformed 165 Ho showed that the function which describes best the energy dependence of the reduced transition probability is given by the Breit-Wigner form rather than the Lorentz form. However, the form of the resulting measured cross section is approximately of the Lorentz type. The dependence of the giant resonance width GAMMA on the excitation energy was also investigated, and found to be less than 1% per MeV if one considered the known isovector E2 resonance above the giant dipole resonance. Best fit values of the reduced transition probabilities for the three nuclei are given and compared to (e,e') results. (Auth.)

  17. Electromagnetic excitation of the two-phonon giant dipole resonance

    International Nuclear Information System (INIS)

    Emling, H.

    1994-03-01

    It is the aim of this article to summarize our present knowledge on the double isovector giant dipole resonance (DGDR) and our understanding of the electromagnetic excitation mechanism in heavy ion collisions in the relativistic energy regime. In the following chapter, a brief resume on the history of giant resonances is given and, based on their understanding, conclusions on the expected properties of multi-phonon resonances are drawn. In chapter 2, the essential features of electromagnetic heavy ion interactions at (near) relativistic velocities will be illuminated and the theoretical framework is presented, which describes such processes. New experimental methods were required for an appropriate study of Coulomb dissociation processes, which are discussed in chapter 3 together with the experimental results. Chapter 4 is dedicated to summarize the results from electromagnetic excitation studies, to compare with those from alternative methods and, in particular, to contrast experimental findings with theoretical predictions and to address open problems. (orig.)

  18. Collisional width of giant resonances and interplay with Landau damping

    International Nuclear Information System (INIS)

    Bonasera, A.; Burgio, G.F.; Di Toro, M.; Wolter, H.H.

    1989-01-01

    We present a semiclassical method to calculate the widths of giant resonances. We solve a mean-field kinetic equation (Vlasov equation) with collision terms treated within the relaxation time approximation to construct a damped strength distribution for collective motions. The relaxation time is evaluated from the time evolution of distortions in the nucleon momentum distribution using a test-particle approach. The importance of an energy dependent nucleon-nucleon cross section is stressed. Results are shown for isoscalar giant quadrupole and octupole motions. A quite important interplay between self-consistent (Landau) and collisional damping is revealed

  19. The temperature dependence of the width of the giant-dipole resonance

    International Nuclear Information System (INIS)

    Ormand, W.E.; Bortignon, P.F.; Broglia, R.A.

    1996-01-01

    The giant-dipole resonance (GDR) in 120 Sn and 208 Pb is studied as a function of excitation energy, angular momentum, and intrinsic width within the context of the adiabatic model. Theoretical evaluations of the full-width-at-half-maximum (FWHM) for the GDR strength function are compared with recent experimental data and are found to be in good agreement. (orig.)

  20. Excitation of giant resonances through inelastic scattering of 170 at 84 MeV/u. Fission decay of giant resonances

    International Nuclear Information System (INIS)

    Cabot, C.; Barrette, J.; Mark, S.K.; Turcotte, R.; Xing, J.; Van der Woude, A.; Van Den Berg, A. M.

    1991-01-01

    Inelastic scattering of 84 MeV/u 17 0 projectiles have been used to excite the giant resonances (GR) in various nuclei ranging from A=60 to A=232. For the isoscalar giant quadrupole resonance (ISGQR), the energy and width of the resonance, as well as the EWSR obtained from the measured cross sections, are in agreement with the known systematics for A>40. The observed GMR strengths are close to 100% EWRS and are consistent with other recent experimental results using heavy ion projectiles. These results lead to a somewhat different picture than that provided by previous studies using light projectiles. Strength is also observed at high excitation energy. The analysis of these resonances is in progress. Our study of the fission decay of GR in 232 Th leads to a somewhat different conclusion than previously deduced from data obtained with light ion projectiles, where no evidence for the fission decay of the ISGQR has been found. In the present work, due to the very good peak-to-continuum ratio, a structure is observed in the fission coincidence spectrum around 10 MeV which can be attributed to the fission decay of giant resonances. The measured fission probability is consistent with a statistical decay of the ISGQR. 10 figs

  1. Study of giant multipole resonances in 40Ca

    International Nuclear Information System (INIS)

    Rost, H.

    1979-01-01

    In the present thesis giant resonance states in 40 Ca were studied by scattering of 104 MeV a particles on 40 Ca and by the reactions 39 K(p vector,p') 39 K and 39 K(p,α) 36 Ar. The scattered α-particles were measured at extreme forward angles (THETAsub(L) = 4 0 -16 0 C), because at forward angles the cross sections for the excitation of states with spin 0 and 1 strongly differ from those with higher spin. The aim of this experiment was first of all the study of the giant resonance region in 40 Ca on the contribution to 0 + or 1 - states. Beside the known electric giant quadrupole resonances at Esub(x) approx. equal to 18.5 MeV (25% EWSR) contributions of EO-strength at Esub(x) approx. equal to 21 MeV (6% EWSR) and indications to a (isoscalar) E1-strength at Esub(x) approx. equal to 14 MeV and Esub(x) approx. equal to 16 MeV were found. At the reactions 39 K(p vector,p') 39 K and 39 K(p,α) 36 Ar in the channels (p,p 0 ),(p,p 4 ), (p,αsub(o)), and (p,α 1 ) at incident energies at about 10 MeV (Esub(x)( 40 Ca) approx. equal to 18 MeV) resonant structures were observed. A scattering phase analysis performed for the elastic proton scattering didn't however yield quantitative results about the resonance parameter. An expansion of the cross sections by Legendre polynomials for the remaining reaction channel didn't allow a conclusion about the dominance of a certain L-value. The only indication to the connection of the observed resonant structures with the giant quadrupole resonance in 40 Ca is therefore the energetic position at about Esub(x) approx. equal to 18 MeV. Altogether the observed structures however were not very pronounced, so it can be concluded, that the excitation of the giant quadrupole resonance in 40 Ca by protons via the ground state of 39 K occurs not very strongly. (orig./HSI) [de

  2. Strength function for the giant isovector monopole resonance

    International Nuclear Information System (INIS)

    MacDonald, W.M.; Birse, M.C.

    1984-01-01

    The theory of the strength function for giant resonances is extended to exhibit the explicit energy dependence of the width and shift functions for the giant isovector monopole. An integral sum rule on the width GAMMA/sub M/(E) relates its normalization to the second moment M 2 of the strength function and leads to a relation GAMMA/sub M/(E/sub M/)GAMMA/sub s//4 = M 2 between M 2 and the width at the maximum, which involves the width GAMMA/sub s/ of the distribution in energy of the spreading matrix elements. An estimate of GAMMA/sub M/(E/sub M/)approx. =8 MeV based on the absorptive part of the optical potential together with random-phase approximation calculations of M 2 leads to the result GAMMA/sub s//2approx. =2hω, supporting the intermediate coupling model of Lane, Thomas, and Wigner. Using the sum rule expressions of Lane and Mekjian to evaluate the Coulomb matrix element M/sub A/M between an isobaric analog state and its corresponding isovector monopole, we test this strength function for the isovector monopole by calculating the spreading widths for the ground state analogs of nuclei from 38 Cl to 208 Pb. The good agreement with the systematic dependence upon mass number and isospin resolves the long-standing discrepancy between the estimate GAMMA/sub M/(E/sub M/)approx.8--10 MeV and the value GAMMA/sub M/(E/sub A/)< or =2 MeV needed to account for the spreading widths of the isobaric analog state

  3. Overtones of isoscalar giant resonances studied in direct particle decay measurements

    NARCIS (Netherlands)

    Hunyadi, M; van den Berg, AM; Csatlos, M; Csige, L; Davids, B; Garg, U; Gulyas, J; Harakeh, MN; de Huu, MA; Krasznahorkay, A; Sohler, D; Wortche, HJ

    The isoscalar giant dipole resonance (ISGDR), which is the lowest-energy overtone mode of the isoscalar giant resonances, has been studied in some medium-heavy and heavy nuclei in coincidence measurements. The observation of the direct nucleon decay channels significantly helped to enhance giant

  4. Observation of the M1 giant resonance by resonance averaging in 106Pd

    International Nuclear Information System (INIS)

    Kopecky, J.

    1987-01-01

    An investigation of capture of 2 keV and 24 keV neutrons in a 105 Pd target resulted in resonance-averaged intensities of primary gamma rays with energies between 5.2 and 9.5 MeV. From these intensities the gamma ray strength functions have been evaluated for E1, M1 and E2 radiation and compared with predictions of the giant resonance theory. The inclusion of an energy dependent spreading width for the E1 giant resonance is necessary. The energy distribution of M1 reduced strength is consistent with an interpretation of a broad resonance around 8.8 MeV. E2 data agrees satisfactorily with the giant extrapolation. (orig.)

  5. Quantized TDHF for isoscalar giant quadrupole resonances in spherical nuclei

    International Nuclear Information System (INIS)

    Drozdz, S.; Okolowicz, J.; Ploszajczak, M.; Caurier, E.

    1988-01-01

    The time-dependent Hartree-Fock theory supplemented with the regularity and single-valuedness quantization condition for the gauge invariant component of the wavefunction is applied to the description of the centroid energy and escape width of isoscalar giant quadrupole resonances in 16 O, 40 Ca and 110 Zr. Calculations are performed using the Skyrme SIII effective interaction. An important role of the finite oscillation amplitude in the mean-field dynamics is emphasized. (orig.)

  6. Direct vs statistical decay of nuclear giant multipole resonances

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1986-07-01

    A theoretical framework for the description of the decay of giant multipole resonances is developed. Besides the direct decay, both the pre-equilibrium and statistical (compound) decays are taken into account in a consistent way. It is shown that the statistical decay of the GR is not necessarily correctly described by the Hauser-Feshbach theory owing to the presence of a mixing parameter, which measures the degree of fragmentation. Applications are made to several cases. (Author) [pt

  7. Giant right atrial myxoma: characterization with cardiac magnetic resonance imaging.

    LENUS (Irish Health Repository)

    Ridge, Carole A

    2012-02-01

    A 53-year-old woman presented to the emergency department with a 2-week history of dyspnoea and chest pain. Computed tomography pulmonary angiography was performed to exclude acute pulmonary embolism (PE). This demonstrated a large right atrial mass and no evidence of PE. Transthoracic echocardiography followed by cardiac magnetic resonance imaging confirmed a mobile right atrial mass. Surgical resection was then performed confirming a giant right atrial myxoma. We describe the typical clinical, radiologic, and pathologic features of right atrial myxoma.

  8. Optimization experiments on the study of giant resonance in nuclei

    International Nuclear Information System (INIS)

    Lyubarskij, G.Ya.; Savitskij, G.A.; Fartushnyj, V.A.; Khazhmuradov, M.A.; Levandovskij, S.P.

    1988-01-01

    Optimum choice of the target exposure to a beam in experiments on the study of giant resonances in nuclei is considered. Optimization is aimed at reducing mean square errors of defined formfactors. Four different optimization quality criteria - variances of four form factor experimental values are considered. Variances resulting form optimization are 1.5-2 times as less as variances in real experiment. The effect of experiment design optimization criterion on form factors determination errors is ascertained. 1 ref.; 3 tabs

  9. Theoretical Predictions of Giant Resonances in 94Mo

    Science.gov (United States)

    Golden, Matthew; Bonasera, Giacomo; Shlomo, Shalom

    2016-09-01

    We perform Hartree-Fock based Random Phase Approximation using thirty-three common Skyrme interactions found in the literature for 94Mo. We calculate the strength functions and the Centroid Energies of the Isoscalar Giant Resonances for all multipolarities L0, L1, L2, L3. We compare the calculated Centroid Energies with the experimental value; we also study the Centroid Energy and any correlation it may have with the Nuclear Matter properties of each interaction.

  10. Random phase approximation: from Giant to Intra-doublet resonances

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    2004-01-01

    We discuss here the history and current achievements of one of the most powerful approaches of 20th century physics--the random phase approximation (RPA) that permits us to study collective or multiparticle effects in atoms, nuclei, molecules and clusters, as well as in quantum liquids. We concentrate on RPA application to studies of isolated atoms where it permits one to disclose the collective multielectron nature of so-called Giant resonances and predict a number of others, like Interference and Intra-doublet resonances. We present general theory as well as results of concrete calculations for a number of atoms

  11. Random phase approximation: from Giant to Intra-doublet resonances

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. E-mail: amusia@vms.huji.ac.il

    2004-06-01

    We discuss here the history and current achievements of one of the most powerful approaches of 20th century physics--the random phase approximation (RPA) that permits us to study collective or multiparticle effects in atoms, nuclei, molecules and clusters, as well as in quantum liquids. We concentrate on RPA application to studies of isolated atoms where it permits one to disclose the collective multielectron nature of so-called Giant resonances and predict a number of others, like Interference and Intra-doublet resonances. We present general theory as well as results of concrete calculations for a number of atoms.

  12. Study of the giant multipole resonances, especially the isoscalar giant E2 resonance in 208Pb by inelastic electron scattering with medium and high energy resolution

    International Nuclear Information System (INIS)

    Kuehner, E.G.F.

    1982-01-01

    In the nucleus 208 Pb giant multipole resonances were looked for by inelastic electron scattering up to excitation energies of Esub(x) = 35 MeV. Twelve spectra were taken up at incident energies of Esub(o) = 45-65 MeV under scattering angles from upsilon = 93 0 to 165 0 . The cross sections extracted from this were analyzed by means of DWBA calculations using RPA amplitudes from a model with separable residual interaction. Basing on this analysis for the first time it could be shown that the maximum in the electron scattering cross section at Esub(x) approx.= 14 MeV can be consistently described as a superposition of the Jsup(π) = 1 - , ΔT = 1 with a Jsup(π) = 0 + , ΔT = 0 giant resonance. Furthermore the spectra under backward scattering angles indicate the existence of a magnetic excitation at Esub(x) approx.= 15 MeV which is interpreted as Jsup(π) = 3 + giant resonance. Besides under forwards angles a further weak excitation appears at Esub(x) approx.= 14.6 MeV which is very well compatible with Jsup(π) = 2 + . At Esub(x) = 17.5 MeV a Jsup(π) = 3 - resonance was found which recently is also observed in (α,α') scattering experiments and therefore gets a ΔT = 0 assignment. A further resonance at Esub(x) approx.= 21 MeV has also Jsup(π) = 3 - character but has partly to be assigned to a Jsup(π) = 1 - , ΔT = 0 excitation. At Esub(x) = 23.8 MeV a Jsup(π) = 2 + excitation was found which gels because of model predictions a ΔT = 1 assignment. (orig./HSI) [de

  13. Study of the giant multipole resonances especially of the isoscalar giant E2 resonance in 208Pb by medium and high energy resolution inelastic electron scattering

    International Nuclear Information System (INIS)

    Kuehner, G.

    1982-01-01

    In the nucleus 208 Pb giant multipole resonances up to excitation energies of Esub(x) = 35 MeV were looked for by medium resolution inelastic electron scattering. Twelve spectra were taken up at incident energies of E 0 = 45-65 MeV under scattering angles from upsilon = 93 0 to 165 0 . The cross sections extracted from this were analyzed by means of DWBA calculations using RPA amplitudes from a model with separable residual interaction. On the base of this analysis for the first time it could be shown that the maximum in the electron scattering cross section at Esub(x) approx.= 14 MeV can be consistently described as superposition of the Jsup(π) = 1 - , ΔT = 1 with a Jsup(π) = 0 + , ΔT = 0 giant resonance. Furthermore the spectra under backward scattering angles indicate the existence of a magnetic excitation at Esub(x) approx.= 15 MeV which is interpreted as Jsup(π) = 3 + giant resonance. Besides under forward angles a further weak excitation at Esub(x) approx.= 14.6 MeV appears which is very well compatible with Jsup(π) = 2 + . At Esub(x) = 17.5 MeV a Jsup(π) = 3 - resonance was found which recently is observed also in (α, α') experiments and therefore gets a ΔT = 0 assignment. A further resonance at Esub(x) approx.= 21 MeV has also a Jsup(π) = 3 - character but has to be partly assigned to a Jsup(π) = 1 - , ΔT = 0 excitation. At Esub(x) = 23.8 MeV a Jsup(π) = 2 + excitation was found which gets because of model predictions a ΔT = 1 assignment. (orig./HSI) [de

  14. Magnetic resonance imaging of large and giant intracranial aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Kenichi; Saito, Akira; Nakasu, Yoko; Matsuda, Masayuki; Handa, Jyoji [Shiga University of Medical Science, Shiga (Japan); Todo, Giro

    1990-06-01

    Twelve large or giant intracranial aneurysms were studied with magnetic resonance (MR) imaging, and the findings were compared with those from computed tomographic (CT) scanning. Characteristic MR features of such aneurysms are: round, extra-axial mass with hypointensity rim; signal void, paradoxical enhancement, or even-echo rephasing due to blood flow; and laminated, eccentric thrombus with increased signal intensity when fresh, perianeurysmal hemorrhage occurs in the acute or subacute stage after aneurysmal rupture. MR imaging, however, often fails to identify or characterize the area of calcification. For the diagnosis of large or giant intracranial aneurysms, MR imaging is apparently superior to CT scanning in differentiating aneurysms from tumors, delineating the blood flow and intraluminal thrombus, and detecting the exact size of the aneurysm. It may also provide useful information concerning the growth mechanisms of aneurysms with or without thrombus formation. (author).

  15. Isotopic dependence of the giant quadrupole resonance in the stable even-mass molybdenum nuclei

    International Nuclear Information System (INIS)

    Moalem, A.; Gaillard, Y.; Bemolle, A.M.; Buenerd, M.; Chauvin, J.; Duhamel, G.; Lebrun, D.; Martin, P.; Perrin, G.; de Saintignon, P.

    1979-01-01

    Inelastic scattering of 110 MeV 3 He particles is used to probe the quadrupole strength in the even Mo isotopes. The peak position of the giant quadrupole resonance is found to decrease more rapidly than predicted by the A/sup -1/3/ law, a behavior very similar to that exhibited by the photonuclear giant dipole resonance. The width and strength of the giant quadrupole resonance are practically constant in 92 Mo through 100 Mo

  16. The giant-dipole-resonance effect in coulomb excitation of 10B

    International Nuclear Information System (INIS)

    Vermeer, W.J.; Zabel, T.H.; Esat, M.T.; Kuehner, J.A.; Spear, R.H.; Baxter, A.M.

    1982-04-01

    Coulomb excitation of the 0.718-MeV, Jsup(π) = 1 + , first excited state of 10 B has been studied using projectile excitation by 208 Pb and observing the backward scattered particles. The results give a clear indication of the virtual excitation of the giant dipole resonance as a second-order effect. The observed magnitude is consistent with the usual hydrodynamic model estimate and with a recent shell-model calculation

  17. Form factors and radiation widths of the giant multipole resonances

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    1990-01-01

    Simple analytic relations for the form factors of inelastic electron scattering in the Born approximation and radiation widths of the isovector and isoscalar giant multipole resonances are derived. The dynamic relationship between the volume and surface density vibrations were taken into account in this calculation. The form factors in the Born approximation were found to be in satisfactory agreement with experimental data in the region of small transferred momenta. The radiation widths of isoscalar multipole resonances increase when the number of nucleons increase as A 1/3 , and for isovector resonances this dependence has the form f(A)A 1/3 , where f(A) is a slowly increasing function of A. Radiation widths well fit the experimental data

  18. Excitation and photon decay of giant resonances excited by intermediate energy heavy ions

    International Nuclear Information System (INIS)

    Bertrand, F.E.; Beene, J.R.

    1987-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the giant resonances. In particular, recent measurements have been made of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon 17 O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the 208 Pb isovector quadrupole resonance using its gamma decay are presented. 22 refs., 19 figs., 1 tab

  19. Measurement of isovector giant quadrupole resonance in 40Ca

    International Nuclear Information System (INIS)

    Sims, D.A.; Thompson, M.N.; Rassool, R.; Adler, J.O.; Andersson, B.E.; Hansen, K.; Issaksson, L.; Nilsson, B.; Ruijter, H.; Schroeder, B.; Annand, J.R.M.; McGeorge, J.C.; Crawford, G.I.; Miller, G.J.

    1997-01-01

    The 40 Ca(γ,n) reaction was measured using tagged photons in the energy range 25-50 MeV. Neutrons were detected using two 9-element, liquid scintillator, neutron detectors placed at angles of 55 deg and 125 deg at flight path of 3.2 m. The absolute cross section was determined relative to that for D (γ,n)p, which was measured using a heavy water target. The forward/backward asymmetry in the 40 Ca (γ, n) cross section, resulting from E1/E2 interference has been used to locate and parametrize the isovector giant quadrupole resonance (IVQR). 6 refs., 2 figs

  20. The giant resonances in hot nuclei. Linear response calculations

    International Nuclear Information System (INIS)

    Braghin, F.L.; Vautherin, D.; Abada, A.

    1995-01-01

    The isovector response function of hot nuclear matter is calculated using various effective Skyrme interactions. For Skyrme forces with a small effective mass the strength distribution is found to be nearly independent of temperature, and shows little collective effects. In contrast effective forces with an effective mass close to unity produce at zero temperature sizeable collective effects which disappear at temperatures of a few MeV. The relevance of these results for the saturation of the multiplicity of photons emitted by the giant dipole resonance in hot nuclei observed in recent experiments beyond T = 3 MeV is discussed. (authors). 12 refs., 3 figs

  1. Decay of giant resonances states in radiative pion capture by 1p shell nuclei

    International Nuclear Information System (INIS)

    Dogotar, G.E.

    1978-01-01

    The decay of the giant resonance states excited in tthe radiative pion capture on the 9 Be, 11 B, 13 C and 14 N nuclei is considered in the shell model with intermediate coupling. It is shown that the excited states in the daughter nuclei (A-1, Z-1) are mainly populated by intermediate states with spin by two units larger than the spin of the target nuclei. Selected coincidence experiments are proposed

  2. Atomic many-body theory of giant resonances

    International Nuclear Information System (INIS)

    Kelly, H.P.; Altun, Z.

    1987-01-01

    In this paper the use of many-body perturbation theory (MBPT) to include effects of electron correlations is discussed. The various physical processes contributing to the broad photoionization cross sections of the rare gases are studied in terms of the relevant many-body diagrams. Use of the random phase approximation with exchange (RPAE) is discussed by Amusia and Cherepkov. Calculations using the relativistic RPAE are reviewed by Johnson. In addition, many-body perturbation theory (MBPT) is used to study resonances which are due to excitation of bound states degenerate with the continuum. Very interesting giant resonance structure can occur when an inner shell electron is excited into a vacant open-shell orbital of the same principal quantum number. A particular example which is studied is the neutral manganese atom 3p 6 3d 5 4s 2 ( 6 S), in which the spins of the five 3d electrons are aligned. A very large resonance occurs in the 3d and 4s cross sections due to 3p → 3d excitation near 51 eV, and calculations of this resonance by MBPT and RPAE are discussed. A second example of this type of resonance occurs in open-shell rare-earth atoms with configurations 4d 10 4f/sup n/5s 2 5p 6 s 2 . Calculations and experimental results will be discussed for the case of europium with a half-filled sub-shell 4f 7 . 71 references, 15 figures

  3. The isoscalar giant dipole resonance and nuclear incompressibility

    International Nuclear Information System (INIS)

    Garg, U.

    2000-01-01

    Complete text of publication follows. The current status of the experimental work on the ISOSCALAR giant dipole resonance (ISGDR) will be reviewed. ISGDR is an exotic mode of collective nuclear vibration and can be described as a hydrodynamical density oscillation in which the volume of the nucleus remains constant and the state can be visualized in the form of a compression wave-analogous to a sound wave-oscillating back and forth through the nucleus. [1] Convincing evidence for the ISGDR has now been obtained in inelastic α-scattering measurements at 200 MeV (IUCF) [2], 240 MeV (Texas A and M) [3] and 400 MeV (RCNP, Osaka) [4]. In all nuclei studied so far, the ISGDR strength is observed to be spread over a rather wide excitation-energy range (up to ∼ 15 MeV). The excitation energy of the ISGDR is related to the nuclear incompressibility, K ∞ . The ISGDR results so far point to a value for K ∞ that is ∼ 30-40% lower than the obtained from the energies of the other compressional mode, the giant monopole resonance. Results from recent theoretical attempts to reconcile this difference will be presented. This work has been supported in part by the U.S. National Science Foundation. (author)

  4. Structure and direct decay of Giant Monopole Resonances

    International Nuclear Information System (INIS)

    Avez, B.; Simenel, C.

    2013-01-01

    We study structure and direct decay of the Giant Monopole Resonance (GMR) at the Random Phase Approximation (RPA) level using the time-dependent energy density functional method in the linear response regime in a few doubly magic nuclei. A proper treatment of the continuum, through the use of large coordinate space, allows for a separation between the nucleus and its emitted nucleons. The microscopic structure of the GMR is investigated with the decomposition of the strength function into individual single-particle quantum numbers. A similar microscopic decomposition of the spectra of emitted nucleons by direct decay of the GMR is performed. In this harmonic picture of giant resonance, shifting every contribution by the initial single-particle energy allows to reconstruct the GMR strength function. The RPA residual interaction couples bound 1-particle 1-hole states to unbound ones, allowing for the total decay of the GMR. In this article, we then intend to get an understanding of the direct decay mechanism from coherent one-particle-one-hole superpositions, while neglecting more complex configurations. Time-dependent beyond mean-field approaches should be used, in the future, to extend this method. (orig.)

  5. Survey of the (3He,t) reaction: Excitation of the isobaric analog of the giant dipole resonance

    International Nuclear Information System (INIS)

    Tabor, S.L.; Chang, C.C.; Collins, M.T.; Wagner, G.J.; Wu, J.R.; Halderson, D.W.; Petrovich, F.

    1982-01-01

    The ( 3 He,t) reaction at 130 and 170 MeV has been investigated on targets of 12 C, 16 O, 27 Al, 28 Si, 40 Ca, 46 Ti, and 90 Zr. Data for the ( 3 He, 3 He') reaction were measured simultaneously for reference purposes. Structure is observed in the spectra from the ( 3 He, 3 He') and ( 3 He,t) reaction at the expected positions of the giant quadrupole resonance and the isobaric analog of the giant dipole resonance, respectively. An angular distribution was measured for the suspected giant dipole resonance structure in the 40 Ca( 3 He,t) 40 Sc reaction at 130 MeV. The data are reasonably described by a collective model calculation based on the Goldhaber-Teller model for the giant dipole resonance. Several other strong peaks at excitation energies below the giant dipole resonance are observed in the ( 3 He,t) spectra. Most notable of these are the ones at the expected positions for analogs of well known 1 + states and 1hω stretched states in the targets

  6. Damping of isovector giant dipole resonances in hot even-even spherical nuclei

    International Nuclear Information System (INIS)

    Dang, N.D.

    1989-01-01

    An approach based on the finite temperature quasiparticle phonon nuclear model (FT-QPNM) with the couplings to (2p2h) states at finite temperature taken into account is suggested for calculations of the damping of giant multipole resonances in hot even-even spherical nuclei. The strength functions for the isovector giant dipole resonance (IV-GDR) are calculated in 58 Ni and 90 Zr for a range of temperatures up to 3 MeV. The results show that the contribution of the interactions with (2p2h) configurations to the IV-GDR spreading width changes weakly with varying temperature. The IV-GDR centroid energy decreases slightly with increasing temperature. The nonvanishing superfluid pairing gap due to thermal fluctuations is included. (orig.)

  7. The temperature dependence of giant resonances in high-excited nucleus

    International Nuclear Information System (INIS)

    Li Ming; Song Hongqiu

    1991-01-01

    The Hartree-Fock equation and the linear response theory in finite temperature are used to calculate the positions and transition strenghths of the giant resonances of high-excited nucleus Pb 208 . The result shows a downward shift and a broadening of the giant resonance energies as temperatrue increases

  8. Reaction theory for analysis of nuclear giant resonances production and decay processes

    International Nuclear Information System (INIS)

    Foglia, G.A.

    1991-01-01

    The existence of mixing parameters connected to the different decay forms of the giant resonances was theoretically justified, and their energy dependence determined as well using a reaction theory which treats in a consistent manner the giant multipolar resonances formation and their different decay modes. (L.C.J.A.)

  9. Outward Migration of Giant Planets in Orbital Resonance

    Science.gov (United States)

    D'Angelo, G.; Marzari, F.

    2013-05-01

    A pair of giant planets interacting with a gaseous disk may be subject to convergent orbital migration and become locked into a mean motion resonance. If the orbits are close enough, the tidal gaps produced by the planets in the disk may overlap. This represents a necessary condition to activate the outward migration of the pair. However, a number of other conditions must also be realized in order for this mechanism to operate. We have studied how disk properties, such as turbulence viscosity, temperature, surface density gradient, mass, and age, may affect the outcome of the outward migration process. We have also investigated the implications on this mechanism of the planets' gas accretion. If the pair resembles Jupiter and Saturn, the 3:2 orbital resonance may drive them outward until they reach stalling radii for migration, which are within ~10 AU of the star for disks representative of the early proto-solar nebula. However, planet post-formation conditions in the disk indicate that such planets become typically locked in the 1:2 orbital resonance, which does not lead to outward migration. Planet growth via gas accretion tends to alter the planets' mass-ratio and/or the disk accretion rate toward the star, reducing or inhibiting outward migration. Support from NASA Outer Planets Research Program and NASA Origins of Solar Systems Program is gratefully acknowledged.

  10. Charge-exchange giant resonances as probes of nuclear structure

    International Nuclear Information System (INIS)

    Blomgren, J.

    2001-09-01

    Giant resonances populated in charge-exchange reactions can reveal detailed information about nuclear structure properties, in spite of their apparent featurelessness. The (p,n) and (n,p) reactions - as well as their analog reactions - proceed via the same nuclear matrix element as beta decay. Thereby, they are useful for probing electroweak properties in nuclei, especially for those not accessible to beta decay. The nuclear physics aspects of double beta decay might be investigated in double charge-exchange reactions. detailed nuclear structure information, such as the presence of ground-state correlations, can be revealed via identification of 'first-forbidden' transitions. In addition, astrophysics aspects and halo properties of nuclei have been investigated in charge exchange. Finally, these experiments have questioned our knowledge of the absolute strength of the strong interaction

  11. The giant quadrupole resonance in highly excited rotating nuclei

    International Nuclear Information System (INIS)

    Civitarese, O.; Furui, S.; Ploszajczak, M.; Faessler, A.

    1983-01-01

    The giant quadrupole resonance in highly excited, fast rotating nuclei is studied as a function of both the nuclear temperature and the nuclear angular momentum. The photo-absorption cross sections for quadrupole radiation in 156 Dy, 160 Er and 164 Er are evaluated within the linear response theory. The strength functions of the γ-ray spectrum obtained from the decay of highly excited nuclear states by deexcitation of the isoscalar quadrupole mode show a fine structure, which depends on the temperature T, the angular momentum I and the deformation of the nucleus β. The splitting of the modes associated with the signature-conserving and signature-changing components of the quadrupole field is discussed. (orig.)

  12. Phase-space exploration in nuclear giant resonance decay

    International Nuclear Information System (INIS)

    Drozdz, S.; Nishizaki, S.; Wambach, J.; Speth, J.

    1995-01-01

    The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in 40 Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of one-particle--one-hole (1p-1h) and 2p-2h states. Three different cases for the level distribution of 2p-2h background states, corresponding to (a) high degeneracy, (b) classically regular motion, and (c) classically chaotic motion, are studied. In the latter case the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space

  13. The giant resonance and the shape of hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bracco, A; Camera, F; Million, B; Pignanelli, M [Milan Univ. (Italy). Ist. di Fisica; Gaardhoje, J J; Maj, A; Atac, A [Niels Bohr Inst., Copenhagen (Denmark)

    1992-08-01

    The gamma decay of the giant dipole resonance is a sensitive tool for investigating how nuclear shape changes with spin and excitation energy, but the information is coded in a subtle way, inasmuch as the shape and orientation of nuclei at finite temperature display large fluctuations. At the time of the conference, the three systems {sup 109-110}Sn, {sup 161-162}Yb and {sup 165-167}Er had recently been studied on the HECTOR spectrometer. The Sn nuclei are spherical in their ground states, and are expected to become oblate under the stress of rotation. The Yb and Er nuclei are prolate, and are expected to become first spherical, then oblate. While the patterns of the measured angular anisotropies are consistent with this general picture, many questions still remain open. 3 refs., 1 tab., 3 figs.

  14. Decay of the giant monopole resonance in heavy nuclei

    International Nuclear Information System (INIS)

    Brandenburg, S.

    1985-01-01

    In this thesis an experimental study of the properties of the giant monopole resonance (GMR) in nuclei is described. The main subject is the study of the neutron decay of the GMR in 208 Pb, and the fission decay of the GMR in 238 U. Furthermore the strength distribution and decay properties of the monopole strength in 24 Mg and 40 Ca were studied. The strength distribution of the isoscalar monopole (and also of the isoscalar dipole) strength as obtained from the angular distribution of the excited strength at small scattering angles are discussed. For the excitation of the GMR inelastic scattering at very small scattering angles, including 0 0 , of 120 MeV α-particles was employed. The experimental technique for performing this type of measurements at the KVI was developed in the course of this study and is the subject of a separate chapter. (Auth.)

  15. Photoionization of lanthanum and its ions in the region of the 'giant' resonance

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    1989-01-01

    The photoionization cross sections of outer and intermediate shells including 4d of La and its ions are calculated in the region of the 'giant' resonance. The prominent effects of both intershell correlational effects and rearrangement are demonstrated. (orig.)

  16. Inelastic scattering of 9Be of 27 MeV/A to giant resonances

    International Nuclear Information System (INIS)

    Lebrun, D.; Buenerd, M.; Bini, M.; Harvey, B.G.; Legrain, R.; Mahoney, J.; Symons, T.J.M.; Van Bibber, K.

    1980-07-01

    Inelastic scattering spectra have been measured with 245 MeV incident energy 9 Be ions, on 208 Pb target. They show large excitation of the 208 Pb giant quadrupole resonance. DWBA calculations are reported and compared with the data

  17. A study of the giant dipole resonance in doubly even tellurium and cerium isotopes

    International Nuclear Information System (INIS)

    Lepretre, A.; Beil, H.; Bergere, R.; Carlos, P.; Fagot, J.; Miniac, A. de; Veyssiere, A.

    1976-01-01

    The partial photoneutron cross sections [sigma(γ,n)+sigma(γ,pn)] and sigma(γ,2n) of 124 Te, 126 Te, 128 Te, 130 Te and 140 Ce, 142 Ce were measured in the giant dipole resonance region by means of the monochromatic photon beam installation at SACLAY. Absolute total photoneutron cross sections, Lorentz line parameters and integrated cross sections are evaluated. The experimental behaviour of the GDR for the above nuclei and in particular its spreading, is then tentatively interpreted in terms of the improved dynamic collective model using the concept of potential energy surfaces. (Auth.)

  18. Impact-parameter dependence of giant resonance excitations in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Gruenschloss, A.; Boretzky, K.; Aumann, T.

    1999-09-01

    Angular distributions of Xe fragments produced in peripheral collisions of a 136 Xe beam (700 MeV/nucleon) with 208 Pb and nat Sn targets were measured. Equivalent sharp-cutoff minimum impact parameters were derived on the basis of a semi-classical description for the electromagnetic excitation of one- and two-phonon giant resonances. The results are compared with current standard parametrizations of minimum impact parameters and with the soft-spheres model using realistic mass density distributions for projectile and targets. (orig.)

  19. Fine structure of the giant M1 resonance in 90Zr.

    Science.gov (United States)

    Rusev, G; Tsoneva, N; Dönau, F; Frauendorf, S; Schwengner, R; Tonchev, A P; Adekola, A S; Hammond, S L; Kelley, J H; Kwan, E; Lenske, H; Tornow, W; Wagner, A

    2013-01-11

    The M1 excitations in the nuclide 90Zr have been studied in a photon-scattering experiment with monoenergetic and linearly polarized beams from 7 to 11 MeV. More than 40 J(π)=1+ states have been identified from observed ground-state transitions, revealing the fine structure of the giant M1 resonance with a centroid energy of 9 MeV and a sum strength of 4.17(56) μ(N)(2). The result for the total M1 strength and its fragmentation are discussed in the framework of the three-phonon quasiparticle-phonon model.

  20. (p,n) and (n,p) reactions as probes of isovector giant monopole resonances

    International Nuclear Information System (INIS)

    Auerbach, N.; Bowman, J.D.; Franey, M.A.; Love, W.G.

    1983-01-01

    Nucleon charge exchange reactions are explored as prospective probes of isovector giant monopole resonances. Using charge exchange transition densities based on random-phase approximation sum rules, distorted wave impulse approximation calculations are made for the (p,n) and (n,p) reactions exciting the isovector giant monopole resonances in several nuclei at bombarding energies of 120 and 800 MeV. Based on our calculations, the charge exchange reactions at 800 MeV appear more promising

  1. Spectroscopic factors of the alpha decay of isoscalar giant resonances

    International Nuclear Information System (INIS)

    Smirnov, Yu.F.; Chuvil'skij, Yu.M.

    1983-01-01

    A system which enables to connect Ssub(α) spectroscopic factors (SF) for α-decay of the isoscalar giant resonance (GR) states E0 and E2 with SF values for ground and low lying nucleus states has been developed. This method permits to consider initial nucleus GR decay with a transition to the residual nucleus-GR. It is necessary to know only SF for GR decay to the daughter nucleus ground state with the emission of an excited cluster in the common case. The above method is based on properties of infinitesimal operators of Sp(2, R), Sp(6, R) groups and uses SU(3)-symmetry of wave functions of initial nucleus, cluster and residual nucleus, Values of ratios of α-particle SF are presented for 8 Be, HH2C, 16 O, 20 Ne, 24 Mg, 28 Si, 40 Ca, 44 Ti nuclei and Ssub(α) transitions to GR states of residual nucleus for 16 O, 20 Ne and 40 Ca nuclei. Noticeable Ssub(α) values for virtual α-decay of an initial nucleus ground state to residual nucleus GR poins out that α-particle knock out processes may be also accompanied by the final nucleus GR excitation

  2. Studies of the giant resonances in heavy nuclei

    International Nuclear Information System (INIS)

    Cataldi, M.I.C.

    1986-01-01

    Experimental measurements of the eletrodisintegration cross section in 181 Ta, 208 Pb and 209 Bi nuclei are made in the Linear Accelerator of the IFUSP-Brazil. The cross section is obtained by the direct counting of the emitted neutrons, in an electron excitation energy range between 8 to 22 MeV. The experimental data are analysed throught the virtual photon method, with the aim of obtaining the isoscalar and isovectorial electric quadrupole giant resonance (E2GR) intensities, as well as the magnetic dipole intensity. For each studied nucleus the results obtained for the E2GR, isoscalar and isovectorial, are compared with the photodisintegration cross section measured by the Saclay and Livermore laboratories. From this comparison, it is observed that the photodisintegration cross sections are compatibles with the existence of an isovector E2GR, located between 120 to 130 A -1/3 Mev and which exhaust around 100% of the Energy-Weighted Sum rules (EWSR). (L.C.) [pt

  3. Time-dependent shape fluctuations and the giant dipole resonance in hot nuclei: Realistic calculations

    International Nuclear Information System (INIS)

    Alhassid, Y.; Bush, B.; Yale Univ., New Haven, CT

    1990-01-01

    The effects of time-dependent shape fluctuations on the giant dipole resonance (GDR) in hot rotating nuclei are investigated. Using the framework of the Landau theory of shape transitions we develop a realistic macroscopic stochastic model to describe the quadrupole time-dependent shape fluctuations and their coupling to the dipole degrees of freedom. In the adiabatic limit the theory reduces to a previous adiabatic theory of static fluctuations in which the GDR cross section is calculated by averaging over the equilibrium distribution with the unitary invariant metric. Nonadiabatic effects are investigated in this model and found to cause structural changes in the resonance cross section and motional narrowing. Comparisons with experimental data are made and deviations from the adiabatic calculations can be explained. In these cases it is possible to determine from the data the damping of the quadrupole motion at finite temperature. (orig.)

  4. Inelastic electron scattering, fine structure of M1 giant resonances and Gamow-Teller states

    International Nuclear Information System (INIS)

    Richter, A.

    1983-01-01

    Recent progress in obtaining detailed fine structure distributions of magnetic giant resonances in nuclei using high resolution inelastic electron scattering at low energy is discussed. Specific examples chosen are the medium heavy nuclei 40 42 44 48 Ca in which M1 excitations are due to neutron spin-flip transitions and the N=28 isotones 50 Ti, 52 Cr and 54 Fe where in addition also proton excitations contribute to the measured M1 strength. It is found that the M1 strength is very fragmented and considerably quenched in comparison to predictions of shell model calculations in a model space that includes up to 2p-2h excitations. Finally, the old problem of M1 strength in 208 Pb is revisited and the results of a form factor measurement of a recently discovered low lying Jsup(π)=1 + state by nuclear resonance fluorescence are presented. (Auth.)

  5. Giant quadrupole resonance in 12C, 24Mg, and 27Al observed via deuteron inelastic scattering

    International Nuclear Information System (INIS)

    Chang, C.C.; Didelez, J.P.; Kwiatowski, K.; Wo, J.R.

