Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances
Thompson, I J [Lawrence Livermore National Laboratory (LLNL); Escher, Jutta E [ORNL; Arbanas, Goran [ORNL
2013-01-01
Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5 20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,g)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,g)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.
Multiphonon giant resonances in nuclei
Aumann, T. [Mainz Univ. (Germany). Inst. fuer Kernchemie; Bortignon, P.F. [Milan Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Milan (Italy); Emling, H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)
1998-07-01
We review the present knowledge of multiphonon giant resonances in nuclei. Theoretical concepts approaching the intrinsic structure and excitation mechanisms of multi-phonon states are discussed. The available experimental results are summarized, including a brief description of applied techniques. This review emphasizes electromagnetic excitations of double dipole resonances. Open questions and possible routes toward a solution are addressed. (orig.)
Pygmy and Giant Dipole Resonances by Coulomb Excitation using a Quantum Molecular Dynamics model
Tao, C; Zhang, G Q; Cao, X G; Wang, D Q Fang H W
2012-01-01
Pygmy and Giant Dipole Resonance (PDR and GDR) in Ni isotopes have been investigated by Coulomb excitation in the framework of the Isospin-dependent Quantum Molecular Dynamics model (IQMD). The spectra of $\\gamma$ rays are calculated and the peak energy, the strength and Full Width at Half Maximum (FWHM) of GDR and PDR have been extracted. Their sensitivities to nuclear equation of state, especially to its symmetry energy term are also explored. By a comparison with the other mean-field calculations, we obtain the reasonable values for symmetry energy and its slope parameter at saturation, which gives an important constrain for IQMD model. In addition, we also studied the neutron excess dependence of GDR and PDR parameters for Ni isotopes and found that the energy-weighted sum rule (EWSR) $PDR_{m_1}/GDR_{m_1}%$ increases linearly with the neutron excess.
Tao, C; Zhang, G Q; Cao, X G; Fang, D Q; Wang, H W; Xu, J
2013-01-01
The isoscalar giant monopole resonance (ISGMR) in Sn isotopes and other nuclei has been investigated by Coulomb excitations in the framework of the isospin-dependent quantum molecular dynamics (IQMD) model. The spectrum of GMR has been calculated by taking the root-mean-square (RMS) radius of a nucleus as its monopole moment. The peak energy, the full width at half maximum (FWHM), and the strength of GMR extracted by a Gaussian fit to the spectrum have been studied. The GMR peak energies for Sn isotopes from the calculations using a mass-number dependent Gaussian wave-packet width $\\sigma_r$ for nucleons are found to be overestimated and show a weak dependence on the mass number compared with the experimental data. However, it has been found that experimental data of the GMR peak energies for $^{40}$Ca, $^{56}$Ni, $^{90}$Zr and $^{208}$Pb as well as Sn isotopes can be nicely reproduced after taking into account the isospin dependence in isotope chains in addition to the mass number dependence of $\\sigma_r$ fo...
Thermal shape fluctuation model study of the giant dipole resonance in $^{152}$Gd
Kumar, A K Rhine
2015-01-01
We have studied the giant dipole resonance (GDR) in the hot and rotating nucleus $^{152}$Gd within the framework of thermal shape fluctuation model (TSFM) built on the microscopic-macroscopic calculations of the free energies with a macroscopic approach for the GDR. Our results for GDR cross sections are in good agreement with the experimental values except for a component peaking around 17 MeV where the data has large uncertainties. Such a component is beyond our description which properly takes care of the splitting of GDR components due to the deformation and Coriolis effects. Around this 17 MeV lies the half maximum in experimental cross sections, and hence the extracted GDR widths and deformations (estimated from these widths) turn out to be overestimated and less reliable. Reproducing these widths with empirical formulae could conceal the information contained in the cross sections. Fully microscopic GDR calculations and a more careful look at the data could be useful to understand the GDR component aro...
Double giant dipole resonance in hot nuclei
Cinausero, M.; Rizzi, V.; Viesti, G.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Barbui, M.; Fioretto, E.; Prete, G.; Bracco, A.; Camera, F.; Million, B.; Leoni, S.; Wieland, O.; Benzoni, G.; Brambilla, S.; Airoldi, A.; Maj, A.; Kmiecik, M
2004-02-09
Signals from Double Dipole Giant Resonances (DGDR) in hot nuclei have been searched in a {gamma}-{gamma} coincidence experiment using the HECTOR array at the Laboratori Nazionali di Legnaro. The experimental single {gamma}-ray spectrum and the projection of the {gamma}-{gamma} matrix have been compared with a standard Monte Carlo Statistical Model code including only the single GDR excitation. These calculations have been used as background to determine the extra-yield associated with the DGDR de-excitation. Results have been compared with a previous experiment confirming the presence of the DGDR excitation in fusion-evaporation reactions.
Deformation effects in Giant Monopole Resonance
Kvasil, J; Repko, A; Bozik, D; Kleinig, W; Reinhard, P -G
2014-01-01
The isoscalar giant monopole resonance (GMR) in Samarium isotopes (from spherical $^{144}$Sm to deformed $^{148-154}$Sm) is investigated within the Skyrme random-phase-approximation (RPA) for a variety of Skyrme forces. The exact RPA and its separable version (SRPA) are used for spherical and deformed nuclei, respectively. The quadrupole deformation is shown to yield two effects: the GMR broadens and attains a two-peak structure due to the coupling with the quadrupole giant resonance.
Dinh Dang, N.; Ciemala, M.; Kmiecik, M.; Maj, A.
2013-05-01
The line shapes of giant dipole resonance (GDR) in the decay of the compound nucleus 88Mo, which is formed after the fusion-evaporation reaction 48Ti + 40Ca at various excitation energies E* from 58 to 308 MeV, are generated by averaging the GDR strength functions predicted within the phonon damping model (PDM) using the empirical probabilities for temperature and angular momentum. The average strength functions are compared with the PDM strength functions calculated at the mean temperature and mean angular momentum, which are obtained by averaging the values of temperature and angular momentum using the same temperature and angular momentum probability distributions, respectively. It is seen that these two ways of generating the GDR linear line shape yield very similar results. It is also shown that the GDR width approaches a saturation at angular momentum J≥ 50 ℏ at T=4 MeV and at J≥ 70 ℏ at any T.
Dang, N Dinh; Kmiecik, M; Maj, A
2013-01-01
The line shapes of giant dipole resonance (GDR) in the decay of the compound nucleus $^{88}$Mo, which is formed after the fusion-evaporation reaction $^{48}$Ti + $^{40}$Ca at various excitation energies $E^{*}$ from 58 to 308 MeV, are generated by averaging the GDR strength functions predicted within the phonon damping model (PDM) using the empirical probabilities for temperature and angular momentum. The average strength functions are compared with the PDM strength functions calculated at the mean temperature and mean angular momentum, which are obtained by averaging the values of temperature and angular momentum using the same temperature and angular-momentum probability distributions, respectively. It is seen that these two ways of generating the GDR linear line shape yield very similar results. It is also shown that the GDR width approaches a saturation at angular momentum $J\\geq$ 50$\\hbar$ at $T=$ 4 MeV and at $J\\geq$ 70$\\hbar$ at any $T$.
Anharmonic effects and double giant dipole resonances
Voronov, V V
2001-01-01
A brief review of recent results of the microscopic calculations to describe characteristics of the double giant dipole resonances (DGDR) is presented. A special attention is paid to a microscopic study of the anharmonic properties of the DGDR. It is found that the deviation of the energy centroid of the DGDR from the harmonic limit follows A sup - sup 1 dependence
Nonlinear dynamics of giant resonances in atomic nuclei
Vretenar, D; Ring, P; Lalazissis, G A
1999-01-01
The dynamics of monopole giant resonances in nuclei is analyzed in the time-dependent relativistic mean-field model. The phase spaces of isoscalar and isovector collective oscillations are reconstructed from the time-series of dynamical variables that characterize the proton and neutron density distributions. The analysis of the resulting recurrence plots and correlation dimensions indicate regular motion for the isoscalar mode, and chaotic dynamics for the isovector oscillations. Information-theoretic functionals identify and quantify the nonlinear dynamics of giant resonances in quantum systems that have spatial as well as temporal structure.
Thermal pairing and giant dipole resonance in highly excited nuclei
Dang, Nguyen Dinh
2014-01-01
Recent results are reported showing the effects of thermal pairing in highly excited nuclei. It is demonstrated that thermal pairing included in the phonon damping model (PDM) is responsible for the nearly constant width of the giant dipole resonance (GDR) at low temperature $T $ 170 MeV.
Giant dipole resonance in hot rotating nuclei
Chakrabarty, D.R. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Dinh Dang, N. [RIKEN, Nishina Centre for Accelerator-based Science, Saitama (Japan); VINATOM, Institute of Nuclear Science and Technique, Hanoi (Viet Nam); Datar, V.M. [Tata Institute of Fundamental Research, INO Cell, Mumbai (India)
2016-05-15
Over the last several decades, extensive experimental and theoretical work has been done on the giant dipole resonance (GDR) in excited nuclei covering a wide range of temperature (T), angular momentum (J) and nuclear mass. A reasonable stability of the GDR centroid energy and an increase of the GDR width with T (in the range∝1-3 MeV) and J are the two well-established results. Some experiments have indicated the saturation of the GDR width at high T. The gradual disappearance of the GDR vibration at much higher T has been observed. Experiments on the Jacobi transition and the GDR built on superdeformed shapes at high rotational frequencies have been reported in a few cases. Theoretical calculations on the damping of the collective dipole vibration, characterised by the GDR width, have been carried out within various models such as the thermal shape fluctuation model and the phonon damping model. These models offer different interpretations of the variation of the GDR width with T and J and have met with varying degrees of success in explaining the experimental data. In this review, the present experimental and theoretical status in this field is discussed along with the future outlook. The interesting phenomenon of the pre-equilibrium GDR excitation in nuclear reactions is briefly addressed. (orig.)
Hasan, Hashima (Technical Monitor); Kirby, K.; Babb, J.; Yoshino, K.
2005-01-01
We report on progress made in a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Accurate knowledge of the line profiles of Na and K as a function of temperature and pressure will allow such lines to serve as valuable diagnostics of the atmospheres of brown dwarfs and extra-solar giant planets. A new experimental apparatus has been designed, built and tested over the past year, and we are poised to begin collecting data on the first system of interest, the potassium resonance lines perturbed by collisions with helium. On the theoretical front, calculations of line-broadening due to sodium collisions with helium are nearly complete, using accurate molecular potential energy curves and transition moments just recently computed for this system. In addition we have completed calculations of the three relevant potential energy curves and associated transition moments for K - He, using the MOLPRO quantum chemistry codes. Currently, calculations of the potential surfaces describing K-H2 are in progress.
Temperature Dependence of Spreading Width of Giant Dipole Resonance
Storozhenko, A N; Ventura, A; Blokhin, A I
2002-01-01
The Quasiparticle-Phonon Nuclear Model extended to finite temperature within the framework of Thermo Field Dynamics is applied to calculate a temperature dependence of the spreading width Gamma^{\\downarrow} of a giant dipole resonance. Numerical calculations are made for ^{120}Sn and ^{208}Pb nuclei. It is found that Gamma^{\\downarrow} increases with T. The reason of this effect is discussed as well as a relation of the present approach to other ones, existing in the literature.
Isobar giant resonance formation in self-conjugate nuclei
Townsend, L. W.; Deutchman, P. A.
1981-03-01
The production of isobars with concomitant giant resonance excitations due to peripheral collisions of relativistic heavy ions is investigated. The interaction is described by a modified form of the central term in the one-pion-exchange potential (OPEP) where the projectile ordinary spin operator is replaced by a transition spin operator which describes the creation of an isobar from a nucleon. The scattering is analyzed using time-dependent harmonic perturbation theory to determine the reaction total cross sections. The results obtained, which are valid for reactions involving self-conjugate nuclei, are applied to the specific collison of 2.1 {GeV}/{nucleon}16O projectiles with 12C targets at rest. Cross sections are investigated using two different models for the nuclear spin states. In the first model, the many-body nuclear spin state is reduced, in the spirit of a particle-hole state, to an equivalent two-body state called a particle-core state. In the second model, the many-body spin states are described by unsymmetrized products of individual particle spins. Properties of the spin giant resonance and isobar giant resonance states are investigated. Finally, isobar decay and isobar/pion absorption effects are discussed.
Kirby, Kate; Babb, J.; Yoshino, K.
2004-01-01
In L-dwarfs and T-dwarfs the resonance lines of sodium and potassium are so profoundly pressure-broadened that their wings extend several hundred nanometers from line center. With accurate knowledge of the line profiles as a function of temperature and pressure: such lines can prove to be valuable diagnostics of the atmospheres of such objects. We have initiated a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Although potassium and sodium are the alkali species of most interest in the atmospheres of cool brown dwarfs and extrasolar giant planets, some of our theoretical focus this year has involved the calculation of pressure-broadening of lithium resonance lines by He, as a test of a newly developed suite of computer codes. In addition, theoretical calculations have been carried out to determine the leading long range van der Waals coefficients for the interactions of ground and excited alkali metal atoms with helium atoms, to within a probable error of 2%. Such data is important in determining the behavior of the resonance line profiles in the far wings. Important progress has been made on the experimental aspects of the program since the arrival of a postdoctoral fellow in September. A new absorption cell has been designed, which incorporates a number of technical improvements over the previous cell, including a larger cell diameter to enhance the signal, and fittings which allow for easier cleaning, thereby significantly reducing the instrument down-time.
Giant dipole resonance studied with GASP
Cinausero, M. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro; Bazzacco, D. [Dipartimento di Fisica, I.N.F.N., Sezione di Padova, 35131, Padova (Italy); Bortignon, P.F. [Dipartimento di Fisica, I.N.F.N., Sezione di Milano, 20133, Milano (Italy); De Angelis, G. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro; Fabris, D. [Dipartimento di Fisica, I.N.F.N., Sezione di Padova, 35131, Padova (Italy); Fiore, E.M. [Dipartimento di Fisica, I.N.F.N., Sezione di Bari, 70126, Bari (Italy); Fiore, L. [Dipartimento di Fisica, I.N.F.N., Sezione di Bari, 70126, Bari (Italy); Fioretto, E. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro; Fornal, B. [Institute of Nuclear Physics, 31342, Cracow (Poland); Gelli, N. [Dipartimento di Fisica, I.N.F.N., Sezione di Firenze, 50125, Firenze (Italy); Lops, M. [Dipartimento di Fisica, I.N.F.N., Sezione di Padova, 35131, Padova (Italy); Lucarelli, F. [Dipartimento di Fisica, I.N.F.N., Sezione di Firenze, 50125, Firenze (Italy); Lunardi, S. [Dipartimento di Fisica, I.N.F.N., Sezione di Padova, 35131, Padova (Italy); Nebbia, G. [Dipartimento di Fisica, I.N.F.N., Sezione di Padova, 35131, Padova (Italy); Paticchio, V. [Dipartimento di Fisica, I.N.F.N., Sezione di Bari, 70126, Bari (Italy); Prete, G. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro; Rossi-Alvarez, C. [Dipartimento di Fisica, I.N.F.N., Sezione di Padova, 35131, Padova (Italy); Viesti, G. [Dipartimento di Fisica, I.N.F.N., Sezione di Padova, 35131, Padova (Italy)
1996-03-18
The giant dipole resonance (GDR) from the decay of excited {sup 156}Er nuclei populated in the reaction {sup 64}Ni+{sup 92}Zr at 241 MeV has been studied by using the GASP spectrometer. High-energy {gamma}-ray spectra have been obtained in coincidence with the 80 elements of the GASP inner ball and with discrete transitions in the residual nuclei {sup 155,154}Er. GDR parameters extracted from the high-energy {gamma}-ray spectra in coincidence with low-energy {gamma}-ray fold k>10 are in good agreement with systematics as well as with predictions from adiabatic calculations. No signature for entrance channel effects in the decay of {sup 156}Er was therefore observed from this lineshape analysis of the high-energy {gamma}-ray spectra in contrast with the case of the {sup 164}Yb nucleus. (orig.).
Excitation-energy dependence of the giant dipole resonance width
Enders, G.; Berg, F. D.; Hagel, K.; Kühn, W.; Metag, V.; Novotny, R.; Pfeiffer, M.; Schwalb, O.; Charity, R. J.; Gobbi, A.; Freifelder, R.; Henning, W.; Hildenbrand, K. D.; Holzmann, R.; Mayer, R. S.; Simon, R. S.; Wessels, J. P.; Casini, G.; Olmi, A.; Stefanini, A. A.
1992-07-01
High-energy γ rays have been measured in coincidence with heavy fragents in deeply inelastic reactions of 136Xe+48Ti at 18.5 MeV/nucleon. The giant dipole resonance (GDR) strength function is deduced from an analysis of the photon spectra within the statistical model. The GDR width Γ is studied as a function of the fragment excitation energy E*. A saturation at about Γ=10 MeV is observed for E*/A>=1.0 MeV/nucleon.
Excitation-energy dependence of the giant dipole resonance width
Enders, G.; Berg, F.D.; Hagel, K.; Kuehn, W.; Metag, V.; Novotny, R.; Pfeiffer, M.; Schwalb, O. (II. Physikalisches Institut, Universitaet, Giessen, Giessen (Germany)); Charity, R.J.; Gobbi, A.; Freifelder, R.; Henning, W.; Hildenbrand, K.D.; Holzmann, R.; Mayer, R.S.; Simon, R.S.; Wessels, J.P. (Gesellschaft fuer Schwerionenforschung Darmstadt, Darmstadt (Germany)); Casini, G.; Olmi, A.; Stefanini, A.A. (Istituto Nazionale di Fisica Nucleare and University of Florence, Florence (Italy))
1992-07-13
High-energy {gamma} rays have been measured in coincidence with heavy fragents in deeply inelastic reactions of {sup 136}Xe+{sup 48}Ti at 18.5 MeV/nucleon. The giant dipole resonance (GDR) strength function is deduced from an analysis of the photon spectra within the statistical model. The GDR width {Gamma} is studied as a function of the fragment excitation energy {ital E}{sup *}. A saturation at about {Gamma}=10 MeV is observed for {ital E}{sup *}/{ital A}{ge}1.0 MeV/nucleon.
Average radiation widths and the giant dipole resonance width
Arnould, M.; Thielemann, F.K.
1982-11-01
The average E1 radiation width can be calculated in terms of the energy Esub(G) and width GAMMAsub(G) of the Giant Dipole Resonance (GDR). While various models can predict Esub(G) quite reliably, the theoretical situation regarding ..lambda..sub(G) is much less satisfactory. We propose a simple phenomenological model which is able to provide GAMMAsub(G) values in good agreement with experimental data for spherical or deformed intermediate and heavy nuclei. In particular, this model can account for shell effects in GAMMAsub(G), and can be used in conjunction with the droplet model. The GAMMAsub(G) values derived in such a way are used to compute average E1 radiation widths which are quite close to the experimental values. The method proposed for the calculation of GAMMAsub(G) also appears to be well suited when the GDR characteristics of extended sets of nuclei are required, as is namely the case in nuclear astrophysics.
Giant right atrial myxoma: characterization with cardiac magnetic resonance imaging.
Ridge, Carole A
2012-02-01
A 53-year-old woman presented to the emergency department with a 2-week history of dyspnoea and chest pain. Computed tomography pulmonary angiography was performed to exclude acute pulmonary embolism (PE). This demonstrated a large right atrial mass and no evidence of PE. Transthoracic echocardiography followed by cardiac magnetic resonance imaging confirmed a mobile right atrial mass. Surgical resection was then performed confirming a giant right atrial myxoma. We describe the typical clinical, radiologic, and pathologic features of right atrial myxoma.
Nuclear Structure aspects of gamma decay from giant resonances
Bracco A.
2014-01-01
Full Text Available The gamma decay of the giant dipole resonance (including its tail region is an important tool to probe the properties of these states, and thus to test the predictions of mean field theories. This paper focuses on two main aspects concerning the electric dipole excitation in nuclei. These are the study of the isospin character of the low energy tail of the Giant Dipole Resonance (GDR, the so-called Pygmy resonance, and the isospin mixing of nuclear systems at finite temperature. In the first case, the Pygmy resonance has been populated in the inelastic scattering reaction 17O+124Sn at 20 MeV/u. Its gamma decay has been measured using the AGATA Demonstrator and an array of 8 large volume LaBr3:Ce scintillators. In the second case, the gamma decay of the GDR in thermalized nuclear systems, formed in fusion evaporation reactions, has been used to investigate the isospin mixing in 80Zr. For this work the reactions 40Ca+40Ca at 3.4 MeV/u and 37Cl +44Ca at 2.6 MeV/u were used.
Is the Double Giant Dipole Resonance Process Responsible for Alpha Emission in Ternary Fission?
Han, Hong-Yin; Wand, Yi-Hua; Mouze, G.
2001-11-01
The Monte Carlo program built on the double giant dipole resonance model proposed by Mouze et al. [Nuovo Cimento A 110(1997)1097] was employed to calculate the energy spectrum of alpha particles emitted in the spontaneous ternary fission of 252Cf. It has been found that in the case of the zero orbital angular momentum of alpha particles in the alpha decay of the fragments, the measured alpha spectrum can be reproduced approximately by the model without any adjustable parameter.
Is the Double Giant Dipole Resonance Process Responsible for Alpha Emission in Ternary Fission?
HAN Hong-Yin(韩洪银); WAND Yi-Hua(王屹华); G.Mouze
2001-01-01
The Monte Carlo program built on the double giant dipole resonance model proposed by Mouze et al. [Nuovo Cimento A 110(1997)1097] was employed to calculate the energy spectrum of alpha particles emitted in the spontaneous ternary fission of 252Cf. It has been found that in the case of the zero orbital angular momentum of alpha particles in the alpha decay of the fragments, the measured alpha spectrum can be reproduced approximately by the model without any adjustable parameter.
Continuum TDHF calculation of Isoscalar and Isovector Giant Monopole Resonances
Stevenson, P D
2013-01-01
We motivate and summarise some recent results in the application of formally exact boundary conditions in nuclear time-dependent Hartree-Fock calculations, making use of Laplace transformations to calculate the values of the wave functions at the boundaries. We have realised the method in the case of giant monopole resonances of spherically-symmetric nuclei, and present strength functions of O-16 and Ca-40 using a simplified version of the Skyrme force, showing that no artefacts from discretisation occur as contaminants
Destruction and Resurrection of Atomic Giant resonances in Endohedral Atoms A@C60
Amusia, M Ya; Chernysheva, L V
2007-01-01
It is demonstrated that in photoabsorption by endohedral atoms some atomic Giant resonances are almost completely destroyed while the others are totally preserved due to different action on it of the fullerenes shell. As the first example we discuss the 4d10 Giant resonance in Xe@C60 whereas as the second serves the Giant autoionization resonance in Eu@C60. The qualitative difference comes from the fact that photoelectrons from the 4d Giant resonance has small energies (tens of eV) and are strongly reflected by the C60 fullerenes shell. As to the Eu@C60, Giant autoionization leads to fast photoelectrons (about hundred eV) that go out almost untouched by the C60 shell. As a result of the outgoing electrons energy difference the atomic Giant resonances will be largely destroyed in A@C60 while the Giant autoionization resonance will be almost completely preserved. Thus, on the way from Xe@C60 Giant resonance to Eu@C60 Giant autoionization resonance the oscillation structure should disappear. Similar will be the ...
Temperature dependence of a spreading width of giant dipole resonance in neutron-rich nuclei
Vdovin, A.I.; Storozhenko, A.N
2003-07-14
A temperature dependence of the spreading width of a giant dipole resonance is studied in the framework of the Quasiparticle-Phonon Model extended to finite temperature using a formalism of the Thermo Field Dynamics. Numerical calculations are performed for {sup 120}Sn and the neutron-rich double-magic isotope {sup 132}Sn It is found that the dispersion of the E1 strength function {sigma} increases with temperature.
Damping Mechanism of the Giant Dipole Resonance in Hot Nuclei with A=130
Wieland, O.; Bracco, A.; Camera, F.; Benzoni, G.; Blasi, N.; Crespi, F. C. L.; Leoni, S.; Million, B.; Barlini, S.; Kravchuk, V. L.; Gramegna, F.; Lanchais, A.; Maj, A.; Kmiecik, M.; Casini, G.; Chiari, M.; Nannini, A.; Bruno, M.; Geraci, E.
2007-04-01
The gamma decay of the Giant Dipole Resonance (GDR) in 132Ce nuclei has been measured using the reactions 64Ni (Elab= 300, 400, 500 MeV) + 68Zn and 16O (Elab= 130,250 MeV) + 116Sn. The analysis of the data shows clearly that the GDR width increases steadily with temperature at least up to 4 MeV of the temperature. The data can be well interpreted within the thermal shape fluctuation model.
On direct proton decay of the Gamow-Teller giant resonance
Urin M.H.
2012-12-01
Full Text Available The semi-microscopic approach to the description of giant resonances in medium-heavy mass closed-shell nuclei is implemented to treat partial probabilities of direct-proton decay of the Gamow-Teller giant resonance (GTGR in 208Bi. The corresponding experimental data are reasonably explained.
Structure and direct decay of Giant Monopole Resonances
Avez, Benoît
2013-01-01
We study structure and direct decay of the Giant Monopole Resonance (GMR) using the Time-Dependent Energy-Density-Functional method in the linear response regime in a few doubly-magic nuclei. In these calculations, a proper treatment of the continuum, through the use of large coordinate space, allows for a separation between the nucleus and its emitted nucleons. The microscopic structure of the GMR is investigated with the decomposition of the strength function into individual single-particles quantum numbers. A similar microscopic decomposition of the spectra of emitted nucleons by direct decay of the GMR is performed. Shifting every contribution by the initial sinle-particle energy allows to reconstruct the GMR strength function. The RPA residual interaction couples bound 1-particle 1-hole states to unbound ones, allowing for the total decay of the GMR.
Driving Rabi oscillations at the giant dipole resonance in xenon
Pabst, Stefan; Santra, Robin
2015-01-01
Free-electron lasers (FELs) produce short and very intense light pulses in the XUV and x-ray regimes. We investigate the possibility to drive Rabi oscillations in xenon with an intense FEL pulse by using the unusually large dipole strength of the giant-dipole resonance (GDR). The GDR decays within less than 30 as due to its position, which is above the $4d$ ionization threshold. We find that intensities around 10$^{18}$ W/cm$^2$ are required to induce Rabi oscillations with a period comparable to the lifetime. The pulse duration should not exceed 100 as because xenon will be fully ionized within a few lifetimes. Rabi oscillations reveal themselves also in the photoelectron spectrum in form of Autler-Townes splittings extending over several tens of electronvolt.
On the orbital evolution of a pair of giant planets in mean motion resonance
André, Q.; Papaloizou, J. C. B.
2016-10-01
Pairs of extrasolar giant planets in a mean motion commensurability are common with 2:1 resonance occurring most frequently. Disc-planet interaction provides a mechanism for their origin. However, the time-scale on which this could operate in particular cases is unclear. We perform 2D and 3D numerical simulations of pairs of giant planets in a protoplanetary disc as they form and maintain a mean motion commensurability. We consider systems with current parameters similar to those of HD 155358, 24 Sextantis and HD 60532, and disc models of varying mass, decreasing mass corresponding to increasing age. For the lowest mass discs, systems with planets in the Jovian mass range migrate inwards maintaining a 2:1 commensurability. Systems with the inner planet currently at around 1 au from the central star could have originated at a few au and migrated inwards on a time-scale comparable to protoplanetary disc lifetimes. Systems of larger mass planets such as HD 60532 attain 3:1 resonance as observed. For a given mass accretion rate, results are insensitive to the disc model for the range of viscosity prescriptions adopted, there being good agreement between 2D and 3D simulations. However, in a higher mass disc a pair of Jovian mass planets passes through 2:1 resonance before attaining a temporary phase lasting a few thousand orbits in an unstable 5:3 resonance prior to undergoing a scattering. Thus, finding systems in this commensurability is unlikely.
A Secular Resonance Between Iapetus and the Giant Planets
Cuk, Matija; Dones, Henry C. Luke; Nesvorny, David; Walsh, Kevin J.
2017-06-01
Iapetus is the outermost of the regular satellites of Saturn, and its origin and evolution present a number of unsolved problems. From the point of view of orbital dynamics, it is remarkable that Iapetus has a large inclination (8 degrees) and a significantly smaller eccentricity (0.03), contrary to the pattern expected if its orbit was excited by encounters between Saturn and other planets early in the Solar System's history (Nesvorny et al, 2014). Here we report our long-term numerical integrations of Iapetus's orbit that show multi-Myr oscillations of Iapetus's eccentricity with an amplitude on the order of 0.01. We find that the basic argument causing this behavior is the sum of the longitude of pericenter and the longitude of the node of Iapetus, with a 0.3 Myr period. This argument appears to be in resonance with the period of the g5 mode in the eccentricity and perihelion of Saturn. We find that our nominal solution, including Saturn's oblateness, Titan, Iapetus and all four giant planets, shows librations of the argument: ǎrpi_Iapetus - ǎrpi_g5 + \\Omega_Iapetus - \\Omega_SaturnEq, where ǎrpi and \\Omega are the longitudes of pericenters and nodes, respectively, and \\Omega_SaturnEq is Saturn's equinox. While planetary perturbations are crucial in generating the g5 mode and therefore maintaining this resonance, we find that Iapetus is affected by the planets only indirectly, with the Sun being the dominant direct perturber. The libration is stable for tens of Myr for the nominal rate of Saturn's pole precession (French et al, 2017), and appears stable indefinitely if we assume a secular resonance between Saturn's node and the secular mode g18 (Ward and Hamilton, 2004; Hamilton and Ward, 2004). We will present the implication of this resonance for the origin of Iapetus's orbit and the dynamical history of Saturn's system. This research is funded by NASA Outer Planets Research Program award NNX14AO38G. References: French, R. G., McGhee-French, C. A
An MHD model for magnetar giant flares
Meng, Y.; Lin, J.; Zhang, Q. S. [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming, Yunnan 650011 (China); Zhang, L. [Department of Physics, Yunnan University, Kunming, Yunnan 650091 (China); Reeves, K. K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yuan, F., E-mail: mengy@ynao.ac.cn, E-mail: jlin@ynao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)
2014-04-10
Giant flares on soft gamma-ray repeaters that are thought to take place on magnetars release enormous energy in a short time interval. Their power can be explained by catastrophic instabilities occurring in the magnetic field configuration and the subsequent magnetic reconnection. By analogy with the coronal mass ejection events on the Sun, we develop a theoretical model via an analytic approach for magnetar giant flares. In this model, the rotation and/or displacement of the crust causes the field to twist and deform, leading to flux rope formation in the magnetosphere and energy accumulation in the related configuration. When the energy and helicity stored in the configuration reach a threshold, the system loses its equilibrium, the flux rope is ejected outward in a catastrophic way, and magnetic reconnection helps the catastrophe develop to a plausible eruption. By taking SGR 1806–20 as an example, we calculate the free magnetic energy released in such an eruptive process and find that it is more than 10{sup 47} erg, which is enough to power a giant flare. The released free magnetic energy is converted into radiative energy, kinetic energy, and gravitational energy of the flux rope. We calculated the light curves of the eruptive processes for the giant flares of SGR 1806–20, SGR 0526–66, and SGR 1900+14, and compared them with the observational data. The calculated light curves are in good agreement with the observed light curves of giant flares.
The Giant Dipole Resonance built on highly excited states — results of the MEDEA experiment
Suomijärvi, T.; Le Faou, J. H.; Blumenfeld, Y.; Piattelli, P.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Maiolino, C.; Migneco, E.; Russo, G.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.; Smerzi, A.
1994-03-01
Gamma-rays, light charged particles and evaporation residues emitted from hot nuclei formed in the 36Ar + 90Zr reaction at 27 MeV/u have been measured with a nearly 4π barium fluoride multidetector. It is shown that hot Sn-like nuclei with a range of excitation energies between 300 and 600 MeV are produced. The γ-ray yield from the decay of the Giant Dipole Resonance in these nuclei is shown to remain constant over this excitation energy range. The measured γ-ray spectra are compared with statistical calculations encompassing several recent theoretical models for the quenching of gamma-ray emission from the dipole resonance at very high temperatures.
Structure and decay properties of spin-dipole giant resonances within a semimicroscopical approach
Moukhai, EA; Rodin, VA; Urin, MH
1999-01-01
A semimicroscopical approach is applied to calculate: (i) strength functions for the charge-exchange spin-dipole giant resonances in the Pb-208 parent nucleus; (ii) partial and total branching ratios for the direct proton decay of the resonance in Bi-208. The approach is based on continuum-RPA calcu
On the orbital evolution of a pair of giant planets in mean motion resonance
André, Q
2016-01-01
Pairs of extrasolar giant planets in a mean motion commensurability are common with 2:1 resonance occurring most frequently. Disc-planet interaction provides a mechanism for their origin. However, the time scale on which this could operate in particular cases is unclear. We perform 2D and 3D numerical simulations of pairs of giant planets in a protoplanetary disc as they form and maintain a mean motion commensurability. We consider systems with current parameters similar to those of HD 155358, 24 Sextantis and HD 60532, and disc models of varying mass, decreasing mass corresponding to increasing age. For the lowest mass discs, systems with planets in the Jovian mass range migrate inwards maintaining a 2:1 commensurability. Systems with the inner planet currently at around 1 au from the central star could have originated at a few au and migrated inwards on a time scale comparable to protoplanetary disc lifetimes. Systems of larger mass planets such as HD 60532 attain 3:1 resonance as observed. For a given mass...
Measurement of Giant Dipole Resonance width at low temperature: A new experimental perspective
Mukhopadhyay, S; Pal, Surajit; Bhattacharya, Srijit; De, A; Bhattacharya, S; Bhattacharya, C; Banerjee, K; Kundu, S; Rana, T K; Mukherjee, G; Pandey, R; Gohil, M; Pai, H; Meena, J K; Banerjee, S R
2011-01-01
The systematic evolution of the giant dipole resonance (GDR) width in the temperature region of 0.9 ~ 1.4 MeV has been measured experimentally for 119Sb using alpha induced fusion reaction and employing the LAMBDA high energy photon spectrometer. The temperatures have been precisely determined by simultaneously extracting the vital level density parameter from the neutron evaporation spectrum and the angular momentum from gamma multiplicity filter using a realistic approach. The systematic trend of the data seems to disagree with the thermal shape fluctuation model (TSFM). The model predicts the gradual increase of GDR width from its ground state value for T > 0 MeV whereas the measured GDR widths appear to remain constant at the ground state value till T ~ 1 MeV and increase thereafter indicating towards a failure of the adiabatic assumption of the model at low temperature.
Using the (p-arrow-right,p-arrow-right ') reaction to study. delta. S = 0 giant resonances
Baker, F.T.; Bimbot, L.; Fergerson, R.W.; Glashausser, C.; Jones, K.; Green, A.; Nakayama, K.; Nanda, S.
1988-03-01
Measurements of spin-flip probabilities for inelastic scattering of 318 MeV protons from /sup 40/Ca reveal that much of the background underlying the giant dipole and quadrupole resonances at small angles is from ..delta..S = 1 transitions. This holds the promise of allowing a much better estimate of this background than has previously been possible;one model-dependent parameter is necessary. Subsequent analysis with a first estimate of this parameter is presented
Attosecond delay of xenon $4d$ photoionization at the giant resonance and Cooper minimum
Magrakvelidze, Maia; Chakraborty, Himadri S
2016-01-01
A Kohn-Sham time-dependent local-density-functional scheme is utilized to predict attosecond time delays of xenon 4d photoionization that involves the 4d giant dipole resonance and Cooper minimum. The fundamental effect of electron correlations to uniquely determine the delay at both regions is demonstrated. In particular, for the giant dipole resonance, the delay underpins strong collective effect, emulating the recent prediction at C60 giant plasmon resonance [T. Barillot et al, Phys. Rev. A 91, 033413 (2015)]. For the Cooper minimum, a qualitative similarity with a photorecombination experiment near argon 3p minimum [S. B. Schoun et al, Phys. Rev. Lett. 112, 153001 (2014)] is found. The result should encourage attosecond measurements of Xe 4d photoemission.
Constructing stable 3D hydrodynamical models of giant stars
Ohlmann, Sebastian T; Pakmor, Rüdiger; Springel, Volker
2016-01-01
Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the 1D stellar evolution code MESA. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code AREPO. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Differen...
Measurement of isospin mixing at a finite temperature in 80Zr via giant dipole resonance decay
Corsi, A.; Wieland, O.; Barlini, S.; Bracco, A.; Camera, F.; Kravchuk, V. L.; Baiocco, G.; Bardelli, L.; Benzoni, G.; Bini, M.; Blasi, N.; Brambilla, S.; Bruno, M.; Casini, G.; Ciemala, M.; Cinausero, M.; Crespi, F. C. L.; D'Agostino, M.; Degerlier, M.; Giaz, A.; Gramegna, F.; Kmiecik, M.; Leoni, S.; Maj, A.; Marchi, T.; Mazurek, K.; Meczynski, W.; Million, B.; Montanari, D.; Morelli, L.; Myalski, S.; Nannini, A.; Nicolini, R.; Pasquali, G.; Poggi, G.; Vandone, V.; Vannini, G.
2011-10-01
Isospin mixing in the hot compound nucleus 80Zr was studied by measuring and comparing the γ-ray emission from the fusion reactions 40Ca+40Ca at Ebeam=200 MeV and 37Cl+44Ca at Ebeam=153 MeV. The γ yield associated with the giant dipole resonance is found to be different in the two reactions because, in self-conjugate nuclei, the E1 selection rules forbid the decay between states with isospin I=0. The degree of mixing is deduced from statistical-model analysis of the γ-ray spectrum emitted by the compound nucleus 80Zr with the standard parameters deduced from the γ decay of the nucleus 81Rb. The results are used to deduce the zero-temperature value, which is then compared with the latest predictions. The Coulomb spreading width is found to be independent of temperature.
Finite amplitude method applied to giant dipole resonance in heavy rare-earth nuclei
Oishi, Tomohiro; Hinohara, Nobuo
2016-01-01
Background: The quasiparticle random phase approximation (QRPA), within the framework of the nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of the atomic nuclei. Recently, finite amplitude method (FAM) has been developed, in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mo...
Kumar, A K Rhine; Dang, N Dinh
2015-01-01
Apart from the higher limits of isospin and temperature, the properties of atomic nuclei are intriguing and less explored at the limits of lowest but finite temperatures. At very low temperatures there is a strong interplay between the shell (quantal fluctuations), statistical (thermal fluctuations), and residual pairing effects as evidenced from the studies on giant dipole resonance (GDR). In our recent work [Phys. Rev. C \\textbf{90}, 044308 (2014)], we have outlined some of our results from a theoretical approach for such warm nuclei where all these effects are incorporated along within the thermal shape fluctuation model (TSFM) extended to include the fluctuations in the pairing field. In this article, we present the complete formalism based on the microscopic-macroscopic approach for determining the deformation energies and a macroscopic approach which links the deformation to GDR observables. We discuss our results for the nuclei $^{97}$Tc, $^{120}$Sn, $^{179}$Au, and $^{208}$Pb, and corroborate with the...
Modeling Impacts of Climate Change on Giant Panda Habitat
Melissa Songer
2012-01-01
Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.
Proton decay from the isoscalar giant dipole resonance in Ni-58
Hunyadi, M.; Hashimoto, H.; Li, T.; Akimune, H.; Fujimura, H.; Fujiwara, M.; Gacsi, Z.; Garg, U.; Hara, K.; Harakeh, M. N.; Hoffman, J.; Itoh, M.; Murakami, T.; Nakanishi, K.; Nayak, B. K.; Okumura, S.; Sakaguchi, H.; Terashima, S.; Uchida, M.; Yasuda, Y.; Yosoi, M.
2009-01-01
Proton decay from the 3 (h) over bar omega isoscalar giant dipole resonance (ISGDR) in Ni-58 has been measured using the (alpha, alpha' p) reaction at a bombarding energy of 386 MeV to investigate its decay properties. We have extracted the ISGDR strength under the coincidence condition between inel
Proton decay from the isoscalar giant dipole resonance in 58Ni
Hunyadi, M.; Hashimoto, H.; Li, T.; Akimune, H.; Fujimura, H.; Fujiwara, M.; Gacsi, Z.; Garg, U.; Hara, K.; Harakeh, M. N.; Hoffman, J.; Itoh, M.; Murakami, T.; Nakanishi, K.; Nayak, B. K.; Okumura, S.; Sakaguchi, H.; Terashima, S.; Uchida, M.; Yasuda, Y.; Yosoi, M.
2009-01-01
Proton decay from the 3 (h) over bar omega isoscalar giant dipole resonance (ISGDR) in Ni-58 has been measured using the (alpha, alpha' p) reaction at a bombarding energy of 386 MeV to investigate its decay properties. We have extracted the ISGDR strength under the coincidence condition between inel
Electromagnetic transitions between giant resonances within a continuum-RPA approach
Rodin, VA; Dieperink, AEL
2002-01-01
A general continuum-RPA approach is developed to describe electromagnetic transitions between giant resonances. Using a diagrammatic representation for the three-point Green's function, an expression for the transition amplitude is derived which allows one to incorporate effects of mixing of single
Neutron-skin thickness from the study of the anti-analog giant dipole resonance
Krasznahorkay, A.; Stuhl, L.; Csatlós, M.; Algora, A.; Gulyás, J.; Timár, J.; Paar, N.; Vretenar, D.; Boretzky, K.; Heil, M.; Litvinov, Yu A.; Rossi, D.; Scheidenberger, C.; Simon, H.; Weick, H.; Bracco, A.; Brambilla, S.; Blasi, N.; Camera, F.; Giaz, A.; Million, B.; Pellegri, L.; Riboldi, S.; Wieland, O.; Altstadt, S.; Fonseca, M.; Glorius, J.; Göbel, K.; Heftrich, T.; Koloczek, A.; Kräckmann, S.; Langer, C.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Schmidt, S.; Sonnabend, K.; Weigand, M.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Rigollet, C.; Bagchi, S.; Najafi, M. A.; Aumann, T.; Atar, L.; Heine, M.; Holl, M.; Movsesyan, A.; Schrock, P.; Volkov, V.; Wamers, F.; Fiori, E.; Löher, B.; Marganiec, J.; Savran, D.; Johansson, H. T.; Fernández, P. Diaz; Garg, U.; Balabanski, D. L.
2012-01-01
The gamma-decay of the anti-analog of the giant dipole resonance (AGDR) has been measured to the isobaric analog state excited in the p(124Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent random-phase approxima
NATO Advanced Study Institute on Giant Resonances in Atoms, Molecules, and Solids
Esteva, J; Karnatak, R
1987-01-01
Often, a new area of science grows at the confines between recognised subject divisions, drawing upon techniques and intellectual perspectives from a diversity of fields. Such growth can remain unnoticed at first, until a characteristic fami ly of effects, described by appropriate key words, has developed, at which point a distinct subject is born. Such is very much the case with atomic 'giant resonances'. For a start, their name itself was borrowed from the field of nuclear collective resonances. The energy range in which they occur, at the juncture of the extreme UV and the soft X-rays, remains to this day a meeting point of two different experimental techniques: the grating and the crystal spectrometer. The impetus of synchrotron spectroscopy also played a large part in developing novel methods, described by many acronyms, which are used to study 'giant resonances' today. Finally, although we have described them as 'atomic' to differentiate them from their counterparts in Nuclear Physics, their occurrence ...
Giant natural fluctuation models and anthropogenic warming
Lovejoy, S.; Rio Amador, L.; Hébert, R.; Lima, I.
2016-08-01
Explanations for the industrial epoch warming are polarized around the hypotheses of anthropogenic warming (AW) and giant natural fluctuations (GNFs). While climate sceptics have systematically attacked AW, up until now they have only invoked GNFs. This has now changed with the publication by D. Keenan of a sample of 1000 series from stochastic processes purporting to emulate the global annual temperature since 1880. While Keenan's objective was to criticize the International Panel on Climate Change's trend uncertainty analysis (their assumption that residuals are only weakly correlated), for the first time it is possible to compare a stochastic GNF model with real data. Using Haar fluctuations, probability distributions, and other techniques of time series analysis, we show that his model has unrealistically strong low-frequency variability so that even mild extrapolations imply ice ages every ≈1000 years. Helped by statistics, the GNF model can easily be scientifically rejected.
Constructing stable 3D hydrodynamical models of giant stars
Ohlmann, Sebastian T.; Röpke, Friedrich K.; Pakmor, Rüdiger; Springel, Volker
2017-02-01
Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the one-dimensional stellar evolution code mesa. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code arepo. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Different reconstruction methods are tested that can specifically control the convective behaviour of the model. After mapping to a grid, a relaxation procedure that includes damping of spurious velocities yields stable models in three-dimensional hydrodynamical simulations. Initially convectively stable configurations lead to stable hydrodynamical models while for stratifications that are convectively unstable in the stellar evolution code, simulations recover the convective behaviour of the initial model and show large convective plumes with Mach numbers up to 0.8. Examples are shown for a 2 M⊙ red giant and a 0.67 M⊙ asymptotic giant branch star. A detailed analysis shows that the improved method reliably provides stable models of giant envelopes that can be used as initial conditions for subsequent hydrodynamical simulations of stellar interactions involving giant stars.
Wieland, O.; Bracco, A.; Camera, F.; Benzoni, G.; Blasi, N.; Brambilla, S.; Crespi, F.; Giussani, A.; Leoni, S.; Mason, P.; Million, B.; Moroni, A.; Barlini, S.; Kravchuk, V. L.; Gramegna, F.; Lanchais, A.; Mastinu, P.; Maj, A.; Brekiesz, M.; Kmiecik, M.; Bruno, M.; Geraci, E.; Vannini, G.; Casini, G.; Chiari, M.; Nannini, A.; Ordine, A.; Ormand, E.
2006-07-01
The γ decay of the giant dipole resonance (GDR) in the Ce132 compound nucleus with temperature up to ≈4MeV has been measured, using the reaction Ni64+Zn68 at Ebeam=300, 400, and 500 MeV. The γ and charged particles measured in coincidence with recoils are consistent with a fully equilibrated compound nucleus emission. The GDR width, obtained with the statistical model analysis, is found to increase almost linearly with temperature. This increase is rather well reproduced within a model including thermal shape fluctuations and the lifetime of the compound nucleus.
Design, analysis, and modeling of giant magnetostrictive transducers
Calkins, Frederick Theodore
The increased use of giant magnetostrictive, Terfenol-D transducers in a wide variety of applications has led to a need for greater understanding of the materials performance. This dissertation attempts to add to the Terfenol-D transducer body of knowledge by providing an in-depth analysis and modeling of an experimental transducer. A description of the magnetostriction process related to Terfenol-D includes a discussion of material properties, production methods, and the effect of mechanical stress, magnetization, and temperature on the material performance. The understanding of the Terfenol-D material performance provides the basis for an analysis of the performance of a Terfenol-D transducer. Issues related to the design and utilization of the Terfenol-D material in the transducers are considered, including the magnetic circuit, application of mechanical prestress, and tuning of the mechanical resonance. Experimental results from two broadband, Tonpilz design transducers show the effects of operating conditions (prestress, magnetic bias, AC magnetization amplitude, and frequency) on performance. In an effort to understand and utlilize the rich performance space described by the experimental results a variety of models are considered. An overview of models applicable to Terfenol-D and Terfenol-D transducers is provided, including a discussion of modeling criteria. The Jiles-Atherton model of ferromagnetic hysteresis is employed to describe the quasi-static transducer performance. This model requires the estimation of only six physically-based parameters to accurately simulate performance. The model is shown to be robust with respect to model parameters over a range of mechanical prestress, magnetic biases, and AC magnetic field amplitudes, allowing predictive capability within these ranges. An additional model, based on electroacoustics theory, explains trends in the frequency domain and facilitates an analysis of efficiency based on impedance and admittance
Temperature dependence of the giant dipole resonance width in 152Gd
Ghosh, C.; Mishra, G.; Rhine Kumar, A. K.; Dokania, N.; Nanal, V.; Pillay, R. G.; Kumar, Suresh; Rout, P. C.; Joshi, Sandeep; Arumugam, P.
2016-07-01
To investigate the dependence of giant dipole resonance (GDR) width on temperature (T ) and angular momentum (J ), high energy γ -ray spectra were measured in the reaction 28Si+124Sn at E28Si=135 MeV. The J information was deduced from multiplicity of low-energy γ rays. The GDR parameters, namely, the centroid energy and width are extracted using statistical model analysis. The observed variation of the GDR width for T ˜1.2 -1.37 MeV and J ˜20 ℏ -40 ℏ is consistent with the universal scaling given by Kusnezov et al., which is applicable in the liquid-drop regime. The GDR input cross sections extracted from the statistical model best fits are compared with thermal shape fluctuation model (TSFM) calculations and are found to be in good agreement. The TSFM calculations predominantly favor the noncollective oblate shape, while the statistical model fit with both prolate and oblate shapes describes the data. The present data together with earlier measurements indicate a very slow variation of the GDR width for T ˜1.2 to 1.5 MeV. The observed trend is well explained by the TSFM calculations, although the calculated values are ˜4 %-13% higher than the data.
Brenna, Marco
2014-01-01
The self-consistent mean-field (SCMF) theory describes many properties of the ground state and excited states of the atomic nucleus, such as masses, radii, deformations and giant resonance energies. SCMF models are based on the independent particle picture where nucleons are assumed to move in a self-generated average potential. In the first part of this work, we apply a state-of-the-art SCMF approach, based on the Skyrme effective interaction, to two different excitations (viz. the pygmy dipole resonance and the isovector giant quadrupole resonance), investigating their relation with the nuclear matter symmetry energy, which corresponds to the energy cost for changing protons into neutrons and is a key parameter for the nuclear equation of state. However, SCMF models present well known limitations which require the inclusion of further dynamical correlations, e.g. the ones coming from the interweaving between single-particle and collective degrees of freedom (particle-vibration coupling - PVC). In the second...
Measurement of the Am241(γ,n)Am240 reaction in the giant dipole resonance region
Tonchev, A. P.; Hammond, S. L.; Howell, C. R.; Huibregtse, C.; Hutcheson, A.; Kelley, J. H.; Kwan, E.; Raut, R.; Rusev, G.; Tornow, W.; Kawano, T.; Vieira, D. J.; Wilhelmy, J. B.
2010-11-01
The photodisintegration cross section of the radioactive nucleus Am241 has been obtained using activation techniques and monoenergetic γ-ray beams from the HIγS facility. The induced activity of Am240 produced via the Am241(γ,n) reaction was measured in the energy interval from 9 to 16 MeV utilizing high-resolution γ-ray spectroscopy. The experimental data for the Am241(γ,n) reaction in the giant dipole resonance energy region are compared with statistical nuclear-model calculations.
First principles description of the giant dipole resonance in 16O
Bacca, Sonia; Hagen, Gaute; Orlandini, Giuseppina; Papenbrock, Thomas
2013-01-01
We present an ab-initio calculation of the giant dipole resonance in 16O based on a nucleon-nucleon (NN) interaction from chiral effective field theory that reproduces NN scattering data with high accuracy. By merging the Lorentz integral transform and the coupled-cluster methods, we extend the previous theoretical limits for break-up observables in light nuclei with mass numbers (A<=7), and address the collective giant dipole resonance of 16O. We successfully benchmark the new approach against virtually exact results from the hyper-spherical harmonics method in 4He. Our results for 16O reproduce the position and the total strength (bremsstrahlung sum rule) of the dipole response very well. When compared to the cross section from photo-absorption experiments the theoretical curve exhibits a smeared form of the peak. The tail region between 40 and 100 MeV is reproduced within uncertainties.
Inner-shell photodetachment from N i- : A giant Feshbach resonance
Dumitriu, I.; Bilodeau, R. C.; Gorczyca, T. W.; Walter, C. W.; Gibson, N. D.; Rolles, D.; Pešić, Z. D.; Aguilar, A.; Berrah, N.
2017-08-01
Inner-shell photodetachment from N i-([Ar ] 3 d94 s2) leading to N i+,N i2 + , and N i3 + ion production was studied near and above the 3 p excitation region, in the 60-90 eV photon energy range, using a merged ion-photon beam technique. The absolute photodetachment cross section of N i- leading to N i+ ion production was measured. The 3 p →3 d photoexcitation in N i- gives rise to a giant Feshbach resonance. In the near-threshold region, a Fano profile, modified by a Wigner s -wave (l =0 ) threshold law, accurately fits the N i- single-photodetachment cross section. A lower-order R -matrix calculation shows overall agreement with essential features of the experimental data, confirming the nature of the strong, asymmetric Fano profile of the giant 3 p →3 d photoexcitation-autodetachment resonance in N i- .
Demekhina, N A; Karapetyan, G S
2001-01-01
The population of the isomeric states is considered in nuclei sup 1 sup 1 sup 5 In and sup 1 sup 8 sup 0 Hf in photonuclear (gamma, gamma') reactions at giant dipole resonance energies. The comparison with the earlier published experimental and theoretical data is made. The behavior of the excitation function gives an evidence for possible increase of the high-spin state population in the giant resonance range
Ciemała, M.; Kmiecik, M.; Maj, A.; Mazurek, K.; Bracco, A.; Kravchuk, V. L.; Casini, G.; Barlini, S.; Baiocco, G.; Bardelli, L.; Bednarczyk, P.; Benzoni, G.; Bini, M.; Blasi, N.; Brambilla, S.; Bruno, M.; Camera, F.; Carboni, S.; Cinausero, M.; Chbihi, A.; Chiari, M.; Corsi, A.; Crespi, F. C. L.; D'Agostino, M.; Degerlier, M.; Fornal, B.; Giaz, A.; Gramegna, F.; Krzysiek, M.; Leoni, S.; Marchi, T.; Matejska-Minda, M.; Mazumdar, I.; Meczyński, W.; Million, B.; Montanari, D.; Morelli, L.; Myalski, S.; Nannini, A.; Nicolini, R.; Pasquali, G.; Piantelli, S.; Prete, G.; Roberts, O. J.; Schmitt, Ch.; Styczeń, J.; Szpak, B.; Valdré, S.; Wasilewska, B.; Wieland, O.; Wieleczko, J. P.; Ziebliński, M.; Dudek, J.; Dinh Dang, N.
2015-05-01
High-energy giant dipole resonance (GDR) γ rays were measured following the decay of the hot, rotating compound nucleus of 88Mo, produced at excitation energies of 124 and 261 MeV. The reaction 48Ti + 40Ca at 300 and 600 MeV bombarding energies has been used. The data were analyzed using the statistical model Monte Carlo code gemini++. It allowed extracting the giant dipole resonance parameters by fitting the high-energy γ -ray spectra. The extracted GDR widths were compared with the available data at lower excitation energy and with theoretical predictions based on (i) The Lublin-Strasbourg drop macroscopic model, supplemented with thermal shape fluctuations analysis, and (ii) The phonon damping model. The theoretical predictions were convoluted with the population matrices of evaporated nuclei from the statistical model gemini++. Also a comparison with the results of a phenomenological expression based on the existing systematics, mainly for lower temperature data, is presented and discussed. A possible onset of a saturation of the GDR width was observed around T =3 MeV.
Patel, D; Itoh, M; Akimune, H; Berg, G P A; Fujiwara, M; Harakeh, M N; Iwamoto, C; Kawabata, T; Kawase, K; Matta, J T; Murakami, T; Okamoto, A; Sako, T; Schlax, K W; Takahashi, K; White, M; Yosoi, M
2014-01-01
The excitation of the isoscalar giant monopole resonance (ISGMR) in $^{116}$Sn and $^{208}$Pb has been investigated using small-angle (including $0^\\circ$) inelastic scattering of 100 MeV/u deuteron and multipole-decomposition analysis (MDA). The extracted strength distributions agree well with those from inelastic scattering of 100 MeV/u $\\alpha$ particles. These measurements establish deuteron inelastic scattering at E$_d \\sim$ 100 MeV/u as a suitable probe for extraction of the ISGMR strength with MDA, making feasible the investigation of this resonance in radioactive isotopes in inverse kinematics.
Li, Yangcheng
2015-01-01
In this dissertation novel resonant propulsion of dielectric microspheres is studied with the goal of sorting spheres with identical resonances, which are critical for developing microspherical photonics. First, evanescent field couplers were developed by fixing tapered microfibers in mechanically robust platforms. The tapers were obtained by chemical etching techniques. Using these platforms, WGMs modal numbers, coupling regimes and quality factors were determined for various spheres and compared with theory. Second, the spectroscopic properties of photonic molecules formed by spheres with better than 0.05% uniformity of WGM resonances were studied. It was shown that various spatial configurations of coupled-cavities present relatively stable mode splitting patterns in the fiber transmission spectra which can be used as spectral signatures to distinguish such photonic molecules. The third part is the study of giant resonant propulsion forces exerted on microspheres. This effect was observed in suspensions of...
Giant second harmonic generation by engineering of double plasmonic resonances at nanoscale
Ren, Ming-Liang; Wang, Ben-Li; Chen, Bao-Qin; Li, Jiafang; Li, Zhi-Yuan
2014-01-01
We have investigated second harmonic generation (SHG) from Ag-coated LiNbO3 (LN) core-shell nanocuboids and found that giant SHG can occur via deliberately designed double plasmonic resonances. By controlling the aspect ratio, we can tune fundamental wave (FW) and SHG signal to match the longitudinal and transverse plasmonic modes simultaneously, and achieve giant enhancement of SHG by more than five orders of magnitude in comparison to a bare LN nanocuboid and by about one order of magnitude to the case adopting only single plasmonic resonance. The underlying key physics is that the double-resonance nanoparticle enables greatly enhanced trapping and harvesting of incident FW energy, efficient internal transfer of optical energy from FW to SHW, and much improved power to transport the SHG energy from the nanoparticle to the far-field region. The proposed double-resonance nanostructure can serve as an efficient subwavelength coherent light source through SHG and enable flexible engineering of light-matter inte...
Isoscalar Giant Resonances of 120Sn in the Quasiparticle RRPA
CAOLi-gang; MAZhong-yu
2003-01-01
In present work we have formulated the quasiparticle relativistic random phase approximation (QRRPA) model based on the relativistic mean field ground state in the response function formalism. The pairing correlations are taken into account in the BCS approximation with a constant pairing gap extracted from the experimental binding energies of neighboring nuclei.
Giant Dipole Resonance decay of hot rotating 88Mo
Ciemała M.
2014-03-01
Full Text Available An experiment focusing on study of the properties of hot rotating compound nucleus of 88Mo was performed in LNL Legnaro using 48Ti beam at energies of 300 and 600 MeV on 40Ca target. The compound nucleus was produced at the temperatures of 3 and 4.5 MeV, with angular momentum distribution with lmax > 60 ħ (i.e. exceeding the crtical angular momentum for fission. High-energy gamma rays, measured in coincidence with evaporation residues and alpha particles, were analyzed with the statistical model. The GDR parameters were obtained from the best fit to the data, which allowed investigating an evolution of the GDR width up to high temperatures.
Giant Dipole Resonance decay of hot rotating 88Mo
Ciemała, M.; Kmiecik, M.; Maj, A.; Kravchuk, V. L.; Gramegna, F.; Barlini, S.; Casini, G.; Camera, F.
2014-03-01
An experiment focusing on study of the properties of hot rotating compound nucleus of 88Mo was performed in LNL Legnaro using 48Ti beam at energies of 300 and 600 MeV on 40Ca target. The compound nucleus was produced at the temperatures of 3 and 4.5 MeV, with angular momentum distribution with lmax > 60 ħ (i.e. exceeding the crtical angular momentum for fission). High-energy gamma rays, measured in coincidence with evaporation residues and alpha particles, were analyzed with the statistical model. The GDR parameters were obtained from the best fit to the data, which allowed investigating an evolution of the GDR width up to high temperatures.
Evolution of giant dipole resonance width at low temperatures – New perspectives
S Mukhopadhyay
2014-05-01
High energy photons from the decay of giant dipole resonances (GDR) built on excited states provide an excellent probe in the study of nuclear structure properties, damping mechanisms etc., at finite temperatures. The dependence of GDR width on temperature () and angular momentum () has been the prime focus of many experimental and theoretical studies for the last few decades. The measured GDR widths for a wide range of nuclei at temperatures (1.5 < < 2.5 MeV) and spins (upto fission limit) were well described by the thermal shape fluctuation model (TSFM). But, at low temperatures ( < 1.5 MeV) there are large discrepancies between the existing theoretical models. The problem is compounded as there are very few experimental data in this region. At Variable Energy Cyclotron Centre, Kolkata, a programme for the systematic measurement of GDR width at very low temperatures has been initiated with precise experimental techniques. Several experiments have been performed by bombarding 7–12 MeV/nucleon alpha beam on various targets (63Cu, 115In and 197Au) and new datasets have been obtained at low temperatures ( < 1.5MeV) and at very lowspins ( < 20$\\hbar$). The TSFM completely fails to represent the experimental data at these low temperatures in the entire mass range. In fact, the GDR width appears to be constant at its ground state value until a critical temperature is reached and subsequently increases thereafter, whereas the TSFM predicts a gradual increase of GDR width from its ground state value for > 0 MeV. In order to explain this discrepancy at low , a new formalism has been put forward by including GDR-induced quadrupole moment in the TSFM.
Modelling giant radio halos. Doctoral Thesis Award Lecture 2012
Donnert, J. M. F.
2013-06-01
We review models for giant radio halos in clusters of galaxies, with a focus on numerical and theoretical work. After summarising the most important observations of these objects, we present an introduction to the theoretical aspects of hadronic models. We compare these models with observations using simulations and find severe problems for hadronic models. We give a short introduction to reacceleration models and show results from the first simulation of CRe reacceleration in cluster mergers. We find that in-line with previous theoretical work, reacceleration models are able to elegantly explain main observables of giant radio halos.
Role of deformation on giant resonances within the QRPA approach and the Gogny force
Peru, S
2008-01-01
Fully consistent axially-symmetric-deformed Quasi-particle Random Phase Approximation (QRPA) calculations have been performed, in which the same Gogny D1S effective force has been used for both the Hartree-Fock-Bogolyubov mean field and the QRPA approaches. Giant resonances calculated in deformed $^{26-28}$Si and $^{22-24}$Mg nuclei as well as in the spherical $^{30}$Si and $^{28}$Mg isotopes are presented. Theoretical results for isovector-dipole and isoscalar monopole, quadrupole, and octupole responses are presented and the impact of the intrinsic nuclear deformation is discussed.
Isoscalar Giant Resonances of 120Sn in the Quasiparticle Relativistic Random Phase Approximation
CAO Li-Gang; MA Zhong-Yu
2004-01-01
@@ The quasiparticle relativistic random phase approximation (QRRPA) is formulated based on the relativistic mean field ground state in the response function formalism. The pairing correlations are taken into account in the Bardeen-Cooper-Schrieffer approximation with a constant pairing gap. The numerical calculations are performed in the case of various isoscalar giant resonances of nucleus 120Sn with parameter set NL3. The calculated results show that the QRRPA approach could satisfactorily reproduce the experimental data of the energies of low-lying states.
Giant field enhancement by funneling effect into sub-wavelength slit-box resonators
Chevalier, Paul; Haidar, Riad; Pardo, Fabrice
2014-01-01
Inspired by the acoustic Helmholtz resonator, we propose a slit-box electromagnetic nanoantenna able to concentrate the energy of an incident beam into surfaces a thousand times smaller than with a classical lens. This design gives birth to giant field intensity enhancement in hot volume, throughout the slit. It reaches $10^4$ in the visible up to $10^8$ in the THz range even with focused beams thanks to an omnidirectional reception. These properties could target applications requiring extreme light concentration, such as SEIRA, non-linear optics and biophotonics.
Neutron-skin thickness from the study of the anti-analog giant dipole resonance
2012-01-01
The gamma-decay of the anti-analog of the giant dipole resonance (AGDR) has been measured to the isobaric analog state excited in the p(124Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent random-phase approximation (RPA) and turned out to be very sensitive to the neutron-skin thickness (\\DeltaR_(pn)). By comparing the theoretical results with the measured one, the \\DeltaR_(pn) value for 124Sn was deduced...
Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei
Oishi, Tomohiro; Kortelainen, Markus; Hinohara, Nobuo
2016-03-01
Background: The quasiparticle random phase approximation (QRPA), within the framework of nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of atomic nuclei. Recently, the finite amplitude method (FAM) was developed in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mostly reproduced with the FAM-QRPA, when compared to experimental data, although some deficiency is observed with isotopes heavier than erbium. A role of the TRK enhancement factor in actual GDR strength is clearly shown: its increment leads to a shift of the GDR strength to higher-energy region, without a significant change in the transition amplitudes. Conclusions: The newly developed FAM-QRPA scheme shows remarkable efficiency, which enables one to perform systematic analysis of GDR for heavy rare-earth nuclei. The theoretical deficiency of the photoabsorption cross section could not be improved by only adjusting the TRK enhancement factor, suggesting the necessity of an approach beyond self-consistent QRPA and/or a more systematic optimization of the energy density functional (EDF) parameters.
Giant resonances in exotic spherical nuclei within the RPA approach with the Gogny force
P'eru, S; Bortignon, P F
2005-01-01
Theoretical results for giant resonances in the three doubly magic exotic nuclei $^{78}$Ni, $^{100}$Sn and $^{132}$Sn are obtained from Hartree-Fock (HF) plus Random Phase Approximation (RPA) calculations using the D1S parametrization of the Gogny two-body effective interaction. Special attention is paid to full consistency between the HF field and the RPA particle-hole residual interaction. The results for the exotic nuclei, on average, appear similar to those of stable ones, especially for quadrupole and octupole states. More exotic systems have to be studied in order to confirm such a trend. The low energy of the monopole resonance in $^{78}$Ni suggests that the compression modulus in this neutron rich nucleus is lower than the one of stable ones.
Yang, Rui; Zhu, Wenkan; Li, Jingjing
2014-01-27
Giant positive and negative Goos-Hänchen shift more than 5000 times of the operating wavelength is observed when a beam is totally reflected from a substrate decorated by a dielectric grating. Different to the former studies where Goos-Hänchen shift is related to metamaterials or plasmonic materials with ohmic loss, here the giant shift is realized with unity reflectance without the loss. This is extremely advantageous for sensor applications. The Goos-Hänchen shift exhibits a strong resonant feature at the frequency of guided mode resonance, and is associated to the energy flow carried by the guided mode.
Formation and evolution of the two 4/3 resonant giants planets in HD 200946
Santos, M Tadeu dos; Michtchenko, T A; Ferraz-Mello, S
2014-01-01
It has been suggested that HD 200964 is the first exoplanetary system with two Jovian planets evolving in the 4/3 mean- motion resonance. Previous scenarios to simulate the formation of two giant planets in the stable 4/3 resonance configuration have failed. Moreover, the orbital parameters available in the literature point out an unstable configuration of the planetary pair. The purpose of this paper is i) to determine the orbits of the planets from the RV measurements and update the value of the stellar mass (1.57 M), ii) to analyse the stability of the planetary evolution in the vicinity and inside the 4/3 MMR, and iii) to elaborate a possible scenario for the formation of systems in the 4/3 MMR. The results of the formation simulations are able to very closely reproduce the 4/3 resonant dynamics of the best-fit config- uration obtained in this paper. Moreover, the confidence interval of the fit matches well with the very narrow stable region of the 4/3 mean-motion resonance. The formation process of the H...
Resonant bonding driven giant phonon anharmonicity and low thermal conductivity of phosphorene
Qin, Guangzhao; Zhang, Xiaoliang; Yue, Sheng-Ying; Qin, Zhenzhen; Wang, Huimin; Han, Yang; Hu, Ming
2016-10-01
Two-dimensional (2D) phosphorene, which possesses fascinating physical and chemical properties distinctively different from other 2D materials, calls for a fundamental understanding of thermal transport properties for its rapidly growing applications in nano- and optoelectronics and thermoelectrics. However, even the basic phonon property, for example, the exact value of the lattice thermal conductivity (κ ) of phosphorene reported in the literature, can differ unacceptably by one order of magnitude. More importantly, the fundamental physics underlying its unique properties such as strong phonon anharmonicity and unusual anisotropy remains largely unknown. In this paper, based on the analysis of electronic structure and lattice dynamics from first principles, we report that the giant phonon anharmonicity in phosphorene is associated with the soft transverse optical (TO) phonon modes and arises from the long-range interactions driven by the orbital governed resonant bonding. We also provide a microscopic picture connecting the anisotropic and low κ of phosphorene to the giant directional phonon anharmonicity and long-range interactions, which are further traced back to the asymmetric resonant orbital occupations of electrons and characteristics of the hinge-like structure. The unambiguously low κ of phosphorene obtained consistently by three independent ab initio methods confirms the phonon anharmonicity to a large extent and is expected to end the confusing huge deviations in previous studies. This work further pinpoints the necessity of including van der Waals interactions to accurately describe the interatomic interactions in phosphorene. We propose in 2D material that resonant bonding leads to low thermal conductivity, despite that it is originally found in three-dimensional (3D) thermoelectric and phase-change materials. Our study offers insights into phonon transport from the view of orbital states, which would be of great significance to the design of
Extrasolar Giant Planet and Brown Dwarf Models
Burrows, A; Lunine, J I; Guillot, M P; Saumon, D S; Freedman, R S
1997-01-01
With the discovery of the companions of 51 Peg, 55 Cnc, $\\tau$ Boo, gas giants and/or brown dwarfs with masses from 0.3 through 60 times that of Jupiter assume a new and central role in the emerging field of extrasolar planetary studies. In this contribution, we describe the structural, spectral, and evolutionary characteristics of such exotic objects, as determined by our recent theoretical calculations. These calculations can be used to establish direct search strategies via SIRTF, ISO, and HST (NICMOS), and via various ground--based adaptive optics and interferometric platforms planned for the near future.
Red Giant Oscillations: Stellar Models and Mode Frequency Calculations
Jendreieck, A.; Weiss, A.; Aguirre, Victor Silva
2012-01-01
We present preliminary results on modelling KIC 7693833, the so far most metal-poor red-giant star observed by {\\it Kepler}. From time series spanning several months, global oscillation parameters and individual frequencies were obtained and compared to theoretical calculations. Evolution models ......_\\odot$ in radius and of about 2.5 Gyr in age....
Hari Bogabathina
2012-01-01
Full Text Available Giant cell myocarditis, but not cardiac sarcoidosis, is known to cause fulminant myocarditis resulting in severe heart failure. However, giant cell myocarditis and cardiac sarcoidosis are pathologically similar, and attempts at pathological differentiation between the two remain difficult. We are presenting a case of fulminant myocarditis that has pathological features suggestive of cardiac sarcoidosis, but clinically mimicking giant cell myocarditis. This patient was treated with cyclosporine and prednisone and recovered well. This case we believe challenges our current understanding of these intertwined conditions. By obtaining a sense of severity of cardiac involvement via delayed hyperenhancement of cardiac magnetic resonance imaging, we were more inclined to treat this patient as giant cell myocarditis with cyclosporine. This resulted in excellent improvement of patient’s cardiac function as shown by delayed hyperenhancement images, early perfusion images, and SSFP videos.
Roca-Maza, X; Bortignon, P F; Brenna, M; Cao, Li-Gang; Centelles, M; Colò, G; Paar, N; Viñas, X; Vretenar, D; Warda, M
2013-01-01
Experimental and theoretical efforts are being devoted to the study of observables that can shed light on the properties of the nuclear symmetry energy. We present our new results on the excitation energy [X. Roca-Maza et al., Phys. Rev. C 87, 034301 (2013)] and polarizability of the Isovector Giant Quadrupole Resonance (IVGQR), which has been the object of new experimental investigation [S. S. Henshaw et al., Phys. Rev. Lett. 107, 222501 (2011)]. We also present our theoretical analysis on the parity violating asymmetry at the kinematics of the Lead Radius Experiment [S. Abrahamyan et al. (PREx Collaboration), Phys. Rev. Lett. 108, 112502 (2012)] and highlight its relation with the density dependence of the symmetry energy [X. Roca-Maza et al., Phys. Rev. Lett. 106, 252501 (2011)].
Multineutron photodisintegration of the {sup 197}Au nucleus behind the giant dipole resonance
Ermakov, A. N.; Ishkhanov, B. S.; Kapitonov, I. M.; Htun, Kyaw Kyaw; Makarenko, I. V.; Orlin, V. N.; Shvedunov, V. I. [Moscow State University, Institute of Nuclear Physics (Russian Federation)
2008-03-15
An experiment in which the gold isotope {sup 197}Au was irradiated with a beam of bremsstrahlung photons having an endpoint energy of E{sub {gamma}}{sup m} = 67.7 MeV and originating from the RTM-70 racetrack microtron of the Institute of Nuclear Physics at Moscow State University was performed. The gammaray spectra of the residual beta activity of an irradiated sample were measured. Multinucleon photonuclear reactions on {sup 197}Au nuclei were observed in the experiment. Photonuclear reactions on a {sup 197}Au nucleus that involve the emission of up to seven neutrons were recorded for the first time. The experimental results in question suggest the important role of the quasideuteron photodisintegration mechanism in the energy region behind the giant dipole resonance.
Multineutron photodisintegration of the 197Au nucleus behind the giant dipole resonance
Ermakov, A. N.; Ishkhanov, B. S.; Kapitonov, I. M.; Htun, Kyaw Kyaw; Makarenko, I. V.; Orlin, V. N.; Shvedunov, V. I.
2008-03-01
An experiment in which the gold isotope 197Au was irradiated with a beam of bremsstrahlung photons having an endpoint energy of E {/γ m } = 67.7 MeV and originating from the RTM-70 racetrack microtron of the Institute of Nuclear Physics at Moscow State University was performed. The gammaray spectra of the residual beta activity of an irradiated sample were measured. Multinucleon photonuclear reactions on 197Au nuclei were observed in the experiment. Photonuclear reactions on a 197Au nucleus that involve the emission of up to seven neutrons were recorded for the first time. The experimental results in question suggest the important role of the quasideuteron photodisintegration mechanism in the energy region behind the giant dipole resonance.
He, W B; Cao, X G; Cai, X Z; Zhang, G Q
2014-01-01
It is studied how the $\\alpha$ cluster degrees of freedom, such as $\\alpha$ clustering configurations close to the $\\alpha$ decay threshold in $^{12}$C and $^{16}$O, including the linear chain, triangle, square, kite, and tetrahedron, affect nuclear collective vibrations with a microscopic dynamical approach, which can describe properties of nuclear ground states well across the nuclide chart and reproduce the standard giant dipole resonance (GDR) of $^{16}$O quite nicely. It is found that the GDR spectrum is highly fragmented into several apparent peaks due to the $\\alpha$ structure. The different $\\alpha$ cluster configurations in $^{12}$C and $^{16}$O have corresponding characteristic spectra of GDR. The number and centroid energies of peaks in the GDR spectra can be reasonably explained by the geometrical and dynamical symmetries of $\\alpha$ clustering configurations. Therefore, the GDR can be regarded as a very effective probe to diagnose the different $\\alpha$ cluster configurations in light nuclei.
Origin of fine structure of the giant dipole resonance in sd-shell nuclei
Fearick, R W; Matsubara, H; von Neumann-Cosel, P; Richter, A; Roth, R; Tamii, A
2014-01-01
A set of high resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the Giant Dipole Resonance (GDR) in sd-shell nuclei. Understanding is provided by state-of-the-art theoretical Random Phase Approximation (RPA) calculatios for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement supports that the fine structure arises from ground-state deformation driven by alpha clustering.
Neutron-skin thickness from the study of the anti-analog giant dipole resonance
Krasznahorkay, A.; Stuhl, L.; Csatlós, M.; Algora, A.; Gulyás, J.; Timár, J.; Paar, N.; Vretenar, D.; Harakeh, M. N.; Boretzky, K.; Heil, M.; Litvinov, Yu. A.; Rossi, D.; Scheidenberger, C.; Simon, H.; Weick, H.; Bracco, A.; Brambilla, S.; Blasi, N.; Camera, F.; Giaz, A.; Million, B.; Pellegri, L.; Riboldi, S.; Wieland, O.; Altstadt, S.; Fonseca, M.; Glorius, J.; Göbel, K.; Heftrich, T.; Koloczek, A.; Kräckmann, S.; Langer, C.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Schmidt, S.; Sonnabend, K.; Weigand, M.; Kalantar-Nayestanaki, N.; Rigollet, C.; Bagchi, S.; Najafi, M. A.; Aumann, T.; Atar, L.; Heine, M.; Holl, M.; Movsesyan, A.; Schrock, P.; Volkov, V.; Wamers, F.; Fiori, E.; Löher, B.; Marganiec, J.; Savran, D.; Johansson, H. T.; Fernández, P. Diaz; Garg, U.; Balabanski, D. L.
2012-10-01
The γ-decay of the anti-analog of the giant dipole resonance (AGDR) to the isobaric analog state has been measured following the p(124Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent relativistic random-phase approximation (RPA) and turned out to be very sensitive to the neutronskin thickness (ΔRpn). By comparing the theoretical results with the measured one, the ΔRpn value for 124Sn was deduced to be 0.21 ± 0.07 fm, which agrees well with the previous results. The present method offers new possibilities for measuring the neutron-skin thicknesses of very exotic isotopes.
Monopole giant resonance in $^{100-132}$Sn, $^{144}$Sm and $^{208}$Pb
Kvasil, J; Repko, A; Reinhard, P -G; Nesterenko, V O; Kleinig, W
2014-01-01
The isoscalar giant monopole resonance (GMR) in spherical nuclei $^{100-132}$Sn, $^{144}$Sm, and $^{208}$Pb is investigated within the Skyrme random-phase-approximation (RPA) for a variety of Skyrme forces and different pairing options. The calculated GMR strength functions are directly compared to the available experimental distributions. It is shown that, in accordance to results of other groups, description of GMR in Sn and heavier Sm/Pb nuclei needs different values of the nuclear incompressibilty, $K \\approx$ 200 or 230 MeV, respectively. Thus none from the used Skyrme forces is able to describe GMR in these nuclei simultaneously. The GMR peak energy in open-shell $^{120}$Sn is found to depend on the isoscalar effective mass, which might be partly used for a solution of the above problem. Some important aspects of the problem (discrepancies of available experimental data, proper treatment of the volume and surface compression in finite nuclei, etc) are briefly discussed.
Giant Glial Cell: New Insight Through Mechanism-Based Modeling
Postnov, D. E.; Ryazanova, L. S.; Brazhe, Nadezda;
2008-01-01
The paper describes a detailed mechanism-based model of a tripartite synapse consisting of P- and R-neurons together with a giant glial cell in the ganglia of the medical leech (Hirudo medicinalis), which is a useful object for experimental studies in situ. We describe the two main pathways of th...
CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS
Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)
2016-04-10
Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.
Chromospheric Models and the Oxygen Abundance in Giant Stars
Dupree, A. K.; Avrett, E. H.; Kurucz, R. L.
2016-04-01
Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771-7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ˜3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.
Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors
Nesterenko, D. V.; Hayashi, S.; Sekkat, Z.
2016-06-01
Low-loss waveguides (WGs), which support excitation of waveguide modes (WMs), are based on a dielectric WG separated from an absorptive film by a low-index dielectric spacer layer. We perform numerical and analytical study of the impact of the losses imposed to the WG in a planar sensing structure in the Kretschmann configuration on the resonance properties of the excitation. We demonstrate that the loss degree of the WMs can be controlled by the thickness of the spacer layer for both s and p polarizations. Extremely narrow resonances are discovered in the reflectivity spectra due to excitation of the low-loss WMs, and the maximum of the estimated sensitivity by intensity is found to be of 105-fold higher as compared to the conventional surface plasmon and WG-coupled surface plasmon sensors. We reveal the giant field intensity enhancement of 107-fold on the surface of the sensing structure in aqueous sensing media that can provide stronger fluorescence intensity at lower sample volumes for fluorescent labeling sensing.
Kvasil, J; Repko, A; Kleinig, W; Reinhard, P -G
2016-01-01
The deformation-induced splitting of isoscalar giant monopole resonance (ISGMR) is systematically analyzed in a wide range of masses covering medium, rare-earth, actinide, and superheavy axial deformed nuclei. The study is performed within the fully self-consistent quasiparticle random-phase-approximation (QRPA) method based on the Skyrme functional. Two Skyrme forces, one with a large (SV-bas) and one with a small (SkP) nuclear incompressibility, are considered. The calculations confirm earlier results that, due to the deformation-induced E0-E2 coupling, the isoscalar E0 resonance attains a double-peak structure and significant energy upshift. Our results are compared with available analytic estimations. Unlike earlier studies, we get a smaller energy difference between the lower and upper peaks and thus a stronger E0-E2 coupling. This in turn results in more pumping of E0 strength into the lower peak and more pronounced splitting of ISGMR. We also discuss widths of the peaks and their negligible correlation...
Algebraic model of baryon resonances
Bijker, R
1997-01-01
We discuss recent calculations of electromagnetic form factors and strong decay widths of nucleon and delta resonances. The calculations are done in a collective constituent model of the nucleon, in which the baryons are interpreted as rotations and vibrations of an oblate top.
Bodrov, I.V.; Davydov, M.G.; Rakhmanov, I.B. [Rostov State Univ., Rostov-na-Donu (Russian Federation)] [and others
1994-08-01
The isomeric yield ratios Y{sub m}/Y{sub g} of the {sup 90}Zr({gamma},n){sup 88m,g}Zr reaction are measured in the energy range from 13 to 21 MeV with a step of 0.5 MeV. The experimental isomeric ratios are compared with the data obtained by other authors and with the results of theoretical calculations based on the statistical theory and on the model of {open_quotes}semidirect{close_quotes} decay of the giant dipole resonance. 30 refs., 1 fig., 2 tabs.
Itoh, M; Sakaguchi, H; Akimune, H; Fujiwara, M; Garg, U; Hara, K; Hashimoto, H; Hoffman, J; Kawabata, T; Kawase, K; Murakami, T; Nakanishi, K; Nayak, B K; Terashima, S; Uchida, M; Yasuda, Y; Yosoi, M
2013-01-01
Isoscalar giant resonances and low spin states in $^{32}$S have been measured with inelastic $\\alpha$ scattering at extremely forward angles including zero degrees at E$_{\\alpha}$ = 386 MeV. By applying the multipole decomposition analysis, various excited states are classified according to their spin and parities (J$^{\\pi}$), and are discussed in relation to the super deformed and $^{28}$Si + $\\alpha$ cluster bands.
Dang, Nguyen Dinh
2007-04-01
Thermal fluctuations of quasiparticle number are included making use of the secondary Bogolyubov's transformation, which turns quasiparticles operators into modified-quasiparticle ones. This restores the unitarity relation for the generalized single-particle density operator, which is violated within the Hartree-Fock-Bogolyubov (HFB) theory at finite temperature. The resulting theory is called the modified HFB (MHFB) theory, whose limit of a constant pairing interaction yields the modified BCS (MBCS) theory. Within the MBCS theory, the pairing gap never collapses at finite temperature T as it does within the BCS theory, but decreases monotonously with increasing T. It is demonstrated that this non-vanishing thermal pairing is the reason why the width of the giant dipole resonance (GDR) does not increase with T up to T ~ 1 MeV. At higher T, when the thermal pairing is small, the GDR width starts to increase with T. The calculations within the phonon-damping model yield the results in good agreement with the most recent experimental systematic for the GDR width as a function of T. A similar effect, which causes a small GDR width at low T, is also seen after thermal pairing is included in the thermal fluctuation model.
Wieland, O; Bracco, A; Camera, F; Benzoni, G; Blasi, N; Brambilla, S; Crespi, F; Giussani, A; Leoni, S; Million, B; Moroni, A; Barlini, S; Kravchuk, V L; Gramegna, F; Lanchais, A; Mastinu, P; Maj, A; Brekiesz, M; Kmiecik, M; Bruno, M; Geraci, E; Vannini, G; Casini, G; Chiari, M; Nannini, A; Ordine, A; Ormand, W E
2006-06-16
The {gamma} decay of the Giant Dipole Resonance in the {sup 132}Ce compound nucleus with temperature up to {approx} 4 MeV has been measured. The symmetric {sup 64}Ni + {sup 68}Zn at E{sub beam} = 300, 400, 500 MeV and the asymmetric reaction {sup 16}O + {sup 116}Sn at E{sub beam} = 130, 250 MeV have been investigated. Light charged particles and {gamma} rays have been detected in coincidence with the recoiling compound system. In the case of the mass symmetric {sup 64}Ni induced reaction the {gamma} and charged particle spectral shapes are found to be consistent with the emission from a fully equilibrated compound nuclei and the GDR parameters are extracted from the data using a statistical model analysis. The GDR width is found to increase almost linear with temperature. This increase is rather well reproduced within a model which includes both the thermal fluctuation of the nuclear shape and the lifetime of the compound nucleus.
TERRESTRIAL PLANET FORMATION DURING THE MIGRATION AND RESONANCE CROSSINGS OF THE GIANT PLANETS
Lykawka, Patryk Sofia [Astronomy Group, Faculty of Social and Natural Sciences, Kinki University, Shinkamikosaka 228-3, Higashiosaka-shi, Osaka 577-0813 (Japan); Ito, Takashi, E-mail: patryksan@gmail.com [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)
2013-08-10
The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets in the planetesimal disk. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a {approx} 1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter's and Saturn's more eccentric orbits (relative to the present day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars's mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars's small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths)
Giant exciton Fano resonance in quasi-one-dimensional Ta2NiSe5
Larkin, T. I.; Yaresko, A. N.; Pröpper, D.; Kikoin, K. A.; Lu, Y. F.; Takayama, T.; Mathis, Y.-L.; Rost, A. W.; Takagi, H.; Keimer, B.; Boris, A. V.
2017-05-01
We report the complex dielectric function of the quasi-one-dimensional chalcogenide Ta2NiSe5 , which undergoes a structural phase transition presumably associated with exciton condensation below Tc=326 K [Y. Wakisaka et al., Phys. Rev. Lett. 103, 026402 (2009), 10.1103/PhysRevLett.103.026402; Y. F. Lu et al., Nat. Commun. 8, 14408 (2017), 10.1038/ncomms14408], and of the isostructural Ta2NiS5 , which does not exhibit such a transition. Using spectroscopic ellipsometry, we have detected exciton doublets with pronounced Fano line shapes in both the compounds. The exciton Fano resonances in Ta2NiSe5 display an order-of-magnitude higher intensity than those in Ta2NiS5 . In conjunction with prior theoretical work [E. Rashba, Sov. Phys. Semicond. 8, 807 (1975)], we attribute this observation to the giant oscillator strength of spatially extended exciton-phonon bound states in Ta2NiSe5 . The formation of exciton-phonon complexes in Ta2NiS5 and Ta2NiSe5 is confirmed by the pronounced temperature dependence of sharp interband transitions in the optical spectra, the peak energies and widths of which scale with the thermal population of optical phonon modes. The description of the optically excited states in terms of strongly overlapping exciton complexes is in good agreement with the hypothesis of an exciton insulator ground state.
Experimental study of the isovector giant dipole resonance in 80Zr and 81Rb
Ceruti, S.; Camera, F.; Bracco, A.; Mentana, A.; Avigo, R.; Benzoni, G.; Blasi, N.; Bocchi, G.; Bottoni, S.; Brambilla, S.; Crespi, F. C. L.; Giaz, A.; Leoni, S.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Wieland, O.; Bazzacco, D.; Ciemala, M.; Farnea, E.; Gottardo, A.; Kmiecik, M.; Maj, A.; Mengoni, D.; Michelagnoli, C.; Modamio, V.; Montanari, D.; Napoli, D.; Recchia, F.; Sahin, E.; Ur, C.; Valiente-Dobón, J. J.; Wasilewska, B.; Zieblinski, M.
2017-01-01
The isovector giant dipole resonance (IVGDR) γ decay was measured in the compound nuclei 80Zr and 81Rb at an excitation energy of E*=54 MeV. The fusion reaction 40Ca+40Ca at Ebeam=136 MeV was used to form the compound nucleus 80Zr, while the reaction 37Cl+44Ca at Ebeam=95 MeV was used to form the compound nucleus 81Rb at the same excitation energy. The IVGDR parameters extracted from the analysis were compared with the ones found at higher excitation energy (E*=83 MeV). The comparison allows one to observe two different nuclear mechanisms: (i) the IVGDR intrinsic width remains constant with the excitation energy in the nucleus 81Rb; (ii) the isospin-violating spreading width (i.e., Coulomb spreading width) remains constant with the excitation energy in the nucleus 80Zr. The experimental setup used for the γ -ray detection was composed by the AGATA demonstrator array coupled to the large-volume LaBr3:Ce detectors of the HECTOR+ array.
Signature of clustering in quantum many-body systems probed by the giant dipole resonance
Pandit, Deepak; Mondal, Debasish; Dey, Balaram; Bhattacharya, Srijit; Mukhopadhyay, S.; Pal, Surajit; De, A.; Banerjee, S. R.
2017-03-01
The present experimental study illustrates how large deformations attained by nuclei due to cluster formation are perceived through the giant dipole resonance (GDR) strength function. The high energy GDR γ rays have been measured from 32S at different angular momenta (J ) but similar temperatures in the reactions 4He(Elab=45 MeV )+28Si and 20Ne(Elab=145 MeV )+12C . The experimental data at lower J (˜10 ℏ ) suggests a normal deformation, similar to the ground state value, showing no potential signature of clustering. However, it is found that the GDR lineshape is fragmented into two prominent peaks at high J (˜20 ℏ ) providing a direct measurement of the large deformation developed in the nucleus. The observed lineshape is also completely different from the ones seen for Jacobi shape transition at high J pointing towards the formation of cluster structure in superdeformed states of 32S at such high spin. Thus, the GDR can be regarded as a unique tool to study cluster formation at high excitation energies and angular momenta.
Quenching of the Giant Dipole Resonance Strength at High Excitation Energy
Santonocito, D. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Blumenfeld, Y. [Institut de Physique Nucleaire, IN2P3-CNRS, F-91406 Orsay (France); Agodi, C. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Alba, R. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Bellia, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia dell' Universita di Catania, via S. Sofia 64, I-95123 Catania (Italy); Coniglione, R. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Delaunay, F. [Institut de Physique Nucleaire, IN2P3-CNRS, F-91406 Orsay (France); Del Zoppo, A. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Finocchiaro, P. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Frascaria, N. [Institut de Physique Nucleaire, IN2P3-CNRS, F-91406 Orsay (France); Hongmei, F. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Lima, V. [Institut de Physique Nucleaire, IN2P3-CNRS, F-91406 Orsay (France); Maiolino, C. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Migneco, E. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia dell' Universita di Catania, via S. Sofia 64, I-95123 Catania (Italy); Piattelli, P. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Sapienza, P. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Scarpaci, J.A. [Institut de Physique Nucleaire, IN2P3-CNRS, F-91406 Orsay (France)
2007-05-15
The evolution with excitation energy of the Giant Dipole Resonance features in nuclei of mass A{approx}108-136 is reviewed. We first discuss the results of the experiments performed with MEDEA studying the GDR gamma decay from hot nuclei populated at excitation energies above 300 MeV. The focus of the paper is on the excitation energy region between 160 and 290 MeV. This region has been investigated through the study of the reactions {sup 116}Sn + {sup 12}C at 17 and 23A MeV, and {sup 116}Sn + {sup 24}Mg at 17A MeV. Gamma-rays were detected using MEDEA in coincidence with evaporation residues detected in MACISTE. The analysis of the gamma-ray spectra and their comparison with statistical calculations are presented. The comparison with {gamma}-ray spectra from the reaction {sup 36}Ar + {sup 98}Mo at higher excitation energies shows a coherent scenario where a progressive reduction of {gamma} multiplicity relative to predictions for 100% of the Energy Weighted Sum Rule is observed above 200 MeV excitation energy. Finally, the existence of a link between disappearance of collective motion and the liquid-gas phase transitions is discussed.
Microscopic Study of the Isoscalar Giant Monopole Resonance in Cd, Sn and Pb Isotopes
Cao, Li-Gang; Colo, G
2012-01-01
The isoscalar giant monopole resonance (ISGMR) in Cd, Sn and Pb isotopes has been studied within the self-consistent Skyrme Hartree-Fock+BCS and quasi-particle random phase approximation (QRPA). Three Skyrme parameter sets are used in the calculations, i.e., SLy5, SkM* and SkP, since they are characterized by different values of the compression modulus in symmetric nuclear matter, namely K=230, 217, and 202 MeV, respectively. We also investigate the effect of different types of pairing forces on the ISGMR in Cd, Sn and Pb isotopes. The calculated peak energies and the strength distributions of ISGMR are compared with available experimental data. We find that SkP fails completely to describe the ISGMR strength distribution for all isotopes due to its low value of the nuclear matter incompressibility, namely K=202 MeV. On the other hand, the SLy5 parameter set, supplemented by an appropriate pairing interaction, gives a reasonable description of the ISGMR in Cd and Pb isotopes. A better description of ISGMR in ...
Neutron-skin thickness from the study of the antianalog giant dipole resonance
Krasznahorkay, A; Csatlós, M; Algora, A; Gulyás, J; Timár, J; Paar, N; Vretenar, D; Boretzky, K; Heil, M; Litvinov, Yu A; Rossi, D; Scheidenberger, C; Simon, H; Weick, H; Bracco, A; Brambilla, S; Blasi, N; Camera, F; Giaz, A; Million, B; Pellegri, L; Riboldi, S; Wieland, O; Altstadt, S; Fonseca, M; Glorius, J; Göbel, K; Heftrich, T; Koloczek, A; Kräckmann, S; Langer, C; Plag, R; Pohl, M; Rastrepina, G; Reifarth, R; Schmidt, S; Sonnabend, K; Weigand, M; Harakeh, M N; Kalantar-Nayestanaki, N; Rigollet, C; Bagchi, S; Najafi, M A; Aumann, T; Atar, L; Heine, M; Holl, M; Movsesyan, A; Schrock, P; Volkov, V; Wamers, F; Fiori, E; Löher, B; Marganiec, J; Savaran, D; Johansson, H T; Fernández, P Diaz; Garg, U; Balabanski, D L
2012-01-01
The gamma-decay of the anti-analog of the giant dipole resonance (AGDR) has been measured to the isobaric analog state excited in the p(124Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent random-phase approximation (RPA) and turned out to be very sensitive to the neutron-skin thickness (\\DeltaR_(pn)). By comparing the theoretical results with the measured one, the \\DeltaR_(pn) value for 124Sn was deduced to be 0.18 \\pm 0.02 fm, which agrees well with the previous results. The energy of the AGDR measured previously for ^(208)Pb was also used to determine the \\DeltaR_(pn) for ^(208)Pb. In this way a very precise \\DeltaR_(pn) = 0.18 \\pm 0.02 neutron-skin thickness has been obtained for 208Pb. The present method offers new possibilities for measuring the neutron-skin thicknesses of very exotic isotopes.
Patel, D.; Garg, U. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Itoh, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Akimune, H. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Berg, G.P.A. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Fujiwara, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Harakeh, M.N. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); GANIL, CEA/DSM-CNRS/IN2P3, 14076 Caen (France); Iwamoto, C. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Kawabata, T. [Division of Physics and Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Kawase, K. [Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Matta, J.T. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Murakami, T. [Division of Physics and Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Okamoto, A. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Sako, T. [Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Schlax, K.W. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Takahashi, F. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); White, M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Yosoi, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan)
2014-07-30
The excitation of the isoscalar giant monopole resonance (ISGMR) in {sup 208}Pb and {sup 116}Sn has been investigated using small-angle (including 0°) inelastic scattering of 100 MeV/u deuteron and multipole-decomposition analysis (MDA). The extracted strength distributions agree well with those from inelastic scattering of 100 MeV/u α particles. These measurements establish deuteron inelastic scattering at E{sub d}∼100 MeV/u as a suitable probe for extraction of the ISGMR strength with MDA, making feasible the investigation of this resonance in radioactive isotopes in inverse kinematics.
Modeling noisy resonant system response
Weber, Patrick Thomas; Walrath, David Edwin
2017-02-01
In this paper, a theory-based model replicating empirical acoustic resonant signals is presented and studied to understand sources of noise present in acoustic signals. Statistical properties of empirical signals are quantified and a noise amplitude parameter, which models frequency and amplitude-based noise, is created, defined, and presented. This theory-driven model isolates each phenomenon and allows for parameters to be independently studied. Using seven independent degrees of freedom, this model will accurately reproduce qualitative and quantitative properties measured from laboratory data. Results are presented and demonstrate success in replicating qualitative and quantitative properties of experimental data.
Cao, L G; Colo', G; Sagawa, H
2015-01-01
We investigate the impact of the neutron-skin thickness Delta(R) on the energy difference between the anti-analog giant dipole resonance (AGDR), E(AGDR), and the isobaric analog state (IAS), E(IAS), in a heavy nucleus such as 208Pb. For guidance, we first develop a simple and analytic, yet physical, approach based on the Droplet Model that linearly connects the energy difference E(AGDR)-E(IAS) with Delta(R). To test this correlation on more fundamental grounds, we employ a family of systematically varied Skyrme energy density functionals where variations on the value of the symmetry energy at saturation density J are explored. The calculations have been performed within the fully self consistent Hartree-Fock (HF) plus charge-exchange random phase approximation (RPA) framework. We confirm the linear correlation within our microscopic apporach and, by comparing our results with available experimental data in 208Pb, we find that our analysis is consistent with Delta(R) = 0.204 \\pm 0.009 fm, J = 31.4 \\pm 0.5 MeV ...
Giant resonances in the {sup 26}Mg(e,e{sup {prime}}{alpha}{sub 0}){sup 22}Ne reaction
Terremoto, L.A.; Likhachev, V.P.; Martins, M.N.; Emrich, H.J.; Fricke, G.; Kroehl, T.; Neff, K.W. [Laboratorio do Acelerador Linear, Instituto de Fisica da Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo, SP (Brazil)
1997-11-01
The fivefold differential cross section of the reaction {sup 26}Mg(e,e{sup {prime}}c) was measured for transferred momenta of 0.35 and 0.54fm{sup {minus}1} and emitted particle angles from {minus}10{degree} to 270{degree} with respect to the transferred-momentum direction. Angular correlation functions for the emitted {alpha}{sub 0} were obtained from the data. A model-independent analysis allowed us to obtain the E0, E1, and E2 multipole components of the {sup 26}Mg(e,e{sup {prime}}{alpha}{sub 0}){sup 22}Ne cross section, between 14 and 26 MeV of excitation energy. The E1 component shows a bump around 16.5 MeV, associated with the T{sub {lt}} isospin component of the giant dipole resonance. The evaluated strengths associated with the {alpha}{sub 0} decay channel, presented in percentage of the respective energy-weighted sum rules are 0.45(7){percent} for E1, 1.4(3){percent} for E2, and 0.2(1){percent} for E0. {copyright} {ital 1997} {ital The American Physical Society}
Isoscalar monopole and dipole excitations of cluster states and giant resonances in 12C
Kanada-En'yo, Yoshiko
2016-05-01
The isoscalar monopole (ISM) and dipole (ISD) excitations in 12C are investigated theoretically with the shifted antisymmetrized molecular dynamics (AMD) plus 3 α -cluster generator coordinate method (GCM). The small-amplitude vibration modes are described by coherent one-particle one-hole excitations expressed by a small shift of single-nucleon Gaussian wave functions within the AMD framework, whereas the large-amplitude cluster modes are incorporated by superposing 3 α -cluster wave functions in the GCM. The coupling of the excitations in the intrinsic frame with the rotation and parity transformation is taken into account microscopically by the angular-momentum and parity projections. The present a calculation that describes the ISM and ISD excitations over a wide energy region covering cluster modes in the low-energy region and the giant resonances in the high-energy region, although the quantitative description of the high-energy part is not satisfactory. The low-energy ISM and ISD strengths of the cluster modes are enhanced by the distance motion between α clusters, and they split into a couple of states because of the angular motion of α clusters. The low-energy ISM strengths exhaust 26% of the energy-weighted sum rule, which is consistent with the experimental data for the 12C(02+; 7.65 MeV) and 12C(03+; 10.3 MeV) measured by (e ,e') ,(α ,α') , and (6Li,6Li' ) scatterings. In the calculated low-energy ISD strengths, two 1- states (the 11- and 12- states) with the significant strengths are obtained over E =10 -15 MeV. The results indicate that the ISD excitations can be a good probe to experimentally search for new cluster states such as the 12C(12-) obtained in the present calculation.