    1977-06-01

    Giant quadrupole resonance in 12 C, 24 Mg, and 27 Al was studied using 70 MeV deuteron beam. The results clearly show, in all three targets, resonance-like structures peaked at E/sub x/ approximately 63A/sup -1/3/ MeV, with a width of about 10 MeV. The experimental angular distributions for these resonances agree well with the l = 2 DWBA prediction. For 12 C, a binary splitting was observed, and for 24 Mg, there are indications of finer structure in the main giant quadrupole resonance region

  6. Isoscalar giant resonances and Landau parameters with density-dependent effective interactions

    International Nuclear Information System (INIS)

    Kohno, Michio; Ando, Kazuhiko

    1979-01-01

    Discussion is given on the relations between the Landau parameters and the isoscalar giant (quadrupole- and monopole-) resonance energies by using general density-dependent interactions. In the limit of infinite nuclear matter, the isoscalar giant quadrupole energy is shown to depend not only on the effective mass but also on the Landau parameter F 2 . Collective energies of the isoscalar giant resonances are calculated for 16 O and 40 Ca with four different effective interactions, G-0, B1, SII and SV, by using the scaling- and constrained Hartree-Fock-methods. It is shown that the dependence of the collective energies on the effective interactions is essentially determined by the Landau parameters. The G-0 force is found to be most successful in reproducing the giant resonance energies. Validity of the RPA-moment theorems is examined for the case of local density-dependent interactions. (author)

  7. Surface and temperature effects in isovector giant resonances

    International Nuclear Information System (INIS)

    Lipparini, E.; Stringari, S.

    1988-01-01

    Using the liquid droplet model (LDM) we investigate three different sum rules for the isovector dipole and monopole excitations. Analytical formulae are derived for the excitation energies of these resonances and the predictions are compared with experiments. The role of the surface and the effects of temperature are explicitly discussed. (orig.)

  8. Neutron components of isoscalar giant quadrupole resonance states in 58,60,62,64Ni

    International Nuclear Information System (INIS)

    Antalik, R.

    1989-01-01

    The neutron-proton matrix element ratios (η) for isoscalar giant quadrupole resonance states of even Ni isotopes are investigated within the framework of the shell model quasiparticle random-phase approximation. The dependence of η ratios on radial neutron and proton ground state density distribution differences (Δ np ) is found to be about 1.0-1.5 Δ np . The theoretical η ratios are 14-23% lower than the hydrodynamical limit. The agreement between theoretical and experimental η ratios is observed for 58 Ni and 60 Ni isotopes. The η ratios for 62 Ni and 64 Ni suggested by the resonance π ± inelastic scattering cannot be interpreted even including the radial variations of the neutron fields. 18 refs.; 3 tabs

  9. Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, E.; Massarczyk, R. [Technische Universitaet Dresden, Institute of Nuclear and Particle Physics, Dresden (Germany); Junghans, A.R. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany)

    2017-11-15

    A recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated in energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted and hence a reliable prediction for electric dipole strength functions also outside of it is expected. (orig.)

  10. Giant Cu 2p Resonances in CuO Valence-Band Photoemission

    NARCIS (Netherlands)

    Tjeng, L.H.; Chen, C.T.; Ghijsen, J.; Rudolf, P.; Sette, F.

    1991-01-01

    We report the observation of a giant resonance in the Cu 2p resonant-photoemission spectra of CuO. The study allows the unambiguous identification of the local Cu 3d8 configuration in the valence-band photoemission spectrum, providing conclusive evidence for the charge-transfer nature of the

  11. Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators.

    Science.gov (United States)

    Diallo, Souleymane; Lin, Guoping; Chembo, Yanne K

    2015-08-15

    In this Letter, we show that giant thermo-optical oscillations can be triggered in millimeter (mm)-size whispering gallery mode (WGM) disk resonators when they are pumped by a resonant continuous-wave laser. Our resonator is an ultrahigh-Q barium fluoride cavity that features a positive thermo-optic coefficient and a negative thermo-elastic coefficient. We demonstrate for the first time, to our knowledge, that the complex interplay between these two thermic coefficients and the intrinsic Kerr nonlinearity yields very sharp slow-fast relaxation oscillations with a slow timescale that can be exceptionally large, typically of the order of 1 s. We use a time-domain model to gain understanding into this instability, and we find that both the experimental and theoretical results are in excellent agreement. The understanding of these thermal effects is an essential requirement for every WGM-related application and our study demonstrates that even in the case of mm-size resonators, such effects can still be accurately analyzed using nonlinear time-domain models.

  12. Collisional damping of giant monopole and quadrupole resonances

    International Nuclear Information System (INIS)

    Yildirim, S.; Gokalp, A.; Yilmaz, O.; Ayik, S.

    2001-01-01

    Collisional damping widths of giant monopole and quadrupole excitations for 120 Sn and 208 Pb at zero and finite temperatures are calculated within Thomas-Fermi approximation by employing the microscopic in-medium cross-sections of Li and Machleidt and the phenomenological Skyrme and Gogny forces, and are compared with each other. The results for the collisional widths of giant monopole and quadrupole vibrations at zero temperature as a function of the mass number show that the collisional damping of giant monopole vibrations accounts for about 30 - 40% of the observed widths at zero temperature, while for giant quadrupole vibrations it accounts for only 20 - 30% of the observed widths at zero temperature. (orig.)

  13. Thermal and rotational effect on giant dipole resonances in rotating nuclei at high temperature

    International Nuclear Information System (INIS)

    Sugawara-Tanabe, Kazuko; Tanabe, Kosai.

    1986-01-01

    Microscopic calculations are carried out for the giant dipole resonances excited on the thermal high spin states in 162 Er and 166 Er based on the thermal linear response theory with realistic forces and large single-particle space. The dynamical strength function is compared with the experimental γ-ray absorption cross section. The general trend that the resonance energy decreases and the resonance width increases with increasing angular momentum and temperature is well reproduced by the calculations. (author)

  14. Giant angular resonance and the structure of the lowest-lying nuclear states

    International Nuclear Information System (INIS)

    Mikhajlov, I.N.; Usmanov, P.N.; Yuldashbaeva, Eh.Kh.

    1987-01-01

    The analysis is given of the Hamiltonian of the two-rotor model, which is based on the assumption that the giant angular resonance exists, i.e. that it is possible to rotate the neutron component of a deformed nucleus as a whole with respect to the proton component. The realization of the projections on the intrinsic axes of the angular momentum operators is found, the Hamiltonian matrix is determined in the basis convenient for the case of strong neutron-proton coupling. The spectrum of the two-rotor model is determined taking into account the nondiagonal matrix elements in the lowest order of the perturbation theory. The g factors and the probabilities of the M1 transitions are discussed

  15. Decay of giant resonance E2 isoscalar in heavy nuclei. Decaimento da ressonancia gigante E2 isoescalar em nucleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Herdade, S B [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1980-01-01

    In this work, it is made a study of the giant resonance E2 isoscalar, in heavy nuclei. Fission probabilities for this resonance were determined by various authors, in different experiments, for {sup 238}U. (A.C.A.S.).

  16. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  17. Deformation-induced splitting of the monopole giant resonance in 24Mg

    Directory of Open Access Journals (Sweden)

    Kvasil J.

    2016-01-01

    Full Text Available The strong deformation splitting of the isoscalar giant monopole resonance (ISGMR, recently observed in (α, α′ reaction in prolate 24Mg, is analyzed in the framework of the Skyrme quasiparticle randomphase-approximation (QRPA approach with the Skyrme forces SkM*, SVbas and SkPδ. The calculations with these forces give close results and confirm that the low-energy E0-peak is caused by the deformation-induced coupling of ISGMR with the K = 0 branch of the isoscalar giant quadrupole resonance.

  18. Sum rule approach to the study of statistical decay properties of nuclear giant resonances

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Hussein, M.S.

    1987-03-01

    Corrections to the well-known statistical sum rule that relates the summed transmission coefficients on the one hand and 2πΓ C.N. .ρ C.N. On the other, in the context of the statistical decay properties of nuclear giant resonances, are discussed. These corrections arise both from pre-equilibrium processes as well as from the giant resonance itself. It is shown that the compound nucleus average width is reduced as a result of these corrections. (Author) [pt

  19. Peripheral collisions of heavy ions induced by 40Ar at intermediate energies: giant resonance high energy structures and projectile fragmentation

    International Nuclear Information System (INIS)

    Blumenfeld, Y.

    1987-09-01

    The results obtained in similar studies at low incident energies are first of all reviewed. The time of flight spectrometer built for the experiments is then described. A study of the properties of the projectile-like fragments shows numerous deviations from the relativistic energy fragmentation model. Evidence for a strong surface transfer reaction component is given and the persistence of mean field effects at intermediate energies is stressed. A calculation of the contribution of the transfer evaporation mechanism to the inelastic spectra shows that this mechanism is responible for the major part of the background measured at high excitation energy and can in some cases induce narrow structures in the spectra. The inelastic spectra shows a strong excitation of the giant quadrupole resonance. In the region between 20 and 80 MeV excitation energy narrow structures are present for all the studied systems. Statistical and Fourier analysises allow to quantify the probabilities of existence, the widths and the excitation energies of these structures. A transfer evaporation hypothesis cannot consistently reproduce all the observed structures. The excitation energies of the structures can be well described by phenomenological laws where the energies are proportional to the -1/3 power of the target mass. Complete calculations of the excitation probabilities of giant resonances and multiphonon states are performed within a model where the nuclear excitation are calculated microscopically in the Random Phase Approximation. It is shown that a possible interpretation of the structures is the excitation of multiphonon states built with 2 + giant resonances [fr

  20. Main channels of the decay of the giant dipole resonance in the 20,22Ne nuclei and isospin splitting of the giant dipole resonance in the 22Ne nucleus

    International Nuclear Information System (INIS)

    Varlamov, V.V.; Stepanov, M.E.

    2002-01-01

    Data published in the literature on various photonuclear reactions for the 20,22 Ne isotopes and for their natural mixture are analyzed with the aim of exploring special features of the decay of giant-dipole-resonance states in these two isotopes. With the aid of data on the abundances of the isotopes and on the energy reaction thresholds, the cross sections for the reactions 20,22 Ne[(γ, n) + (γ, np)] and 20,22 Ne[(γ, p) + (γ, np)] are broken down into the contributions from the one-nucleon reactions (γ, n) and (γ, p) and the contributions from the reactions (γ, np). The cross sections evaporation model used here to treat the deexcitation of residual nucle(γ, p) 19,21 F in the energy range E γ = 16.0-28.0 MeV and the cross sections for the reactions 20,22 Ne(γ, np) 18,20 F in the energy range E γ = 23.3-28.0 MeV are estimated. The behavior of the cross-section ratio r = σ(γ, p)/σ(γ, n) for the 22 Ne nucleus as a function of energy is analyzed, and the isospin components of the giant dipole resonance in the 22 Ne nucleus are identified. The contributions of the isospin components of the giant dipole resonance in the 22 Ne nucleus to the cross sections for various photonuclear reactions are determined on the basis of an analysis of the diagram of the excitation and decay of pure isospin states in the 22 Ne nucleus and in nuclei neighboring it, which are members of the corresponding isospin multiplets. The isospin splitting of the giant dipole resonance and the ratio of the intensities of the isospin components are determined to be ΔE = 4.57 ± 0.69 MeV and R = 0.24 ± 0.04, respectively

  1. Semiclassical approach to giant resonances of rotating nuclei

    International Nuclear Information System (INIS)

    Winter, J.

    1983-01-01

    Quadrupole and isovector dipole resonances of rotating nuclei are investigated in the frame-work of Vlasov equations transformed to a rotating system of reference, which are based on the time-dependent Hartree-method for schematic forces. The parameter free model of the self-consistent vibrating harmonic oscillator potential for the quadrupole mode is extended to a coupling to rotation, which also includes large-amplitude behaviour. A generalization to an exactly solvable two-liquid model describing the isovector mode is established; for rotating nuclei Hilton's explicit result for the eigenfrequencies is obtained. The advantage of using the concept of the classical kinetic momentum in a rotating system also in quantum-mechanical descriptions is demonstrated. It completes the standard transformation of density matrices by a time-odd part realized in a phase-factor and permits a more direct interpretation of rotation effects in terms of the classical forces of inertia. (author)

  2. Study of the giant dipole resonance built on highly excited states in Sn and Dy nuclei

    International Nuclear Information System (INIS)

    Stolk, A.

    1988-01-01

    A study is presented of the giant dipole resonance built on highly excited states. The aim is to get more detailed information on the properties of the GDR and to use it as a tool for the investigation of nuclear structure at high excitation energy. The high energy γ-rays seen from the decay of excited state GDRs in heavy ion fusion reactions reflect the average properties of the states populated by the γ-emission. The measurements at different initial excitation energies of 114 Sn provide information on the nuclear level density near the particle separation energy at an average angular momentum of 10ℎ. The study of shape changes at very high spin in 152-156 Dy nuclei is presented. A theoretical model developed to describe fusion-evaporation reactions is presented. 149 refs.; 63 figs.; 13 tabs

  3. A density variational approach to nuclear giant resonances at zero and finite temperature

    International Nuclear Information System (INIS)

    Gleissl, P.; Brack, M.; Quentin, P.; Meyer, J.

    1989-02-01

    We present a density functional approach to the description of nuclear giant resonances (GR), using Skyrme type effective interactions. We exploit hereby the theorems of Thouless and others, relating RPA sum rules to static (constrained) Hartree-Fock expectation values. The latter are calculated both microscopically and, where shell effects are small enough to allow it, semiclassically by a density variational method employing the gradient-expanded density functionals of the extended Thomas-Fermi model. We obtain an excellent overall description of both systematics and detailed isotopic dependence of GR energies, in particular with the Skyrme force SkM. For the breathing modes (isoscalar and isovector giant monopole modes), and to some extent also for the isovector dipole mode, the A-dependence of the experimental peak energies is better described by coupling two different modes (corresponding to two different excitation operators) of the same spin and parity and evaluating the eigenmodes of the coupled system. Our calculations are also extended to highly excited nuclei (without angular momentum) and the temperature dependence of the various GR energies is discussed

  4. Study of quadrupolar transitions by 108.5 MeV 3He inelastic scattering at small angles. Anomalous behaviour of giant quadrupole resonance

    International Nuclear Information System (INIS)

    Bouhelal, O.K.

    1982-07-01

    Giant resonances have been studied through the inelastic scattering of 108.5 MeV 3 He on several nuclei. At the very small angles (theta 0 ), the quadrupole giant resonance experimental cross-section is about twice the value predicted by DWBA calculations based on a collective model. The comparison of the experimental data and the theoretical data calculations confirms the validity of DWBA for the first excited state of low energy and same multipolarity L = 2 at the very small angles. The angular distribution for L = 0 transition of energy close to that of the quadrupole giant resonance reaches its maximum at 0 0 . The presence of an L = 0 component permits to describe the shape of the quadrupole giant resonance angular distribution, but difficulties are encountered when applying the sum rule for the heavy nuclei. Better agreement with the experimental angular distribution at small angles is obtained if a semimicroscopic convolution model of the quadrupole resonance is assumed. For excited states of low energy and multipolarity L not equal to 2, the results from the convolution model are as good as those from the standard collective model. The 2 + state in heavy nuclei is, however, much better described by the collective model [fr

  5. Spin-flip measurements in the proton inelastic scattering on 12C and giant resonance effects

    International Nuclear Information System (INIS)

    De Leo, R.; D'Erasmo, G.; Ferrero, F.; Pantaleo, A.; Pignanelli, M.

    1975-01-01

    Differential cross sections and spin-flip probabilities (SFP) for the inelastic scattering of protons, exciting the 2 + state at 4.43 MeV in 12 C, have been measured at several incident energies between 15.9 and 37.6 MeV. The changes in the shape of the SFP angular distributions are rather limited, while the absolute values show a pronounced increase, resonant like, in two energy regions centered at about 20 and 29 MeV. The second resonance reproduces very closely the energy dependence of the E2 giant quadrupole strength found in a previous experiment. The resonance at 20 MeV should correspond to a substructure of the E1 giant dipole resonance. (Auth.)

  6. Search for magnetic dipole strength and giant spin-flip resonances in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Horen, D. J. [Oak Ridge National Lab., TN (USA); Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    A description is given of the use of high resolution (n, n) scattering and the (p, n) reaction as tools to investigate highly excited states with emphasis on information pertaining to magnetic dipole strength and giant spin-flip resonances in heavy nuclei. It is shown how the ability to uniquely determine the spins and parities of resonances observed in neutron scattering has been instrumental to an understanding of the distribution of M1 strength in sup(207,208)Pb. Some recent results of (p, n) studies with intermediate energy protons are discussed. Energy systematics of the giant Gamow-Teller (GT) resonance as well as a new ..delta..l = 1, ..delta..S = 1 resonance with J sup(..pi..) = (1,2)/sup -/ are presented. It is shown how the (p, n) reaction might be useful to locate M1 strength in heavy nuclei.

  7. Double giant resonances in time-dependent relativistic mean-field theory

    International Nuclear Information System (INIS)

    Ring, P.; Podobnik, B.

    1996-01-01

    Collective vibrations in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory (RMFT). Isoscalar quadrupole and isovector dipole oscillations that correspond to giant resonances are studied, and possible excitations of higher modes are investigated. We find evidence for modes which can be interpreted as double resonances. In a quantized RMFT they correspond to two-phonon states. (orig.)

  8. On some aspects of the semiclassical approach to giant resonances of rotating nuclei

    International Nuclear Information System (INIS)

    Winter, J.

    1985-01-01

    Quadrupole and isovector dipole resonances of rotating nuclei are investigated in the frame-work of Vlasov equations transformed to a rotating system of reference, which are based on the time-dependent Hartree-method for schematic forces. The parameter free model of the self-consistent vibrating harmonic oscillator potential for the quadrupole mode is extended to a coupling to rotation, which also includes large amplitude behaviour. A generalization to an exactly solvable two-liquid model describing the isovector mode is established; for rotating nuclei Hilton's explicit result for the eigenfrequencies is obtained. - The advantage of using the concept of the classical kinetic momentum in a rotating system also in quantum-mechanical descriptions is demonstrated. It completes the standard transformation of density matrices by a time-odd part realized in a phase-factor and permits a more direct interpretation of rotation effects in terms of the classical forces of inertia. - In its generalization from constant angular velocity to constant angular momentum, our model is used to demonstrate that cranking calculations of rotating giant resonances should be corrected for an oscillation of the cranking parameter to assure angular-momentum conservation. (orig.)

  9. Electromagnetic transitions between giant resonances within a continuum-RPA approach

    NARCIS (Netherlands)

    Rodin, VA; Dieperink, AEL

    2002-01-01

    A general continuum-RPA approach is developed to describe electromagnetic transitions between giant resonances. Using a diagrammatic representation for the three-point Green's function, an expression for the transition amplitude is derived which allows one to incorporate effects of mixing of single

  10. Can we learn about the spin-flip giant dipole resonances with pions

    International Nuclear Information System (INIS)

    Baer, H.W.

    1982-01-01

    Data and calculations for the 40 Ca(π+-,π 0 ) reactions at 164 MeV are shown which indicate that pion scattering possesses a unique signature for separately identifying the 1 - and 2 - spin-isospin components of the giant dipole resonance

  11. Coupling effects of giant resonances on the elastic and inelastic scattering of fast neutrons

    International Nuclear Information System (INIS)

    Delaroche, J.P.; Tornow, W.

    1983-01-01

    While the inelastic scattering of high energy hadrons is commonly used for the study of giant resonances in nuclei, it is just recently that one has thought to take into account these states in the analysis of proton scattering at low incident energies (E 0 and S 1 . (Auth.)

  12. Data systematics and semidirect decay probability of the giant dipole resonance

    International Nuclear Information System (INIS)

    Ishkhanov, B.S.; Kapitonov, I.M.; Tutyn', I.A.

    1998-01-01

    Information on probability of semidirect decay of giant dipole resonance of nuclei of sd- and fp-shells (A = 16-58) is elaborated on the base of the recent (γ, χγ ' ) experimental results. The shell effect in A-dependence of this probability is discovered

  13. Isovector giant dipole resonance in hot rotating light nuclei in the calcium region

    International Nuclear Information System (INIS)

    Shanmugam, G.; Thiagasundaram, M.

    1989-01-01

    The isovector giant dipole resonances in hot rotating light nuclei in the calcium region are studied using a rotating anisotropic harmonic oscillator potential and a separable dipole-dipole residual interaction. The influence of temperature on the isovector giant dipole resonance is assumed to occur through the change of deformation of the average field only. Calculations are performed for the three nuclei /sup 40,42/Ca and /sup 46/Ti which have spherical, oblate, and prolate ground states, respectively, to see how their shape transitions at higher excited states affect the isovector giant resonance frequencies built on them. It is seen that, while the width fluctuations present at T = 0 vanish at T = 0.5 MeV in /sup 40,42/Ca, they persist up to T = 1.5 MeV in the case of /sup 46/Ti. This behavior brings out the role of temperature on shell effects which in turn affects the isovector giant dipole resonance widths

  14. The photoionization of atomic Eu in the vicinity of its giant resonance

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    1989-01-01

    It is demonstrated that the partial photoionization cross sections of outer subshells of atomic Eu in the giant resonance region are determined by the action of the 4d-electron excitations. The cross section for photoionization of the semifilled 4f 7 subshell is also entirely dominated by the interaction with 4d 10 electrons. (orig.)

  15. Collective doorways and statistical doorways: The decay properties of giant multipole resonances

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Adhikari, S.K.

    1985-01-01

    A theoretical framework for the description of the decay of giant multipole resonances is developed. It is shown that the statistical decay of the GMR is not necessarily described by the Hauser-Feschbach theory owing to the existence of a mixing parameter. The contribution of pre-equilibrium emission to the GMR decay is also discussed. (Author) [pt

  16. Direct and statistical gamma decay of the giant quadrupole resonance of 208Pb

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Carlson, B.V.; Merchant, A.C.

    1986-03-01

    The gamma decay of the giant quadrupole resonance of 208 Pb is discussed. The relative contribution of the decay via the compound nucleus is calculated from the statistical theory. It is found that the compound decay is as important as the direct decay. (Author) [pt

  17. Neutron-skin thickness from the study of the anti-analog giant dipole resonance

    NARCIS (Netherlands)

    Krasznahorkay, A.; Stuhl, L.; Csatlós, M.; Algora, A.; Gulyás, J.; Timár, J.; Paar, N.; Vretenar, D.; Boretzky, K.; Heil, M.; Litvinov, Yu A.; Rossi, D.; Scheidenberger, C.; Simon, H.; Weick, H.; Bracco, A.; Brambilla, S.; Blasi, N.; Camera, F.; Giaz, A.; Million, B.; Pellegri, L.; Riboldi, S.; Wieland, O.; Altstadt, S.; Fonseca, M.; Glorius, J.; Göbel, K.; Heftrich, T.; Koloczek, A.; Kräckmann, S.; Langer, C.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Schmidt, S.; Sonnabend, K.; Weigand, M.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Rigollet, C.; Bagchi, S.; Najafi, M. A.; Aumann, T.; Atar, L.; Heine, M.; Holl, M.; Movsesyan, A.; Schrock, P.; Volkov, V.; Wamers, F.; Fiori, E.; Löher, B.; Marganiec, J.; Savran, D.; Johansson, H. T.; Fernández, P. Diaz; Garg, U.; Balabanski, D. L.

    2012-01-01

    The gamma-decay of the anti-analog of the giant dipole resonance (AGDR) has been measured to the isobaric analog state excited in the p(124Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent random-phase

  18. Giant magnetic modulation of a planar, hybrid metamolecule resonance

    International Nuclear Information System (INIS)

    Gregory, Simon A; Stenning, Gavin B G; Bowden, Graham J; De Groot, Peter A J; Zheludev, Nikolay I

    2014-01-01

    Coupling magnetic elements to metamaterial structures creates hybrid metamolecules with new opportunities. Here we report on the magnetic control of a metamolecule resonance, by utilizing the interaction between a single split ring resonator (SRR) and a magnetic thin film of permalloy. To suppress eddy current shielding, the permalloy films are patterned into arrays of 30–500 μm diameter discs. Strong hybridized resonances were observed at the anticrossing between the split ring resonance and the ferromagnetic resonance (FMR) of the permalloy. In particular, it is possible to achieve 40 dB modulation of the electric (symmetric) mode of the SRR on sweeping the applied magnetic field through the SRR/FMR anticrossing. The results open the way to the design of planar metamaterials, with potential applications in nonlinear metamaterials, tunable metamaterials and spintronics. (papers)

  19. (e,e'f) coincidence experiments for fission decay of giant resonances in 235,238U

    International Nuclear Information System (INIS)

    Weber, T.; Heil, R.D.; Kneissl, U.; Pecho, W.; Wilke, W.; Emrich, H.J.; Kihm, T.; Knoepfle, K.T.

    1988-01-01

    Extending previous work on 238 U, 235 U(e,e'f) coincidence data were taken at 4 momentum transfers yielding both E1, E2/E0 and E3 form factors and the respective multipole strength distributions in the giant resonance region of 238 U (4 x x /Γ a is obtained as a function of excitation energy for separated multipoles. The giant E2 resonance exhibits an increased symmetric fission contribution compared to E1 and E3 resonances. (orig.)

  20. Modeling and simulation of flow field in giant magnetostrictive pump

    Science.gov (United States)

    Zhao, Yapeng; Ren, Shiyong; Lu, Quanguo

    2017-09-01

    Recent years, there has been significant research in the design and analysis of giant magnetostrictive pump. In this paper, the flow field model of giant magnetostrictive pump was established and the relationship between pressure loss and working frequency of piston was studied by numerical simulation method. Then, the influence of different pump chamber height on pressure loss in giant magnetostrictive pump was studied by means of flow field simulation. Finally, the fluid pressure and velocity vector distribution in giant magnetostrictive pump chamber were simulated.

  1. NATO Advanced Study Institute on Giant Resonances in Atoms, Molecules, and Solids

    CERN Document Server

    Esteva, J; Karnatak, R

    1987-01-01

    Often, a new area of science grows at the confines between recognised subject divisions, drawing upon techniques and intellectual perspectives from a diversity of fields. Such growth can remain unnoticed at first, until a characteristic fami ly of effects, described by appropriate key words, has developed, at which point a distinct subject is born. Such is very much the case with atomic 'giant resonances'. For a start, their name itself was borrowed from the field of nuclear collective resonances. The energy range in which they occur, at the juncture of the extreme UV and the soft X-rays, remains to this day a meeting point of two different experimental techniques: the grating and the crystal spectrometer. The impetus of synchrotron spectroscopy also played a large part in developing novel methods, described by many acronyms, which are used to study 'giant resonances' today. Finally, although we have described them as 'atomic' to differentiate them from their counterparts in Nuclear Physics, their occurrence ...

  2. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    Energy Technology Data Exchange (ETDEWEB)

    Lyutorovich, N.; Tselyaev, V. [Physical Faculty, St. Petersburg State University, RU-198504 St. Petersburg (Russian Federation); Speth, J., E-mail: J.Speth@fz-juelich.de [Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich (Germany); Krewald, S.; Grümmer, F. [Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich (Germany); Reinhard, P.-G. [Institut für Theoretische Physik II, Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany)

    2015-10-07

    We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree–Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  3. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    Directory of Open Access Journals (Sweden)

    N. Lyutorovich

    2015-10-01

    Full Text Available We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree–Fock ground state and the excitation spectra within random-phase approximation (RPA and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA. All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  4. A microscopic study of giant resonances in nuclei near drip lines

    CERN Document Server

    Sagawa, H; Zhang, X Z

    1999-01-01

    We study giant resonances using the self-consistent Hartree-Fock calculation plus the random phase approximation with Skyrme interactions. Including simultaneously both the isoscalar and the isovector correlation the RPA response function is calculated in the coordinate space so as to take properly into account the continuum effect. Giant monopole states are discussed in relation with the nuclear compression modulus of the nuclear matter K sub n sub m. The core polarization charges are also discussed in comparison with recent empirical data in sup 1 sup 0 sup 0 Sn region.

  5. Isoscalar giant resonances for nuclei with mass between 56 and 60

    International Nuclear Information System (INIS)

    Lui, Y.-W.; Youngblood, D.H.; Clark, H.L.; Tokimoto, Y.; John, B.

    2006-01-01

    The giant resonance region from 10 MeV x 56 Fe, 58 Ni, and 60 Ni has been studied with inelastic scattering of 240 MeV α particles at small angles, including 0 deg. Most of the expected isoscalar E0 and E2 strength has been identified below E x =40 MeV. Between 56 and 72% of the isoscalar E1 strength has been located in these nuclei. The mass dependence of the giant monopole energy between A=40 and 90 is compared to relativistic and nonrelativistic calculations for interactions with compressibility of nuclear matter K NM ∼211-225 MeV

  6. Angular correlation experiments for the study of giant multipole resonances and currents of the second kind in atomic nuclei

    International Nuclear Information System (INIS)

    1986-03-01

    The project dealt with angular correlation experiments for the study of giant multipole resonances and currents of the second kind in atomic nuclei. Both partial projects were worked in the period of the report. (orig.) [de

  7. Dramatic distortion of the 4d giant resonance by the C{sub 60} fullerene shell

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Baltenkov, A S [Arifov Institute of Electronics, Akademgorodok, 700125 Tashkent (Uzbekistan); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St Petersburg 194021 (Russian Federation); Felfli, Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA 30314 (United States); Msezane, A Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)

    2005-05-28

    The photoionization cross section for the endohedral Xe at C{sub 60} atom is investigated within the framework of representing the C{sub 60} by a delta-type potential. Results demonstrate that in Xe at C{sub 60}, the 4d giant resonance is distorted significantly when compared with that of the isolated Xe atom. The reflection of the photoelectron waves by the C{sub 60} causes strong oscillations in the photoionization cross section resulting in the replacement of the Xe 4d giant resonance by four prominent peaks. The approximation of C{sub 60} by an infinitely thin real potential preserves reasonably well the sum rule for the 4d electrons but modifies the dipole polarizability of the 4d shell. (letter to the editor)

  8. Nuclear giant resonances in coordinate space. A semiclassical density functional approach

    International Nuclear Information System (INIS)

    Gleissl, P.; Brack, M.; Meyer, J.; Quentin, P.

    1987-01-01

    We discuss the semiclassical description of nuclear giant resonances (GR) using a realistic Skyrme force (SkM*) and complete ETF density functionals. We present monopole (0 + ) eigenmodes of isoscalar (I=0) and isovector (I=1) type, which are in good agreement with experiment, and the corresponding m 1 and m 3 sum rules. We also present the temperature dependence of some typical GR energies (0 + , I=0,1; 1 - , I=1; 2 + , I=0) in 208 Pb

  9. First measurement of isoscalar giant resonances in a stored-beam experiment

    Directory of Open Access Journals (Sweden)

    J.C. Zamora

    2016-12-01

    Full Text Available A new technique developed for measuring nuclear reactions at low momentum transfer with stored beams in inverse kinematics was successfully used to study isoscalar giant resonances. The experiment was carried out at the experimental heavy-ion storage ring (ESR at the GSI facility using a stored 58Ni beam at 100 MeV/u and an internal helium gas-jet target. In these measurements, inelastically scattered α-recoils at very forward center-of-mass angles (θcm≤1.5° were detected with a dedicated setup, including ultra-high vacuum compatible detectors. Experimental results indicate a dominant contribution of the isoscalar giant monopole resonance at this very forward angular range. It was found that the monopole contribution exhausts 79−11+12% of the energy-weighted sum rule (EWSR, which agrees with measurements performed in normal kinematics. This opens up the opportunity to investigate the giant resonances in a large domain of unstable and exotic nuclei in the near future. It is a fundamental milestone towards new nuclear reaction studies with stored ion beams.

  10. Elastic and Raman scattering of photons from the giant dipole resonance

    International Nuclear Information System (INIS)

    Bar-Noy, T.

    1978-12-01

    In the present work we investigated nuclear Raman and elastic scattering of photons from the Giant Dipole Resonance (GDR) of medium and heavy nuclei. The photons beams were obtained from thermal neutron capture on V, Fe, Ni, Cu and Cr discs, utilizing the IRR-2 reactor. Nine targets, 159 Tb, 165 Ho, 175 Lu, 181 Ta, 197 Au, 209 Bi, 232 Th, 237 Np, and 238 U, representing all spherical and deformed nuclei in the region of medium and heavy nuclei, were used. As preliminary works, we discovered and investigated the 11.4 MeV γ-line, measured the attenuation coefficients at 9 and 11.4 MeV, performed a numerical calculation of Delbrueck amplitudes and modified the Simple Rotator Model (SRM). The absolute scattering cross-sections were measured for each scatterer at 4-8 different energies, and angular distributions in the range 90 deg to 140 deg were carried out at 9 MeV and 11.4 MeV. The experimental results were compared with theoretical predictions of the modified SRM and the Dynamic Collective Model (DCM). The results proved that the modified SRM describes appropriately the scattering from the GDR, including elastic and Raman absolute cross-sections and their angular distributions. (author)

  11. Decay of the isoscalar giant monopole resonance in 208Pb and 238U

    International Nuclear Information System (INIS)

    Woude, A. van der

    1985-01-01

    In this paper, the neutron decay of the giant monopole resonance (GMR) of 208 Pb and the alpha decay of the GMR of 238 U is studied. The GMR is excited by inelastic alpha-scattering at small angles (0-3deg) using 120 MeV alpha particles. The interference of other processes like the knock-out process with the particle decay of these resonances is considered. Coincidence neutron and alpha spectra are presented, as well as E2/E0 strength distributions. (Auth.)

  12. Photoexcitation by gamma-ray scattering near threshold and giant dipole resonance

    International Nuclear Information System (INIS)

    Lakosi, L.; Safar, J.; Veres, A.; Sekine, T.; Kaji, H.; Yoshihara, K.

    1993-01-01

    Photoexcitation of 4.5 h half-life 115m In and 56 min half-life 103m Rh isomers by inelastic gamma-ray scattering near threshold and in the giant dipole resonance region has been reviewed. In disagreement with earlier experimental results available in the literature, but in good agreement with our experiments published recently, present calculations indicate that above the photoneutron emission threshold the isomer excitation drops abruptly and remains orders of magnitude smaller than at the threshold, even around resonance maximum. (author)

  13. Distribution of radiative strength with excitation energy: the E1 and M1 giant resonances

    International Nuclear Information System (INIS)

    Brown, G.E.; Speth, J.

    1979-01-01

    Calculations of the giant dipole resonance in the particle-hole model, employing empirical values for the unperturbed particle and hole energies, have been unsuccessful in pushing the dipole state to a sufficiently high energy. it is argued that unperturbed levels correspondign to an effective mass of m*/m approx. 0.6 to 0.7 should be employed. The couplings of particles and holes to vibrations are the crucial ingredients in these considerations. More generally, it is argued that the effective mass relevant to excitations near the Fermi surface is that corresponding to empirical single-particle levels, m*/m greater than or equal to 1.0. For particle-hole excitations above the Fermi surface, it is a decreasing function of excitation energy, reaching the above values 0.6 to 0.7 for E greater than or equal to 2 dirac constant/b omega, dirac constant/sub omega/ being the shell spacing. This has the consequence of spreading out the M1 strength. A new interpretation of experimental strengths is proposed

  14. Fine structure of the isoscalar giant quadrupole resonance from high-resolution inelastic proton scattering experiments

    International Nuclear Information System (INIS)

    Shevchenko, A.

    2005-02-01

    In the present work the phenomenon of fine structure in the region of the isoscalar giant quadrupole resonance in a number of heavy and medium-heavy nuclei is systematically investigated for the first time. High energy-resolution inelastic proton scattering experiments were carried out in September-October 2001 and in October 2003 at the iThemba LABS cyclotron facility in South Africa with an incident proton energy of 200 MeV. The obtained data with the energy resolution of triangle E 58 Ni, 89 Y, 90 Zr, 120 Sn, 142 Nd, 166 Er, 208 Pb), thereby establishing the global character of this phenomenon. Fine structure can be described using characteristic energy scales, appearing as a result of the decay of collective modes towards the compound nucleus through a hierarchy of couplings to complex degrees of freedom. For the extraction of the characteristic energy scales from the spectra an entropy index method and a novel technique based on the wavelet analysis are utilized. The global analysis of available data shows the presence of three groups of scales, according to their values. To the first group belong the scales with the values around and below 100 keV, which were detected in all the nuclei studied. The second group contains intermediate scales in the range of 100 keV to 1 MeV. These scales show large variations depending on the nuclear structure of the nucleus. The largest scales above 1 MeV are classified to the third group, describing the global structure of the resonance (the width). The interpretation of the observed scales is realized via the comparison with microscopic model calculations including the coupling of the initial one-particle-one-hole excitations to more complex configurations. A qualitative agreement of the experimentally observed scales with those obtained from the theoretical predictions supports the suggestion of the origin of fine structure from the coupling to the two-particle-two-hole states. However, quantitatively, large deviations are

  15. Measuring Precise Radii of Giants Orbiting Giants to Distinguish Between Planet Evolution Models

    Science.gov (United States)

    Grunblatt, Samuel; Huber, Daniel; Lopez, Eric; Gaidos, Eric; Livingston, John

    2017-10-01

    Despite more than twenty years since the initial discovery of highly irradiated gas giant planets, the mechanism for planet inflation remains unknown. However, proposed planet inflation mechanisms can now be separated into two general classes: those which allow for post-main sequence planet inflation by direct irradiation from the host star, and those which only allow for slowed cooling of the planet over its lifetime. The recent discovery of two inflated warm Jupiters orbiting red giant stars with the NASA K2 Mission allows distinction between these two classes, but uncertainty in the planet radius blurs this distinction. Observing transits of these planets with the Spitzer Space Telescope would reduce stellar variability and thus planet radius uncertainties by approximately 50% relative to K2, allowing distinction between the two planet inflation model classes at a 3-sigma level. We propose to observe one transit of both known warm Jupiters orbiting red giant stars, K2-97b and EPIC228754001.01, to distinguish between planet model inflation classes and measure the planetary heating efficiency to 3-sigma precision. These systems are benchmarks for the upcoming NASA TESS Mission, which is predicted to discover an order of magnitude more red giant planet systems after launching next year.

  16. Two-phonon giant resonances in 136Xe, 208Pb, and 238U

    International Nuclear Information System (INIS)

    Boretzky, K.; Gruenschloss, A.; Ilievski, S.; Adrich, P.; Aumann, T.; Bertulani, C.A.; Cub, J.; Dostal, W.; Eberlein, B.; Elze, T.W.; Emling, H.; Fallot, M.; Holeczek, J.; Holzmann, R.; Kozhuharov, C.; Kratz, J.V.; Kulessa, R.; Leifels, Y.; Leistenschneider, A.; Lubkiewicz, E.; Mordechai, S.; Ohtsuki, T.; Reiter, P.; Simon, H.; Stelzer, K.; Stroth, J.; Suemmerer, K.; Surowiec, A.; Wajda, E.; Walus, W.

    2003-07-01

    The excitation of the double-phonon giant dipole resonance was observed in heavy projectile nuclei impinging on targets of high nuclear charge with energies of 500-700 MeV/nucleon. New experimental data are presented for 136 Xe and 238 U together with further analysis of earlier data on 208 Pb. Differential cross sections dσ/dE * and dσ/dθ for electromagnetic excitations were deduced. Depending on the isotope, cross sections appear to be enhanced in comparison to those expected from a purely harmonic nuclear dipole response. The cumulative effect of excitations of two-phonon states composed of one dipole and one quadrupole phonon, of predicted anharmoniticies in the double-phonon dipole response, and of damping of the dipole resonance during the collision may account for the discrepancy. In addition, decay properties of two-phonon resonances were studied and compared to that of a statistical decay. (orig.)

  17. Giant resonance phenomena in the electron impact ionization of heavy atoms and ions

    International Nuclear Information System (INIS)

    Younger, S.M.

    1986-01-01

    Heavy atoms and ions offer an interesting opportunity to study atomic physics in a region where the atomic structure is dominated by the interelectronic interactions. One illustration of this is the profound term dependence of atomic orbitals for certain configurations of heavy atoms and ions. The appearance of giant scattering resonances in the cross sections for ionization of heavy atoms by electron impact is a manifestation of resonance behavior. Such resonant structures arise from the double well nature of the scattering potential and have recently been identified in the cross sections for the electron impact ionization of several xenon-like ions. The results of calculations showing effects for a variety of other ions are summarized. 7 refs., 4 figs

  18. Giant resonance and dipolar states of light nuclei

    International Nuclear Information System (INIS)

    Miller, J.

    1965-01-01

    Cross-section for (γ,n) reactions on C 12 ,, O 10 , Mg 24 and Ca 40 have been measured using 'monochromatic' gamma rays of variable energy obtained from the annihilation in flight of fast positrons. We compare the observed structure with the shell model of nucleus, including residual interaction between nucleons by 'hole particle' techniques. (author) [fr

  19. Effects of Dirac Sea on Giant Resonance States

    International Nuclear Information System (INIS)

    Kurasawa, H.; Suzuki, T.

    2004-01-01

    There are two approximations in relativistic models which keep the continuity equation of the baryon current without renormalization of the divergence. One is the no-free-term approximation (NFA) which neglects the divergent terms, but keeps the Pauli blocking terms coming from nucleon-antinucleon excitations in the RPA correlation functions. The other is the no-sea approximation (NSA) where antiparticle states are assumed to be empty with negative energies. It is shown that both approximations formally satisfy the Ikeda sum rule and the RPA theorem for the β - and β + transition strengths also, but that the NFA requires negative strengths in the positive excitation energy region, while the NSA requires positive strengths in the negative excitation energy region, as a price of neglecting the renormalization of the divergence

  20. Decay of the giant quadrupoles resonance and higher excitation states in 40Ca

    International Nuclear Information System (INIS)

    Alamanos, N.; Fernandez, B.; Gillibert, A.