Giant Kondo Resonance of Parallel-Coupled Double Quantum Dots Embedded in an A-B Ring
CHEN Xiong-Wen; HE Da-Jiang; SONG Ke-Hui; WU Shao-Quan
2006-01-01
We theoretically study the properties of the ground state of the parallel-coupled double quantum dots embedded in a mesoscopic ring in the Kondo regime by means of the two-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. We find that in this system, the persistent current depends sensitively on both the parity of this system and the size of the ring. In the strong coupling regime, the giant sharp current peak appears, at the same time, the parity dependence of the persistent current disappears. These imply that in the strong coupling regime, there exists giant Kondo resonance and the two dots can be coupled coherently. Thus this system might be a candidate for future device applications.
Comparative Modelling of the Spectra of Cool Giants
Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.;
2012-01-01
Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.
EXCITATION OF GIANT-RESONANCES IN PB-208, SN-120, ZR-90 AND NI-60 BY 84 MEV/NUCLEON O-17 IONS
NETO, RL; ROUSSELCHOMAZ, P; ROCHAIS, L; ALAMANOS, N; AUGER, F; GASTEBOIS, J; GILLIBERT, A; LACEY, R; MICZAIKA, A; PIERROUTSAKOU, D; BARRETTE, J; MARK, SK; TURCOTTE, R; BLUMENFELD, Y; FRASCARIA, N; GARRON, JP; ROYNETTE, JC; SCARPACI, JA; SUOMIJARVI, T; VANDERWOUDE, A; VANDENBERG, AM
1993-01-01
Elastic and inelastic scattering of 1435 MeV 170 ions on Pb-208, Sn-120, Zr-90 and Ni-60 have been measured. Hindrance in the excitation of the first 3- states is observed. Parameters of the isoscalar giant monopole and quadrupole resonances are obtained. The quadrupole resonance exhausts approximat
On the collectivity of Pygmy Dipole Resonance within schematic TDA and RPA models
Baran, V; Colonna, M; Di Toro, M; Croitoru, A; Nicolin, A I
2014-01-01
Within schematic models based on the Tamm-Dancoff Approximation and the Random-Phase Approximation with separable interactions, we investigate the physical conditions which determine the emergence of the Pygmy Dipole Resonance in the E1 response of atomic nuclei. We find that if some particle-hole excitation manifests a different, weaker residual interaction, an additional mode will appear, with an energy centroid closer to the distance between two major shells and therefore well below the Giant Dipole Resonance. This state, together with Giant Dipole Resonance, exhausts all the transition strength in the Tamm-Dancoff Approximation and all the Energy Weighted Sum Rule in the Random-Phase Approximation. These features suggest a collective nature for this mode which we identify with the Pygmy Dipole Resonance.
Mi, Jian; Wang, Jianli; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Zhang, Chi
2016-09-01
In our high mobility p -type AlGaAs/GaAs two-dimensional hole samples, we originally observe the B -periodic oscillation induced by microwave (MW) in photovoltage (PV) measurements. In the frequency range of our measurements (5-40 GHz), the period (Δ B ) is inversely proportional to the microwave frequency (f ). The distinct oscillations come from the edge magnetoplasmon (EMP) in the high quality heavy hole system. Simultaneously, we observe the giant plasmon resonance signals in our measurements on the shallow two-dimensional hole system (2DHS).
Dolmatov, V K; Deshmukh, P C; Manson, S T
2014-01-01
The dramatic effect of the $3p \\rightarrow 3d$ giant autoionization resonance on time delay of photoemission from the $3d$ and $4s$ valence subshells of the Mn atom is unraveled. Strong sensitivity of the time delay of the $4s$ photoemission to the final-state term of the ion-remainder [${\\rm Mn^{+}}(4s^{1},$$^{5}S)$ vs. ${\\rm Mn^{+}}(4s^{1},$$^{7}S)$] is discovered. The features of time delay uncovered in Mn photoionization are expected to be general properties of transition-metal atoms and ions. The "spin-polarized" random phase approximation with exchange was employed in the study.
Gutberlet, Matthias; Felix, Roland [Department of Radiology and Nuclear Medicine, Charite, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Abdul-Khaliq, Hashim; Stiller, Brigitte; Schubert, Ulf; Lange, Peter E. [Department of Pediatric Cardiology, Deutsches Herzzentrum, Berlin (Germany); Stoltenburg-Didinger, Gisela [Department of Neuropathology, Free University Berlin, Berlin (Germany); Hetzer, Roland [Department of Cardio-, Thoracic and Vascular Surgery, Deutsches Herzzentrum Berlin (Germany)
2002-07-01
The diagnosis of a rare case of giant intraventricular fibroma in an infant by MRI in comparison with other imaging modalities, such as echocardiography and angiography, is discussed. For preoperative planning only MRI showed the myocardial infiltration. The myocardial blood supply of the tumor could be evaluated qualitatively by contrast-enhanced MRI, but the direct visualization of the distally located branches could only be assessed by coronary angiography. Magnetic resonance coronary angiography using the navigator technique failed to depict the distal part of the coronaries. The obstruction of the left ventricle outflow tract could be assessed and quantified by all imaging modalities. (orig.)
Resonant circuit model for efficient metamaterial absorber.
Sellier, Alexandre; Teperik, Tatiana V; de Lustrac, André
2013-11-04
The resonant absorption in a planar metamaterial is studied theoretically. We present a simple physical model describing this phenomenon in terms of equivalent resonant circuit. We discuss the role of radiative and dissipative damping of resonant mode supported by a metamaterial in the formation of absorption spectra. We show that the results of rigorous calculations of Maxwell equations can be fully retrieved with simple model describing the system in terms of equivalent resonant circuit. This simple model allows us to explain the total absorption effect observed in the system on a common physical ground by referring it to the impedance matching condition at the resonance.
High-Resolution Measurement of the {sup 4}He({gamma},n) Reaction in the Giant Resonance Region
Nilsson, Bjoern
2003-03-01
A comprehensive near-threshold {sup 4}He(gamma,n) absolute cross section measurement has been performed at the high-resolution tagged-photon facility MAX-lab located in Lund, Sweden. The 20 < Eg < 45 MeV tagged photons (covering the Giant Dipole Resonance energy region) were directed towards a liquid {sup 4}He target, and knocked-out neutrons were detected in a pair of 60 cm x 60 cm vetoed NE213A liquid scintillator arrays. The intense and varying charge-neutral experimental backgrounds were carefully quantified and removed from the data using a precision fitting procedure. Eight average laboratory angles (30, 45, 60, 75, 90, 105, 120, and 135 deg) were investigated for eight photon energy bins (25, 27, 29, 31, 35, 36, 39, and 41 MeV), resulting in 64 differential cross sections. These angular distributions were integrated to produce total cross sections as a function of photon energy. The resulting cross sections peak at 1.9 mb at a photon energy of 27 MeV, and fall off to a near-constant value of 1.1 mb by 36 MeV. Further, they are in excellent agreement with those measured by Sims et al. using tagged photons in the Quasi-Deuteron energy region. Overall, the results favor modern theoretical models which are based upon a charge-symmetric nucleon-nucleon force, in marked contrast to the recommendations made by Calarco et al. in 1983 based on the sparse {sup 4}He(gamma,n) data available at the time.
A SECOND GIANT PLANET IN 3:2 MEAN-MOTION RESONANCE IN THE HD 204313 SYSTEM
Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Brugamyer, Erik J.; Barnes, Stuart I.; Caldwell, Caroline [Department of Astronomy and McDonald Observatory, University of Texas at Austin, Austin, TX 78712 (United States); Horner, J.; Wittenmyer, Robert A. [Department of Astrophysics and Optics, School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Simon, Attila E., E-mail: paul@astro.as.utexas.edu [Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary)
2012-07-20
We present eight years of high-precision radial velocity (RV) data for HD 204313 from the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The star is known to have a giant planet (Msin i = 3.5 M{sub J} ) on a {approx}1900 day orbit, and a Neptune-mass planet at 0.2 AU. Using our own data in combination with the published CORALIE RVs of Segransan et al., we discover an outer Jovian (Msin i = 1.6 M{sub J} ) planet with P {approx} 2800 days. Our orbital fit suggests that the planets are in a 3:2 mean motion resonance, which would potentially affect their stability. We perform a detailed stability analysis and verify that the planets must be in resonance.
Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; Martin, Steven; Rowland, Douglas; Sentman, Davis; Takahashi, Yukihiro; Yair, Yoav
2012-01-01
The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.
Podlewska-Gaca, Edyta
2013-01-01
In this paper we investigate the possibility of a migration-induced resonance locking in systems containing three planets, namely an Earth analog, a super-Earth and a gas giant. The planets have been listed in order of increasing orbital periods. All three bodies are embedded in a locally isothermal gaseous disc and orbit around a solar mass star. We are interested in answering the following question: Will the low-mass planets form the same resonant structures with each other in the vicinity of the gas giant as in the case when the gas giant is absent? When there is no gas giant in the system, it has been already shown that if the two low-mass planets undergo a convergent differential migration, they will capture each other in a mean-motion resonance. For the choices of disc parameters and planet masses made in this paper, the formation of the 5:4 resonance in the absence of the Jupiter has been observed. In this work we add a gas giant on the most external orbit of the system in such a way that its different...
Giant plasma membrane vesicles: models for understanding membrane organization.
Levental, Kandice R; Levental, Ilya
2015-01-01
The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.
Chromospheric Models and the Oxygen Abundance in Giant Stars
Dupree, A K; Kurucz, R L
2016-01-01
Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri that include a chromosphere influence the formation of optical lines of Oxygen I: the forbidden lines (630nm, 636nm) and the infrared triplet (777.1-777.5 nm). One-dimensional semi-empirical non-LTE models are constructed based on observed Balmer lines. A full non-LTE formulation is applied in evaluating line strengths of O I including photoionization by the Lyman continuum and photoexcitation by Ly-alpha and Ly-beta. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors ~3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate mass AGB stars contribute to the observed abundance pattern in globular cluste...
Biswal, S K
2014-01-01
We study the isoscalar giant monopole resonance for drip-lines and super heavy nuclei in the frame work of a relativistic mean field theory with scaling approach. The well known extended Thomas-Fermi approximation in the non-linear $\\sigma$-$\\omega$ model is used to estimate the giant monopole excitation energy for some selected light spherical nuclei starting from the region of proton to neutron drip-lines. The application is extended to super heavy region for Z=114 and 120, which are predicted by several models as the next proton magic number beyond Z=82. We compared the excitation energy obtained by four successful force parameters NL1, NL3, NL3$^*$ and FSUGold. The monopole energy decreases toward the proton and neutron drip-lines in an isotopic chain for lighter mass nuclei contrary to a monotonous decrease for super heavy isotopes. The maximum and minimum monopole excitation energies are obtained for nuclei with minimum and maximum isospin, respectively in an isotopic chain.
Yoo, Sung Hoon.
1990-05-01
Angular distributions for the {sup 12}C({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime} p) and {sup 208}Pb({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime} p or n) reactions near the giant resonance region have been measured at T{sub {pi}} = 180 MeV, and found different between {pi}{sup +} and {pi}{sup {minus}} data. This observation is interpreted as evidence for different excitation mechanisms dominating the {pi}{sup {minus}}-nucleus and {pi}{sup +}-nucleus interactions in the giant resonance region of these targets. A comparison with the single-nucleon knock-out distorted-wave impulse approximation calculations shows, even though these calculations underestimate ({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime} N) data for both targets, the dominance of direct process for ({pi}{sup +}, {pi}{sup {plus}}{prime} p) or ({pi}{sup {minus}}, {pi}{sup {minus}}{prime} n) in contrast to ({pi}{sup {minus}}, {pi}{sup {minus}}{prime} p) or ({pi}{sup +}, {pi}{sup +}{prime} n). In the ({pi}{sup +}, {pi}{sup +}{prime} p) reaction proton-proton hole states are excited directly and appear to have a large probability for direct decay with escape width, whereas in ({pi}{sup {minus}}, {pi}{sup {minus}}{prime} p) the preferentially excited neutron-neutron hole doorway states couple to resonance states and decay with spreading width. This interpretation led us to suggest that the ratio of cross-sections for inelastic scattering to the giant resonance region should be written in terms of an incoherent sum of cross-sections to neutron and proton doorway states. In a heavy nucleus such as {sup 208}Pb, neutron and proton doorway states. In a heavy nucleus such as {sup 208}Pb, neutron and proton doorway states contribute incoherently because the different decay processes do not populate the same final states of the residual nucleus.
Patel, D; Fujiwara, M; Akimune, H; Berg, G P A; Harakeh, M N; Itoh, M; Kawabata, T; Kawase, K; Nayak, B K; Ohta, T; Ouchi, H; Piekarewicz, J; Uchida, M; Yoshida, H P; Yosoi, M
2012-01-01
The isoscalar giant monopole resonance (ISGMR) in even-A Cd isotopes has been studied by inelastic ${\\alpha}$-scattering at 100 MeV/u and at extremely forward angles, including 0deg. The asymmetry term in the nuclear incompressibility extracted from the ISGMR in Cd isotopes is found to be $K_{\\tau} = -555 \\pm 75$ MeV, confirming the value previously obtained from the Sn isotopes. ISGMR strength has been computed in relativistic RPA using NL3 and FSUGold effective interactions. Both models significantly overestimate the centroids of the ISGMR strength in the Cd isotopes. Combined with other recent theoretical effort, the question of the "softness" of the open-shell nuclei in the tin region remains open still.
Patel, D. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Garg, U., E-mail: garg@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Fujiwara, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Akimune, H. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Berg, G.P.A. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Harakeh, M.N. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); Itoh, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Kawabata, T. [Center for Nuclear Studies, University of Tokyo, Tokyo 113-0033 (Japan); Kawase, K. [Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047 (Japan); Nayak, B.K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Ohta, T. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Ouchi, H. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Piekarewicz, J. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Uchida, M. [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8850 (Japan); Yoshida, H.P. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Yosoi, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan)
2012-12-05
The isoscalar giant monopole resonance (ISGMR) in even-A Cd isotopes has been studied by inelastic {alpha}-scattering at 100 MeV/u and at extremely forward angles, including 0 Degree-Sign . The asymmetry term in the nuclear incompressibility extracted from the ISGMR in Cd isotopes is found to be K{sub {tau}}=-555{+-}75 MeV, confirming the value previously obtained from the Sn isotopes. ISGMR strength has been computed in relativistic RPA using NL3 and FSUGold effective interactions. Both models significantly overestimate the centroids of the ISGMR strength in the Cd isotopes. Combined with other recent theoretical effort, the question of the 'softness' of the open-shell nuclei in the tin region remains open still.
Stellar Models and Yields of Asymptotic Giant Branch Stars
Karakas, Amanda I
2007-01-01
We present stellar yields calculated from detailed models of low and intermediate-mass asymptotic giant branch (AGB) stars. We evolve models with a range of mass from 1 to 6Msun, and initial metallicities from solar to 1/200th of the solar metallicity. Each model was evolved from the zero age main sequence to near the end of the thermally-pulsing AGB phase, and through all intermediate phases including the core He-flash for stars initially less massive than 2.5Msun. For each mass and metallicity, we provide tables containing structural details of the stellar models during the TP-AGB phase, and tables of the stellar yields for 74 species from hydrogen through to sulphur, and for a small number of iron-group nuclei. All tables are available for download. Our results have many applications including use in population synthesis studies and the chemical evolution of galaxies and stellar systems, and for comparison to the composition of AGB and post-AGB stars and planetary nebulae.
Stellar yields from metal-rich asymptotic giant branch models
Karakas, Amanda I
2016-01-01
We present new theoretical stellar yields and surface abundances for three grids of metal-rich asymptotic giant branch (AGB) models. Post-processing nucleosynthesis results are presented for stellar models with initial masses between 1$M_{\\odot}$ and 7.5$M_{\\odot}$ for $Z=0.007$, and 1$M_{\\odot}$ and 8$M_{\\odot}$ for $Z=0.014$ (solar) and $Z=0.03$. We include stellar surface abundances as a function of thermal pulse on the AGB for elements from C to Bi and for a selection of isotopic ratios for elements up to Fe and Ni (e.g., $^{12}$C/$^{13}$C), which can be obtained from observations of molecules in stars and from the laboratory analysis of meteoritic stardust grains. Ratios of elemental abundances of He/H, C/O, and N/O are also included, which are useful for direct comparison to observations of AGB stars and their progeny including planetary nebulae. The integrated elemental stellar yields are presented for each model in the grid for hydrogen, helium and all stable elements from C to Bi. Yields of Li are al...
Podlewska-Gaca, E.; Szuszkiewicz, E.
2014-03-01
In this paper we investigate the possibility of a migration-induced resonance locking in systems containing three planets, namely an Earth analogue (1 M⊕), a super-Earth (4 M⊕) and a gas giant (one Jupiter mass). The planets have been listed in order of increasing orbital periods. All three bodies are embedded in a locally isothermal gaseous disc and orbit around a solar mass star. We are interested in answering the following questions: will the low-mass planets form the same resonant structures with each other in the vicinity of the gas giant as in the case when the gas giant is absent? More in general, how will the presence of the gas giant affect the evolution of the two low-mass planets? When there is no gas giant in the system, it has been already shown that if the two low-mass planets undergo a convergent differential migration, they will capture each other in a mean-motion resonance. For the choices of disc parameters and planet masses made in this paper, the formation of the 5:4 resonance in the absence of the Jupiter has been observed in a previous investigation and confirmed here. In this work we add a gas giant on the most external orbit of the system in such a way that its differential migration is convergent with the low-mass planets. We show that the result of this set-up is the speeding up of the migration of the super-Earth and, after that, all three planets become locked in a triple mean-motion resonance. However, this resonance is not maintained due to the low-mass planet eccentricity excitation, a fact that leads to close encounters between planets and eventually to the ejection from the internal orbits of one or both low-mass planets. We have observed that the ejected low-mass planets can leave the system, fall into a star or become the external planet relative to the gas giant. In our simulations the latter situation has been observed for the super-Earth. It follows from the results presented here that the presence of a Jupiter-like planet
Leo, R. de; Harakeh, M.N.; Micheletti, S.; Plicht, J. van der; van der Woude, Adriaan; David, P.; Janszen, H.
1982-01-01
A measurement of the α-spectrum in the region of the isoscalar giant resonances from 238U at Eα = 120 MeV in coincidence with out-of-plane fission fragments shows the validity of the hypothesis of axial symmetry with respect to the recoil axis. Similar to what was observed in previous in-plane
Sil, T; Reinhard, P G; Shlomo, S; Sil, Tapas
2006-01-01
We provide accurate assessments of the consequences of violations of self-consistency in Hartree-Fock (HF) based random phase approximation (RPA) calculations of the centroid energy $E_{cen}$ of isoscalar and isovector giant resonances of multi-polarities $L=0-3$ in a wide range of nuclei. This is done by carrying out highly accurate HF-RPA calculations neglecting the particle-hole (ph) spin-orbit or Coulomb interaction in the RPA and comparing with the fully self-consistent HF-RPA results. We find that the shifts in the value of $E_{cen}$ due to self-consistency violation associated with the spin-orbit and Coulomb interactions are comparable or larger than the current experimental errors in $E_{cen}$.
Hendrie, James; Diels, Jean Claude; Arissian, Ladan
2016-01-01
Intracavity Phase Interferometry is a phase sensing technique using mode-locked lasers in which two intracavity pulses circulate. The beat frequency between the two output frequency combs is proportional to a phase shift to be measured. A laser gyro is a particular implementation of this device. The demonstrated sensitivity of $10^{-8}$ could be manipulated by applying a giant dispersion to each tooth of the comb. Such coupling is achieved with an intracavity etalon, resulting a large change in phase response of a ring laser. This change is shown to be unrelated to the average pulse velocity within the laser cavity.
Stochastic resonance in a financial model
毛晓明; 孙锴; 欧阳颀
2002-01-01
We report on our model study of stochastic resonance in the stock market using numerical simulation and analysis.In the model, we take the interest rate as the external signal, the randomness of traders' behaviour as the noise, andthe stock price as the output. With computer simulations, we find that the system demonstrates a characteristic ofstochastic resonance as noise intensity varies. An analytical explanation is proposed.
Giant vortices in the Ginzburg-Landau model
Sørensen, Mads Peter
The time-dependent Ginzburg-Landau equation is solved in a region of two spatial dimensions and with complex geometry using the finite element method. The geometry has a marked influence on the vortex distribution and we have observed generation of giant vortices at boundary defects.......The time-dependent Ginzburg-Landau equation is solved in a region of two spatial dimensions and with complex geometry using the finite element method. The geometry has a marked influence on the vortex distribution and we have observed generation of giant vortices at boundary defects....
VV&A and confidence assessment of a complex giant system simulation model
伞冶; 陈建明
2004-01-01
It is difficult or even impossible for a pure mathematical model to represent a complex giant system because of the complexity, activity, uncertainty in such a system. The meta-synthesis methodology and the generalized modelling method are used to model a complex giant system. This paper has an in-depth study on the confidence assessment of a complex giant system simulation model that is built based on the meta-synthesis methodology and the generalized modelling method. A new definition of VV&A for complex system is given, on which is based a -step reference model and proposed for VV&A purpose. Furthermore, the principle andmethod of intelligent boundary interval intermediate assessment is proposed for the harmonization of modelling and model-validation.
Coupling giant impacts and long-term evolution models
Golabek, G.; Jutzi, M.; Emsenhuber, A.; Gerya, T.; Asphaug, E. I.
2015-12-01
The crustal dichotomy [1] is the dominant geological feature on planet Mars. The exogenic approach to the origin of the crustal dichotomy [2-6] assumes that the northern lowlands correspond to a giant impact basin formed after primordial crust formation. However these simulations only consider the impact phase without studying the long-term repercussions of such a collision. The endogenic approach [7], suggesting a degree-1 mantle upwelling underneath the southern highlands [8-11], relies on a high Rayleigh number and a particular viscosity profile to form a low degree convective pattern within the geological constraints for the dichotomy formation. Such vigorous convection, however, results in continuous magmatic resurfacing, destroying the initially dichotomous crustal structure in the long-term. A further option is a hybrid exogenic-endogenic approach [12-15], which proposes an impact-induced magma ocean and subsequent superplume in the southern hemisphere. However these models rely on simple scaling laws to impose the thermal effects of the collision. Here we present the first results of impact simulations performed with a SPH code [16,17] serially coupled with geodynamical computations performed using the code I3VIS [18] to improve the latter approach and test it against observations. We are exploring collisions varying the impactor velocities, impact angles and target body properties, and are gauging the sensitivity to the handoff from SPH to I3VIS. As expected, our first results indicate the formation of a transient hemispherical magma ocean in the impacted hemisphere, and the merging of the cores. We also find that impact angle and velocity have a strong effect on the post-impact temperature field [5] and on the timescale and nature of core merger.
Coupling giant impacts and longer-term evolution models
Golabek, Gregor; Jutzi, Martin; Emsenhuber, Alexandre; Gerya, Taras; Asphaug, Erik
2016-04-01
The crustal dichotomy is the dominant geological feature on planet Mars. The exogenic approach to the origin of the crustal dichotomy assumes that the northern lowlands correspond to a giant impact basin formed after primordial crust formation. However these simulations only consider the impact phase without studying the long-term repercussions of such a collision. The endogenic approach, suggesting a degree-1 mantle upwelling underneath the southern highlands, relies on a high Rayleigh number and a particular viscosity profile to form a low degree convective pattern within the geological constraints for the dichotomy formation. Such vigorous convection, however, results in continuous magmatic resurfacing, destroying the initially dichotomous crustal structure in the long-term. A further option is a hybrid exogenic-endogenic approach, which proposes an impact-induced magma ocean and subsequent superplume in the southern hemisphere. However these models rely on simple scaling laws to impose the thermal effects of the collision. Here we present the first results of impact simulations performed with a SPH code serially coupled with geodynamical computations performed using the code I3VIS to improve the latter approach and test it against observations. We are exploring collisions varying the impactor velocities, impact angles and target body properties, and are gauging the sensitivity to the handoff from SPH to I3VIS. As expected, our first results indicate the formation of a transient hemispherical magma ocean in the impacted hemisphere, and the merging of the cores. We also find that impact angle and velocity have a strong effect on the post-impact temperature field and on the timescale and nature of core merger.
THE ANGULAR-MOMENTUM DEPENDENCE OF THE GIANT-DIPOLE RESONANCE IN DY-154
NOORMAN, RF; BACELAR, JC; HARAKEH, MN; HESSELINK, WHA; HOFMANN, HJ; Kalantar-Nayestanaki, Nasser; VANSCHAGEN, JPS; STOLK, A; SUJKOWSKI, Z; DEVOIGT, MJA; VANDERWOUDE, A
1994-01-01
The statistical gamma-ray decay of the compound nucleus 154Dy* formed at an excitation energy of 69 MeV is studied in three angular-momentum windows [J] = 31,42 and 50h. The GDR strength function extracted from the data indicates a constant centroid energy for the resonance E(GDR) = 15.2 +/- 0.5 MeV
Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces.
Soboleva, I V; Moskalenko, V V; Fedyanin, A A
2012-03-23
The Goos-Hänchen effect and Fano resonance are studied in photonic crystals that are considered Fourier counterparts in wave-vector-coordinate space. The Goos-Hänchen effect, which is enhanced by the excitation of Bloch surface electromagnetic waves, is visualized using far-field microscopy and measured at the surface of photonic crystals by angular spectroscopy. The maximal Goos-Hänchen shift is observed to be 66 μm.
Guillot, Tristan
2014-01-01
We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion of the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.
Modelling Strategies for Functional Magnetic Resonance Imaging
Madsen, Kristoffer Hougaard
2009-01-01
This thesis collects research done on several models for the analysis of functional magnetic resonance neuroimaging (fMRI) data. Several extensions for unsupervised factor analysis type decompositions including explicit delay modelling as well as handling of spatial and temporal smoothness...
Resonance asymptotics in the generalized Winter model
Exner, P; Exner, Pavel; Fraas, Martin
2006-01-01
We consider a modification of the Winter model describing a quantum particle in presence of a spherical barrier given by a fixed generalized point interaction. It is shown that the three classes of such interactions correspond to three different types of asymptotic behaviour of resonances of the model at high energies.
Sharma, Sanjib; Bland-Hawthorn, Joss; Huber, Daniel; Bedding, Timothy R
2016-01-01
With current space-based missions it is now possible to obtain age-sensitive asteroseismic information for tens of thousands of red giants. This provides a promising opportunity to study the Galactic structure and evolution. We use asteroseismic data of red giants, observed by Kepler, to test the current theoretical framework of modelling the Galaxy based on population synthesis modeling and the use of asteroseismic scaling relations for giants. We use the open source code Galaxia to model the Milky Way and find the distribution of the masses predicted by Galaxia to be systematically offset with respect to the seismically-inferred observed masses. The Galactic model overestimates the number of low mass stars, and these stars are predominantly old and of low metallicity. Using corrections to the $\\Delta \
Resonating models for the electric power market.
Lucheroni, Carlo
2007-11-01
This paper describes the economic phenomenon of price spiking in electric power markets and introduces an alternative way to model it. A stochastic FitzHugh-Nagumo dynamics in a special regime is proposed as a basic model for the power market, and an extension of the FitzHugh-Nagumo system is introduced to improve the statistical features of the basic model. Ideas from stochastic and coherence resonance are used to discuss the models.
Tribelsky, M I
2015-01-01
A detailed analytical inspection of light scattering by a particle with high refractive index m+i\\kappa and small dissipative constant \\kappa is presented. We have shown that there is a dramatic difference in the behavior of the electromagnetic field within the particle (inner problem) and the scattered field outside it (outer problem). With an increase in m at fix values of the other parameters, the field within the particle asymptotically converges to a periodic function of m. The electric and magnetic type Mie resonances of different orders overlap substantially. It may lead to a giant concentration of the electromagnetic energy within the particle. At the same time, we demonstrate that identical transformations of the solution for the outer problem allow to present each partial scattered wave as a sum of two partitions. One of them corresponds to the m-independent wave, scattered by a perfectly reflecting particle and plays the role of a background, while the other is associated with the excitation of a s...
Giant peak to valley ratio in a GaN based resonant tunnel diode with barrier width modulation
Sankaranarayanan, Sandeep; Saha, Dipankar
2016-10-01
A barrier width modulated GaN based resonant tunnel diode is theoretically proposed which exhibits a giant peak to valley current ratio as high as 60 and a high negative differential conductance (NDC) of 1.77 × 106 S/cm2 with very low valley current density of 3 mA/cm2. This is achieved by the unique characteristic of the device current which monotonically decreases for applied voltages greater than the valley voltage in our simulation window. This is in contrast to all the other negative differential conductance based devices which experience an immediate exponential increase in current after the NDC region. The proposed device is also the first bidirectional tunneling diode which shows negative differential conductance for both polarity of the applied bias which is normally not observed with the conventional GaN/AlGaN double barrier structures due to the strong asymmetry arising from the internal electric fields due to polarization. The unique characteristics of the device can be attributed to the use of a modulated barrier width which is made possible by a polarization modulating InGaN layer and efficient utilization of internal electric fields in III-nitrides.
Thiep, Tran Duc; An, Truong Thi; Cuong, Phan Viet; Vinh, Nguyen The; Hue, Bui Minh; Belov, A. G.; Maslov, O. D.; Mishinsky, G. V.; Zhemenik, V. I.
2017-01-01
We have determined the isomeric ratios of isomeric pairs 97m,gNb, 95m,gNb and 91m,gMo produced in 98Mo(γ, p)97m,gNb, 96Mo(γ, p)95m,gNb and 92Mo(γ, n)91m,gMo photonuclear reactions in the giant dipole resonance (GDR) region by the activation method. The results were analyzed, discussed and compared with the similar data from literature to examine the role of excitation energy, neutron configuration, channel effect and direct and pre-equilibrium processes in (γ, p) photonuclear reactions. In this work the isomeric ratios for 97m,gNb from 14 to 19 MeV, for 195m,gNb from14 to 24 MeV except 20 and 23.5 MeV and for 91m,gMo at 14 and 15 MeV are the first time measurements.
Electric dipole strength distribution below the E1 giant resonance in N = 82 nuclei
Guliyev, Ekber; Kuliev, Ali; Guner, Mehmet
2010-12-01
In this study quasiparticle random-phase approximation with the translational invariant Hamiltonian using deformed mean field potential has been conducted to describe electric dipole excitations in 136Xe, 138Ba, 140Ce, 142Nd, 144Sm and 146Gd isotones. The distribution of the calculated E1 strength shows a resonance like structure at energies between 6-8 MeV exhausting up to 1% of the isovector electric dipole Energy Weighted Sum Rule and in some aspects nicely confirms the experimental data. It has been shown that the main part of E1 strength, observed below the threshold in these nuclei may be interpreted as main fragments of the Pygmy Dipole resonance. The agreement between calculated mean excitation energies as well as summed B(E1) value of the 1- excitations and the available experimental data is quite good. The calculations indicate the presence of a few prominent positive parity 1+ States in heavy N = 82 isotones in the energy interval 6-8 MeV which shows not all dipole excitations were of electric character in this energy range.
A simple model to describe intrinsic stellar noise for exoplanet detection around red giants
North, Thomas S H; Gilliland, Ronald L; Huber, Daniel; Campante, Tiago L; Handberg, Rasmus; Lund, Mikkel N; Veras, Dimitri; Kuszlewicz, James S; Farr, Will M
2016-01-01
In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission, there remain only a small number of transit detections around evolved stars. Here we present a reformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation, and the stellar oscillations described by asteroseismology play a key role. The new noise model is a significant improvement on the current Kepler results for evolved stars. Our noise model may be used to help understand planet detection thresholds for the ongoing K2 and upcoming TESS missions, and serve as a predictor of stellar noise for these missions. As an application of our noise model, we explore the minimum detectable planet radii for red giant stars, and find that Neptune sized planets should be detectable around low luminosity red giant branch stars.
A simple model to describe intrinsic stellar noise for exoplanet detection around red giants
North, Thomas S. H.; Chaplin, William J.; Gilliland, Ronald L.; Huber, Daniel; Campante, Tiago L.; Handberg, Rasmus; Lund, Mikkel N.; Veras, Dimitri; Kuszlewicz, James S.; Farr, Will M.
2017-02-01
In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission, there remain only a small number of transit detections around evolved stars. Here, we present a reformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation and the stellar oscillations described by asteroseismology play a key role. The new noise model is a significant improvement on the current Kepler results for evolved stars. Our noise model may be used to help understand planet detection thresholds for the ongoing K2 and upcoming TESSmissions, and serve as a predictor of stellar noise for these missions. As an application of our noise model, we explore the minimum detectable planet radii for red giant stars, and find that Neptune-sized planets should be detectable around low-luminosity red giant branch stars.
Miller, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1965-07-01
Cross-section for ({gamma},n) reactions on C{sup 12},, O{sup 10}, Mg{sup 24} and Ca{sup 40} have been measured using 'monochromatic' gamma rays of variable energy obtained from the annihilation in flight of fast positrons. We compare the observed structure with the shell model of nucleus, including residual interaction between nucleons by 'hole particle' techniques. (author) [French] Les photons 'monochromatiques', d'energie variable, produits par l'annihilation en vol de positons, sont utilises pour mesurer la section efficace ({gamma},n) de {sup 12}C, {sup 16}O, {sup 21}Mg et {sup 40}Ca. La structure observee est comparee aux previsions theoriques du modele a particules independantes, tenant compte de l'interaction residuelle entre nucleons par la methode 'trou-particule'. (auteur)
Equivalent Circuit Model for Thick Split Ring Resonators and Thick Spiral Resonators
Mancera, Laura Maria Pulido
2014-01-01
A simple theoretical model which provides circuit parameters and resonance frequency of metallic thick resonators is presented. Two different topologies were studied: the original Pendry's SRR and spiral resonators of two and three turns. Theoretical computations of resonant frequencies are in good agreement with values obtained with a commercial electromagnetic solver. The model could be helpful for designing thick frequency selective surfaces (FSS) based on this types of resonators, so called metasurfaces.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Exotic baryon resonances in the Skyrme model
Diakonov, Dmitri
2008-01-01
We outline how one can understand the Skyrme model from the modern perspective. We review the quantization of the SU(3) rotations of the Skyrmion, leading to the exotic baryons that cannot be made of three quarks. It is shown that in the limit of large number of colours the lowest-mass exotic baryons can be studied from the kaon-Skyrmion scattering amplitudes, an approach known after Callan and Klebanov. We follow this approach and find, both analytically and numerically, a strong Theta+ resonance in the scattering amplitude that is traced to the rotational mode. The Skyrme model does predict an exotic resonance Theta+ but grossly overestimates the width. To understand better the factors affecting the width, it is computed by several methods giving, however, identical results. In particular, we show that insofar as the width is small, it can be found from the transition axial constant. The physics leading to a narrow Theta+ resonance is briefly reviewed and affirmed.
Loi, Shyeh Tjing; Papaloizou, John C. B.
2017-05-01
Stars are self-gravitating fluids in which pressure, buoyancy, rotation and magnetic fields provide the restoring forces for global modes of oscillation. Pressure and buoyancy energetically dominate, while rotation and magnetism are generally assumed to be weak perturbations and often ignored. However, observations of anomalously weak dipole mode amplitudes in red giant stars suggest that a substantial fraction of these are subject to an additional source of damping localized to their core region, with indirect evidence pointing to the role of a deeply buried magnetic field. It is also known that in many instances, the gravity-mode character of affected modes is preserved, but so far, no effective damping mechanism has been proposed that accommodates this aspect. Here we present such a mechanism, which damps the oscillations of stars harbouring magnetised cores via resonant interactions with standing Alfvén modes of high harmonic index. The damping rates produced by this mechanism are quantitatively on par with those associated with turbulent convection, and in the range required to explain observations, for realistic stellar models and magnetic field strengths. Our results suggest that magnetic fields can provide an efficient means of damping stellar oscillations without needing to disrupt the internal structure of the modes, and lay the groundwork for an extension of the theory of global stellar oscillations that incorporates these effects.
Anomalous effective lagrangians and vector resonance models
Pallante, E.; Petronzio, R.
1993-01-01
Chiral lagrangians including vector resonances have been shown to saturate the finite part of some of the counterterms needed to regularize ordinary one-loop effective lagrangians of pseudoscalar interactions with external currents. The equivalence between different models has been discussed in the
Wittenmyer, Robert A; Butler, R P; Horner, Jonathan; Wang, Liang; Robertson, Paul; Jones, M I; Jenkins, J S; Brahm, R; Tinney, C G; Mengel, M W; Clark, J
2015-01-01
We report the discovery of two giant planets orbiting the K giant HD 33844 based on radial velocity data from three independent campaigns. The planets move on nearly circular orbits with semimajor axes $a_b=1.60\\pm$0.02 AU and $a_c=2.24\\pm$0.05 AU, and have minimum masses (m sin $i$) of $M_b=1.96\\pm$0.12 Mjup and $M_c=1.76\\pm$0.18 Mjup. Detailed N-body dynamical simulations show that the two planets remain on stable orbits for more than $10^6$ years for low eccentricities, and are most likely trapped in a mutual 3:5 mean-motion resonance.
Maher, M.M. [Department of Radiology, Mater Misericordiae Hospital, Dublin (Ireland); Department of Radiology, St. Vincent' s Hospital, Elm Park, Dublin 4 (Ireland); Kennedy, J.; Hynes, D. [Department of Orthopaedics, Mater Misericordiae Hospital, Dublin (Ireland); Murray, J.G.; O' Connell, D. [Department of Radiology, Mater Misericordiae Hospital, Dublin (Ireland)
2000-03-30
We describe the imaging features of a giant geode of the distal humerus in a patient with rheumatoid arthritis, which presented initially as a pathological fracture. The value of magnetic resonance imaging in establishing this diagnosis is emphasized. (orig.)
Resonant Transmission Line Method for Econophysics models
Raptis, T E
2016-01-01
In a recent paper [1304.6846], Racorean introduced a formal similarity of the Black-Sholes stock pricing model with a Schr\\"odinger equation. We use a previously introduced method of a resonant transmission line for arbitrary 2nd order Sturm-Liouville problems to attack the same problem from a different perspective revealing some deep structures in the naturally associated eigenvalue problem.
Patel, D; Fujiwara, M; Adachi, T; Akimune, H; Berg, G P A; Harakeh, M N; Itoh, M; Iwamoto, C; Long, A; Matta, J T; Murakami, T; Okamoto, A; Sault, K; Talwar, R; Uchida, M; Yosoi, M
2013-01-01
Using inelastic $\\alpha$-scattering at extremely forward angles, including $0^\\circ$, the strength distributions of the isoscalar giant monopole resonance (ISGMR) have been measured in the $^{204,206,208}$Pb isotopes in order to examine the proposed mutually enhanced magicity (MEM) effect on the nuclear incompressibility. The MEM effect had been suggested as a likely explanation of the "softness" of nuclear incompressibility observed in the ISGMR measurements in the Sn and Cd isotopes. Our experimental results rule out any manifestation of the MEM effect in nuclear incompressibility and leave the question of the softness of the open-shell nuclei unresolved still.
Winchenbach, J.; Pingel, K.; Holzwarth, G.; Kühner, G.; Richter, A.
1983-11-01
The fine structure observed in high resolution inelastic electron scattering data obtained at DALINAC for 208Pb in the excitation energy range of the giant quadrupole resonance (GQR) has been analysed under the assumption that the measured strongly fragmented E2 strength distribution is due to the coupling of one or two doorway states to a large number of more complicated states. The coupling matrix elements derived from the analysis allow the determination of the escape and spreading widths Γ ↑ and Γ ↓, the excitation energies Ed, the energy shifts ΔEd, and their energy dependence, for the underlying doorways.
Joon-Il Choi
2013-01-01
Full Text Available Choledochal cysts are uncommon congenital anomalies of the biliary tree, commonly presenting in infancy, generally in the 1 st year of life. Presentation in adult life is less common, accounting for 20% of cases. A 19-year-old female patient presented to the Emergency Department with severe abdominal distension, a palpable abdominal mass, mild jaundice and low grade fever. Ultrasound, computed tomography (CT and magnetic resonance imaging of the abdomen showed a massive septated cystic lesion filling the entire abdomen with a significant mass effect on surrounding structures. Origin of the lesion was unclear and diagnosis included a giant mesenteric or duplication cyst, massive gallbladder with hydrops, biliary cystadenoma and giant choledochal cyst, among others. Final diagnosis was a Type IA choledochal cyst with massive asymmetric cystic dilatation of the extra-hepatic segments of the left hepatic duct with asymmetric dilatation of the right hepatic duct. Patient had an uneventful recovery after resection of the entire extrahepatic cyst and Roux-en-Y hepaticojejunostomy at the level of the hilum. In this article, we correlate CT and MRI findings to gross and histopathological findings of this giant Todani′s Type IA choledochal cyst.
Modeling and Control for Giant Magnetostrictive Actuators with Rate-Dependent Hysteresis
Ping Liu
2013-01-01
Full Text Available The rate-dependent hysteresis in giant magnetostrictive materials is a major impediment to the application of such material in actuators. In this paper, a relevance vector machine (RVM model is proposed for describing the hysteresis nonlinearity under varying input current. It is possible to construct a unique dynamic model in a given rate range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set input signal. Subsequently, a proportional integral derivative (PID control scheme combined with a feedforward compensation is implemented on a giant magnetostrictive actuator (GMA for real-time precise trajectory tracking. Simulations and experiments both verify the effectiveness and the practicality of the proposed modeling and control methods.
Toward a Deterministic Model of Planetary Formation VII: Eccentricity Distribution of Gas Giants
Ida, S; Nagasawa, M
2013-01-01
The ubiquity of planets and diversity of planetary systems reveal planet formation encompass many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches leads to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interaction between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamical interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form wit...
On the origin and composition of Theia: Constraints from new models of the Giant Impact
Meier, Matthias M M; Wieler, Rainer
2014-01-01
Knowing the isotopic composition of Theia, the proto-planet which collided with the Earth in the Giant Impact that formed the Moon, could provide interesting insights on the state of homogenization of the inner solar system at the late stages of terrestrial planet formation. We use the known isotopic and modeled chemical compositions of the bulk silicate mantles of Earth and Moon and combine them with different Giant Impact models, to calculate the possible ranges of isotopic composition of Theia in O, Si, Ti, Cr, Zr and W in each model. We compare these ranges to the isotopic composition of carbonaceous chondrites, Mars, and other solar system materials. In the absence of post-impact isotopic re-equilibration, the recently proposed high angular momentum models of the Giant Impact ("impact-fission", Cuk & Stewart, 2012; and "merger", Canup, 2012) allow - by a narrow margin - for a Theia similar to CI-chondrites, and Mars. The "hit-and-run" model (Reufer et al., 2012) allows for a Theia similar to enstatit...
A resonance based model of biological evolution
Damasco, Achille; Giuliani, Alessandro
2017-04-01
We propose a coarse grained physical model of evolution. The proposed model 'at least in principle' is amenable of an experimental verification even if this looks as a conundrum: evolution is a unique historical process and the tape cannot be reversed and played again. Nevertheless, we can imagine a phenomenological scenario tailored upon state transitions in physical chemistry in which different agents of evolution play the role of the elements of a state transition like thermal noise or resonance effects. The abstract model we propose can be of help for sketching hypotheses and getting rid of some well-known features of natural history like the so-called Cambrian explosion. The possibility of an experimental proof of the model is discussed as well.
Gao, Y.; Wang, X.; Xie, L.; Hu, Z.; Lin, H.; Zhou, Z.; Nan, T.; Yang, X.; Howe, B. M.; Jones, J. G.; Brown, G. J.; Sun, N. X.
2016-06-01
It has been challenging to achieve combined strong magnetoelectric coupling and narrow ferromagnetic resonance (FMR) linewidth in multiferroic heterostructures. Electric field induced large effective field of 175 Oe and narrow FMR linewidth of 40 Oe were observed in FeCoSiB/Si/SiO2/PMN-PT heterostructures with substrate clamping effect minimized through removing the Si substrate. As a comparison, FeCoSiB/PMN-PT heterostructures with FeCoSiB film directly deposited on PMN-PT showed a comparable voltage induced effective magnetic field but a significantly larger FMR linewidth of 283 Oe. These multiferroic heterostructures exhibiting combined giant magnetoelectric coupling and narrow ferromagnetic resonance linewidth offer great opportunities for integrated voltage tunable RF magnetic devices.
Petri Honkanen
2014-01-01
Full Text Available Background: Better diagnostic tools to identify rupture-prone saccular intracranial aneurysms (sIA are needed. Inflammation and luminal thrombus associate with degeneration and rupture of the sIA wall. Iron-uptake has been detected in the inflammatory cells of the sIA wall and thrombus is the likely source of this iron. We investigated ex vivo the use of magnetic resonance imaging (MRI to detect iron accumulation and luminal thrombus in giant sIAs. Methods: Giant sIAs (n = 3 were acquired from microsurgical operations, fixed with formalin, embedded in agar and imaged at 4.7T. Samples were sectioned maintaining the orientation of the axial plane of MRI scans, and stained (hematoxylin-eosin and Prussian blue. Results: All three giant sIAs showed a degenerated hypocellular wall with both mural and adventitial iron accumulation and displayed different degrees of luminal thrombus formation and thrombus organization. Signal intensity varied within the same sIA wall and associated with iron accumulation in all tested sequences. Wall areas with iron accumulation had significantly lower signal to noise ratio (SNR compared with areas without iron accumulation (P = 0.002. Fresh and organizing thrombus differed in their MRI presentation and differed in signal intensity of the aneurysm wall (P = 0.027. Conclusion: MRI can detect ex vivo the accumulation of iron in giant sIA wall, as well as fresh and organizing luminal thrombus. These features have been previously associated with fragile, rupture-prone aneurysm wall. Further studies of iron accumulation as a marker of rupture-prone aneurysm wall are needed.
Tilting Saturn without tilting Jupiter: Constraints on giant planet migration
Brasser, R
2015-01-01
The migration and encounter histories of the giant planets in our Solar System can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn's spin axis to the current obliquity if the product of the migration time scale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today's obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance...
Dragoman, M.; Dragoman, D.; Plana, R.
2007-10-01
The paper presents the modeling of rf energy sensing and harvesting using the giant thermoelectric effect encountered in carbon nanotubes and proposes a harvester based on this principle. The rf energy is transformed into dc voltage, conferring to the harvesting device the property of self-powering and thus the portability, which is a prerequisite of ultradense wireless nodes that form advanced wireless sensor networks and, in principle, of any portable wireless device.
Xiang-yun Shi
2013-01-01
Full Text Available A mathematical model for the relationship between the populations of giant pandas and two kinds of bamboo is established. We use the impulsive perturbations to take into account the effect of a sudden collapse of bamboo as a food source. We show that this system is uniformly bounded. Using the Floquet theory and comparison techniques of impulsive equations, we find conditions for the local and global stabilities of the giant panda-free periodic solution. Moreover, we obtain sufficient conditions for the system to be permanent. The results provide a theoretical basis for giant panda habitat protection.
Episodic model for star formation history and chemical abundances in giant and dwarf galaxies
Debsarma, Suma; Chattopadhyay, Tanuka; Das, Sukanta; Pfenniger, Daniel
2016-11-01
In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic haloes, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The derived periods of oscillation vary in the range (0.1-3.0) × 107 yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies is responsible for variation in metallicity in dwarf galaxies of similar masses as suggested by various authors.
Episodic Model For Star Formation History and Chemical Abundances in Giant and Dwarf Galaxies
Debsarma, Suma; Das, Sukanta; Pfenniger, Daniel
2016-01-01
In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic halos, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The observed periods of oscillation vary in the range $(0.1-3.0)\\times10^{7}$\\,yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies i...
Constraining groundwater modeling with magnetic resonance soundings.
Boucher, Marie; Favreau, Guillaume; Nazoumou, Yahaya; Cappelaere, Bernard; Massuel, Sylvain; Legchenko, Anatoly
2012-01-01
Magnetic resonance sounding (MRS) is a noninvasive geophysical method that allows estimating the free water content and transmissivity of aquifers. In this article, the ability of MRS to improve the reliability of a numerical groundwater model is assessed. Thirty-five sites were investigated by MRS over a ∼5000 km(2) domain of the sedimentary Continental Terminal aquifer in SW Niger. Time domain electromagnetic soundings were jointly carried out to estimate the aquifer thickness. A groundwater model was previously built for this section of the aquifer and forced by the outputs from a distributed surface hydrology model, to simulate the observed long-term (1992 to 2003) rise in the water table. Uncertainty analysis had shown that independent estimates of the free water content and transmissivity values of the aquifer would facilitate cross-evaluation of the surface-water and groundwater models. MRS results indicate ranges for permeability (K = 1 × 10(-5) to 3 × 10(-4) m/s) and for free water content (w = 5% to 23% m(3) /m(3) ) narrowed by two orders of magnitude (K) and by ∼50% (w), respectively, compared to the ranges of permeability and specific yield values previously considered. These shorter parameter ranges result in a reduction in the model's equifinality (whereby multiple combinations of model's parameters are able to represent the same observed piezometric levels), allowing a better constrained estimate to be derived for net aquifer recharge (∼22 mm/year).
A Cloud Microphysics Model for the Gas Giant Planets
Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler
2016-10-01
Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303–326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141–156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.
Wei, Jingsong [Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Shanghai (China); Zhejiang University, State Key Lab of Silicon Materials, Hangzhou (China); Liu, Jing [Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Shanghai (China); Xiao, Mufei [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Apartado Postal 365, Ensenada, Baja California (Mexico)
2011-09-15
Silver-doped silicon thin films were deposited on glass substrate in a co-sputtering procedure. Silver nanoparticles were segregatedly distributed. The nonlinear properties were extracted by z-scan measurements at low laser input power. For about 50% silver density, the nonlinear absorption and refraction coefficients peaked, respectively, at -8.086 x 10{sup -2} m/W and 1.47 x 10{sup -9} m{sup 2}/W, which, with respect to the input intensity, are several orders higher than reported data. The sudden surge of nonlinear responses was explained satisfactorily based on a self-consistent microscopic model calculation for silver clusters. Resonances exist and depend apparently on the laser-modified local cluster concentration. (orig.)