    1991-01-01

    Light charged particles have been measured in coincidence with inelastically scattered fragments from the 40 Ca + 40 Ca reaction at 50 MeV/N. Such a measurement allows to unravel the different reaction mechanisms contributing to the inelastic spectrum: pick-up break-up reactions, knock out and inelastic excitations. The giant quadrupole resonance in 40 Ca is shown to present a 30% non statistical decay branch. A prominent structure at 34 MeV is attributed to target excitation, the decay of this structure is studied

  1. Atlas of giant dipole resonances. Parameters and graphs of photonuclear reaction cross sections

    International Nuclear Information System (INIS)

    Varlamov, A.V.; Varlamov, V.V.; Rudenko, D.S.; Stepanov, M.E.

    1999-01-01

    Parameters of giant dipole resonances (GDR) observed in photonuclear reaction cross sections using various beams of incident photons are presented. Data, given for 200 stable isotopes from 2 H to 243 Am including their natural compositions, were collected from papers published over the years 1951-1996. GDR parameters, such as energy positions, amplitudes and widths, are included into the table and organized by element, isotope and reaction. Graphs of the majority of the photonuclear reaction cross sections, included in the international nuclear data library EXFOR by the end of 1998, are presented. The graphs are provided for 182 stable isotopes and natural compositions. (author)

  2. Internal pair decay of giant resonances- signature from ISGMR in hot and heavy nucleus?

    International Nuclear Information System (INIS)

    Banerjee, S.R.

    1996-01-01

    The experimental observation of isoscalar giant monopole resonance built on highly excited nuclear states is still eluding the experimental nuclear physicists although a lot of effort has been put into it. Two very highly sophisticated specific detector systems had been constructed for this study and intense experimental activities were indulged in. Stony Brook pair detector array is being augmented currently to cover about 60% solid angle. There will be another spate of experimental activities and new results will be coming in, but presently there is no experimental observation of ISGMR in hot nucleus

  3. Study of the giant Gamow-Teller resonance in nuclear beta-decay

    International Nuclear Information System (INIS)

    Dicklage, R.D. von; Hansen, P.G.

    1984-01-01

    A strong effort has been devoted to the development of new target-ion-source systems at ISOLDE which would give higher yields of proton-rich nuclei. The first break-trough has been obtained for the element argon where one recently was able to produce about three orders of magnitude higher yields than in the first experiments. This makes it possible to perform experiments, involving β-delayed protons and gamma-rays, which may give information about the giant Gamow-Teller resonance. This paper gives a report on the status of these experiments

  4. Correlated ground state and E2 giant resonance built on it

    International Nuclear Information System (INIS)

    Tohyama, Mitsuru

    1995-01-01

    Taking 16 O as an example of realistic nuclei, we demonstrate that a correlated ground state can be obtained as a long time solution of a time-dependent density-matrix formalism (TDDM) when the residual interaction is adiabatically treated. We also study in TDDM the E2 giant resonance of 16 O built on the correlated ground state and compare it with that built on the Hartree-Fock ground state. It is found that a spurious mixing of low frequency components seen in the latter is eliminated by using the correlated ground state. (author)

  5. Nonperturbative study of the damping of giant resonances in hot nuclei

    International Nuclear Information System (INIS)

    De Blasio, F.V.; Cassing, W.; Tohyama, M.; Bortignon, P.F.; Broglia, R.A.

    1992-01-01

    The damping of dipole and quadrupole motion in 16 O and 40 Ca at zero and finite temperature is studied including particle-particle and particle-hole interactions to all orders of perturbation. We find that the dipole dynamics in these light nuclei is well described in terms of mean-field theory (time-dependent Hartree-Fock), while the quadrupole motion is strongly damped through the coupling to more complicated configurations. Both the centroid and the damping width of the quadrupole and dipole giant resonances show a clear stability with temperature as a consequence of the weakening of the interaction, which contrasts with the increase of the phase space

  6. Chaos-driven decay of nuclear giant resonances: Quantum route to self-organization

    International Nuclear Information System (INIS)

    Drozdz, S.; Nishizaki, S.; Wambach, J.

    1994-01-01

    The influence of background states with increasing level of complexity on the strength distribution of the isoscalar and isovector giant quadrupole resonance in 40 Ca is studied. It is found that the background characteristics, typical for chaotic systems, strongly affect the fluctuation properties of the strength distribution. In particular, the small components of the wave function obey a scaling law analogous to self-organized systems at the critical state. This appears to be consistent with the Porter-Thomas distribution of the transition strength

  7. Quantum chaos in nuclear single-particle motion and damping of giant resonances

    International Nuclear Information System (INIS)

    Pal, Santanu; Mukhopadhyay, Tapan

    1995-01-01

    The spectral statistics of single particle motion in deformed cavities with axial symmetry are presented. The single particle motion in the cavities considered are non-integrable and the systematics of the fluctuation measures of the spectra reveal a transition from regular to chaotic regime in the corresponding classical systems. Quantitative estimate of the degree of chaos enables us to introduce a correction factor to the one-body wall formula for the damping widths of isoscalar giant resonances. The damping widths calculated with this correction factor give much better agreement with experimental values than earlier calculations of one-body damping widths. (author). 21 refs., 5 figs

  8. Studies of photonuclear reactions and photon activation analysis in the giant dipole resonance region using microtrons

    International Nuclear Information System (INIS)

    Tran Duc Thiep; Nguyen Van Do; Nguyen Khac Thi; Truong Thi An; Nguyen Ngoc Son

    2004-01-01

    Microtrons are accelerators of electrons and are simultaneous source of Bremsstrahlung photon flux and fission neutrons. In 1982, a microtron of seventeen trajectories Microtron MT - 17 was put into operation at the National Institute of Physics of Vietnam. Though very modest, microtrons are very useful for developing countries such as Vietnam in both fundamental and applied physics research. During the recent years by using the above mentioned MT - 17 and microtrons from other institutes we have carried out different investigation. In this report we present some results obtained in the studies of photonuclear reactions and photon activation analysis in the giant dipole resonance region. (author)

  9. Magnetic resonance imaging aspects of giant-cell tumours of bone

    International Nuclear Information System (INIS)

    Pereira, Helcio Mendoncça; Marchiori, Edson; Severo, Alessandro

    2014-01-01

    This study aimed to describe the magnetic resonance imaging (MRI) features of giant-cell tumours of bone. We analysed the clinical and MRI features of patients diagnosed with giant-cell tumours of bone confirmed by histopathology at our institution between 2010 and 2012. The peak incidence was between the second and third decades of life. There was no gender predominance. The most frequent locations were the knee and wrist. Pain and swelling were the prevailing symptoms. Fifty-one per cent of the patients were found to have associated secondary aneurysmal bone cysts on histopathology. On MRI, lesions demonstrated signal intensity equal to that of skeletal muscle on T1-weighted images and low signal intensity on T2-weighted images in 90% of cases. In gadolinium-enhanced T1-weighted images, 76.6% of cases demonstrated heterogeneous enhancement. We observed cystic components involving more than 50% of the lesion in 17 cases (56.6%). There was extra-osseous involvement in 13 cases (43.3%). MRI offers a valuable diagnostic tool for giant-cell tumours of bone. Contrast-enhanced MRI can distinguish between cystic and solid components of the tumour. MRI is also the imaging modality of choice for evaluation of soft-tissue involvement, offering a complete preoperative diagnosis.

  10. Giant cell tumor of the tendon sheath of the hand - magnetic resonance image and orthopaedic treatment

    International Nuclear Information System (INIS)

    Kirova, G.; Monovska, T.; Jablanski, V.; Alexieva, K.; Velev, M.

    2009-01-01

    Giant cell tumour of the tendon sheath (GCT-TS), also known as localized nodular tenosynovitis, is a benign neoplasm that occurs dominantly on the digits. These tumours most commonly occur in patients aged 30-50 years and are associated with degenerative joint disease. GCT-TS usually arises from the synovium of tendon sheets, affecting interfalangeal joints of the hand, feet, ankle and knees. Magnetic Resonance Imaging is able to depict characteristic signal intensities and can accurately assess the tumor size and degree of extent around the phalanx. We present a case of a 36 years-old male patient with GCT-TS in the flexor tendon of his left second finger, diagnosed with Magnetic Resonance imaging. The mass was excised widely with preservation of the flexor tendon without recurrence. (authors)

  11. Deformation dependence of the isovector giant dipole resonance: The neodymium isotopic chain revisited

    Directory of Open Access Journals (Sweden)

    L.M. Donaldson

    2018-01-01

    Full Text Available Proton inelastic scattering experiments at energy Ep=200 MeV and a spectrometer scattering angle of 0° were performed on 144,146,148,150Nd and 152Sm exciting the IsoVector Giant Dipole Resonance (IVGDR. Comparison with results from photo-absorption experiments reveals a shift of resonance maxima towards higher energies for vibrational and transitional nuclei. The extracted photo-absorption cross sections in the most deformed nuclei, 150Nd and 152Sm, exhibit a pronounced asymmetry rather than a distinct double-hump structure expected as a signature of K-splitting. This behaviour may be related to the proximity of these nuclei to the critical point of the phase shape transition from vibrators to rotors with a soft quadrupole deformation potential. Self-consistent random-phase approximation (RPA calculations using the SLy6 Skyrme force provide a relevant description of the IVGDR shapes deduced from the present data.

  12. Deformation dependence of the isovector giant dipole resonance: The neodymium isotopic chain revisited

    Science.gov (United States)

    Donaldson, L. M.; Bertulani, C. A.; Carter, J.; Nesterenko, V. O.; von Neumann-Cosel, P.; Neveling, R.; Ponomarev, V. Yu.; Reinhard, P.-G.; Usman, I. T.; Adsley, P.; Brummer, J. W.; Buthelezi, E. Z.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Fujita, H.; Fujita, Y.; Jingo, M.; Kleinig, W.; Kureba, C. O.; Kvasil, J.; Latif, M.; Li, K. C. W.; Mira, J. P.; Nemulodi, F.; Papka, P.; Pellegri, L.; Pietralla, N.; Richter, A.; Sideras-Haddad, E.; Smit, F. D.; Steyn, G. F.; Swartz, J. A.; Tamii, A.

    2018-01-01

    Proton inelastic scattering experiments at energy Ep = 200 MeV and a spectrometer scattering angle of 0° were performed on 144,146,148,150Nd and 152Sm exciting the IsoVector Giant Dipole Resonance (IVGDR). Comparison with results from photo-absorption experiments reveals a shift of resonance maxima towards higher energies for vibrational and transitional nuclei. The extracted photo-absorption cross sections in the most deformed nuclei, 150Nd and 152Sm, exhibit a pronounced asymmetry rather than a distinct double-hump structure expected as a signature of K-splitting. This behaviour may be related to the proximity of these nuclei to the critical point of the phase shape transition from vibrators to rotors with a soft quadrupole deformation potential. Self-consistent random-phase approximation (RPA) calculations using the SLy6 Skyrme force provide a relevant description of the IVGDR shapes deduced from the present data.

  13. Giant quadrupole resonance in 24Mg, 27Al, and 28Si

    International Nuclear Information System (INIS)

    Youngblood, D.H.; Rozsa, C.M.; Moss, J.M.; Brown, D.R.; Bronson, J.D.

    1977-01-01

    The giant-resonance region of 24 Mg, 27 Al, and 28 Si was studied by inelastic scattering of 126-MeV α particles. In contrast to results at 96 MeV, considerable clustering of E2 strength was observed for 27 Al at E/sub x/ approx. 20.1 MeV with GAMMA approx. 7.6 MeV exhausting about 35% of the E2 energy weighted sum rule. E2 strength was also located in 24 Mg in two clusters of states at E-bar/sub x/ approx. 18.2, 24.4 MeV; however, contributions from other multipoles cannot be neglected. In 28 Si a multipeaked group was observed at E/sub x/ approx. 19.4 MeV with GAMMA approx. 4 MeV but no L assignment was made. The energy dependence of the cross section for the giant quadrupole resonance was found to be consistent with distorted-wave Born approximation predictions

  14. The 132Sn giant dipole resonance as a constraint on nuclear matter properties

    Science.gov (United States)

    Roach, Brandon; Bonasera, Giacomo; Shlomo, Shalom

    2015-10-01

    Nuclear giant resonances provide a sensitive method for constraining the properties of nuclear matter (NM) - many of which have large uncertainties - and thereby improve the nuclear energy-density functional. In this work, self-consistent Hartree-Fock random-phase approximation (HF-RPA) theory was employed to calculate the strength function and energy of the isovector giant dipole resonance (IVGDR) in the doubly-magic 132Sn nucleus. Several (17) commonly-used Skyrme-type interactions were employed. The correlations between the IVGDR centroid energy and each nuclear matter property were explored, as were correlations between the nuclear matter properties and the 132Sn neutron skin thickness rn -rp . Experimental data for the IVGDR centroid energy was used to constrain the symmetry energy density, the symmetry energy, and its first and second derivatives, respectively, of NM. Further investigation, particularly of nuclides far from stability, will be needed to extend the nuclear energy-density functional to the extremes of density and neutron abundance found in neutron stars and astrophysical nucleosynthesis environments.

  15. Total and differential cross sections for pion production via coherent isobar and giant resonance formation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Deutchman, P.A.; Norbury, J.W.; Townsend, L.W.

    1985-01-01

    A quantal many-body formalism is presented that investigates pion production through the coherent formation of a nucleonic isobar in the projectile and its subsequent decay to various pion charge states along with concomitant excitation of the target to a coherent spin-isospin giant resonance via a peripheral collision of relativistic heavy ions. Total cross sections as a function of the incident energy per nucleon and Lorentz-invariant differential cross sections as a function of pion energy and angle are calculated. It is shown that the pion angular distributions, in coincidence with the target giant resonance excitations, might provide a well-defined signature for these coherent processes

  16. Semi classical model of the neutron resonance compound nucleus

    International Nuclear Information System (INIS)

    Ohkubo, Makio

    1995-01-01

    A Semi-classical model of compound nucleus is developed, where time evolution and recurrence for many degrees of freedom (oscillators) excited simultaneously are explicitly considered. The effective number of oscillators plays the role in the compound nucleus, and the nuclear temperatures are derived, which are in good agreement with the traditional values. Time structures of the compound nucleus at resonance are considered, from which equidistant level series with an envelope of strength function of giant resonance nature is obtained. S-matrix formulation for fine structure resonance is derived. (author)

  17. Comment on 'Angular momentum gated giant dipole resonance measurements in the reaction 28Si+58Ni at E(28Si)=100 and 125 MeV'

    International Nuclear Information System (INIS)

    Heckman, P.; Thoennessen, M.

    2003-01-01

    In a recent paper, the giant dipole resonance width was studied as a function of angular momentum in the nucleus 86 Mo. The width of the resonance was found to be constant over a spin range of (0-40)(ℎ/2π). It was concluded that the angular momentum dependence for 86 Mo differs from that of Sn isotopes. We compared both datasets with a phenomenological formula based on the thermal fluctuation theory. The 86 Mo data are inconsistent with the formula in contrast to the previously analyzed Sn data, which seems to indicate that the angular momentum dependence of the phenomenological model is not universally applicable

  18. Electric quadrupole giant resonance in the photofission of sup(238)U IFUSP-P--140

    International Nuclear Information System (INIS)

    Bhandari, B.S.; Arruda Neto, J.D.T.; Herdade, S.B.; Nascimento, I.C.

    1978-02-01

    The 238 U nucleus was studied measuring the electrofission yield and angular distributions of fission fragments, in the energy range of 5.5 to 28.3 MeV, using a new method of analysis. An E2 isoscalar giant resonance was found in the photofission cross section of 238 U. This resonance exhausts (71 + -7)% of the EWSR and is located at 9.9 + -0.2 MeV with a width of 6.8 + -0.4 MeV. The position of this resonance is in reasonable agreement with the Bohr and Mottelson prediction (58.Asup( - 1/3MeV). The width of 6.8 + -0.4 MeV is compatible with a possible triple splitting of the resonance. From the angular distributions of photofission fragments and yield measurements of multipoles other than E1, evidence of an M1 mixture in the energy region 6-7 MeV was found

  19. Cardiac Sarcoidosis or Giant Cell Myocarditis? On Treatment Improvement of Fulminant Myocarditis as Demonstrated by Cardiovascular Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Hari Bogabathina

    2012-01-01

    Full Text Available Giant cell myocarditis, but not cardiac sarcoidosis, is known to cause fulminant myocarditis resulting in severe heart failure. However, giant cell myocarditis and cardiac sarcoidosis are pathologically similar, and attempts at pathological differentiation between the two remain difficult. We are presenting a case of fulminant myocarditis that has pathological features suggestive of cardiac sarcoidosis, but clinically mimicking giant cell myocarditis. This patient was treated with cyclosporine and prednisone and recovered well. This case we believe challenges our current understanding of these intertwined conditions. By obtaining a sense of severity of cardiac involvement via delayed hyperenhancement of cardiac magnetic resonance imaging, we were more inclined to treat this patient as giant cell myocarditis with cyclosporine. This resulted in excellent improvement of patient’s cardiac function as shown by delayed hyperenhancement images, early perfusion images, and SSFP videos.

  20. Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities

    Directory of Open Access Journals (Sweden)

    K.-H. Glassmeier

    Full Text Available Giant pulsations are nearly monochromatic ULF-pulsations of the Earth's magnetic field with periods of about 100 s and amplitudes of up to 40 nT. For one such event ground-magnetic observations as well as simultaneous GEOS-2 magnetic and electric field data and proton flux measurements made in the geostationary orbit have been analysed. The observations of the electromagnetic field indicate the excitation of an odd-mode type fundamental field line oscillation. A clear correlation between variations of the proton flux in the energy range 30-90 keV with the giant pulsation event observed at the ground is found. Furthermore, the proton phase space density exhibits a bump-on-the-tail signature at about 60 keV. Assuming a drift-bounce resonance instability as a possible generation mechanism, the azimuthal wave number of the pulsation wave field may be determined using a generalized resonance condition. The value determined in this way, 
    m
    = - 21 ± 4, is in accord with the value m = - 27 ± 6 determined from ground-magnetic measurements. A more detailed examination of the observed ring current plasma distribution function f shows that odd-mode type eigenoscillations are expected for the case ∂f / ∂W > 0, much as observed. This result is different from previous theoretical studies as we not only consider local gradients of the distribution function in real space, but also in velocity space. It is therefore concluded that the observed giant pulsation is the result of a drift-bounce resonance instability of the ring current plasma coupling to an odd-mode fundamental standing wave. The generation of the bump-on-the-tail distribution causing ∂f / ∂W > 0 can be explained due to velocity dispersion of protons injected into the ring current. Both this velocity dispersion and the necessary substorm activity causing the injection of protons into the nightside magnetosphere are observed

  1. Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities

    Directory of Open Access Journals (Sweden)

    K.-H. Glassmeier

    1999-03-01

    Full Text Available Giant pulsations are nearly monochromatic ULF-pulsations of the Earth's magnetic field with periods of about 100 s and amplitudes of up to 40 nT. For one such event ground-magnetic observations as well as simultaneous GEOS-2 magnetic and electric field data and proton flux measurements made in the geostationary orbit have been analysed. The observations of the electromagnetic field indicate the excitation of an odd-mode type fundamental field line oscillation. A clear correlation between variations of the proton flux in the energy range 30-90 keV with the giant pulsation event observed at the ground is found. Furthermore, the proton phase space density exhibits a bump-on-the-tail signature at about 60 keV. Assuming a drift-bounce resonance instability as a possible generation mechanism, the azimuthal wave number of the pulsation wave field may be determined using a generalized resonance condition. The value determined in this way,  m = - 21 ± 4, is in accord with the value m = - 27 ± 6 determined from ground-magnetic measurements. A more detailed examination of the observed ring current plasma distribution function f shows that odd-mode type eigenoscillations are expected for the case ∂f / ∂W > 0, much as observed. This result is different from previous theoretical studies as we not only consider local gradients of the distribution function in real space, but also in velocity space. It is therefore concluded that the observed giant pulsation is the result of a drift-bounce resonance instability of the ring current plasma coupling to an odd-mode fundamental standing wave. The generation of the bump-on-the-tail distribution causing ∂f / ∂W > 0 can be explained due to velocity dispersion of protons injected into the ring current. Both this velocity dispersion and the necessary substorm activity causing the injection of protons into the nightside magnetosphere are observed.Key words. Magnetospheric physics (energetic particles , trapped

  2. Comment on '(p,n) and (n,p) reactions as probes of isovector giant monopole resonances'

    International Nuclear Information System (INIS)

    Bauhoff, W.

    1984-01-01

    The importance of medium corrections in the excitation of the isovector giant monopole resonance by nucleons is investigated. A large reduction of the cross-section, compared to calculations with free t-matrices, is found at projectile energies around 100 MeV. This will make observation of the isovector monopole at these energies even more difficult than estimated by Auerbach et al

  3. The structure of the Gamow-Teller giant resonance and consequences for beta-delayed neutron spectra and element synthesis

    International Nuclear Information System (INIS)

    Klapdor, H.V.

    1976-01-01

    Recent results in β-delayed neutron emission are interpreted by structure of the Gamow-Teller giant resonance not included in the 'gross-theory' of β-decay. Inclusion of this structure of the β-decay function is important for calculations of β-decay production rates for heavy nuclides by astrophysical processes and thermonuclear explosions. (Auth.)

  4. Sequential changes of magnetic resonance images of intracavernous giant aneurysm following carotid ligation

    International Nuclear Information System (INIS)

    Kinjo, Toshihiko; Mukawa, Jiro; Takara, Eiichi; Mekaru, Susumu; Ishikawa, Yasunari

    1986-01-01

    A case of intracavernous giant aneurysm treated by combined carotid ligation and extracranial-intracranial vein-graft bypass is reported with special reference to the sequential changes of Magnetic Resonance Images (MRI). A 29-year-old female was admitted to our clinic with complaint of diplopia. She had no neurological deficit except for left abducens palsy. Left carotid angiogram revealed an intracavernous giant aneurysm, and vertebral angiogram revealed a fenestration at right and an aneurysm-like buldging at left vertebral artery. Gradual carotid occlusion after extracranial-intracranial bypass via grafted saphnous vein was successfully performed without any neurological complications. Sequential changes of MRI were as follows: The aneurysm was shown by absent intensity both in spin echo (SE) and inversion recovery (IR) methods before the treatment. It became isointensity in SE and two-tone intensity, iso at the center and high at the margin, in IR 15 days after, and, furtheremore, became slight high intensity in SE but decreased in two-tone intensity, low at the center and high at the margin, in IR 37 days after complete carotid occlusion. Coronal view was usefull to understand anatomical relationship. In conclusion, MRI, especially coronal IR method is of more diagnostic value than X-ray CT to follow the thrombosis of intracavernous aneurysm. (author)

  5. Quantal and thermal dampings of the hot giant dipole resonance due to complex configuration mixing

    CERN Document Server

    Dang, N D; Arima, A

    1999-01-01

    An approach is presented to study the width of the giant dipole resonance (GDR) at non-zero temperature T, which includes all forward-going processes up to two-phonon ones. Calculations are performed in sup 1 sup 2 sup 0 Sn and sup 2 sup 0 sup 8 Pb. An overall agreement between theory and experiment is found. The total width of the GDR due to coupling of the GDR phonon to all ph, pp and hh configurations increases sharply as T increases up to T approx 3 MeV and saturates at T approx 4-6 MeV. The quantal width GAMMA sub Q due to coupling to ph configurations decreases with increasing T. It is almost independent of T if the contribution of two-phonon processes at T not =0 is omitted.

  6. Temperature dependence and fragmentation of the particle-hole giant resonances

    International Nuclear Information System (INIS)

    Seva, E.C.; Sofia, H.M.

    1997-01-01

    We evaluate the spreading width of the giant multipole resonances at finite temperature using the discontinuity in the second derivative of the Green close-quote s function of the vibrational boson, in the Matsubara close-quote s framework. Our method allows us to identify the processes that contribute to the spreading width in terms of the Feynman diagrammatic expansion of the full boson propagator. We have applied the calculation of the spreading width to the 208 Pb and the 90 Zr obtaining an increment of the spreading width with the temperature. We have not reached any saturation of the spreading width increment, at least up to the temperature of our calculation. copyright 1997 The American Physical Society

  7. Fine structure of the isoscalar giant quadrupole resonance in 40Ca due to Landau damping?

    International Nuclear Information System (INIS)

    Usman, I.; Buthelezi, Z.; Carter, J.; Cooper, G.R.J.; Fearick, R.W.; Foertsch, S.V.; Fujita, H.; Fujita, Y.; Kalmykov, Y.; Neumann-Cosel, P. von; Neveling, R.; Papakonstantinou, P.; Richter, A.; Roth, R.; Shevchenko, A.; Sideras-Haddad, E.; Smit, F.D.

    2011-01-01

    The fragmentation of the Isoscalar Giant Quadrupole Resonance (ISGQR) in 40 Ca has been investigated in high energy-resolution experiments using proton inelastic scattering at E p =200 MeV. Fine structure is observed in the region of the ISGQR and its characteristic energy scales are extracted from the experimental data by means of a wavelet analysis. The experimental scales are well described by Random Phase Approximation (RPA) and second-RPA calculations with an effective interaction derived from a realistic nucleon-nucleon interaction by the Unitary Correlation Operator Method (UCOM). In these results characteristic scales are already present at the mean-field level pointing to their origination in Landau damping, in contrast to the findings in heavier nuclei and also to SRPA calculations for 40 Ca based on phenomenological effective interactions, where fine structure is explained by the coupling to two-particle-two-hole (2p-2h) states.

  8. Origin of fine structure of the giant dipole resonance in s d -shell nuclei

    Science.gov (United States)

    Fearick, R. W.; Erler, B.; Matsubara, H.; von Neumann-Cosel, P.; Richter, A.; Roth, R.; Tamii, A.

    2018-04-01

    A set of high-resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the giant dipole resonance (GDR) in s d -shell nuclei. Understanding is achieved by comparison with random phase approximation calculations for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows one to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement for scales in the range of a few hundred keV supports the surmise that the fine structure arises from ground-state deformation driven by α clustering.

  9. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-04-10

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  10. Formation of Ice Giant Satellites During Thommes Model Mirgration

    Science.gov (United States)

    Fuse, Christopher; Spiegelberg, Josephine

    2018-01-01

    Inconsistencies between ice giant planet characteristics and classic planet formation theories have led to a re-evaluation of the formation of the outer Solar system. Thommes model migration delivers proto-Uranus and Neptune from orbits interior to Saturn to their current locations. The Thommes model has also been able to reproduce the large Galilean and Saturnian moons via interactions between the proto-ice giants and the gas giant moon disks.As part of a series of investigations examining the effects of Thommes model migration on the formation of moons, N-body simulations of the formation of the Uranian and Neptunian satellite systems were performed. Previous research has yielded conflicting results as to whether satellite systems are stable during planetary migration. Some studies, such as Beaugé (2002) concluded that the system was not stable over the proposed duration of migration. Conversely, Fuse and Neville (2011) and Yokoyama et al. (2011) found that moons were retained, though the nature of the resulting system was heavily influenced by interactions with planetesimals and other large objects. The results of the current study indicate that in situ simulations of the Uranus and Neptune systems can produce stable moons. Whether with current orbital parameters or located at pre-migration, inner Solar system semi-major axes, the simulations end with 5.8 ± 0.15 or 5.9 ± 0.7 regular satellites around Uranus and Neptune, respectively. Preliminary simulations of a proto-moon disk around a single planet migrating via the Thommes model have failed to retain moons. Furthermore, simulations of ejection of the current Uranian satellite system retained at most one moon. Thus, for the Thommes model to be valid, it is likely that moon formation did not begin until after migration ended. Future work will examine the formation of gas and ice giant moons through other migration theories, such as the Nice model (Tsiganis et al. 2006).

  11. Nuclear fluid dynamics with long-mean-free-path dissipation: Multipole vibrations and isoscalar giant resonance widths

    International Nuclear Information System (INIS)

    Hasse, R.W.; Ghosh, G.

    1982-01-01

    The long-mean-free-path nuclear fluid dynamics is extended to include damping. First the damping stress is derived from the solution of the Boltzmann equation for a breathing spherical container filled with a Fermi gas. Then the corresponding damping force is incorporated into Euler equations of motion and energies and widths of low lying collective resonances are computed as eigenfrequencies of a vibrating nucleus under surface tension and Coulomb potential as well as the high lying isoscalar giant resonances as eigenfrequencies of an elastic nucleus. Maximum damping is obtained if the particle frequency approximately resonates with the wall frequency. Theoretical results are compared with experimental data and future improvements are indicated

  12. ZZ-CENPL, Chinese Evaluated Nuclear Parameter Library. ZZ CENPL-DLS, Discrete Level Schemes and Gamma Branching Ratios Library; ZZ CENPL-FBP, Fission Barrier Parameter Library; ZZ CENPL-GDRP, Giant Dipole Resonance Parameter Library; ZZ CENPL-NLD, Nuclear Level Density Parameter Library; ZZ CENPL-MCC, Nuclear Ground State Atomic Masses Library; ZZ CENPL-OMP, Optical Model Parameter Library

    International Nuclear Information System (INIS)

    Su Zongdi

    1995-01-01

    Description of program or function: CENPL - GDRP (Giant Dipole Resonance Parameters for Gamma-Ray): - Format: special format described in documentation; - Nuclides: V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Lu, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, Th, U, Np, Pu. - Origin: Experimental values offered by S.S. Dietrich and B.L. Berman. CENPL - FBP (Fission Barrier Parameter Sub-Library): - Format: special format described in documentation; - Nuclides: (1) 51 nuclei region from Th-230 to Cf-255, (2) 46 nuclei region from Th-229 to Cf-253, (3) 24 nuclei region from Pa-232 to Cf-253; - Origin: (1) Lynn, (2) Analysis of experimental data by Back et al., (3) Ohsawa. CENPL - DLS (Discrete level scheme and branch ratio of gamma decay: - Format: Special format described in documentation; - Origin: ENSDF - BNL. CENPL - NLD (Nuclear Level Density): - Format: Special format described in documentation; - Origin: Huang Zhongfu et al. CENPL - OMP (Optical model parameter sub-library): - Format: special format described in documentation ; - Origin: CENDL, ENDF/B-VI, JENDL-3. CENPL - MC (I) and (II) (Atomic masses and characteristic constants for nuclear ground states) : - Format: Brief table format; - Nuclides: 4760 nuclides ranging from Z=0 A=1 to Z=122 A=318. - Origin: Experimental data and systematic results evaluated by Wapstra, theoretical results calculated by Moller, ENSDF - BNL and Nuclear Wallet Cards. CENPL contains the following six sub-libraries: 1. Atomic Masses and Characteristic Constants for nuclear ground states (MCC). This data consists of calculated and in most cases also measured mass excesses, atomic masses, total binding energies, spins, parities, and half-lives of nuclear ground states, abundances, etc. for 4800 nuclides. 2. Discrete Level Schemes and branching ratios of gamma decay (DLS). The data on nuclear discrete levels are based on the Evaluated

  13. Giant resonance spectroscopy of 40Ca with the (e,e'x) reaction (I): Experiments and overview of results

    International Nuclear Information System (INIS)

    Diesener, H.; Helm, U.; Neumann-Cosel, P. von; Richter, A.; Schrieder, G.; Stascheck, A.; Stiller, A.; Carter, J.

    2001-01-01

    The 40 Ca(e,e'x; x=p,α) reaction has been measured in the giant resonance excitation region for E x ≅8-26 MeV. The present article is the first out of three describing the experiments and giving an overview of the results. Data were taken at four momentum transfers in the range q=0.26-0.66 fm -1 . Angular correlations for decay to the ground state and low-lying states of 39 K and 36 Ar could be extracted as a function of excitation energy in 40 Ca. Excitation energy spectra integrated over the particle emission angle were generated for the various resolved decay channels. Comparisons of the giant resonance cross-section distributions with results using other electromagnetic or hadronic probes have been made and good agreement is found in most cases

  14. Modification of the Xe 4d giant resonance by the C60 shell in molecular Xe at C60

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Baltenkov, A. S.; Chernysheva, L. V.; Felfli, Z.; Msezane, A. Z.

    2006-01-01

    It is demonstrated that in photoabsorption of the 4d 10 subshell of a Xe atom in molecular Xe at C 60 , the 4d giant resonance that characterizes the isolated Xe atom is distorted significantly. The reflection of photoelectron waves by the C 60 shell leads to profound oscillations in the photoionization cross section such that the Xe giant resonance is transformed into four strong peaks. Similarly, the angular anisotropy parameters, both dipole and nondipole, are also modified. The method of calculation is based on the approximation of the C 60 shell by an infinitely thin bubble potential that leaves the sum rule for the 4d-electrons almost unaffected, but noticeably modifies the dipole polarizability of the 4d-shell

  15. Time-dependent Hartree-Fock calculation of the escape width of the giant monopole resonance in 16O

    International Nuclear Information System (INIS)

    Pacheco, J.M.; Maglione, E.; Broglia, R.A.

    1988-01-01

    The damping of the giant monopole resonance in 16 O is calculated within the framework of the time-dependent Hartree-Fock approximation. The strength function contains two peaks, centered at around 25 and 33 MeV, with escape widths of ∼11 and ∼2 MeV, associated with the 1p(0p) -1 and 1s(0s) -1 configurations, respectively

  16. Solid state deuterium nuclear magnetic resonance detection of transmembrane-potential-driven tetraphenylphosphonium redistribution across Giant Unilamellar Vesicle bilayers

    International Nuclear Information System (INIS)

    Franzin, Carla Maria Mirella

    1995-01-01

    It has been demonstrated that deuterium nuclear magnetic resonance ( 2 H NMR) of Giant Unilamellar Vesicles (GUVs) consisting of specifically choline-deuterated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), plus 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and cholesterol can be used to monitor the transbilayer redistribution of tetraphenylphosphonium (TPP + ) in response to a transmembrane potential (δψ tm ). The 2 H quadrupolar splittings (δν Q 's) measured reflect the level of TPP + bound at the membrane surface due to the latter's effect on the membrane surface electrostatic potential, ψ s . Results reveal the appearance of two distinct δν Q 's, due to differences in bound TPP + at the inner versus the outer monolayer in response to a δψ tm . The observed values of the δν Q 's agree with theoretical predictions based on a derived mathematical model that takes into account δψ tm , plus ψ s , plus the equilibrium binding of TPP + from solution onto the membrane surface, plus the sensitivity of δν Q to the amount of bound TPP + . This model identifies experimental factors that lead to improvements in spectral resolution. Henceforth, 2 H NMR is a valuable tool for quantifying transmembrane asymmetries of ψ s . (author)

  17. Giant resonance spectroscopy of 40Ca with the (e,e'x) reaction (III): Direct versus statistical decay

    International Nuclear Information System (INIS)

    Carter, J.; Diesener, H.; Helm, U.; Herbert, G.; Neumann-Cosel, P. von; Richter, A.; Schrieder, G.; Strauch, S.

    2001-01-01

    The present article is the third out of three on a study of the 40 Ca(e,e'x) reaction discussing the role of direct and statistical contributions to the decay of the observed giant resonance strengths. The proton and α decay modes leading to low-lying final states in 36 Ar and 39 K were investigated. The branching ratios for the p 0 , p 123 , α 0 and α 1 channels are compared to statistical model calculations. In the excitation region of dominant isoscalar E2 strength (E x =12-18 MeV) good agreement is observed. Model predictions of direct E2 decay for the (α 0 +α 1 )/(p 0 +p 1 ) ratio describe the data poorly. In the isovector E1 excitation region large excess strength is found in the population of low-lying states in 39 K. A fluctuation analysis shows the direct contributions to the p 0 , p 1 channels to be ≥85%. The presence of preequilibrium components is indicated by the significant nonstatistical decay to the p 3 level which has a dominant 'phonon·hole' structure. Cross correlations reveal no significant branching between the different channels. The correlations between different electron scattering angles in the p 0 , p 1 and p 3 decay result in an interaction radius compatible with the whole nucleus acting as an emitting source

  18. TERRESTRIAL PLANET FORMATION DURING THE MIGRATION AND RESONANCE CROSSINGS OF THE GIANT PLANETS

    International Nuclear Information System (INIS)

    Lykawka, Patryk Sofia; Ito, Takashi

    2013-01-01

    The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets in the planetesimal disk. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a ∼ 1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter's and Saturn's more eccentric orbits (relative to the present day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars's mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars's small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths)

  19. On the role of anti-bound states in the RPA description of the giant monopole resonance

    International Nuclear Information System (INIS)

    Vertse, T.; Bang, J.

    1989-01-01

    The limit of the applicability of the resonant Random Phase Approximation (RPA) method is tested by calculating escape widths in the giant monopole resonance of 16 O and comparing them to the results of a time dependent Hartree-Fock calculation. Though the widths of the narrow s-wave component agree reasonably well, the broad p-wave component shows large disagreement, which cannot be cured by complementing the basis with anti-bound states in the RPA calculation. (author) 18 refs.; 3 tabs

  20. Excitation of giant monopole resonance in {sup 208}Pb and {sup 116}Sn using inelastic deuteron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Patel, D.; Garg, U. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Itoh, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Akimune, H. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Berg, G.P.A. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Fujiwara, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Harakeh, M.N. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); GANIL, CEA/DSM-CNRS/IN2P3, 14076 Caen (France); Iwamoto, C. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Kawabata, T. [Division of Physics and Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Kawase, K. [Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Matta, J.T. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Murakami, T. [Division of Physics and Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Okamoto, A. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Sako, T. [Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Schlax, K.W. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Takahashi, F. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); White, M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Yosoi, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan)

    2014-07-30

    The excitation of the isoscalar giant monopole resonance (ISGMR) in {sup 208}Pb and {sup 116}Sn has been investigated using small-angle (including 0°) inelastic scattering of 100 MeV/u deuteron and multipole-decomposition analysis (MDA). The extracted strength distributions agree well with those from inelastic scattering of 100 MeV/u α particles. These measurements establish deuteron inelastic scattering at E{sub d}∼100 MeV/u as a suitable probe for extraction of the ISGMR strength with MDA, making feasible the investigation of this resonance in radioactive isotopes in inverse kinematics.

  1. Model for resonant plasma probe.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue

    2007-04-01

    This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

  2. Giant Glial Cell: New Insight Through Mechanism-Based Modeling

    DEFF Research Database (Denmark)

    Postnov, D. E.; Ryazanova, L. S.; Brazhe, Nadezda

    2008-01-01

    The paper describes a detailed mechanism-based model of a tripartite synapse consisting of P- and R-neurons together with a giant glial cell in the ganglia of the medical leech (Hirudo medicinalis), which is a useful object for experimental studies in situ. We describe the two main pathways...... of the glial cell activation: (1) via IP3 production and Ca2+ release from the endoplasmic reticulum and (2) via increase of the extracellular potassium concentration, glia depolarization, and opening of voltage-dependent Ca2+ channels. We suggest that the second pathway is the more significant...

  3. Self-consistent treatment of nuclear collective motion with an application to the giant-dipole resonance

    International Nuclear Information System (INIS)

    Liran, S.; Technion-Israel Inst. of Tech., Haifa. Dept. of Physics)

    1977-01-01

    This paper extends the recent theory of Liran, Scheefer, Scheid and Greiner on non-adiabatic cranking and nuclear collective motion. In the present work we show the self-consistency conditions for the collective motion, which are indicated by appropriate time-dependent Lagrange multipliers, can be treated explicitly. The energy conservation and the self-consistency condition in the case of one collective degree of freedom are expressed in differential form. This leads to a set of coupled differential equations in time for the many-body wave function, for the collective variable and for the Lagrange multiplier. An iteration procedure similar to that of the previous work is also presented. As an illustrative example, we investigate Brink's single-particle description of the giant-dipole resonance. In this case, the important role played by non-adiabaticity and self-consistency in determining the collective motion is demonstrated and discussed. We also consider the fact that in this example of a fast collective motion, the adiabatic cranking model of Inglis gives the correct mass parameter. (orig.) [de

  4. Comparative Modelling of the Spectra of Cool Giants

    Science.gov (United States)

    Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.; hide

    2012-01-01

    Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.

  5. (π±, π±' N) reactions on 12C and 208Pb near the giant resonance region

    International Nuclear Information System (INIS)

    Yoo, Sung Hoon.