A mechanical model for giant radiating dike swarms
Minakov, Alexander; Yarushina, Viktoriya; Faleide, Jan Inge
2016-04-01
The Large Igneous Provinces (LIP) is believed to form as results of plume-lithosphere interaction. A recognizable diagnostic feature of the LIP is a swarm of dikes (100 - 1000 km -long) radiating from a single or several focal regions. The models for formation of these dike swarms are mainly based on Venusian analogues (associated with coronae structures) since on Earth these paleo-structures are presumably less likely to preserve due to erosion and later tectonics. The existing explanation for the geometry of dikes (in horizontal plane) is based on assumption that in a far-field shear stress the dikes are normal to the least principal stress. A small overpressure related to the lithospheric magma reservoir is also assumed. However, this type of models implies several limitations: 1) the dike emplacement is considered as a purely elastic process, 2) all dikes are assumed to intrude simultaneously (no interaction with neighboring dikes). On the other hand, recent geophysical observations suggest that the dikes that apparently belong to the same magmatic event can intersect and can be affected by each other and local crustal heterogeneity. In this study, we attribute the geometry of dikes to irreversible plastic deformation including the path-dependence. We use finite-element elastoplastic simulations to predict the fracture pattern related to the plume-lithosphere interaction. The rheology is governed by a non-associated Mohr-Coulomb plastic flow law. The accuracy of the numerical results is benchmarked versus 2D plane strain analytical solutions for combined shear and internal pressure loads. We apply our model to the case of the High Arctic LIP. Here, the location of the dike intrusions is based on the interpretation of magnetic anomalies supported by geological and seismic data in the Barents Sea together with timing constraints using U-Pb isotopic ages. The developed model provides a framework for future high-resolution structural and geochronological studies to
Mass loss from red giants - A simple evolutionary model for NGC 7027
Jura, M.
1984-01-01
NGC 7027 is a young planetary nebula with the remnants of a red giant circumstellar envelope surrounding the central, ionized region. By comparing the outer molecular envelope with the inner ionized material, it is argued that the mass loss rate has decreased by at least a factor of 3, and more probably by about a factor of 10, during the past 1000 years. From this result, it is argued that the luminosity of the central star has also decreased substantially during the same time, consistent with models for the rapid evolution of stars just after they evolve off the asymptotic giant branch. In this picture, the distance to NGC 7027 is less than 1300 pc. NGC 7027 was the last (and best) example of a star where apparently the momentum in the outflowing mass /M(dot)v/ is considerably greater than the momentum in the radiation field (L/c). With the above description of this object, the evidence is now strong that quite often the mass lost from late-type giants is ultimately driven to infinity by radiation pressure on grains. If M(dot)v is as large as L/c for asymptotic branch stars, then it is expected that the total amount of mass lost during this stage of evolution is of the same magnitude as the initial mass of the star, and therefore this mass loss can profoundly affect the star's ultimate fate.
Mass loss from red giants - A simple evolutionary model for NGC 7027
Jura, M.
1984-01-01
NGC 7027 is a young planetary nebula with the remnants of a red giant circumstellar envelope surrounding the central, ionized region. By comparing the outer molecular envelope with the inner ionized material, it is argued that the mass loss rate has decreased by at least a factor of 3, and more probably by about a factor of 10, during the past 1000 years. From this result, it is argued that the luminosity of the central star has also decreased substantially during the same time, consistent with models for the rapid evolution of stars just after they evolve off the asymptotic giant branch. In this picture, the distance to NGC 7027 is less than 1300 pc. NGC 7027 was the last (and best) example of a star where apparently the momentum in the outflowing mass /M(dot)v/ is considerably greater than the momentum in the radiation field (L/c). With the above description of this object, the evidence is now strong that quite often the mass lost from late-type giants is ultimately driven to infinity by radiation pressure on grains. If M(dot)v is as large as L/c for asymptotic branch stars, then it is expected that the total amount of mass lost during this stage of evolution is of the same magnitude as the initial mass of the star, and therefore this mass loss can profoundly affect the star's ultimate fate.
Magnetic resonance urography by virtual reality modelling.
Beigi, Navid; Sangild, Thomas; Terkildsen, Søren Vorre; Deding, Dorthe; Stødkilde-Jørgensen, Hans; Pedersen, Michael
2003-01-01
The purpose of this study was to create a 3D visualization of the urinary tract by a novel virtual reality approach, and to evaluate the usefulness of this method for papillary classification as compared with 2D urogram obtained by maximum intensity projection (MIP). In one healthy pig, magnetic resonance urography was performed using a T1-weighted 3D gradient echo pulse sequence. Post-processing was performed by means of an MIP algorithm and by using 3D virtual reality modelling, followed by manual classification of papillae as being either simple or compound. The 2D MIP urogram demonstrated 6 simple and 6 compound papillae, whereas the 3D urogram demonstrated 5 simple and 7 compound papillae. In both urograms, some papillae were unsuccessfully classified. The possibility of using virtual reality devices allowed 3D rotation and offered additional diagnostic information. However, further studies should reveal its feasibility in diseased kidneys.
Resonant scattering as a sensitive diagnostic of current collisional plasma models
Ogorzalek, Anna; Zhuravleva, Irina; Allen, Steven W.; Pinto, Ciro; Werner, Norbert; Mantz, Adam; Canning, Rebecca; Fabian, Andrew C.; Kaastra, Jelle S.; de Plaa, Jelle
2017-08-01
Resonant scattering is a subtle process that suppresses fluxes of some of the brightest optically thick X-ray emission lines produced by collisional plasmas in galaxy clusters and massive early-type galaxies. The amplitude of the effect depends on the turbulent structure of the hot gas, making it a sensitive velocity probe. It is therefore crucial to properly model this effect in order to correctly interpret high resolution X-ray spectra. Our measurements of resonant scattering with XMM-Newton Reflection Grating Spectrometer in giant elliptical galaxies and with Hitomi in the center of Perseus Cluster show that the potentially rich inference from this effect is limited by the uncertainties in the atomic data underlying plasma codes such as APEC and SPEX. Typically, the effect is of the order of 10-20%, while the discrepancy between the two codes is of similar order or even higher. Precise knowledge of the emissivity and oscillator strengths of lines emitted by Fe XVII and Fe XXV, as well as their respective uncertainties propagated through plasma codes are key to understanding gas dynamics and microphysics in giant galaxies and cluster ICM, respectively. This is especially crucial for massive ellipticals, where sub-eV resolution would be needed to measure line broadening precisely, making resonant scattering an important velocity diagnostic in these systems for the foreseeable future. In this poster, I will summarize current status of resonant scattering measurements and show how they depend on the assumed atomic data. I will also discuss which improvements are essential to maximize scientific inference from future high resolution X-ray spectra.
Models for Sixty Double-Lined Binaries containing Giants
Eggleton, Peter P
2016-01-01
The observed masses, radii and temperatures of 60 medium- to long-period binaries, most of which contain a cool, evolved star and a hotter less-evolved one, are compared with theoretical models which include (a) core convective overshooting, (b)mass loss, possibly driven by dynamo action as in RS CVn binaries, and (c) tidal friction, including its effect on orbital period through magnetic braking. A reasonable fit is found in about 42 cases, but in 11 other cases the primaries appear to have lost either more mass or less mass than the models predict, and in 4 others the orbit is predicted to be either more or less circular than observed. Of the remaining 3 systems, two ($\\gamma$ Per and HR 8242) have a markedly `over-evolved' secondary, our explanation being that the primary component is the merged remnant of a former short-period sub-binary in a former triple system. The last system (V695 Cyg) defies any agreement at present. Mention is also made of three other systems (V643 Ori, OW Gem and V453 Cep), which ...
2016-06-06
1 Giant electric field control of magnetism and narrow ferromagnetic resonance linewidth in FeCoSiB/Si/SiO2/PMN-PT multiferroic heterostructures...coupling and narrow ferromagnetic resonance (FMR) linewidth in multiferroic heterostructures. Electric field induced large effective field of 175Oe...in which the electric field applied to the piezoelectric layer produces a mechanical deformation that couples to the magnetic film, and hence induces
Giant vesicles "colonies": a model for primitive cell communities.
Carrara, Paolo; Stano, Pasquale; Luisi, Pier Luigi
2012-07-09
Current research on the origin of life typically focuses on the self-organisation of molecular components in individual cell-like compartments, thereby bringing about the emergence of self-sustaining minimal cells. This is justified by the fact that single cells are the minimal forms of life. No attempts have been made to investigate the cooperative mechanisms that could derive from the assembly of individual compartments. Here we present a novel experimental approach based on vesicles "colonies" as a model of primitive cell communities. Experiments show that several advantages could have favoured primitive cell colonies when compared with isolated primitive cells. In fact there are two novel unexpected features typical of vesicle colonies, namely solute capture and vesicle fusion, which can be seen as the basic physicochemical mechanisms at the origin of life.
Cunha, M S; Avelino, P P; Christensen-Dalsgaard, J; Townsend, R H D
2015-01-01
With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations -- glitches -- in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacing and inertia of non-radial modes during several phases of red-giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the \\'echelle diagram. Interestingly, along the red-giant branch glitch-induced variation occurs only at the luminosity bump, potentially providin...
Resonance decay effect on conserved number fluctuations in a hadron resonance gas model
Mishra, D K; Netrakanti, P K; Mohanty, A K
2016-01-01
We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge and net-strangeness fluctuations in high energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find a good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.
Effect of resonance decay on conserved number fluctuations in a hadron resonance gas model
Mishra, D. K.; Garg, P.; Netrakanti, P. K.; Mohanty, A. K.
2016-07-01
We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge, and net-strangeness fluctuations in high-energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.
Barlini, S.; Kravchuk, V. L.; Wieland, O.; Bracco, A.; Gramegna, F.; Airoldi, A.; Benzoni, G.; Blasi, N.; Brambilla, S.; Brekiesz, M.; Bruno, M.; Camera, F.; Casini, G.; Chiari, M.; D'Agostino, M.; De Sanctis, J.; Geraci, E.; Kmiecik, M.; Lanchais, A.; Leoni, S.; Maj, A.; Mastinu, P. F.; Million, B.; Moroni, A.; Nannini, A.; Ordine, A.; Sacchi, R.; Vannini, G.
2006-08-01
Recent measurements have been performed at the National Laboratoty of Legnaro using mass-symmetric (400, 500 MeV 64Ni + 68Zn) and mass-asymmetric (250 MeV 16O + 116Sn) entrance channel reactions to form 132Ce compound nucleus at different excitation energies (E*=150, 200 and 200 MeV, respectively). The decay of the composite system has been followed studying the γ-rays and Light Charged Particles (LCP) spectra emitted in coincidence with the Evaporation Residues (ER). In this way the emission mechanism of the LCP, depending on the mass-asymmetry at the entrance channel and on the projectile energy, and the results of the Full Width Half-Maximum (FWHM) of the Giant Dipole Resonance as a function of the nuclear temperature have been studied.
Lunar-Forming Giant Impact Model Utilizing Modern Graphics Processing Units
J. C. Eiland; T. C. Salzillo; B. H. Hokr; J. L. Highland; W. D. Mayfield; B. M. Wyatt
2014-12-01
Recent giant impact models focus on producing a circumplanetary disk of the proper composition around the Earth and defer to earlier works for the accretion of this disk into the Moon. The discontinuity between creating the circumplanetary disk and accretion of the Moon is unnatural and lacks simplicity. In addition, current giant impact theories are being questioned due to their inability to find conditions that will produce a system with both the proper angular momentum and a resultant Moon that is isotopically similar to the Earth. Here we return to first principles and produce a continuous model that can be used to rapidly search the vast impact parameter space to identify plausible initial conditions. This is accomplished by focusing on the three major components of planetary collisions: constant gravitational attraction, short range repulsion and energy transfer. The structure of this model makes it easily parallelizable and well-suited to harness the power of modern Graphics Processing Units (GPUs). The model makes clear the physically relevant processes, and allows a physical picture to naturally develop. We conclude by demonstrating how the model readily produces stable Earth–Moon systems from a single, continuous simulation. The resultant systems possess many desired characteristics such as an iron-deficient, heterogeneously-mixed Moon and accurate axial tilt of the Earth.
Three-neutron resonance trajectories for realistic interaction models
Lazauskas, R
2005-01-01
Three-neutron resonances are searched using realistic nucleon-nucleon interaction models. Resonance pole trajectories were explored by artificially binding three-neutron and then gradually removing additional interaction. The final pole positions for three-neutron states up to $|J|$=5/2 finish in the fourth energy quadrant with Re(E)$\\leqslant0$ before additional interaction is removed. This study shows that realistic nucleon-nucleon interaction models exclude possible existence of observable three-neutron resonances.
Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.
von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S
2009-01-01
The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.
Giant planet formation in the framework of the core instability model
Fortier, Andrea
2010-01-01
In this Thesis I studied the formation of the four giant planets of the Solar System in the framework of the nucleated instability hypothesis. The model considers that solids and gas accretion are coupled in an interactive fashion, taking into account detailed constitutive physics for the envelope. The accretion rate of the core corresponds to the oligarchic growth regime. I also considered that accreted planetesimals follow a size distribution. One of the main results of this Thesis is that I was able to compute the formation of Jupiter, Saturn, Uranus and Neptune in less than 10 million years, which is considered to be the protoplanetary disk mean lifetime.
A model for ferrite-loaded transversely biased coaxial resonators
Acar, Öncel; Zhurbenko, Vitaliy; Johansen, Tom Keinicke
2013-01-01
This work describes a simple model for shortened coaxial cavity resonators with transversely biased ferrite elements. The ferrite allows the resonance frequency to be tuned, and the presented model provides a method of approximately calculating these frequencies to generate the tuning curve...
Marley, Mark; Lewis, Nikole; Line, Michael; Morley, Caroline; Fortney, Jonathan
2014-01-01
We explored two aspects of the problem of characterizing cool extrasolar giant planets in scattered optical light with a space based coronagraph. First, for a number of the known radial velocity (RV) giants we computed traditional forward models of their atmospheric structure and clouds, given various input assumptions, and computed model albedo spectra. Such models have been computed before, but mostly for generic planets. Our new models demonstrate that there is likely interesting spectral diversity among those planets that are most favorable for direct detection. Second, we applied a powerful Markov Chain Monte Carlo (MCMC) retrieval technique to synthetic noisy data of cool giants to better understand how well various atmospheric parameters--particularly molecular abundances and cloud properties--could be constrained. This is the first time such techniques have been applied to this problem. The process is time consuming, so only a dozen or so cases could be completed in the limited time available. Neverth...
MODELING KEPLER OBSERVATIONS OF SOLAR-LIKE OSCILLATIONS IN THE RED GIANT STAR HD 186355
Jiang, C.; Jiang, B. W. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Christensen-Dalsgaard, J.; Frandsen, S.; Kjeldsen, H.; Karoff, C. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Bedding, T. R.; Stello, D.; Huber, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Mosser, B. [LESIA, CNRS, Universite Pierre et Marie Curie, Universite Denis Diderot, Observatoire de Paris, 92195 Meudon (France); Demarque, P. [Department of Astronomy, Yale University, New Haven, CT 06520-8101 (United States); Fanelli, M. N.; Kinemuchi, K. [Bay Area Environmental Research Institute, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Mullally, F., E-mail: jiangchen@mail.bnu.edu.cn [SETI Institute, NASA Ames Research Center, Moffett Field, CA 94035 (United States)
2011-12-01
We have analyzed oscillations of the red giant star HD 186355 observed by the NASA Kepler satellite. The data consist of the first five quarters of science operations of Kepler, which cover about 13 months. The high-precision time-series data allow us to accurately extract the oscillation frequencies from the power spectrum. We find that the frequency of the maximum oscillation power, {nu}{sub max}, and the mean large frequency separation, {Delta}{nu}, are around 106 and 9.4 {mu}Hz, respectively. A regular pattern of radial and non-radial oscillation modes is identified by stacking the power spectra in an echelle diagram. We use the scaling relations of {Delta}{nu} and {nu}{sub max} to estimate the preliminary asteroseismic mass, which is confirmed with the modeling result (M = 1.45 {+-} 0.05 M{sub Sun }) using the Yale Rotating stellar Evolution Code (YREC7). In addition, we constrain the effective temperature, luminosity, and radius from comparisons between observational constraints and models. A number of mixed l = 1 modes are also detected and taken into account in our model comparisons. We find a mean observational period spacing for these mixed modes of about 58 s, suggesting that this red giant branch star is in the shell hydrogen-burning phase.
Tidal Downsizing model. I. Numerical methods: saving giant planets from tidal disruptions
Nayakshin, Sergei
2014-01-01
Tidal Downsizing (TD) is a recently developed planet formation theory that supplements the classical Gravitational disc Instability (GI) model with planet migration inward and tidal disruptions of GI fragments in the inner regions of the disc. Numerical methods for a detailed population synthesis of TD planets are presented here. As an example application, the conditions under which GI fragments collapse faster than they migrate into the inner $a\\sim$ few AU disc are considered. It is found that most gas fragments are tidally or thermally disrupted unless (a) their opacity is $\\sim 3$ orders of magnitude less than the interstellar dust opacity at metallicities typical of the observed giant planets, or (b) the opacity is high but the fragments accrete large dust grains (pebbles) from the disc. Case (a) models produce very low mass solid cores ($M_{\\rm core} < 0.1$ Earth masses) and follow a negative correlation of giant planet frequency with host star metallicity. In contrast, case (b) models produce massiv...
BANDEY, HELEN L.; BROWN, MARK J.; CERNOSEK, RICHARD W.; HILLMAN, A. ROBERT; MARTIN, STEPHEN J.
1999-09-16
We derive a lumped-element, equivalent-circuit model for the thickness shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of {pi}/2 radians. This model predicts accurately the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. The elements of the model are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and the Sauerbrey models.
Dynamical model of electroweak pion production in the resonance region
Sato, T; Kubodera, K; Lee, T S H
2006-01-01
In this report, we will briefly review the dynamical model of pion electroweak production reactions in the $\\Delta$ resonance region and report on our study of neutrino-nucleus reactions based on this model.
Resonances and fluctuations in the statistical model
Torrieri Giorgio
2012-11-01
Full Text Available We describe how the study of resonances and fluctuations can help constrain the thermal and chemical freezeout properties of the fireball created in heavy ion collisions. This review is based on [1–5
Occurence and Luminosity Functions of Giant Radio Halos from Magneto-Turbulent Model
Cassano, R; Setti, G; Cassano, Rossella; Brunetti, Gianfranco; Setti, Giancarlo
2004-01-01
We calculate the probability to form giant radio halos (~ 1 Mpc size) as a function of the mass of the host clusters by using a Statistical Magneto-Turbulent Model (Cassano & Brunetti, these proceedings). We show that the expectations of this model are in good agreement with the observations for viable values of the parameters. In particular, the abrupt increase of the probability to find radio halos in the more massive galaxy clusters (M > 2x10^{15} solar masses) can be well reproduced. We calculate the evolution with redshift of such a probability and find that giant radio halos can be powered by particle acceleration due to MHD turbulence up to z~0.5 in a LCDM cosmology. Finally, we calculate the expected Luminosity Functions of radio halos (RHLFs). At variance with previous studies, the shape of our RHLFs is characterized by the presence of a cut-off at low synchrotron powers which reflects the inefficiency of particle acceleration in the case of less massive galaxy clusters.
Two Mode Resonator and Contact Model for Standing Wave Piezomotor
Andersen, B.; Blanke, Mogens; Helbo, J.
2001-01-01
The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailled simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...
Wei LIU; Zhenyuan JIA; Fuji WANG; Yongshun ZHANG; Dongming GUO
2008-01-01
The geometrical nonlinearity of a giant magne-tostrictive thin film (GMF) can be clearly detected under the magnetostriction effect. Thus, using geometrical linear elastic theory to describe the strain, stress, and constitutive relationship of GMF is inaccurate. According to nonlinear elastic theory, a nonlinear deformation model of the bimorph GMF is established based on assumptions that the magnetostriction effect is equivalent to the effect of body force loaded on the GMF. With Taylor series method, the numerical solution is deduced. Experiments on TbDyFe/Polyimide (PI)/SmFe and TbDyFe/Cu/SmFe are then conducted to verify the proposed model, respectively. Results indicate that the nonlinear deflection curve model is in good conformity with the experimental data.
Gómez-Polo, C.; Vázquez, M.; Knobel, M.
2001-01-01
A method to investigate the giant magnetoimpedance effect based on Fourier analysis is introduced. The study is carried out on a FeCoSiB amorphous wire with vanishing magnetostriction subjected to joule heating (current annealing) treatment that induces an enhancement of circumferential magnetic anisotropy and modifies the magnetoimpedance response of the samples. Experimental results are interpreted within the framework of the classical electrodynamical model, where the circumferential permeability plays the dominant role in the field dependence of the complex impedance of the sample. A rotational magnetization model is employed to determine the circular magnetization process, and a mean value of the circumferential permeability is obtained through the harmonic components obtained through Fourier analysis of the time derivative of the circular magnetization. This simple model is able to reproduce the observed experimental behavior, i.e., evolution of the field dependence of the complex impedance with annealing and the asymmetrical field dependence under a dc biased electrical current.
Abundance analysis of the halo giant HD 122563 with three-dimensional model stellar atmospheres
Collet, R.; Nordlund, Å.; Asplund, M.; Hayek, W.; Trampedach, R.
We present a preliminary local thermodynamic equilibrium (LTE) abundance analysis of the template halo red giant HD122563 based on a realistic, three-dimensional (3D), time-dependent, hydrodynamical model atmosphere of the very metal-poor star. We compare the results of the 3D analysis with the abundances derived by means of a standard LTE analysis based on a classical, 1D, hydrostatic model atmosphere of the star. Due to the different upper photospheric temperature stratifications predicted by 1D and 3D models, we find large, negative, 3D-1D LTE abundance differences for low-excitation OH and Fe I lines. We also find trends with lower excitation potential in the derived Fe LTE abundances from Fe I lines, in both the 1D and 3D analyses. Such trends may be attributed to the neglected departures from LTE in the spectral line formation calculations.
Abundance Analysis of the Halo Giant HD122563 with Three-Dimensional Model Stellar Atmospheres
Collet, R; Asplund, M; Hayek, W; Trampedach, R
2009-01-01
We present a preliminary local thermodynamic equilibrium (LTE) abundance analysis of the template halo red giant HD122563 based on a realistic, three-dimensional (3D), time-dependent, hydrodynamical model atmosphere of the very metal-poor star. We compare the results of the 3D analysis with the abundances derived by means of a standard LTE analysis based on a classical, 1D, hydrostatic model atmosphere of the star. Due to the different upper photospheric temperature stratifications predicted by 1D and 3D models, we find large, negative, 3D-1D LTE abundance differences for low-excitation OH and Fe I lines. We also find trends with lower excitation potential in the derived Fe LTE abundances from Fe I lines, in both the 1D and 3D analyses. Such trends may be attributed to the neglected departures from LTE in the spectral line formation calculations.
Science cases in the integrated modeling of Chinese Giant Solar Telescope
Liu, Zhong; Ji, Haisheng; Jin, Zhenyu; Lin, Jun; Deng, Yuanyong
2016-07-01
Science goals of telescopes are the fundament data of integrated modeling of astronomical telescopes. The differences between science goals are sources of telescope's diversities. Solar telescopes are a very special type in astronomical telescopes. Chinese Giant Solar Telescope1 (CGST) is currently designed to be an 8-meter Ring Interferometric Telescope (RIT). Even compare with the other solar telescopes, CGST is also an unusual telescope due to its ring aperture and distinctive science goals. As the initial data of integrated modeling of CGST, the main science cases determine the basic structure of the telescope as well as its working mode. This paper will discuss the importance of the primary science case in integrated modeling of CGST.
Modeling laser brightness from cross porro prism resonators
Forbes, A
2006-07-01
Full Text Available . In this study a cross Porro prism resonator is considered; crossed Porro prism resonators have been known for some time, but until recently have not been modeled as a complete physical optics system that allows the modal output to be determined as a function...
Modelling a singly resonant, intracavity ring optical parametric oscillator
Buchhave, Preben; Tidemand-Lichtenberg, Peter; Wei, Hou;
2003-01-01
We study theoretically and experimentally the dynamics of a single-frequency, unidirectional ring laser with an intracavity nonlinear singly resonant OPO-crystal in a coupled resonator. We find for a range of operating conditions good agreement between model results and measurements of the laser ...
Barclay, Thomas; Huber, Daniel; Foreman-Mackey, Daniel; Cochran, William D; MacQueen, Phillip J; Rowe, Jason F; Quintana, Elisa V
2014-01-01
Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73+/-0.13 Mjup planet orbiting a red giant star.
Barclay, Thomas; Huber, Daniel; Rowe, Jason F.; Quintana, Elisa V. [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Endl, Michael; Cochran, William D.; MacQueen, Phillip J. [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States); Foreman-Mackey, Daniel [New York University, Center for Cosmology and Particle Physics, New York, NY 10003 (United States)
2015-02-10
Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73 ± 0.13 M {sub Jup} planet orbiting a red giant star.
Mathematical Modeling of Subthreshold Resonant Properties in Pyloric Dilator Neurons
Babak Vazifehkhah Ghaffari
2015-01-01
Full Text Available Various types of neurons exhibit subthreshold resonance oscillation (preferred frequency response to fluctuating sinusoidal input currents. This phenomenon is well known to influence the synaptic plasticity and frequency of neural network oscillation. This study evaluates the resonant properties of pacemaker pyloric dilator (PD neurons in the central pattern generator network through mathematical modeling. From the pharmacological point of view, calcium currents cannot be blocked in PD neurons without removing the calcium-dependent potassium current. Thus, the effects of calcium ICa and calcium-dependent potassium IKCa currents on resonant properties remain unclear. By taking advantage of Hodgkin-Huxley-type model of neuron and its equivalent RLC circuit, we examine the effects of changing resting membrane potential and those ionic currents on the resonance. Results show that changing the resting membrane potential influences the amplitude and frequency of resonance so that the strength of resonance (Q-value increases by both depolarization and hyperpolarization of the resting membrane potential. Moreover, hyperpolarization-activated inward current Ih and ICa (in association with IKCa are dominant factors on resonant properties at hyperpolarized and depolarized potentials, respectively. Through mathematical analysis, results indicate that Ih and IKCa affect the resonant properties of PD neurons. However, ICa only has an amplifying effect on the resonance amplitude of these neurons.
Mathematical modeling of subthreshold resonant properties in pyloric dilator neurons.
Vazifehkhah Ghaffari, Babak; Kouhnavard, Mojgan; Aihara, Takeshi; Kitajima, Tatsuo
2015-01-01
Various types of neurons exhibit subthreshold resonance oscillation (preferred frequency response) to fluctuating sinusoidal input currents. This phenomenon is well known to influence the synaptic plasticity and frequency of neural network oscillation. This study evaluates the resonant properties of pacemaker pyloric dilator (PD) neurons in the central pattern generator network through mathematical modeling. From the pharmacological point of view, calcium currents cannot be blocked in PD neurons without removing the calcium-dependent potassium current. Thus, the effects of calcium (I(Ca)) and calcium-dependent potassium (I(KCa)) currents on resonant properties remain unclear. By taking advantage of Hodgkin-Huxley-type model of neuron and its equivalent RLC circuit, we examine the effects of changing resting membrane potential and those ionic currents on the resonance. Results show that changing the resting membrane potential influences the amplitude and frequency of resonance so that the strength of resonance (Q-value) increases by both depolarization and hyperpolarization of the resting membrane potential. Moreover, hyperpolarization-activated inward current (I(h)) and I(Ca) (in association with I(KCa)) are dominant factors on resonant properties at hyperpolarized and depolarized potentials, respectively. Through mathematical analysis, results indicate that I h and I(KCa) affect the resonant properties of PD neurons. However, I(Ca) only has an amplifying effect on the resonance amplitude of these neurons.
Stochastic and coherence resonance in an in silico neural model.
Chiu, Alan W L; Bardakjian, Berj L
2004-05-01
We show that it is possible for chaotic systems to display the main features of stochastic and coherence resonance. In particular, a model of coupled nonlinear oscillators which emulates the transmembrane voltage activities in CA3 neurons, operating in a chaotic regime and in the presence of noise, can exhibit coherence resonance and stochastic resonance. Certain firing frequencies become more "rhythmic" for some optimal values of noise intensity. The effect of noise in different coupling pathways is investigated. We found that the effect of coherence resonance and stochastic resonance are more prominent if noise is presented in either electric field or gap junction coupling pathways. Frequency sensitivity of the model is investigated as a preliminary step in illustrating the principles of possible epileptic seizure control strategies using "chaos control" concepts. Significant effects of stochastic resonance are observed in the 4-8 Hz range. Weaker effects can be found in the 1-4 Hz and 8-10 Hz ranges whereas 0.5 Hz does not exhibit any resonance phenomenon. Our results suggest that: (a) Stochastic resonance could enhance the intrinsic 4-8 Hz rhythms in CA3 neurons more prominently via field coupling pathways. It could also help explain why some reported seizure control strategies using pulse-trains would only be effective at 0.5 Hz. (b) Stochastic resonance-like behavior can occur in the gamma range only if noise is presented via chemical synaptic pathways.
Vieytes, M; Cacciari, C; Origlia, L; Pancino, E
2010-01-01
Context. Mass loss of ~0.1-0.3 M$_{\\odot}$ from Population II red giant stars (RGB) is a requirement of stellar evolution theory in order to account for several observational evidences in globular clusters. Aims. The aim of this study is to detect the presence of outward velocity fields, which are indicative of mass outflow, in six luminous red giant stars of the stellar cluster {\\omega} Cen. Methods. We compare synthetic line profiles computed using relevant model chromospheres to observed profiles of the H{\\alpha} and Ca II K lines. The spectra were taken with UVES (R=45,000) and the stars were selected so that three of them belong to the metal-rich population and three to the metal-poor population, and sample as far down as 1 to 2.5 magnitudes fainter than the respective RGB tips. Results. We do indeed reveal the presence of low-velocity outward motions in four of our six targets, without any apparent correlation with astrophysical parameters. Conclusions. This provides direct evidence that outward velocit...
Mei Lin Neo
Full Text Available Recruitment constraints on Singapore's dwindling fluted giant clam, Tridacna squamosa, population were studied by modelling fertilisation, larval transport, and settlement using real-time hydrodynamic forcing combined with knowledge of spawning characteristics, larval development, behaviour, and settlement cues. Larval transport was simulated using a finite-volume advection-diffusion model coupled to a three-dimensional hydrodynamic model. Three recruitment constraint hypotheses were tested: 1 there is limited connectivity between Singapore's reefs and other reefs in the region, 2 there is limited exchange within Singapore's Southern Islands, and 3 there exist low-density constraints to fertilisation efficacy (component Allee effects. Results showed that connectivity among giant clam populations was primarily determined by residual hydrodynamic flows and spawning time, with greatest chances of successful settlement occurring when spawning and subsequent larval dispersal coincided with the period of lowest residual flow. Simulations suggested poor larval transport from reefs located along the Peninsular Malaysia to Singapore, probably due to strong surface currents between the Andaman Sea and South China Sea combined with a major land barrier disrupting larval movement among reefs. The model, however, predicted offshore coral reefs to the southeast of Singapore (Bintan and Batam may represent a significant source of larvae. Larval exchange within Singapore's Southern Islands varied substantially depending on the locations of source and sink reefs as well as spawning time; but all simulations resulted in low settler densities (2.1-68.6 settled individuals per 10,000 m(2. Poor fertilisation rates predicted by the model indicate that the low density and scattered distribution of the remaining T. squamosa in Singapore are likely to significantly inhibit any natural recovery of local stocks.
[Giant retroperitoneal liposarcoma].
Mezzour, Mohamed Hicham; El Messaoudi, Yasser Arafat; Fekak, Hamid; Rabii, Redouane; Marnissi, Farida; Karkouri, Mehdi; Salam, Siham; Iraki, Moulay Ahmed; Joual, Abdenbi; Meziane, Fathi
2006-02-01
The authors report a case of giant retroperitoneal liposarcoma. The diagnosis was suspected after scanography and magnetic resonance imaging and confirmed by the histological analysis of the extracted piece after surgical treatment. Postoperative evolution was favourable after one year without recurrence or distant metastasis. The authors discuss the pathologic and therapeutic aspects and the prognosis of retroperitoneal liposarcoma.
Acoustic resonances in HID lamps: model and measurement
Hirsch, John [Philips Lighting BV, Lightlabs, Mathildelaan 1, 5600 JM Eindhoven (Netherlands); Baumann, Bernd; Wolff, Marcus [Hamburg University of Applied Sciences, Institute for Physical Sensors, Berliner Tor 21, 20099 Hamburg (Germany); Bhosle, Sounil [Universite Paul Sabatier, Toulouse (France); Valdivia Barrientos, Ricardo, E-mail: john.hirsch@philips.co [National Nuclear Research Institute, Highway Mexico-Toluca s/n, La Marquesa, Ocoyoacac, CP 52750 (Mexico)
2010-06-16
A finite element model including plasma simulation is used to calculate the amplitude of acoustic resonances in HID lamps in a 2D axisymmetric geometry. Simulation results are presented for different operation parameters and are compared with experimental data.
Waveguide Model for Thick Complementary Split Ring Resonators
Pulido-Mancera, Laura Maria
2014-01-01
This paper presents a very simple analytical model for the design of Frequency Selective Surfaces based on Complementary Split Ring Resonators (CSRR) within the microwave range. Simple expressions are provided for the most important geometrical parameters of the model, yielding an accurate description of the CSRR resonance frequency and avoiding full-wave numerical simulations. Besides, a qualitative description of the band-pass filter behavior of these structures is described, considering its high quality factor Q.
Zarembo, K
2008-01-01
The giant magnons are classical solitons of the O(N) sigma-model, which play an important role in the AdS/CFT correspondence. We study quantum giant magnons first at large N and then exactly using Bethe Ansatz, where giant magnons can be interpreted as holes in the Fermi sea. We also identify a solvable limit of Bethe Ansatz in which it describes a weakly-interacting Bose gas at zero temperature. The examples include the O(N) model at large N, weakly interacting non-linear Schrodinger model, and nearly isotropic XXZ spin chain in the magnetic field.
Polarization modeling for the main optics of Chinese Giant Solar Telescope
Yuan, Shu; Fu, Yu; Jin, Zhenyu
2016-07-01
Chinese Giant Solar Telescope, which has a 8m diameter segmented primary mirror, is a plan for the next generation ground-based large solar telescope in China. A major scientific requirement for this telescope is the high accuracy polarimetry. In this paper, the instrumental polarization of the main optics is analyzed by polarization modeling, which is caused by off-axial field of view, spider asymmetry, nonuniform segment gap and segment coating. The result shows that the net polarization is sensitive to the asymmetrical spider leg widening and the uniformity of the segment optical property. For meeting the accuracy requirement, the extinction ratio and retardence error for each segment should be less than 0.3% and 0.8 degree, respectively. Generally, the ring segmented primary mirror have advantage in controlling the instrumental polarization for large main optics.
On the Cool Side: Modeling the Atmospheres of Brown Dwarfs and Giant Planets
Marley, M. S.; Robinson, T. D.
2015-08-01
The atmosphere of a brown dwarf or extrasolar giant planet controls the spectrum of radiation emitted by the object and regulates its cooling over time. Although the study of these atmospheres has been informed by decades of experience modeling stellar and planetary atmospheres, the distinctive characteristics of these objects present unique challenges to forward modeling. In particular, complex chemistry arising from molecule-rich atmospheres, molecular opacity line lists (sometimes running to 10 billion absorption lines or more), multiple cloud-forming condensates, and disequilibrium chemical processes all combine to create a challenging task for any modeling effort. This review describes the process of incorporating these complexities into one-dimensional radiative-convective equilibrium models of substellar objects. We discuss the underlying mathematics as well as the techniques used to model the physics, chemistry, radiative transfer, and other processes relevant to understanding these atmospheres. The review focuses on methods for creating atmosphere models and briefly presents some comparisons of model predictions to data. Current challenges in the field and some comments on the future conclude the review.
Zhou, C; Li, J H; Duan, J A; Deng, G L
2015-01-01
In order to develop jetting technologies of glue in LED and microelectronics packaging, giant-magnetostrictive-material (GMM) is firstly applied to increase jetting response, and a new magnifying device including a lever and a flexible hinge is designed to improve jetting characteristics. Physical models of the jetting system are derived from the magnifying structure and working principle, which involves circuit model, electro-magneto-displacement model, dynamic model and fluid-solid coupling model. The system model is established by combining mathematical models with Matlab-Simulink. The effectiveness of the GMM-based dispenser is confirmed by simulation and experiments. The jetting frequency significantly increases to 250 Hz, and dynamic behaviors jetting needle are evaluated that the velocity and displacement of the jetting needle reaches to 320 mm•s-1 and 0.11 mm respectively. With the increasing of the filling pressure or the amplitude of the current, the dot size will become larger. The dot size and working frequency can be easily adjusted.
Zhou, C.; Li, J. H.; Duan, J. A.; Deng, G. L.
2015-12-01
In order to develop jetting technologies of glue in LED and microelectronics packaging, giant-magnetostrictive-material (GMM) is firstly applied to increase jetting response, and a new magnifying device including a lever and a flexible hinge is designed to improve jetting characteristics. Physical models of the jetting system are derived from the magnifying structure and working principle, which involves circuit model, electro-magneto-displacement model, dynamic model and fluid-solid coupling model. The system model is established by combining mathematical models with Matlab-Simulink. The effectiveness of the GMM-based dispenser is confirmed by simulation and experiments. The jetting frequency significantly increases to 250 Hz, and dynamic behaviors jetting needle are evaluated that the velocity and displacement of the jetting needle reaches to 320 mm•s-1 and 0.11 mm respectively. With the increasing of the filling pressure or the amplitude of the current, the dot size will become larger. The dot size and working frequency can be easily adjusted.
Zhou, C.; Li, J.H.; Duan, J.A.; Deng, G.L.
2015-01-01
In order to develop jetting technologies of glue in LED and microelectronics packaging, giant-magnetostrictive-material (GMM) is firstly applied to increase jetting response, and a new magnifying device including a lever and a flexible hinge is designed to improve jetting characteristics. Physical models of the jetting system are derived from the magnifying structure and working principle, which involves circuit model, electro-magneto-displacement model, dynamic model and fluid-solid coupling model. The system model is established by combining mathematical models with Matlab-Simulink. The effectiveness of the GMM-based dispenser is confirmed by simulation and experiments. The jetting frequency significantly increases to 250 Hz, and dynamic behaviors jetting needle are evaluated that the velocity and displacement of the jetting needle reaches to 320 mm•s-1 and 0.11 mm respectively. With the increasing of the filling pressure or the amplitude of the current, the dot size will become larger. The dot size and working frequency can be easily adjusted. PMID:26670008
A Prototype-Based Resonance Model of Rhythm Categorization
Rasmus Bååth
2014-10-01
Full Text Available Categorization of rhythmic patterns is prevalent in musical practice, an example of this being the transcription of (possibly not strictly metrical music into musical notation. In this article we implement a dynamical systems' model of rhythm categorization based on the resonance theory of rhythm perception developed by Large (2010. This model is used to simulate the categorical choices of participants in two experiments of Desain and Honing (2003. The model accurately replicates the experimental data. Our results support resonance theory as a viable model of rhythm perception and show that by viewing rhythm perception as a dynamical system it is possible to model central properties of rhythm categorization.
A prototype-based resonance model of rhythm categorization.
Bååth, Rasmus; Lagerstedt, Erik; Gärdenfors, Peter
2014-01-01
Categorization of rhythmic patterns is prevalent in musical practice, an example of this being the transcription of (possibly not strictly metrical) music into musical notation. In this article we implement a dynamical systems' model of rhythm categorization based on the resonance theory of rhythm perception developed by Large (2010). This model is used to simulate the categorical choices of participants in two experiments of Desain and Honing (2003). The model accurately replicates the experimental data. Our results support resonance theory as a viable model of rhythm perception and show that by viewing rhythm perception as a dynamical system it is possible to model central properties of rhythm categorization.
Krasznahorkay, A; Csige, L; Eriksen, T K; Giacoppo, F; Görgen, A; Hagen, T W; Harakeh, M N; Julin, R; Koehler, P; Paar, N; Siem, S; Stuhl, L; Tornyi, T; Vretenar, D
2013-01-01
The 208Pb(p,ngamma p)207Pb reaction at a beam energy of 30 MeV has been used to excite the anti-analog of the giant dipole resonance (AGDR) and to measure its gamma-decay of to the isobaric analog state. The energy of the transition has also been calculated with the self-consistent relativistic random-phase approximation (RRPA), and found to be linearly correlated to the predicted value of the neutron-skin thickness (DR_pn). By comparing the theoretical results with the measured transition energy, the value of 0.190 +- 0.028 fm has been determined for DR_pn of 208Pb, in agreement with previous experimental results. The AGDR excitation energy has also been used to calculate the symmetry energy at saturation (J=32.7+- 0.6 MeV) and the slope of the symmetry energy (L=49.7 +- 4.4 MeV), resulting in more stringent constraints than most of the previous studies.
Waetzig, Gregory R; Horrocks, Gregory A; Jude, Joshua W; Zuin, Lucia; Banerjee, Sarbajit
2016-01-14
Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb(3+) centers upon excitation in proximity to the giant resonance of the host Gd(3+) ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism from multiple exciton generation to single thermal exciton formation and Auger decay processes. The solid-solution Gd1-xTbxOCl nanocrystals are further topotactically transformed with retention of a nine-coordinated cation environment to solid-solution Gd1-xTbxF3 nanocrystals upon solvothermal treatment with XeF2. The metastable hexagonal phase of GdF3 can be stabilized at room temperature through this topotactic approach and is transformed subsequently to the orthorhombic phase. The fluoride nanocrystals indicate an analogous but blue-shifted modulation of the X-ray excited optical luminescence of the Tb(3+) centers upon X-ray excitation near the giant resonance of the host Gd(3+) ions.
Tracking stochastic resonance curves using an assisted reference model
Calderón Ramírez, Mario; Rico Martínez, Ramiro [Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Av. Tecnológico y A. García Cubas S/N, Celaya, Guanajuato, 38010 (Mexico); Ramírez Álvarez, Elizeth [Nonequilibrium Chemical Physics, Physik-Department, TU-München, James-Franck-Str. 1, 85748 Garching bei München (Germany); Parmananda, P. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)
2015-06-15
The optimal noise amplitude for Stochastic Resonance (SR) is located employing an Artificial Neural Network (ANN) reference model with a nonlinear predictive capability. A modified Kalman Filter (KF) was coupled to this reference model in order to compensate for semi-quantitative forecast errors. Three manifestations of stochastic resonance, namely, Periodic Stochastic Resonance (PSR), Aperiodic Stochastic Resonance (ASR), and finally Coherence Resonance (CR) were considered. Using noise amplitude as the control parameter, for the case of PSR and ASR, the cross-correlation curve between the sub-threshold input signal and the system response is tracked. However, using the same parameter the Normalized Variance curve is tracked for the case of CR. The goal of the present work is to track these curves and converge to their respective extremal points. The ANN reference model strategy captures and subsequently predicts the nonlinear features of the model system while the KF compensates for the perturbations inherent to the superimposed noise. This technique, implemented in the FitzHugh-Nagumo model, enabled us to track the resonance curves and eventually locate their optimal (extremal) values. This would yield the optimal value of noise for the three manifestations of the SR phenomena.
Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing
2016-03-01
We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area.
Yong, Z.; Trevisanutto, P. E.; Chiodo, L.; Santoso, I.; Barman, A. R.; Asmara, T. C.; Dhar, S.; Kotlov, A.; Terentjevs, A.; Della Sala, F.; Olevano, V.; Rübhausen, M.; Venkatesan, T.; Rusydi, A.
2016-05-01
Titanium dioxide (TiO2) has rich physical properties with potential implications for both fundamental physics and new applications. To date, the main focus of applied research is to tune its optical properties, which is usually done via doping and/or nanoengineering. However, understanding the role of d electrons in materials and possible functionalization of d -electron properties are still major challenges. Herewith, within a combination of an innovative experimental technique, high-energy optical conductivity, and state-of-the-art ab initio electronic structure calculations, we report an emerging, novel resonant exciton in the deep ultraviolet region of the optical response. The resonant exciton evolves upon low-concentration Ta substitution in anatase TiO2 films. It is surprisingly robust and related to strong electron-electron and electron-hole interactions. The d - and f -orbital localization, due to Ta substitution, plays an unexpected role, activating strong electronic correlations and dominating the optical response under photoexcitation. Our results shed light on a new optical phenomenon in anatase TiO2 films and on the possibility of tuning electronic properties by Ta substitution.
Mapping and modelling the habitat of giant pandas in Foping Nature Reserve, China
Liu, X.
2001-01-01
The fact that only about 1000 giant pandas and 29500 km2 of panda habitat are left in the west part of China makes it an urgent issue to save this endangered animal species and protect its habitat. For effective conservation of the giant panda and its habitat, a thorough evaluation of panda habitat
Mapping and modelling the habitat of giant pandas in Foping Nature Reserve, China
Liu, X.
2001-01-01
The fact that only about 1000 giant pandas and 29500 km2 of panda habitat are left in the west part of China makes it an urgent issue to save this endangered animal species and protect its habitat. For effective conservation of the giant panda and its habitat, a thorough evaluation of panda habitat
The giant HII region NGC 588 as a benchmark for 2D photoionisation models
Perez-Montero, Enrique; Relano, Monica; Vilchez, Jose M; Kehrig, Carolina; Morisset, Christophe
2014-01-01
We use optical integral field spectroscopy and 8 and 24 micron mid-IR observations of the giant HII region NGC 588 in the disc of M33 as input and constraints for two-dimensional tailor-made photoionisation models. Two different geometrical approaches are followed for the modelling structure: i) Each spatial element of the emitting gas is studied individually using models which assume that the ionisation structure is complete in each element to look for azimuthal variations across gas and dust. ii) A single model is considered, and the two-dimensional structure of the gas and the dust are assumed to be due to the projection of an emitting sphere onto the sky. The models in both assumptions reproduce the radial profiles of Hbeta surface brightness, the observed number of ionising photons, and the strong optical emission-line relative intensities. The first approach produces a constant-density matter-bounded thin shell of variable thickness and dust-to-gas ratio, while the second gives place to a radiation-boun...
An Analytic Model for Buoyancy Resonances in Protoplanetary Disks
Lubow, Stephen H
2014-01-01
Zhu, Stone, and Rafikov (2012) found in 3D shearing box simulations a new form of planet-disk interaction that they attributed to a vertical buoyancy resonance in the disk. We describe an analytic linear model for this interaction. We adopt a simplified model involving azimuthal forcing that produces the resonance and permits an analytic description of its structure. We derive an analytic expression for the buoyancy torque and show that the vertical torque distribution agrees well with results of Athena simulations and a Fourier method for linear numerical calculations carried out with the same forcing. The buoyancy resonance differs from the classic Lindblad and corotation resonances in that the resonance lies along tilted planes. Its width depends on damping effects and is independent of the gas sound speed. The resonance does not excite propagating waves. At a given large azimuthal wavenumber k_y > 1/h (for disk thickness h), the buoyancy resonance exerts a torque over a region that lies radially closer to...
Analytical Model of Planar Double Split Ring Resonator
Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor
2007-01-01
This paper focuses on accurate modelling of microstrip double split ring resonators. The impedance matrix representation for coupled lines is applied for the first time to model the SRR, resulting in excellent model accuracy over a wide frequency range. Phase compensation is implemented to take...
Asymptotic-bound-state model for Feshbach resonances
Tiecke, T.G.; Goosen, M.R.; Walraven, J.T.M.; Kokkelmans, S.J.J.M.F.
2010-01-01
We present an asymptotic-bound-state model which can be used to accurately describe all Feshbach resonance positions and widths in a two-body system. With this model we determine the coupled bound states of a particular two-body system. The model is based on analytic properties of the two-body
Nikolić Igor M.
2006-01-01
Full Text Available Background. The use of computer models for the 3- dimensional reconstruction could be a reliable method to overcome technical imperfections of diagnostic procedures for the microsurgical operation of giant intracranial aneurysms. Case report. We presented a case of successfully operated 52-year-old woman with giant intracranial aneurysm, in which the computer 3-dimensional reconstruction of blood vessels and the aneurysmal neck had been decisive for making the diagnosis. The model for 3- dimensional reconstruction of blood vessels was based on the two 2-dimensional projections of the conventional angiography. Standard neuroradiologic diagnostic procedures showed a giant aneurysm on the left middle cerebral artery, but the conventional subtraction and CT angiography did not reveal enough information. By the use of a personal computer, we performed a 3-dimensional spatial reconstruction of the left carotid artery to visualize the neck of aneurysm and its supplying blood vessels. Conclusion. The 3-dimensional spatial reconstruction of the cerebral vessels of a giant aneurysm based on the conventional angiography could be useful for planning the surgical procedure.
Mathematical Modeling of Subthreshold Resonant Properties in Pyloric Dilator Neurons
Vazifehkhah Ghaffari, Babak; Kouhnavard, Mojgan; Aihara, Takeshi; Kitajima, Tatsuo
2015-01-01
Various types of neurons exhibit subthreshold resonance oscillation (preferred frequency response) to fluctuating sinusoidal input currents. This phenomenon is well known to influence the synaptic plasticity and frequency of neural network oscillation. This study evaluates the resonant properties of pacemaker pyloric dilator (PD) neurons in the central pattern generator network through mathematical modeling. From the pharmacological point of view, calcium currents cannot be blocked in PD neur...
The giant arc statistics in the three year WMAP cosmological model
Li, G L; Jing, Y P; Mo, H J; Gao, L; Lin, W P
2006-01-01
We use high-resolution $N$-body simulations to investigate the optical depth of giant arcs with length-to-width ratio larger than 7.5 and 10 in the `standard' $\\LCDM$ model with $\\sigma_8=0.9$ and $\\Omega_{\\rm m,0}=0.3$ and a model based on three-year Wilkinson Microwave Anisotropy Probe (WMAP) data. We find that, in dark-matter only simulations, the lensing probability in the three-year WMAP model (with $\\sigma_8=0.74$ and $\\Omega_{\\rm m,0}=0.238)$ decreases by a factor of $\\sim 6$ compared with that in the `standard' $\\LCDM$ model. The effects of baryonic cooling, star formation and feedbacks are uncertain, but we argue that baryons will only increase the the lensing cross-section by a moderate factor, $\\sim 2$. We conclude that the low central value of $\\sigma_8$ and $\\Omega_{\\rm m,0}$ preferred by the WMAP three-year data may be too low to be compatible with observations if conventional assumptions of the background source population are correct.
Han, Ping
2017-01-01
A novel Giant Magnetostrictive Actuator (GMA) experimental system with Fiber Bragg Grating (FBG) sensing technique and its modeling method based on data driven principle are proposed. The FBG sensors are adopted to gather the multi-physics fields' status data of GMA considering the strong nonlinearity of the Giant Magnetostrictive Material and GMA micro-actuated structure. The feedback features are obtained from the raw dynamic status data, which are preprocessed by data fill and abnormal value detection algorithms. Correspondingly the Least Squares Support Vector Machine method is utilized to realize GMA online nonlinear modeling with data driven principle. The model performance and its relative algorithms are experimentally evaluated. The model can regularly run in the frequency range from 10 to 1000 Hz and temperature range from 20 to 100 °C with the minimum prediction error stable in the range from -1.2% to 1.1%.
Modeling of the nonlinear resonant response in sedimentary rocks
Ten Cate, James A [Los Alamos National Laboratory; Shankland, Thomas J [Los Alamos National Laboratory; Vakhnenko, Vyacheslav O [NON LANL; Vakhnenko, Oleksiy [NON LANL
2009-04-03
We suggest a model for describing a wide class of nonlinear and hysteretic effects in sedimentary rocks at longitudinal bar resonance. In particular, we explain: hysteretic behaviour of a resonance curve on both its upward and downward slopes; linear softening of resonant frequency with increase of driving level; gradual (almost logarithmic) recovery of resonant frequency after large dynamical strains; and temporal relaxation of response amplitude at fixed frequency. Starting with a suggested model, we predict the dynamical realization of end-point memory in resonating bar experiments with a cyclic frequency protocol. These theoretical findings were confirmed experimentally at Los Alamos National Laboratory. Sedimentary rocks, particularly sandstones, are distinguished by their grain structure in which each grain is much harder than the intergrain cementation material. The peculiarities of grain and pore structures give rise to a variety of remarkable nonlinear mechanical properties demonstrated by rocks, both at quasistatic and alternating dynamic loading. Thus, the hysteresis earlier established for the stress-strain relation in samples subjected to quasistatic loading-unloading cycles has also been discovered for the relation between acceleration amplitude and driving frequency in bar-shaped samples subjected to an alternating external drive that is frequency-swept through resonance. At strong drive levels there is an unusual, almost linear decrease of resonant frequency with strain amplitude, and there are long-term relaxation phenomena such as nearly logarithmic recovery (increase) of resonant frequency after the large conditioning drive has been removed. In this report we present a short sketch of a model for explaining numerous experimental observations seen in forced longitudinal oscillations of sandstone bars. According to our theory a broad set of experimental data can be understood as various aspects of the same internally consistent pattern. Furthermore
Loss-improved electroacoustical modeling of small Helmholtz resonators.
Starecki, Tomasz
2007-10-01
Modeling of small Helmholtz resonators based on electroacoustical analogies often results in significant disagreement with measurements, as existing models do not take into account some losses that are observed in practical implementations of such acoustical circuits, e.g., in photoacoustic Helmholtz cells. The paper presents a method which introduces loss corrections to the transmission line model, resulting in substantial improvement of simulations. Values of the loss corrections obtained from comparison of frequency responses of practically implemented resonators with computer simulations are presented in tabular and graphical form. A simple analytical function that can be used for interpolation or extrapolation of the loss corrections for other dimensions of the Helmholtz resonators is also given. Verification of such a modeling method against an open two-cavity Helmholtz structure shows very good agreement between measurements and simulations.
Effect of geometry in frequency response modeling of nanomechanical resonators
Esfahani, M. Nasr; Yilmaz, M.; Sonne, M. R.; Hattel, J. H.; Alaca, B. Erdem
2016-06-01
The trend towards nanomechanical resonator sensors with increasing sensitivity raises the need to address challenges encountered in the modeling of their mechanical behavior. Selecting the best approach in mechanical response modeling amongst the various potential computational solid mechanics methods is subject to controversy. A guideline for the selection of the appropriate approach for a specific set of geometry and mechanical properties is needed. In this study, geometrical limitations in frequency response modeling of flexural nanomechanical resonators are investigated. Deviation of Euler and Timoshenko beam theories from numerical techniques including finite element modeling and Surface Cauchy-Born technique are studied. The results provide a limit beyond which surface energy contribution dominates the mechanical behavior. Using the Surface Cauchy-Born technique as the reference, a maximum error on the order of 50 % is reported for high-aspect ratio resonators.
The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?
David I. Groves
2016-05-01
Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many
The giant Jiaodong gold province:The key to a unified model for orogenic gold deposits?
David I. Groves; M. Santosh
2016-01-01
Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially e associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve meta-morphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedi-mentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many other subduction
Fermi resonance-algebraic model for molecular vibrational spectra
侯喜文; 董世海; 谢汨; 马中骐
1999-01-01
A Fermi resonance-algebraic model is proposed for molecular vibrations, where a U(2) algebra is used for describing the vibrations of each bond, and Fermi resonances between stretching and bending modes are taken into account. The model for a bent molecule XY2 and a molecule XY3 is successfully applied to fitting the recently observed vibrational spectrum of the water molecule and arsine (AsH3), respectively, and the results are compared with those of other models. Calculations show that algebraic approaches can be used as an effective method to describe molecular vibrations with small standard deviations.
Modeling of deep gaps created by giant planets in protoplanetary discs
Kanagawa, K D; Muto, T; Tanigawa, T
2016-01-01
A giant planet embedded in a protoplanetary disc creates a gap. This process is important for both theory and observations. Gap openings are intimately connected with orbital migration and the mass growth of a planet. It has recently been observed that discs around young stars are rich in structure, and the interaction between a planet and a disc is considered to be one possible origin of this structure. We performed two-dimensional hydrodynamic simulations, varying the planet mass, disc aspect ratio, and viscosity in a wide range of parameters. This relationship enables us to judge whether an observed gap is likely to have been caused by an embedded planet. It is also possible to predict the planet mass from observations of the gap shape. Based on the results of hydrodynamic simulations, we present an empirical model of wave excitation and damping with deep gaps. Using this model of wave excitation and damping, we constructed a semianalytical model of the gap surface density distribution, and it reproduces t...
Evolution and nucleosynthesis of helium-rich asymptotic giant branch models
Shingles, Luke J; Karakas, Amanda I; Stancliffe, Richard J; Lattanzio, John C; Lugaro, Maria
2015-01-01
There is now strong evidence that some stars have been born with He mass fractions as high as $Y \\approx 0.40$ (e.g., in $\\omega$ Centauri). However, the advanced evolution, chemical yields, and final fates of He-rich stars are largely unexplored. We investigate the consequences of He-enhancement on the evolution and nucleosynthesis of intermediate-mass asymptotic giant branch (AGB) models of 3, 4, 5, and 6 M$_\\odot$ with a metallicity of $Z = 0.0006$ ([Fe/H] $\\approx -1.4$). We compare models with He-enhanced compositions ($Y=0.30, 0.35, 0.40$) to those with primordial He ($Y=0.24$). We find that the minimum initial mass for C burning and super-AGB stars with CO(Ne) or ONe cores decreases from above our highest mass of 6 M$_\\odot$ to $\\sim$ 4-5 M$_\\odot$ with $Y=0.40$. We also model the production of trans-Fe elements via the slow neutron-capture process (s-process). He-enhancement substantially reduces the third dredge-up efficiency and the stellar yields of s-process elements (e.g., 90% less Ba for 6 M$_\\o...
Comparative study on quasi-dynamic earthquake cycle models for the 2011 giant Tohoku earthquake
Ohtani, M.; Hirahara, K.; Hori, T.; Hyodo, M.
2011-12-01
Off the Tohoku region, northeast Japan, a giant earthquake of Mw 9.0 occurred on March 11, 2011. The rupture extended to about 500km x 200km area, containing Miyagi-Oki, Fukushima-Oki and Ibaraki-Oki regions. The coseismic slip is larger than that of ordinary large earthquakes. For the generation mechanism of this unordinary earthquake, three conceptual models; hierarchical asperity (HA) model [Hori & Miyazaki, 2010], shallow strong patch (SSP) model [Kato & Yoshida, 2011], and thermal pressurization (TP) model [Mitsui & Iio, 2011], are proposed. Here, we consider mainly HA and SSP models. For the simulation, we use a 3D plate surface geometry and assume the frictional stress obeys the rate and state composite friction law (Kato & Tullis, 2001). For computational efficiency, we use H-matrices approximation (Ohtani et al., 2011). We considered Mw 7, 8 and 9 class earthquakes at each models to reproduce the following observations to some extent. Our purpose in this study is not to reproduce the observations in details but to reveal the characteristics of each model towards the detailed modeling. First, tsunami deposit surveys suggest that this Mw 9 earthquake has a recurrence time of 400-800 years. In Miyagi-Oki, the maximum coseismic slip amounting to 60m occurred in the shallow region close to the Japan Trench. In the deeper region, Mw 7 earthquakes recur at intervals of 30-40 years and Mw 8 event occurred in 1979. In Fukushima-Oki, Mw 7 events occurred only in 1938. In Ibaraki-Oki, Mw 7 events recur at intervals of about 28 years. From the GPS data, around the year of 2000, the plate coupling in Fukushima-Oki seems to have changed from strong to week. In HA model, we set a large Mw 9 size asperity with large L and negative a-b values, which encloses Mw 7 and 8 asperities with more frequent ruptures inside itself. Kato &Yoshida (2011) constructed the SSP model in a 2D quasi-dynamic cycle simulation. They assume the high effective normal stress σneff and a large L
A Magnetic Flux Tube Oscillation Model for QPOs in SGR Giant Flares
Ma, Bo; Chen, P F
2008-01-01
Giant flares from soft gamma-ray repeaters (SGRs) are one of the most violent phenomena in neutron stars. Quasi-periodic oscillations (QPOs) with frequencies ranging from 18 to 1840 Hz have been discovered in the tails of giant flares from two SGRs, and were ascribed to be seismic vibrations or torsional oscillations of magnetars. Here we propose an alternative explanation for the QPOs in terms of standing sausage mode oscillations of flux tubes in the magnetar coronae. We show that most of the QPOs observed in SGR giant flares could be well accounted for except for those with very high frequencies (625 and 1840 Hz).
Rusev, G.Y.
2006-07-01
Investigations of the dipole-strength distributions in {sup 92}Mo, {sup 98}Mo and {sup 100}Mo were carried out by means of the method of nuclear resonance fluorescence. The low-lying excitations in the nuclides {sup 92}Mo, {sup 98}Mo and {sup 100}Mo have been studied in photon-scattering experiments at an electron energy of 6 MeV at the ELBE accelerator and at electron energies from 3.2 to 3.8 MeV at the Dynamitron accelerator. Five levels were observed in {sup 92}Mo. Five levels in {sup 98}Mo and 14 in {sup 100}Mo were identified for the first time in the energy range from 2 to 4 MeV. Dipole-strength distributions up to the neutron-separation energies in the nuclides {sup 92}Mo, {sup 98}Mo and {sup 100}Mo have been investigated at the ELBE accelerator. Because of the possible observation of transitions in the neighboring nuclei produced via ({gamma},n) reaction, additional measurements at electron energies of 8.4 and 7.8 MeV, below the neutron-separation energy, were performed on {sup 98}Mo and {sup 100}Mo, respectively. The number of transitions assigned to {sup 92}Mo, {sup 98}Mo and {sup 100}Mo is 340, 485 and 499, respectively, the main part of them being dipole transitions. Statistical properties of the observed transitions are obtained. The continuum contains the ground-state transitions as well as the branching transitions to the low-lying levels and the subsequent deexcitations of these levels. (orig.)
Modelling the spectral energy distribution of the red giant in RS Ophiuchi: evidence for irradiation
Pavlenko, Ya V; Rushton, M T; Evans, A; Woodward, C E; Helton, L A; O'Brien, T J; Jones, D; Elkin, V
2015-01-01
We present an analysis of optical and infrared spectra of the recurrent nova RS Oph obtained during between 2006 and 2009. The best fit to the optical spectrum for 2006 September 28 gives effective temperature Tef = 3900~K for log g = 2.0, while for log g = 0.0 we find Tef = 4700~K, and a comparison with template stellar spectra provides Tef $\\sim$ 4500 K. The observed spectral energy distribution (SED), and the intensities of the emission lines, vary on short ($\\sim 1$~day) time-scales, due to disc variability. We invoke a simple one-component model for the accretion disc, and a model with a hot boundary layer, with high ($\\sim 3.9 \\times 10^{-6}$ \\Mdot) and low ($\\sim 2 \\times 10^{-8}$ \\Mdot) accretion rates, respectively. Fits to the accretion disc-extracted infrared spectrum (2008 July 15) yield effective temperatures for the red giant of Tef = 3800 +/- 100~K (log g = 2.0) and Tef = 3700 +/- 100~K (log g = 0.0). Furthermore, using a more sophisticated approach, we reproduced the optical and infrared SEDs ...
Electro-thermo-mechanical model for bulk acoustic wave resonators.
Rocas, Eduard; Collado, Carlos; Mateu, Jordi; Orloff, Nathan D; Aigner, Robert; Booth, James C
2013-11-01
We present the electro-thermo-mechanical constitutive relations, expanded up to the third order, for a BAW resonator. The relations obtained are implemented into a circuit model, which is validated with extensive linear and nonlinear measurements. The mathematical analysis, along with the modeling, allows us to identify the dominant terms, which are the material temperature derivatives and two intrinsic nonlinear terms, and explain, for the first time, all observable effects in a BAW resonator by use of a unified physical description. Moreover, the terms that are responsible for the second-harmonic generation and the frequency shift with dc voltage are shown to be the same.
Cornering diphoton resonance models at the LHC
Backović, Mihailo; Mariotti, Alberto; Sessolo, Enrico Maria; Spannowsky, Michael
2016-01-01
We explore the ability of the high luminosity LHC to test models which can explain the 750 GeV diphoton excess. We focus on a wide class of models where a 750 GeV singlet scalar couples to Standard Model gauge bosons and quarks, as well as dark matter. Including both gluon and photon fusion production mechanisms, we show that LHC searches in channels correlated with the diphoton signal will be able to probe wide classes of diphoton models with $\\mathcal{L} \\sim 3000\\, \\text{fb}^{-1}$ of data. Furthermore, models in which the scalar is a portal to the dark sector can be cornered with as little as $\\mathcal{L} \\sim 30\\, \\text{fb}^{-1}$.
Cornering diphoton resonance models at the LHC
Backović, Mihailo [Center for Cosmology, Particle Physics and Phenomenology (CP3),Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Kulkarni, Suchita [Institute of High Energy Physics, Austrian Academy of Sciences,Nikolsdorfergasse 18, 1050 Vienna (Austria); Mariotti, Alberto [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel,and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Sessolo, Enrico Maria [National Centre for Nuclear Research,Hoża 69, 00-681 Warsaw (Poland); Spannowsky, Michael [Institute for Particle Physics Phenomenology, Department of Physics,Durham University, Durham, DH13LE (United Kingdom)
2016-08-02
We explore the ability of the high luminosity LHC to test models which can explain the 750 GeV diphoton excess. We focus on a wide class of models where a 750 GeV singlet scalar couples to Standard Model gauge bosons and quarks, as well as dark matter. Including both gluon and photon fusion production mechanisms, we show that LHC searches in channels correlated with the diphoton signal will be able to probe wide classes of diphoton models with L∼3000 fb{sup −1} of data. Furthermore, models in which the scalar is a portal to the dark sector can be cornered with as little as L∼30 fb{sup −1}.
Compartmental modelling for magnetic resonance renography.
Sourbron, Steven
2010-01-01
A basic formalism is presented for generating and interpreting compartmental models for dynamic contrast-enhanced MRI data in the kidney. A graphical convention is introduced to represent and design compartmental models in a transparent and physically intuitive manner. A systematic system of notations and a simple set of rules allows direct translation of the graphical representation into a mathematical solution. The rules are derived from the physical principle of mass conservation, and the interpretation provided by the general tracer-kinetic theory of linear and stationary systems. The power of the formalism is illustrated using examples of models that have been proposed in the literature on perfusion MRI, and by generating a number of advanced models that may be of use in the kidney.
A model realizing inverse seesaw and resonant leptogenesis
Aoki, Mayumi; Takahashi, Ryo
2015-01-01
We construct a model realizing the inverse seesaw mechanism. The model has two types of gauge singlet fermions in addition to right-handed neutrinos. A required Majorana mass scale (keV scale) for generating the light active neutrino mass in the conventional inverse seesaw can be naturally explained by a "seesaw" mechanism between the two singlet fermions in our model. We find that our model can decrease the magnitude of hierarchy among mass parameters by $\\mathcal{O}(10^4)$ from that in the conventional inverse seesaw model. We also show that a successful resonant leptogenesis occurs for generating the baryon asymmetry of the universe in our model. The desired mass degeneracy for the resonant leptogenesis can also be achieved by the "seesaw" between the two singlet fermions.
Hot Bottom Burning in Asymptotic Giant Branch Stars and the Turbulent Convection Model
D'Antona, Francesca; Mazzitelli, Italo
1996-10-01
We investigate the effect of two different local turbulent convection models on the structure of intermediate-mass stars (IMSs, 3.5 Msun ≤ M ≤7 Msun) in the asymptotic giant branch (AGB) phase where, according to observations, they should experience hot bottom burning (HBB). Evolutionary models adopting either the mixing length theory (MLT) or the Canuto & Mazzitelli (CM) description of stellar convection are discussed. It is found that, while the MLT structures require some degree of tuning to achieve, at the bottom of the convective envelope, the large temperatures required for HBB, the CM structures spontaneously achieve these conditions. Since the observational evidence for HBB (existence of a class of very luminous, lithium-rich AGB stars in the Magellanic Clouds showing low 12C/13C ratios) is quite compelling, the above result provides a further, successful test for the CM convective model, in stellar conditions far from solar. With the aid of the CM model, we then explore a number of problems related to the late evolution of this class of objects, and give first results for (1) the luminosity evolution of IMSs in the AGB phase (core mass-luminosity relation and luminosity range in which HBB occurs) for Population I and Population II structures, (2) the minimum core mass for semidegenerate carbon ignition (˜1.05 Msun), (3) the relation between initial mass and final white dwarf (WD) mass (also based on some observational evidences about the upper AGB stars), and (4) the expected mass function of massive WDs. Confirmation of the theoretical framework could arise from an observational test: the luminosity function of AGB stars is expected to show a gap at Mbol ˜ -6, which would distinguish between the low-luminosity regime, in which AGBs become carbon stars, and the upper luminosities, at which they undergo HBB, have very low 12C/13C ratios, and become lithium rich.
Prakapavičius, D; Dobrovolskas, V; Klevas, J; Steffen, M; Bonifacio, P; Ludwig, H -G; Spite, M
2016-01-01
Although oxygen is an important tracer of the early Galactic evolution, its abundance trends with metallicity are still relatively poorly known at [Fe/H] < -2.5. This is in part due to a lack of reliable oxygen abundance indicators in the metal-poor stars, in part due to shortcomings in 1D LTE abundance analyses. In this study we determined the oxygen abundance in the metal-poor halo giant HD 122563 using a 3D hydrodynamical CO5BOLD model atmosphere. Our main goal was to understand whether a 3D LTE analysis may help to improve the reliability of oxygen abundances determined from OH UV lines in comparison to those obtained using standard 1D LTE methodology. The oxygen abundance in HD 122563 was determined using 71 OH UV lines located in the wavelength range between 308-330 nm. The analysis was done using a high-resolution VLT UVES spectrum with a 1D LTE spectral line synthesis performed using the SYNTHE package and classical ATLAS9 model atmosphere. Subsequently, a 3D hydrodynamical CO5BOLD, and 1D hydrosta...
Giant magnetoimpedance modelling using Fourier analysis in soft magnetic amorphous wires
Gómez-Polo, C.; Knobel, M.; Pirota, K. R.; Vázquez, M.
2001-06-01
In this work, the Fourier analysis is employed to investigate the giant magnetoimpedance (GMI) effect in a FeCoSiB amorphous wire with vanishing magnetostriction. In order to modify the initial quenched-in anisotropy, pieces 8 cm in length were submitted to Joule heating treatments below the corresponding Curie point. The induced circumferential anisotropy determines the field evolution of the electrical impedance of the sample upon the application of an axial magnetic field. The experimental results are interpreted within the framework of the classical electrodynamical theory, where a simple rotational model is used to estimate the circular magnetization process of the sample. The mean value of the circumferential permeability is obtained through Fourier analysis of the time derivative of the estimated circular magnetization. Moreover, the existence of a second harmonic component of the GMI voltage is also experimentally detected. Its amplitude sensitively evolves with the axial DC magnetic field and its appearance is associated to an asymmetry in the circular magnetization process.
Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution.
Jonathan eFilée
2015-06-01
Full Text Available Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales. Origin and evolution of these Giant Viruses (GVs remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for 5 groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no trend of genome expansion or general tendency of genome contraction. Instead, GV genomes accumulated genomic mutations over the time with gene gains compensating the different losses. In addition, each lineage displays specific patterns of genome evolution. Mimiviridae (megaviruses and mimiviruses and Chlorella Phycodnaviruses evolved mainly by duplications and losses of genes belonging to large paralogous families (including movements of diverse mobiles genetic elements, whereas Micromonas and Ostreococcus Phycodnaviruses derive most of their genetic novelties thought lateral gene transfers. Taken together, these data support an accordion-like model of evolution in which GV genomes have undergone successive steps of gene gain and gene loss, accrediting the hypothesis that genome gigantism appears early, before the diversification of the different GV lineages.
an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...... theoretical consciousness through historical narrative ‘in practice’, by discussing selected historical topics from Western cultural history, within the disciplines of history, literature, visual arts, musicology, archaeology, philosophy, and theology. The title Resonances indicates the overall perspective...
Microwave plasmatrons for giant integrated circuit processing
Petrin, A.B.
2000-02-01
A method for calculating the interaction of a powerful microwave with a plane layer of magnetoactive low-pressure plasma under conditions of electron cyclotron resonance is presented. In this paper, the plasma layer is situated between a plane dielectric layer and a plane metal screen. The calculation model contains the microwave energy balance, particle balance, and electron energy balance. The equation that expressed microwave properties of nonuniform magnetoactive plasma is found. The numerical calculations of the microwave-plasma interaction for a one-dimensional model of the problem are considered. Applications of the results for microwave plasmatrons designed for processing giant integrated circuits are suggested.
Gaulme, Patrick; Schmider, Francois-Xavier; Guillot, Tristan
2014-01-01
Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light ref...
Stochastic resonance in the Weidlich model of public opinion formation
Babinec, Peter
1997-02-01
As a prototypical nonlinear sociological system we study the Weidlich model of public opinion formation. At an optimal value of the collective climate parameter (which plays the role of noise for this system) we have found a maximal value of signal-to-noise ratio and a largest amplification of a periodic external preference factor which are the characteristics of stochastic resonance.
Model-Independent Simplified Limits on Resonances at the LHC
Chivukula, R Sekhar; Mohan, Kirtimaan; Simmons, Elizabeth H
2016-01-01
In the earliest stages of evaluating new collider data, especially if a small excess may be present, it would be useful to have a method for comparing the data with entire classes of models, to get an immediate sense of which classes could conceivably be relevant. In this paper, we propose a method that applies when the new physics invoked to explain the excess corresponds to the production and decay of a single, relatively narrow, $s$-channel resonance. A simplifed model of the resonance allows us to convert an estimated signal cross section into model-independent bounds on the product of the branching ratios corresponding to production and decay. This quickly reveals whether a given class of models could possibly produce a signal of the required size at the LHC. Our work sets up a general framework, outlines how it operates for resonances with different numbers of production and decay modes, and analyzes cases of current experimental interest, including resonances decaying to dibosons, diphotons, dileptons,...
HCMT models of optical microring-resonator circuits
Lohmeyer, Manfred
2010-01-01
Circuits of dielectric integrated optical microring resonators are addressed through a two-dimensional hybrid analytical/numerical coupled mode theory (HCMT) model. Analytical modes of all straight and curved cores form templates for the optical fields of the entire circuits. Our variational techniq
Dynamical squeezing enhancement in the off-resonant Dicke model
Shindo, D; Chavez, A; Chumakov, S M; Klimov, A B [Departamento de FIsica, Universidad de Guadalajara, Revolucion 1500, 44420, Guadalajara, Jalisco (Mexico)
2004-01-01
We show that the maximum atomic squeezing that can be achieved in the vacuum off-resonant Dicke model (governed by the effective Hamiltonian {approx} S{sub z}{sup 2}) can be essentially enhanced by applying a sequence of {pi}/2 pulses at certain time moments. The major effect is obtained after the first pulse.
Helicopter air resonance modeling and suppression using active control
Takahashi, M. D.; Friedmann, P. P.
1991-01-01
A coupled rotor/fuselage helicopter analysis with the important effects of blade torsional flexibility, unsteady aerodynamics, and forward flight is presented. Using this mathematical model, a nominal configuration is selected with an air resonance instability throughout most of its flight envelope. A multivariable compensator is then designed using two swashplate inputs and a single-body roll rate measurement. The controller design is based on the linear quadratic Gaussian technique and the loop transfer recovery method. The controller is shown to suppress the air resonance instability throughout a wide range of helicopter loading conditions and forward flight speeds.
Serenelli, A.; Weiss, A.; Cassisi, S.; Salaris, M.; Pietrinferni, A.
2017-10-01
Context. The brightness of the tip of the red giant branch is a useful reference quantity for several fields of astrophysics. An accurate theoretical prediction is needed for such purposes. Aims: We provide a solid theoretical prediction for the brightness of the tip of the red giant branch, valid for a reference set of standard physical assumptions, and mostly independent of numerical details. Methods: We examine the dependence on physical assumptions and numerical details for a wide range of metallicities and masses and based on two different stellar evolution codes. We adjust differences between the codes to treat the physics as identically as possible. After we have succeeded in reproducing the tip brightness between the codes, we present a reference set of models based on the most up to date physical inputs, but neglecting microscopic diffusion, and convert theoretical luminosities to observed infrared colours suitable for observations of resolved populations of stars and include analytic fits to facilitate their use. Results: We find that consistent use of updated nuclear reactions, including an appropriate treatment of the electron screening effects, and careful time-stepping on the upper red giant branch are the most important aspects to bring initially discrepant theoretical values into agreement. Small but visible differences remain unexplained for very low metallicities and mass values at and above 1.2 M⊙, corresponding to ages younger than 4 Gyr. The colour transformations introduce larger uncertainties than the differences between the two stellar evolution codes. Conclusions: We demonstrate that careful stellar modelling allows an accurate prediction for the luminosity of the red giant branch tip. Differences to empirically determined brightnesses may result either from insufficient colour transformations or from deficits in the constitutional physics. We present the best-tested theoretical reference values to date.
Modelling Brain Tissue using Magnetic Resonance Imaging
Dyrby, Tim Bjørn
2008-01-01
Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visualizations of three-dimensional fibre bundles. One class of these algorithms is probabilistic...... be used. Within a two year period, no statistical inter- or intra-brain difference in the diffusion coefficient was found in perfusion fixated minipig brains. However, a decreasing tendency in the diffusion coefficient was found at the last time points about 24 months post mortem and might be explained...
Mankovich, Christopher; Fortney, Jonathan J.; Nettelmann, Nadine; Moore, Kevin
2016-10-01
Hydrogen and helium unmix when sufficiently cool, and this bears on the thermal evolution of all cool giant planets at or below one Jupiter mass. Over the past few years, ab initio simulations have put us in the era of quantitative predictions for this H-He immiscibility at megabar pressures. We present models for the thermal evolution of Jupiter, including its evolving helium distribution following one such ab initio H-He phase diagram. After 4 Gyr of homogeneous evolution, differentiation establishes a helium gradient between 1 and 2 Mbar that dynamically stabilizes the fluid to overturning convection. The result is a region undergoing overstable double-diffusive convection (ODDC), whose relatively weak vertical heat transport maintains a superadiabatic temperature gradient. With a general parameterization for the ODDC efficiency, the models can reconcile Jupiter's intrinsic flux, atmospheric helium content, and mean radius at the age of the solar system if the H-He phase diagram is translated to cooler temperatures.We cast our nonadiabatic thermal evolution models in a Markov chain Monte Carlo parameter estimation framework, retrieving the total heavy element mass, the superadiabaticity of the deep temperature gradient, and the phase diagram temperature offset. Models using the interpolated Saumon, Chabrier and van Horn (1995) equation of state (SCvH-I) favor very inefficient ODDC such that the deep temperature gradient is strongly superadiabatic, forming a thermal boundary layer that allows the molecular envelope to cool quickly while the deeper interior (most of the planet's mass) actually heats up over time. If we modulate the overall cooling time with an additional free parameter, mimicking the effect of a colder or warmer EOS, the models favor those that are colder than SCvH-I; this class of EOS is also favored by shock experiments. The models in this scenario have more modest deep superadiabaticities such that the envelope cools more gradually and the deep
Lagarde, N; Eggenberger, P; Morel, T; Montalbán, J; Mosser, B; Rodrigues, T S; Girardi, L; Rainer, M; Poretti, E; Barban, C; Hekker, S; Kallinger, T; Valentini, M; Carrier, F; Hareter, M; Mantegazza, L; Elsworth, Y; Michel, E; Baglin, A
2015-01-01
Context. The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. Aims. We use the first detailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. Methods. In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch. Results. We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat...
Applications of Magnetic Resonance in Model Systems: Cancer Therapeutics
Jeffrey L. Evelhoch
2000-01-01
Full Text Available The lack of information regarding the metabolism and pathophysiology of individual tumors limits, in part, both the development of new anti-cancer therapies and the optimal implementation of currently available treatments. Magnetic resonance [MR, including magnetic resonance imaging (MRI, magnetic resonance spectroscopy (MRS, and electron paramagnetic resonance (EPR] provides a powerful tool to assess many aspects of tumor metabolism and pathophysiology. Moreover, since this information can be obtained nondestructively, pre-clinical results from cellular or animal models are often easily translated into the clinic. This review presents selected examples of how MR has been used to identify metabolic changes associated with apoptosis, detect therapeutic response prior to a change in tumor volume, optimize the combination of metabolic inhibitors with chemotherapy and/or radiation, characterize and exploit the influence of tumor pH on the effectiveness of chemotherapy, characterize tumor reoxygenation and the effects of modifiers of tumor oxygenation in individual tumors, image transgene expression and assess the efficacy of gene therapy. These examples provide an overview of several of the areas in which cellular and animal model studies using MR have contributed to our understanding of the effects of treatment on tumor metabolism and pathophysiology and the importance of tumor metabolism and pathophysiology as determinants of therapeutic response.
Nonlinear dynamic modeling and resonance tuning of Galfenol vibration absorbers
Scheidler, Justin J.; Dapino, Marcelo J.
2013-08-01
This paper investigates the semi-active control of a magnetically-tunable vibration absorber’s resonance frequency. The vibration absorber that is considered is a metal-matrix composite containing the magnetostrictive material Galfenol (FeGa). A single degree of freedom model for the nonlinear vibration of the absorber is presented. The model is valid under arbitrary stress and magnetic field, and incorporates the variation in Galfenol’s elastic modulus throughout the composite as well as Galfenol’s asymmetric tension-compression behavior. Two boundary conditions—cantilevered and clamped-clamped—are imposed on the composite. The frequency response of the absorber to harmonic base excitation is calculated as a function of the operating conditions to determine the composite’s capacity for resonance tuning. The results show that nearly uniform controllability of the vibration absorber’s resonance frequency is possible below a threshold of the input power amplitude using weak magnetic fields of 0-8 kA m-1. Parametric studies are presented to characterize the effect on resonance tunability of Galfenol volume fraction and Galfenol location within the composite. The applicability of the results to composites of varying geometry and containing different Galfenol materials is discussed.
Herrera, Sheryl Lyn
Covert stroke (CS) comprises lesions in the brain often associated by risk factors such as a diet high in fat, salt, cholesterol and sugar (HFSCS). Developing a rodent model for CS incorporating these characteristics is useful for developing and testing interventions. The purpose of this thesis was to determine if magnetic resonance (MR) can detect brain abnormalities to confirm this model will have the desired anatomical effects. Ex vivo MR showed brain abnormalities for rats with the induced lesions and fed the HFSCS diet. Spectra acquired on the fixed livers had an average percent area under the fat peak relative to the water peak of (20+/-4)% for HFSCS and (2+/-2)% for control. In vivo MR images had significant differences between surgeries to induce the lesions (p=0.04). These results show that applying MR identified abnormalities in the rat model and therefore is important in the development of this CS rodent model.
Zhou, Hao-Miao; Li, Meng-Han; Li, Xiao-Hong; Zhang, Da-Guang
2016-08-01
For a giant magnetostrictive rod under the action of multiple physical loads, such as an external magnetic field, temperature and axial pre-stress, this paper proposes a general one-dimensional nonlinear magneto-thermo-mechanical coupled constitutive model. This model is based on the Taylor expansion of the elastic Gibbs free energy of giant magnetostrictive material and thermodynamic relations from the perspective of macro continuum mechanics. Predictions made using this model are in good agreement with experimental data for magnetization and the magnetostrictive strain curve under the collective effect of pre-stress and temperature. Additionally, the model overcomes the drawback of the existing magneto-thermo-mechanical constitutive model that cannot accurately predict the magnetization and magnetostrictive strain curve for different temperatures and pre-stresses. Furthermore, the constitutive model does not contain an implicit function and is compact, and can thus be applied in both situations of tensile and compressive stress and to both positive and negative magnetostrictive materials, and it is thus appropriate for engineering applications. Comprehensive analysis shows that the model fully describes the nonlinear coupling properties of a magnetic field, magnetostrictive strain and elasticity of a magnetostrictive material subjected to stress, a magnetic field and heat.
Modeling Kepler Observations of Solar-like Oscillations in the Red Giant Star HD 186355
Jiang, C.; Jiang, B.W.; Christensen-Dalsgaard, Jørgen;
2011-01-01
We have analyzed oscillations of the red giant star HD 186355 observed by the NASA Kepler satellite. The data consist of the first five quarters of science operations of Kepler, which cover about 13 months. The high-precision time-series data allow us to accurately extract the oscillation...
Pierens, Arnaud; Raymond, Sean N. [Laboratoire d' Astrophysique de Bordeaux, Univ. Bordeaux, UMR 5804, F-33270 Floirac (France); Nesvorny, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street Suite 300, Boulder, CO 80302 (United States); Morbidelli, Alessandro, E-mail: arnaud.pierens@obs.u-bordeaux1.fr [University of Nice-Sophia Antipolis, CNRS, Observatoire de la côte d' Azur, Laboratoire Lagrange, BP4229, F-06304 NICE Cedex 4 (France)
2014-11-01
Embedded in the gaseous protoplanetary disk, Jupiter and Saturn naturally become trapped in 3:2 resonance and migrate outward. This serves as the basis of the Grand Tack model. However, previous hydrodynamical simulations were restricted to isothermal disks, with moderate aspect ratio and viscosity. Here we simulate the orbital evolution of the gas giants in disks with viscous heating and radiative cooling. We find that Jupiter and Saturn migrate outward in 3:2 resonance in modest-mass (M {sub disk} ≈ M {sub MMSN}, where MMSN is the {sup m}inimum-mass solar nebula{sup )} disks with viscous stress parameter α between 10{sup –3} and 10{sup –2}. In disks with relatively low-mass (M {sub disk} ≲ M {sub MMSN}), Jupiter and Saturn get captured in 2:1 resonance and can even migrate outward in low-viscosity disks (α ≤ 10{sup –4}). Such disks have a very small aspect ratio (h ∼ 0.02-0.03) that favors outward migration after capture in 2:1 resonance, as confirmed by isothermal runs which resulted in a similar outcome for h ∼ 0.02 and α ≤ 10{sup –4}. We also performed N-body runs of the outer solar system starting from the results of our hydrodynamical simulations and including 2-3 ice giants. After dispersal of the gaseous disk, a Nice model instability starting with Jupiter and Saturn in 2:1 resonance results in good solar systems analogs. We conclude that in a cold solar nebula, the 2:1 resonance between Jupiter and Saturn can lead to outward migration of the system, and this may represent an alternative scenario for the evolution of the solar system.
Hodological resonance, hodological variance, psychosis and schizophrenia: A hypothetical model
Paul Brian eLawrie Birkett
2011-07-01
Full Text Available Schizophrenia is a disorder with a large number of clinical, neurobiological, and cognitive manifestations, none of which is invariably present. However it appears to be a single nosological entity. This article considers the likely characteristics of a pathology capable of such diverse consequences. It is argued that both deficit and psychotic symptoms can be manifestations of a single pathology. A general model of psychosis is proposed in which the informational sensitivity or responsivity of a network ("hodological resonance" becomes so high that it activates spontaneously, to produce a hallucination, if it is in sensory cortex, or another psychotic symptom if it is elsewhere. It is argued that this can come about because of high levels of modulation such as those assumed present in affective psychosis, or because of high levels of baseline resonance, such as those expected in deafferentation syndromes associated with hallucinations, for example, Charles Bonnet. It is further proposed that schizophrenia results from a process (probably neurodevelopmental causing widespread increases of variance in baseline resonance; consequently some networks possess high baseline resonance and become susceptible to spontaneous activation. Deficit symptoms might result from the presence of networks with increased activation thresholds. This hodological variance model is explored in terms of schizo-affective disorder, transient psychotic symptoms, diathesis-stress models, mechanisms of antipsychotic pharmacotherapy and persistence of genes predisposing to schizophrenia. Predictions and implications of the model are discussed. In particular it suggests a need for more research into psychotic states and for more single case-based studies in schizophrenia.
Bending, V L; Kolb, U
2012-01-01
The growing field of exoplanetary atmospheric modelling has seen little work on standardised benchmark tests for its models, limiting understanding of the dependence of results on specific models and conditions. With spatially resolved observations as yet difficult to obtain, such a test is invaluable. Although an intercomparison test for models of tidally locked gas giant planets has previously been suggested and carried out, the data provided were limited in terms of comparability. Here, the shallow PUMA model is subjected to such a test, and detailed statistics produced to facilitate comparison, with both time means and the associated standard deviations displayed, removing the time dependence and providing a measure of the variability. Model runs have been analysed to determine the variability between resolutions, and the effect of resolution on the energy spectra studied. Superrotation is a robust and reproducible feature at all resolutions.
Simon Van Wynsberge
Full Text Available The giant clam Tridacna maxima has been largely overexploited in many tropical regions over the past decades, and was therefore listed in appendix II of the Convention of International Trade in Endangered Species (CITES in 1985. In French Polynesia, several atolls and islands harbor the world's highest stocks of giant clams in very shallow and accessible areas, which are therefore highly vulnerable to fishing pressure. The local fishery authority (i.e., Direction des Resources Marines or "DRM" implemented several management schemes in 2002 to control and regulate fishing pressure. However, for further decisions DRM was missing a sensitivity analysis on the effectiveness of the possible management actions. Here, we report on the use of a deterministic Viable Population Analysis (VPA and spatially-explicit age-based population model that simulated the 30-year trajectory of a Tridacna maxima stock under different management approaches. Specifically, given various scenarios of intra-island larval dispersal, we tested which of No-take-Areas (NTAs, rotational closures, size limits, quotas, and restocking schemes would lead to the highest future stocks in Tubuai and Raivavae, two exploited islands of the Austral archipelago. For both islands, stock abundances were estimated in 2004/2010 and 2005/2010 respectively, and natural mortalities were assessed previously only in Tubuai. When compared to field data, the model successfully predicted the 2010 stocks for Tubuai, but proved to be less reliable for Raivavae, where natural mortality rates may well be different from those on Tubuai. For Tubuai, the spatial model suggested that reducing fishing effort (through fixed quotas and banning fishing below the 12 cm size limit (as currently implemented were the most effective management actions to sustain T. maxima populations into the future. Implementing NTAs was of poor effectiveness. NTAs increased giant clam stock inside the protected area, but also
Gonzalez-Romero, L M; Blazquez-Salcedo, J L, E-mail: mgromero@fis.ucm.es, E-mail: joseluis.blazquez@fis.ucm.es [Depto. Fisica Teorica II, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040-Madrid (Spain)
2011-09-22
Introducing a surface layer of matter on the edge of a neutron star in slow rigid rotation, we analyze, from an intrinsic point of view, the junction conditions that must be satisfied between the interior and exterior solutions of the Einstein equations. In our model the core-crust transition pressure arise as an essential parameter in the description of a configuration. As an application of this formalism, we describe giant glitches of the Vela pulsar as a result of variations in the transition pressure, finding that these small changes are compatible with the expected temperature variations of the inner crust during glitch time
Rudowicz, Czesław; Açıkgöz, Muhammed; Gnutek, Paweł
2017-07-01
Potential single-ion magnet Ni2+ systems: [Ni(Me6tren)Cl](ClO4) and [Ni(Me6tren)Br](Br) reveal unusually high zero field splitting (ZFS). The ZFS parameter (ZFSP) Dexpt = -120 to -180 cm-1 was determined indirectly by high-magnetic field, high-frequency electron magnetic resonance (HMF-EMR). Modeling ZFSPs using the density functional theory (DFT) codes predicts D values: -100 to -200 cm-1. Such ZFSP values may seem controversial in view of the D values usually not exceeding several tens of cm-1 for Ni2+ ions. To corroborate or otherwise these results and elucidate the origin of the huge ZFS (named inappropriately as 'giant uniaxial magnetic anisotropy') and respective wavefunctions, we have undertaken semiempirical modeling based on the crystal field (CF) and spin Hamiltonians (SH) theory. In this paper, a feasibility study is carried out to ascertain if superposition model (SPM) calculations may yield such huge D values for these Ni2+ systems. Using crystal structure data for [Ni(Me6tren)Cl](ClO4) and [Ni(Me6tren)Br](Br) as well as taking into account the Jahn-Teller distortions of five-fold coordinated Ni-complexes revealed by DFT geometry optimization, the ZFSPs are predicted for several structural models and wide ranges of model parameters. The results indicate that in the presence of the Jahn-Teller distortions, the SPM-predicted ZFSP D may achieve the observed magnitudes, whereas the positive as well as negative D-signs are obtainable. Further studies based on SPM calculations of CF parameters and diagonalization of the Hamiltonian (Hfree ion + HCF) will allow considering the wavefunctions compositions and thus actual origin of the splitting between the ground and first excited state.
Kanter, Rosabeth Moss
2008-01-01
Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.
Hekker, S
2016-01-01
The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-interrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.
Dobrovolskas, V; Bonifacio, P; Caffau, E; Ludwig, H -G; Steffen, M; Spite, M
2015-01-01
Context. Although oxygen is an important tracer of Galactic chemical evolution, measurements of its abundance in the atmospheres of the oldest Galactic stars are still scarce and rather imprecise. At the lowest end of the metallicity scale, oxygen can only be measured in giant stars and in most of cases such measurements rely on a single forbidden [O I] 630 nm line that is very weak and frequently blended with telluric lines. Although molecular OH lines located in the ultraviolet and infrared could also be used for the diagnostics, oxygen abundances obtained from the OH lines and the [O I] 630 nm line are usually discrepant to a level of ~0.3-0.4 dex. Aims. We study the influence of convection on the formation of the infrared (IR) OH lines and the forbidden [O I] 630 nm line in the atmospheres of extremely metal-poor (EMP) red giant stars. Methods. We used high-resolution and high signal-to-noise ratio spectra of four EMP red giant stars obtained with the VLT CRIRES spectrograph. For each EMP star, 4-14 IR OH...
Modeling the Responses of TSM Resonators under Various Loading Conditions
Bandey, H.L.; Cernosek, R.W.; Hillman, A.R.; Martin, S.J.
1998-12-04
We develop a general model that describes the electrical responses of thickness shear mode resonators subject to a variety of surface loadkgs. The model incorporates a physically diverse set of single component loadings, including rigid solids, viscoelastic media and fluids (Newtonian or Maxwellian). The model allows any number of these components to be combined in any configuration. Such multiple loadings are representative of a variety of physical situations encountered in electrochemical and other liquid phase applications, as well as gas phase applications. In the general case, the response of the composite is not a linear combination of the individual component responses. We discuss application of the model in a qualitative diagnostic fashion, to gain insight into the nature of the interracial structure, and in a quantitative fashion, to extract appropriate physical parameters, such as liquid viscosity and density and polymer shear moduli.
Kucinskas, A; Ivanauskas, A; Ludwig, H -G; Caffau, E; Blazevicius, K; Klevas, J; Prakapavicius, D
2009-01-01
We compare the abundances of various chemical species as derived with 3D hydrodynamical and classical 1D stellar atmosphere codes in a late-type giant characterized by T_eff=3640K, log g = 1.0, [M/H] = 0.0. For this particular set of atmospheric parameters the 3D-1D abundance differences are generally small for neutral atoms and molecules but they may reach up to 0.3-0.4 dex in case of ions. The 3D-1D differences generally become increasingly more negative at higher excitation potentials and are typically largest in the optical wavelength range. Their sign can be both positive and negative, and depends on the excitation potential and wavelength of a given spectral line. While our results obtained with this particular late-type giant model suggest that 1D stellar atmosphere models may be safe to use with neutral atoms and molecules, care should be taken if they are exploited with ions.
Aringer, B.; Girardi, L.; Nowotny, W.; Marigo, P.; Bressan, A.
2016-04-01
Based on a grid of hydrostatic spherical COMARCS models for cool stars, we have calculated observable properties of these objects, which will be mainly used in combination with stellar evolution tracks and population synthesis tools. The high-resolution opacity sampling and low-resolution convolved spectra as well as bolometric corrections for a large number of filter systems are made electronically available. We exploit those data to study the effect of mass, C/O ratio and nitrogen abundance on the photometry of K and M giants. Depending on effective temperature, surface gravity and the chosen wavelength ranges, variations of the investigated parameters cause very weak to moderate and, in the case of C/O values close to 1, even strong shifts of the colours. For the usage with stellar evolution calculations, they will be treated as correction factors applied to the results of an interpolation in the main quantities. When we compare the synthetic photometry to observed relations and to data from the Galactic bulge, we find in general a good agreement. Deviations appear for the coolest giants showing pulsations, mass-loss and dust shells, which cannot be described by hydrostatic models.
On the Theory of Resonances in Non-Relativistic QED and Related Models
Abou Salem, Walid K.; Faupin, Jeremy; Froehlich, Juerg;
We study the mathematical theory of quantum resonances in the standard model of non-relativistic QED and in Nelson's model. In particular, we estimate the survival probability of metastable states corresponding to quantum resonances and relate the resonances to poles of an analytic continuation...
Superdimensional Metamaterial Resonators
Greenleaf, Allan; Kurylev, Yaroslav; Lassas, Matti; Uhlmann, Gunther
2014-01-01
We propose a fundamentally new method for the design of metamaterial arrays, valid for any waves modeled by the Helmholtz equation, including scalar optics and acoustics. The design and analysis of these devices is based on eigenvalue and eigenfunction asymptotics of solutions to Schr\\"odinger wave equations with harmonic and degenerate potentials. These resonators behave superdimensionally, with a higher local density of eigenvalues and greater concentration of waves than expected from the physical dimension, e.g., planar resonators function as 3- or higher-dimensional media, and bulk material as effectively of dimension 4 or higher. Applications include antennas with a high density of resonant frequencies and giant focussing, and are potentially broadband.
Δ - Δ resonance in the nonrelativistic quark model
Cvetič, M.; Golli, B.; Mankoč-Borštnik, N.; Rosina, M.
1980-06-01
The Δ - Δ resonance is treated in the nonrelativistic quark model. The trial wave function is a colour singlet including N-N, Δ - Δ and coloured baryon channels. The effective Δ - Δ potential is repulsive at all distances for T=0, S=1, L=0,2,4 while for T=3, S=0, L=0 and T=0, S=3, L=0 it has a minimum. The GCM calculation gives for the latter state the binding emergy ∼ -40 MeV.
Modeling of Self-Pumped Singly Resonant Optical Parametric Oscillator
Deng, Chengxian
2016-01-01
A model of the steady-state operating, self-pumped singly resonant optical parametric oscillator (SPSRO) has been developed. The characteristics of quasi three-level laser gain medium pumped longitudinally have been taken into account. The characteristics of standing wave cavity, reabsorption losses, focusing Gaussian beams of the pump laser, fundamental laser and signal wave have been considered in the analyses. Furthermore, The power characteristics of threshold and efficiency have been analyzed, employing a Yb3+-doped periodically poled lithium niobate co-doped with MgO (Yb3+:MgO:PPLN) as the medium of laser gain and second-order nonlinear crystal.
Fluctuations and entropy in models of quantum optical resonance
Phoenix, S. J. D.; Knight, P. L.
1988-09-01
We use variances, entropy, and the Shannon entropy to analyse the fluctuations and quantum evolution of various simple models of quantum optical resonance. We discuss at length the properties of the single-mode radiation field coupled to a single two-level atom, and then extend our analysis to describe the micromaser in which a cavity mode is repeatedly pumped by a succession of atoms passing through the cavity. We also discuss the fluctuations in the single-mode laser theory of Scully and Lamb.
Analysis of Chaotic Resonance in Izhikevich Neuron Model.
Nobukawa, Sou; Nishimura, Haruhiko; Yamanishi, Teruya; Liu, Jian-Qin
2015-01-01
In stochastic resonance (SR), the presence of noise helps a nonlinear system amplify a weak (sub-threshold) signal. Chaotic resonance (CR) is a phenomenon similar to SR but without stochastic noise, which has been observed in neural systems. However, no study to date has investigated and compared the characteristics and performance of the signal responses of a spiking neural system in some chaotic states in CR. In this paper, we focus on the Izhikevich neuron model, which can reproduce major spike patterns that have been experimentally observed. We examine and classify the chaotic characteristics of this model by using Lyapunov exponents with a saltation matrix and Poincaré section methods in order to address the measurement challenge posed by the state-dependent jump in the resetting process. We found the existence of two distinctive states, a chaotic state involving primarily turbulent movement and an intermittent chaotic state. In order to assess the signal responses of CR in these classified states, we introduced an extended Izhikevich neuron model by considering weak periodic signals, and defined the cycle histogram of neuron spikes as well as the corresponding mutual correlation and information. Through computer simulations, we confirmed that both chaotic states in CR can sensitively respond to weak signals. Moreover, we found that the intermittent chaotic state exhibited a prompter response than the chaotic state with primarily turbulent movement.
Coupled mode parametric resonance in a vibrating screen model
Slepyan, Leonid I
2013-01-01
We consider a simple dynamic model of the vibrating screen operating in the parametric resonance (PR) mode. This model was used in the course of designing and setting of such a screen in LPMC. The PR-based screen compares favorably with conventional types of such machines, where the transverse oscillations are excited directly. It is characterized by larger values of the amplitude and by insensitivity to damping in a rather wide range. The model represents an initially strained system of two equal masses connected by a linearly elastic string. Self-equilibrated, longitudinal, harmonic forces act on the masses. Under certain conditions this results in transverse, finite-amplitude oscillations of the string. The problem is reduced to a system of two ordinary differential equations coupled by the geometric nonlinearity. Damping in both the transverse and longitudinal oscillations is taken into account. Free and forced oscillations of this mass-string system are examined analytically and numerically. The energy e...