    1990-05-01

    Angular distributions for the 12 C(π ± , π ± ' p) and 208 Pb(π ± , π ± ' p or n) reactions near the giant resonance region have been measured at T π = 180 MeV, and found different between π + and π - data. This observation is interpreted as evidence for different excitation mechanisms dominating the π - -nucleus and π + -nucleus interactions in the giant resonance region of these targets. A comparison with the single-nucleon knock-out distorted-wave impulse approximation calculations shows, even though these calculations underestimate (π ± , π ± ' N) data for both targets, the dominance of direct process for (π + , π + ' p) or (π - , π - ' n) in contrast to (π - , π - ' p) or (π + , π + ' n). In the (π + , π + ' p) reaction proton-proton hole states are excited directly and appear to have a large probability for direct decay with escape width, whereas in (π - , π - ' p) the preferentially excited neutron-neutron hole doorway states couple to resonance states and decay with spreading width. This interpretation led us to suggest that the ratio of cross-sections for inelastic scattering to the giant resonance region should be written in terms of an incoherent sum of cross-sections to neutron and proton doorway states. In a heavy nucleus such as 208 Pb, neutron and proton doorway states. In a heavy nucleus such as 208 Pb, neutron and proton doorway states contribute incoherently because the different decay processes do not populate the same final states of the residual nucleus

  6. Photoionization of Xe inside C60: Atom-fullerene hybridization, giant cross-section enhancement, and correlation confinement resonances

    International Nuclear Information System (INIS)

    Madjet, Mohamed E.; Renger, Thomas; Hopper, Dale E.; McCune, Matthew A.; Chakraborty, Himadri S.; Rost, Jan-M.; Manson, Steven T.

    2010-01-01

    A theoretical study of the subshell photoionization of the Xe atom endohedrally confined in C 60 is presented. Powerful hybridization of the Xe 5s state with the bottom edge of C 60 π band is found that induces strong structures in the 5s ionization, causing the cross section to differ significantly from earlier results that omit this hybridization. The hybridization also affects the angular distribution asymmetry parameter of Xe 5p ionization near the Cooper minimum. The 5p cross section, on the other hand, is greatly enhanced by borrowing considerable oscillator strength from the C 60 giant plasmon resonance via the atom-fullerene dynamical interchannel coupling. Beyond the C 60 plasmon energy range the atomic subshell cross sections display confinement-induced oscillations in which, over the large 4d shape resonance region, the dominant 4d oscillations induce their ''clones'' in all degenerate weaker channels known as correlation confinement resonances.

  7. Contribution of giant resonances in elastic and inelastic scattering of polarized protons on 12C between 19 and 23MeV

    International Nuclear Information System (INIS)

    Gaillard, Y.R.

    1975-01-01

    Angular distributions of analyzing power and differential cross section have been measured for the elastic and inelastic scattering of polarized protons on 12 C, up to 12.7MeV excitation energy. Incident energy varied from 19 to 23MeV by steps of about 200keV, the cyclotron beam energy, varying by steps of about 1MeV, was measured using crossover techniques. Fine steps of energy were obtained by use of carbon absorbers. Elastic scattering data were analyzed using a linear energy-dependent optical model. Data for the level at 4.4MeV excitation energy were analyzed using coupled channel calculations. Preliminary results for the level (1 - , Esub(x)=12.7MeV) were analyzed including giant resonances as doorways states in inelastic scattering, according to Geramb-Amos formalism. This analysis shows that it should be possible to study high-lying giant resonances through their contribution to low-lying state excitation [fr

  8. Giant Vertebral Notochordal Rest: Magnetic Resonance and Diffusion Weighted Imaging Findings

    International Nuclear Information System (INIS)

    Oner, Ali Yusuf; Akpek, Sergin; Tali, Turgut; Ucar, Murat

    2009-01-01

    A giant vertebral notochordal rest is a newly described, benign entity that is easily confused with a vertebral chordoma. As microscopic notochordal rests are rarely found in adult autopsies, the finding of a macroscopic vertebral lesion is a new entity with only seven previously presented cases. We report here radiological findings, including diffusion weighted images, of a patient with a giant notochordal remnant confined to the L5 vertebra, with an emphasis on its distinction from a chordoma

  9. A comprehensive dynamic modeling approach for giant magnetostrictive material actuators

    International Nuclear Information System (INIS)

    Gu, Guo-Ying; Zhu, Li-Min; Li, Zhi; Su, Chun-Yi

    2013-01-01

    In this paper, a comprehensive modeling approach for a giant magnetostrictive material actuator (GMMA) is proposed based on the description of nonlinear electromagnetic behavior, the magnetostrictive effect and frequency response of the mechanical dynamics. It maps the relationships between current and magnetic flux at the electromagnetic part to force and displacement at the mechanical part in a lumped parameter form. Towards this modeling approach, the nonlinear hysteresis effect of the GMMA appearing only in the electrical part is separated from the linear dynamic plant in the mechanical part. Thus, a two-module dynamic model is developed to completely characterize the hysteresis nonlinearity and the dynamic behaviors of the GMMA. The first module is a static hysteresis model to describe the hysteresis nonlinearity, and the cascaded second module is a linear dynamic plant to represent the dynamic behavior. To validate the proposed dynamic model, an experimental platform is established. Then, the linear dynamic part and the nonlinear hysteresis part of the proposed model are identified in sequence. For the linear part, an approach based on axiomatic design theory is adopted. For the nonlinear part, a Prandtl–Ishlinskii model is introduced to describe the hysteresis nonlinearity and a constrained quadratic optimization method is utilized to identify its coefficients. Finally, experimental tests are conducted to demonstrate the effectiveness of the proposed dynamic model and the corresponding identification method. (paper)

  10. Excitation of the giant resonance in the radiative pion capture on lp shell nuclei

    International Nuclear Information System (INIS)

    Dogotar', G.E.

    1978-01-01

    The spin-dipole transitions in the (π - ,γ) reaction on 6 Li, 7 Li, 9 Be, 13 C and 14 N are calculated in the framework of shell model and are compared with experiment. The discussion includes the gross structure and the quantum numbers of the resonance, relative branchings, prominent partial transitions and total yields. General findings is that the calculated (π - ,γ) yield distributions describe the data well in those cases where also the photonuclear data are well reproduced, although the amplitudes of the elementary processes are different. In the case considered, the best agreement is obtained for A=9 and 14. The configurational splitting of the resonances is clearly seen in the A=6 and 7 cases, to somewhat less extent also for A=9. For heavier nuclei the contribution from hole excitation is small and is spread out. For A=7 and 11 the calculated main peaks are at too low intrinsic excitation energies as compared with histograms

  11. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Giant grains

    International Nuclear Information System (INIS)

    Leitch-Devlin, M.A.; Millar, T.J.; Williams, D.A.

    1976-01-01

    Infrared observations of the Orion nebula have been interpreted by Rowan-Robinson (1975) to imply the existence of 'giant' grains, radius approximately 10 -2 cm, throughout a volume about a parsec in diameter. Although Rowan-Robinson's model of the nebula has been criticized and the presence of such grains in Orion is disputed, the proposition is accepted, that they exist, and in this paper situations in which giant grains could arise are examined. It is found that, while a giant-grain component to the interstellar grain density may exist, it is difficult to understand how giant grains arise to the extent apparently required by the Orion nebula model. (Auth.)

  13. Modelling in vivo action potential propagation along a giant axon.

    Science.gov (United States)

    George, Stuart; Foster, Jamie M; Richardson, Giles

    2015-01-01

    A partial differential equation model for the three-dimensional current flow in an excitable, unmyelinated axon is considered. Where the axon radius is significantly below a critical value R(crit) (that depends upon intra- and extra-cellular conductivity and ion channel conductance) the resistance of the intracellular space is significantly higher than that of the extracellular space, such that the potential outside the axon is uniformly small whilst the intracellular potential is approximated by the transmembrane potential. In turn, since the current flow is predominantly axial, it can be shown that the transmembrane potential is approximated by a solution to the one-dimensional cable equation. It is noted that the radius of the squid giant axon, investigated by (Hodgkin and Huxley 1952e), lies close to R(crit). This motivates us to apply the three-dimensional model to the squid giant axon and compare the results thus found to those obtained using the cable equation. In the context of the in vitro experiments conducted in (Hodgkin and Huxley 1952e) we find only a small difference between the wave profiles determined using these two different approaches and little difference between the speeds of action potential propagation predicted. This suggests that the cable equation approximation is accurate in this scenario. However when applied to the it in vivo setting, in which the conductivity of the surrounding tissue is considerably lower than that of the axoplasm, there are marked differences in both wave profile and speed of action potential propagation calculated using the two approaches. In particular, the cable equation significantly over predicts the increase in the velocity of propagation as axon radius increases. The consequences of these results are discussed in terms of the evolutionary costs associated with increasing the speed of action potential propagation by increasing axon radius.

  14. Mediterranean salt giants beyond the evaporite model: The Sicily perspective

    Science.gov (United States)

    Carmelo Manuella, Fabio; Scribano, Vittorio; Carbone, Serafina; Hovland, Martin; Johnsen, Hans-Konrad; Rueslåtten, Håkon

    2017-04-01

    Mediterranean salt giants, occurring both in sub-seafloor and in onshore settings (the "Gessoso Solfifera Group"), are traditionally explained by repeated cycles of desiccation and replenishment of the entire basin. However, such hypotheses are strongly biased by mass balance calculations and geodynamic considerations. In addition, any hypothesis without full desiccation, still based on the evaporite model, should consider that seawater brines start to precipitate halite when 2/3 of the seawater has evaporated, and hence the level of the basin cannot be the same as the adjacent ocean. On the other hand, hydrothermal venting of hot saline brines onto the seafloor can precipitate salt in a deep marine basin if a layer of heavy brine exists along the seafloor. This process, likely related to sub-surface boiling or supercritical out-salting (Hovland et al., 2006), is consistent with geological evidence in the Red Sea "Deeps" (Hovland et al., 2015). Although supercritical out-salting and phase separation can sufficiently explain the formation of several marine salt deposits, even in deep marine settings, the Mediterranean salt giant formations can also be explained by the serpentinization model (Scribano et al., 2016). Serpentinization of abyssal peridotites does not involve seawater salts, and large quantities of saline brines accumulate in pores and fractures of the sub-seafloor serpentinites. If these rocks undergo thermal dehydration, for example, due to igneous intrusions, brines and salt slurries can migrate upwards as hydrothermal plumes, eventually venting at the seafloor, giving rise to giant salt deposits over time. These hydrothermal processes can take place in a temporal sequence, as it occurred in the "Caltanissetta Basin" (Sicily). There, salt accumulation associated with serpentinization started during Triassic times (and even earlier), and venting of heavy brines onto the seafloor eventually occurred in the Messinian via the hydrothermal plume mechanism

  15. High-Resolution Measurement of the {sup 4}He({gamma},n) Reaction in the Giant Resonance Region

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Bjoern

    2003-03-01

    A comprehensive near-threshold {sup 4}He(gamma,n) absolute cross section measurement has been performed at the high-resolution tagged-photon facility MAX-lab located in Lund, Sweden. The 20 < Eg < 45 MeV tagged photons (covering the Giant Dipole Resonance energy region) were directed towards a liquid {sup 4}He target, and knocked-out neutrons were detected in a pair of 60 cm x 60 cm vetoed NE213A liquid scintillator arrays. The intense and varying charge-neutral experimental backgrounds were carefully quantified and removed from the data using a precision fitting procedure. Eight average laboratory angles (30, 45, 60, 75, 90, 105, 120, and 135 deg) were investigated for eight photon energy bins (25, 27, 29, 31, 35, 36, 39, and 41 MeV), resulting in 64 differential cross sections. These angular distributions were integrated to produce total cross sections as a function of photon energy. The resulting cross sections peak at 1.9 mb at a photon energy of 27 MeV, and fall off to a near-constant value of 1.1 mb by 36 MeV. Further, they are in excellent agreement with those measured by Sims et al. using tagged photons in the Quasi-Deuteron energy region. Overall, the results favor modern theoretical models which are based upon a charge-symmetric nucleon-nucleon force, in marked contrast to the recommendations made by Calarco et al. in 1983 based on the sparse {sup 4}He(gamma,n) data available at the time.

  16. Construction and analysis of a giant gartersnake (Thamnophis gigas) population projection model

    Science.gov (United States)

    Rose, Jonathan P.; Ersan, Julia S. M.; Wylie, Glenn D.; Casazza, Michael L.; Halstead, Brian J.

    2018-03-19

    The giant gartersnake (Thamnophis gigas) is a state and federally threatened species precinctive to California. The range of the giant gartersnake has contracted in the last century because its wetland habitat has been drained for agriculture and development. As a result of this habitat alteration, giant gartersnakes now largely persist in and near rice agriculture in the Sacramento Valley, because the system of canals that conveys water for rice growing approximates historical wetland habitat. Many aspects of the demography of giant gartersnakes are unknown, including how individuals grow throughout their life, how size influences reproduction, and how survival varies over time and among populations. We studied giant gartersnakes throughout the Sacramento Valley of California from 1995 to 2016 using capture-mark-recapture to study the growth, reproduction, and survival of this threatened species. We then use these data to construct an Integral Projection Model, and analyze this demographic model to understand which vital rates contribute most to the growth rate of giant gartersnake populations. We find that giant gartersnakes exhibit indeterminate growth; growth slows as individuals’ age. Fecundity, probability of reproduction, and survival all increase with size, although survival may decline for the largest female giant gartersnakes. The population growth rate of giant gartersnakes is most influenced by the survival and growth of large adult females, and the size at which 1 year old recruits enter the population. Our results indicate that management actions benefitting these influential demographic parameters will have the greatest positive effect on giant gartersnake population growth rates, and therefore population persistence. This study informs the conservation and management of giant gartersnakes and their habitat, and illustrates the effectiveness of hierarchical Bayesian models for the study of rare and elusive species.

  17. Heavy ion coulomb excitation and gamma decay studies of the one and two phonon giant dipole resonances in 208Pb and 209Bi

    International Nuclear Information System (INIS)

    Mueller, P.E.; Beene, J.R.; Bertrand, F.E.; Halbert, M.L.; Olive, D.H.; Varner, R.L.; Sherrill, B.; Thoennessen, M.; Lautridou, P.; Lefevre, F.; Marques, M.; Matulewicz, T.; Mittig, W.; Ostendorf, R.; Roussel-Chomaz, P.; Schutz, Y.; Pol, J. van; Wilschut, H.W.; Diaz, J.; Ferrero, J.L.; Marin, A.

    1994-01-01

    Projectile - phonon coincidences were measured for the scattering of an 80 MeV/nucleon 64 Zn beam from 208 Pb and 209 Bi targets at the GANIL heavy ion accelerator facility. Projectile-like particles between 0.5 and 4.5 relative to the incident beam direction were detected in the SPEG energy loss spectrometer where their momentum, charge, and mass were determined. Photons were detected in the BaF 2 scintillation detector array TAPS. Light charged particles produced in the reaction were detected in the KVI Forward Wall. The analysis of the data acquired in this experiment is focused on three different phenomena: (1) the two phonon giant dipole resonance, (2) time dependence of the decay of the one phonon giant dipole resonance, and (3) giant resonance strength in projectile nuclei. (orig.)

  18. A SECOND GIANT PLANET IN 3:2 MEAN-MOTION RESONANCE IN THE HD 204313 SYSTEM

    International Nuclear Information System (INIS)

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Brugamyer, Erik J.; Barnes, Stuart I.; Caldwell, Caroline; Horner, J.; Wittenmyer, Robert A.; Simon, Attila E.

    2012-01-01

    We present eight years of high-precision radial velocity (RV) data for HD 204313 from the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The star is known to have a giant planet (Msin i = 3.5 M J ) on a ∼1900 day orbit, and a Neptune-mass planet at 0.2 AU. Using our own data in combination with the published CORALIE RVs of Ségransan et al., we discover an outer Jovian (Msin i = 1.6 M J ) planet with P ∼ 2800 days. Our orbital fit suggests that the planets are in a 3:2 mean motion resonance, which would potentially affect their stability. We perform a detailed stability analysis and verify that the planets must be in resonance.

  19. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets - Implications for the Solar System Formation

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; hide

    2012-01-01

    The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  20. USING SCHUMANN RESONANCE MEASUREMENTS FOR CONSTRAINING THE WATER ABUNDANCE ON THE GIANT PLANETS—IMPLICATIONS FOR THE SOLAR SYSTEM'S FORMATION

    International Nuclear Information System (INIS)

    Simões, Fernando; Pfaff, Robert; Klenzing, Jeffrey; Freudenreich, Henry; Bromund, Kenneth; Martin, Steven; Rowland, Douglas; Hamelin, Michel; Berthelier, Jean-Jacques; Béghin, Christian; Lebreton, Jean-Pierre; Grard, Rejean; Sentman, Davis; Takahashi, Yukihiro; Yair, Yoav

    2012-01-01

    The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  1. Empty-electronic-state evolution for Sc and electron dynamics at the 3p-3d giant dipole resonance

    International Nuclear Information System (INIS)

    Hu, Y.; Wagener, T.J.; Gao, Y.; Weaver, J.H.

    1989-01-01

    Inverse photoemission has been used to study the developing electronic states of an early transition metal, Sc, during thin-film growth and to investigate the effects of these states on the 3p-3d giant dipole resonance. Energy- and coverage-dependent intensity variations of the empty Sc states show that the 3d maximum moves 1.1 eV toward the Fermi level as the thickness of the Sc film increases from 1 to 300 A as measured with an incident electron energy of 41.25 eV, an effect attributed to metallic band formation via hybridization of atomic 4s and 3d states. Incident-energy-dependent intensity variations for these empty Sc features show resonant photon emission for incident electron energies above the 3p threshold, with maxima at 43 and 44 eV for 300- and 5-A-thick films, respectively. Considerations of hybridization-induced energy shifts of the empty Sc 3d states demonstrate that the radiative energy changes very little with Sc coverages. These studies indicate coupling of decay channels involving the inverse photoemission continuum and the recombination of the atomic 3p-3d giant dipole transition, the energy of the latter being determined by atomic 3p-3d excitation processes

  2. Coherent and incoherent giant dipole resonance γ-ray emission induced by heavy ion collisions: Study of the 40Ca+48Ca system by means of the constrained molecular dynamics model

    International Nuclear Information System (INIS)

    Papa, Massimo; Cardella, Giuseppe; Bonanno, Antonio; Pappalardo, Giuseppe; Rizzo, Francesca; Amorini, Francesca; Bonasera, Aldo; Di Pietro, Alessia; Figuera, Pier Paolo; Tudisco, Salvatore; Maruyama, Toshiki

    2003-01-01

    Coherent and incoherent dipolar γ-ray emission is studied in a fully dynamical approach by means of the constrained molecular dynamics model. The study is focused on the system 40 Ca+ 48 Ca for which recently experimental data have been collected at 25 MeV/nucleon. The approach allows us to explain the experimental results in a self-consistent way without using statistical or hybrid models. Moreover, calculations performed at higher energy show interesting correlations between the fragment formation process, the degree of collectivity, and the coherence degree of the γ-ray emission process

  3. Modelling linewidths of Kepler red giants in NGC 6819

    Science.gov (United States)

    Aarslev, Magnus J.; Houdek, Günter; Handberg, Rasmus; Christensen-Dalsgaard, Jørgen

    2018-04-01

    We present a comparison between theoretical, frequency-dependent, damping rates and linewidths of radial-mode oscillations in red-giant stars located in the open cluster NGC 6819. The calculations adopt a time-dependent non-local convection model, with the turbulent pressure profile being calibrated to results of 3D hydrodynamical simulations of stellar atmospheres. The linewidths are obtained from extensive peakbagging of Kepler lightcurves. These observational results are of unprecedented quality owing to the long continuous observations by Kepler. The uniqueness of the Kepler mission also means that, for asteroseismic properties, this is the best data that will be available for a long time to come. We therefore take great care in modelling nine RGB stars in NGC 6819 using information from 3D simulations to obtain realistic temperature stratifications and calibrated turbulent pressure profiles. Our modelled damping rates reproduce well the Kepler observations, including the characteristic depression in the linewidths around the frequency of maximum oscillation power. Furthermore, we thoroughly test the sensitivity of the calculated damping rates to changes in the parameters of the nonlocal convection model.

  4. Geometrical optics model of Mie resonances

    Science.gov (United States)

    Roll; Schweiger

    2000-07-01

    The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.

  5. Giant monopole resonance in even-A Cd isotopes, the asymmetry term in nuclear incompressibility, and the 'softness' of Sn and Cd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Patel, D. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Garg, U., E-mail: garg@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Fujiwara, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Akimune, H. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Berg, G.P.A. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Harakeh, M.N. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); Itoh, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Kawabata, T. [Center for Nuclear Studies, University of Tokyo, Tokyo 113-0033 (Japan); Kawase, K. [Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047 (Japan); Nayak, B.K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Ohta, T. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Ouchi, H. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Piekarewicz, J. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Uchida, M. [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8850 (Japan); Yoshida, H.P. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Yosoi, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan)

    2012-12-05

    The isoscalar giant monopole resonance (ISGMR) in even-A Cd isotopes has been studied by inelastic {alpha}-scattering at 100 MeV/u and at extremely forward angles, including 0 Degree-Sign . The asymmetry term in the nuclear incompressibility extracted from the ISGMR in Cd isotopes is found to be K{sub {tau}}=-555{+-}75 MeV, confirming the value previously obtained from the Sn isotopes. ISGMR strength has been computed in relativistic RPA using NL3 and FSUGold effective interactions. Both models significantly overestimate the centroids of the ISGMR strength in the Cd isotopes. Combined with other recent theoretical effort, the question of the 'softness' of the open-shell nuclei in the tin region remains open still.

  6. QPM Analysis of 205Tl Nuclear Excitations below the Giant Dipole Resonance

    Science.gov (United States)

    Benouaret, N.; Beller, J.; Isaak, J.; Kelley, J. H.; Pai, H.; Pietralla, N.; Ponomarev, V. Yu.; Raut, R.; Romig, C.; Rusev, G.; Savran, D.; Scheck, M.; Schnorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zweidinger, M.

    2015-05-01

    We analysed our experimental recent findings of the dipole response of the odd-mass stable nucleus 205Tl within the quasi-particle phonon model. Using the phonon basis constructed for the neighbouring 204Hg and wave function configurations for 205Tl consisting of a mixture of quasiparticle ⊗ N-phonon configurations (N=0,1,2), only one group of fragmented dipole excited states has been reproduced at 5.5 MeV in comparison to the experimental distribution which shows a second group at about 5 MeV. The computed dipole transition strengths are mainly of E1 character which could be associated to the pygmy dipole resonance.

  7. QPM Analysis of 205Tl Nuclear Excitations below the Giant Dipole Resonance

    Directory of Open Access Journals (Sweden)

    Benouaret N.

    2015-01-01

    Full Text Available We analysed our experimental recent findings of the dipole response of the odd-mass stable nucleus 205Tl within the quasi-particle phonon model. Using the phonon basis constructed for the neighbouring 204Hg and wave function configurations for 205Tl consisting of a mixture of quasiparticle ⊗ N-phonon configurations (N=0,1,2, only one group of fragmented dipole excited states has been reproduced at 5.5 MeV in comparison to the experimental distribution which shows a second group at about 5 MeV. The computed dipole transition strengths are mainly of E1 character which could be associated to the pygmy dipole resonance.

  8. Current perpendicular to plane giant magnetoresistance and tunneling magnetoresistance treated with unified model

    NARCIS (Netherlands)

    Jonkers, PAE

    2002-01-01

    The conceptual similarity between current perpendicular to plane giant magnetoresistance (CPP-GMR) and tunneling magnetoresistance (TMR) is exploited by utilizing a unified single-particle model accounting for both types of magnetoresistance. By defining structures composed of ferromagnetic,

  9. Decay of the isoscalar 1(h/2π)ω giant E3 resonance in 92Mo

    International Nuclear Information System (INIS)

    Klein, R.A.

    1984-01-01

    By means of the Heidelberg tandem-post accelerator combination the decay of the isoscalar 1 (h/2π)ω giant E3 resonance (LEOR) in 92 Mo was studied by (α, α', γ) coincidence measurements. At an incident energy of 50.4 MeV of the α particles the scattered helium nuclei were spectroscoped by eight semiconductor detectors in a maximum of the L=3 angular distribution. The γ quanta emitted coincidently by the excited target nuclei were detected in three high-resolution Ge diodes. Because of the good resolution both in the alpha and in the gamma branch for about 30 states in the excitation energy range of 1-7 MeV branching ratios for the gamma decay could be measured. For 16 of these levels lifetimes were determined by the Doppler-shift attenuation method. Starting from the determined branching ratios and typical lifetimes (40-90 fs) for 3 - states in the excitation-energy range of the LEOR (5-10 MeV) an earlier reported strong ground-state decay (8%) of the LEOR can be excluded. Rather the LEOR decays so as it is expected by the model of the statistical decay namely dominantly to low-lying 3 - , 4 - , and above all 5 - levels. A likewise reported strong E1-decay of the LEOR to the 2 + 1 state in 90 Zr which is implicated in the framework of a collective model in connection with the E3 ground-state transitions can in 92 Mo also not be confirmed. In spite of the strongly collective nature of the first 2 + state in 92 Mo an increased LEOR decay to this level was not observed. Against that in the LEOR region ground-state transitions of 1 - states with isoscalar nature were spectroscoped. The observation of these levels is also reproduced by performed RPA calculations. A parallel measurement on 90 Zr confirms the results of this thesis. (orig./HSI) [de

  10. Photon nuclear scattering on lead and bismuth in the region of the giant resonance

    International Nuclear Information System (INIS)

    Tamas, Gabriel.

    1976-01-01

    The results of monochromatic photon nuclear scattering studies on natural lead and bismuth targets are presented. The cross sections for the inelastic scattering leading to the first excited levels of 204 Pb, 206 Pb and 207 Pb are important, in agreement with theoretical predictions. The elastic scattering amplitude is related to the total photon absorption by dispersion relations. It is then possible to determine the spin of resonances excited by the reaction studied. Precise measurements carried out between 14 and 20MeV revealed that the angular distribution cannot be explained by a single dipolar resonance. A quadrupolar resonance at E 2 =14MeV must be introduced [fr

  11. Excitation of giant resonances in 20Ne + 90Zr and 208Pb inelastic scattering at 40 MeV/u1

    International Nuclear Information System (INIS)

    Suomijaervi, T.; Beaumel, D.; Blumenfeld, Y.; Chomaz, P.; Frascaria, N.; Garron, J.P.; Jacmart, J.C.; Roynette, J.C.; Kraus, L.; Link, I.

    1988-01-01

    The giant resonance region in the inelastic spectra from the reactions 20 Ne + 90 Zr and 20 Ne + 208 Pb at 40 MeV/nucleon has been studied with a good energy and angular resolutions. The strength distributions of the different multipolarities contributing to the cross section were obtained by a resonance shape independent analysis. In the case of 208 Pb the GDR strength was found to be strongly shifted towards lower excitation energies which can be explained by the exponentially decreasing Coulomb excitation probability. Furthermore, indications for a high multipolarity component in the resonance structure were found in both reactions

  12. Modeling of supermodes in coupled unstable resonators

    International Nuclear Information System (INIS)

    Townsend, S.S.

    1986-01-01

    A general formalism describing the supermodes of an array of N identical, circulantly coupled resonators is presented. The symmetry of the problem results in a reduction of the N coupled integral equations to N decoupled integral equations. Each independent integral equation defines a set of single-resonator modes derived for a hypothetical resonator whose geometry resembles a member of the real array with the exception that all coupling beams are replaced by feedback beams, each with a prescribed constant phase. A given array supermode consists of a single equivalent resonator mode appearing repetitively in each resonator with a prescribed relative phase between individual resonators. The specific array design chosen for example is that of N adjoint coupled confocal unstable resonators. The impact of coupling on the computer modeling of this system is discussed and computer results for the cases of two- and four-laser coupling are presented

  13. Excitation of the giant quadrupole resonance in /sup 58/Ni with /sup 20/Ne

    CERN Document Server

    Bohlen, H G; Ingold, G; Lettau, H; Ossenbrink, H; von Oertzen, W

    1981-01-01

    The heavy-ion induced excitation of the quadrupole resonance in /sup 58/Ni has been studied with /sup 20/Ne beams of 14.5 and 19.6 MeV/N incident energy. The broad resonance structure is clearly observed; the strength exhausts 44% and 60% of the energy weighted sum rule (EWSR) at the two incident energies, respectively. The background is partly explained by a three-body reaction mechanism, which is based on the one-nucleon pick-up reaction into unbound states followed by one- nucleon emission. The remaining part is interpreted as inelastic excitation of other multipoles. (11 refs).

  14. Evaluation of characteristics of some giant multipole resonances within a many-particle approach

    International Nuclear Information System (INIS)

    Steshenko, A.J.

    1994-01-01

    Within a microscopic approach including the many-particle basis of longitudinal-vibration functions (Sp 2 (2,R))-basis) the widths and energies of some gigantic isoscalar monopole and quadrupole resonances in light magic and near-magic nuclei have been calculated. The theoretical results are in agreement with the available experimental data

  15. Giant halos in medium nuclei within modified relativistic mean field (MRMF) model

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, A. M., E-mail: alpi.mahisha@gmail.com; Sulaksono, A. [Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Sumaryada, T. [Department of Physics, Bogor Agricultural University, Jalan Meranti Kampus IPB Dramaga Bogor 16680 (Indonesia)

    2016-04-19

    The large number of neutrons in a region beyond a closed shell core indicates the presence of giant halos in nuclei. In this work, by using the Rotival method within a modified relativistic mean field (MRMF) model, we predict theoretically the formation of giant halos in Cr and Zr isotopes. The MRMF model is a modification of standard RMF model augmented with isoscalar and isovector tensor terms, isovector-isoscalar vector cross coupling term and electromagnetic exchange term for Coulomb interaction in local density approximation (LDA).

  16. Calculations of the giant-dipole-resonance photoneutrons using a coupled EGS4-morse code

    International Nuclear Information System (INIS)

    Liu, J.C.; Nelson, W.R.; Kase, K.R.; Mao, X.S.

    1995-10-01

    The production and transport of the photoneutrons from the giant-dipoleresonance reaction have been implemented in a coupled EGS4-MORSE code. The total neutron yield (including both the direct neutron and evaporation neutron components) is calculated by folding the photoneutron yield cross sections with the photon track length distribution in the target. Empirical algorithms based on the measurements have been developed to estimate the fraction and energy of the direct neutron component for each photon. The statistical theory in the EVAP4 code, incorporated as a MORSE subroutine, is used to determine the energies of the evaporation neutrons. These represent major improvements over other calculations that assumed no direct neutrons, a constant fraction of direct neutrons, monoenergetic direct neutron, or a constant nuclear temperature for the evaporation neutrons. It was also assumed that the slow neutrons ( 2 θ, which have a peak emission at 900. Comparisons between the calculated and the measured photoneutron results (spectra of the direct, evaporation and total neutrons; nuclear temperatures; direct neutron fractions) for materials of lead, tungsten, tantalum and copper have been made. The results show that the empirical algorithms, albeit simple, can produce reasonable results over the interested photon energy range

  17. The importance of the giant resonances in hadron and muon induced fission

    International Nuclear Information System (INIS)

    Hartfiel, J.

    1985-01-01

    In the first part of the thesis the fission probability of 238 U by means of the reaction 238 U(α,α'f) is studied at an incident energy of 480 MeV and a scattering angle of 3.4 0 . In the measured spectrum of the inelastically scattered α particles a strong resonance is found in the excitation energy range from 8 to 13 MeV. The center of mass of the resonance lies at 11 MeV. Its width extends to 4.5 MeV. In the second part of the thesis the muon induced fission of 235 U, 238 U, 237 Np, 242 Pu, and 244 Pu is studied. Thereby both fission fragments are detected in coincidence by two surface barrier detectors. By this it is possible for the first time to measure the mass and kinetic energy distribution of the fission fragments. (orig./HSI) [de

  18. Development and test of the e+e- pair spectrometer for the detection of the electromagnetic decay of the E0 giant resonance state

    International Nuclear Information System (INIS)

    Katayama, I.; Fujita, Y.; Fujiwara, M.; Morinobu, S.; Ikegami, H.

    1978-01-01

    A lens type pair spectrometer of electron and positron has been developed and tested in order to detect the electromagnetic decay (pair creation) of the E0 giant resonance state. It was found from the one day machine time test (targets: natural Mo and Pb, beam:α, 70 MeV) that the improvement of the apparatus is necessary for getting a definite information on the yield of high energy electron pairs. (author)

  19. Electric giant resonances in sup 4 sup 0 Ca and sup 4 sup 8 Ca probed with electron and proton scattering coincidence experiments

    CERN Document Server

    Strauch, S

    1999-01-01

    Excitation and particle decay of electric giant resonances in sup 4 sup 0 Ca and sup 4 sup 8 Ca are studied with electron and proton beams. Recent results of a sup 4 sup 8 Ca(e,e'n) measurement performed at the S-DALINAC in Darmstadt with kinematics that selectively populate electric monopole, dipole and quadrupole excitations are presented. The extracted B(E1) strength distribution is in good agreement with photo nuclear data and the predictions of microscopic calculations. The summed B(E2+E0) strength distribution, however disagrees with the result of these calculations. The neutron emission of the giant dipole resonance in sup 4 sup 8 Ca shows a large fraction of direct decay to sup 4 sup 7 Ca hole states. In addition, isoscalar giant monopole resonance strength in sup 4 sup 0 Ca was extracted from (e,e'alpha sub 0) and (e,e'alpha sub 1) angular correlations. A study of the quadrupole strength in the alpha sub 0 decay channel of sup 4 sup 0 Ca with a (p,p'alpha) coincidence measurement reiterates the unsol...

  20. Improvement of photoneutron spectrum measurement produced by bombardment of 2 GeV electrons above giant dipole resonance region

    International Nuclear Information System (INIS)

    Lee, H. S.; Park, J. S.; Choi, H. D.; Sato, Tatsuhiko; Shin, Kasuo; Ban, Syuichi

    2000-01-01

    Above the Giant Dipole Resonance (GDR) region, high energy photoneutron spectra produced by irradiation of 2.04 GeV electrons into Pb target were measured by Time-of-Flight (TOF) technique. The differential photoneutron yields were obtained at a fixed angle of 90 degrees to the electron beam direction. The TOF system consists of Pilot-U plastic scintillation detector, which has fast response time, and the high speed multiscaler or CAMAC TDC. In the improvement of experimental setup to extend the flight distance to 10.4 m lead to make the measurable energy to 500 MeV from 300 MeV. And using the TDC based electronics lead to use a veto counter. The results were compared with the calculated one by using EGS4 and Modified PICA95. The characteristics of this TOF system was introduced in this paper and the results for several measuring conditions, which are flight distance, TOF electronics, and type of neutron detector, were discussed to improve the accuracy of this measurement

  1. Isomeric ratios in photonuclear reactions of molybdenum isotopes induced by bremsstrahlung in the giant dipole resonance region

    International Nuclear Information System (INIS)

    Tran Duc Thiep; Truong Thi An; Phan Viet Cuong; Nguyen The Vinh; Bui Minh Hue; Belov, A.G.; Maslov, O.D.; Mishinsky, G.V.; Zhemenik, V.I.

    2017-01-01

    We have determined the isomeric ratios of isomeric pairs "9"7"m","gNb, "9"5"m","gNb and "9"1"m","gMo produced in "9"8Mo(γ, p)"9"7"m","gNb, "9"6Mo(γ, p)"9"5"m","gNb and "9"2Mo(γ, n)"9"1"m","gMo photonuclear reactions in the giant dipole resonance (GDR) region by the activation method. The results were analyzed, discussed and compared with the similar data from literature to examine the role of excitation energy, neutron configuration, channel effect, and direct and pre-equilibrium processes in (γ, p) photonuclear reactions. In this work the isomeric ratios for "9"7"m","gNb from 14 to 19 MeV, for "1"9"5"m","gNb from 14 to 24 MeV except 20 and 23.5 MeV and for "9"1"m","gMo at 14 and 15 MeV were first measured.

  2. Hyperon resonances in SU(3) soliton models

    International Nuclear Information System (INIS)

    Scoccola, N.N.

    1990-01-01

    Hyperon resonances excited in kaon-nucleon scattering are investigated in the framework of an SU(3) soliton model in which kaon degrees of freedom are treated as small fluctuations around an SU(2) soliton. For partial waves l≥2 the model predicts correctly the quantum numbers and average excitation energies of most of the experimentally observed Λ and Σ resonances. Some disagreements are found for lower partial waves. (orig.)

  3. Giant intracranial aneurysms; Magnetic resonance imaging follow-up and clinical symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, Takeshi; Fujita, Katsuzo; Tamaki, Norihiko; Matsumoto, Satoshi [Kobe Univ. (Japan). School of Medicine; Yamashita, Haruo; Shirakata, Masaya

    1991-06-01

    Twenty-four intracranial aneurysms over 20 mm in diameter were studied with magnetic resonance (MR) imaging. MR imaging follow-up of eight cases revealed induced thrombus with homogeneous intensity and decreased size even after complete intraluminal thrombosis. Most cases demonstrated homogeneous intensity thrombus in contrast to the heterogeneous intensity of spontaneous thrombus. The clinical symptoms could not be explained retrospectively by the thrombus characteristics. Perianeurysmal high intensity, indicating cerebral edema, was detected in one case presenting with a rapid increase in size. MR imaging is useful for following these pathological intra- and perianeurysmal changes. (author).

  4. Giant resonance and dipolar states of light nuclei; La resonance geante et les etats dipolaires des noyaux legers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Cross-section for ({gamma},n) reactions on C{sup 12},, O{sup 10}, Mg{sup 24} and Ca{sup 40} have been measured using 'monochromatic' gamma rays of variable energy obtained from the annihilation in flight of fast positrons. We compare the observed structure with the shell model of nucleus, including residual interaction between nucleons by 'hole particle' techniques. (author) [French] Les photons 'monochromatiques', d'energie variable, produits par l'annihilation en vol de positons, sont utilises pour mesurer la section efficace ({gamma},n) de {sup 12}C, {sup 16}O, {sup 21}Mg et {sup 40}Ca. La structure observee est comparee aux previsions theoriques du modele a particules independantes, tenant compte de l'interaction residuelle entre nucleons par la methode 'trou-particule'. (auteur)

  5. Modelling the Galactic bar using OGLE-II red clump giant stars

    NARCIS (Netherlands)

    Rattenbury, Nicholas J.; Mao, Shude; Sumi, Takahiro; Smith, Martin C.

    2007-01-01

    Red clump giant (RCG) stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration data base to constrain analytic triaxial models for the Galactic bar. We find the bar major-axis is

  6. Riboflavin and chlorophyll as photosensitizers in electroformed giant unilamellar vesicles as food models

    DEFF Research Database (Denmark)

    Wang, Hui Jing; Liang, Ran; du, Hui Hui

    2017-01-01

    Electroformed giant unilamellar vesicles (GUVs) were found to have optimal sizes (~10 µm average diameter) for studying effects of photosensitizers and antioxidants in lipid bilayers as food models. By using optical microscopy and digital image processing techniques, no membrane damage was found ...

  7. TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS

    International Nuclear Information System (INIS)

    Ida, S.; Lin, D. N. C.; Nagasawa, M.

    2013-01-01

    The ubiquity of planets and diversity of planetary systems reveal that planet formation encompasses many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches have led to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interactions between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamical interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (∼> 30 AU) gas giants with nearly circular orbits

  8. Properties of Hot and Fast Rotating Atomic Nuclei Studied by Means of Giant Dipole Resonance in Exclusive Experiments

    International Nuclear Information System (INIS)

    Maj, A.

    2000-01-01

    This work entitled ''Properties of hot and fast rotating atomic nuclei studied by means of Giant Dipole Resonance in exclusive experiments'', is the habilitation thesis of dr. Adam Maj. It consists of the review (in Polish) of performed research and of attached reprints from 16 original publications (in English) which A. Maj is the main or one of the main authors. All the studies were performed in collaboration with the groups from Milano and Copenhagen, using the HECTOR array equipment (described in chapter V). The Giant Dipole Resonance couples to the quadrupole degrees of freedom of the nucleus, and therefore constitutes a unique probe to test the shapes of atomic nuclei. In addition, the γ decay of the GDR from highly excited nuclei is a very fast process, it can compete with other modes of nuclear decay, and therefore can provide the information on the initial stages of excited nuclei. The presented investigations were concentrated on the following aspects: the shapes and thermal shape fluctuations, the origin of the behaviour of the GDR width, the properties of some exotic nuclei (Jacobi shapes, superdeformation, superheavy nuclei) and on ''entrance channel'' effects. The GDR γ decay was measured for nuclei with very different masses: from light nuclei with A≅45, through A≅110, 145,170,190, up to superheavy nuclei with A≅270. The shapes of hot nuclei are not fixed but fluctuate. The extent of these fluctuations and their influence on the measured quantities (GDR strength function, angular distribution and effective shape) is discussed in chapter VI.1. The observed width of the GDR is found to arise from the interplay of two effects: the thermal shape fluctuations, which are controlled by the nuclear temperature, and the deformation effects, controlled by the angular momentum. The ''collisional damping'' effect, which should influence the intrinsic GDR width, was found to be negligible (chapter VI.2). The GDR γ decay from hot superheavy nucleus 272 Hs

  9. Study of Gamow-Teller giant resonance in /sup 90/Nb by the /sup 90/Zr(/sup 3/He,t)/sup 90/Nb reaction at 90 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.; Fujita, Y.; Katayama, I.; Morinobu, S.; Yamazaki, T.; Itahashi, T.; Ikegami, H. [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Hayakawa, S. I.; Ikegami, Hidetsugu; Muraoka, Mitsuo [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    A Gamow-Teller giant resonance in /sup 90/Nb was excited by the /sup 90/Zr(/sup 3/He, t) reaction at 89.5 MeV. The strength of the resonance was localized in the energy region of Ex = 4.5 - 7.5 MeV. The transition was found to be dominated by the L = 2 transfer.