Gonzálvez, Alicia G; González Ureña, Ángel
2012-10-01
A laser spectroscopic technique is described that combines transmission and resonance-enhanced Raman inelastic scattering together with low laser power (view, a model for the Raman signal dependence on the sample thickness is also presented. Essentially, the model considers the sample to be homogeneous and describes the underlying physics using only three parameters: the Raman cross-section, the laser-radiation attenuation cross-section, and the Raman signal attenuation cross-section. The model was applied successfully to describe the sample-size dependence of the Raman signal in both β-carotene standards and carrot roots. The present technique could be useful for direct, fast, and nondestructive investigations in food quality control and analytical or physiological studies of animal and human tissues.
Chiavassa, A; Casagrande, L; Asplund, M
2010-01-01
Context. Theoretical predictions from models of red giant branch stars are a valuable tool for various applications in astrophysics ranging from galactic chemical evolution to studies of exoplanetary systems. Aims. We use the radiative transfer code OPTIM3D and realistic 3D radiative-hydrodynamical (RHD) surface convection simulations of red giants to explore the impact of granulation on interferometric observables. Methods. We compute intensity maps for the 3D simulation snapshots in two filters: in the optical at 5000 \\pm 300 {\\AA} and in the K band 2.14 $\\pm$ 0.26 {\\mu}m FLUOR filter, corresponding to the wavelength-range of instruments mounted on the CHARA interferometer. From the intensity maps, we construct images of the stellar disks, accounting for center-to-limb variations. We then derive interferometric visibility amplitudes and phases. We study their behavior with position angle and wavelength. Results. We provide average limb-darkening coefficients for different metallicities and wavelength-ranges...
Resonant cavity light-emitting diodes: modeling, design, and optimization
Dumitrescu, Mihail M.; Sipila, Pekko; Vilokkinen, Ville; Toikkanen, L.; Melanen, Petri; Saarinen, Mika J.; Orsila, Seppo; Savolainen, Pekka; Toivonen, Mika; Pessa, Markus
2000-02-01
Monolithic top emitting resonant cavity light-emitting diodes operating in the 650 and 880 nm ranges have been prepared using solid-source molecular beam epitaxy growth. Transfer matrix based modeling together with a self- consistent model have been sued to optimize the devices' performances. The design of the layer structure and doping profile was assisted by computer simulations that enabled many device improvements. Among the most significant ones intermediate-composition barrier-reduction layers were introduced in the DBR mirrors for improving the I-V characteristics and the cavity and mirrors were detuned aiming at maximum extraction efficiency. The fabricated devices showed line widths below 15 nm, CW light power output of 8 and 22.5 mW, and external quantum efficiencies of 3 percent and 14.1 percent in the 650 nm and 880 nm ranges, respectively - while the simulations indicate significant performance improvement possibilities.
Modeling brain resonance phenomena using a neural mass model.
Andreas Spiegler
2011-12-01
Full Text Available Stimulation with rhythmic light flicker (photic driving plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect.
Atmospheres of Extrasolar Giant Planets
Marley, Mark
2006-01-01
The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.
Fluctuations, response, and resonances in a simple atmospheric model
Gritsun, Andrey; Lucarini, Valerio
2017-06-01
We study the response of a simple quasi-geostrophic barotropic model of the atmosphere to various classes of perturbations affecting its forcing and its dissipation using the formalism of the Ruelle response theory. We investigate the geometry of such perturbations by constructing the covariant Lyapunov vectors of the unperturbed system and discover in one specific case-orographic forcing-a substantial projection of the forcing onto the stable directions of the flow. This results into a resonant response shaped as a Rossby-like wave that has no resemblance to the unforced variability in the same range of spatial and temporal scales. Such a climatic surprise corresponds to a violation of the fluctuation-dissipation theorem, in agreement with the basic tenets of nonequilibrium statistical mechanics. The resonance can be attributed to a specific group of rarely visited unstable periodic orbits of the unperturbed system. Our results reinforce the idea of using basic methods of nonequilibrium statistical mechanics and high-dimensional chaotic dynamical systems to approach the problem of understanding climate dynamics.
Spectrally resolved resonant propulsion of dielectric microspheres
Li, Yangcheng; Limberopoulos, Nicholaos I; Urbas, Augustine M; Astratov, Vasily N
2015-01-01
Use of resonant light forces opens up a unique approach to high-volume sorting of microspherical resonators with much higher uniformity of resonances compared to that in coupled-cavity structures obtained by the best semiconductor technologies. In this work, the spectral response of the propulsion forces exerted on polystyrene microspheres near tapered microfibers is directly observed. The measurements are based on the control of the detuning between the tunable laser and internal resonances in each sphere with accuracy higher than the width of the resonances. The measured spectral shape of the propulsion forces correlates well with the whispering-gallery mode resonances in the microspheres. The existence of a stable radial trap for the microspheres propelled along the taper is demonstrated. The giant force peaks observed for 20-{\\mu}m spheres are found to be in a good agreement with a model calculation demonstrating an efficient use of the light momentum for propelling the microspheres.
Numerical model of electron cyclotron resonance ion source
V. Mironov
2015-12-01
Full Text Available Important features of the electron cyclotron resonance ion source (ECRIS operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.
The inherent complexity in nonlinear business cycle model in resonance
Ma Junhai [School of Management, Tianjin University, Tianjin 300072 (China) and Tianjin University of Finance and Economics, Tianjin 300222 (China)], E-mail: lzqsly@126.com; Sun Tao; Liu Lixia [School of Management, Tianjin University, Tianjin 300072 (China)
2008-08-15
Based on Abraham C.-L. Chian's research, we applied nonlinear dynamic system theory to study the first-order and second-order approximate solutions to one category of the nonlinear business cycle model in resonance condition. We have also analyzed the relation between amplitude and phase of second-order approximate solutions as well as the relation between outer excitements' amplitude, frequency approximate solutions, and system bifurcation parameters. Then we studied the system quasi-periodical solutions, annulus periodical solutions and the path leading to system bifurcation and chaotic state with different parameter combinations. Finally, we conducted some numerical simulations for various complicated circumstances. Therefore this research will lay solid foundation for detecting the complexity of business cycles and systems in the future.
Particle modeling of microplasma generated by resonance enhanced multiphoton ionization
Tholeti, Siva Sashank
Resonance-enhanced multiphoton ionization (REMPI) is a technique applied to the spectroscopy of atoms. The REMPI technique typically involves a resonant single or multiple photon absorption to an electronically excited intermediate state followed by another photon which ionizes the atom. Rayleigh scattering of REMPI plasma has given rise to a non-intrusive, time accurate measurement of electron formation and loss, which lead to many applications viz. trace species detection and micro-plasma diagnostics. It is very important to quantify the expansion process and the evolution of energy of electrons and ions. The operation scale of this process is in microns and non continuum nature of the process lead to the use of PIC/MCC scheme to compu- tationally model REMPI technique. This work attempts to understand and analyze the processes taking place during the expansion of REMPI plasma computationally using the PIC/MCC scheme. One dimensional and two dimensional approximations are considered to analyze the REMPI plasma expansion in Argon gas generated by a laser with a focal shape of a prolate ellipsoid. The expansion of the plasma is found to be very sensitive to the initial velocity distribution of the electrons. REMPI plasma expansion is shown to be ambipolar in nature, with the radial expansion more predominant than axial expansion, hence requiring the 2D model. Electron energy distribution functions(EEDFs) are found at various radial locations along with the corresponding mean energies. The deviation of the EEDFs from that of equilibrium Maxwell-Boltzmann energy distribution is presented both qualitatively and quanti- tatively, indicating the predominant processes at various instances in time.
Atmospheres of Extrasolar Giant Planets
Marley, M S; Seager, S; Barman, T; Marley, Mark S.; Fortney, Jonathan; Seager, Sara; Barman, Travis
2006-01-01
The key to understanding an extrasolar giant planet's spectrum--and hence its detectability and evolution--lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of extrasolar giant planets and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a ...
Karakas, Amanda I; Nataf, David M
2014-01-01
We investigate the effect of helium enrichment on the evolution and nucleosynthesis of low-mass asymptotic giant branch (AGB) stars of 1.7Msun and 2.36Msun with a metallicity of Z=0.0006 ([Fe/H] = -1.4). We calculate evolutionary sequences with the primordial helium abundance (Y = 0.24) and with helium-enriched compositions (Y = 0.30, 0.35, 0.40). For comparison we calculate models of the same mass but at a lower metallicity Z=0.0003 ([Fe/H] = -1.8) with Y=0.24. Post-processing nucleosynthesis calculations are performed on each of the evolutionary sequences to determine the production of elements from hydrogen through to bismuth. Elemental surface abundance predictions and stellar yields are presented for each model. The models with enriched helium have shorter main sequence and AGB lifetimes, and enter the AGB with a more massive hydrogen exhausted core than the primordial helium model. The main consequences are 1) low-mass AGB models with enhanced helium will evolve more than twice as fast, giving them the ...
Madhusudhan, Nikku; Currie, Thayne
2011-01-01
We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with 1) physically thick forsterite clouds and a 60-micron modal particle size and 2) clouds made of 1 micron-sized pure iron droplets and 1% supersaturation fit the data. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 M_J, 7-13 M_J, and 3-11 M_J, re...
Hanson, D.; Waters, T. P.; Thompson, D. J.; Randall, R. B.; Ford, R. A. J.
2007-01-01
Finite element model updating traditionally makes use of both resonance and modeshape information. The mode shape information can also be obtained from anti-resonance frequencies, as has been suggested by a number of researchers in recent years. Anti-resonance frequencies have the advantage over mode shapes that they can be much more accurately identified from measured frequency response functions. Moreover, anti-resonance frequencies can, in principle, be estimated from output-only measurements on operating machinery. The motivation behind this paper is to explore whether the availability of anti-resonances from such output-only techniques would add genuinely new information to the model updating process, which is not already available from using only resonance frequencies. This investigation employs two-degree-of-freedom models of a rigid beam supported on two springs. It includes an assessment of the contribution made to the overall anti-resonance sensitivity by the mode shape components, and also considers model updating through Monte Carlo simulations, experimental verification of the simulation results, and application to a practical mechanical system, in this case a petrol generator set. Analytical expressions are derived for the sensitivity of anti-resonance frequencies to updating parameters such as the ratio of spring stiffnesses, the position of the centre of gravity, and the beam's radius of gyration. These anti-resonance sensitivities are written in terms of natural frequency and mode shape sensitivities so their relative contributions can be assessed. It is found that the contribution made by the mode shape sensitivity varies considerably depending on the value of the parameters, contributing no new information for significant combinations of parameter values. The Monte Carlo simulations compare the performance of the update achieved when using information from: the resonances only; the resonances and either anti-resonance; and the resonances and both
Analysis and modeling of Fano resonances using equivalent circuit elements.
Lv, Bo; Li, Rujiang; Fu, Jiahui; Wu, Qun; Zhang, Kuang; Chen, Wan; Wang, Zhefei; Ma, Ruyu
2016-08-22
Fano resonance presents an asymmetric line shape formed by an interference of a continuum coupled with a discrete autoionized state. In this paper, we show several simple circuits for Fano resonances from the stable-input impedance mechanism, where the elements consisting of inductors and capacitors are formulated for various resonant modes, and the resistor represents the damping of the oscillators. By tuning the pole-zero of the input impedance, a simple circuit with only three passive components e.g. two inductors and one capacitor, can exhibit asymmetric resonance with arbitrary Q-factors flexiblely. Meanwhile, four passive components can exhibit various resonances including the Lorentz-like and reversely electromagnetically induced transparency (EIT) formations. Our work not only provides an intuitive understanding of Fano resonances, but also pave the way to realize Fano resonaces using simple circuit elements.
Initial computational fluid dynamics modeling of the Giant Magellan Telescope site and enclosure
Danks, Ryan; Smeaton, William; Bigelow, Bruce; Burgett, William
2016-08-01
In the era of extremely large telescopes (ELTs), with telescope apertures growing in size and tighter image quality requirements, maintaining a controlled observation environment is critical. Image quality is directly influenced by thermal gradients, the level of turbulence in the incoming air flow and the wind forces acting on the telescope. Thus any ELT enclosure must be able to modulate the speed and direction of the incoming air and limit the inflow of disturbed ground-layer air. However, gaining an a priori understanding of the wind environment's impacts on a proposed telescope is complicated by the fact that telescopes are usually located in remote, mountainous areas, which often do not have high quality historic records of the wind conditions, and can be subjected to highly complex flow patterns that may not be well represented by the traditional analytic approaches used in typical building design. As part of the design process for the Giant Magellan Telescope at Cerro Las Campanas, Chile; the authors conducted a parametric design study using computational fluid dynamics which assessed how the telescope's position on the mesa, its ventilation configuration and the design of the enclosure and windscreens could be optimized to minimize the infiltration of ground-layer air. These simulations yielded an understanding of how the enclosure and the natural wind flows at the site could best work together to provide a consistent, well controlled observation environment. Future work will seek to quantify the aerothermal environment in terms of image quality.
Bertolami, Marcelo M Miller
2015-01-01
The Post Asymptotic Giant Branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The two grids of models presently available are based on outdated micro- and macro-physics and do not agree with each other. We study the timescales of post-AGB and CSPNe in the context of our present understanding of the micro- and macro-physics of stars. We want to assess whether new post-AGB models, based on the latter improvements in TP-AGB modeling, can help to understand the discrepancies between observation and theory and within theory itself. We compute a grid of post-AGB full evolutionary sequences that include all previous evolutionary stages from the Zero Age Main Sequence to the White Dwarf phase. Models are computed for initial masses between 0.8 and 4 $M_\\odot$ and for a wide range of initial metallicities ($Z_0=$0.02, 0.01, 0.001, 0.0001), this allow us to provide post-AGB timescales and properties for H-burning post-AGB objects with masses in the re...
On the Nature and Timing of Giant Planet Migration in the Solar System
Agnor, Craig B.
2016-05-01
Giant planet migration is a natural outcome of gravitational scattering and planet formation processes (Fernandez & Ip 1984). There is compelling evidence that the solar system's giant planets experienced large-scale migration involving close approaches between planets as well as smooth radial migration via planetesimal scattering. Aspects of giant planet migration have been invoked to explain many features of the outer solar system including the resonant structure of the Kuiper Belt (e.g., Malhotra 1993, Levison et al. 2008), the eccentricities of Jupiter and Saturn (Tsiganis et al. 2005, Morbidelli et al. 2009), the capture of Jupiter's Trojan companions (Morbidelli et al. 2005) and the capture of irregular planetary satellites (e.g., Nesvorny et al. 2007) to name a few. If this migration epoch occurred after the formation of the inner planets, then it may also explain the so-called lunar Late Heavy Bombardment (Gomes et al. 2005). This scenario necessarily requires coeval terrestrial and migrating giant planets. Recent N-body integrations exploring this issue have shown that giant planet migration may excite the terrestrial system via nodal and apsidal secular resonances (e.g., Brasser et al. 2013), may drive the terrestrial planets to crossing orbits (Kaib & Chambers 2016) or alternatively leave the inner solar system in a state closely resembling the observed one (Roig et al. 2016). The factors accounting for the large range of outcomes remain unclear. Using linear secular models and N-body simulations I am identifying and characterising the principal aspects of giant planet migration that excite the terrestrial planets' orbits. I will present these results and discuss how they inform the nature and timing of giant planet migration in the solar system.
Pierens, Arnaud; Nesvorny, David; Morbidelli, Alessandro
2014-01-01
Embedded in the gaseous protoplanetary disk, Jupiter and Saturn naturally become trapped in 3:2 resonance and migrate outward. This serves as the basis of the Grand Tack model. However, previous hydrodynamical simulations were restricted to isothermal disks, with moderate aspect ratio and viscosity. Here we simulate the orbital evolution of the gas giants in disks with viscous heating and radiative cooling. We find that Jupiter and Saturn migrate outward in 3:2 resonance in modest-mass ($M_{disk} \\approx M_{MMSN}$, where MMSN is the "minimum-mass solar nebula") disks with viscous stress parameter $\\alpha$ between $10^{-3}$ and $10^{-2} $. In disks with relatively low-mass ($M_{disk} \\lesssim M_{MMSN}$) , Jupiter and Saturn get captured in 2:1 resonance and can even migrate outward in low-viscosity disks ($\\alpha \\le 10^{-4}$). Such disks have a very small aspect ratio ($h\\sim 0.02-0.03$) that favors outward migration after capture in 2:1 resonance, as confirmed by isothermal runs which resulted in a similar o...
Modeling giant extrasolar ring systems in eclipse and the case of J1407b: sculpting by exomoons?
Kenworthy, Matthew A
2015-01-01
The light curve of 1SWASP J140747.93-394542.6, a $\\sim$16 Myr old star in the Sco-Cen OB association, underwent a complex series of deep eclipses that lasted 56 days, centered on April 2007. This light curve is interpreted as the transit of a giant ring system that is filling up a fraction of the Hill sphere of an unseen secondary companion, J1407b. We fit the light curve with a model of an azimuthally symmetric ring system, including spatial scales down to the temporal limit set by the star's diameter and relative velocity. The best ring model has 37 rings and extends out to a radius of 0.6 AU (90 million km), and the rings have an estimated total mass on the order of $100 M_{Moon}$. The ring system has one clearly defined gap at 0.4 AU (61 million km), which we hypothesize is being cleared out by a $< 0.8 M_{\\oplus}$ exosatellite orbiting around J1407b. This eclipse and model implies that we are seeing a circumplanetary disk undergoing a dynamic transition to an exosatellite-sculpted ring structure and i...
Can Centre Surround Model Explain the Enhancement of Visual Perception through Stochastic Resonance?
Kundu, Ajanta
2010-01-01
We demonstrate the ability of centre surround model for simulating the enhancement of contrast sensitivity through stochastic resonance observed in psychophysical experiments. We also show that this model could be used to simulate the contrast sensitivity function through stochastic resonance. The quality of the fit of measured contrast sensitivity function to the simulated data is very good.
Analytical model for double split ring resonators with arbitrary ring width
Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor
2008-01-01
For the first time, the analytical model for a double split ring resonator with unequal width rings is developed. The proposed models for the resonators with equal and unequal widths are based on an impedance matrix representation and provide the prediction of performance in a wide frequency rang...
Giant arachnoid granulation in a patient with benign intracranial hypertension
Kiroglu, Yilmaz; Yaqci, Baki; Cirak, Bayram; Karabulut, Nevzat [Pamukkale University, Department of Radiology, School of Medicine, Denizli (Turkey)
2008-10-15
We report magnetic resonance (MR), computed tomography (CT) and angiographic imaging of an unusual giant arachnoid granulation in the superior sagittal sinus in a man with headache and vertigo. Intrasinus pressure measurements revealed a significant pressure gradient across the lesion. MR imaging is useful to identify giant arachnoid granulation and dural sinus thrombosis, whereas dural sinus pressure measurement in certain cases of giant arachnoid granulations can be used to evaluate the lesion as the cause of the patient's symptoms. (orig.)
Rapid Formation of Ice Giant Planets
Boss, A P; Haghighipour, N; Boss, Alan P.; Wetherill, George W.; Haghighipour, Nader
2002-01-01
The existence of Uranus and Neptune presents severe difficulties for the core accretion model for the formation of ice giant planets. We suggest an alternative mechanism, namely disk instability leading to the formation of gas giant protoplanets, coagulation and settling of dust grains to form ice/rock cores at their centers, and photoevaporation of their gaseous envelopes by a nearby OB star, as a possible means of forming ice giant planets.
The Resonant Transneptunian Populations
Gladman, B; Petit, J-M; Kavelaars, J; Jones, R L; Parker, J Wm; Van Laerhoven, C; Nicholson, P; Rousselot, P; Bieryla, A; Ashby, M L N
2012-01-01
The transneptunian objects (TNOs) trapped in mean-motion resonances with Neptune were likely emplaced there during planet migration late in the giant-planet formation process. We perform detailed modelling of the resonant objects detected in the Canada-France Ecliptic Plane Survey (CFEPS) in order to provide population estimates and, for some resonances, constrain the complex internal orbital element distribution. Detection biases play a critical role because phase relationships with Neptune make object discovery more likely at certain longitudes. This paper discusses the 3:2, 5:2, 2:1, 3:1, 5:1, 4:3, 5:3, 7:3, 5:4, and 7:4 mean-motion resonances, all of which had CFEPS detections, along with our upper limit on 1:1 Neptune Trojans (which is consistent with their small population estimated elsewhere). For the plutinos (TNOs in the 3:2 resonance) we refine the orbital element distribution given in Kavelaars et al. (2009) and show that steep H-magnitude distributions (N(H) proportional to 10aH, with a=0.8-0.9) a...
A neuron model of stochastic resonance using rectangular pulse trains.
Danziger, Zachary; Grill, Warren M
2015-02-01
Stochastic resonance (SR) is the enhanced representation of a weak input signal by the addition of an optimal level of broadband noise to a nonlinear (threshold) system. Since its discovery in the 1980s the domain of input signals shown to be applicable to SR has greatly expanded, from strictly periodic inputs to now nearly any aperiodic forcing function. The perturbations (noise) used to generate SR have also expanded, from white noise to now colored noise or vibrational forcing. This study demonstrates that a new class of perturbations can achieve SR, namely, series of stochastically generated biphasic pulse trains. Using these pulse trains as 'noise' we show that a Hodgkin Huxley model neuron exhibits SR behavior when detecting weak input signals. This result is of particular interest to neuroscience because nearly all artificial neural stimulation is implemented with square current or voltage pulses rather than broadband noise, and this new method may facilitate the translation of the performance gains achievable through SR to neural prosthetics.
Fluctuations, Response, and Resonances in a Simple Atmospheric Model
Gritsun, Andrey
2016-01-01
We study the response of a simple quasi-geostrophic barotropic model of the atmosphere to various classes of perturbations affecting its forcing and its dissipation using the formalism of the Ruelle response theory. We investigate the geometry of such perturbations using the covariant Lyapunov vectors on the unperturbed system and discover in one specific case - orographic forcing - a substantial projection of the perturbation onto the stable directions of the flow. As a result, we find a clear violation of the fluctuation-dissipation theorem, in agreement with the basic tenets of nonequilibrium statistical mechanics. This results into a very strong response in the form of a forced Rossby-like wave that has no resemblance to the natural variability in the same range of spatial and temporal scales. We further analyze such a feature and discover it can be interpreted as resonant response to a specific group of rarely visited unstable periodic orbits of the unperturbed system. Our results reinforce the idea of u...
Piekarewicz, J
2012-01-01
Understanding the equation of state (EOS) of neutron-rich matter is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of energetic heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova all depend critically on the nuclear-matter EOS. In this contribution I focus on the EOS of cold baryonic matter with special emphasis on its impact on the structure, dynamics, and composition of neutron stars. In particular, I discuss how laboratory experiments on neutron skins as well as on Pygmy and Giant resonances can help us elucidate the structure of these fascinating objects.
Hu, Ruizhong; Fu, Shanling; Huang, Yong; Zhou, Mei-Fu; Fu, Shaohong; Zhao, Chenghai; Wang, Yuejun; Bi, Xianwu; Xiao, Jiafei
2017-04-01
The South China Craton was formed by amalgamation of the Yangtze and Cathaysia Blocks during the Neoproterozoic. During the Mesozoic, voluminous granitic plutons and associated W-Sn polymetallic deposits were formed in the Cathaysia Block. The giant South China low-temperature metallogenic domain (LTMD) includes an area of ∼500,000 km2 in the Yangtze Block and is composed of the Chuan-Dian-Qian Pb-Zn, Youjiang Au-As-Sb-Hg and Xiangzhong Sb-Au metallogenic provinces. The Chuan-Dian-Qian Pb-Zn province contains numerous MVT Pb-Zn deposits, whereas the other two provinces are characterized by Carlin-type Au deposits and vein-type Sb, Hg and As deposits. These epigenetic deposits, which formed under low temperature conditions (∼100-250 °C), are typically hosted in sedimentary rocks and are locally controlled by faults and fractures. The deposits formed dominantly at 200-230 Ma and 130-160 Ma, corresponding to Indosinian (Triassic) and Yanshanian (Jurassic to Cretaceous) orogenies, respectively. Indosinian mineralization is recognized in all three provinces, but Yanshanian mineralization occurred only in the Youjiang and Xiangzhong provinces. The Indosinian orogeny, which involved collision of the Indochina Block with the South China Craton, resulted in circulation of basinal brines that leached ore-forming elements from adjacent sedimentary strata to form the Chuan-Dian-Qian Pb-Zn province. Deep-seated granitic magmas generated during this orogeny caused extensive circulation of meteoric water that mobilized ore-forming elements from the sedimentary strata to form the Carlin-type Au deposits in the Youjiang province, and the Sb-Au deposits in the Xiangzhong province. The Indosinian orogeny was the key factor in establishing the metallogenic framework of the LTMD. It produced widespread mineralization in the three metallogenic provinces, each of which has unique features reflecting differences in the nature and composition of the basement rocks. The Yanshanian
Parkinson, Christopher; Esposito, Larry W.
2016-07-01
The atmosphere of the outer planets is mainly composed of H2 and neutral atomic helium. The study of He 584 Å and H Lyman-α brightnesses is interesting as the EUV and FUV (Extreme and Far Ultraviolet) planetary airglow have the potential to yield useful information about mixing and other important parameters in their thermospheres. Time variation, asymmetries, and polar enhancement of the airglow are also possible and analysis of the public archived NASA mission data sets (i.e. Voyager and Cassini) can help solve some of the outstanding problems associated with these phenomena. The comparison of observations with results from sophisticated photochemical and radiative transfer models can also help ameliorate unexplained differences in the dynamical processes operating within planetary upper atmospheres. Powerful analysis techniques allow us to extract information on atmospheric mixing, temperatures, and temporal changes due to the solar and seasonal cycles from the variations in distribution and intensity of airglow emissions that result. The presentation will discuss the implications of interpretations from comparison of modeling and observations in giant planetary atmospheres.
Shell Model Study on the Proton Pigmy Dipole Resonances in ~(17, 18)Ne
无
2011-01-01
The proton pygmy dipole resonances (PDRs) in proton rich nuclei 17, 18Ne have been investigated in the framework of interacting shell model. The shell model with the self-consistent Skyrme-Hartree-Fock wave functions has well reproduced
Hoermann, Astrid; Cicin-Sain, Damjan; Jaeger, Johannes
2016-03-15
Understanding eukaryotic transcriptional regulation and its role in development and pattern formation is one of the big challenges in biology today. Most attempts at tackling this problem either focus on the molecular details of transcription factor binding, or aim at genome-wide prediction of expression patterns from sequence through bioinformatics and mathematical modelling. Here we bridge the gap between these two complementary approaches by providing an integrative model of cis-regulatory elements governing the expression of the gap gene giant (gt) in the blastoderm embryo of Drosophila melanogaster. We use a reverse-engineering method, where mathematical models are fit to quantitative spatio-temporal reporter gene expression data to infer the regulatory mechanisms underlying gt expression in its anterior and posterior domains. These models are validated through prediction of gene expression in mutant backgrounds. A detailed analysis of our data and models reveals that gt is regulated by domain-specific CREs at early stages, while a late element drives expression in both the anterior and the posterior domains. Initial gt expression depends exclusively on inputs from maternal factors. Later, gap gene cross-repression and gt auto-activation become increasingly important. We show that auto-regulation creates a positive feedback, which mediates the transition from early to late stages of regulation. We confirm the existence and role of gt auto-activation through targeted mutagenesis of Gt transcription factor binding sites. In summary, our analysis provides a comprehensive picture of spatio-temporal gene regulation by different interacting enhancer elements for an important developmental regulator.
Numerical Modeling of the Radio Nebula from the 2004 December 27 Giant Flare of SGR 1806-20
Salmonson, J D; Fragile, P C; Aninos, P
2006-05-25
The authors use the relativistic hydrodynamics code Cosmos++ to model the evolution of the radio nebula triggered by the Dec. 27, 2004 giant flare event of soft gamma repeater 1806-20. They primarily focus on the rebrightening and centroid motion occurring subsequent to day 20 following the flare event. They model this period as a mildly relativistic ({gamma} {approx} 1.07-1.67) jetted outflow expanding into the intergalactic medium (IGM). They demonstrate that a jet with total energy {approx} 10{sup 46} ergs confined to a half opening angle {approx} 20{sup o} fits the key observables of this event, e.g. the flux lightcurve, emission map centroid position, and aspect ratio. In particular, they find excellent agreement with observations if the rebrightening is due to the jet, moving at 0.5 c and inclined {approx} 0{sup o}-40{sup o} toward the observer, colliding with a density discontinuity in the IGM at a radius of several 10{sup 16} cm. They also find that a jet with a higher velocity, {approx}> 0.7c, and larger inclination, {approx}> 70{sup o}, moving into a uniform IGM can fit the observations in general, but tends to miss the details of rebrightening. The latter, uniform IGM model predicts an IGM density more than 100 times lower than that of the former model, and thus suggests an independent test which might discriminate between the two. One of the strongest constraints of both models is that the data seems to require a non-uniform jet in order to be well fit.
Measurement and modelling of enhanced absorption Hanle effect resonances in {sup 85}Rb
Vilardi, Andrea; Tabarelli, Davide; Botti, Laura; Bertoldi, Andrea; Ricci, Leonardo [Dipartimento di Fisica, Universita di Trento, I-38100 Trento-Povo (Italy)], E-mail: andrea.bertoldi@institutoptique.fr
2009-03-14
We report on a detailed measurement of the enhanced absorption Hanle effect resonances in {sup 85}Rb. The effect was analysed with an experimental setup allowing for the control of each magnetic field component within 1 mG. The characterization deals with the dependence of resonances, observed under different magnetic field conditions, on the frequency, intensity and polarization of the exciting radiation field. An analytic model that precisely describes the resonance behaviour is discussed.
Two-Mode Resonator and Contact Model for Standing Wave Piezomotor
Andersen, B.; Blanke, Mogens; Helbo, J.
2001-01-01
The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailed simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...
Behavioural modelling and system-level simulation of micromechanical beam resonators
Khine, Lynn; Palaniapan, Moorthi
2006-04-01
This paper presents a behavioural modelling technique for micromechanical beam resonators that enables the simulation of MEMS resonator model in Analog Hardware Description Language (AHDL) format within a system-level circuit simulation. A 1.13 MHz clamped-clamped beam and a 10.4 MHz free-free beam resonators have been modelled into Verilog-A code and successfully simulated with Spectre in Cadence. Analysis has shown that both models behave well and their electrical characteristics are in agreement with the theory.
Irena Cosic
2016-06-01
Full Text Available The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM. The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1 the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2 the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3 the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4 the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health.
Aringer, Bernhard; Nowotny, Walter; Marigo, Paola; Bressan, Alessandro
2016-01-01
Based on a grid of hydrostatic spherical COMARCS models for cool stars we have calculated observable properties of these objects, which will be mainly used in combination with stellar evolution tracks and population synthesis tools. The high resolution opacity sampling and low resolution convolved spectra as well as bolometric corrections for a large number of filter systems are made electronically available. We exploit those data to study the effect of mass, C/O ratio and nitrogen abundance on the photometry of K and M giants. Depending on effective temperature, surface gravity and the chosen wavelength ranges variations of the investigated parameters cause very weak to moderate and, in the case of C/O values close to one, even strong shifts of the colours. For the usage with stellar evolution calculations they will be treated as correction factors applied to the results of an interpolation in the main quantities. When we compare the synthetic photometry to observed relations and to data from the Galactic Bu...
Wykes, Sarka; Hardcastle, Martin J; Achterberg, Abraham; Jones, Thomas W; Jerjen, Helmut; Orru, Emanuela; Lazarian, Alex; Shimwell, Timothy W; Wise, Michael W; Kronberg, Philipp P
2014-01-01
We present results from imaging of the radio filaments in the southern giant lobe of Centaurus A using data from GMRT observations at 325 and 235 MHz, and outcomes from filament modelling. The observations reveal a rich filamentary structure, largely matching the morphology at 1.4 GHz. We find no clear connection of the filaments to the jet. We seek to constrain the nature and origin of the vertex and vortex filaments associated with the lobe and their role in high-energy particle acceleration. We deduce that these filaments are at most mildly overpressured with respect to the global lobe plasma showing no evidence of large-scale efficient Fermi I-type particle acceleration, and persist for ~ 2-3 Myr. We demonstrate that the dwarf galaxy KK 196 (AM 1318-444) cannot account for the features, and that surface plasma instabilities, the internal sausage mode and radiative instabilities are highly unlikely. An internal tearing instability and the kink mode are allowed within the observational and growth time const...
Giant Planet Formation, Evolution, and Internal Structure
Helled, Ravit; Podolak, Morris; Boley, Aaron; Meru, Farzana; Nayakshin, Sergei; Fortney, Jonathan J; Mayer, Lucio; Alibert, Yann; Boss, Alan P
2013-01-01
The large number of detected giant exoplanets offers the opportunity to improve our understanding of the formation mechanism, evolution, and interior structure of gas giant planets. The two main models for giant planet formation are core accretion and disk instability. There are substantial differences between these formation models, including formation timescale, favorable formation location, ideal disk properties for planetary formation, early evolution, planetary composition, etc. First, we summarize the two models including their substantial differences, advantages, and disadvantages, and suggest how theoretical models should be connected to available (and future) data. We next summarize current knowledge of the internal structures of solar- and extrasolar- giant planets. Finally, we suggest the next steps to be taken in giant planet exploration.
Generalization of a 3-D Acoustic Resonator Model for the Simulation of Spherical Enclosures
Dutilleux Pierre
2001-01-01
Full Text Available A rectangular enclosure has such an even distribution of resonances that it can be accurately and efficiently modelled using a feedback delay network. Conversely, a nonrectangular shape such as a sphere has a distribution of resonances that challenges the construction of an efficient model. This work proposes an extension of the already known feedback delay network structure to model the resonant properties of a sphere. A specific frequency distribution of resonances can be approximated, up to a certain frequency, by inserting an allpass filter of moderate order after each delay line of a feedback delay network. The structure used for rectangular boxes is therefore augmented with a set of allpass filters allowing parametric control over the enclosure size and the boundary properties. This work was motivated by informal listening tests which have shown that it is possible to identify a basic shape just from the distribution of its audible resonances.
A statistical model for combustion resonance from a DI diesel engine with applications
Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.
2015-08-01
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
Tilting Saturn without Tilting Jupiter or Ejecting an Ice Giant: Constraints on migration
McNeil, Douglas S.; Lee, M. H.
2010-10-01
The obliquities of the giant planets preserve information about their migration and encounter histories. Are the classic Nice models (Tsiganis et al. 2005) or the resonant Nice models (Morbidelli et al. 2007) compatible with Jupiter's 3 degree tilt and Saturn's 27? Here we consider the obliquity evolution of the giants during the planetesimal-driven migration phase using two methods: (1) a purely secular integration of the Laplace-Lagrange equations with spin, and (2) a hybrid N-body scheme with full interactions between the Sun and the giants but imposed prescriptions for migration and eccentricity and inclination damping. We find that it is difficult to reproduce today's obliquity values as migration timescales sufficient to tilt Saturn via the Hamilton & Ward (2004) secular spin-orbit resonance mechanism generally suffice to tilt Jupiter more than is observed. Moreover, long migration timescales which make tilting Saturn easier simultaneously reduce the survival fraction (to below 20% for timescales longer than 20 Myr.) We discuss the constraints these observations provide on the dynamical history of the giant planets, and the remaining possibility of tilting Saturn during a late very slow migration of Neptune to its present location after the main phase of migration is complete. [This work was supported by Hong Kong RGC grant HKU 7024/08P.
Eriksson, K.; Nowotny, W.; Höfner, S.; Aringer, B.; Wachter, A.
2014-06-01
Context. The evolution and spectral properties of stars on the asymptotic giant branch (AGB) are significantly affected by mass loss through dusty stellar winds. Dynamic atmosphere and wind models are an essential tool for studying these evolved stars, both individually and as members of stellar populations, to understand their contribution to the integrated light and chemical evolution of galaxies. Aims: This paper is part of a series with the purpose of testing state-of-the-art atmosphere and wind models of C-type AGB stars against observations, and making them available to the community for use in various theoretical and observational studies. Methods: We have computed low-resolution spectra and photometry (in the wavelength range 0.35-25 μm) for a grid of 540 dynamic models with stellar parameters typical of solar-metallicity C-rich AGB stars and with a range of pulsation amplitudes. The models cover the dynamic atmosphere and dusty outflow (if present), assuming spherical symmetry, and taking opacities of gas-phase species and dust grains consistently into account. To characterize the time-dependent dynamic and photometric behaviour of the models in a concise way we defined a number of classes for models with and without winds. Results: Comparisons with observed data in general show a quite satisfactory agreement for example regarding mass-loss rates vs. (J - K) colours or K magnitudes vs. (J - K) colours. Some exceptions from the good overall agreement, however, are found and attributed to the range of input parameters (e.g. relatively high carbon excesses) or intrinsic model assumptions (e.g. small particle limit for grain opacities). Conclusions: While current results indicate that some changes in model assumptions and parameter ranges should be made in the future to bring certain synthetic observables into better agreement with observations, it seems unlikely that these pending improvements will significantly affect the mass-loss rates of the models
Burger, L
2007-01-01
Full Text Available A simple model of a Porro prism laser resonator has been found to correctly predict the formation of the “petal” mode patterns typical of these resonators. A geometrical analysis of the petals suggests that these petals are the lowest−order modes...
Battino, Rubin
1983-01-01
Describes the design, construction, and use of oversize lecture-demonstration atomic/molecular models. These models appeal to both concrete and formal operational students. Also describes construction and use of an "spdf" sandwich board and an experiment using attribute blocks. (JN)
Bart W. Hoogenboom
2012-05-01
Full Text Available Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks.
Paxman, Rosemary; Stinson, Jake; Dejardin, Anna; McKendry, Rachel A; Hoogenboom, Bart W
2012-01-01
Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks.
Verhoelst, T; Perrin, G; Decin, L; Eriksson, K; Ridgway, S T; Schuller, P A; Traub, W A; Millan-Gabet, R; Lacasse, M G; Waelkens, C
2005-01-01
We present near-IR interferometric measurements of the K1.5 giant Arcturus (alpha Bootis), obtained at the IOTA interferometer with the FLUOR instrument, in four narrow filters with central wavelengths ranging from 2.03 to 2.39 micron. These observations were expected to allow us to quantify the wavelength dependence of the diameter of a typical K giant. They are compared to predictions from both plane-parallel and spherical model atmospheres. Unexpectedly, neither can explain the observed visibilities. We show how these data suggest the presence of a companion, in accordance with the Hipparcos data on this star, and discuss this solution with respect to Arcturus' single star status.
Bashkirtseva, Irina; Neiman, Alexander B.; Ryashko, Lev
2015-05-01
We study the stochastic dynamics of a Hodgkin-Huxley neuron model in a regime of coexistent stable equilibrium and a limit cycle. In this regime, noise may suppress periodic firing by switching the neuron randomly to a quiescent state. We show that at a critical value of the injected current, the mean firing rate depends weakly on noise intensity, while the neuron exhibits giant variability of the interspike intervals and spike count. To reveal the dynamical origin of this noise-induced effect, we develop the stochastic sensitivity analysis and use the Mahalanobis metric for this four-dimensional stochastic dynamical system. We show that the critical point of giant variability corresponds to the matching of the Mahalanobis distances from attractors (stable equilibrium and limit cycle) to a three-dimensional surface separating their basins of attraction.
Bashkirtseva, Irina; Neiman, Alexander B; Ryashko, Lev
2015-05-01
We study the stochastic dynamics of a Hodgkin-Huxley neuron model in a regime of coexistent stable equilibrium and a limit cycle. In this regime, noise may suppress periodic firing by switching the neuron randomly to a quiescent state. We show that at a critical value of the injected current, the mean firing rate depends weakly on noise intensity, while the neuron exhibits giant variability of the interspike intervals and spike count. To reveal the dynamical origin of this noise-induced effect, we develop the stochastic sensitivity analysis and use the Mahalanobis metric for this four-dimensional stochastic dynamical system. We show that the critical point of giant variability corresponds to the matching of the Mahalanobis distances from attractors (stable equilibrium and limit cycle) to a three-dimensional surface separating their basins of attraction.
Atmospheres of Extrasolar Giant Planets
Marley, M. S.; Fortney, J.; Seager, S.; Barman, T.
The key to understanding an extrasolar giant planet's spectrum - and hence its detectability and evolution - lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets (EGPs) are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of EGPs and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a single stellar system leads to the study of comparative planetary architectures.
Stochastic resonance in neuron models : Endogenous stimulation revisited
Plesser, HE; Geisel, T
2001-01-01
The paradigm of stochastic resonance (SR)-the idea that signal detection and transmission may benefit from noise-has met with great interest in both physics and the neurosciences. We investigate here the consequences of reducing the dynamics of a periodically driven neuron to a renewal process (stim
General Theoretical Model for Resonantly Enhanced Optical Modulators
Yuvaraja; S.; Visagathilagar; Arnan; Mitchell; Michael; W.; Austin
2003-01-01
1 IntroductionLiNbO3 optical modulators have become essential transmission devices for current and future wideband fibre-optic communications for both military and telecommunications applications. For many telecommunications applications, only a narrow bandwidth is required and thus resonantly enhancedMach-Zehndermodulators(RE-MZMs)have been developed to improve modulation efficiency at the expense of bandwidth.
Predicting giant magnetoresistance using a self-consistent micromagnetic diffusion model
Abert, Claas; Bruckner, Florian; Vogler, Christoph; Praetorius, Dirk; Suess, Dieter
2015-01-01
We propose a self-consistent micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. Potential calculations for a magnetic multilayer structure with perpendicular current flow confirm experimental findings of a non-sinosoidal dependence of the resistivity on the tilting angle of the magnetization in the different layers. While the sinosoidal dependency is observed for certain material parameter limits, a realistic choice of these parameters leads to a notably narrower distribution.
Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...
Miller Bertolami, Marcelo Miguel
2016-04-01
Context. The post-asymptotic giant branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The two grids of models presently available are based on outdated micro- and macrophysics and do not agree with each other. Studies of the central stars of planetary nebulae (CSPNe) and post-AGB stars in different stellar populations point to significant discrepancies with the theoretical predictions of post-AGB models. Aims: We study the timescales of post-AGB and CSPNe in the context of our present understanding of the micro- and macrophysics of stars. We want to assess whether new post-AGB models, based on the latter improvements in TP-AGB modeling, can help us to understand the discrepancies between observation and theory and within theory itself. In addition, we aim to understand the impact of the previous AGB evolution for post-AGB phases. Methods: We computed a grid of post-AGB full evolutionary sequences that include all previous evolutionary stages from the zero age main sequence to the white dwarf phase. We computed models for initial masses between 0.8 and 4 M⊙ and for a wide range of initial metallicities (Z0 = 0.02, 0.01, 0.001, 0.0001). This allowed us to provide post-AGB timescales and properties for H-burning post-AGB objects with masses in the relevant range for the formation of planetary nebulae (~0.5-0.8 M⊙). We included an updated treatment of the constitutive microphysics and included an updated description of the mixing processes and winds that play a key role during the thermal pulses (TP) on the AGB phase. Results: We present a new grid of models for post-AGB stars that take into account the improvements in the modeling of AGB stars in recent decades. These new models are particularly suited to be inputs in studies of the formation of planetary nebulae and for the determination of the properties of CSPNe from their observational parameters. We find post-AGB timescales that are at
Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit
Miroslaw Luft
2008-01-01
Full Text Available The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.
Murugesu, Muralee; Takahashi, Susumu; Wilson, Anthony; Abboud, Khalil A; Wernsdorfer, Wolfgang; Hill, Stephen; Christou, George
2008-10-20
The synthesis and structural, spectroscopic, and magnetic characterization of a Mn25 coordination cluster with a large ground-state spin of S = 51/2 are reported. Reaction of MnCl2 with pyridine-2,6-dimethanol (pdmH2) and NaN3 in MeCN/MeOH gives the mixed valence cluster [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6]Cl2 (1; 6Mn(II), 18Mn(III), Mn(IV)), which has a barrel-like cage structure. Variable temperature direct current (dc) magnetic susceptibility data were collected in the 1.8-300 K temperature range in a 0.1 T field. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-7 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 51/2, D = -0.020(2) cm(-1), and g = 1.87(3), where D is the axial zero-field splitting parameter. Alternating current (ac) susceptibility measurements in the 1.8-8.0 K range and a 3.5 G ac field oscillating at frequencies in the 50-1500 Hz range revealed a frequency-dependent out-of-phase (chi(M)'') signal below 3 K, suggesting 1 to be a single-molecule magnet (SMM). This was confirmed by magnetization vs dc field sweeps, which exhibited hysteresis loops but with no clear steps characteristic of resonant quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot, and the fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 12 K, where U(eff) is the effective relaxation barrier. The g value and the magnitude and sign of the D value were independently confirmed by detailed high-frequency electron paramagnetic resonance (HFEPR) spectroscopy on polycrystalline samples. The combined studies confirm both the high ground-state spin S = 51/2 of complex 1 and that it is a SMM that, in addition, exhibits QTM.
Separating gas-giant and ice-giant planets by halting pebble accretion
Lambrechts, M.; Johansen, A.; Morbidelli, A.
2014-12-01
In the solar system giant planets come in two flavours: gas giants (Jupiter and Saturn) with massive gas envelopes, and ice giants (Uranus and Neptune) with much thinner envelopes around their cores. It is poorly understood how these two classes of planets formed. High solid accretion rates, necessary to form the cores of giant planets within the life-time of protoplanetary discs, heat the envelope and prevent rapid gas contraction onto the core, unless accretion is halted. We find that, in fact, accretion of pebbles (~cm sized particles) is self-limiting: when a core becomes massive enough it carves a gap in the pebble disc. This halt in pebble accretion subsequently triggers the rapid collapse of the super-critical gas envelope. Unlike gas giants, ice giants do not reach this threshold mass and can only bind low-mass envelopes that are highly enriched by water vapour from sublimated icy pebbles. This offers an explanation for the compositional difference between gas giants and ice giants in the solar system. Furthermore, unlike planetesimal-driven accretion scenarios, our model allows core formation and envelope attraction within disc life-times, provided that solids in protoplanetary discs are predominantly made up of pebbles. Our results imply that the outer regions of planetary systems, where the mass required to halt pebble accretion is large, are dominated by ice giants and that gas-giant exoplanets in wide orbits are enriched by more than 50 Earth masses of solids.
Modeling and understanding of effects of randomness in arrays of resonant meta-atoms
Tretyakov, Sergei A.; Albooyeh, Mohammad; Alitalo, Pekka;
2013-01-01
In this review presentation we will discuss approaches to modeling and understanding electromagnetic properties of 2D and 3D lattices of small resonant particles (meta-atoms) in transition from regular (periodic) to random (amorphous) states. Nanostructured metasurfaces (2D) and metamaterials (3D......) are arrangements of optically small but resonant particles (meta-atoms). We will present our results on analytical modeling of metasurfaces with periodical and random arrangements of electrically and magnetically resonant meta-atoms with identical or random sizes, both for the normal and oblique-angle excitations......) of the arrangements of meta-atoms....
Hoogenboom, Bart W.; Anna Dejardin; Jake Stinson; Rosemary Paxman; McKendry, Rachel A.
2012-01-01
Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of bo...
Modeling Ice Giant Interiors Using Constraints on the H2-H2O Critical Curve
Bailey, E.; Stevenson, D. J.
2015-12-01
We present a range of models of Uranus and Neptune, taking into account recent experimental data (Bali, 2013) implying the location of the critical curve of the H2-H2O system at pressures up to 2.6 GPa. The models presented satisfy the observed total mass of each planet and the radius at the observed 1-bar pressure level. We assume the existence of three regions at different depths: an outer adiabatic envelope composed predominately of H2 and He, with a helium mass fraction 0.26, a water-rich layer including varied amounts of rock and hydrogen, and a chemically homogeneous rock core. Using measured rotation rates of Uranus and Neptune, and a density profile obtained for each model using constituent equations of state and the assumption of hydrostatic equilibrium, we calculate the gravitational harmonics J2 and J4 for comparison with observed values as an additional constraint. The H2-H2O critical curve provides information about the nature of the boundary between the outer, hydrogen-rich envelope and underlying water-rich layer. The extrapolated critical curve for hydrogen-water mixtures crosses the adiabat of the outer atmospheric shell in these models at two depths, implying a shallow outer region of limited miscibility, an intermediate region between ~90 and 98 percent of the total planet radius within which hydrogen and water can mix in all proportions, and another, deeper region of limited miscibility at less than ~90 percent of the total planet radius. The pressure and temperature of the gaseous adiabatic shell at the depth of the shallowest extent of the water-rich layer determines whether a gradual compositional transition or an ocean surface boundary may exist at depth in these planets. To satisfy the observed J2, the outer extent of the water-rich layer in these models must be located between approximately 80 and 85 percent of the total planet radius, within the deep region of limited H2-H2O miscibility, implying an ocean surface is possible within the
Correlations between resonances in a statistical scattering model
Gorin, T; Müller, M; Rotter, I; Seligman, T H
1997-01-01
The distortion of the regular motion in a quantum system by its coupling to the continuum of decay channels is investigated. The regular motion is described by means of a Poissonian ensemble. We focus on the case of only few channels K<10. The coupling to the continuum induces two main effects, due to which the distorted system differs from a chaotic system (described by a Gaussian ensemble): 1. The width distribution for large coupling becomes broader than the corresponding $\\chi^2_K$ distribution in the GOE case. 2. Due to the coupling to the continuum, correlations are induced not only between the positions of the resonances but also between positions and widths. These correlations remain even in the strong coupling limit. In order to explain these results, an asymptotic expression for the width distribution is derived for the one channel case. It relates the width of a trapped resonance state to the distance between its two neighboring levels.