  10. Stochastic resonance in models of neuronal ensembles

    International Nuclear Information System (INIS)

    Chialvo, D.R.; Longtin, A.; Mueller-Gerkin, J.

    1997-01-01

    Two recently suggested mechanisms for the neuronal encoding of sensory information involving the effect of stochastic resonance with aperiodic time-varying inputs are considered. It is shown, using theoretical arguments and numerical simulations, that the nonmonotonic behavior with increasing noise of the correlation measures used for the so-called aperiodic stochastic resonance (ASR) scenario does not rely on the cooperative effect typical of stochastic resonance in bistable and excitable systems. Rather, ASR with slowly varying signals is more properly interpreted as linearization by noise. Consequently, the broadening of the open-quotes resonance curveclose quotes in the multineuron stochastic resonance without tuning scenario can also be explained by this linearization. Computation of the input-output correlation as a function of both signal frequency and noise for the model system further reveals conditions where noise-induced firing with aperiodic inputs will benefit from stochastic resonance rather than linearization by noise. Thus, our study clarifies the tuning requirements for the optimal transduction of subthreshold aperiodic signals. It also shows that a single deterministic neuron can perform as well as a network when biased into a suprathreshold regime. Finally, we show that the inclusion of a refractory period in the spike-detection scheme produces a better correlation between instantaneous firing rate and input signal. copyright 1997 The American Physical Society

  11. Modeling and Control for Giant Magnetostrictive Actuators with Rate-Dependent Hysteresis

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2013-01-01

    Full Text Available The rate-dependent hysteresis in giant magnetostrictive materials is a major impediment to the application of such material in actuators. In this paper, a relevance vector machine (RVM model is proposed for describing the hysteresis nonlinearity under varying input current. It is possible to construct a unique dynamic model in a given rate range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set input signal. Subsequently, a proportional integral derivative (PID control scheme combined with a feedforward compensation is implemented on a giant magnetostrictive actuator (GMA for real-time precise trajectory tracking. Simulations and experiments both verify the effectiveness and the practicality of the proposed modeling and control methods.

  12. The effect of a giant wind farm on precipitation in a regional climate model

    International Nuclear Information System (INIS)

    Fiedler, B H; Bukovsky, M S

    2011-01-01

    The Weather Research and Forecasting (WRF) model is employed as a nested regional climate model to study the effect of a giant wind farm on warm-season precipitation in the eastern two-thirds of the USA. The boundary conditions for WRF are supplied by 62 years of NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research) global reanalysis. In the model, the presence of a mid-west wind farm, either giant or small, can have an enormous impact on the weather and the amount of precipitation for one season, which is consistent with the known sensitivity of long-term weather forecasts to initial conditions. The effect on climate is less strong. In the average precipitation of 62 warm seasons, there is a statistically significant 1.0% enhancement of precipitation in a multi-state area surrounding and to the south-east of the wind farm.

  13. Width and strength of the hot giant dipole resonance. The role of the life time of the compound nucleus and the transition from order to chaos

    International Nuclear Information System (INIS)

    Chomaz, P.

    1996-01-01

    A bump in the γ decay spectrum is observed at high energies which is due to the excitation of the Giant Dipole Resonance (GDR) in the compound nucleus. The fact is discussed that the total width of the γ-ray spectrum of the GDR transitions must contain twice the width of the compound nucleus levels. This implies that one must except a rapid increase of the width of the GDR. This increase contributes to the observed saturation of the photon multiplicity. A new suppression factor due to the lost of collectivity induced by the fast particle emission is proposed. (K.A.)

  14. Isotopic Dependence of the Giant Monopole Resonance in the Even-A 112-124Sn Isotopes and the Asymmetry Term in Nuclear Incompressibility

    International Nuclear Information System (INIS)

    Li, T.; Garg, U.; Liu, Y.; Marks, R.; Nayak, B. K.; Rao, P. V. Madhusudhana; Fujiwara, M.; Hashimoto, H.; Kawase, K.; Nakanishi, K.; Okumura, S.; Yosoi, M.; Itoh, M.; Ichikawa, M.; Matsuo, R.; Terazono, T.; Uchida, M.; Kawabata, T.; Akimune, H.; Iwao, Y.

    2007-01-01

    The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A Sn isotopes (A=112-124) with inelastic scattering of 400-MeV α particles in the angular range 0 deg. - 8.5 deg. We find that the experimentally observed GMR energies of the Sn isotopes are lower than the values predicted by theoretical calculations that reproduce the GMR energies in 208 Pb and 90 Zr very well. From the GMR data, a value of K τ =-550±100 MeV is obtained for the asymmetry term in the nuclear incompressibility

  15. Isotopic Dependence of the Giant Monopole Resonance in the Even-A Sn112 124 Isotopes and the Asymmetry Term in Nuclear Incompressibility

    Science.gov (United States)

    Li, T.; Garg, U.; Liu, Y.; Marks, R.; Nayak, B. K.; Rao, P. V. Madhusudhana; Fujiwara, M.; Hashimoto, H.; Kawase, K.; Nakanishi, K.; Okumura, S.; Yosoi, M.; Itoh, M.; Ichikawa, M.; Matsuo, R.; Terazono, T.; Uchida, M.; Kawabata, T.; Akimune, H.; Iwao, Y.; Murakami, T.; Sakaguchi, H.; Terashima, S.; Yasuda, Y.; Zenihiro, J.; Harakeh, M. N.

    2007-10-01

    The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A Sn isotopes (A=112 124) with inelastic scattering of 400-MeV α particles in the angular range 0° 8.5°. We find that the experimentally observed GMR energies of the Sn isotopes are lower than the values predicted by theoretical calculations that reproduce the GMR energies in Pb208 and Zr90 very well. From the GMR data, a value of Kτ=-550±100MeV is obtained for the asymmetry term in the nuclear incompressibility.

  16. Testing the mutually enhanced magicity effect in nuclear incompressibility via the giant monopole resonance in the {sup 204,206,208}Pb isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Patel, D. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Garg, U., E-mail: garg@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Fujiwara, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Adachi, T. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); Akimune, H. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Berg, G.P.A. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Harakeh, M.N. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); GANIL, CEA/DSM-CNRS/IN2P3, 14076 Cean (France); Itoh, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Iwamoto, C. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Long, A.; Matta, J.T. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Murakami, T. [Division of Physics and Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Okamoto, A. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Sault, K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Talwar, R. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Uchida, M. [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8850 (Japan); and others

    2013-10-07

    Using inelastic α-scattering at extremely forward angles, including 0°, the strength distributions of the isoscalar giant monopole resonance (ISGMR) have been measured in the {sup 204,206,208}Pb isotopes in order to examine the proposed mutually enhanced magicity (MEM) effect on the nuclear incompressibility. The MEM effect had been suggested as a likely explanation of the “softness” of nuclear incompressibility observed in the ISGMR measurements in the Sn and Cd isotopes. Our experimental results rule out any manifestation of the MEM effect in nuclear incompressibility and leave the question of the softness of the open-shell nuclei unresolved still.

  17. Wavelet signatures of K-splitting of the Isoscalar Giant Quadrupole Resonance in deformed nuclei from high-resolution (p,p‧) scattering off 146, 148, 150Nd

    Science.gov (United States)

    Kureba, C. O.; Buthelezi, Z.; Carter, J.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Jingo, M.; Kleinig, W.; Krugmann, A.; Krumbolz, A. M.; Kvasil, J.; Mabiala, J.; Mira, J. P.; Nesterenko, V. O.; von Neumann-Cosel, P.; Neveling, R.; Papka, P.; Reinhard, P.-G.; Richter, A.; Sideras-Haddad, E.; Smit, F. D.; Steyn, G. F.; Swartz, J. A.; Tamii, A.; Usman, I. T.

    2018-04-01

    The phenomenon of fine structure of the Isoscalar Giant Quadrupole Resonance (ISGQR) has been studied with high energy-resolution proton inelastic scattering at iThemba LABS in the chain of stable even-mass Nd isotopes covering the transition from spherical to deformed ground states. A wavelet analysis of the background-subtracted spectra in the deformed 146, 148, 150Nd isotopes reveals characteristic scales in correspondence with scales obtained from a Skyrme RPA calculation using the SVmas10 parameterization. A semblance analysis shows that these scales arise from the energy shift between the main fragments of the K = 0 , 1 and K = 2 components.

  18. An algebraic model for three-cluster giant molecules

    International Nuclear Information System (INIS)

    Hess, P.O.; Bijker, R.; Misicu, S.

    2001-01-01

    After an introduction to the algebraic U(7) model for three bodies, we present a relation of a geometrical description of three-cluster molecule to the algebraic U(7) model. Stiffness parameters of oscillations between each of two clusters are calculated and translated to the model parameter values of the algebraic model. The model is applied to the trinuclear system l32 Sn+ α + ll6 Pd which occurs in the ternary cold fission of 252 Cf. (Author)

  19. Description of giant resonances

    International Nuclear Information System (INIS)

    Lane, A.M.

    1975-01-01

    The history of collective theories in nuclear physics is briefly reviewed. It is emphasised that some theories (like RPA) allow collectivity to emerge from calculations, while others (like GCM) essentially impose a collective framework from teh start. The former class has the incidental merit that it treats spreading of collective states arising from interaction with (discrete and continuum) particle excitations. A problem with the RPA calculations is that they are almost too detailed if one's interest is in exposing systematic qualitative features. The speaker (along with co-authors) has developed a sum-rule method for exposing such trends. It is based on the fact that one can readily evaluate three sum-rules; in addition to the familiar one with plus-one power of energy-weighting, those with minus-one and plus-three powers can be evaluated for RPA states in closed form. From the three moments, the energy and spread of the collective state can be obtained. Amongst other things, the approach gives a very simple derivation of the Suzuki-Mottelson result that collective energy equals √2 times the oscillator quantum. (orig.) [de

  20. Modeling the Formation of Giant Planet Cores I: Evaluating Key Processes

    OpenAIRE

    Levison, H. F.; Thommes, E.; Duncan, M. J.

    2009-01-01

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the the solar nebula dispersed. The most popular model of giant planet formation is the so-called 'core accretion' model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very...

  1. USING SCHUMANN RESONANCE MEASUREMENTS FOR CONSTRAINING THE WATER ABUNDANCE ON THE GIANT PLANETS-IMPLICATIONS FOR THE SOLAR SYSTEM'S FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, Fernando; Pfaff, Robert; Klenzing, Jeffrey; Freudenreich, Henry; Bromund, Kenneth; Martin, Steven; Rowland, Douglas [NASA/GSFC, Heliophysics Science Division, Space Weather Laboratory (Code 674), Greenbelt, MD (United States); Hamelin, Michel; Berthelier, Jean-Jacques [LATMOS/IPSL, UPMC, Paris (France); Beghin, Christian; Lebreton, Jean-Pierre [LPC2E, CNRS/Universite d' Orleans (France); Grard, Rejean [ESA/ESTEC, Research Scientific Support Department, Noordwijk (Netherlands); Sentman, Davis [Institute of Geophysics, University of Alaska Fairbanks, Fairbanks, AK (United States); Takahashi, Yukihiro [Department of Geophysics, Tohoku University, Sendai (Japan); Yair, Yoav [Department Life Natural Sciences, Open University of Israel, Raanana (Israel)

    2012-05-01

    The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  2. Destruction of /sup 18/O in red giants. A search for a sub-threshold resonance in the /sup 18/O+p system

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, A E; Pitt, M L

    1986-09-08

    The /sup 18/O(/sup 3/He,d)/sup 19/F reaction has been used to determine if a presumed sub-threshold resonance at Esub(c.m.)=-94 KeV in the /sup 18/O(p,..cap alpha..)/sup 15/N reaction exists at an astrophysically significant level. No evidence for this state was observed which implies a dimensionless reduced width thetasub(p)/sup 2/<5 . 10/sup -5/. In addition, a proton width GAMMAsub(p)=2 x 10/sup -19/ eV has been determined for a d-wave resonance located at Esub(c.m.)=20 keV. The resulting thermonuclear reaction rate is slow enough to ensure that /sup 18/O is not destroyed at red-giant temperatures.

  3. A Mathematical Model with Pulse Effect for Three Populations of the Giant Panda and Two Kinds of Bamboo

    Directory of Open Access Journals (Sweden)

    Xiang-yun Shi

    2013-01-01

    Full Text Available A mathematical model for the relationship between the populations of giant pandas and two kinds of bamboo is established. We use the impulsive perturbations to take into account the effect of a sudden collapse of bamboo as a food source. We show that this system is uniformly bounded. Using the Floquet theory and comparison techniques of impulsive equations, we find conditions for the local and global stabilities of the giant panda-free periodic solution. Moreover, we obtain sufficient conditions for the system to be permanent. The results provide a theoretical basis for giant panda habitat protection.

  4. Towards realistic modelling of spectral line formation - lessons learnt from red giants

    Science.gov (United States)

    Lind, Karin

    2015-08-01

    Many decades of quantitative spectroscopic studies of red giants have revealed much about the formation histories and interlinks between the main components of the Galaxy and its satellites. Telescopes and instrumentation are now able to deliver high-resolution data of superb quality for large stellar samples and Galactic archaeology has entered a new era. At the same time, we have learnt how simplifying physical assumptions in the modelling of spectroscopic data can bias the interpretations, in particular one-dimensional homogeneity and local thermodynamic equilibrium (LTE). I will present lessons learnt so far from non-LTE spectral line formation in 3D radiation-hydrodynamic atmospheres of red giants, the smaller siblings of red supergiants.

  5. Mass loss from red giants - A simple evolutionary model for NGC 7027

    Science.gov (United States)

    Jura, M.

    1984-01-01

    NGC 7027 is a young planetary nebula with the remnants of a red giant circumstellar envelope surrounding the central, ionized region. By comparing the outer molecular envelope with the inner ionized material, it is argued that the mass loss rate has decreased by at least a factor of 3, and more probably by about a factor of 10, during the past 1000 years. From this result, it is argued that the luminosity of the central star has also decreased substantially during the same time, consistent with models for the rapid evolution of stars just after they evolve off the asymptotic giant branch. In this picture, the distance to NGC 7027 is less than 1300 pc. NGC 7027 was the last (and best) example of a star where apparently the momentum in the outflowing mass /M(dot)v/ is considerably greater than the momentum in the radiation field (L/c). With the above description of this object, the evidence is now strong that quite often the mass lost from late-type giants is ultimately driven to infinity by radiation pressure on grains. If M(dot)v is as large as L/c for asymptotic branch stars, then it is expected that the total amount of mass lost during this stage of evolution is of the same magnitude as the initial mass of the star, and therefore this mass loss can profoundly affect the star's ultimate fate.

  6. PHOTOMETRIC AND SPECTRAL SIGNATURES OF THREE-DIMENSIONAL MODELS OF TRANSITING GIANT EXOPLANETS

    International Nuclear Information System (INIS)

    Burrows, A.; Spiegel, D. S.; Rauscher, E.; Menou, K.

    2010-01-01

    Using a three-dimensional general circulation model, we create dynamical model atmospheres of a representative transiting giant exoplanet, HD 209458b. We post-process these atmospheres with an opacity code to obtain transit radius spectra during the primary transit. Using a spectral atmosphere code, we integrate over the face of the planet seen by an observer at various orbital phases and calculate light curves as a function of wavelength and for different photometric bands. The products of this study are generic predictions for the phase variations of a zero-eccentricity giant planet's transit spectrum and of its light curves. We find that for these models the temporal variations in all quantities and the ingress/egress contrasts in the transit radii are small (<1.0%). Moreover, we determine that the day/night contrasts and phase shifts of the brightness peaks relative to the ephemeris are functions of photometric band. The J, H, and K bands are shifted most, while the IRAC bands are shifted least. Therefore, we verify that the magnitude of the downwind shift in the planetary 'hot spot' due to equatorial winds is strongly wavelength dependent. The phase and wavelength dependence of light curves, as well as the associated day/night contrasts, can be used to constrain the circulation regime of irradiated giant planets and to probe different pressure levels of a hot Jupiter atmosphere. We posit that though our calculations focus on models of HD 209458b, similar calculations for other transiting hot Jupiters in low-eccentricity orbits should yield transit spectra and light curves of a similar character.

  7. Modeling and analysis of a resonant nanosystem

    Science.gov (United States)

    Calvert, Scott L.

    The majority of investigations into nanoelectromechanical resonators focus on a single area of the resonator's function. This focus varies from the development of a model for a beam's vibration, to the modeling of electrostatic forces, to a qualitative explanation of experimentally-obtained currents. Despite these efforts, there remains a gap between these works, and the level of sophistication needed to truly design nanoresonant systems for efficient commercial use. Towards this end, a comprehensive system model for both a nanobeam resonator and its related experimental setup is proposed. Furthermore, a simulation arrangement is suggested as a method for facilitating the study of the system-level behavior of these devices in a variety of cases that could not be easily obtained experimentally or analytically. The dynamics driving the nanoresonator's motion, as well as the electrical interactions influencing the forcing and output of the system, are modeled, experimentally validated, and studied. The model seeks to develop both a simple circuit representation of the nanoresonator, and to create a mathematical system that can be used to predict and interpret the observed behavior. Due to the assumptions used to simplify the model to a point of reasonable comprehension, the model is most accurate for small beam deflections near the first eigenmode of the beam. The process and results of an experimental investigation are documented, and compared with a circuit simulation modeling the full test system. The comparison qualitatively proves the functionality of the model, while a numerical analysis serves to validate the functionality and setup of the circuit simulation. The use of the simulation enables a much broader investigation of both the electrical behavior and the physical device's dynamics. It is used to complement an assessment of the tuning behavior of the system's linear natural frequency by demonstrating the tuning behavior of the full nonlinear response. The

  8. Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana Elena; Freedman, Richard; Visscher, Channon

    2017-01-01

    Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure. In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations. We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 less than or equal to T(sub eff) less than or equal to 2400 K and 2.5 less than or equal to log g less than or equal to 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.

  9. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    International Nuclear Information System (INIS)

    Gaulme, P.; McKeever, J.; Rawls, M. L.; Jackiewicz, J.; Mosser, B.; Guzik, J. A.

    2013-01-01

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentially offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a δ-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the

  10. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  11. Systematic study of the giant monopolar resonance via inelastic scattering of 108.5 MeV 3He. Measurement of the nuclear compressibility

    International Nuclear Information System (INIS)

    Lebrun, Didier.

    1981-09-01

    The giant monopole resonance has been studied via inelastic scattering of 108.5 MeV 3 He at very small angles (including 0 0 ) on approximately 50 nuclei. Its angular distribution reaches its maximum in this region and leads to clear separation with GQR. DWBA analysis shows a smooth increase of the strength from few per cent of the sum rule in light nuclei up to 100% in heavier ones. The excitation energy analysis shows a crossing effect of the monopole and quadrupole frequencies in A = 40-50 region, a coupling effect between the two modes in deformed nuclei, an asymmetry effect in several series of isotopes. Compressibility moduli of nuclear matter Ksub(infinity), surface Ksub(s) and asymmetry Ksub(tau) have seen extracted, as well as the Landau parameter F 0 at saturation [fr

  12. Spin-flip isovector giant resonances from the 90Zr (n,p) 90Y reaction at 200 MeV

    International Nuclear Information System (INIS)

    Raywood, K.J.; Spicer, B.M.

    1989-01-01

    Doubly differential cross sections of the reaction 90 Zr(n,p) 90 Y have been measured at 200 MeV for excitations up to 38 MeV in the residual nucleus. An overall resolution of 1.3 MeV was achieved. The spectra show qualitative agreement in shape and magnitude with recent RPA calculations; however all of the calculations underestimate the high excitation region of the spectra. A multipole decomposition of the data has been performed using differential cross sections calculated in the DWIA. An estimate of the Gamow-Teller strength in the reaction is given. The isovector spin-flip dipole giant resonance has been identified and there is also an indication of isovector monopole strength. 39 refs., 16 figs., 1 tab

  13. The isomeric ratios in photonuclear reactions of natural barium induced by bremsstrahlungs with endpoint energies in the giant dipole resonance region

    International Nuclear Information System (INIS)

    Tran Duc Thiep; Truong Thi An; Phan Viet Cuong; Nguyen The Vinh

    2012-01-01

    We have determined the isomeric ratios in 130 Ba(γ, n) 129m,g Ba, 132 Ba(γ, n) 131m,g Ba and 134 Ba(γ, n) 133m,g Ba photonuclear reactions of natural barium induced by bremsstrahlungs with end-point energies in the giant dipole resonance region. The investigated samples were irradiated at electron accelerator Microtron MT-25 of the Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, Dubna, Russia. The gamma spectra of the samples irradiated were measured with spectroscopic system consisting of 8192 channel analyzer and high-energy resolution (180 keV at gamma ray 1332 keV of 60 Co) HP(Ge) semiconductor detector Canberra. The GENIE2000 (Canberra) computer program was used for data processing. The results were discussed and compared with those of other authors. (author)

  14. Giant resonance spectroscopy of 40Ca with the (e,e'x) reaction (II): Multipole decomposition of 4π-integrated spectra and angular correlations

    International Nuclear Information System (INIS)

    Diesener, H.; Helm, U.; Huck, V.; Neumann-Cosel, P. von; Rangacharyulu, C.; Richter, A.; Schrieder, G.; Stascheck, A.; Strauch, S.; Ryckebusch, J.; Carter, J.

    2001-01-01

    The present article is the second out of three on a study of the 40 Ca(e,e'x) reaction discussing the multipole decomposition of the measured cross sections and the analysis of angular correlations. The decomposition of the strongly overlapping E0, E1 and E2 giant resonance strengths using the (e,e'x; x=p,α) reaction in 40 Ca is discussed for excitation energies between 10 and about 21 MeV. Two extraction methods are presented based on the variation of the form factors for the different multipoles. The resulting B(E1) strength distribution is in good agreement with (γ,x) photoabsorption data. The summed B(E2) and B(E0) strength is highly fragmented and spread out over the energy region investigated. Microscopic continuum RPA calculations including the coupling of the basic particle-hole states to the low-lying surface vibrations are capable of reproducing the strength distributions quite accurately. Exhaustion of the energy-weighted sum rules (EWSR) for the various decay channels is presented. A complete decomposition of E0, E1 and E2 contributions in 40 Ca is possible for (e,e'α) angular correlations populating the 36 Ar ground state. Contrary to expectations, the form factors of isoscalar E0 and E2 strengths in the 40 Ca(e,e'α 0 ) reaction exhibit increasing differences towards smaller momentum transfers. Angular correlations for proton decay into low-lying states of 39 K are compared to a self-consistent continuum RPA calculation which allows a systematic description of the strong variations observed as a function of 40 Ca excitation energy and momentum transfer. The success implies that direct knock-out models of the 40 Ca(e,e'p) reaction are too simple. Furthermore, the shapes of the angular correlations seem to be determined largely by the final-state interaction, in particular by charge exchange reactions in the nuclear medium

  15. A (giant) void is not mandatory to explain away dark energy with a Lemaître-Tolman model

    Science.gov (United States)

    Célérier, M.-N.; Bolejko, K.; Krasiński, A.

    2010-07-01

    Context. Lemaître-Tolman (L-T) toy models with a central observer have been used to study the effect of large scale inhomogeneities on the SN Ia dimming. Claims that a giant void is mandatory to explain away dark energy in this framework are currently dominating. Aims: Our aim is to show that L-T models exist that reproduce a few features of the ΛCDM model, but do not contain the giant cosmic void. Methods: We propose to use two sets of data - the angular diameter distance together with the redshift-space mass-density and the angular diameter distance together with the expansion rate - both defined on the past null cone as functions of the redshift. We assume that these functions are of the same form as in the ΛCDM model. Using the Mustapha-Hellaby-Ellis algorithm, we numerically transform these initial data into the usual two L-T arbitrary functions and solve the evolution equation to calculate the mass distribution in spacetime. Results: For both models, we find that the current density profile does not exhibit a giant void, but rather a giant hump. However, this hump is not directly observable, since it is in a spacelike relation to a present observer. Conclusions: The alleged existence of the giant void was a consequence of the L-T models used earlier because their generality was limited a priori by needless simplifying assumptions, like, for example, the bang-time function being constant. Instead, one can feed any mass distribution or expansion rate history on the past light cone as initial data to the L-T evolution equation. When a fully general L-T metric is used, the giant void is not implied.

  16. Geometrical nonlinear deformation model and its experimental study on bimorph giant magnetostrictive thin film

    Institute of Scientific and Technical Information of China (English)

    Wei LIU; Zhenyuan JIA; Fuji WANG; Yongshun ZHANG; Dongming GUO

    2008-01-01

    The geometrical nonlinearity of a giant magne-tostrictive thin film (GMF) can be clearly detected under the magnetostriction effect. Thus, using geometrical linear elastic theory to describe the strain, stress, and constitutive relationship of GMF is inaccurate. According to nonlinear elastic theory, a nonlinear deformation model of the bimorph GMF is established based on assumptions that the magnetostriction effect is equivalent to the effect of body force loaded on the GMF. With Taylor series method, the numerical solution is deduced. Experiments on TbDyFe/Polyimide (PI)/SmFe and TbDyFe/Cu/SmFe are then conducted to verify the proposed model, respectively. Results indicate that the nonlinear deflection curve model is in good conformity with the experimental data.

  17. Research of Jiles-Atherton Dynamic Model in Giant Magnetostrictive Actuator

    Directory of Open Access Journals (Sweden)

    Yongguang Liu

    2016-01-01

    Full Text Available Due to the existence of multicoupled nonlinear factors in the giant magnetostrictive actuator (GMA, building precise mathematical model is highly important to study GMA’s characteristics and control strategies. Minor hysteresis loops near the bias magnetic field would be often applied because of its relatively good linearity. Load, friction, and disc spring stiffness seriously affect the output characteristics of the GMA in high frequency. Therefore, the current-displacement dynamic minor loops mathematical model coupling of electric-magnetic-machine is established according to Jiles-Atherton (J-A dynamic model of hysteresis material, GMA structural dynamic equation, Ampere loop circuit law, and nonlinear piezomagnetic equation and demonstrates its correctness and effectiveness in the experiments. Finally, some laws are achieved between key structural parameters and output characteristics of GMA, which provides important theoretical foundation for structural design.

  18. The Morphological Characteristics and Mechanical Formation of Giant Radial Dike Swarms on Venus: An Overview Emphasizing Recent Numerical Modeling Insights

    Science.gov (United States)

    McGovern, P. J., Jr.; Grosfils, E. B.; Le Corvec, N.; Ernst, R. E.; Galgana, G. A.

    2017-12-01

    Over 200 giant radial dike swarms have been identified on Venus using Magellan data, yielding insight into morphological characteristics long since erased by erosion and other processes on Earth. Since such radial dike systems are typically associated with magma reservoirs, large volcanoes and/or larger-scale plume activity—and because dike geometry reflects stress conditions at the time of intrusion—assessing giant radial dike formation in the context of swarm morphology can place important constraints upon this fundamental volcanotectonic process. Recent numerical models reveal that, contrary to what is reported in much of the published literature, it is not easy, mechanically, to produce either large or small radial dike systems. After extensive numerical examination of reservoir inflation, however, under conditions ranging from a simple halfspace to complex flexural loading, we have thus far identified four scenarios that produce radial dike systems. Two of these scenarios yield dike systems akin to those often associated with shield and stratocone volcanoes on Earth, while the other two, our focus here, are more consistent with the giant radial dike system geometries catalogued on Venus. In this presentation we will (a) review key morphological characteristics of the giant radial systems identified on Venus, (b) briefly illustrate why it is not easy, mechanically, to produce a radial dike system, (c) present the two volcanological circumstances we have identified that do allow a giant radial dike system to form, and (d) discuss current model limitations and potentially fruitful directions for future research.

  19. RADIAL VELOCITY OBSERVATIONS AND LIGHT CURVE NOISE MODELING CONFIRM THAT KEPLER-91b IS A GIANT PLANET ORBITING A GIANT STAR

    International Nuclear Information System (INIS)

    Barclay, Thomas; Huber, Daniel; Rowe, Jason F.; Quintana, Elisa V.; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Foreman-Mackey, Daniel

    2015-01-01

    Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73 ± 0.13 M Jup planet orbiting a red giant star

  20. Markov Chain Models for Stochastic Behavior in Resonance Overlap Regions

    Science.gov (United States)

    McCarthy, Morgan; Quillen, Alice

    2018-01-01

    We aim to predict lifetimes of particles in chaotic zoneswhere resonances overlap. A continuous-time Markov chain model isconstructed using mean motion resonance libration timescales toestimate transition times between resonances. The model is applied todiffusion in the co-rotation region of a planet. For particles begunat low eccentricity, the model is effective for early diffusion, butnot at later time when particles experience close encounters to the planet.

  1. Novel baryon resonances in the Skyrme model

    International Nuclear Information System (INIS)

    Hussain, F.; Sri Ram, M.S.

    1985-01-01

    We predict a novel family of baryons with or without the charm quantum number by quantizing the ''maximal solitons'' in the SU(4) Skyrme model. The baryon number B of these solitons can take any integer value. The low-lying states with B = 1 belong to 4( with spin (3/2), 20( with spin (1/2), (3/2), (5/2), or (7/2), and 20('' with spin (3/2), (5/2), or (9/2). The charm-zero states among them could correspond to some of the observed resonances in meson-baryon scattering between 1.5--2 GeV. The lowest among the dibaryon states is an SU(3) singlet contained in the 10( of SU(4) with spin 1, with mass in the range 2.5--3 GeV

  2. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements

    Science.gov (United States)

    Höfner, Susanne; Olofsson, Hans

    2018-01-01

    As low- and intermediate-mass stars reach the asymptotic giant branch (AGB), they have developed into intriguing and complex objects that are major players in the cosmic gas/dust cycle. At this stage, their appearance and evolution are strongly affected by a range of dynamical processes. Large-scale convective flows bring newly-formed chemical elements to the stellar surface and, together with pulsations, they trigger shock waves in the extended stellar atmosphere. There, massive outflows of gas and dust have their origin, which enrich the interstellar medium and, eventually, lead to a transformation of the cool luminous giants into white dwarfs. Dust grains forming in the upper atmospheric layers play a critical role in the wind acceleration process, by scattering and absorbing stellar photons and transferring their outward-directed momentum to the surrounding gas through collisions. Recent progress in high-angular-resolution instrumentation, from the visual to the radio regime, is leading to valuable new insights into the complex dynamical atmospheres of AGB stars and their wind-forming regions. Observations are revealing asymmetries and inhomogeneities in the photospheric and dust-forming layers which vary on time-scales of months, as well as more long-lived large-scale structures in the circumstellar envelopes. High-angular-resolution observations indicate at what distances from the stars dust condensation occurs, and they give information on the chemical composition and sizes of dust grains in the close vicinity of cool giants. These are essential constraints for building realistic models of wind acceleration and developing a predictive theory of mass loss for AGB stars, which is a crucial ingredient of stellar and galactic chemical evolution models. At present, it is still not fully possible to model all these phenomena from first principles, and to predict the mass-loss rate based on fundamental stellar parameters only. However, much progress has been made

  3. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints

    Science.gov (United States)

    Nadège, Lagarde

    The availability of asteroseismic constraints for a large sample of red-giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. We use a detailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al. 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. This study is already published in Lagarde et al. (2015)

  4. Modeling the choice to switch from fuelwood to electricity. Implications for giant panda habitat conservation

    Energy Technology Data Exchange (ETDEWEB)

    An, Li; Liu, Jianguo; Linderman, Marc A. [Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 48824 East Lansing, MI (United States); Lupi, Frank [Departments of Agricultural Economics and Fisheries and Wildlife, Michigan State University, 213F Agriculture Hall, 48824 East Lansing, MI (United States); Huang, Jinyan [Wolong Nature Reserve Administration, Wenchuan County, 623002 Sichuan Province (China)

    2002-09-01

    Despite its status as a nature reserve, Wolong Nature Reserve (China) has experienced continued loss of giant panda habitat due to human activities such as fuelwood collection. Electricity, though available throughout Wolong, has not replaced fuelwood as an energy source. We used stated preference data obtained from in-person interviews to estimate a random utility model of the choice of adopting electricity for cooking and heating. Willingness to switch to electricity was explained by demographic and electricity factors (price, voltage, and outage frequency). In addition to price, non-price factors such as voltage and outage frequency significantly affect the demand. Thus, lowering electricity prices and increasing electricity quality would encourage local residents to switch from fuelwood to electricity and should be considered in the mix of policies to promote conservation of panda habitat.

  5. Modeling the choice to switch from fuelwood to electricity. Implications for giant panda habitat conservation

    International Nuclear Information System (INIS)

    An, Li; Liu, Jianguo; Linderman, Marc A.; Lupi, Frank; Huang, Jinyan

    2002-01-01

    Despite its status as a nature reserve, Wolong Nature Reserve (China) has experienced continued loss of giant panda habitat due to human activities such as fuelwood collection. Electricity, though available throughout Wolong, has not replaced fuelwood as an energy source. We used stated preference data obtained from in-person interviews to estimate a random utility model of the choice of adopting electricity for cooking and heating. Willingness to switch to electricity was explained by demographic and electricity factors (price, voltage, and outage frequency). In addition to price, non-price factors such as voltage and outage frequency significantly affect the demand. Thus, lowering electricity prices and increasing electricity quality would encourage local residents to switch from fuelwood to electricity and should be considered in the mix of policies to promote conservation of panda habitat

  6. Investigation of thermalization in giant-spin models by different Lindblad schemes

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Christian; Schnack, Jürgen, E-mail: jschnack@uni-bielefeld.de

    2017-09-01

    Highlights: • The non-equilibrium magnetization is investigated with quantum master equations that rest on Lindblad schemes. • It is studied how different couplings to the bath modify the magnetization. • Various field protocols are employed; relaxation times are deduced. • Result: the time evolution depends strongly on the details of the transition operator used in the Lindblad term. - Abstract: The theoretical understanding of time-dependence in magnetic quantum systems is of great importance in particular for cases where a unitary time evolution is accompanied by relaxation processes. A key example is given by the dynamics of single-molecule magnets where quantum tunneling of the magnetization competes with thermal relaxation over the anisotropy barrier. In this article we investigate how good a Lindblad approach describes the relaxation in giant spin models and how the result depends on the employed operator that transmits the action of the thermal bath.

  7. Modelling of magneto-acoustic resonance in ferrite-piezoelectric bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bichurin, M I; Petrov, V M; Averkin, S V; Filippov, A V [Institute for Electronic Information Systems, Novgorod State University, Veliky Novgorod 173003 (Russian Federation); Liverts, E [Department of Physics, Ben-Gurion University of the Negev, Beersheva 84105 (Israel); Mandal, S; Srinivasan, G [Physics Department, Oakland University, Rochester, MI 48309 (United States)

    2009-11-07

    A model is discussed for magnetoelectric (ME) effects in a single-crystal ferrite-piezoelectric bilayer on a substrate. The specific focus is on coupling at magneto-acoustic resonance (MAR) at the coincidence of ferromagnetic resonance in the ferrite and thickness modes of the electromechanical resonance in the piezoelectric. The clamping effect of the substrate has been considered in determining the ME voltage coefficient and applied to a model system of a bilayer of lead zirconate titanate (PZT) and yttrium iron garnet (YIG) on a gadolinium gallium garnet substrate. The theory predicts a giant ME effect at MAR due to interaction and transfer of energy between elastic modes and the uniform precession spin-wave mode. It is shown that the ME coupling strength decreases with increasing substrate thickness. Estimates for YIG-PZT for nominal film parameters predict MAR at 5 GHz and ME coefficients on the order of 5-70 V cm{sup -1} Oe{sup -1}. The phenomenon is of importance for the realization of multifunctional ME sensors and transducers operating at microwave frequencies.

  8. Mapping and modelling the habitat of giant pandas in Foping Nature Reserve, China

    NARCIS (Netherlands)

    Liu, X.

    2001-01-01

    The fact that only about 1000 giant pandas and 29500 km2 of panda habitat are left in the west part of China makes it an urgent issue to save this endangered animal species and protect its habitat. For effective conservation of the giant panda and its habitat, a thorough evaluation of panda habitat

  9. Dual resonance models and their currents

    International Nuclear Information System (INIS)

    Johnson, E.A.

    1978-01-01

    It is shown how dual resonance models were rederived from the concept of a string tracing out a surface in space-time. Thus, interacting strings reproduce the dual amplitudes. A scheme for tackling the unitarity problem began to develop. As a consistent theory of hadronic processes began to be built, workers at the same time were naturally led to expect that leptons could be included with hadrons in a unified dual theory. Thus, there is a search for dual amplitudes which would describe interactions between hadrons and currents (for example, electrons), as well as interactions involving only hadrons. Such amplitudes, it is believed, will be the correct ones, describing the real world. Such amplitudes will provide valuable information concerning such things as hadronic form factors. The great difficulties in building current-amplitudes with the required properties of proper factorization on a good spectrum, duality, current algebra, and proper asymptotic behavior are described. Dual models at the present time require for consistency, an intercept value of α 0 = 1 and a dimension value of d = 26 (or d = 10). There have been speculations that the unphysical dimension may be made physical by associating the ''extra dimensions'' with certain internal degrees of freedom. However, it is desired that the theory itself, force the dimension d = 4. It is quite possible that the dimension problem and the intercept problem are tied together and that resolving either problem will resolve the other. Order by order, a new dual current is constructed that is manifestly factorizable and which appears to be valid for arbitrary space-time dimension. The fact that this current is not bound at d = 26, leads to interesting speculations on the nature of dual currents

  10. Tilting Saturn without Tilting Jupiter: Constraints on Giant Planet Migration

    Science.gov (United States)

    Brasser, R.; Lee, Man Hoi

    2015-11-01

    The migration and encounter histories of the giant planets in our solar system can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn’s spin axis to the current obliquity if the product of the migration timescale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today’s obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance crossing. Migration timescales sufficiently long to tilt Saturn generally suffice to tilt Jupiter more than is observed. The full N-body simulations tell a somewhat different story, with Jupiter generally being tilted as often as Saturn, but on average having a higher obliquity. The main obstacle is the final orbital spacing of the giant planets, coupled with the tail of Neptune’s migration. The resonant Nice case is barely able to simultaneously reproduce the orbital and spin properties of the giant planets, with a probability ˜ 0.15%. The loose five planet model is unable to match all our constraints (probability <0.08%). The compact five planet model has the highest chance of matching the orbital and obliquity constraints simultaneously (probability ˜0.3%).

  11. X-ray excited photoluminescence near the giant resonance in solid-solution Gd(1-x)Tb(x)OCl nanocrystals and their retention upon solvothermal topotactic transformation to Gd(1-x)Tb(x)F3.

    Science.gov (United States)

    Waetzig, Gregory R; Horrocks, Gregory A; Jude, Joshua W; Zuin, Lucia; Banerjee, Sarbajit

    2016-01-14

    Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb(3+) centers upon excitation in proximity to the giant resonance of the host Gd(3+) ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism from multiple exciton generation to single thermal exciton formation and Auger decay processes. The solid-solution Gd1-xTbxOCl nanocrystals are further topotactically transformed with retention of a nine-coordinated cation environment to solid-solution Gd1-xTbxF3 nanocrystals upon solvothermal treatment with XeF2. The metastable hexagonal phase of GdF3 can be stabilized at room temperature through this topotactic approach and is transformed subsequently to the orthorhombic phase. The fluoride nanocrystals indicate an analogous but blue-shifted modulation of the X-ray excited optical luminescence of the Tb(3+) centers upon X-ray excitation near the giant resonance of the host Gd(3+) ions.

  12. Evolution and nucleosynthesis of asymptotic giant branch stellar models of low metallicity

    Energy Technology Data Exchange (ETDEWEB)

    Fishlock, Cherie K.; Karakas, Amanda I.; Yong, David [Research School of Astronomy and Astrophysics, Australian National University, Canberra ACT 2611 (Australia); Lugaro, Maria, E-mail: cherie.fishlock@anu.edu.au, E-mail: amanda.karakas@anu.edu.au, E-mail: david.yong@anu.edu.au, E-mail: maria.lugaro@monash.edu [Monash Centre for Astrophysics, Monash University, Clayton VIC 3800 (Australia)

    2014-12-10

    We present stellar evolutionary tracks and nucleosynthetic predictions for a grid of stellar models of low- and intermediate-mass asymptotic giant branch (AGB) stars at Z = 0.001 ([Fe/H] =–1.2). The models cover an initial mass range from 1 M {sub ☉} to 7 M {sub ☉}. Final surface abundances and stellar yields are calculated for all elements from hydrogen to bismuth as well as isotopes up to the iron group. We present the first study of neutron-capture nucleosynthesis in intermediate-mass AGB models, including a super-AGB model, of [Fe/H] = –1.2. We examine in detail a low-mass AGB model of 2 M {sub ☉} where the {sup 13}C(α,n){sup 16}O reaction is the main source of neutrons. We also examine an intermediate-mass AGB model of 5 M {sub ☉} where intershell temperatures are high enough to activate the {sup 22}Ne neutron source, which produces high neutron densities up to ∼10{sup 14} n cm{sup –3}. Hot bottom burning is activated in models with M ≥ 3 M {sub ☉}. With the 3 M {sub ☉} model, we investigate the effect of varying the extent in mass of the region where protons are mixed from the envelope into the intershell at the deepest extent of each third dredge-up. We compare the results of the low-mass models to three post-AGB stars with a metallicity of [Fe/H] ≅ – 1.2. The composition is a good match to the predicted neutron-capture abundances except for Pb and we confirm that the observed Pb abundances are lower than what is calculated by AGB models.

  13. Using time-dependent models to investigate body condition and growth rate of the giant gartersnake

    Science.gov (United States)

    Coates, P.S.; Wylie, G.D.; Halstead, B.J.; Casazza, Michael L.

    2009-01-01

    Identifying links between phenotypic attributes and fitness is a primary goal of reproductive ecology. Differences in within-year patterns of body condition between sexes of gartersnakes in relation to reproduction and growth are not fully understood. We conducted an 11-year field study of body condition and growth rate of the giant gartersnake Thamnophis gigas across 13 study areas in the Central Valley of California, USA. We developed a priori mixed effects models of body condition index (BCI), which included covariates of time, sex and snout-vent length and reported the best-approximating models using an information theoretic approach. Also, we developed models of growth rate index (GRI) using covariates of sex and periods based on reproductive behavior. The largest difference in BCI between sexes, as predicted by a non-linear (cubic) time model, occurred during the mating period when female body condition (0.014??0.001 se) was substantially greater than males (-0.027??0.002 se). Males likely allocated energy to search for mates, while females likely stored energy for embryonic development. We also provided evidence that males use more body energy reserves than females during hibernation, perhaps because of different body temperatures between sexes. We found GRI of male snakes was substantially lower during the mating period than during a non-mating period, which indicated that a trade-off existed between searching for mates and growth. These findings contribute to our understanding of snake ecology in a Mediterranean climate. ?? 2009 The Zoological Society of London.

  14. Modeling of Red Giant and AGB Stars Atmospheres: Constraints from VLTI and HST Observations

    Science.gov (United States)

    Rau, Gioia

    2018-04-01

    The chemical enrichment of the Universe is considerably affected by the contributions of low-to-intermediate mass stars through the mass-loss provided via their stellar winds. First, we will present our investigation in the near-IR with VLTI/GRAVITY (Wittkowski, Rau, et al., in prep.). Our aim was to verify at different epochs the model-predicted variability of the visibility spectra. We use CODEX model atmospheres, as well as best-fit 3D radiation hydrodynamic simulations (e.g. Freytag et al., 2017), for comparison with the observations. Our preliminary results on R Peg suggest a decreasing contribution by extended CO layers as the star transitions from maximum to minimum phase. Second, we will show a preliminary modeling of UV spectra obtained with HST/GHRS that contain chromospheric emission lines of, e.g., Mg II and Fe II. Via Sobolev with Exact Integration (SEI) modeling, we determined for the two M-giant stars γ Cru and µ Gem the characteristics of their winds (turbulence, acceleration, and opacity), and their average global mass-loss rates (Rau, Carpenter et al., in prep.). Finally, we briefly discuss the impact of instruments on board JWST in progressing this investigation.

  15. Modeling of nanofabricated paddle bridges for resonant mass sensing

    International Nuclear Information System (INIS)

    Lobontiu, N.; Ilic, B.; Garcia, E.; Reissman, T.; Craighead, H. G.

    2006-01-01

    The modeling of nanopaddle bridges is studied in this article by proposing a lumped-parameter mathematical model which enables structural characterization in the resonant domain. The distributed compliance and inertia of all three segments composing a paddle bridge are taken into consideration in order to determine the equivalent lumped-parameter stiffness and inertia fractions, and further on the bending and torsion resonant frequencies. The approximate model produces results which are confirmed by finite element analysis and experimental measurements. The model is subsequently utilized to quantify the amount of mass which attaches to the bridge by predicting the modified resonant frequencies in either bending or torsion

  16. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  17. Modelling of deep gaps created by giant planets in protoplanetary disks

    Science.gov (United States)

    Kanagawa, Kazuhiro D.; Tanaka, Hidekazu; Muto, Takayuki; Tanigawa, Takayuki

    2017-12-01

    A giant planet embedded in a protoplanetary disk creates a gap. This process is important for both theory and observation. Using results of a survey for a wide parameter range with two-dimensional hydrodynamic simulations, we constructed an empirical formula for the gap structure (i.e., the radial surface density distribution), which can reproduce the gap width and depth obtained by two-dimensional simulations. This formula enables us to judge whether an observed gap is likely to be caused by an embedded planet or not. The propagation of waves launched by the planet is closely connected to the gap structure. It makes the gap wider and shallower as compared with the case where an instantaneous wave damping is assumed. The hydrodynamic simulations show that the waves do not decay immediately at the launching point of waves, even when the planet is as massive as Jupiter. Based on the results of hydrodynamic simulations, we also obtained an empirical model of wave propagation and damping in cases of deep gaps. The one-dimensional gap model with our wave propagation model is able to reproduce the gap structures in hydrodynamic simulations well. In the case of a Jupiter-mass planet, we also found that the waves with a smaller wavenumber (e.g., m = 2) are excited and transport the angular momentum to a location far away from the planet. The wave with m = 2 is closely related with a secondary wave launched by a site opposite from the planet.

  18. Chrystal and Proudman resonances simulated with three numerical models

    Science.gov (United States)

    Bubalo, Maja; Janeković, Ivica; Orlić, Mirko

    2018-05-01

    The aim of this work was to study Chrystal and Proudman resonances in a simple closed basin and to explore and compare how well the two resonant mechanisms are reproduced with different, nowadays widely used, numerical ocean models. The test case was based on air pressure disturbances of two commonly used shapes (a sinusoidal and a boxcar), having various wave lengths, and propagating at different speeds. Our test domain was a closed rectangular basin, 300 km long with a uniform depth of 50 m, with the theoretical analytical solution available for benchmark. In total, 2250 simulations were performed for each of the three different numerical models: ADCIRC, SCHISM and ROMS. During each of the simulations, we recorded water level anomalies and computed the integral of the energy density spectrum for a number of points distributed along the basin. We have successfully documented the transition from Proudman to Chrystal resonance that occurs for a sinusoidal air pressure disturbance having a wavelength between one and two basin lengths. An inter-model comparison of the results shows that different models represent the two resonant phenomena in a slightly different way. For Chrystal resonance, all the models showed similar behavior; however, ADCIRC model providing slightly higher values of the mean resonant period than the other two models. In the case of Proudman resonance, the most consistent results, closest to the analytical solution, were obtained using ROMS model, which reproduced the mean resonant speed equal to 22.00 m/s— i.e., close to the theoretical value of 22.15 m/s. ADCIRC and SCHISM models showed small deviations from that value, with the mean speed being slightly lower—21.97 m/s (ADCIRC) and 21.93 m/s (SCHISM). The findings may seem small but could play an important role when resonance is a crucial process producing enhancing effects by two orders of magnitude (i.e., meteotsunamis).

  19. Entanglement Evolution of Jaynes-Cummings Model in Resonance Case and Non-resonance Case

    Science.gov (United States)

    Cheng, Jing; Chen, Xi; Shan, Chuan-Jia

    2018-03-01

    We investigate the entanglement evolution of a two-level atom and a quantized single model electromagnetic filed in the resonance and non-resonance cases. The effects of the initial state, detuning degree, photon number on the entanglement are shown in detail. The results show that the atom-cavity entanglement state appears with periodicity. The increasing of the photon number can make the period of quantum entanglement be shorter. In the non-resonant case, if we choose the suitable initial state the entanglement of atom-cavity can be 1.0

  20. The Friedrichs model and its use in resonance phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Gadella, M. [Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, 47071 Valladolid (Spain); Pronko, G.P. [Institute for High Energy Physics, Protvino 142284, Moscow Region (Russian Federation)

    2011-09-15

    We present here a relation of different types of Friedrichs models and their use in the description and comprehension of resonance phenomena. We first discuss the basic Friedrichs model and obtain its resonance in the case that this is simple or doubly degenerated. Next, we discuss the model with N levels and show how the probability amplitude has an oscillatory behavior. Two generalizations of the Friedrichs model are suitable to introduce resonance behavior in quantum field theory. We also discuss a discrete version of the Friedrichs model and also a resonant interaction between two systems both with continuous spectrum. In an appendix, we review the mathematics of rigged Hilbert spaces. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Mapping and modelling the habitat of giant pandas in Foping Nature Reserve, China

    OpenAIRE

    Liu, X.

    2001-01-01

    The fact that only about 1000 giant pandas and 29500 km2 of panda habitat are left in the west part of China makes it an urgent issue to save this endangered animal species and protect its habitat. For effective conservation of the giant panda and its habitat, a thorough evaluation of panda habitat and panda-habitat relationship based on each individual panda nature reserve is necessary and important. Mapping has been an effective approach for wildlife habitat evaluation and monitoring. There...

  2. STRUCTURAL GLITCHES NEAR THE CORES OF RED GIANTS REVEALED BY OSCILLATIONS IN G-MODE PERIOD SPACINGS FROM STELLAR MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, M. S.; Avelino, P. P. [Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Stello, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Christensen-Dalsgaard, J. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Townsend, R. H. D., E-mail: mcunha@astro.up.pt [Department of Astronomy, University of Wisconsin–Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States)

    2015-06-01

    With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations—glitches—in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacing and inertia of non-radial modes during several phases of red giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the échelle diagram. Interestingly, along the red giant branch glitch-induced variation occurs only at the luminosity bump, potentially providing a direct seismic indicator of stars in that particular evolution stage. Similarly, we find the variation at only certain post-helium-ignition evolution stages, namely, in the early phases of helium core burning and at the beginning of helium shell burning, signifying the asymptotic giant branch bump. Based on our results, we note that assuming stars to be glitch-free, while they are not, can result in an incorrect estimate of the period spacing. We further note that including diffusion and mixing beyond classical Schwarzschild could affect the characteristics of the glitches, potentially providing a way to study these physical processes.

  3. MODELING THE FORMATION OF GIANT PLANET CORES. I. EVALUATING KEY PROCESSES

    International Nuclear Information System (INIS)

    Levison, Harold F.; Thommes, Edward; Duncan, Martin J.

    2010-01-01

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the solar nebula dispersed. The most popular model of giant planet formation is the so-called core accretion model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very first step. We have undertaken the most comprehensive study of this process to date. In this study, we numerically integrate the orbits of a number of planetary embryos embedded in a swarm of planetesimals. In these experiments, we have included a large number of physical processes that might enhance accretion. In particular, we have included (1) aerodynamic gas drag, (2) collisional damping between planetesimals, (3) enhanced embryo cross sections due to their atmospheres, (4) planetesimal fragmentation, and (5) planetesimal-driven migration. We find that the gravitational interaction between the embryos and the planetesimals leads to the wholesale redistribution of material-regions are cleared of material and gaps open near the embryos. Indeed, in 90% of our simulations without fragmentation, the region near those embryos is cleared of planetesimals before much growth can occur. Thus, the widely used assumption that the surface density distribution of planetesimals is smooth can lead to misleading results. In the remaining 10% of our simulations, the embryos undergo a burst of outward migration that significantly increases growth. On timescales of ∼10 5 years, the outer embryo can migrate ∼6 AU and grow to roughly 30 M + . This represents a largely unexplored mode of core formation. We also find that the inclusion of planetesimal fragmentation tends to inhibit growth except for a narrow range of fragment migration rates.

  4. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution.

    Directory of Open Access Journals (Sweden)

    Jonathan eFilée

    2015-06-01

    Full Text Available Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales. Origin and evolution of these Giant Viruses (GVs remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for 5 groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no trend of genome expansion or general tendency of genome contraction. Instead, GV genomes accumulated genomic mutations over the time with gene gains compensating the different losses. In addition, each lineage displays specific patterns of genome evolution. Mimiviridae (megaviruses and mimiviruses and Chlorella Phycodnaviruses evolved mainly by duplications and losses of genes belonging to large paralogous families (including movements of diverse mobiles genetic elements, whereas Micromonas and Ostreococcus Phycodnaviruses derive most of their genetic novelties thought lateral gene transfers. Taken together, these data support an accordion-like model of evolution in which GV genomes have undergone successive steps of gene gain and gene loss, accrediting the hypothesis that genome gigantism appears early, before the diversification of the different GV lineages.

  5. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution.

    Science.gov (United States)

    Filée, Jonathan

    2015-01-01

    Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales). Origin and evolution of these Giant Viruses (GVs) remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for five groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no trend of genome expansion or general tendency of genome contraction. Instead, GV genomes accumulated genomic mutations over the time with gene gains compensating the different losses. In addition, each lineage displays specific patterns of genome evolution. Mimiviridae (megaviruses and mimiviruses) and Chlorella Phycodnaviruses evolved mainly by duplications and losses of genes belonging to large paralogous families (including movements of diverse mobiles genetic elements), whereas Micromonas and Ostreococcus Phycodnaviruses derive most of their genetic novelties thought lateral gene transfers. Taken together, these data support an accordion-like model of evolution in which GV genomes have undergone successive steps of gene gain and gene loss, accrediting the hypothesis that genome gigantism appears early, before the diversification of the different GV lineages.

  6. Dipole strength distribution below the giant dipole resonance in {sup 92}Mo, {sup 98}Mo and {sup 100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G.Y.

    2006-07-01

    Investigations of the dipole-strength distributions in {sup 92}Mo, {sup 98}Mo and {sup 100}Mo were carried out by means of the method of nuclear resonance fluorescence. The low-lying excitations in the nuclides {sup 92}Mo, {sup 98}Mo and {sup 100}Mo have been studied in photon-scattering experiments at an electron energy of 6 MeV at the ELBE accelerator and at electron energies from 3.2 to 3.8 MeV at the Dynamitron accelerator. Five levels were observed in {sup 92}Mo. Five levels in {sup 98}Mo and 14 in {sup 100}Mo were identified for the first time in the energy range from 2 to 4 MeV. Dipole-strength distributions up to the neutron-separation energies in the nuclides {sup 92}Mo, {sup 98}Mo and {sup 100}Mo have been investigated at the ELBE accelerator. Because of the possible observation of transitions in the neighboring nuclei produced via ({gamma},n) reaction, additional measurements at electron energies of 8.4 and 7.8 MeV, below the neutron-separation energy, were performed on {sup 98}Mo and {sup 100}Mo, respectively. The number of transitions assigned to {sup 92}Mo, {sup 98}Mo and {sup 100}Mo is 340, 485 and 499, respectively, the main part of them being dipole transitions. Statistical properties of the observed transitions are obtained. The continuum contains the ground-state transitions as well as the branching transitions to the low-lying levels and the subsequent deexcitations of these levels. (orig.)

  7. Microwave plasmatrons for giant integrated circuit processing

    Energy Technology Data Exchange (ETDEWEB)

    Petrin, A.B.

    2000-02-01

    A method for calculating the interaction of a powerful microwave with a plane layer of magnetoactive low-pressure plasma under conditions of electron cyclotron resonance is presented. In this paper, the plasma layer is situated between a plane dielectric layer and a plane metal screen. The calculation model contains the microwave energy balance, particle balance, and electron energy balance. The equation that expressed microwave properties of nonuniform magnetoactive plasma is found. The numerical calculations of the microwave-plasma interaction for a one-dimensional model of the problem are considered. Applications of the results for microwave plasmatrons designed for processing giant integrated circuits are suggested.

  8. NON-RADIAL OSCILLATIONS IN M-GIANT SEMI-REGULAR VARIABLES: STELLAR MODELS AND KEPLER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Stello, Dennis; Compton, Douglas L.; Bedding, Timothy R.; Kiss, Laszlo L.; Bellamy, Beau [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); García, Rafael A. [Laboratoire AIM, CEA/DSM-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Mathur, Savita, E-mail: stello@physics.usyd.edu.au [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States)

    2014-06-10

    The success of asteroseismology relies heavily on our ability to identify the frequency patterns of stellar oscillation modes. For stars like the Sun this is relatively easy because the mode frequencies follow a regular pattern described by a well-founded asymptotic relation. When a solar-like star evolves off the main sequence and onto the red giant branch its structure changes dramatically, resulting in changes in the frequency pattern of the modes. We follow the evolution of the adiabatic frequency pattern from the main sequence to near the tip of the red giant branch for a series of models. We find a significant departure from the asymptotic relation for the non-radial modes near the red giant branch tip, resulting in a triplet frequency pattern. To support our investigation we analyze almost four years of Kepler data of the most luminous stars in the field (late K and early M type) and find that their frequency spectra indeed show a triplet pattern dominated by dipole modes even for the most luminous stars in our sample. Our identification explains previous results from ground-based observations reporting fine structure in the Petersen diagram and sub-ridges in the period-luminosity diagram. Finally, we find ''new ridges'' of non-radial modes with frequencies below the fundamental mode in our model calculations, and we speculate they are related to f modes.

  9. Analytical Model of Planar Double Split Ring Resonator

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor

    2007-01-01

    This paper focuses on accurate modelling of microstrip double split ring resonators. The impedance matrix representation for coupled lines is applied for the first time to model the SRR, resulting in excellent model accuracy over a wide frequency range. Phase compensation is implemented to take i...

  10. Multivariable prediction model for suspected giant cell arteritis: development and validation

    Directory of Open Access Journals (Sweden)

    Ing EB

    2017-11-01

    Full Text Available Edsel B Ing,1 Gabriela Lahaie Luna,2 Andrew Toren,3 Royce Ing,4 John J Chen,5 Nitika Arora,6 Nurhan Torun,7 Otana A Jakpor,8 J Alexander Fraser,9 Felix J Tyndel,10 Arun NE Sundaram,10 Xinyang Liu,11 Cindy TY Lam,1 Vivek Patel,12 Ezekiel Weis,13 David Jordan,14 Steven Gilberg,14 Christian Pagnoux,15 Martin ten Hove21Department of Ophthalmology and Vision Sciences, University of Toronto Medical School, Toronto, 2Department of Ophthalmology, Queen’s University, Kingston, ON, 3Department of Ophthalmology, University of Laval, Quebec, QC, 4Toronto Eyelid, Strabismus and Orbit Surgery Clinic, Toronto, ON, Canada; 5Mayo Clinic, Department of Ophthalmology and Neurology, 6Mayo Clinic, Department of Ophthalmology, Rochester, MN, 7Department of Surgery, Division of Ophthalmology, Harvard Medical School, Boston, MA, 8Harvard Medical School, Boston, MA, USA; 9Department of Clinical Neurological Sciences and Ophthalmology, Western University, London, 10Department of Medicine, University of Toronto Medical School, Toronto, ON, Canada; 11Department of Medicine, Fudan University Shanghai Medical College, Shanghai, People’s Republic of China; 12Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; 13Departments of Ophthalmology, Universities of Alberta and Calgary, Edmonton and Calgary, AB, 14Department of Ophthalmology, University of Ottawa, Ottawa, ON, 15Vasculitis Clinic, Mount Sinai Hospital, Toronto, ON, CanadaPurpose: To develop and validate a diagnostic prediction model for patients with suspected giant cell arteritis (GCA.Methods: A retrospective review of records of consecutive adult patients undergoing temporal artery biopsy (TABx for suspected GCA was conducted at seven university centers. The pathologic diagnosis was considered the final diagnosis. The predictor variables were age, gender, new onset headache, clinical temporal artery abnormality, jaw claudication, ischemic vision loss (VL, diplopia

  11. Validation of an Acoustic Impedance Prediction Model for Skewed Resonators

    Science.gov (United States)

    Howerton, Brian M.; Parrott, Tony L.

    2009-01-01

    An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  12. X-ray excited photoluminescence near the giant resonance in solid-solution Gd1-xTbxOCl nanocrystals and their retention upon solvothermal topotactic transformation to Gd1-xTbxF3

    Science.gov (United States)

    Waetzig, Gregory R.; Horrocks, Gregory A.; Jude, Joshua W.; Zuin, Lucia; Banerjee, Sarbajit

    2015-12-01

    Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb3+ centers upon excitation in proximity to the giant resonance of the host Gd3+ ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism from multiple exciton generation to single thermal exciton formation and Auger decay processes. The solid-solution Gd1-xTbxOCl nanocrystals are further topotactically transformed with retention of a nine-coordinated cation environment to solid-solution Gd1-xTbxF3 nanocrystals upon solvothermal treatment with XeF2. The metastable hexagonal phase of GdF3 can be stabilized at room temperature through this topotactic approach and is transformed subsequently to the orthorhombic phase. The fluoride nanocrystals indicate an analogous but blue-shifted modulation of the X-ray excited optical luminescence of the Tb3+ centers upon X-ray excitation near the giant resonance of the host Gd3+ ions.Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb3+ centers upon excitation in proximity to the giant resonance of the host Gd3+ ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism

  13. A new photometric model of the Galactic bar using red clump giants

    Science.gov (United States)

    Cao, Liang; Mao, Shude; Nataf, David; Rattenbury, Nicholas J.; Gould, Andrew

    2013-09-01

    We present a study of the luminosity density distribution of the Galactic bar using number counts of red clump giants from the Optical Gravitational Lensing Experiment (OGLE) III survey. The data were recently published by Nataf et al. for 9019 fields towards the bulge and have 2.94 × 106 RC stars over a viewing area of 90.25 deg^2. The data include the number counts, mean distance modulus (μ), dispersion in μ and full error matrix, from which we fit the data with several triaxial parametric models. We use the Markov Chain Monte Carlo method to explore the parameter space and find that the best-fitting model is the E3 model, with the distance to the GC 8.13 kpc, the ratio of semimajor and semiminor bar axis scalelengths in the Galactic plane x0, y0 and vertical bar scalelength z0 x0: y0: z0 ≈ 1.00: 0.43: 0.40 (close to being prolate). The scalelength of the stellar density profile along the bar's major axis is ˜0.67 kpc and has an angle of 29.4°, slightly larger than the value obtained from a similar study based on OGLE-II data. The number of estimated RC stars within the field of view is 2.78 × 106, which is systematically lower than the observed value. We subtract the smooth parametric model from the observed counts and find that the residuals are consistent with the presence of an X-shaped structure in the Galactic Centre, the excess to the estimated mass content is ˜5.8 per cent. We estimate that the total mass of the bar is ˜1.8 × 1010 M⊙. Our results can be used as a key ingredient to construct new density models of the Milky Way and will have implications on the predictions of the optical depth to gravitational microlensing and the patterns of hydrodynamical gas flow in the Milky Way.

  14. Convection and Dynamo Action in Ice Giant Dynamo Models with Electrical Conductivity Stratification

    Science.gov (United States)

    Soderlund, K. M.; Featherstone, N. A.; Heimpel, M. H.; Aurnou, J. M.

    2017-12-01

    Uranus and Neptune are relatively unexplored, yet critical for understanding the physical and chemical processes that control the behavior and evolution of giant planets. Because their multipolar magnetic fields, three-jet zonal winds, and extreme energy balances are distinct from other planets in our Solar System, the ice giants provide a unique opportunity to test hypotheses for internal dynamics and magnetic field generation. While it is generally agreed that dynamo action in the ionic ocean generates their magnetic fields, the mechanisms that control the morphology, strength, and evolution of the dynamos - which are likely distinct from those in the gas giants and terrestrial planets - are not well understood. We hypothesize that the dynamos and zonal winds are dynamically coupled and argue that their characteristics are a consequence of quasi-three-dimensional turbulence in their interiors. Here, we will present new dynamo simulations with an inner electrically conducting region and outer electrically insulating layer to self-consistently couple the ionic oceans and molecular envelopes of these planets. For each simulation, the magnetic field morphology and amplitude, zonal flow profile, and internal heat flux pattern will be compared against corresponding observations of Uranus and Neptune. We will also highlight how these simulations will both contribute to and benefit from a future ice giant mission.

  15. A simple model to describe intrinsic stellar noise for exoplanet detection around red giants

    DEFF Research Database (Denmark)

    North, Thomas S. H.; Chaplin, William J.; Gilliland, Ronald L.

    2017-01-01

    In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission, there remain only a small number of transit detections around evolved stars. Here, we present a reformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation and the stella...

  16. High-Resolution Measurement of the 4He(γ,n) Reaction in the Giant Resonance Region

    International Nuclear Information System (INIS)

    Nilsson, Bjoern

    2003-03-01

    A comprehensive near-threshold 4 He(gamma,n) absolute cross section measurement has been performed at the high-resolution tagged-photon facility MAX-lab located in Lund, Sweden. The 20 4 He target, and knocked-out neutrons were detected in a pair of 60 cm x 60 cm vetoed NE213A liquid scintillator arrays. The intense and varying charge-neutral experimental backgrounds were carefully quantified and removed from the data using a precision fitting procedure. Eight average laboratory angles (30, 45, 60, 75, 90, 105, 120, and 135 deg) were investigated for eight photon energy bins (25, 27, 29, 31, 35, 36, 39, and 41 MeV), resulting in 64 differential cross sections. These angular distributions were integrated to produce total cross sections as a function of photon energy. The resulting cross sections peak at 1.9 mb at a photon energy of 27 MeV, and fall off to a near-constant value of 1.1 mb by 36 MeV. Further, they are in excellent agreement with those measured by Sims et al. using tagged photons in the Quasi-Deuteron energy region. Overall, the results favor modern theoretical models which are based upon a charge-symmetric nucleon-nucleon force, in marked contrast to the recommendations made by Calarco et al. in 1983 based on the sparse 4 He(gamma,n) data available at the time

  17. Relation of photofission cross sections and delayed neutron photoproduction in the range of E1-giant resonance. Sootnoshenie mezhdu secheniyami fotodeleniya i fotoobrazovaniya zapazdyvayushchikh nejtronov v oblasti E1-gigantskogo rezonansa

    Energy Technology Data Exchange (ETDEWEB)

    Ganich, P P; Parlag, O A; Sikora, D I; Sychev, S I

    1989-03-01

    Relation between yields and cross sections of photofission and photoproduction is studied in order to use them in the methods for analysis of fissile nuclides. Total yield of delayed neutrons from the {sup 232}Th target and ratios of total yields from {sup 238}U and {sup 232}Th targets were measured in the M=300 microtron in 6-18 MeV energy range. Efficiency of the suggested method for refining the {sup 238}U photofission cross sections in the range of E1-giant resonance is shown.

  18. Nonlinear Dynamics of a Helicopter Model in Ground Resonance

    Science.gov (United States)

    Tang, D. M.; Dowell, E. H.

    1985-01-01

    An approximate theoretical method is presented which determined the limit cycle behavior of a helicopter model which has one or two nonlinear dampers. The relationship during unstable ground resonance oscillations between lagging motion of the blades and fuselage motion is discussed. An experiment was carried out on using a helicopter scale model. The experimental results agree with those of the theoretical analysis.

  19. Modelling the ionosphere of gas-giant exoplanets irradiated by low-mass stars

    Science.gov (United States)

    Chadney, J.; Galand, M.; Unruh, Y.; Koskinen, T.; Sanz-Forcada, J.

    2015-10-01

    The composition and structure of the upper atmosphere of Extrasolar Giant Planets (EGPs) are affected by the high-energy spectrum of the host star from soft X-rays to Extreme UltraViolet (EUV) (0.1-10 nm). This emission depends on the activity level of the star, which is primarily determined by its age [1]. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages. XUV spectra for these stars are constructed using a coronal model [2]. These spectra are used to drive both a thermospheric [3] and an ionospheric model, providing densities of neutral and ion species. Ionisation is included through photo-ionisation and electronimpact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model [4]. Planets orbiting far from the star are found to undergo Jeans escape, whereas close-orbiting planets undergo hydrodynamic escape. The critical orbital distance of transition between the two regimes is dependent on the level of stellar activity. We also find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected (eps Eri, AD Leo, AU Mic) are dominated by the long-lived H+ ion. In addition, planets in the Jeans escape regime also have a layer in which H3 + is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3 + undergo significant diurnal variations, their peak value being determined by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and their value is determined by the level of stellar EUV flux. The H3 + peak in EGPs in the hydrodynamic escape regime under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g., hydrocarbons, water). Infrared emissions from H3 + shall also be discussed, as well as the impact of stellar

  20. Small-signal model for the series resonant converter

    Science.gov (United States)

    King, R. J.; Stuart, T. A.

    1985-01-01

    The results of a previous discrete-time model of the series resonant dc-dc converter are reviewed and from these a small signal dynamic model is derived. This model is valid for low frequencies and is based on the modulation of the diode conduction angle for control. The basic converter is modeled separately from its output filter to facilitate the use of these results for design purposes. Experimental results are presented.

  1. Turbulent convection in an anelastic rotating sphere: A model for the circulation on the giant planets

    Science.gov (United States)

    Kaspi, Yohai

    This thesis studies the dynamics of a rotating compressible gas sphere, driven by internal convection, as a model for the dynamics on the giant planets. We develop a new general circulation model for the Jovian atmosphere, based on the MITgcm dynamical core augmenting the nonhydrostatic model. The grid extends deep into the planet's interior allowing the model to compute the dynamics of a whole sphere of gas rather than a spherical shell (including the strong variations in gravity and the equation of state). Different from most previous 3D convection models, this model is anelastic rather than Boussinesq and thereby incorporates the full density variation of the planet. We show that the density gradients caused by convection drive the system away from an isentropic and therefore barotropic state as previously assumed, leading to significant baroclinic shear. This shear is concentrated mainly in the upper levels and associated with baroclinic compressibility effects. The interior flow organizes in large cyclonically rotating columnar eddies parallel to the rotation axis, which drive upgradient angular momentum eddy fluxes, generating the observed equatorial superrotation. Heat fluxes align with the axis of rotation, contributing to the observed flat meridional emission. We show the transition from weak convection cases with symmetric spiraling columnar modes similar to those found in previous analytic linear theory, to more turbulent cases which exhibit similar, though less regular and solely cyclonic, convection columns which manifest on the surface in the form of waves embedded within the superrotation. We develop a mechanical understanding of this system and scaling laws by studying simpler configurations and the dependence on physical properties such as the rotation period, bottom boundary location and forcing structure. These columnar cyclonic structures propagate eastward, driven by dynamics similar to that of a Rossby wave except that the restoring planetary

  2. A dual resonance model for high energy electroweak reactions

    International Nuclear Information System (INIS)

    Picard, Jean-Francois

    1995-01-01

    The aim of this work is to propose an original model for the weak interaction at high energy (about 1 TeV) that is inspired from resonance dual models established for hadron physics. The first chapter details the basis and assumptions of the standard model. The second chapter deals with various scenarios that go beyond the standard model and that involve a strong interaction and a perturbative approach to assess coupling. The third chapter is dedicated to the main teachings of hadron physics concerning resonances, the model of Regge poles and the concept of duality. We present our new model in the fourth chapter, we build a scenario in which standard fermions and the 3 massive gauge bosons would have a sub-structure alike that of hadrons. In order to give non-null values to the width of resonances we use the K matrix method, we describe this method in the last chapter and we apply it for the computation of the width of the Z 0 boson. Our model predicts a large spectra of states particularly with the 143-up-lets of ff-bar states. The K matrix method has allowed us to compute amplitudes for helicity, then to collapse them in amplitudes invariant with SU(2) and to project these amplitudes in partial waves of helicity. For most resonances partial widths are very low compared to their mass

  3. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  4. Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance.

    Science.gov (United States)

    Martin, S J; Bandey, H L; Cernosek, R W; Hillman, A R; Brown, M J

    2000-01-01

    We derive a lumped-element, equivalent-circuit model for the thickness-shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of pi/2 rad. For low-loss films, this model accurately predicts the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. Elements of the parallel LCR resonator are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and Sauerbrey models.

  5. Giant cystic craniopharyngiomas

    International Nuclear Information System (INIS)

    Young, S.C.; Zimmerman, R.A.; Nowell, M.A.; Bilaniuk, L.T.; Hackney, D.B.; Grossman, R.I.; Goldberg, H.I.

    1987-01-01

    Three cases of giant cystic craniopharyngiomas with large areas of extension beyond the suprasellar area are presented. The magnetic resonance (MR) appearance in one case is described. These giant tumors had large, multilobulated cysts that comprised the bulk of the tumors. In one case, there was an unusual extension of the large tumor cyst into the lateral ventricle. In two cases, the tumors extended to the level of the foramen magnum. On CT, the cyst contents of these two tumors were hyperdense and became hypodense postoperatively. All three tumors harbored calcifications in the form of clumps in the suprasellar region and rim calcifications around the cysts. None of the tumors exhibited contrast enhancement. A literature review of the radiographic features of craniopharyngiomas is discussed. (orig.)

  6. Modelling Strategies for Functional Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Madsen, Kristoffer Hougaard

    2009-01-01

    and generalisations to higher order arrays are considered. Additionally, an application of the natural conjugate prior for supervised learning in the general linear model to efficiently incorporate prior information for supervised analysis is presented. Further extensions include methods to model nuisance effects...... in fMIR data thereby suppressing noise for both supervised and unsupervised analysis techniques....

  7. 9 Boo is a K-giant with high abundance of lithium

    International Nuclear Information System (INIS)

    Khyanni, L.

    1984-01-01

    An unusually strong lithium resonance lipe lambda 6707.8 was detected in the spectrum of the K-giant 9 Boo. The lithium abundance lg Nsub(Li)=2.5+-0.5 is estimated from a theoretical curve of growth calculated for a model atmosphere with Tsub(eff)=4000 K, lg g=2.0

  8. Best management strategies for sustainable giant clam fishery in French Polynesia islands: answers from a spatial modeling approach.

    Directory of Open Access Journals (Sweden)

    Simon Van Wynsberge

    Full Text Available The giant clam Tridacna maxima has been largely overexploited in many tropical regions over the past decades, and was therefore listed in appendix II of the Convention of International Trade in Endangered Species (CITES in 1985. In French Polynesia, several atolls and islands harbor the world's highest stocks of giant clams in very shallow and accessible areas, which are therefore highly vulnerable to fishing pressure. The local fishery authority (i.e., Direction des Resources Marines or "DRM" implemented several management schemes in 2002 to control and regulate fishing pressure. However, for further decisions DRM was missing a sensitivity analysis on the effectiveness of the possible management actions. Here, we report on the use of a deterministic Viable Population Analysis (VPA and spatially-explicit age-based population model that simulated the 30-year trajectory of a Tridacna maxima stock under different management approaches. Specifically, given various scenarios of intra-island larval dispersal, we tested which of No-take-Areas (NTAs, rotational closures, size limits, quotas, and restocking schemes would lead to the highest future stocks in Tubuai and Raivavae, two exploited islands of the Austral archipelago. For both islands, stock abundances were estimated in 2004/2010 and 2005/2010 respectively, and natural mortalities were assessed previously only in Tubuai. When compared to field data, the model successfully predicted the 2010 stocks for Tubuai, but proved to be less reliable for Raivavae, where natural mortality rates may well be different from those on Tubuai. For Tubuai, the spatial model suggested that reducing fishing effort (through fixed quotas and banning fishing below the 12 cm size limit (as currently implemented were the most effective management actions to sustain T. maxima populations into the future. Implementing NTAs was of poor effectiveness. NTAs increased giant clam stock inside the protected area, but also

  9. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution

    OpenAIRE

    Filée, Jonathan

    2015-01-01

    Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales). Origin and evolution of these Giant Viruses (GVs) remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for five groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no tr...

  10. Transforming giants.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2008-01-01

    Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.

  11. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    Science.gov (United States)

    Reconstruction of Human Lung Morphology Models from Magnetic Resonance ImagesT. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  12. The early years of string theory: The dual resonance model

    International Nuclear Information System (INIS)

    Ramond, P.

    1987-10-01

    This paper reviews the past quantum mechanical history of the dual resonance model which is an early string theory. The content of this paper is listed as follows: historical review, the Veneziano amplitude, the operator formalism, the ghost story, and the string story

  13. A non-static model for the Roper resonances

    International Nuclear Information System (INIS)

    Guichon, P.A.M.

    1985-07-01

    We solve the M.I.T. bag equations for Fermions in the limit of small fluctuations and quantize the solution. We get a non static bag model which provides a satisfactory interpretation of the Roper resonances if the time averaged radius of the cavitity is about 1 fm

  14. Modeling the full-bridge series-resonant power converter

    Science.gov (United States)

    King, R. J.; Stuart, T. A.

    1982-01-01

    A steady state model is derived for the full-bridge series-resonant power converter. Normalized parametric curves for various currents and voltages are then plotted versus the triggering angle of the switching devices. The calculations are compared with experimental measurements made on a 50 kHz converter and a discussion of certain operating problems is presented.

  15. Giant Chancroid

    Directory of Open Access Journals (Sweden)

    Bhushan Kumar

    1980-01-01

    Full Text Available A case of giant chancroid following rupture of inguinal bubo and having systemic symptoms is described. Response with sulfa and streptomycin combination was excellent and the lesion healed completely in 3 weeks. Early diagnosis and treatment of chancroid will prevent this debilitating complication.

  16. Giant microelectronics

    International Nuclear Information System (INIS)

    Della Sala, D.; Privato, C.; Di Lazzaro, P.; Fortunato, G.

    1999-01-01

    Giant microelectronics, on which the technology of flat liquid-crystal screens is based, is an example of fruitful interaction among independently-developed technologies, in this case thin film micro devices and laser applications. It typifies the interdisciplinary approach needed to produce innovations in microelectronics [it

  17. The fusion rate in the transmission resonance model

    International Nuclear Information System (INIS)

    Jaendel, M.

    1992-01-01

    Resonant transmission of deuterons through a chain of target deuterons in a metal matrix has been suggested as an explanation for the cold fusion phenomena. In this paper the fusion rate in such transmission resonance models is estimated, and the basic physical constraints are discussed. The dominating contribution to the fusion yield is found to come from metastable states. The fusion rate is well described by the Wentzel-Kramer-Brillouin approximation and appears to be much too small to explain the experimental anomalies

  18. Parameter Identification for Nonlinear Circuit Models of Power BAW Resonator

    Directory of Open Access Journals (Sweden)

    CONSTANTINESCU, F.

    2011-02-01

    Full Text Available The large signal operation of the bulk acoustic wave (BAW resonators is characterized by the amplitude-frequency effect and the intermodulation effect. The measurement of these effects, together with that of the small signal frequency characteristic, are used in this paper for the parameter identification of the nonlinear circuit models developed previously by authors. As the resonator has been connected to the measurement bench by wire bonding, the parasitic elements of this connection have been taken into account, being estimated solving some electrical and magnetic field problems.

  19. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visualizations of three-dimensional fibre bundles. One class of these algorithms is probabilistic...... the possibility of using high-field experimental MR scanners and long scanning times, thereby significantly improving the signal-to-noise ratio (SNR) and anatomical resolution. Moreover, many of the degrading effects observed in vivo, such as physiological noise, are no longer present. However, the post mortem...

  20. On the quark structure of resonance states in dual models

    International Nuclear Information System (INIS)

    Volkov, D.V.; Zheltukhin, A.A.; Pashnev, A.I.

    1975-01-01

    It is shown using as an example the Veneziano dual model, that each particular dual model already contains a certain latent quark structure unambiauously determined by internal properties of the dual model. To prove this degeneration of the resonance state spectrum is studied by introducing an additional disturbing interaction into the model being considered. Induced transitions of particles into a vacuum act as such an additional disturbance. This method complements the known factorization method of Fubini, Gordon and Veneziano and turns out to be free from an essential limitation of the latter connected with implicit assumption about the basence of internal additive laws of conservation in the model. By using the method of induced transitions of particles into a vacuum it has been possible to show that the resonance state spectrum is indeed more degenerated than it should be expected from the factorization theorem, and that the supplementary degeneration corresponds to the quark model with an infinite number of quarks of the increasing mass. Structures of some terms of the dual amplitude expansion over the degrees of the constant of the induced transition of particles to vacuum are considered; it is shown that the summation of this expansion may be reduced to a solution of a certain integral equation. On the basis of the integral equation obtained an integral representation ofr dual amplitudes is established. The problems related with degeneration of resonance states and with determination of additive quantum numbers leading to the quark interpretation of the degeneration being considered are discussed

  1. Lithium in the active sub-giant HD123351. A quantitative analysis with 3D and 1D model atmospheres using different observed spectra

    Science.gov (United States)

    Mott, A.; Steffen, M.; Caffau, E.; Strassmeier, K. G.

    Current 3D hydrodynamical model atmosphere simulations together with non-LTE spectrum synthesis calculations permit to determine reliable atomic and in particular isotopic chemical abundances. Although this approach is computationally time demanding, it became feasible in studying lithium in stellar spectra. In the literature not much is known about the presence of the more fragile {6Li} isotope in evolved metal-rich objects. In this case the analysis is complicated by the lack of a suitable list of atomic and molecular lines in the spectral region of the lithium resonance line at 670.8 nm. Here we present a spectroscopic comparative analysis of the Li doublet region of HD 123351, an active sub-giant star of solar metallicity. We fit the Li profile in three observed spectra characterized by different qualities: two very-high resolution spectra (Gecko@CFHT, R=120 000, SNR=400 and PEPSI@LBT, R=150 000, SNR=663) and a high-resolution SOPHIE@OHP spectrum (R=40 000, SNR=300). We adopt a set of model atmospheres, both 3D and 1D, having different stellar parameters (T_{eff} and log g). The 3D models are taken from the CIFIST grid of COBOLD model atmospheres and departures from LTE are considered for the lithium components. For the blends other than the lithium in this wavelength region we adopt the linelist of \\citet{melendez12}. We find consistent results for all three observations and an overall good fit with the selected list of atomic and molecular lines, indicating a high {6Li} content. The presence of {6Li} is not expected in cool stellar atmospheres. Its detection is of crucial importance for understanding mixing processes in stars and external lithium production mechanisms, possibly related to stellar activity or planetray accretion of {6Li}-rich material.