Correlations between resonances in a statistical scattering model
Gorin, T. [Technische Univ. Dresden (Germany). Inst. fuer Theoretische Physik]|[Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany). Inst. fuer Kern- und Hadronenphysik; Dittes, F.M. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany). Inst. fuer Kern- und Hadronenphysik; Mueller, M. [Centro Internacional de Ciencias, Cuernavaca (Mexico); Rotter, I. [Technische Univ. Dresden (Germany). Inst. fuer Theoretische Physik]|[Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany). Inst. fuer Kern- und Hadronenphysik; Seligman, T.H. [Centro Internacional de Ciencias, Cuernavaca (Mexico)
1997-01-01
The distortion of the regular motion in a quantum system by its coupling to the continuum of decay channels is investigated. The regular motion is described by means of a Poissonian ensemble. We focus on the case of only few channels K < 10. The coupling to the continuum induces two main effects, due to which the distorted system differs from a chaotic system (described by a Gaussian ensemble): 1. The width distribution for large coupling becomes broader than the corresponding {chi}{sup 2}{sub K} distribution in the GOE case. 2. Due to the coupling to the continuum, correlations are induced not only between the positions of the resonances but also between positions and widths. These correlations remain even in the strong coupling limit. In order to explain these results, an asymptotic expression for the width distribution is derived for the one channel case. It relates the width of a trapped resonance state to the distance between its two neighboring levels. (orig.)
Self-consistent modelling of resonant tunnelling structures
Fiig, T.; Jauho, A.P.
1992-01-01
We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated with the ......We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated...... applied voltages and carrier densities at the emitter-barrier interface. We include the two-dimensional accumulation layer charge and the quantum well charge in our self-consistent scheme. We discuss the evaluation of the current contribution originating from the two-dimensional accumulation layer charges...
Reverse stochastic resonance in a hippocampal CA1 neuron model.
Durand, Dominique M; Kawaguchi, Minato; Mino, Hiroyuki
2013-01-01
Stochastic resonance (SR) is a ubiquitous and counter- intuitive phenomenon whereby the addition of noise to a non-linear system can improve the detection of sub-threshold signals. The "signal" is normally periodic or deterministic whereas the "noise" is normally stochastic. However, in neural systems, signals are often stochastic. Moreover, periodic signals are applied near neurons to control neural excitability (i.e. deep brain stimulation). We therefore tested the hypothesis that a quasi-periodic signal applied to a neural network could enhance the detection of a stochastic neural signal (reverse stochastic resonance). Using computational methods, a CA1 hippocampal neuron was simulated and a Poisson distributed subthreshold synaptic input ("signal") was applied to the synaptic terminals. A periodic or quasi periodic pulse train at various frequencies ("noise") was applied to an extracellular electrode located near the neuron. The mutual information and information transfer rate between the output and input of the neuron were calculated. The results display the signature of stochastic resonance with information transfer reaching a maximum value for increasing power (or frequency) of the "noise". This result shows that periodic signals applied extracellularly can improve the detection of subthreshold stochastic neural signals. The optimum frequency (110 Hz) is similar to that used in patients with Parkinson's suggesting that this phenomenon could play a role in the therapeutic effect of high frequency stimulation.
Large-scale modelling of the divergent spectrin repeats in nesprins: giant modular proteins.
Autore, Flavia; Pfuhl, Mark; Quan, Xueping; Williams, Aisling; Roberts, Roland G; Shanahan, Catherine M; Fraternali, Franca
2013-01-01
Nesprin-1 and nesprin-2 are nuclear envelope (NE) proteins characterized by a common structure of an SR (spectrin repeat) rod domain and a C-terminal transmembrane KASH [Klarsicht-ANC-Syne-homology] domain and display N-terminal actin-binding CH (calponin homology) domains. Mutations in these proteins have been described in Emery-Dreifuss muscular dystrophy and attributed to disruptions of interactions at the NE with nesprins binding partners, lamin A/C and emerin. Evolutionary analysis of the rod domains of the nesprins has shown that they are almost entirely composed of unbroken SR-like structures. We present a bioinformatical approach to accurate definition of the boundaries of each SR by comparison with canonical SR structures, allowing for a large-scale homology modelling of the 74 nesprin-1 and 56 nesprin-2 SRs. The exposed and evolutionary conserved residues identify important pbs for protein-protein interactions that can guide tailored binding experiments. Most importantly, the bioinformatics analyses and the 3D models have been central to the design of selected constructs for protein expression. 1D NMR and CD spectra have been performed of the expressed SRs, showing a folded, stable, high content α-helical structure, typical of SRs. Molecular Dynamics simulations have been performed to study the structural and elastic properties of consecutive SRs, revealing insights in the mechanical properties adopted by these modules in the cell.
Synthetic photometry for carbon rich giants, I. Hydrostatic dust-free models
Aringer, B; Nowotny, W; Marigo, P; Lederer, M T
2009-01-01
We study the spectroscopic and photometric properties of carbon stars. In the first paper of this series we focus on objects that can be described by hydrostatic models neglecting dynamical phenomena like pulsation and mass loss. As a consequence, the reddening due to circumstellar dust is not included. Our results are collected in a database, which can be used in conjunction with stellar evolution and population synthesis calculations involving the AGB. We have computed a grid of 746 spherically symmetric COMARCS atmospheres covering effective temperatures between 2400 and 4000K, surface gravities from log(g) = 0.0 to -1.0, metallicities ranging from the solar value down to one tenth of it and C/O ratios in the interval between 1.05 and 5.0. Subsequently, we used these models to create synthetic low resolution spectra and photometric data for a large number of filter systems. The tables including the results are electronically available. We have selected some of the most commonly used colours in order to dis...
Large-scale modelling of the divergent spectrin repeats in nesprins: giant modular proteins.
Flavia Autore
Full Text Available Nesprin-1 and nesprin-2 are nuclear envelope (NE proteins characterized by a common structure of an SR (spectrin repeat rod domain and a C-terminal transmembrane KASH [Klarsicht-ANC-Syne-homology] domain and display N-terminal actin-binding CH (calponin homology domains. Mutations in these proteins have been described in Emery-Dreifuss muscular dystrophy and attributed to disruptions of interactions at the NE with nesprins binding partners, lamin A/C and emerin. Evolutionary analysis of the rod domains of the nesprins has shown that they are almost entirely composed of unbroken SR-like structures. We present a bioinformatical approach to accurate definition of the boundaries of each SR by comparison with canonical SR structures, allowing for a large-scale homology modelling of the 74 nesprin-1 and 56 nesprin-2 SRs. The exposed and evolutionary conserved residues identify important pbs for protein-protein interactions that can guide tailored binding experiments. Most importantly, the bioinformatics analyses and the 3D models have been central to the design of selected constructs for protein expression. 1D NMR and CD spectra have been performed of the expressed SRs, showing a folded, stable, high content α-helical structure, typical of SRs. Molecular Dynamics simulations have been performed to study the structural and elastic properties of consecutive SRs, revealing insights in the mechanical properties adopted by these modules in the cell.
Collet, Remo; Hayek, Wolfgang; Asplund, Martin
2011-08-01
We study the effects of different approximations of scattering in 3D radiation-hydrodynamics simulations on the photospheric temperature stratification of metal-poor red giant stars. We find that assuming a Planckian source function and neglecting the contribution of scattering to extinction in optically thin layers provides a good approximation of the effects of coherent scattering on the photospheric temperature balance.
H2O in stellar atmospheres. II. ISO spectra of cool red giants and hydrostatic models
Aringer, B.; Kerschbaum, F.; Jörgensen, U. G.
2002-12-01
We present 26 ISO-SWS spectra taken from a sample of 13 M-type Semiregular, Lb and Mira variables and covering the wavelength range between 2.36 and 5 mu m at a medium resolution. All of the studied objects show intense water bands producing a deep absorption dip around 2.5 mu m. Features of CO, OH, SiO and CO2 are also visible. Using the new H2O linelist published in the first paper of this series and available opacity data for the other important molecules, we calculated a grid of hydrostatic MARCS atmospheres and the corresponding synthetic ISO-SWS spectra. Based on the comparison with these theoretical results the ISO observations can be divided into four classes. The first two groups include the spectra of the Semiregular (SRb) and Lb variables in our sample. For all of them the region between 2.36 and 4.2 mu m can be quite well reproduced by our hydrostatic models. Only the predicted SiO bands above 4 mu m are in some cases too strong which is due to known dynamical effects. Depending on the temperature (above or below 3000 K) of the atmosphere, which mainly determines the intensity of the water depression at 2.5 mu m, the spectra of the Semiregular and Lb variables fall into the first or second class. The third group consists of observations of Mira stars obtained around maximum light where the range between 2.36 and 4.2 mu m can be fitted with our MARCS models except for a strong emission bump appearing in the ISO-SWS data in the region of the SiO features and the slope very close to the short wavelength border. Finally, the last type of spectra corresponds to Mira variables during the phases around the minimum of their visual light curve. For this class the observed water absorption at 2.5 mu m is much more intense than in any hydrostatic atmosphere with a realistic choice of effective temperature and surface gravity. Thus, we conclude that dynamical models are needed to explain the ISO-SWS data of Mira stars. For all of the cooler objects from our sample
A new nonlinear model for analyzing the behaviour of carbon nanotube-based resonators
Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.
2016-09-01
The present study develops a new size-dependent nonlinear model for the analysis of the behaviour of carbon nanotube-based resonators. In particular, based on modified couple stress theory, the fully nonlinear equations of motion of the carbon nanotube-based resonator are derived using Hamilton's principle, taking into account both the longitudinal and transverse displacements. Molecular dynamics simulation is then performed in order to verify the validity of the developed size-dependent continuum model at the nano scale. The nonlinear partial differential equations of motion of the system are discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. The pseudo-arclength continuation technique is employed to examine the nonlinear resonant behaviour of the carbon nanotube-based resonator. A new universal pull-in formula is also developed for predicting the occurrence of the static pull-in and validated using numerical simulations.
Farid, M.; Gendelman, O. V.
2016-09-01
The paper treats dynamical responses in an equivalent mechanical model for oscillations of a liquid in partially filled vessel under horizontal harmonic ground excitation. Such excitation may lead to hydraulic impacts. The liquid sloshing mass is modeled by equivalent pendulum, which can impact the vessel walls. Parameters of the equivalent pendulum for well-explored case of cylindrical vessels are used. The hydraulic impacts are modeled by high-power potential function. Conditions for internal resonances are formulated. A non-resonant behavior and dynamic response related to 3:1 internal resonance are explored. When the excitation amplitude exceeds certain critical value, the system exhibits multiple steady state solutions. Quasi-periodic solutions appear in relatively narrow range of parameters. Numerical continuation links between resonant regimes found asymptotically for small excitation amplitude, and high-amplitude responses with intensive impacts.
Friedrichs, Michael; Brinkmann, Ralf Peter; Oberrath, Jens
2016-09-01
Measuring plasma parameters, e.g. electron density and electron temperature, is an important procedure to verify the stability and behavior of a plasma process. For this purpose the multipole resonance probe (MRP) represents a satisfying solution to measure the electron density. However the influence of the probe on the plasma through its physical presence makes it unattractive for some processes in industrial application. A solution to combine the benefits of the spherical MRP with the ability to integrate the probe into the plasma reactor is introduced by the planar model of the MRP. By coupling the model of the cold plasma with the maxwell equations for electrostatics an analytical model for the admittance of the plasma is derivated, adjusted to cylindrical geometry and solved analytically for the planar MRP using functional analytic methods.
Imaging Extrasolar Giant Planets
Bowler, Brendan P.
2016-10-01
High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5-300 Myr) stars spanning stellar masses between 0.1 and 3.0 M ⊙, the overall occurrence rate of 5-13 M Jup companions at orbital distances of 30-300 au is {0.6}-0.5+0.7 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around {2.8}-2.3+3.7 % of BA stars, planets spanning a broad range of masses and ages.
Modeling and Analysis of Mechanical Quality Factor of the Resonator for Cylinder Vibratory Gyroscope
XI Xiang; WU Xuezhong; WU Yulie; ZHANG Yongmeng
2017-01-01
Mechanical Quality factor(Q factor) of the resonator is an important parameter for the cylinder vibratory gyroscope(CVG).Traditional analytical methods mainly focus on a partial energy loss during the vibration process of the CVG resonator,thus are not accurate for the mechanical Q factor prediction.Therefore an integrated model including air damping loss,surface defect loss,support loss,thermoelastic damping loss and internal friction loss is proposed to obtain the mechanical Q factor of the CVG resonator.Based on structural dynamics and energy dissipation analysis,the contribution of each energy loss to the total mechanical Q factor is quantificationally analyzed.For the resonator with radius ranging from 10 mm to 20 mm,its mechanical Q factor is mainly related to the support loss,thermoelastic damping loss and internal friction loss,which are fundamentally determined by the geometric sizes and material properties of the resonator.In addition,resonators made of alloy 3J53 (Ni42CrTiA1),with different sizes,were experimentally fabricated to test the mechanical Q factor.The theoretical model is well verified by the experimental data,thus provides an effective theoretical method to design and predict the mechanical Q factor of the CVG resonator.
Modeling and Optimal Design of 3 Degrees of Freedom Helmholtz Resonator in Hydraulic System
GUAN Changbin; JIAO Zongxia
2012-01-01
Three degrees of freedom (3-DOF) Helmholtz resonator which consists of three cylindrical necks and cavities connected in series (neck-cavity-ncck-cavity-neck-cavity) is suitable to reduce flow pulsation in hydraulic system.A novel lumped parameter model (LPM) of 3-DOF Helmholtz resonator in hydraulic system is developed which considers the viscous friction loss of hydraulic fluid in the necks.Applying the Newton's second law of motion to the equivalent mechanical model of the resonator,closed-form expression of transmission loss and resonance frequency is presented.Based on the LPM,an optimal design method which employs rotate vector optimization method (RVOM) is proposed.The purpose of the optimal design is to search the resonator's unknown parameters so that its resonance frequencies can coincide with the pump-induced flow pulsation harmonics respectively.The optimal design method is realized to design 3-DOF Helmholtz resonator for a certain type of aviation piston pump hydraulic system.The optimization result shows the feasibility of this method,and the simulation under optimum parameters reveals that the LPM can get the same precision as transfer matrix method (TMM).
Modeling and analysis of mechanical Quality factor of the resonator for cylinder vibratory gyroscope
Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng
2016-08-01
Mechanical Quality factor(Q factor) of the resonator is an important parameter for the cylinder vibratory gyroscope(CVG). Traditional analytical methods mainly focus on a partial energy loss during the vibration process of the CVG resonator, thus are not accurate for the mechanical Q factor prediction. Therefore an integrated model including air damping loss, surface defect loss, support loss, thermoelastic damping loss and internal friction loss is proposed to obtain the mechanical Q factor of the CVG resonator. Based on structural dynamics and energy dissipation analysis, the contribution of each energy loss to the total mechanical Q factor is quantificationally analyzed. For the resonator with radius ranging from 10 mm to 20 mm, its mechanical Q factor is mainly related to the support loss, thermoelastic damping loss and internal friction loss, which are fundamentally determined by the geometric sizes and material properties of the resonator. In addition, resonators made of alloy 3J53 (Ni42CrTiAl), with different sizes, were experimentally fabricated to test the mechanical Q factor. The theoretical model is well verified by the experimental data, thus provides an effective theoretical method to design and predict the mechanical Q factor of the CVG resonator.
Arief Taslihan
2015-06-01
Full Text Available White spot syndrome virus (WSSV has become epidemic in Indonesia and affecting shrimp aquaculture interm of its production. White spot syndrome virus is transmitted from one to other ponds, through crustacean, included planktonic copepode as carrier for WSSV and through water from affected shrimp pond. A cluster model, consist of shrimp grow out ponds surrounded by non-shrimp pond as a role of biosecurity has been developed. The model aimed to prevent white spot virus transmission in extensive giant tiger shrimp pond. The study was conducted in two sites at Demak District, Central Java Province. As the treatment, a cluster consist of three shrimp ponds in site I, and two shrimp ponds in site II, each was surrounded by buffer ponds rearing only finfish. As the control, five extensive shrimp grow out ponds in site I and three shrimp grow out ponds in site II, with shrimp pond has neither applied biosecurity nor surrounded by non-shrimp pond as biosecurity as well considered as control ponds. The results found that treatment of cluster shrimp ponds surrounded by non-shrimp ponds could hold shrimp at duration of culture in the grow out pond (DOC 105.6±4.5 days significantly much longer than that of control that harvested at 60.9±16.0 days due to WSSV outbreak. Survival rate in trial ponds was 77.6±3.6%, significantly higher than that of control at 22.6±15.8%. Shrimp production in treatment ponds has total production of 425.1±146.6 kg/ha significantly higher than that of control that could only produced 54.5±47.6 kg/ha. Implementation of Better Management Practices (BMP by arranging shrimp ponds in cluster and surrounding by non-shrimp ponds proven effectively prevent WSSV transmission from traditional shrimp ponds in surrounding area.
Detectability of the second resonance of low-scale string models at the LHC
Hashi, Manami
2012-01-01
Low-scale string models are phenomenological models in String Theory, in which the string scale M_s is of the order of TeV. String excited states which are characteristic modes in low-scale string models can be observed as resonances in dijet invariant mass distributions at the LHC. If a new heavy resonance is discovered at the LHC, it is important to investigate whether the resonance comes from low-scale string models. In this work, two analyses are performed: One is observing higher spin degeneracy of string excited states by an angular distribution analysis on the resonance, since the string resonance consists of several degenerate states with different spins. The other is observing second string excited states by a search for a second resonance in dijet invariant mass distributions, since second string excited states have characteristic masses of sqrt{2} times of masses of first string excited states. As the result of Monte Carlo simulations assuming the 14 TeV LHC, we give required luminosities for 5 sig...
Brenna, M; Roca-Maza, X; Bortignon, P F; Moghrabi, K; Grasso, M
2013-01-01
A completely microscopic beyond mean-field approach has been elaborated to overcome some intrinsic limitations of self-consistent mean-field schemes applied to nuclear systems, such as the incapability to produce some properties of single-particle states (e.g. spectroscopic factors), as well as of collective states (e.g. their damping width and their gamma decay to the ground state or to low lying states). Since commonly used effective interactions are fitted at the mean-field level, one should aim at refitting them including the desired beyond mean-field contributions in the refitting procedure. If zero-range interactions are used, divergences arise. We present some steps towards the refitting of Skyrme interactions, for its application in finite nuclei.
Modeling and understanding of effects of randomness in arrays of resonant meta-atoms
Tretyakov, Sergei A.; Albooyeh, Mohammad; Alitalo, Pekka
2013-01-01
In this review presentation we will discuss approaches to modeling and understanding electromagnetic properties of 2D and 3D lattices of small resonant particles (meta-atoms) in transition from regular (periodic) to random (amorphous) states. Nanostructured metasurfaces (2D) and metamaterials (3D......) are arrangements of optically small but resonant particles (meta-atoms). We will present our results on analytical modeling of metasurfaces with periodical and random arrangements of electrically and magnetically resonant meta-atoms with identical or random sizes, both for the normal and oblique-angle excitations....... We show how the electromagnetic response of metasurfaces is related to the statistical parameters of the structure. Furthermore, we will discuss the phenomenon of anti-resonance in extracted effective parameters of metamaterials and clarify its relation to the periodicity (or amorphous nature...
Farid, Maor
2016-01-01
The paper treats oscillations of a liquid in partially filled vessel under horizontal harmonic ground excitation. Such excitation may lead to hydraulic impacts. The liquid sloshing mass is modeled by equivalent pendulum, which can impact the vessel walls. We use parameters of the equivalent pendulum for well-explored case of cylindrical vessels. The hydraulic impacts are modeled by high-power potential function. Conditions for internal resonances are presented. A non-resonant behavior and dynamic response related to 3:1 internal resonance are explored. When the excitation amplitude exceeds a critical value, the system exhibits multiple steady state solutions. Quasi-periodic solutions appear in relatively narrow range of parameters. Numerical continuation links between resonant regimes found asymptotically for small excitation amplitude, and high-amplitude responses with intensive impacts.
A model for precalculus students to determine the resonance frequency of a trumpet mouthpiece
Chapman, Robert C.
2004-05-01
The trumpet mouthpiece as a Helmholtz resonator is used to show precalculus students a mathematical model for determining the approximate resonance frequency of the mouthpiece. The mathematics is limited to algebra and trigonometry. Using a system of mouthpieces that have interchangeable cups and backbores, students are introduced to the acoustics of this resonator. By gathering data on 51 different configurations of mouthpieces, the author modifies the existing Helmholtz resonator equation to account for both cup volumes and backbore configurations. Students then use this model for frequency predictions. Included are how to measure the different physical attributes of a trumpet mouthpiece at minimal cost. This includes methods for measuring cup volume, backbore volume, backbore length, throat area, etc. A portion of this phase is de-signed for students to become acquainted with some of the vocabulary of acoustics and the physics of sound.
Modelling resonant field amplification due to low-n peeling modes in JET
Liu Yueqiang; Saarelma, S; Gryaznevich, M P; Hender, T C; Howell, D F, E-mail: yueqiang.liu@ukaea.org.u [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)
2010-04-15
The MHD code MARS-F is used to model low-n, low-frequency, large-amplitude resonant field amplification peaks observed in JET low-pressure plasmas. The resonant response of a marginally stable, n = 1 ideal peeling mode is offered as a candidate to explain the experimental observation. It is found that, unlike the response of a stable resistive wall mode, the peeling mode response is not sensitive to the plasma rotation, nor to the kinetic effects.
Finite element modeling of coupled optical microdisk resonators for displacement sensing
Grudinin, Ivan
2012-01-01
We analyze normal mode splitting in a pair of vertically coupled microdisk resonators. A full vectorial finite element model is used to find the eigen frequencies of the symmetric and antisymmetric composite modes as a function of coupling distance. We find that the coupled microdisks can compete with the best Fabry-Perot resonators in displacement sensing. We also show how we configured FreeFem++ for the sphere eigenvalue problem.
Analytical model of multi-planetary resonant chains and constraints on migration scenarios
Delisle, J.-B.
2017-09-01
Resonant chains are groups of planets for which each pair is in resonance, with an orbital period ratio locked at a rational value (2/1, 3/2, etc.). Such chains naturally form as a result of convergent migration of the planets in the proto-planetary disk. In this article, I present an analytical model of resonant chains of any number of planets. Using this model, I show that a system captured in a resonant chain can librate around several possible equilibrium configurations. The probability of capture around each equilibrium depends on how the chain formed, and especially on the order in which the planets have been captured in the chain. Therefore, for an observed resonant chain, knowing around which equilibrium the chain is librating allows for constraints to be put on the formation and migration scenario of the system. I apply this reasoning to the four planets orbiting Kepler-223 in a 3:4:6:8 resonant chain. I show that the system is observed around one of the six equilibria predicted by the analytical model. Using N-body integrations, I show that the most favorable scenario to reproduce the observed configuration is to first capture the two intermediate planets, then the outermost, and finally the innermost.
Doutres, Olivier; Atalla, Noureddine; Osman, Haisam
2015-06-01
Porous materials are widely used for improving sound absorption and sound transmission loss of vibrating structures. However, their efficiency is limited to medium and high frequencies of sound. A solution for improving their low frequency behavior while keeping an acceptable thickness is to embed resonant structures such as Helmholtz resonators (HRs). This work investigates the absorption and transmission acoustic performances of a cellular porous material with a two-dimensional periodic arrangement of HR inclusions. A low frequency model of a resonant periodic unit cell based on the parallel transfer matrix method is presented. The model is validated by comparison with impedance tube measurements and simulations based on both the finite element method and a homogenization based model. At the HR resonance frequency (i) the transmission loss is greatly improved and (ii) the sound absorption of the foam can be either decreased or improved depending on the HR tuning frequency and on the thickness and properties of the host foam. Finally, the diffuse field sound absorption and diffuse field sound transmission loss performance of a 2.6 m(2) resonant cellular material are measured. It is shown that the improvements observed at the Helmholtz resonant frequency on a single cell are confirmed at a larger scale.
Informational model verification of ZVS Buck quasi-resonant DC-DC converter
Vakovsky, Dimiter; Hinov, Nikolay
2016-12-01
The aim of the paper is to create a polymorphic informational model of a ZVS Buck quasi-resonant DC-DC converter for the modeling purposes of the object. For the creation of the model is applied flexible open standards for setting, storing, publishing and exchange of data in distributed information environment. The created model is useful for creation of many and different by type variants with different configuration of the composing elements and different inner model of the examined object.
Study on Dielectric Function Models for Surface Plasmon Resonance Structure
Peyman Jahanshahi
2014-01-01
Full Text Available The most common permittivity function models are compared and identifying the best model for further studies is desired. For this study, simulations using several different models and an analytical analysis on a practical surface Plasmon structure were done with an accuracy of ∼94.4% with respect to experimental data. Finite element method, combined with dielectric properties extracted from the Brendel-Bormann function model, was utilized, the latter being chosen from a comparative study on four available models.
Vector and axial-vector resonances in composite models of the Higgs boson
Franzosi, Diogo Buarque; Cacciapaglia, Giacomo; Cai, Haiying; Deandrea, Aldo; Frandsen, Mads
2016-11-01
We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.
A coupling model for quasi-normal modes of photonic resonators
Vial, Benjamin; Hao, Yang
2016-11-01
We develop a model for the coupling of quasi-normal modes in open photonic systems consisting of two resonators. By expressing the modes of the coupled system as a linear combination of the modes of the individual particles, we obtain a generalized eigenvalue problem involving small size dense matrices. We apply this technique to dielectric rod dimmer of rectangular cross section for transverse electric polarization in a two-dimensional setup. The results of our model show excellent agreement with full wave finite element simulations. We provide a convergence analysis, and a simplified model with a few modes to study the influence of the relative position of the two resonators. This model provides interesting physical insights on the coupling scheme at stake in such systems and pave the way for systematic and efficient design and optimization of resonances in more complicated systems, for applications including sensing, antennae and spectral filtering.
Vector and Axial-vector resonances in composite models of the Higgs boson
Franzosi, Diogo Buarque; Cai, Haiying; Deandrea, Aldo; Frandsen, Mads
2016-01-01
We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.
Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging.
Liu, Yunsong; Cai, Jian-Feng; Zhan, Zhifang; Guo, Di; Ye, Jing; Chen, Zhong; Qu, Xiaobo
2015-01-01
Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B) converges faster than previously proposed algorithms accelerated proximal algorithm (APG) and alternating directional method of multipliers for balanced model (ADMM-B).
Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging.
Yunsong Liu
Full Text Available Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B converges faster than previously proposed algorithms accelerated proximal algorithm (APG and alternating directional method of multipliers for balanced model (ADMM-B.
A modified resonant recognition model to predict protein-protein interaction
LIU Xiang; WANG Yifei
2007-01-01
Proteins are fundamental components of all living cells and the protein-protein interaction plays an important role in vital movement.This paper briefly introduced the original Resonant Recognition Model (RRM),and then modified it by using the wavelet transform to acquire the Modified Resonant Recognition Model (MRRM).The key characteristic of the new model is that it can predict directly the proteinprotein interaction from the primary sequence,and the MRRM is more suitable than the RRM for this prediction.The results of numerical experiments show that the MRRM is effective for predicting the protein-protein interaction.
The Regge-plus-resonance model for kaon production on the proton and the neutron
Ryckebusch, J; Vancraeyveld, P; Vrancx, T
2011-01-01
The Regge-plus-resonance (RPR) framework for kaon photoproduction on the proton and the neutron is an economical single-channel model with very few parameters. Not only does the RPR model allow one to extract resonance information from the data, it has predictive power. As an example we show that the RPR model makes fair predictions for the $p(e,e'K^{+})\\Lambda$ and the $n(\\gamma,K^{+})\\Sigma ^{-}$ observables starting from amplitudes optimized for the reaction $p(\\gamma, K ^{+})\\Lambda$ and $p(\\gamma,K^{+})\\Sigma ^{0}$ respectively.
Pietkiewicz, A.; Tollik, D.; Klaassens, J. B.
1989-08-01
A simple small-signal low-frequency model of an idealized series resonant converter employing peak capacitor voltage prediction and switching frequency control is proposed. Two different versions of the model describe all possible conversion modes. It is found that step down modes offer better dynamic characteristics over most important network functions than do the step-up modes. The dynamical model of the series resonant converter with peak capacitor voltage prediction and switching frequency programming is much simpler than such popular control stategies as frequency VCO (voltage controlled oscillators) based control, or diode conduction angle control.
A new model for nonlinear acoustic waves in a non-uniform lattice of Helmholtz resonators
Mercier, Jean-François
2016-01-01
Propagation of high amplitude acoustic pulses is studied in a 1D waveguide, connected to a lattice of Helmholtz resonators. An homogenized model has been proposed by Sugimoto (J. Fluid. Mech., 244 (1992)), taking into account both the nonlinear wave propagation and various mechanisms of dissipation. This model is extended to take into account two important features: resonators of different strengths and back-scattering effects. The new model is derived and is proved to satisfy an energy balance principle. A numerical method is developed and a better agreement between numerical and experimental results is obtained.
Kohler, Susanna
2017-01-01
Two new, large gas-giant exoplanets have been discovered orbiting close to their host stars. A recent study examining these planets and others like them may help us to better understand what happens to close-in hot Jupiters as their host stars reach the end of their main-sequence lives.OversizedGiantsUnbinned transit light curves for HAT-P-65b. [Adapted from Hartman et al. 2016]The discovery of HAT-P-65b and HAT-P-66b, two new transiting hot Jupiters, is intriguing. These planets have periods of just under 3 days and masses of roughly 0.5 and 0.8 times that of Jupiter, but their sizes are whats really interesting: they have inflated radii of 1.89 and 1.59 times that of Jupiter.These two planets, discovered using the Hungarian-made Automated Telescope Network (HATNet) in Arizona and Hawaii, mark the latest in an ever-growing sample of gas-giant exoplanets with radii larger than expected based on theoretical planetary structure models.What causes this discrepancy? Did the planets just fail to contract to the expected size when they were initially formed, or were they reinflated later in their lifetimes? If the latter, how? These are questions that scientists are only now starting to be able to address using statistics of the sample of close-in, transiting planets.Unbinned transit light curves for HAT-P-66b. [Hartman et al. 2016]Exploring Other PlanetsLed by Joel Hartman (Princeton University), the team that discovered HAT-P-65b and HAT-P-66b has examined these planets observed parameters and those of dozens of other known close-in, transiting exoplanets discovered with a variety of transiting exoplanet missions: HAT, WASP, Kepler, TrES, and KELT. Hartman and collaborators used this sample to draw conclusions about what causes some of these planets to have such large radii.The team found that there is a statistically significant correlation between the radii of close-in giant planets and the fractional ages of their host stars (i.e., the stars age divided by its full
Process compensated resonance testing modeling for damage evolution and uncertainty quantification
Biedermann, Eric; Heffernan, Julieanne; Mayes, Alexander; Gatewood, Garrett; Jauriqui, Leanne; Goodlet, Brent; Pollock, Tresa; Torbet, Chris; Aldrin, John C.; Mazdiyasni, Siamack
2017-02-01
Process Compensated Resonance Testing (PCRT) is a nondestructive evaluation (NDE) method based on the fundamentals of Resonant Ultrasound Spectroscopy (RUS). PCRT is used for material characterization, defect detection, process control and life monitoring of critical gas turbine engine and aircraft components. Forward modeling and model inversion for PCRT have the potential to greatly increase the method's material characterization capability while reducing its dependence on compiling a large population of physical resonance measurements. This paper presents progress on forward modeling studies for damage mechanisms and defects in common to structural materials for gas turbine engines. Finite element method (FEM) models of single crystal (SX) Ni-based superalloy Mar-M247 dog bones and Ti-6Al-4V cylindrical bars were created, and FEM modal analyses calculated the resonance frequencies for the samples in their baseline condition. Then the frequency effects of superalloy creep (high-temperature plastic deformation) and macroscopic texture (preferred crystallographic orientation of grains detrimental to fatigue properties) were evaluated. A PCRT sorting module for creep damage in Mar-M247 was trained with a virtual database made entirely of modeled design points. The sorting module demonstrated successful discrimination of design points with as little as 1% creep strain in the gauge section from a population of acceptable design points with a range of material and geometric variation. The resonance frequency effects of macro-scale texture in Ti-6Al-4V were quantified with forward models of cylinder samples. FEM-based model inversion was demonstrated for Mar-M247 bulk material properties and variations in crystallographic orientation. PCRT uncertainty quantification (UQ) was performed using Monte Carlo studies for Mar-M247 that quantified the overall uncertainty in resonance frequencies resulting from coupled variation in geometry, material properties, crystallographic
Modeling noise-induced resonance in an excitable system: an alternative approach.
Nurujjaman, Md
2010-03-01
Recently, it has been observed [Md. Nurujjaman, Phy. Rev. E 80, 015201(R) (2009)] that in an excitable system, one can maintain noise-induced coherency in the coherence resonance by blocking the destructive effect of the noise on the system at higher noise level. This phenomenon of constant coherence resonance (CCR) cannot be explained by the existing way of simulation of the model equations of an excitable system with added noise. In this paper, we have proposed a general model which explains the noise-induced resonance phenomenon CCR as well as coherence resonance (CR) and stochastic resonance (SR). The simulation has been carried out considering the basic mechanism of noise-induced resonance phenomena: noise only perturbs the system control parameter to excite coherent oscillations, taking proper precautions so that the destructive effect of noise does not affect the system. In this approach, the CR has been obtained from the interference between the system output and noise and the SR has been obtained by adding noise and a subthreshold signal. This also explains the observation of the frequency shift of coherent oscillations in the CCR with noise level.
Non-monotonic resonance in a spatially forced Lengyel-Epstein model
Haim, Lev [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Department of Oncology, Soroka University Medical Center, Beer-Sheva 84101 (Israel); Hagberg, Aric [Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Meron, Ehud [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990 (Israel)
2015-06-15
We study resonant spatially periodic solutions of the Lengyel-Epstein model modified to describe the chlorine dioxide-iodine-malonic acid reaction under spatially periodic illumination. Using multiple-scale analysis and numerical simulations, we obtain the stability ranges of 2:1 resonant solutions, i.e., solutions with wavenumbers that are exactly half of the forcing wavenumber. We show that the width of resonant wavenumber response is a non-monotonic function of the forcing strength, and diminishes to zero at sufficiently strong forcing. We further show that strong forcing may result in a π/2 phase shift of the resonant solutions, and argue that the nonequilibrium Ising-Bloch front bifurcation can be reversed. We attribute these behaviors to an inherent property of forcing by periodic illumination, namely, the increase of the mean spatial illumination as the forcing amplitude is increased.
Jun, Xu; Bo, You; Xin, Li; Juan, Cui
2007-12-01
To accurately measure temperatures, a novel temperature sensor based on a quartz tuning fork resonator has been designed. The principle of the quartz tuning fork temperature sensor is that the resonant frequency of the quartz resonator changes with the variation in temperature. This type of tuning fork resonator has been designed with a new doubly rotated cut work at flexural vibration mode as temperature sensor. The characteristics of the temperature sensor were evaluated and the results sufficiently met the target of development for temperature sensor. The theoretical model for temperature sensing has been developed and built. The sensor structure was analysed by finite element method (FEM) and optimized, including tuning fork geometry, tine electrode pattern and the sensor's elements size. The performance curve of output versus measured temperature is given. The results from theoretical analysis and experiments indicate that the sensor's sensitivity can reach 60 ppm °C-1 with the measured temperature range varying from 0 to 100 °C.
Xu, Hao-jie
2017-02-01
The effects of volume corrections and resonance decays (the resulting correlations between positive charges and negative charges) on cumulants of net-proton distributions and net-charge distributions are investigated by using a Monte Carlo hadron resonance gas (MCHRG) model. The required volume distributions are generated by a Monte Carlo Glauber (MC-Glb) model. Except the variances of net-charge distributions, the MCHRG model with more realistic simulations of volume corrections, resonance decays and acceptance cuts can reasonably explain the data of cumulants of net-proton distributions and net-charge distributions reported by the STAR collaboration. The MCHRG calculations indicate that both the volume corrections and resonance decays make the cumulant products of net-charge distributions deviate from the Skellam expectations: the deviations of Sσ and κσ2 are dominated by the former effect while the deviations of ω are dominated by the latter one.
Li, Ben Q; Liu, Changhong
2011-01-15
A hybridization model for the localized surface plasmon resonance of a nanoshell is developed within the framework of long-wave approximation. Compared with the existing hybridization model derived from the hydrodynamic simulation of free electron gas, this approach is much simpler and gives identical results for a concentric nanoshell. Also, with this approach, the limitations associated with the original hybridization model are succinctly stated. Extension of this approach to hybridization modeling of more complicated structures such as multiplayered nanoshells is straightforward.
Early Solar System Bombardment: Exploring the Echos of Planetary Migration and Lost Ice Giants
Bottke, William
2017-01-01
Heavily cratered surfaces on the Moon, Mars, Mercury show the terrestrial planets were battered by an intense bombardment during their first billion years or more, but the timing, sources, and dynamical implications of these impacts are controversial. The Late Heavy Bombardment refers to impact events that occurred after stabilization of planetary lithospheres such that they could be preserved as craters. Lunar melt rocks and meteorite shock ages point toward a discrete episode of elevated impact flux between ~3.5 to ~4.2 Ga and a relative quiescence between ~4.0-4.2 to ~4.4 Ga. Evidence from Precambrian impact spherule layers suggest a long-lived tail of terrestrial impactors lasted to ~2.0-2.5 Ga.Dynamical models that include populations residual from primary accretion and destabilized by giant planet migration can potentially account for observations, although all have pros and cons. The most parsimonious solution to match constraints is a hybrid model with discrete early, post-accretion and later, planetary instability-driven impactor populations.For the latter, giant planet instability models can successfully reproduce the orbits of the giant planets, the origin/properties of Jupiter/Neptune Trojans, irregular satellites, the structure of the main asteroid and Kuiper belts, and the presence of comet-like bodies in the main belt, Hilda, and Trojan asteroid populations. The best solutions, however, postulate there were once five giant planets: Jupiter, Saturn, and three ice giants, one that was eventually ejected out of the Solar System by a Jupiter encounter. Intriguing evidence for this “lost” ice giant planet can be found in the orbital properties of bodies captured in the main asteroid belt.The applicability of giant planet instabilities to exoplanet systems seems likely, with the initial configuration of giant planet orbits a byproduct of their early migration and subsequent capture into mutual mean motion resonances. The question is how long can a
... Cryopyrin-Associated Autoinflammatory Syndrome (CAPS) (Juvenile) Dermatomyositis (Juvenile) Familial Mediterranean Fever (Juvenile) Fibromyalgia Giant Cell Arteritis Glucocorticoid-induced Osteoperosis ...
Nanodielectrics with giant permittivity
S K Saha
2008-06-01
Nanodielectrics is an emerging area of research because of its potential application in energy storage and transducers. One-dimensional metallic nanostructures with localized electronic wave functions show giant dielectric constant. Following the prediction, during the last couple of years we have investigated the effect of giant permittivity in one-dimensional systems of conventional metals and conjugated polymer chains. In this article, we have tried to summarize the works on giant permittivity and finally the fabrication of nanocapacitor using metal nanowires, which shows giant permittivity is also discussed.
Spectra for the A = 6 reactions calculated from a three-body resonance model
Paris Mark W.
2016-01-01
Full Text Available We develop a resonance model of the transition matrix for three-body breakup reactions of the A = 6 system and present calculations for the nucleon observed spectra, which are important for inertial confinement fusion and Big Bang nucleosynthesis (BBN. The model is motivated by the Faddeev approach where the form of the T matrix is written as a sum of the distinct Jacobi coordinate systems corresponding to particle configurations (α, n-n and (n; n-α to describe the final state. The structure in the spectra comes from the resonances of the two-body subsystems of the three-body final state, namely the singlet (T = 1 nucleon-nucleon (NN anti-bound resonance, and the Nα resonances designated the ground state (Jπ = 3−2${{{3^ - }} \\over 2}$ and first excited state (Jπ = 1−2${{{1^ - }} \\over 2}$ of the A = 5 systems 5He and 5Li. These resonances are described in terms of single-level, single-channel R-matrix parameters that are taken from analyses of NN and Nα scattering data. While the resonance parameters are approximately charge symmetric, external charge-dependent effects are included in the penetrabilities, shifts, and hard-sphere phases, and in the level energies to account for internal Coulomb differences. The shapes of the resonance contributions to the spectrum are fixed by other, two-body data and the only adjustable parameters in the model are the combinatorial amplitudes for the compound system. These are adjusted to reproduce the observed nucleon spectra from measurements at the Omega and NIF facilities. We perform a simultaneous, least-squares fit of the tt neutron spectra and the 3He3He proton spectra. Using these amplitudes we make a prediction of the α spectra for both reactions at low energies. Significant differences in the tt and 3He3He spectra are due to Coulomb effects.
Spectra for the A = 6 reactions calculated from a three-body resonance model
Paris, Mark W.; Hale, Gerald M.
2016-06-01
We develop a resonance model of the transition matrix for three-body breakup reactions of the A = 6 system and present calculations for the nucleon observed spectra, which are important for inertial confinement fusion and Big Bang nucleosynthesis (BBN). The model is motivated by the Faddeev approach where the form of the T matrix is written as a sum of the distinct Jacobi coordinate systems corresponding to particle configurations (α, n-n) and (n; n-α) to describe the final state. The structure in the spectra comes from the resonances of the two-body subsystems of the three-body final state, namely the singlet (T = 1) nucleon-nucleon (NN) anti-bound resonance, and the Nα resonances designated the ground state (Jπ = {{{3^ - }} over 2}) and first excited state (Jπ = {{{1^ - }} over 2}) of the A = 5 systems 5He and 5Li. These resonances are described in terms of single-level, single-channel R-matrix parameters that are taken from analyses of NN and Nα scattering data. While the resonance parameters are approximately charge symmetric, external charge-dependent effects are included in the penetrabilities, shifts, and hard-sphere phases, and in the level energies to account for internal Coulomb differences. The shapes of the resonance contributions to the spectrum are fixed by other, two-body data and the only adjustable parameters in the model are the combinatorial amplitudes for the compound system. These are adjusted to reproduce the observed nucleon spectra from measurements at the Omega and NIF facilities. We perform a simultaneous, least-squares fit of the tt neutron spectra and the 3He3He proton spectra. Using these amplitudes we make a prediction of the α spectra for both reactions at low energies. Significant differences in the tt and 3He3He spectra are due to Coulomb effects.
Z. Hashemiyan
2016-01-01
Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.
Packo, P.; Staszewski, W. J.; Uhl, T.
2016-01-01
Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808
Jung, Hyunseung; In, Chihun; Choi, Hyunyong; Lee, Hojin
2014-06-09
Recently metamaterials have inspired worldwide researches due to their exotic properties in transmitting, reflecting, absorbing or refracting specific electromagnetic waves. Most metamaterials are known to have anisotropic properties, but existing anisotropy models are applicable only to a single meta-atom and its properties. Here we propose an anisotropy model for asymmetrical meta-atom clusters and their polarization dependency. The proposed anisotropic meta-atom clusters show a unique resonance property in which their frequencies can be altered for parallel polarization, but fixed to a single resonance frequency for perpendicular polarization. The proposed anisotropic metamaterials are expected to pave the way for novel optical systems.
Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Bobkova, M. S.; Krivoshapkin, A. L.; Orlov, K. Yu
2016-06-01
In this paper a computer simulation of a blood flow in cerebral vessels with a giant saccular aneurysm at the bifurcation of the basilar artery is performed. The modelling is based on patient-specific clinical data (both flow domain geometry and boundary conditions for the inlets and outlets). The hydrodynamic and mechanical parameters are calculated in the frameworks of three models: rigid-wall assumption, one-way FSI approach, and full (two-way) hydroelastic model. A comparison of the numerical solutions shows that mutual fluid- solid interaction can result in qualitative changes in the structure of the fluid flow. Other characteristics of the flow (pressure, stress, strain and displacement) qualitatively agree with each other in different approaches. However, the quantitative comparison shows that accounting for the flow-vessel interaction, in general, decreases the absolute values of these parameters. Solving of the hydroelasticity problem gives a more detailed solution at a cost of highly increased computational time.
Resonance tuning in a neuro-musculo-skeletal model of the forearm.
Verdaasdonk, B W; Koopman, H F J M; Van der Helm, F C T
2007-02-01
In rhythmic movements, humans activate their muscles in a robust and energy efficient way. These activation patterns are oscillatory and seem to originate from neural networks in the spinal cord, called central pattern generators (CPGs). Evidence for the existence of CPGs was found for instance in lampreys, cats and rats. There are indications that CPGs exist in humans as well, but this is not proven yet. Energy efficiency is achieved by resonance tuning: the central nervous system is able to tune into the resonance frequency of the limb, which is determined by the local reflex gains. The goal of this study is to investigate if the existence of a CPG in the human spine can explain the resonance tuning behavior, observed in human rhythmic limb movement. A neuro-musculo-skeletal model of the forearm is proposed, in which a CPG is organized in parallel to the local reflexloop. The afferent and efferent connections to the CPG are based on clues about the organization of the CPG, found in literature. The model is kept as simple as possible (i.e., lumped muscle models, groups of neurons are lumped into half-centers, simple reflex model), but incorporates enough of the essential dynamics to explain behavior-such as resonance tuning-in a qualitative way. Resonance tuning is achieved above, at and below the endogenous frequency of the CPG in a highly non-linear neuro- musculo-skeletal model. Afferent feedback of muscle lengthening to the CPG is necessary to accomplish resonance tuning above the endogenous frequency of the CPG, while feedback of muscle velocity is necessary to compensate for the phase lag, caused by the time delay in the loop coupling the limb to the CPG. This afferent feedback of muscle lengthening and velocity represents the Ia and II fibers, which-according to literature-is the input to the CPG. An internal process of the CPG, which integrates the delayed muscle lengthening and feeds it to the half-center model, provides resonance tuning below the
Nomoto, S. [Japan Oil Development Co. Ltd., Tokyo (Japan); Fujita, K. [The University of Tokyo, Tokyo (Japan)
1997-05-01
Data for large giant oil fields with minable reserves of one billion barrels or more were accumulated to structure a new oil field depletion model and estimate production in each oil field. As a result of analyzing events recognized in large giant oil fields, necessity was made clear to correct the conventional oil depletion model. The newly proposed model changes definitions on the depletion period of time, depletion rate, build-up production (during a time period in which production rate increases) and production in a plateau (a time period in which production becomes constant). Two hundred and twenty-five large giant oil fields were classified into those in a depletion period, an initial development phase, and a plateau period. The following findings were obtained as a result of trial calculations using the new model: under an assumption of demand growth rate of 1.5%, oil field groups in the initial development phase will reach the plateau production in the year 2002, and oil fields in the depletion period will continue production decline, hence the production amount after that year will slow down. Because the oil field groups in the plateau period will shift into decline in 2014, the overall production will decrease. The year 2014 is about ten years later than the estimation given recently by Campbell. Undiscovered resources are outside these discussions. 11 refs., 9 figs., 2 tabs.
$^{-} - {}^{12}C$ elastic scattering above the resonance using diffraction model
M R Arafah
2008-01-01
Phenomenological analysis of the $^{-}- ^{12}C$ elastic scattering differential cross-section at 400, 486, 500, 584, 663, 672 and 766 MeV is presented. The analysis is made in the diffraction model framework using the recently proposed parametrization of the phase-shift function. Good description of the experimental data is achieved at all energies. Microscopic interpretation of the parameters of the phase-shift function is provided in terms of Helm's model density parameters.
The J3 SCR model applied to resonant converter simulation
Avant, R. L.; Lee, F. C. Y.
1985-01-01
The J3 SCR model is a continuous topology computer model for the SCR. Its circuit analog and parameter estimation procedure are uniformly applicable to popular computer-aided design and analysis programs such as SPICE2 and SCEPTRE. The circuit analog is based on the intrinsic three pn junction structure of the SCR. The parameter estimation procedure requires only manufacturer's specification sheet quantities as a data base.
Numerical modeling of nonlinear acoustic waves in a tube with an array of Helmholtz resonators
Lombard, Bruno
2013-01-01
Wave propagation in a 1-D guide with an array of Helmholtz resonators is studied numerically, considering large amplitude waves and viscous boundary layers. The model consists in two coupled equations: a nonlinear PDE of nonlinear acoustics, and a linear ODE describing the oscillations in the Helmholtz resonators. The dissipative effects in the tube and in the throats of the resonators are modeled by fractional derivatives. Based on a diffusive representation, the convolution kernels are replaced by a finite number of memory variables that satisfy local ordinary differential equations. An optimization procedure provides an efficient diffusive representation. A splitting strategy is then applied to the evolution equations: the propagative part is solved by a standard TVD scheme for hyperbolic equations, whereas the diffusive part is solved exactly. This approach is validated by comparisons with exact solutions. The properties of the full nonlinear solutions are investigated numerically. In particular, existenc...
Two-mode model for metal-dielectric guided-mode resonance filters.
Tuambilangana, Christelle; Pardo, Fabrice; Sakat, Emilie; Bouchon, Patrick; Pelouard, Jean-Luc; Haïdar, Riad
2015-12-14
Symmetric metal-dielectric guided-mode resonators (GMR) can operate as infrared band-pass filters, thanks to high-transmission resonant peaks and good rejection ratio. Starting from matrix formalism, we show that the behavior of the system can be described by a two-mode model. This model reduces to a scalar formula and the GMR is described as the combination of two independent Fabry-Perot resonators. The formalism has then been applied to the case of asymmetric GMR, in order to restore the properties of the symmetric system. This result allows designing GMR-on-substrate as efficient as free-standing systems, the same high transmission maximum value and high quality factor being conserved.
Large scale separation and resonances within LHC range from a prototype BSM model
Hasenfratz, Anna; Witzel, Oliver
2016-01-01
Many theories describing physics beyond the Standard Model rely on a large separation of scales. Large scale separation arises in models with mass-split flavors if the system is conformal in the ultraviolet but chirally broken in the infrared. Because of the conformal fixed point, these systems exhibit hyperscaling and a highly constrained resonance spectrum. We derive hyperscaling relations and investigate the realization of one such system with four light and eight heavy flavors. Our numerical simulations confirm that both light-light and heavy-heavy resonance masses show hyperscaling and depend only on the ratio of the light and heavy flavor masses. The heavy-heavy spectrum is qualitatively different from QCD and exhibits quarkonia with masses not proportional to the constituent quark mass. These resonances are only a few times heavier than the light-light ones, which would put them within reach of the LHC.