  2. Allometry indicates giant eyes of giant squid are not exceptional.

    Science.gov (United States)

    Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C

    2013-02-18

    The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.

  3. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  4. ON THE MIGRATION OF JUPITER AND SATURN: CONSTRAINTS FROM LINEAR MODELS OF SECULAR RESONANT COUPLING WITH THE TERRESTRIAL PLANETS

    International Nuclear Information System (INIS)

    Agnor, Craig B.; Lin, D. N. C.

    2012-01-01

    We examine how the late divergent migration of Jupiter and Saturn may have perturbed the terrestrial planets. Using a modified secular model we have identified six secular resonances between the ν 5 frequency of Jupiter and Saturn and the four apsidal eigenfrequencies of the terrestrial planets (g 1-4 ). We derive analytic upper limits on the eccentricity and orbital migration timescale of Jupiter and Saturn when these resonances were encountered to avoid perturbing the eccentricities of the terrestrial planets to values larger than the observed ones. Because of the small amplitudes of the j = 2, 3 terrestrial eigenmodes the g 2 – ν 5 and g 3 – ν 5 resonances provide the strongest constraints on giant planet migration. If Jupiter and Saturn migrated with eccentricities comparable to their present-day values, smooth migration with exponential timescales characteristic of planetesimal-driven migration (τ ∼ 5-10 Myr) would have perturbed the eccentricities of the terrestrial planets to values greatly exceeding the observed ones. This excitation may be mitigated if the eccentricity of Jupiter was small during the migration epoch, migration was very rapid (e.g., τ ∼< 0.5 Myr perhaps via planet-planet scattering or instability-driven migration) or the observed small eccentricity amplitudes of the j = 2, 3 terrestrial modes result from low probability cancellation of several large amplitude contributions. Results of orbital integrations show that very short migration timescales (τ < 0.5 Myr), characteristic of instability-driven migration, may also perturb the terrestrial planets' eccentricities by amounts comparable to their observed values. We discuss the implications of these constraints for the relative timing of terrestrial planet formation, giant planet migration, and the origin of the so-called Late Heavy Bombardment of the Moon 3.9 ± 0.1 Ga ago. We suggest that the simplest way to satisfy these dynamical constraints may be for the bulk of any giant

  5. Conserved number fluctuations in a hadron resonance gas model

    International Nuclear Information System (INIS)

    Garg, P.; Mishra, D.K.; Netrakanti, P.K.; Mohanty, B.; Mohanty, A.K.; Singh, B.K.; Xu, N.

    2013-01-01

    Net-baryon, net-charge and net-strangeness number fluctuations in high energy heavy-ion collisions are discussed within the framework of a hadron resonance gas (HRG) model. Ratios of the conserved number susceptibilities calculated in HRG are being compared to the corresponding experimental measurements to extract information about the freeze-out condition and the phase structure of systems with strong interactions. We emphasize the importance of considering the actual experimental acceptances in terms of kinematics (pseudorapidity (η) and transverse momentum (p T )), the detected charge state, effect of collective motion of particles in the system and the resonance decay contributions before comparisons are made to the theoretical calculations. In this work, based on HRG model, we report that the net-baryon number fluctuations are least affected by experimental acceptances compared to the net-charge and net-strangeness number fluctuations

  6. Giant planet migration during FU Orionis outbursts: 1D disc models

    Science.gov (United States)

    Dunhill, A. C.

    2018-05-01

    I present the results of semi-analytic calculations of migrating planets in young, outbursting circumstellar discs. Formed far out in the disc via gravitational fragmentation early on in its lifetime, these planets typically migrate at very slow rates and are therefore mostly expected to remain at large radii (such as is the case in HR 8799). I show that changes in the disc structure during FUor outbursts affect the planet's ability to maintain a gap and can allow a massive giant planet's semimajor axis to reduce by almost 5 per cent in a single outburst under the most optimistic conditions. Given that a single disc will likely undergo ˜10 such outbursts this process can significantly alter the expected radial distribution for GI-formed planets.

  7. RCNP E398 {sup 16}O,{sup 12}C(p,p’) experiment: Measurement of the γ-ray emission probability from giant resonances in relation to {sup 16}O,{sup 12}C(ν,ν’) reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ou, I.; Yamada, Y.; Mori, T.; Yano, T.; Sakuda, M. [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Tamii, A.; Suzuki, T.; Yosoi, M.; Aoi, N.; Ideguchi, E.; Hashimoto, T.; Miki, K.; Ito, T.; Iwamoto, C.; Yamamoto, T. [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047 (Japan); Akimune, H. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan)

    2015-05-15

    We propose to measure the γ-ray emission probability from excited states above 5 MeV including giant resonance of {sup 16}O and {sup 12}C as a function of excitation energy in 1-MeV step. Here, we measure both the excitation energy (E{sub x}=5-30MeV) at the forward scattering angles (0°-3°) of the {sup 16}O, {sup 12}C (p, p’) reaction using Grand-Raiden Spectrometer and the energy of γ-rays (E{sub γ}) using an array of NaI(Tl) counters. The purpose of the experiment is to provide the basic and important information not only for the γ-ray production from primary neutral-current neutrino-oxygen (-carbon) interactions but also for that from the secondary hadronic (neutron-oxygen and -carbon) interactions.

  8. Modeling laser brightness from cross Porro prism resonators

    Science.gov (United States)

    Forbes, Andrew; Burger, Liesl; Litvin, Igor Anatolievich

    2006-08-01

    Laser brightness is a parameter often used to compare high power laser beam delivery from various sources, and incorporates both the power contained in the particular mode, as well as the propagation of that mode through the beam quality factor, M2. In this study a cross Porro prism resonator is considered; crossed Porro prism resonators have been known for some time, but until recently have not been modeled as a complete physical optics system that allows the modal output to be determined as a function of the rotation angle of the prisms. In this paper we consider the diffraction losses as a function of the prism rotation angle relative to one another, and combine this with the propagation of the specific modes to determine the laser output brightness as a function of the prism orientation.

  9. Statistical Modelling of Resonant Cross Section Structure in URR, Model of the Characteristic Function

    International Nuclear Information System (INIS)

    Koyumdjieva, N.

    2006-01-01

    A statistical model for the resonant cross section structure in the Unresolved Resonance Region has been developed in the framework of the R-matrix formalism in Reich Moore approach with effective accounting of the resonance parameters fluctuations. The model uses only the average resonance parameters and can be effectively applied for analyses of cross sections functional, averaged over many resonances. Those are cross section moments, transmission and self-indication functions measured through thick sample. In this statistical model the resonant cross sections structure is accepted to be periodic and the R-matrix is a function of ε=E/D with period 0≤ε≤N; R nc (ε)=π/2√(S n *S c )1/NΣ(i=1,N)(β in *β ic *ctg[π(ε i - = ε-iS i )/N]; Here S n ,S c ,S i is respectively neutron strength function, strength function for fission or inelastic channel and strength function for radiative capture, N is the number of resonances (ε i ,β i ) that obey the statistic of Porter-Thomas and Wigner's one. The simple case of this statistical model concerns the resonant cross section structure for non-fissile nuclei under the threshold for inelastic scattering - the model of the characteristic function with HARFOR program. In the above model some improvements of calculation of the phases and logarithmic derivatives of neutron channels have been done. In the parameterization we use the free parameter R l ∞ , which accounts the influence of long-distant resonances. The above scheme for statistical modelling of the resonant cross section structure has been applied for evaluation of experimental data for total, capture and inelastic cross sections for 232 Th in the URR (4-150) keV and also the transmission and self-indication functions in (4-175) keV. The set of evaluated average resonance parameters have been obtained. The evaluated average resonance parameters in the URR are consistent with those in the Resolved Resonance Region (CRP for Th-U cycle, Vienna, 2006

  10. Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model

    OpenAIRE

    Zhijian Fang; Junhua Wang; Shanxu Duan; Liangle Xiao; Guozheng Hu; Qisheng Liu

    2018-01-01

    In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feed...

  11. 2D numerical modeling of gravity-driven giant-scale deformation processes in the offshore Barreirinhas Basin (Brazil)

    Science.gov (United States)

    Cruciani, Francesco; Manconi, Andrea; Rinaldo Barchi, Massimiliano

    2014-05-01

    Gravity-driven deformation processes at continental passive margins occur at different scales, from small-scale turbidity currents and sediment slides, to large-scale mass transport complexes (MTCs), to the giant-scale deep water fold and thrust belts (DW-FTBs), which affect most or the entire sedimentary sequence. This kind of giant structures, quite widespread in passive margins, may be active for tens of millions of years. In this context, the Brazilian Atlantic margin hosts several well-known DW-FTBs detached on both shale and salt décollement. Despite of their relevant scientific and economic importance, the mechanical processes driving the onset and evolution of these giant-scale structures are still poorly investigated. In this work, we focus on the shale décollement DW-FTB of the Barreirinhas Basin, where the continental slope has been affected by multi-phase gravitational processes since the Late Cretaceous. This DW-FTB consists of a linked fault system of listric normal faults updip and thrust faults downdip, detached over a common concave upward décollement surface. From the onshore extensional to the offshore compressional domain the DW-FTB is about 50 km wide and involve a sedimentary sequence up to 5 km thick. Shortening within the compressional domain is accommodated almost entirely from a single thrust ramp with a large related anticline fold. Previous studies have shown that the main activity phases of the gravitational processes are closely linked to significant increases in the sediment supply within the basin. Indeed, the highest deformation rate, accounting for about 80% of the net strain, occurred in the Upper Miocene following a drainage rearrangement which led to the birth of the modern Amazon River drainage system. The Barreirinhas Basin DW-FTB entails a rather simple geometrical structure, which can be well schematized, therefore is particularly suitable for numerical simulations aimed to study and understand the dynamics of DW-FTB at

  12. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints - The open cluster NGC 6633 and field stars-

    Science.gov (United States)

    Lagarde, Nadège; Miglio, Andrea; Eggenberger, Patrick; Morel, Thierry; Montalbàn, Josefina; Mosser, Benoit

    2015-08-01

    The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations.We use the first detailed spectroscopic study of CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars.In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch.We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red-giants targets. Tighter constraints on the physics of the models would be possible if there were detailed knowledge of the core rotation rate and the asymptotic period spacing.

  13. Superposition model analysis of nickel(II) ions in trigonal bipyramidal complexes exhibiting huge zero field splitting (aka ‘giant magnetic anisotropy’)

    Energy Technology Data Exchange (ETDEWEB)

    Rudowicz, Czesław, E-mail: crudowicz@zut.edu.pl [Faculty of Chemistry, A. Mickiewicz University, 61-614 Poznań (Poland); Institute of Physics, West Pomeranian University of Technology, Szczecin (Poland); Açıkgöz, Muhammed [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); Gnutek, Paweł [Institute of Physics, West Pomeranian University of Technology, Szczecin (Poland)

    2017-07-15

    Graphical abstract: Using crystal structure data for [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) as well as taking into account the Jahn-Teller distortions of five-fold coordinated Ni-complexes revealed by DFT geometry optimization, the ZFSPs are predicted for several structural models and wide ranges of model parameters. - Highlights: • Semiempirical study of potential SMM [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br). • Superposition model analysis of zero field splitting (ZFS) parameters carried out. • Jahn-Teller distortions revealed by DFT geometry optimization considered. • SPM predicts D(ZFS) of observed magnitudes with positive or negative signs. • Results corroborate giant ZFS, which shall not be equated with magnetic anisotropy. - Abstract: Potential single-ion magnet Ni{sup 2+} systems: [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) reveal unusually high zero field splitting (ZFS). The ZFS parameter (ZFSP) D{sub expt} = −120 to −180 cm{sup −1} was determined indirectly by high-magnetic field, high-frequency electron magnetic resonance (HMF-EMR). Modeling ZFSPs using the density functional theory (DFT) codes predicts D values: −100 to −200 cm{sup −1}. Such ZFSP values may seem controversial in view of the D values usually not exceeding several tens of cm{sup −1} for Ni{sup 2+} ions. To corroborate or otherwise these results and elucidate the origin of the huge ZFS (named inappropriately as ‘giant uniaxial magnetic anisotropy’) and respective wavefunctions, we have undertaken semiempirical modeling based on the crystal field (CF) and spin Hamiltonians (SH) theory. In this paper, a feasibility study is carried out to ascertain if superposition model (SPM) calculations may yield such huge D values for these Ni{sup 2+} systems. Using crystal structure data for [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) as well as taking into account the Jahn

  14. Model of the transverse modes of stable and unstable porro–prism resonators using symmetry considerations

    CSIR Research Space (South Africa)

    Burger, L

    2007-01-01

    Full Text Available of this type of resonator. Further use of the model reveals the formation of more complex beam patterns, and the nature of these patterns is investigated. Also, the output of stable and unstable resonator modes is presented....

  15. Modelling of optoelectronic circuits based on resonant tunneling diodes

    Science.gov (United States)

    Rei, João. F. M.; Foot, James A.; Rodrigues, Gil C.; Figueiredo, José M. L.

    2017-08-01

    Resonant tunneling diodes (RTDs) are the fastest pure electronic semiconductor devices at room temperature. When integrated with optoelectronic devices they can give rise to new devices with novel functionalities due to their highly nonlinear properties and electrical gain, with potential applications in future ultra-wide-band communication systems (see e.g. EU H2020 iBROW Project). The recent coverage on these devices led to the need to have appropriated simulation tools. In this work, we present RTD based optoelectronic circuits simulation packages to provide circuit signal level analysis such as transient and frequency responses. We will present and discuss the models, and evaluate the simulation packages.

  16. Covariant introduction of quark spin into the dual resonance model

    International Nuclear Information System (INIS)

    Iroshnikov, G.S.

    1979-01-01

    A very simple method of insertion of a quark spin into the dual resonance model of hadron interaction is proposed. The method is suitable for amplitudes with an arbitrary number of particles. The amplitude of interaction of real particles is presented as a product of contribution of oscillatory excitations in the (q anti q) system and of a spin factor. The latter is equal to the trace of the product of the external particle wave functions constructed from structural quarks and satisfying the relativistic Bargman-Wigner equations. Two examples of calculating the meson interaction amplitudes are presented

  17. Parton recombination model including resonance production. RL-78-040

    International Nuclear Information System (INIS)

    Roberts, R.G.; Hwa, R.C.; Matsuda, S.

    1978-05-01

    Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references

  18. Modelling of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2014-04-01

    Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to

  19. Parton recombination model including resonance production. RL-78-040

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R. G.; Hwa, R. C.; Matsuda, S.

    1978-05-01

    Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references.

  20. Stochastic resonance in a generalized Von Foerster population growth model

    Energy Technology Data Exchange (ETDEWEB)

    Lumi, N.; Mankin, R. [Institute of Mathematics and Natural Sciences, Tallinn University, 25 Narva Road, 10120 Tallinn (Estonia)

    2014-11-12

    The stochastic dynamics of a population growth model, similar to the Von Foerster model for human population, is studied. The influence of fluctuating environment on the carrying capacity is modeled as a multiplicative dichotomous noise. It is established that an interplay between nonlinearity and environmental fluctuations can cause single unidirectional discontinuous transitions of the mean population size versus the noise amplitude, i.e., an increase of noise amplitude can induce a jump from a state with a moderate number of individuals to that with a very large number, while by decreasing the noise amplitude an opposite transition cannot be effected. An analytical expression of the mean escape time for such transitions is found. Particularly, it is shown that the mean transition time exhibits a strong minimum at intermediate values of noise correlation time, i.e., the phenomenon of stochastic resonance occurs. Applications of the results in ecology are also discussed.

  1. Giant arachnoid granulation in a patient with benign intracranial hypertension

    International Nuclear Information System (INIS)

    Kiroglu, Yilmaz; Yaqci, Baki; Cirak, Bayram; Karabulut, Nevzat

    2008-01-01

    We report magnetic resonance (MR), computed tomography (CT) and angiographic imaging of an unusual giant arachnoid granulation in the superior sagittal sinus in a man with headache and vertigo. Intrasinus pressure measurements revealed a significant pressure gradient across the lesion. MR imaging is useful to identify giant arachnoid granulation and dural sinus thrombosis, whereas dural sinus pressure measurement in certain cases of giant arachnoid granulations can be used to evaluate the lesion as the cause of the patient's symptoms. (orig.)

  2. Giant arachnoid granulation in a patient with benign intracranial hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Kiroglu, Yilmaz; Yaqci, Baki; Cirak, Bayram; Karabulut, Nevzat [Pamukkale University, Department of Radiology, School of Medicine, Denizli (Turkey)

    2008-10-15

    We report magnetic resonance (MR), computed tomography (CT) and angiographic imaging of an unusual giant arachnoid granulation in the superior sagittal sinus in a man with headache and vertigo. Intrasinus pressure measurements revealed a significant pressure gradient across the lesion. MR imaging is useful to identify giant arachnoid granulation and dural sinus thrombosis, whereas dural sinus pressure measurement in certain cases of giant arachnoid granulations can be used to evaluate the lesion as the cause of the patient's symptoms. (orig.)

  3. Interacting hadron resonance gas model in the K -matrix formalism

    Science.gov (United States)

    Dash, Ashutosh; Samanta, Subhasis; Mohanty, Bedangadas

    2018-05-01

    An extension of hadron resonance gas (HRG) model is constructed to include interactions using relativistic virial expansion of partition function. The noninteracting part of the expansion contains all the stable baryons and mesons and the interacting part contains all the higher mass resonances which decay into two stable hadrons. The virial coefficients are related to the phase shifts which are calculated using K -matrix formalism in the present work. We have calculated various thermodynamics quantities like pressure, energy density, and entropy density of the system. A comparison of thermodynamic quantities with noninteracting HRG model, calculated using the same number of hadrons, shows that the results of the above formalism are larger. A good agreement between equation of state calculated in K -matrix formalism and lattice QCD simulations is observed. Specifically, the lattice QCD calculated interaction measure is well described in our formalism. We have also calculated second-order fluctuations and correlations of conserved charges in K -matrix formalism. We observe a good agreement of second-order fluctuations and baryon-strangeness correlation with lattice data below the crossover temperature.

  4. Heavy-element yields and abundances of asymptotic giant branch models with a Small Magellanic Cloud metallicity

    Science.gov (United States)

    Karakas, Amanda I.; Lugaro, Maria; Carlos, Marília; Cseh, Borbála; Kamath, Devika; García-Hernández, D. A.

    2018-06-01

    We present new theoretical stellar yields and surface abundances for asymptotic giant branch (AGB) models with a metallicity appropriate for stars in the Small Magellanic Cloud (SMC, Z = 0.0028, [Fe/H] ≈ -0.7). New evolutionary sequences and post-processing nucleosynthesis results are presented for initial masses between 1 and 7 M⊙, where the 7 M⊙ is a super-AGB star with an O-Ne core. Models above 1.15 M⊙ become carbon rich during the AGB, and hot bottom burning begins in models M ≥ 3.75 M⊙. We present stellar surface abundances as a function of thermal pulse number for elements between C to Bi and for a selection of isotopic ratios for elements up to Fe and Ni (e.g. 12C/13C), which can be compared to observations. The integrated stellar yields are presented for each model in the grid for hydrogen, helium, and all stable elements from C to Bi. We present evolutionary sequences of intermediate-mass models between 4 and 7 M⊙ and nucleosynthesis results for three masses (M = 3.75, 5, and 7 M⊙) including s-process elements for two widely used AGB mass-loss prescriptions. We discuss our new models in the context of evolved AGB and post-AGB stars in the SMCs, barium stars in our Galaxy, the composition of Galactic globular clusters including Mg isotopes with a similar metallicity to our models, and to pre-solar grains which may have an origin in metal-poor AGB stars.

  5. Superstorms at the end of the Last Interglacial (MIS 5e)? Modeling paleo waves and the transport of giant boulders.

    Science.gov (United States)

    Rovere, Alessio; Harris, Daniel; Casella, Elisa; Lorscheid, Thomas; Stocchi, Paolo; Nandasena, Napayalage; Sandstrom, Michael; D'Andrea, William; Dyer, Blake; Raymo, Maureen

    2017-04-01

    We present the results of high-resolution field surveys and wave models along the cliffs of the northern part of the Island of Eleuthera, Bahamas. Previous studies have proposed that cliff top mega-boulders were emplaced at the end of the Last Interglacial (MIS 5e, 128-116 ka) by giant swells caused by super-storms that find no counterpart in the Holocene (including historical times). Our results suggest that these boulders could have instead been transported from the cliff face to the top of the cliff by a storm analogous to the 1991 'Perfect Storm', if sea level during MIS 5e sea was more than 4 meters higher than today. We remark that the data-model approach used here is essential to interpreting the geologic evidence of extreme storms during past warm periods, which in turn, is an important tool for predicting the intensity of extreme storm events in future climates. Our results indicate that even without an increase in storm intensity, cliffs and hard coastal barriers might be subject to significant increases wave-generated stresses under conditions of sea levels modestly higher than present.

  6. The benchmark halo giant HD 122563: CNO abundances revisited with three-dimensional hydrodynamic model stellar atmospheres

    DEFF Research Database (Denmark)

    Collet, R.; Nordlund, Ã.; Asplund, M.

    2018-01-01

    We present an abundance analysis of the low-metallicity benchmark red giant star HD 122563 based on realistic, state-of-the-art, high-resolution, three-dimensional (3D) model stellar atmospheres including non-grey radiative transfer through opacity binning with 4, 12, and 48 bins. The 48-bin 3D...... simulation reaches temperatures lower by ˜300-500 K than the corresponding 1D model in the upper atmosphere. Small variations in the opacity binning, adopted line opacities, or chemical mixture can cool the photospheric layers by a further ˜100-300 K and alter the effective temperature by ˜100 K. A 3D local...... molecular bands and lines in the ultraviolet, visible, and infrared. We find a small positive 3D-1D abundance correction for carbon (+0.03 dex) and negative ones for nitrogen (-0.07 dex) and oxygen (-0.34 dex). From the analysis of the [O I] line at 6300.3 Å, we derive a significantly higher oxygen...

  7. RESONANCE

    Indian Academy of Sciences (India)

    To the extent that genes influence our behaviour it may well be that our ... other by a coefficient of genetic relatedness r of 0.75 but a female. Figure 1. ... cal and empirical work. ... rather famous one is called PSR, for paternally transmitted sex ... Life cycle of ... Genic balance sex determination (GBSD): According to this model ...

  8. Effect of increasing taurine and methionine supplementation on urinary taurine excretion in a model insectivore, the giant anteater (Myrmecophaga tridactyla).

    Science.gov (United States)

    Nofs, S A; Dierenfeld, E S; Backus, R C

    2018-02-01

    The giant anteater (Mymercophaga tridactyla) is a highly specialized insectivore for which nutrient requirements are not clearly established, making diet formulation challenging for this species. Multiple clinical reports suggest anteaters have an obligate dietary taurine (TAU) requirement. Sulphur amino acid (SAA) metabolism in adult anteaters was evaluated using noninvasive methods to measure TAU synthesis potential from dietary methionine (MET) and a basal diet containing on a dry matter (DM) basis 1.7 mg TAU/kg DM and 6.9 g MET/kg DM. Urinary equilibrium times for TAU excretion were determined by feeding the basal diet with or without 1.5 g/kg DM supplemental TAU (crossover design; n = 4). Effects of supplemental dietary TAU (1.7, 2.0, 2.4, 2.7, 3.0, 3.3 g/kg DM) or MET (6.9, 9.0, 11.2 g/kg DM) on urinary TAU were evaluated (randomized block trials; n = 5 or 4 respectively). All urinary values (TAU, MET, unbound inorganic sulphate) were normalized to creatinine (CRT). Results indicate urinary TAU equilibrium in anteaters requires at least 2 weeks of feeding. Urinary ratio of TAU to CRT (TAU:CRT) increased as dietary TAU content increased from 1.7 to 3.0 g/kg DM, consistent with renal homoeostatic modulation of TAU excretion. Our data indicate that TAU needs were met by TAU in the basal diet or by de novo synthesis. Supplemental MET resulted in ~five- to eightfold increases in urinary TAU:CRT excretion, further supporting existence of mechanisms for TAU synthesis from dietary SAA in anteaters. Adult anteaters appear able to synthesize TAU when diets contain adequate SAA, but dietary TAU may be critical if protein intakes are low or of poor quality. This study may provide guidance on choice of domestic canids vs. felids as suitable physiologic models for improved nutrition in giant anteaters, and also outlines a noninvasive method for assessing TAU status/metabolism that may be useful across species. © 2017 Blackwell Verlag GmbH.

  9. Interacting-string picture of dual-resonance models

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1985-01-01

    Dual-resonance models are an alyzed by means of operators which act within the physical Hilbert space of positive-metric states. The basis of the method is to extend the relativistic-string picture of a previous study to interacting particles. Functional methods are used, but their relation to the operator is evident, and factorization is maintained. An expression is given for the N-point amplitude in terms of physical-particle operators. For the three-point function the Neumann functions which occur in this expression are evaluated, so that we have a formula for the on- and off-energy-shell vertex. The authors assume that the string has no longitudinal degrees of freedom, and their results are Lorentz invariant and dual only if d=26

  10. The inherent complexity in nonlinear business cycle model in resonance

    International Nuclear Information System (INIS)

    Ma Junhai; Sun Tao; Liu Lixia

    2008-01-01

    Based on Abraham C.-L. Chian's research, we applied nonlinear dynamic system theory to study the first-order and second-order approximate solutions to one category of the nonlinear business cycle model in resonance condition. We have also analyzed the relation between amplitude and phase of second-order approximate solutions as well as the relation between outer excitements' amplitude, frequency approximate solutions, and system bifurcation parameters. Then we studied the system quasi-periodical solutions, annulus periodical solutions and the path leading to system bifurcation and chaotic state with different parameter combinations. Finally, we conducted some numerical simulations for various complicated circumstances. Therefore this research will lay solid foundation for detecting the complexity of business cycles and systems in the future

  11. Polyakov loop and the hadron resonance gas model.

    Science.gov (United States)

    Megías, E; Arriola, E Ruiz; Salcedo, L L

    2012-10-12

    The Polyakov loop has been used repeatedly as an order parameter in the deconfinement phase transition in QCD. We argue that, in the confined phase, its expectation value can be represented in terms of hadronic states, similarly to the hadron resonance gas model for the pressure. Specifically, L(T)≈1/2[∑(α)g(α)e(-Δ(α)/T), where g(α) are the degeneracies and Δ(α) are the masses of hadrons with exactly one heavy quark (the mass of the heavy quark itself being subtracted). We show that this approximate sum rule gives a fair description of available lattice data with N(f)=2+1 for temperatures in the range 150 MeVmodels. For temperatures below 150 MeV different lattice results disagree. One set of data can be described if exotic hadrons are present in the QCD spectrum while other sets do not require such states.

  12. Numerical model of electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    V. Mironov

    2015-12-01

    Full Text Available Important features of the electron cyclotron resonance ion source (ECRIS operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  13. Turbulent Convection in an Anelastic Rotating Sphere: A Model for the Circulation on the Giant Planets

    National Research Council Canada - National Science Library

    Kaspi, Yohai

    2008-01-01

    ... (including the strong variations in gravity and the equation of state). Different from most previous 3D convection models, this model is anelastic rather than Boussinesq and thereby incorporates the full density variation of the planet...

  14. Time Dependent Density Functional Theory description of giant resonances in transition metal complexes: The photoionization dynamics of Cr(CO)6

    International Nuclear Information System (INIS)

    Stener, M.; Fronzoni, G.; Decleva, P.

    2009-01-01

    The photoionization dynamics of Cr(CO) 6 has been calculated at the TDDFT level, employing a basis set of multicentric B-spline functions with the explicit treatment of the photoelectron continuum. The cross section and the asymmetry parameter profiles of all the valence orbitals have been considered and compared with the available experimental data. The most interesting spectral feature is the intense autoionization resonance Cr 3p → Cr 3d observed in the experiment of band A, which is very well reproduced by present calculation at the TDDFT level. Other observed spectral features have been ascribed to shape resonances and assigned according to the dipole-prepared continuum orbital nature. The present TDDFT scheme proves accurate and practicable on large and complex systems containing transition metal compounds, for the description and the interpretation of the photoionization dynamics.

  15. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    International Nuclear Information System (INIS)

    Nesvorný, David

    2011-01-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ∼15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  16. Young Solar System's Fifth Giant Planet?

    Science.gov (United States)

    Nesvorný, David

    2011-12-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ~15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  17. Matter-neutrino resonance in a multiangle neutrino bulb model

    Science.gov (United States)

    Vlasenko, Alexey; McLaughlin, G. C.

    2018-04-01

    Simulations of neutrino flavor evolution in compact merger environments have shown that neutrino flavor, and hence nucleosynthesis, can be strongly affected by the presence of matter-neutrino resonances (MNRs), where there is a cancelation between the matter and the neutrino potential. Simulations performed thus far follow flavor evolution along a single neutrino trajectory, but self-consistency requires all trajectories to be treated simultaneously, and it has not been known whether MNR phenomena would still occur in multiangle models. In this paper, we present the first fully multi-angle calculations of MNR. We find that familiar MNR phenomena, where neutrinos transform to a greater extent than anti-neutrinos and a feedback mechanism maintains the cancellation between the matter and neutrino potential, still occurs for a subset of angular bins, although the flavor transformation is not as efficient as in the single-angle case. In addition, we find other types of flavor transformation that are not seen in single-angle simulations. These flavor transformation phenomena appear to be robust and are present for a wide range of model parameters, as long as an MNR is present. Although computational constraints currently limit us to models with spherical symmetry, our results suggest that the presence of an MNR generally leads to large-scale neutrino flavor evolution in multiangle systems.

  18. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  19. Application of Resonant Converter in Ozone Generator Model

    Directory of Open Access Journals (Sweden)

    Mochammad Facta

    2008-04-01

    Full Text Available Ozone is one of the favorable oxidant to use in home appliance and industry as disinfectant for food processing, food storage, odor abatement, groundwater remediation, and drinking water purification. The common and previous technical method for generating ozone uses a high voltage and low frequency. This kind of method has disadvantage of energy efficiency, size and weight. This paper proposed the use power electronics in the inverter resonant circuit to produce alternating current with high frequency. The basic RLC resonance circuit is used for early study to determine resonance frequency for inverter. As the result, the ozone chamber terminal voltage had been achieved for initiation by using resonance frequency.

  20. Study of the neutron decays of giant resonances excited by the inelastic scattering of 36 Ar on 90 Zr and 94 Zr targets at 44 MeV/u: a signature of multiphonon states

    International Nuclear Information System (INIS)

    Pascalon-Rozier, V.

    1997-01-01

    In inelastic heavy ion scattering, to angles near to the grazing angle, giant resonances (GR) are excited with very large differential cross sections. It has been shown that multiphonon states, states built with several GR quanta, can also been excited. These states can be revealed through the measurement of their decay by light particle emission. In this thesis, we report on the study of inelastic scattering of 36 Ar at 44 MeV/u on target of 90 Zr and 94 Zr, measured in coincidence with neutrons detected with the EDEN multidetector. The analysis of the inelastic spectra show evidence for a structure at high excitation energy, exhibiting characteristics compatible with a two-photon excitation. The construction of missing energy spectra allows us to the study of the GR and the high energy structure. In both nuclei, the GR presents a direct decay branch of 8%, which yields informations on the microscopic structure of the resonance. A two phonon state, interpreted as two weakly coupled GR's, built on one top of the other, and each phonon is expected to exhibit the same direct decay pattern as the GR. Such a simple decay is observed in the data, proving that the structure observed is due to the excitation of the two phonon state in both nuclei studied. Finally, we present a theoretical development based on Random Phase Approximation calculation, predicting that the two phonon state should be very harmonic. This result is in agreement with experimental studies of double phonon states over a large range of nuclei (from A = 12 to 208) carried out with several different probes. (author)

  1. Modelling and analysis of the transformer current resonance in dual active bridge converters

    DEFF Research Database (Denmark)

    Qin, Zian; Shen, Zhan; Blaabjerg, Frede

    2017-01-01

    Due to the parasitic capacitances of the transformer and inductor in Dual Active Bridge (DAB) converters, resonance happens in the transformer currents. This high frequency resonant current flowing into the full bridges will worsen their soft-switching performance and thereby reduce its efficiency....... In order to study the generation mechanism of this current resonance, the impedance of the transformer and inductor with parasitic components is modelled in this digest. Then, based on the impedance model, an approach is proposed to mitigate the current resonance. Finally, both the impedance model...

  2. Doorway-resonance model for pion-nucleon D- and F-wave scattering

    International Nuclear Information System (INIS)

    Ernst, D.J.; Parnell, G.E.; Assad, C.; Texas A and M Univ., College Station, TX

    1990-01-01

    A model for the resonant pion-nucleon D- and F-waves is developed which assumes that the pion-plus-nucleon couples to a resonance and that the resonance can serve as a doorway to the inelastic channels. With the use of simple form factors, the model is capable of reproducing the pion-nucleon phase shifts up to an energy of T π =1.4 GeV if the coupling of the elastic channel to the inelastic channels is taken from data as input into the model. A value for the mass of the resonance that would result in the absence of the coupling to decay channels is extracted from the data utilizing the model. This is the mass that is most easily modeled by bag models. For the non-resonant D- and F-wave channels a separable potential model is used. This model, like the resonance model, is developed utilizing the invariant amplitude which is free of kinematic singularities and uses invariant norms and phase spaces. The model is also applied to the S-wave channels. A relation between the resonance model and the Chew-Low model is discovered and used to derive an extended Chew-Low model which is applied to the P 13 , P 31 and P 33 channels. Implications of the model for understanding the range of the pion-nucleon interaction and the dynamic structure of the interaction are presented. (orig.)

  3. The benchmark halo giant HD 122563: CNO abundances revisited with three-dimensional hydrodynamic model stellar atmospheres

    Science.gov (United States)

    Collet, R.; Nordlund, Å.; Asplund, M.; Hayek, W.; Trampedach, R.

    2018-04-01

    We present an abundance analysis of the low-metallicity benchmark red giant star HD 122563 based on realistic, state-of-the-art, high-resolution, three-dimensional (3D) model stellar atmospheres including non-grey radiative transfer through opacity binning with 4, 12, and 48 bins. The 48-bin 3D simulation reaches temperatures lower by ˜300-500 K than the corresponding 1D model in the upper atmosphere. Small variations in the opacity binning, adopted line opacities, or chemical mixture can cool the photospheric layers by a further ˜100-300 K and alter the effective temperature by ˜100 K. A 3D local thermodynamic equilibrium (LTE) spectroscopic analysis of Fe I and Fe II lines gives discrepant results in terms of derived Fe abundance, which we ascribe to non-LTE effects and systematic errors on the stellar parameters. We also determine C, N, and O abundances by simultaneously fitting CH, OH, NH, and CN molecular bands and lines in the ultraviolet, visible, and infrared. We find a small positive 3D-1D abundance correction for carbon (+0.03 dex) and negative ones for nitrogen (-0.07 dex) and oxygen (-0.34 dex). From the analysis of the [O I] line at 6300.3 Å, we derive a significantly higher oxygen abundance than from molecular lines (+0.46 dex in 3D and +0.15 dex in 1D). We rule out important OH photodissociation effects as possible explanation for the discrepancy and note that lowering the surface gravity would reduce the oxygen abundance difference between molecular and atomic indicators.

  4. A conceptual model for site-level ecology of the giant gartersnake (Thamnophis gigas) in the Sacramento Valley, California

    Science.gov (United States)

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.; Hansen, Eric C.; Scherer, Rick D.; Patterson, Laura C.

    2015-08-14

    Giant gartersnakes (Thamnophis gigas) comprise a species of semi-aquatic snakes precinctive to marshes in the Central Valley of California (Hansen and Brode, 1980; Rossman and others, 1996). Because more than 90 percent of their historical wetland habitat has been converted to other uses (Frayer and others, 1989; Garone, 2007), giant gartersnakes have been listed as threatened by the State of California (California Department of Fish and Game Commission , 1971) and the United States (U.S. Fish and Wildlife Service, 1993). Giant gartersnakes currently occur in a highly modified landscape, with most extant populations occurring in the rice - growing regions of the Sacramento Valley, especially near areas that historically were tule marsh habitat (Halstead and others, 2010, 2014).

  5. Modeling Radial Velocities and Eclipse Photometry of the Kepler Target KIC 4054905: an Oscillating Red Giant in an Eclipsing Binary

    Science.gov (United States)

    Benbakoura, M.; Gaulme, P.; McKeever, J.; Beck, P. G.; Jackiewicz, J.; García, R. A.

    2017-12-01

    Asteroseismology is a powerful tool to measure the fundamental properties of stars and probe their interiors. This is particularly efficient for red giants because their modes are well detectable and give information on their deep layers. However, the seismic relations used to infer the mass and radius of a star have been calibrated on the Sun. Therefore, it is crucial to assess their accuracy for red giants which are not perfectly homologous to it. We study eclipsing binaries with a giant component to test their validity. We identified 16 systems for which we intend to compare the dynamical masses and radii obtained by combined photometry and spectroscopy to the values obtained from asteroseismology. In the present work, we illustrate our approach on a system from our sample.

  6. Electron scattering studies of selected electric and magnetic dipole and quadrupole transitions in light and heavy nuclei, the new multipole giant resonances and atomic transitions - recent results from the DALINAC

    International Nuclear Information System (INIS)

    Richter, A.

    1977-01-01

    Recent experimental work from the Darmstadt electron linear accelerator (DALINAC) is briefly summarized. Particular emphasis is given to the following topics: high resolution inelastic electron scattering (ΔE approximately 30 keV FWHM) has been used to study the radiative width and magnetization density of the 2 + , T = 1 state at 16.11 MeV in 12 C, E2 strength distribution in 28 Si below an excitation energy of 13 MeV and the isospin forbidden E1 electroexcitation of the 1 - , T = 0 state at 6.95 MeV in 40 Ca. High resolution inelastic electron scattering was also employed to determine certain M1 transitions in 14 N, 28 Si, 39 K, 58 Ni, 90 Zr and 208 Pb and the M2 strength distribution in the two heaviest nuclei. At medium energy resolution (ΔE approximately 200 keV FWHM) spectra at various angles and bombarding energies have been measured from (4-31) MeV for 208 Pb. They are being analyzed in order to determine E0, E1, E2, E3 and M1 giant resonance strength in the continuum. The Z and E dependence and the scaling behaviour of the atomic inner shell ionization cross section at relativistic electron impact is studied on gaseous and solid targets. (orig./BJ) [de

  7. A three-dimensional model for calculating the micro disk laser resonant-modes

    International Nuclear Information System (INIS)

    Sabetjoo, H.; Bahrampor, A.; Farrahi-Moghaddam, R.

    2006-01-01

    In this article, a semi-analytical model for theoretical analysis of micro disk lasers is presented. Using this model, the necessary conditions for the existence of loss less and low-loss modes of micro-resonators are obtained. The resonance frequency of the resonant modes and also the attenuation of low-loss modes are calculated. By comparing the results with results of finite difference method, their validity is certified.

  8. Self-consistent modeling of electron cyclotron resonance ion sources

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lecot, C.

    2004-01-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally

  9. Self-consistent modeling of electron cyclotron resonance ion sources

    Science.gov (United States)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lécot, C.

    2004-05-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally.

  10. Systematic assignment of Feshbach resonances via an asymptotic bound state model

    NARCIS (Netherlands)

    Goosen, M.; Kokkelmans, SJ.J.M.F.

    2008-01-01

    We present an Asymptotic Bound state Model (ABM), which is useful to predict Feshbach resonances. The model utilizes asymptotic properties of the interaction potentials to represent coupled molecular wavefunctions. The bound states of this system give rise to Feshbach resonances, localized at the

  11. Analytical model for double split ring resonators with arbitrary ring width

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor

    2008-01-01

    For the first time, the analytical model for a double split ring resonator with unequal width rings is developed. The proposed models for the resonators with equal and unequal widths are based on an impedance matrix representation and provide the prediction of performance in a wide frequency range...

  12. Detection and quantification of creep strain using process compensated resonance testing (PCRT) sorting modules trained with modeled resonance spectra

    Science.gov (United States)

    Heffernan, Julieanne; Biedermann, Eric; Mayes, Alexander; Livings, Richard; Jauriqui, Leanne; Goodlet, Brent; Aldrin, John C.; Mazdiyasni, Siamack

    2018-04-01

    Process Compensated Resonant Testing (PCRT) is a full-body nondestructive testing (NDT) method that measures the resonance frequencies of a part and correlates them to the part's material and/or damage state. PCRT testing is used in the automotive, aerospace, and power generation industries via automated PASS/FAIL inspections to distinguish parts with nominal process variation from those with the defect(s) of interest. Traditional PCRT tests are created through the statistical analysis of populations of "good" and "bad" parts. However, gathering a statistically significant number of parts can be costly and time-consuming, and the availability of defective parts may be limited. This work uses virtual databases of good and bad parts to create two targeted PCRT inspections for single crystal (SX) nickel-based superalloy turbine blades. Using finite element (FE) models, populations were modeled to include variations in geometric dimensions, material properties, crystallographic orientation, and creep damage. Model results were verified by comparing the frequency variation in the modeled populations with the measured frequency variations of several physical blade populations. Additionally, creep modeling results were verified through the experimental evaluation of coupon geometries. A virtual database of resonance spectra was created from the model data. The virtual database was used to create PCRT inspections to detect crystallographic defects and creep strain. Quantification of creep strain values using the PCRT inspection results was also demonstrated.

  13. A one-dimensional model of resonances with a delta barrier and mass jump

    International Nuclear Information System (INIS)

    Alvarez, J.J.; Gadella, M.; Heras, F.J.H.; Nieto, L.M.

    2009-01-01

    In this Letter, we present a one-dimensional model that includes a hard core at the origin, a Dirac delta barrier at a point in the positive semiaxis and a mass jump at the same point. We study the effect of this mass jump in the behavior of the resonances of the model. We obtain an infinite number of resonances for this situation, showing that for the case of a mass jump the imaginary part of the resonance poles tend to a fixed value depending on the quotient of masses, and demonstrate that none of these resonances is degenerated.

  14. The giant African millipede, .i.Archispirostreptus gigas./i. (Diplopoda: Spirostreptida), a model species for ecophysiological studies

    Czech Academy of Sciences Publication Activity Database

    Šustr, Vladimír; Tajovský, Karel; Semanová, Stanislava; Chroňáková, Alica; Šimek, Miloslav

    2013-01-01

    Roč. 77, č. 2 (2013), s. 145-158 ISSN 1211-376X R&D Projects: GA ČR GA526/09/1570 Institutional support: RVO:60077344 Keywords : Spirostreptidae * giant millipedes * digestive enzymes * methane * gut microflora Subject RIV: EG - Zoology

  15. Magnetic resonance spectroscopy of traumatic brain in SD rats model

    International Nuclear Information System (INIS)

    Li Ke; Li Yangbin; Li Zhiming; Huang Yong; Li Bin; Lu Guangming

    2009-01-01

    Objective: To assess the value and prospect of magnetic resonance spectroscopy (MRS) in early diagnosis of traumatic brain with traumatic brain model in SD rats. Methods: Traumatic brain modal was established in 40 male SD rats utilizing a weigh-drop device, and MRS was performed before trauma and 4,8,24 and 48 hours after trauma. The ratio of N-acetylaspartate/creatine (NAA/Ct) and choline/creatine (Cho/Cr) were calculated and compared with pathological findings respectively. Results: Axonal changes were confirmed in microscopic study 4 hours after injury. The ratio of NAA/Ct decreased distinctly at 4 hours after trauma, followed by a steadily recover at 8 hours, and no significant change from 24h to 48h. There was no significant change in the ratio of Cho/Cr before and after trauma. Conclusion: MRS can be used to monitor the metabolic changes of brain non-invasively. MRS could play a positive role in early diagnosis, prognosis and follow-up of traumatic brain. (authors)

  16. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  17. Model for decays of boson resonances with arbitrary spins

    International Nuclear Information System (INIS)

    Grigoryan, A.A.; Ivanov, N.Ya.

    1985-01-01

    A formula for the width of resonance with spin J decay into hadrons with arbitrary spins is derived. This width is expressed via S-channel helicity residues of Regge trajectory α J where the resonance J lies. Using the quark-gluon picture predictions for the coupling of quarks with Regge trajectories and SU(6)-classification of hadrons this formula is applied to calculate the widths of decays of resonances, which lie on the vector and tensor trajectories, into pseudoscalar and vector, two vectors and NN-bar-pair

  18. A Gas-Poor Planetesimal Feeding Model for the Formation of Giant Planet Satellite Systems: Consequences for the Atmosphere of Titan

    Science.gov (United States)

    Estrada, P. R.; Mosqueira, I.

    2005-01-01

    Given our presently inadequate understanding of the turbulent state of the solar and planetary nebulae, we believe the way to make progress in satellite formation is to consider two end member models that avoid over-reliance on specific choices of the turbulence (alpha), which is essentially a free parameter. The first end member model postulates turbulence decay once giant planet accretion ends. If so, Keplerian disks must eventually pass through the quiescent phases, so that the survival of satellites (and planets) ultimately hinges on gap-opening. In this scenario, the criterion for gap-opening itself sets the value for the gas surface density of the satellite disk.

  19. Analysis and Modeling of Integrated Magnetics for LLC resonant Converters

    DEFF Research Database (Denmark)

    Li, Mingxiao; Ouyang, Ziwei; Zhao, Bin

    2017-01-01

    Shunt-inserted transformers are widely used toobtain high leakage inductance. This paper investigates thismethod in depth to make it applicable to integrate resonantinductor for the LLC resonant converters. The analysis andmodel of magnetizing inductance and leakage inductance forshunt...... transformers can provide a significantdifference. The way to obtain the desirable magnetizing andleakage inductance value for LLC resonant converters issimplified by the creation of air gaps together with a magneticshunt. The calculation and relation are validated by finiteelement analysis (FEA) simulations...

  20. Large Mn25 single-molecule magnet with spin S = 51/2: magnetic and high-frequency electron paramagnetic resonance spectroscopic characterization of a giant spin state.

    Science.gov (United States)

    Murugesu, Muralee; Takahashi, Susumu; Wilson, Anthony; Abboud, Khalil A; Wernsdorfer, Wolfgang; Hill, Stephen; Christou, George

    2008-10-20

    The synthesis and structural, spectroscopic, and magnetic characterization of a Mn25 coordination cluster with a large ground-state spin of S = 51/2 are reported. Reaction of MnCl2 with pyridine-2,6-dimethanol (pdmH2) and NaN3 in MeCN/MeOH gives the mixed valence cluster [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6]Cl2 (1; 6Mn(II), 18Mn(III), Mn(IV)), which has a barrel-like cage structure. Variable temperature direct current (dc) magnetic susceptibility data were collected in the 1.8-300 K temperature range in a 0.1 T field. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-7 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 51/2, D = -0.020(2) cm(-1), and g = 1.87(3), where D is the axial zero-field splitting parameter. Alternating current (ac) susceptibility measurements in the 1.8-8.0 K range and a 3.5 G ac field oscillating at frequencies in the 50-1500 Hz range revealed a frequency-dependent out-of-phase (chi(M)'') signal below 3 K, suggesting 1 to be a single-molecule magnet (SMM). This was confirmed by magnetization vs dc field sweeps, which exhibited hysteresis loops but with no clear steps characteristic of resonant quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot, and the fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 12 K, where U(eff) is the effective relaxation barrier. The g value and the magnitude and sign of the D value were independently confirmed by detailed high-frequency electron paramagnetic resonance (HFEPR) spectroscopy on polycrystalline samples. The combined studies confirm both the high ground-state spin S = 51/2 of complex 1 and that it is a SMM that, in addition, exhibits QTM.

  1. Two-Mode Resonator and Contact Model for Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Blanke, Mogens; Helbo, J.

    2001-01-01

    The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailed simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...

  2. CLUSTER MODEL FOR EXTENSIVE GIANT TIGER SHRIMP (Penaeus monodon Fab. TO PREVENT TRANSMISSION OF WHITE SPOT SYNDROME VIRUS

    Directory of Open Access Journals (Sweden)

    Arief Taslihan

    2015-06-01

    Full Text Available White spot syndrome virus (WSSV has become epidemic in Indonesia and affecting shrimp aquaculture interm of its production. White spot syndrome virus is transmitted from one to other ponds, through crustacean, included planktonic copepode as carrier for WSSV and through water from affected shrimp pond. A cluster model, consist of shrimp grow out ponds surrounded by non-shrimp pond as a role of biosecurity has been developed. The model aimed to prevent white spot virus transmission in extensive giant tiger shrimp pond. The study was conducted in two sites at Demak District, Central Java Province. As the treatment, a cluster consist of three shrimp ponds in site I, and two shrimp ponds in site II, each was surrounded by buffer ponds rearing only finfish. As the control, five extensive shrimp grow out ponds in site I and three shrimp grow out ponds in site II, with shrimp pond has neither applied biosecurity nor surrounded by non-shrimp pond as biosecurity as well considered as control ponds. The results found that treatment of cluster shrimp ponds surrounded by non-shrimp ponds could hold shrimp at duration of culture in the grow out pond (DOC 105.6±4.5 days significantly much longer than that of control that harvested at 60.9±16.0 days due to WSSV outbreak. Survival rate in trial ponds was 77.6±3.6%, significantly higher than that of control at 22.6±15.8%. Shrimp production in treatment ponds has total production of 425.1±146.6 kg/ha significantly higher than that of control that could only produced 54.5±47.6 kg/ha. Implementation of Better Management Practices (BMP by arranging shrimp ponds in cluster and surrounding by non-shrimp ponds proven effectively prevent WSSV transmission from traditional shrimp ponds in surrounding area.

  3. Environmental Light and Its Relationship with Electromagnetic Resonances of Biomolecular Interactions, as Predicted by the Resonant Recognition Model

    Directory of Open Access Journals (Sweden)

    Irena Cosic

    2016-06-01

    Full Text Available The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM. The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1 the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2 the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3 the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4 the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health.

  4. A statistical model for combustion resonance from a DI diesel engine with applications

    Science.gov (United States)

    Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.

    2015-08-01

    Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.

  5. Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection

    International Nuclear Information System (INIS)

    Wang Chi; Zhou Yu-Qiu; Shen Gao-Wei; Wu Wen-Wen; Ding Wei

    2013-01-01

    The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine detection and the characteristics of low-frequency acoustics, the ''soil-mine'' system could be equivalent to a damping ''mass-spring'' resonance model with a lumped parameter analysis method. The dynamic simulation software, Adams, is adopted to analyze the lumped parameter system model numerically. The simulated resonance frequency and anti-resonance frequency are 151 Hz and 512 Hz respectively, basically in agreement with the published resonance frequency of 155 Hz and anti-resonance frequency of 513 Hz, which were measured in the experiment. Therefore, the technique of numerical simulation is validated to have the potential for analyzing the acoustic mine detection model quantitatively. The influences of the soil and mine parameters on the resonance characteristics of the soil—mine system could be investigated by changing the parameter setup in a flexible manner. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. The computer simulation of the resonant network for the B-factory model power supply

    International Nuclear Information System (INIS)

    Zhou, W.; Endo, K.

    1993-07-01

    A high repetition model power supply and the resonant magnet network are simulated with the computer in order to check and improve the design of the power supply for the B-factory booster. We put our key point on a transient behavior of the power supply and the resonant magnet network. The results of the simulation are given. (author)

  7. Using Micromechanical Resonators to Measure Rheological Properties and Alcohol Content of Model Solutions and Commercial Beverages

    Directory of Open Access Journals (Sweden)

    Bart W. Hoogenboom

    2012-05-01

    Full Text Available Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks.

  8. Tests of the Giant Impact Hypothesis

    Science.gov (United States)

    Jones, J. H.

    1998-01-01

    The giant impact hypothesis has gained popularity as a means of explaining a volatile-depleted Moon that still has a chemical affinity to the Earth. As Taylor's Axiom decrees, the best models of lunar origin are testable, but this is difficult with the giant impact model. The energy associated with the impact would be sufficient to totally melt and partially vaporize the Earth. And this means that there should he no geological vestige of Barber times. Accordingly, it is important to devise tests that may be used to evaluate the giant impact hypothesis. Three such tests are discussed here. None of these is supportive of the giant impact model, but neither do they disprove it.

  9. Mathematical model of thyristor inverter including a series-parallel resonant circuit

    OpenAIRE

    Luft, M.; Szychta, E.

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with the aid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  10. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    OpenAIRE

    Miroslaw Luft; Elzbieta Szychta

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  11. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    Directory of Open Access Journals (Sweden)

    Miroslaw Luft

    2008-01-01

    Full Text Available The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  12. Compact extended model for doppler broadening of neutron absorption resonances in solids

    International Nuclear Information System (INIS)

    Villanueva, A. J; Granada, J.R

    2009-01-01

    We present a simplified compact model for calculating Doppler broadening of neutron absorption resonances in an incoherent Debye solid. Our model extends the effective temperature gas model to cover the whole range of energies and temperatures, and reduces the information of the dynamical system to a minimum content compatible with a much better accuracy of the calculation. This model is thus capable of replacing the existing algorithm in standard codes for resonance cross sections preparation aimed at neutron and reactor physics calculations. The model is applied to the 238 U 6.671 eV effective broadened cross section. We also show how this model can be used for thermometry in an improved fashion compared to the effective temperature gas model. Experimental data of the same resonance at low and high temperatures are also shown and the performances of each model are put to the test on this basis. [es

  13. Neutron strength functions: the link between resolved resonances and the optical model

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1980-01-01

    Neutron strength functions and scattering radii are useful as energy and channel radius independent parameters that characterize neutron scattering resonances and provide a connection between R-matrix resonance analysis and the optical model. The choice of R-matrix channel radii is discussed, as are limitations on the accuracies of strength functions. New definitions of the p-wave strength function and scattering radius are proposed. For light nuclei, where strength functions display optical model energy variations over the resolved resonances, a doubly reduced partial neutron width is introduced for more meaningful statistical analyses of widths. The systematic behavior of strength functions and scattering radii is discussed

  14. Correlations between resonances in a statistical scattering model

    International Nuclear Information System (INIS)

    Gorin, T.; Rotter, I.

    1997-01-01

    The distortion of the regular motion in a quantum system by its coupling to the continuum of decay channels is investigated. The regular motion is described by means of a Poissonian ensemble. We focus on the case of only few channels K 2 K distribution in the GOE case. 2. Due to the coupling to the continuum, correlations are induced not only between the positions of the resonances but also between positions and widths. These correlations remain even in the strong coupling limit. In order to explain these results, an asymptotic expression for the width distribution is derived for the one channel case. It relates the width of a trapped resonance state to the distance between its two neighboring levels. (orig.)

  15. Self-consistent modelling of resonant tunnelling structures

    DEFF Research Database (Denmark)

    Fiig, T.; Jauho, A.P.

    1992-01-01

    We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated...... applied voltages and carrier densities at the emitter-barrier interface. We include the two-dimensional accumulation layer charge and the quantum well charge in our self-consistent scheme. We discuss the evaluation of the current contribution originating from the two-dimensional accumulation layer charges......, and our qualitative estimates seem consistent with recent experimental studies. The intrinsic bistability of resonant tunnelling diodes is analyzed within several different approximation schemes....

  16. Nanodielectrics with giant permittivity

    Indian Academy of Sciences (India)

    Following the prediction, during the last couple of years we have investigated the effect of giant permittivity in one-dimensional systems of conventional metals and conjugated polymer chains. In this article, we have tried to summarize the works on giant permittivity and finally the fabrication of nanocapacitor using metal ...

  17. Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy

    Science.gov (United States)

    Rypina, I. I.; Pratt, L. J.; Wang, P.; Äe; -zgökmen, T. M.; Mezic, I.

    2015-08-01

    We analyze the geometry of Lagrangian motion and material barriers in a time-dependent, three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of resonant trajectories and to investigate the resonant flow geometries. The resonance condition and scaling can be motivated by simple physical argument. The theoretically predicted flow geometries near resonant trajectories have then been confirmed through numerical simulations in a phenomenological model and in a full solution of the Navier-Stokes equations.

  18. Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model

    Directory of Open Access Journals (Sweden)

    Zhijian Fang

    2018-03-01

    Full Text Available In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feedback inner loop is proposed to increase the control system damping, improving dynamic performance. The modeling and design methodology for the LLC resonant converter are also presented in this paper. A frequency analysis is conducted to verify the accuracy of the simplified model. Finally, a 200 W LLC resonant converter prototype is built to verify the effectiveness of the proposed control strategy. Compared to a traditional single-loop controller, the settling time and voltage droop were reduced from 10.8 ms to 8.6 ms and from 6.8 V to 4.8 V, respectively, using the proposed control strategy.

  19. 3D bite modeling and feeding mechanics of the largest living amphibian, the Chinese giant salamander Andrias davidianus (Amphibia:Urodela.

    Directory of Open Access Journals (Sweden)

    Josep Fortuny

    Full Text Available Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and their "conservative" morphology, cryptobranchids may be useful models to reconstruct the feeding ecology and biomechanics of different members of early tetrapods and amphibians, with similar osteological and myological constraints.

  20. Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits

    Energy Technology Data Exchange (ETDEWEB)

    Pries, Jason L. [ORNL; Tang, Lixin [ORNL; Burress, Timothy A. [ORNL

    2017-10-01

    This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequency and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.

  1. Submm Observations of Massive Star Formation in the Giant Molecular Cloud NGC 6334 : Gas Kinematics with Radiative Transfer Models

    Science.gov (United States)

    Zernickel, A.

    2015-05-01

    Context. How massive stars (M>8 Ms) form and how they accrete gas is still an open research field, but it is known that their influence on the interstellar medium (ISM) is immense. Star formation involves the gravitational collapse of gas from scales of giant molecular clouds (GMCs) down to dense hot molecular cores (HMCs). Thus, it is important to understand the mass flows and kinematics in the ISM. Aims. This dissertation focuses on the detailed study of the region NGC 6334, located in the Galaxy at a distance of 1.7 kpc. It is aimed to trace the gas velocities in the filamentary, massive star-forming region NGC 6334 at several scales and to explain its dynamics. For that purpose, different scales are examined from 0.01-10 pc to collect information about the density, molecular abundance, temperature and velocity, and consequently to gain insights about the physio-chemical conditions of molecular clouds. The two embedded massive protostellar clusters NGC 6334I and I(N), which are at different stages of development, were selected to determine their infall velocities and mass accretion rates. Methods. This astronomical source was surveyed by a combination of different observatories, namely with the Submillimeter Array (SMA), the single-dish telescope Atacama Pathfinder Experiment (APEX), and the Herschel Space Observatory (HSO). It was mapped with APEX in carbon monoxide (13CO and C18O, J=2-1) at 220.4 GHz to study the filamentary structure and turbulent kinematics on the largest scales of 10 pc. The spectral line profiles are decomposed by Gaussian fitting and a dendrogram algorithm is applied to distinguish velocity-coherent structures and to derive statistical properties. The velocity gradient method is used to derive mass flow rates. The main filament was mapped with APEX in hydrogen cyanide (HCN) and oxomethylium (HCO+, J=3-2) at 267.6 GHz to trace the dense gas. To reproduce the position- velocity diagram (PVD), a cylindrical model with the radiative transfer

  2. A model of the transverse modes of stable and unstable porro-prism resonators using symmetry considerations

    Science.gov (United States)

    Burger, Liesl; Forbes, Andrew

    2007-09-01

    A simple model of a Porro prism laser resonator has been found to correctly predict the formation of the "petal" mode patterns typical of these resonators. A geometrical analysis of the petals suggests that these petals are the lowest-order modes of this type of resonator. Further use of the model reveals the formation of more complex beam patterns, and the nature of these patterns is investigated. Also, the output of stable and unstable resonator modes is presented.

  3. Transition polarizability model of induced resonance Raman optical activity

    Czech Academy of Sciences Publication Activity Database

    Yamamoto, S.; Bouř, Petr

    2013-01-01

    Roč. 34, č. 25 (2013), s. 2152-2158 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA13-03978S; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : induced resonance Raman optical activity * europium complexes * density functional computations * light scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013

  4. Physical optics modeling of modal patterns in a crossed porro prism resonator

    CSIR Research Space (South Africa)

    Litvin, IA

    2006-07-01

    Full Text Available A physical optics model is proposed to describe the transverse modal patterns in crossed Porro prism resonators. The model departs from earlier attempts in that the prisms are modeled as non-classical rotating elements with amplitude and phase...

  5. Random matrix approach to plasmon resonances in the random impedance network model of disordered nanocomposites

    Science.gov (United States)

    Olekhno, N. A.; Beltukov, Y. M.

    2018-05-01

    Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-dielectric and other two-component nanocomposites. In the present work, the spectral properties of resonances in random networks are studied within the framework of the random matrix theory. We have shown that the appropriate ensemble of random matrices for the considered problem is the Jacobi ensemble (the MANOVA ensemble). The obtained analytical expressions for the density of states in such resonant networks show a good agreement with the results of numerical simulations in a wide range of metal filling fractions 0

  6. Modeling and understanding of effects of randomness in arrays of resonant meta-atoms

    DEFF Research Database (Denmark)

    Tretyakov, Sergei A.; Albooyeh, Mohammad; Alitalo, Pekka

    2013-01-01

    In this review presentation we will discuss approaches to modeling and understanding electromagnetic properties of 2D and 3D lattices of small resonant particles (meta-atoms) in transition from regular (periodic) to random (amorphous) states. Nanostructured metasurfaces (2D) and metamaterials (3D......) are arrangements of optically small but resonant particles (meta-atoms). We will present our results on analytical modeling of metasurfaces with periodical and random arrangements of electrically and magnetically resonant meta-atoms with identical or random sizes, both for the normal and oblique-angle excitations....... We show how the electromagnetic response of metasurfaces is related to the statistical parameters of the structure. Furthermore, we will discuss the phenomenon of anti-resonance in extracted effective parameters of metamaterials and clarify its relation to the periodicity (or amorphous nature...

  7. Computer aided design of Langasite resonant cantilevers: analytical models and simulations

    Science.gov (United States)

    Tellier, C. R.; Leblois, T. G.; Durand, S.

    2010-05-01

    Analytical models for the piezoelectric excitation and for the wet micromachining of resonant cantilevers are proposed. Firstly, computations of metrological performances of micro-resonators allow us to select special cuts and special alignment of the cantilevers. Secondly the self-elaborated simulator TENSOSIM based on the kinematic and tensorial model furnishes etching shapes of cantilevers. As the result the number of selected cuts is reduced. Finally the simulator COMSOL® is used to evaluate the influence of final etching shape on metrological performances and especially on the resonance frequency. Changes in frequency are evaluated and deviating behaviours of structures with less favourable built-ins are tested showing that the X cut is the best cut for LGS resonant cantilevers vibrating in flexural modes (type 1 and type 2) or in torsion mode.

  8. A model for precalculus students to determine the resonance frequency of a trumpet mouthpiece

    Science.gov (United States)

    Chapman, Robert C.

    2004-05-01

    The trumpet mouthpiece as a Helmholtz resonator is used to show precalculus students a mathematical model for determining the approximate resonance frequency of the mouthpiece. The mathematics is limited to algebra and trigonometry. Using a system of mouthpieces that have interchangeable cups and backbores, students are introduced to the acoustics of this resonator. By gathering data on 51 different configurations of mouthpieces, the author modifies the existing Helmholtz resonator equation to account for both cup volumes and backbore configurations. Students then use this model for frequency predictions. Included are how to measure the different physical attributes of a trumpet mouthpiece at minimal cost. This includes methods for measuring cup volume, backbore volume, backbore length, throat area, etc. A portion of this phase is de-signed for students to become acquainted with some of the vocabulary of acoustics and the physics of sound.

  9. Texture zero neutrino models and their connection with resonant leptogenesis

    Science.gov (United States)

    Achelashvili, Avtandil; Tavartkiladze, Zurab

    2018-04-01

    Within the low scale resonant leptogenesis scenario, the cosmological CP asymmetry may arise by radiative corrections through the charged lepton Yukawa couplings. While in some cases, as one expects, decisive role is played by the λτ coupling, we show that in specific neutrino textures only by inclusion of the λμ the cosmological CP violation is generated at 1-loop level. With the purpose to relate the cosmological CP violation to the leptonic CP phase δ, we consider an extension of MSSM with two right handed neutrinos (RHN), which are degenerate in mass at high scales. Together with this, we first consider two texture zero 3 × 2 Dirac Yukawa matrices of neutrinos. These via see-saw generated neutrino mass matrices augmented by single ΔL = 2 dimension five (d = 5) operator give predictive neutrino sectors with calculable CP asymmetries. The latter is generated through λμ,τ coupling(s) at 1-loop level. Detailed analysis of the leptogenesis is performed. We also revise some one texture zero Dirac Yukawa matrices, considered earlier, and show that addition of a single ΔL = 2, d = 5 entry in the neutrino mass matrices, together with newly computed 1-loop corrections to the CP asymmetries, give nice accommodation of the neutrino sector and desirable amount of the baryon asymmetry via the resonant leptogenesis even for rather low RHN masses (∼few TeV-107 GeV).

  10. Giant resonances: unification of different approaches

    International Nuclear Information System (INIS)

    Lane, A.M.

    1978-01-01

    The RPA is generally accepted as the best theory for providing numerical fits to data on collective vibrations. However, being heavily computational, it does not readily reveal its physical content. For this reason, it is physically instructive to relate RPA to other collective theories, which have more immediate physical identity. First, there are the semi-classical theories that aim to construct a classical kind of Hamiltonian; there are three versions: ''cranking'' theory, momentum-constrained theory, adiabatic time-dependent Hartree-Fock theory. These theories have problems arising from the need to quantise unambiguously, and from the fact that they do not use eigenstates of the collective coordinates. These problems are removed by using the ''generator coordinate method,'' (GCM) which may be viewed as intermediate between the semi-classical theories and the RPA. One can readily express the true relation between the RPA theory and the semi-classical or GCM theories in terms of moments of the RPA strength distribution. (author)

  11. History of Giant Resonances and Quenching

    CERN Document Server

    Arima, A

    1999-01-01

    The history of nuclear magnetic moments and Gamow-Teller transitions is reviewed. The importance of configuration mixing and core polarization to explain the quenching phenomena is shown, and discussed in the context of the recent measurement of the Gamow-Teller strength in sup 9 sup 0 Nb. It is confirmed that the contribution of the DELTA-hole excitation to the quenching of spin matrix elements is small.

  12. Supernova neutrinos, giant resonances, and nucleosynthesis

    International Nuclear Information System (INIS)

    Haxton, W.

    1990-01-01

    Almost all of the 3·10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. The neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions. I argue that the resulting spallation reactions are an important nucleosynthesis mechanism that may be responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, 180 Ta, and approximately a dozen other light nuclei. 18 refs., 1 fig., 1 tab

  13. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    Science.gov (United States)

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  14. Roper resonances and generator coordinate method in the chiral-soliton model

    International Nuclear Information System (INIS)

    Meissner, T.; Gruemmer, F.; Goeke, K.; Harvey, M.

    1989-01-01

    The nucleon and Δ Roper resonances are described by means of the generator coordinate method in the framework of the nontopological chiral-soliton model. Solitons with various sizes are constructed with a constrained variational technique. The masses of all known Roper resonances come out to within 150 MeV of their experimental values. A nucleon compression modulus of about 4 GeV is extracted. The limits of the approach due to the polarization of the Dirac vacuum are displayed

  15. Informational model verification of ZVS Buck quasi-resonant DC-DC converter

    Science.gov (United States)

    Vakovsky, Dimiter; Hinov, Nikolay

    2016-12-01

    The aim of the paper is to create a polymorphic informational model of a ZVS Buck quasi-resonant DC-DC converter for the modeling purposes of the object. For the creation of the model is applied flexible open standards for setting, storing, publishing and exchange of data in distributed information environment. The created model is useful for creation of many and different by type variants with different configuration of the composing elements and different inner model of the examined object.

  16. Ferromagnetic linewidth measurements employing electrodynamic model of the magnetic plasmon resonance

    Science.gov (United States)

    Krupka, Jerzy; Aleshkevych, Pavlo; Salski, Bartlomiej; Kopyt, Pawel

    2018-02-01

    The mode of uniform precession, or Kittel mode, in a magnetized ferromagnetic sphere, has recently been proven to be the magnetic plasmon resonance. In this paper we show how to apply the electrodynamic model of the magnetic plasmon resonance for accurate measurements of the ferromagnetic resonance linewidth ΔH. Two measurement methods are presented. The first one employs Q-factor measurements of the magnetic plasmon resonance coupled to the resonance of an empty metallic cavity. Such coupled modes are known as magnon-polariton modes, i.e. hybridized modes between the collective spin excitation and the cavity excitation. The second one employs direct Q-factor measurements of the magnetic plasmon resonance in a filter setup with two orthogonal semi-loops used for coupling. Q-factor measurements are performed employing a vector network analyser. The methods presented in this paper allow one to extend the measurement range of the ferromagnetic resonance linewidth ΔH well beyond the limits of the commonly used measurement standards in terms of the size of the samples and the lowest measurable linewidths. Samples that can be measured with the newly proposed methods may have larger size as compared to the size of samples that were used in the standard methods restricted by the limits of perturbation theory.

  17. Realistic Gamow shell model for resonance and continuum in atomic nuclei

    Science.gov (United States)

    Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.

    2018-02-01

    The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.

  18. Vector and axial-vector resonances in composite models of the Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Franzosi, Diogo Buarque [II. Physikalisches Institut, Universität Göttingen,Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Cacciapaglia, Giacomo; Cai, Haiying; Deandrea, Aldo [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNL,F-69622, Villeurbanne (France); Frandsen, Mads [CP-Origins & Danish Institute for Advanced Study DIAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark)

    2016-11-11

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.

  19. Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Yunsong Liu

    Full Text Available Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B converges faster than previously proposed algorithms accelerated proximal algorithm (APG and alternating directional method of multipliers for balanced model (ADMM-B.

  20. Analysis of giant electrorheological fluids.

    Science.gov (United States)

    Seo, Youngwook P; Seo, Yongsok

    2013-07-15

    The yield stress dependence on electric field strength for giant electrorheological (GER) fluids over the full range of electric fields was examined using Seo's scaling function which incorporated both the polarization and the conductivity models. If a proper scaling was applied to the yield stress data to collapse them onto a single curve, the Seo's scaling function could correctly fit the yield stress behavior of GER suspensions, even at very high electric field strengths. The model predictions were also compared with recently proposed Choi et al.'s model to allow a consideration of the universal framework of ER fluids. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model

    Science.gov (United States)

    Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.

    2018-04-01

    The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.

  2. Lipase polystyrene giant amphiphiles.

    Science.gov (United States)

    Velonia, Kelly; Rowan, Alan E; Nolte, Roeland J M

    2002-04-24

    A new type of giant amphiphilic molecule has been synthesized by covalently connecting a lipase enzyme headgroup to a maleimide-functionalized polystyrene tail (40 repeat units). The resulting biohybrid forms catalytic micellar rods in water.

  3. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    1986-01-01

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author) [pt

  4. Giant CP stars

    International Nuclear Information System (INIS)

    Loden, L.O.; Sundman, A.

    1989-01-01

    This study is part of an investigation of the possibility of using chemically peculiar (CP) stars to map local galactic structure. Correct luminosities of these stars are therefore crucial. CP stars are generally regarded as main-sequence or near-main-sequence objects. However, some CP stars have been classified as giants. A selection of stars, classified in literature as CP giants, are compared to normal stars in the same effective temperature interval and to ordinary 'non giant' CP stars. There is no clear confirmation of a higher luminosity for 'CP giants', than for CP stars in general. In addition, CP characteristics seem to be individual properties not repeated in a component star or other cluster members. (author). 50 refs., 5 tabs., 3 figs

  5. Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator.

    Science.gov (United States)

    Lydiate, Joseph

    2017-07-01

    This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor.

  6. Resonances and fusion in heavy ion reactions: new models and developments

    International Nuclear Information System (INIS)

    Cindro, N.

    1982-01-01

    Several aspects of the problem of the resonant behaviour of heavy-ion induced reactions are discussed. First, the problem is set in its relation to fundamental nuclear physics and our understanding of nuclear structure. It is suggested that, if the resonant behaviour of heavy-ion reactions is indeed due to the presence of particular configurations in the composite systems, these configurations must have a very specific nature which prevents their mixing with the adjacent states or else other conditons (e.g. low level density) should be met. Further on, the problem of resonant behaviour observed in back-angle elastic scattering and in forward-angle reaction data is discussed. Collisions between heavy ions leading to the composite systems 36 Ar and 40 Ca are used to discuss the apparent lack of correlation between these two sets of data. A way to understand it, based on the fragmentation of broad resonances, is suggested. In the third part the relation between structure in the fusion cross section excitation functions and that in reaction channel cross sections is discussed. Finally, in the fourth part, the orbiting-cluster model of heavy-ion resonances is briefly described and its predictions discussed. Based on this model a list is given of colliding heavy-ion systems where resonances are expected. (author)

  7. Theoretical model and optimization of a novel temperature sensor based on quartz tuning fork resonators

    International Nuclear Information System (INIS)

    Xu Jun; You Bo; Li Xin; Cui Juan

    2007-01-01

    To accurately measure temperatures, a novel temperature sensor based on a quartz tuning fork resonator has been designed. The principle of the quartz tuning fork temperature sensor is that the resonant frequency of the quartz resonator changes with the variation in temperature. This type of tuning fork resonator has been designed with a new doubly rotated cut work at flexural vibration mode as temperature sensor. The characteristics of the temperature sensor were evaluated and the results sufficiently met the target of development for temperature sensor. The theoretical model for temperature sensing has been developed and built. The sensor structure was analysed by finite element method (FEM) and optimized, including tuning fork geometry, tine electrode pattern and the sensor's elements size. The performance curve of output versus measured temperature is given. The results from theoretical analysis and experiments indicate that the sensor's sensitivity can reach 60 ppm 0 C -1 with the measured temperature range varying from 0 to 100 0 C

  8. Non-monotonic resonance in a spatially forced Lengyel-Epstein model

    Energy Technology Data Exchange (ETDEWEB)

    Haim, Lev [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Department of Oncology, Soroka University Medical Center, Beer-Sheva 84101 (Israel); Hagberg, Aric [Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Meron, Ehud [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990 (Israel)

    2015-06-15

    We study resonant spatially periodic solutions of the Lengyel-Epstein model modified to describe the chlorine dioxide-iodine-malonic acid reaction under spatially periodic illumination. Using multiple-scale analysis and numerical simulations, we obtain the stability ranges of 2:1 resonant solutions, i.e., solutions with wavenumbers that are exactly half of the forcing wavenumber. We show that the width of resonant wavenumber response is a non-monotonic function of the forcing strength, and diminishes to zero at sufficiently strong forcing. We further show that strong forcing may result in a π/2 phase shift of the resonant solutions, and argue that the nonequilibrium Ising-Bloch front bifurcation can be reversed. We attribute these behaviors to an inherent property of forcing by periodic illumination, namely, the increase of the mean spatial illumination as the forcing amplitude is increased.

  9. RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE IMAGES

    Science.gov (United States)

    RATIONALE A description of lung morphological structure is necessary for modeling the deposition and fate of inhaled therapeutic aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images with the goal of creating a framework for anato...

  10. COMPUTER RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE (MR) IMAGES

    Science.gov (United States)

    A mathematical description of the morphological structure of the lung is necessary for modeling and analysis of the deposition of inhaled aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images, with the goal of creating a frame...

  11. Test of Axel-Brink predictions by a discrete approach to resonance-averaged (n,γ) spectroscopy

    International Nuclear Information System (INIS)

    Raman, S.; Shahal, O.; Slaughter, G.G.

    1981-01-01

    The limitations imposed by Porter-Thomas fluctuations in the study of primary γ rays following neutron capture have been partly overcome by obtaining individual γ-ray spectra from 48 resonances in the 173 Yb(n,γ) reaction and summing them after appropriate normalizations. The resulting average radiation widths (and hence the γ-ray strength function) are in good agreement with the Axel-Brink predictions based on a giant dipole resonance model

  12. The isovector quadrupole resonance in yttrium excited by neutron radiative capture

    International Nuclear Information System (INIS)

    Zorro, R.; Bergqvist, I.

    1987-01-01

    In order to investigate the properties of the isovector giant quadrupole resonance (ΔT=1, ΔS=0) in the A=90 mass region, gamma-ray spectra from the reaction 89 Y(n,γ) 90 Y were recorded at several neutron energies in the energy range 12 to 27 MeV at 55 0 , 90 0 and 125 0 . The measured fore-aft asymmetry for the ground-state transition is very small in the low-energy region, but becomes appreciable above a neutron energy of 18 MeV. The observed asymmetry is attributed to interference between radiation from the isovector giant quadrupole resonance and radiation of opposite parity (from the high-energy tail of the giant dipole resonance and direct E1 capture). The data obtained in the present work, interpreted in terms of the direct-semidirect capture model, indicate that the excitation energy of the isovector E2 resonance in 90 Y is 26 ± 1 MeV. The data are consistent with a resonance width of 10 ± 2 MeV and with complete exhaustion of the energy-weighted sum rule for the lower isospin component of the resonance. (orig.)

  13. Modeling dendrite density from magnetic resonance diffusion measurements

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Kroenke, CD; Østergaard, Leif

    2007-01-01

    in this model: (i) the dendrites and axons, which are modeled as long cylinders with two diffusion coefficients, parallel (DL) and perpendicular (DT) to the cylindrical axis, and (ii) an isotropic monoexponential diffusion component describing water diffusion within and across all other structures, i.......e., in extracellular space and glia cells. The model parameters are estimated from 153 diffusion-weighted images acquired from a formalin-fixed baboon brain. A close correspondence between the data and the signal model is found, with the model parameters consistent with literature values. The model provides......Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal...

  14. SMATASY. A Program for the model independent description of the Z resonance

    International Nuclear Information System (INIS)

    Kirsch, S.; Riemann, T.

    1994-07-01

    SMATASY is an interface for the ZF I T T ER package and may be used for the model independent description of the Z resonance at LEP 1 and SLC. It allows the determination of the Z mass and width and its resonance shape parameters r and j for cross-sections and their asymmetries. The r describes the peak height and j the interference of the Z resonance with photon exchange in each scattering channel and for σ T , σ FB , σ lr , σ pol etc. separately. Alternatively, the helicity amplitudes for a given scattering channel may be determined. We compare our formalism with other model independent approaches. The model independent treatment of QED corrections in SMATASY is applicable also far away from the Z peak. (orig.)

  15. Modeling the diffusion magnetic resonance imaging signal inside neurons

    International Nuclear Information System (INIS)

    Nguyen, D V; Li, J R; Grebenkov, D S; Le Bihan, D

    2014-01-01

    The Bloch-Torrey partial differential equation (PDE) describes the complex transverse water proton magnetization due to diffusion-encoding magnetic field gradient pulses. The integral of the solution of this PDE yields the diffusion magnetic resonance imaging (dMRI) signal. In a complex medium such as cerebral tissue, it is difficult to explicitly link the dMRI signal to biological parameters such as the cellular geometry or the cellular volume fraction. Studying the dMRI signal arising from a single neuron can provide insight into how the geometrical structure of neurons influences the measured signal. We formulate the Bloch-Torrey PDE inside a single neuron, under no water exchange condition with the extracellular space, and show how to reduce the 3D simulation in the full neuron to a 3D simulation around the soma and 1D simulations in the neurites. We show that this latter approach is computationally much faster than full 3D simulation and still gives accurate results over a wide range of diffusion times

  16. Dynamics of the retrograde 1/1 mean motion resonance

    Science.gov (United States)

    Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping

    2018-04-01

    Mean motion resonances are very common in the solar system. Asteroids in mean motion resonances with giant planets have been studied for centuries. But it was not until recently that asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. The newly discovered asteroid, 2015 BZ509 is confirmed to be the first asteroid in retrograde 1:1 mean motion resonance (or retrograde co-orbital resonance) with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this study, we thoroughly investigate the phase-space structure of the retrograde 1:1 resonance within the framework of the circular restricted three-body problem. We begin by constructing a simple integrable approximation for the planar retrograde resonance with the Hamiltonian approach and show that the variables definition of the retrograde resonance is very different to the prograde one. When it comes to the disturbing function, we abandon the classical series expansion approach, whereas numerically carry out the averaging process on the disturbing function in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We find that the topological structure of phase space for the retrograde 1:1 resonance is very different to other resonances, due to the consistent existence of the collision separatrix. And the surprising bifurcation of equilibrium point around 180° (i.e., the apocentric libration center) has never been found in any other mean motion resonances before. We thoroughly analyze the novel apocentric librations and find that close encounter with the planet does not always lead to the disruption of a stable apocentric libration. Afterwards, we examine the Kozai dynamics inside the mean motion resonance with the similar Hamiltonian approach and explain why the exact resonant point does not exist in the 3D retrograde 1:1 resonance model.

  17. An analytical model for the determination of resonance frequencies of perforated beams

    International Nuclear Information System (INIS)

    Luschi, Luca; Pieri, Francesco

    2014-01-01

    In this paper, we develop closed expressions for the equivalent bending and shear stiffness of beams with regular square perforations, and apply them to the problem of determining the resonance frequencies of slender, regularly perforated clamped–clamped beams, which are of interest in the development of MEMS resonant devices. We prove that, depending on the perforation size, the Euler–Bernoulli equation or the more complex shear equation needs to be used to obtain accurate values for these frequencies. Extensive finite element method simulations are used to validate the proposed model over the full practical range of possible hole sizes. An experimental verification of the model is also presented. (paper)

  18. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Directory of Open Access Journals (Sweden)

    Z. Hashemiyan

    2016-01-01

    Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.

  19. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Science.gov (United States)

    Packo, P.; Staszewski, W. J.; Uhl, T.

    2016-01-01

    Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808

  20. Partial widths of boson resonances in the quark-gluon model of strong interactions

    International Nuclear Information System (INIS)

    Kaidalov, A.B.; Volkovitsky, P.E.

    1981-01-01

    The quark-gluon model of strong interactions based on the topological expansion and the string model ib used for the calculation of the partial widths of boson resonances in the channels with two pseudoscalar mesons. The partial widths of mesons with arbitrary spins lying on the vector and tensor Regge trajectories are expressed in terms of the only rho-meson width. The violation of SU(3) symmetry increases with the growth of the spin of the resonance. The theoretical predictions are in a good agreement with experimental data [ru