Kohler, Susanna
2016-02-01
In KIC 9246715, two red-giant stars twins in nearly every way circle each other in a 171-day orbit. This binary pair may be a key to learning about masses and radii of stars with asteroseismology, the study of oscillations in the interiors of stars.Two Ways to MeasureIn order to understand a stars evolution, it is critical that we know its mass and radius. Unfortunately, these quantities are often difficult to pin down!One of the few cases in which we can directly measure stars masses and radii is in eclipsing binaries, wherein two stars eclipse each other as they orbit. If we have a well-sampled light curve for the binary, as well as radial velocities for both stars, then we can determine the stars complete orbital information, including their masses and radii.But there may be another way to obtain stellar mass and radius: asteroseismology. In asteroseismology, oscillations inside stars are used to characterize the stellar interiors. Conveniently, if a star with a convective envelope exhibits solar-like oscillations, these oscillations can be directly compared to those of the Sun. Mass and radius scaling relations which use the Sun as a benchmark and scale based on the stars temperature can then be used to derive the mass and radius of the star.Test Subjects from KeplerSolar-like oscillations from KIC 9246715 are shown in red across different resonant frequencies. The oscillations of a single red-giant star with similar properties are shown upside down in grey for reference. [Rawls et al. 2016]Of course, scaling relations are only useful if we can test them! A team of scientists including Meredith Rawls (New Mexico State University) has identified 18 red-giant eclipsing binaries in the Kepler field of view that also exhibit solar-like oscillations perfect for testing the scaling relations.In a recent study led by Rawls, the team analyzed the first of these binaries, KIC 9246715. Using the Kepler light curves in addition to radial velocity measurements from high
Vector and Axial-vector resonances in composite models of the Higgs boson
Franzosi, Diogo Buarque; Cacciapaglia, Giacomo; Cai, Haiying;
2016-01-01
We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT const...... as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.......We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT...... constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used...
A relativistic model for neutrino pion production from nuclei in the resonance region
Praet, C; Jachowicz, N; Ryckebusch, J
2007-01-01
We present a relativistic model for electroweak pion production from nuclei, focusing on the $\\Delta$ and the second resonance region. Bound states are derived in the Hartree approximation to the $\\sigma-\\omega$ Walecka model. Final-state interactions of the outgoing pion and nucleon are described in a factorized way by means of a relativistic extension of the Glauber model. Our formalism allows a detailed study of neutrino pion production through $Q^2$, $W$, energy, angle and out-of-plane distributions.
Fortuny, Josep; Marcé-Nogué, Jordi; Heiss, Egon; Sanchez, Montserrat; Gil, Lluis; Galobart, Àngel
2015-01-01
Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and their "conservative" morphology, cryptobranchids may be useful models to reconstruct the feeding ecology and biomechanics of different members of early tetrapods and amphibians, with similar osteological and myological constraints.
Josep Fortuny
Full Text Available Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and their "conservative" morphology, cryptobranchids may be useful models to reconstruct the feeding ecology and biomechanics of different members of early tetrapods and amphibians, with similar osteological and myological constraints.
N. Suzuki, T. Sato, T.-S. H. Lee
2010-10-01
We explain the application of a recently developed analytic continuation method to extract the electromagnetic transition form factors for the nucleon resonances ($N^*$) within a dynamical coupled-channel model of meson-baryon reactions.Illustrative results of the obtained $N^*\\rightarrow \\gamma N$ transition form factors, defined at the resonance pole positions on the complex energy plane, for the well isolated $P_{33}$ and $D_{13}$, and the complicated $P_{11}$ resonances are presented. A formula has been developed to give an unified representation of the effects due to the first two $P_{11}$ poles, which are near the $\\pi\\Delta$ threshold, but are on different Riemann sheets. We also find that a simple formula, with its parameters determined in the Laurent expansions of $\\pi N \\rightarrow \\pi N$ and $\\gamma N \\rightarrow\\pi N$ amplitudes, can reproduce to a very large extent the exact solutions of the considered model at energies near the real parts of the extracted resonance positions. We indicate the differences between our results and those extracted from the approaches using the Breit-Wigner parametrization of resonant amplitudes to fit the data.
Soliton models in resonant and nonresonant optical ﬁbers
K Porsezian
2001-11-01
In this review, considering the important linear and nonlinear optical effects like group velocity dispersion, higher order dispersion, Kerr nonlinearity, self-steepening, stimulated Raman scattering, birefringence, self-induced transparency and various inhomogeneous effects in ﬁbers, the completely integrable concept and bright, dark and self-induced transparency soliton models in nonlinear ﬁber optics are discussed. Considering the above important optical effects, the different completely integrable soliton models in the form of nonlinear Schrödinger (NLS), NLS-MaxwellBloch (MB) type equations reported in the literature are discussed. Finally, solitons in stimulated Raman scattering (SRS) system is brieﬂy discussed.
Xu, Xiaolun; Li, Yongqian; Wang, Binbin; Zhou, Zili
2015-10-01
The resonance characteristics of plasmonic metamaterials absorbers (PMAs) are strongly dependent on geometric parameters. A resistor-inductor-capacitor (RLC) circuit model has been extended to predict the resonance wavelengths and the bandwidths of multiple magnetic polaritons modes in PMAs. For a typical metallic-dielectric-metallic structure absorber working in the infrared region, the developed model describes the correlation between the resonance characteristics and the dimensional sizes. In particular, the RLC model is suitable for not only the fundamental resonance mode, but also for the second- and third-order resonance modes. The prediction of the resonance characteristics agrees fairly well with those calculated by the finite-difference time-domain simulation and the experimental results. The developed RLC model enables the facilitation of designing multi-band PMAs for infrared radiation detectors and thermal emitters.
Modeling dendrite density from magnetic resonance diffusion measurements
Jespersen, Sune Nørhøj; Kroenke, CD; Østergaard, Leif;
2007-01-01
Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal in this mo...
Effect of Geometry in Frequency Response Modeling of Nanomechanical Resonators
Esfahania, M. Nasr; Yilmaz, M.; Sonne, Mads Rostgaard;
2016-01-01
Euler and Timoshenko beam theories from numerical techniques including finite element modeling and Surface Cauchy-Borntechnique are studied. The results provide a limit beyond which surface energy contribution dominates the mechanical behavior.Using the Surface Cauchy-Born technique as the reference, a maximum error...
Giant aeolian dune size determined by the average depth of the atmospheric boundary layer
Claudin, P.; Fourrière, A.; Andreotti, B.; Murray, A. B.
2009-12-01
Depending on the wind regime, sand dunes exhibit linear, crescent-shaped or star-like forms resulting from the interaction between dune morphology and sand transport. Small-scale dunes form by destabilization of the sand bed with a wavelength (a few tens of metres) determined by the sand transport saturation length. The mechanisms controlling the formation of giant dunes, and in particular accounting for their typical time and length scales, have remained unknown. Using a combination of field measurements and aerodynamic calculations, we show here that the growth of aeolian giant dunes, ascribed to the nonlinear interaction between small-scale superimposed dunes, is limited by the confinement of the flow within the atmospheric boundary layer. Aeolian giant dunes and river dunes form by similar processes, with the thermal inversion layer that caps the convective boundary layer in the atmosphere acting analogously to the water surface in rivers. In both cases, the bed topography excites surface waves on the interface that in turn modify the near-bed flow velocity. This mechanism is a stabilizing process that prevents the scale of the pattern from coarsening beyond the resonant condition. Our results can explain the mean spacing of aeolian giant dunes ranging from 300 m in coastal terrestrial deserts to 3.5 km. We propose that our findings could serve as a starting point for the modelling of long-term evolution of desert landscapes under specific wind regimes.
Bayesian Inference of Giant Exoplanet Physics
Thorngren, Daniel; Fortney, Jonathan J.
2017-01-01
The physical processes within a giant planet directly set its observed radius for a given mass, age, and insolation. The important aspects are the planet’s bulk composition and its interior thermal evolution. By studying many giant planets as an ensemble, we can gain insight into this physics. We demonstrate two novel examples here. We examine 50 cooler transiting giant planets, whose insolation is sufficiently low (T_eff < 1000 K) that they are not affected by the hot Jupiter radius inflation effect. For these planets, the thermal evolution is relatively well understood, and we show that the bulk planet metallicity increases with the total planet mass, which directly impacts plans for future atmospheric studies. We also examine the relation with stellar metallicity and discuss how these relations place new constraints on the core accretion model of planet formation. Our newest work seeks to quantify the flow of energy into hot Jupiters needed to explain their enlarged radii, in addition to their bulk composition. Because the former is related to stellar insolation and the latter is related to mass, we are able to create a hierarchical Bayesian model to disentangle the two effects in our sample of ~300 transiting giant planets. Our results show conclusively that the inflation power is not a simple fraction of stellar insolation: instead, the power increases with incident flux at a much higher rate. We use these results to test published models of giant planet inflation and to provide accurate empirical mass-radius relations for giant planets.
Peripheral giant cell granuloma
Padam Narayan Tandon
2012-01-01
Full Text Available Peripheral giant cell granuloma or the so-called "giant cell epulis" is the most common oral giant cell lesion. It normally presents as a soft tissue purplish-red nodule consisting of multinucleated giant cells in a background of mononuclear stromal cells and extravasated red blood cells. This lesion probably does not represent a true neoplasm, but rather may be reactive in nature, believed to be stimulated by local irritation or trauma, but the cause is not certainly known. This article reports a case of peripheral giant cell granuloma arising at the maxillary anterior region in a 22-year-old female patient. The lesion was completely excised to the periosteum level and there is no residual or recurrent swelling or bony defect apparent in the area of biopsy after a follow-up period of 6 months.
Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method
Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry
2011-01-01
Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built ea...
Searches for physics beyond the Standard Model using jet-based resonances with the ATLAS Detector
Frate, Meghan; The ATLAS collaboration
2016-01-01
Run2 of the LHC, with its increased center-of-mass energy, is an unprecedented opportunity to discover physics beyond the Standard Model. One interesting possibility to conduct such searches is to use resonances based on jets. The latest search results from the ATLAS experiment, based on either inclusive or heavy-flavour jets, will be presented.
Discrete vortex model of a Helmholtz resonator subjected to high-intensity sound and grazing flow.
Dai, Xiwen; Jing, Xiaodong; Sun, Xiaofeng
2012-11-01
In this paper, a theoretical model is developed to study the acoustical response of a Helmholtz resonator as a duct-branched acoustic absorber subjected to both high-intensity sound and grazing flow. The present model is comprised of a discrete vortex model in combination with a one-dimensional duct sound propagation model. The present work is to study the overall effect of incident sound interacting with grazing flow but putting emphasis on the nonlinear or intermediate regime where the sound intensity has a marked or non-negligible influence on the acoustic behavior of the Helmholtz resonator. The numerical results reveal that the flow field around the orifice is dominated by the evolution of the vortex sheet and the flow pattern is influenced by the ratio of the orifice flow velocity to the grazing flow velocity. When the incident sound pressure is high or the resonance occurs, the resonator shows nonlinearity, i.e., the acoustic impedance and absorption coefficient vary not only with duct flow Mach number buy also with incident frequency and incident sound pressure level.
From Chiral quark dynamics with Polyakov loop to the hadron resonance gas model
Arriola, E Ruiz; Salcedo, L L
2012-01-01
Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.
Behavioral modeling of rf VCO circuit with MEMS LC resonator
Mohamed, Amal; Elsimary, Hamed; Ismail, Mohammed
2001-04-01
In this work, a behavioral Modeling of RF VCO circuit which has a tank designed by Microelectromechanical system (MEMS) technology is presented emphasizing robust design that can obtain the parametric variable of the suspended spiral inductor and the MEMS tunable capacitor to high performance and reliable design of the VCO circuit. The MEMS spiral inductor has a low phase noise effect on the VCO output, and the MEMS tunable capacitance has very high quality factor with enabling 20% change of oscillation frequency. The designed monolithic RF VCO circuit and the high-Q MEMS inductor and tunable capacitor are modeled using specter-s simulator in the CADENCE design framework and (Verilog-A) behavioral simulator. Complete monolithic fabrication of RF VCO with high-Q MEMS devices using standard CMOS process (MOSIS, AMI 1.2 micrometer).
Goychuk, I
2001-08-01
Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.
Goychuk, Igor
2001-08-01
Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.
张雷; 邬义杰; 刘孝亮; 王彬
2012-01-01
建立了嵌入式超磁致伸缩GMM构件的机、电、磁、热多场优化模型,并采用多目标遗传算法实现了GMM构件的多场耦合模型优化.由GMM构件的一般设计准则和异形孔精密加工工艺要求,确定模型优化目标包括:合理的驱动刚度和较大的抗扭转刚度；驱动线圈效率系数大；空心线圈产生的高强度磁场；减少导磁回路磁阻,使GMM内部磁场强度高；强制水冷腔的散热效率高.优化变量包括:GMM的尺寸、导磁材料的磁导率以及磁回路、线圈、水冷腔体的结构.根据设计要求选取变量范围,采用非支配排序遗传算法(NSGA)在整个参数空间内搜索,得到了GMM构件主要结构参数,并通过试验和磁场仿真验证了结构设计方法的正确性.%The optimization design model of embedded giant magnetostrictive components ( EGMC ) was presented with multi-field property of machinery, electric, magnetic and thermal. And the multi-object genetic algorithm was applied to the optimization design of the EGMC. All optimal objects of the model were confirmed by the general design rules and the requirements of non-cylindrical holes in precision processing. The optimal goals of the model were as follows; a suitable flexural rigid of the EGMC, the maximum torsional rigid of the EGMC, the maximum coil efficiency, the maximum magnetic field density inside the coil, the maximum cooling efficiency of the water-cooling cavity, and the maximum magnetic field density in giant magnetostrictive material ( GMM ) by reducing the magnetic reluctances. The variables needs optimization included the size of GMM, the magnetic permeability of all magnetic materials, the structure of magnetic flux path, coil, and water-cooling cavity. All optimal parameter ranges were determined by application demands. The finest parameters of giant magnetostrictive components were obtained by non-dominated sorting genetic algorithm ( NSGA) with space search method, which
Searching for Standard Model Adjoint Scalars with Diboson Resonance Signatures
Carpenter, Linda M
2015-01-01
We explore the phenomenology of scalar fields in the adjoint representation of SM gauge groups. We write a general set of dimension 5 effective operators in which SM adjoint scalars couple to pairs of standard model bosons. Using these effective operators, we explore new possible decay channels of a scalar color octet into a gluon and a Z boson/ gluon and a photon. We recast several analyses from Run I of the LHC to find constraints on an a scalar octet decaying into these channels, and we project the discovery potential of color octets in our gluon+photon channel for the 14 TeV run of LHC.
Stochastic modeling for magnetic resonance quantification of myocardial blood flow
Seethamraju, Ravi T.; Muehling, Olaf; Panse, Prasad M.; Wilke, Norbert M.; Jerosch-Herold, Michael
2000-10-01
Quantification of myocardial blood flow is useful for determining the functional severity of coronary artery lesions. With advances in MR imaging it has become possible to assess myocardial perfusion and blood flow in a non-invasive manner by rapid serial imaging following injection of contrast agent. To date most approaches reported in the literature relied mostly on deriving relative indices of myocardial perfusion directly from the measured signal intensity curves. The central volume principle on the other hand states that it is possible to derive absolute myocardial blood flow from the tissue impulse response. Because of the sensitivity involved in deconvolution due to noise in measured data, conventional methods are sub-optimal, hence, we propose to use stochastic time series modeling techniques like ARMA to obtain a robust impulse response estimate. It is shown that these methods when applied for the optical estimation of the transfer function give accurate estimates of myocardial blood flow. The most significant advantage of this approach, compared with compartmental tracer kinetic models, is the use of a minimum set of prior assumptions on data. The bottleneck in assessing myocardial blood flow, does not lie in the MRI acquisition, but rather in the effort or time for post processing. It is anticipated that the very limited requirements for user input and interaction will be of significant advantage for the clinical application of these methods. The proposed methods are validated by comparison with mean blood flow measurements obtained from radio-isotope labeled microspheres.
Jian Lu
2011-08-01
Full Text Available Multilayered microresonators commonly use sensitive coating or piezoelectric layers for detection of mass and gas. Most of these microresonators have a variable cross-section that complicates the prediction of their fundamental resonant frequency (generally of the bending mode through conventional analytical models. In this paper, we present an analytical model to estimate the first resonant frequency and deflection curve of single-clamped multilayered microresonators with variable cross-section. The analytical model is obtained using the Rayleigh and Macaulay methods, as well as the Euler-Bernoulli beam theory. Our model is applied to two multilayered microresonators with piezoelectric excitation reported in the literature. Both microresonators are composed by layers of seven different materials. The results of our analytical model agree very well with those obtained from finite element models (FEMs and experimental data. Our analytical model can be used to determine the suitable dimensions of the microresonator’s layers in order to obtain a microresonator that operates at a resonant frequency necessary for a particular application.
Study of plasmon resonance in a gold nanorod with an LC circuit model
Huang, Cheng-ping; Huang, Huang; Zhu, Yong-yuan
2009-01-01
Gold nanorod has generated great research interest due to its tunable longitudinal plasmon resonance. However, little progress has been made in the understanding of the effect. A major reason is that, except for metallic spheres and ellipsoids, the interaction between light and nanoparticles is generally insoluble. In this paper, a new scheme has been proposed to study the plasmon resonance of gold nanorod, in which the nanorod is modeled as an LC circuit with an inductance and a capacitance. The obtained resonance wavelength is dependent on not only aspect ratio but also rod radius, suggesting the importance of self-inductance and the breakdown of linear scaling. Moreover, the cross sections for light scattering and absorption have been deduced analytically, giving rise to a Lorentzian line-shape for the extinction spectrum. The result provides us with new insight into the phenomenon.
Three-body unitarity, the cloudy bag model, and the Roper resonance
Pearce, B. C.; Afnan, I. R.
1989-07-01
We present the details and results of a Faddeev calculation of πN scattering in the P11 channel in the region of the Roper resonance. Our equations respect two- and three-body unitarity, treat the nucleon and delta on an equal footing, and have a pole with correct residue at the nucleon mass. The input is from the cloudy bag model. Resonance behavior is exhibited without the inclusion of a bare Roper bag, although not in detailed agreement with experiment. If a bare Roper bag is included, the phase shifts vary far too rapidly in the resonance region, implying that identifying the lowest radial bag excitations with the Roper leads to a physical Roper that is much too narrow.
Optical model calculation for the unresolved/resolved resonance region of Fe-56
Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Froehner, F.H.
1997-03-01
We have studied optical model fits to total neutron cross sections of structural materials using the accurate data base for {sup 56}Fe existing in the resolved and unresolved resonance region. Averages over resolved resonances were calculated with Lorentzian weighting in Reich-Moore (reduced R matrix) approximation. Starting from the best available optical potentials we found that adjustment of the real and imaginary well depths does not work satisfactorily with the conventional weak linear energy dependence of the well depths. If, however, the linear dependences are modified towards low energies, the average total cross sections can be fitted quite well, from the resolved resonance region up to 20 MeV and higher. (author)
Krishna Kumar, P.T. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, O-Okayama, Meguro-Ku, Tokyo 152-8550 (Japan)], E-mail: gstptk@yahoo.co.in; Sekimoto, Hiroshi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, O-Okayama, Meguro-Ku, Tokyo 152-8550 (Japan)], E-mail: hsekimot@nr.titech.ac.jp
2009-02-15
Covariance matrix elements depict the statistical and systematic uncertainties in reactor parameter measurements. All the efforts have so far been devoted only to minimise the statistical uncertainty by repeated measurements but the dominant systematic uncertainty has either been neglected or randomized. In recent years efforts has been devoted to simulate the resonance parameter uncertainty information through covariance matrices in code SAMMY. But, the code does not have any provision to check the reliability of the simulated covariance data. We propose a new approach called entropy based information theory to reduce the systematic uncertainty in the correlation matrix element so that resonance parameters with minimum systematic uncertainty can be modelled. We apply our information theory approach in generating the resonance parameters of {sup 156}Gd with reduced systematic uncertainty and demonstrate the superiority of our technique over the principal component analysis method.
Different Interaction Models in Strong Decays of Negative Parity N* Resonances Under 2 GeV
HE Jun; DONG Yu-Bing
2004-01-01
In this paper, by using harmonic-oscillator wave functions of different interaction models, i.e. OPE (onepion-exchange model), OPsE (only pseudoscalar meson exchange model), the extended GBE (Goldstone-boson-exchange model including vector and scalar mesons), and OGE (one-gluon-exchange model), we calculate and compare the strong decays of negative parity N* resonances under 2 GeV. We find that the conventional mixing angles are correct, and GBE and OGE are obviously superior to OPE and OPsE.
Unquenching the meson spectrum: a model study of excited $\\rho$ resonances
Rupp, George; van Beveren, Eef
2016-01-01
Quark models taking into account the dynamical effects of hadronic decay often produce very different predictions for mass shifts in the hadron spectrum. The consequences for meson spectroscopy can be dramatic and completely obscure the underlying confining force. Recent unquenched lattice calculations of mesonic resonances that also include meson-meson interpolators provide a touchstone for such models, despite the present limitations in applicability. On the experimental side, the $\\rho(770)$ meson and its several observed radial recurrences are a fertile testing ground for both quark models and lattice computations. Here we apply a unitarised quark model that has been successful in the description of many enigmatic mesons to these vector $\\rho$ resonances and the corresponding $P$-wave $\\pi\\pi$ phase shifts. This work is in progress, with encouraging preliminary results.
Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model
Michtchenko, Tatiana A; Barros, Douglas A; Lépine, Jacques R D
2016-01-01
Context: Resonances in the stellar orbital motion under perturbations from spiral arms structure play an important role in the evolution of the disks of spiral galaxies. The epicyclic approximation allows the determination of the corresponding resonant radii on the equatorial plane (for nearly circular orbits), but is not suitable in general. Aims: To expand the study of resonant orbits by analysing stellar motions perturbed by spiral arms with Gaussian-shaped profiles, without any restriction on the stellar orbital configurations, and expand the concept of Lindblad (epicyclic) resonances for orbits with large radial excursions. Methods: We define a representative plane of initial conditions, which covers the whole phase space of the system. Dynamical maps on representative planes are constructed numerically, in order to characterize the phase-space structure and identify the precise location of the resonances. The study is complemented by the construction of dynamical power spectra, which provide the identif...
Multi-Criteria Decision-Making Model for the Material Flow of Resonant Wood Production
Patrik Aláč
2017-03-01
Full Text Available This paper proposes a multi-criteria decision-making model, for the selection and evaluation of the most valuable wooden input—resonant wood. Application of a given model can improve the process of input valuation as well as impact and improve particular economic indicators for the resonant wood manufacturer. We have tried to describe and evaluate the supply chain of resonant wood manufacturing and production of musical instruments. Particular value-added and non-value-added activities have been chosen according to the logical sequence of technology. Then, concrete criteria were specified and their significance weightings. Another important part of our paper is the description of resonant wood, specifications, and demands on log and wood species. There are some important physical and mechanical properties which should be taken into account and evaluated during the production of musical instruments. By the application of this model, a particular enterprise can reach an enhanced tool for the continuous evaluation of the product flowing through the supply chain. Visibility of particular operations and their logical sequence, presented by Petri nets, can lead to easier detection of possible defects in these operations and their origin. So, the main purpose of the paper lies in the suggestion of an objective and quantified managerial tool for the decision making.
πN Elastic Scattering and Resonances in Quark Potential Model
CHEN Ju-Mei; WANG Hai-Jun; LI Cheng-Zu; SU Jun-Chen; LIANG Lin-Mei; CHEN Ping-Xing; DAI Hong-Yi
2008-01-01
The quark potential model is used to investigate the low-energy elastic scattering of π N system. The model potential consists of the t-channel and s-channel one-gluon exchange potentials and the harmonic oscillator confining potential. By means of the resonating group method, a nonlocal effective potential for the πN system is derived from the interquark potentials and used to calculate the π N elastic scattering phase shifts. By considering the effect of QCD renormalization, the suppression of the spin-orbital coupling and the contribution of the color octet of the clusters (qq) and (qqq), the numerical results are in fairly good agreement with the experimental data. The same model and method are employed to investigate the possible πN resonances. For this purpose, the resonating group equation is transformed into a standard Schrodinger equation in which the nonlocal effective πN interaction potential is included. Solving the Schrodinger equation by the variational method, we are able to reproduce the masses of some currently concerned πN resonances.
Beam model and three dimensional numerical simulations on suspended microchannel resonators
Kuan-Rong Huang
2012-12-01
Full Text Available At the microscale level, the vibrational characteristics of microstructures have been widely applied on biochemical microchips, especially for bio-molecules detection. The vibrational mechanics and mechanism of microcantilever beams immersed in the fluids for detecting target bio-molecules carried in the fluids have been widely studied and realized in recent years. However, it is not the case for microcantilever beams containing fluids inside (called suspended microchannel resonators, SMR. In this paper, an 1-D beam model for SMR is proposed and the formula for prediction of resonant frequency and resonant frequency shift are derived. For verification of validity of the 1-D beam model, three dimensional finite element simulations using ANSYS are performed. The effects of relevant parameters, such as density and viscosity of the fluids, on the frequency response are investigated. A link between numerical simulations and mathematical modeling is established through an equivalence relation. Subsequently, a useful formula of the resonant frequency shift as a function of the mass variation and the viscosity of the contained fluid is derived. Good agreement between the numerical simulations and the experimental data is obtained and the physical mechanism is elucidated.
Shiota, D; Chen, P F; Yamamoto, T T; Sakajiri, T; Shibata, K; Shiota, Daikou; Isobe, Hiroaki; Yamamoto, Tetsuya T.; Sakajiri, Takuma; Shibata, Kazunari
2005-01-01
We performed magnetohydrodynamic simulation of coronal mass ejections (CMEs) and associated giant arcade formations, and the results suggested new interpretations of observations of CMEs. We performed two cases of the simulation: with and without heat conduction. Comparing between the results of the two cases, we found that reconnection rate in the conductive case is a little higher than that in the adiabatic case and the temperature of the loop top is consistent with the theoretical value predicted by the Yokoyama-Shibata scaling law. The dynamical properties such as velocity and magnetic fields are similar in the two cases, whereas thermal properties such as temperature and density are very different.In both cases, slow shocks associated with magnetic reconnectionpropagate from the reconnection region along the magnetic field lines around the flux rope, and the shock fronts form spiral patterns. Just outside the slow shocks, the plasma density decreased a great deal. The soft X-ray images synthesized from t...
Monika eBright
2014-04-01
Full Text Available Symbioses between chemoautotrophic sulfur-oxidizing (thiotrophic bacteria and protists or animals are among the most diverse and prevalent in the ocean. They are extremely difficult to maintain in aquaria and no thiotrophic symbiosis involving an animal host has ever been successfully cultivated. In contrast, we have cultivated the giant ciliate Zoothamnium niveum and its obligate ectosymbiont Cand. Thiobios zoothamnicoli in small flow-through aquaria. This review provides an overview of the host and the symbiont and their phylogenetic relationships. We summarize our knowledge on the ecology, geographic distribution and life cycle of the host, on the vertical transmission of the symbiont, and on the cultivation of this symbiosis. We then discuss the benefits and costs involved in this cooperation compared with other thiotrophic symbioses and outline our view on the evolution and persistence of this byproduct mutualism.
Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model
Megias, E; Salcedo, L L
2013-01-01
Based on first principle QCD arguments, it has been argued in arXiv:1204.2424[hep-ph] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop hep-ph/0412308, hep-ph/0607338. The existence of exotic states in the spectrum is discussed.
On the electromechanical modelling of a resonating nano-cantilever-based transducer
Teva, J.; Abadal, G.; Davis, Zachary James;
2004-01-01
An electromechanical model for a transducer based on a lateral resonating cantilever is described. The on-plane vibrations of the cantilever are excited electrostatically by applying DC and AC voltages from a driver electrode placed closely parallel to the cantilever. The model predicts the stati....... Both the static and dynamic predictions have been validated experimentally by measuring the deflection of the cantilever by means of an optical microscope. (C) 2004 Elsevier B.V. All rights reserved....
Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region
T.-S. H. Lee; A. Matsuyama; T. Sato
2006-11-15
A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.
Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model *,**
Megías E.
2014-03-01
Full Text Available Based on first principle QCD arguments, it has been argued in [1] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop [2, 3]. The existence of exotic states in the spectrum is discussed.
Scattering resonances and two-particle bound states of the extended Hubbard model
Valiente, M; Petrosyan, D [Institute of Electronic Structure and Laser, FORTH, 71110 Heraklion, Crete (Greece)
2009-06-28
We present a complete derivation of two-particle states of the one-dimensional extended Bose-Hubbard model involving attractive or repulsive on-site and nearest-neighbour interactions. We find that this system possesses scattering resonances and two families of energy-dependent interaction-bound states which are not present in the Hubbard model with the on-site interaction alone. (fast track communication)
Dynamical coupled-channels model for neutrino-induced meson productions in resonance region
Nakamura, S X; Sato, T
2015-01-01
A dynamical coupled-channels (DCC) model for neutrino-nucleon reactions in the resonance region is developed. Starting from the DCC model that we have previously developed through an analysis of $\\pi N, \\gamma N\\to \\pi N, \\eta N, K\\Lambda, K\\Sigma$ reaction data for $W\\le 2.1$ GeV, we extend the model of the vector current to $Q^2\\le$ 3.0 (GeV/$c$)$^2$ by analyzing electron-induced reaction data for both proton and neutron targets. We derive axial-current matrix elements that are related to the $\\pi N$ interactions of the DCC model through the Partially Conserved Axial Current (PCAC) relation. Consequently, the interference pattern between resonant and non-resonant amplitudes is uniquely determined. We calculate cross sections for neutrino-induced meson productions, and compare them with available data. Our result for the single-pion production reasonably agrees with the data. We also make a comparison with the double-pion production data. Our model is the first DCC model that can give the double-pion product...
Förner, K.; Polifke, W.
2017-10-01
The nonlinear acoustic behavior of Helmholtz resonators is characterized by a data-based reduced-order model, which is obtained by a combination of high-resolution CFD simulation and system identification. It is shown that even in the nonlinear regime, a linear model is capable of describing the reflection behavior at a particular amplitude with quantitative accuracy. This observation motivates to choose a local-linear model structure for this study, which consists of a network of parallel linear submodels. A so-called fuzzy-neuron layer distributes the input signal over the linear submodels, depending on the root mean square of the particle velocity at the resonator surface. The resulting model structure is referred to as an local-linear neuro-fuzzy network. System identification techniques are used to estimate the free parameters of this model from training data. The training data are generated by CFD simulations of the resonator, with persistent acoustic excitation over a wide range of frequencies and sound pressure levels. The estimated nonlinear, reduced-order models show good agreement with CFD and experimental data over a wide range of amplitudes for several test cases.
Yang, Shin Nan; Tiator, L
2011-01-01
We present the results on P11 resonances obtained with Dubna-Mainz-Taipei (DMT) dynamical model for pion-nucleon scattering and pion electromagnetic production. The extracted values agree well, in general, with PDG values. One pole is found corresponding to the Roper resonance and two more resonances are definitely needed in DMT model. We further find indication for a narrow P11 resonance at around 1700 MeV with a width of around 50 MeV in both pi-N and gamma-pi reactions.
Busse, F H; 10.1017/S1743921307000920
2009-01-01
Possibilities and difficulties of applying the theory of magnetic field generation by convection flows in rotating spherical fluid shells to the Giant Planets are outlined. Recent progress in the understanding of the distribution of electrical conductivity in the Giant Planets suggests that the dynamo process occurs predominantly in regions of semiconductivity. In contrast to the geodynamo the magnetic field generation in the Giant Planets is thus characterized by strong radial conductivity variations. The importance of the constraint on the Ohmic dissipation provided by the planetary luminosity is emphasized. Planetary dynamos are likely to be of an oscillatory type, although these oscillations may not be evident from the exterior of the planets.
Tahere Nosratzehi; Lale Maleki
2013-01-01
Giant cell fibroma is a fibrous tumor which represents about 2 to 5% of all oral fibrotic proliferations. Compared to traumatic fibroma, giant (traumatic fibroma or irritation fibroma) cell fibroma occurs at a younger age. In about 60% of the cases the lesion is diagnosed within the first three decades of life and is slightly more in women. 50% of the cases is observed in the gum and will appear as a nodule with a papillary surface [1]. The giant cell fibroma is treated by conservative excisi...
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere
Claudepierre, S. G.; Toffoletto, F. R.; Wiltberger, M.
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere.
Claudepierre, S G; Toffoletto, F R; Wiltberger, M
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
Goodlet, B R; Torbet, C J; Biedermann, E J; Jauriqui, L M; Aldrin, J C; Pollock, T M
2017-02-08
Finite element (FE) modeling has been coupled with resonant ultrasound spectroscopy (RUS) for nondestructive evaluation (NDE) of high temperature damage induced by mechanical loading. Forward FE models predict mode-specific changes in resonance frequencies (ΔfR), inform RUS measurements of mode-type, and identify diagnostic resonance modes sensitive to individual or multiple concurrent damage mechanisms. The magnitude of modeled ΔfR correlate very well with the magnitude of measured ΔfR from RUS, affording quantitative assessments of damage. This approach was employed to study creep damage in a polycrystalline Ni-based superalloy (Mar-M247) at 950°C. After iterative applications of creep strains up to 8.8%, RUS measurements recorded ΔfR that correspond to the accumulation of plastic deformation and cracks in the gauge section of a cylindrical dog-bone specimen. Of the first 50 resonance modes that occur, ranging from 3 to 220kHz, modes classified as longitudinal bending were most sensitive to creep damage while transverse bending modes were found to be largely unaffected. Measure to model comparisons of ΔfR show that the deformation experienced by the specimen during creep, specifically uniform elongation of the gauge section, is responsible for a majority of the measured ΔfR until at least 6.1% creep strain. After 8.8% strain considerable surface cracking along the gauge section of the dog-bone was observed, for which FE models indicate low-frequency longitudinal bending modes are significantly affected. Key differences between historical implementations of RUS for NDE and the FE model-based framework developed herein are discussed, with attention to general implementation of a FE model-based framework for NDE of damage.
A coupling model for quasi-normal modes of photonic resonators
Vial, Benjamin
2016-01-01
We develop a model for the coupling of quasi-normal modes in open photonic systems consisting of two resonators. By expressing the modes of the coupled system as a linear combination of the modes of the individual particles, we obtain a generalized eigenvalue problem involving small size dense matrices. We apply this technique to a 2D problem of a high index rod dimmer of rectangular cross section for Transverse Electric (TE) polarization. The results of our model are compared with full-wave finite element simulations and show a good agreement for the four lowest eigenvalues by taking into account the two lowest eigenfrequencies of the isolated rods. This model provides interesting physical insights on the coupling scheme at stake in such systems and pave the way for the design and optimization of resonances in more complicated systems, including the engineering of metamaterial unit cells.
Neural Network Model Of The PXIE RFQ Cooling System and Resonant Frequency Response
Edelen, Auralee [Fermilab; Biedron, Sandra [Colorado State U., Fort Collins; Bowring, Daniel [Fermilab; Chase, Brian [Fermilab; Edelen, Jonathan [Fermilab; Milton, Stephen [Colorado State U., Fort Collins; Steimel, Jim [Fermilab
2016-06-01
As part of the PIP-II Injector Experiment (PXIE) accel-erator, a four-vane radio frequency quadrupole (RFQ) accelerates a 30-keV, 1-mA to 10-mA H' ion beam to 2.1 MeV. It is designed to operate at a frequency of 162.5 MHz with arbitrary duty factor, including continuous wave (CW) mode. The resonant frequency is controlled solely by a water-cooling system. We present an initial neural network model of the RFQ frequency response to changes in the cooling system and RF power conditions during pulsed operation. A neural network model will be used in a model predictive control scheme to regulate the resonant frequency of the RFQ.
Phase-noise-induced resonance in arrays of coupled excitable neural models.
Xiaoming Liang; Liang Zhao
2013-08-01
Recently, it is observed that, in a single neural model, phase noise (time-varying signal phase) arising from an external stimulating signal can induce regular spiking activities even if the signal is subthreshold. In addition, it is also uncovered that there exists an optimal phase noise intensity at which the spiking rhythm coincides with the frequency of the subthreshold signal, resulting in a phase-noise-induced resonance phenomenon. However, neurons usually do not work alone, but are connected in the form of arrays or blocks. Therefore, we study the spiking activity induced by phase noise in arrays of globally and locally coupled excitable neural models. We find that there also exists an optimal phase noise intensity for generating large neural response and such an optimal value is significantly decreased compared to an isolated single neuron case, which means the detectability in response to the subthreshold signal of neurons is sharply improved because of the coupling. In addition, we reveal two new resonance behaviors in the neuron ensemble with the presence of phase noise: there exist optimal values of both coupling strength and system size, where the coupled neurons generate regular spikes under subthreshold stimulations, which are called as coupling strength and system size resonance, respectively. Finally, the dependence of phase-noise-induced resonance on signal frequency is also examined.
Yu, Xiang; Lu, Zhenbo; Cheng, Li; Cui, Fangsen
2017-01-01
This paper investigates the acoustic properties of a duct resonator tuned by an electro-active membrane. The resonator takes the form of a side-branch cavity which is attached to a rigid duct and covered by a pre-stretched Dielectric Elastomer (DE) in the neck area. A three-dimensional, analytical model based on the sub-structuring approach is developed to characterize the complex structure-acoustic coupling between the DE membrane and its surrounding acoustic media. We show that such resonator provides sound attenuation in the medium frequency range mainly by means of sound reflection, as a result of the membrane vibration. The prediction accuracy of the proposed model is validated against experimental test. The pre-stretched DE membrane with fixed edges responds to applied voltage change with a varying inner stress and, by the same token, its natural frequency and vibrational response can be tuned to suit particular frequencies of interest. The peaks in the transmission loss (TL) curves can be shifted towards lower frequencies when the voltage applied to the DE membrane is increased. Through simulations on the effect of increasing the voltage level, the TL shifting mechanism and its possible tuning range are analyzed. This paves the way for applying such resonator device for adaptive-passive noise control.
Active Magnetic Bearing Rotor Model Updating Using Resonance and MAC Error
Yuanping Xu
2015-01-01
Full Text Available Modern control techniques can improve the performance and robustness of a rotor active magnetic bearing (AMB system. Since those control methods usually rely on system models, it is important to obtain a precise rotor AMB analytical model. However, the interference fits and shrink effects of rotor AMB cause inaccuracy to the final system model. In this paper, an experiment based model updating method is proposed to improve the accuracy of the finite element (FE model used in a rotor AMB system. Modelling error is minimized by applying a numerical optimization Nelder-Mead simplex algorithm to properly adjust FE model parameters. Both the error resonance frequencies and modal assurance criterion (MAC values are minimized simultaneously to account for the rotor natural frequencies as well as for the mode shapes. Verification of the updated rotor model is performed by comparing the experimental and analytical frequency response. The close agreements demonstrate the effectiveness of the proposed model updating methodology.
Bonnet, G. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1961-07-01
When studying the behaviour of a magnetic resonance transducer formed by the association of an electrical network and of a set of nuclear spins, it is possible to bring about a representation that is analytically equivalent by means of an entirely electrical model, available for transients as well as steady-state. A detailed study of the validity conditions justifies its use in most cases. Also proposed is a linearity criterion of Bloch's equations in transient state that is simply the prolongation of the well-known condition of non-saturation in the steady-state. (author) [French] L'etude du comportement d'un transducteur a resonance magnetique forme de l'association d'un reseau electrique et d'un ensemble de noyaux dotes de spin, montre qu'il est possible d'en deduire une representation analytiquement equivalente au moyen d'un modele entierement electrique utilisable pour un regime transitoire aussi bien que pour un regime permanent. Une etude detaillee des conditions de validite permet d'en justifier l'emploi dans la majorite des cas. On propose enfin un critere de linearite des equations de Bloch en regime transitoire, qui constitue un prolongement de la condition connue de non-saturation en regime stationnaire. (auteur)
Choi, Myungseok; Olshevskiy, Alexander; Kim, Chang-Wan [Konkuk University, Seoul (Korea, Republic of); Eom, Kilho [Sungkyunkwan University, Suwon (Korea, Republic of); Gwak, Kwanwoong [Sejong University, Seoul (Korea, Republic of); Dai, Mai Duc [Ho Chi Minh City University of Technology and Education, Ho Chi Minh (Viet Nam)
2017-05-15
Carbon nanotube (CNT) has recently received much attention due to its excellent electromechanical properties, indicating that CNT can be employed for development of Nanoelectromechanical system (NEMS) such as nanomechanical resonators. For effective design of CNT-based resonators, it is required to accurately predict the vibration behavior of CNT resonators as well as their frequency response to mass adsorption. In this work, we have studied the vibrational behavior of Multi-walled CNT (MWCNT) resonators by using a continuum mechanics modeling that was implemented in Finite element method (FEM). In particular, we consider a transversely isotropic hollow cylinder solid model with Finite element (FE) implementation for modeling the vibration behavior of Multi-walled CNT (MWCNT) resonators. It is shown that our continuum mechanics model provides the resonant frequencies of various MWCNTs being comparable to those obtained from experiments. Moreover, we have investigated the frequency response of MWCNT resonators to mass adsorption by using our continuum model with FE implementation. Our study sheds light on our continuum mechanics model that is useful in predicting not only the vibration behavior of MWCNT resonators but also their sensing performance for further effective design of MWCNT- based NEMS devices.
Autoionization resonances in the photoabsorption spectra of Fe{sup n+} iron ions
Konovalov, A. V., E-mail: alkonvit@yandex.ru; Ipatov, A. N., E-mail: andrei-ipatov@mail.ru [Peter the Great St. Petersburg State Polytechnic University (Russian Federation)
2016-11-15
The photoabsorption cross sections of a neutral iron atom, as well as positive Fe{sup +} and Fe{sup 2+} ions, are calculated in the relativistic random-phase approximation with exchange in the energy range 20–160 eV. The wavefunctions of the ground and excited states are calculated in the single-configuration Hartree–Fock–Dirac approximation. The resultant photoabsorption spectra are compared with experimental data and with the results of calculations based on the nonrelativistic spin-polarized version of the random-phase approximation with exchange. Series of autoionization resonance peaks, as well as giant autoionization resonance lines corresponding to discrete transitions 3p → 3d, are clearly observed in the photoabsorption cross sections. The conformity of the positions of calculated peaks of giant autoionization resonances with experimental data is substantially improved by taking into account additionally the correlation electron–electron interaction based on the model of the dynamic polarization potential.
Song, Song-Kum
2016-01-01
Mechanism of the Fano resonances in planar metamaterials demonstrate based on the coupled two-oscillator model. We have described the optical spectrums like reflectance and transmittance near the resonances of bright mode (continuum mode) and dark mode (discrete mode) and explained their optical properties by the Fano formulism. the Fano formulism of the resonances in the planar metamaterials can predict the asymmetric shape line and radiative properties occurring in reflectance and transmittance from the coupling between bright and dark modes.
Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.
Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed.
Stockdale, Dennis
1998-01-01
Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)
Could Jupiter or Saturn Have Ejected a Fifth Giant Planet?
Cloutier, Ryan; Valencia, Diana
2015-01-01
Models of the dynamical evolution of the early solar system following the dispersal of the gaseous protoplanetary disk have been widely successful in reconstructing the current orbital configuration of the giant planets. Statistically, some of the most successful dynamical evolution simulations have initially included a hypothetical fifth giant planet, of ice giant mass, which gets ejected by a gas giant during the early solar system's proposed instability phase. We investigate the likelihood of an ice giant ejection event by either Jupiter or Saturn through constraints imposed by the current orbits of their wide-separation regular satellites Callisto and Iapetus respectively. We show that planetary encounters that are sufficient to eject an ice giant, often provide excessive perturbations to the orbits of Callisto and Iapetus making it difficult to reconcile a planet ejection event with the current orbit of either satellite. Quantitatively, we compute the likelihood of reconciling a regular Jovian satellite ...
Giant magnetostrictive materials
LIU JingHua; JIANG ChengBao; XU HuiBin
2012-01-01
Giant magnetostrictive materials are a kind of functional materials developed since 1970s,known as their large magnetostrain and high energy density.In this paper,an introduction of magnetosttiction and the history of magnetostrictive materials are described firstly.Then we review the recent developments of both rare earth and non-rare earth magnetostrictive materials.Finally,the tendency of developing new giant magnetostrictive materials is presented.
Hierarchical spin-orbital polarization of a giant Rashba system.
Bawden, Lewis; Riley, Jonathan M; Kim, Choong H; Sankar, Raman; Monkman, Eric J; Shai, Daniel E; Wei, Haofei I; Lochocki, Edward B; Wells, Justin W; Meevasana, Worawat; Kim, Timur K; Hoesch, Moritz; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Fennie, Craig J; Shen, Kyle M; Chou, Fangcheng; King, Phil D C
2015-09-01
The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector.
Electrodynamics in Giant Planet Atmospheres
Koskinen, T.; Yelle, R. V.; Lavvas, P.; Cho, J.
2014-12-01
The atmospheres of close-in extrasolar giant planets such as HD209458b are strongly ionized by the UV flux of their host stars. We show that photoionization on such planets creates a dayside ionosphere that extends from the thermosphere to the 100 mbar level. The resulting peak electron density near the 1 mbar level is higher than that encountered in any planetary ionosphere of the solar system, and the model conductivity is in fact comparable to the atmospheres of Sun-like stars. As a result, the momentum and energy balance in the upper atmosphere of HD209458b and similar planets can be strongly affected by ion drag and resistive heating arising from wind-driven electrodynamics. Despite much weaker ionization, electrodynamics is nevertheless also important on the giant planets of the solar system. We use a generic framework to constrain the conductivity regimes on close-in extrasolar planets, and compare the results with conductivites based on the same approach for Jupiter and Saturn. By using a generalized Ohm's law and assumed magnetic fields, we then demonstrate the basic effects of wind-driven ion drag in giant planet atmospheres. Our results show that ion drag is often significant in the upper atmosphere where it can also substantially alter the energy budget through resistive heating.
Observed Properties of Giant Cells
Hathaway, David H.; Upton, Lisa; Colegrove, Owen
2014-01-01
The existence of Giant Cells has been suggested by both theory and observation for over 45 years. We have tracked the motions of supergranules in SDO/HMI Doppler velocity data and find larger (Giant Cell) flows that persist for months. The flows in these cells are clockwise around centers of divergence in the north and counter-clockwise in the south. Equatorward flows are correlated with prograde flows - giving the transport of angular momentum toward the equator that is needed to maintain the Sun's rapid equatorial rotation. The cells are most pronounced at mid- and high-latitudes where they exhibit the rotation rates representative of those latitudes. These are clearly large, long-lived, cellular features, with the dynamical characteristics expected from the effects of the Sun's rotation, but the shapes of the cells are not well represented in numerical models. While the Giant Cell flow velocities are small (<10 m/s), their long lifetimes should nonetheless substantially impact the transport of magnetic flux in the Sun's near surface layers.
Zhu, Ling; Romanowsky, Aaron J.; van de Ven, Glenn; Long, R. J.; Watkins, Laura L.; Pota, Vincenzo; Napolitano, Nicola R.; Forbes, Duncan A.; Brodie, Jean; Foster, Caroline
2016-11-01
We construct a suite of discrete chemo-dynamical models of the giant elliptical galaxy NGC 5846. These models are a powerful tool to constrain both the mass distribution and internal dynamics of multiple tracer populations. We use Jeans models to simultaneously fit stellar kinematics within the effective radius Re, planetary nebula (PN) radial velocities out to 3 Re, and globular cluster (GC) radial velocities and colours out to 6 Re. The best-fitting model is a cored dark matter halo which contributes ˜10 per cent of the total mass within 1 Re, and 67 per cent ± 10 per cent within 6 Re, although a cusped dark matter halo is also acceptable. The red GCs exhibit mild rotation with vmax/σ0 ˜ 0.3 in the region R > Re, aligned with but counter-rotating to the stars in the inner parts, while the blue GCs and PNe kinematics are consistent with no rotation. The red GCs are tangentially anisotropic, the blue GCs are mildly radially anisotropic, and the PNe vary from radially to tangentially anisotropic from the inner to the outer region. This is confirmed by general made-to-measure models. The tangential anisotropy of the red GCs in the inner regions could stem from the preferential destruction of red GCs on more radial orbits, while their outer tangential anisotropy - similar to the PNe in this region - has no good explanation. The mild radial anisotropy of the blue GCs is consistent with an accretion scenario.
Red giant seismology: Observations
Mosser B.
2013-03-01
Full Text Available The CoRoT and Kepler missions provide us with thousands of red-giant light curves that allow a very precise asteroseismic study of these objects. Before CoRoT and Kepler, the red-giant oscillation patterns remained obscure. Now, these spectra are much more clear and unveil many crucial interior structure properties. For thousands of red giants, we can derive from seismic data precise estimates of the stellar mass and radius, the evolutionary status of the giants (with a clear difference between clump and RGB stars, the internal differential rotation, the mass loss, the distance of the stars... Analyzing this amount of information is made easy by the identification of the largely homologous red-giant oscillation patterns. For the first time, both pressure and mixed mode oscillation patterns can be precisely depicted. The mixed-mode analysis allows us, for instance, to probe directly the stellar core. Fine details completing the red-giant oscillation pattern then provide further information on the interior structure, including differential rotation.
Crocker, Roland M.; Bicknell, Geoffrey V.; Taylor, Andrew M.; Carretti, Ettore
2015-08-01
The Galactic center’s giant outflows are manifest in three different, nonthermal phenomena: (1) the hard-spectrum, γ-ray “Fermi bubbles” emanating from the nucleus and extending to | b| ˜ 50^\\circ ; (2) the hard-spectrum, total-intensity microwave (˜20-40 GHz) “haze” extending to | b| ˜ 35^\\circ in the lower reaches of the Fermi bubbles; and (3) the steep-spectrum, polarized, “S-PASS” radio (˜2-20 GHz) lobes that envelop the bubbles and extend to | b| ˜ 60^\\circ . We find that the nuclear outflows inflate a genuine bubble in each Galactic hemisphere that has the classical structure, working outward, of reverse shock, contact discontinuity (CD), and forward shock. Expanding into the finite pressure of the halo and given appreciable cooling and gravitational losses, the CD of each bubble is now expanding only very slowly. We find observational signatures in both hemispheres of giant, reverse shocks at heights of ˜1 kpc above the nucleus; their presence ultimately explains all three of the nonthermal phenomena mentioned above. Synchrotron emission from shock-reaccelerated cosmic-ray electrons explains the spectrum, morphology, and vertical extent of the microwave haze and the polarized radio lobes. Collisions between shock-reaccelerated hadrons and denser gas in cooling condensations that form inside the CD account for most of the bubbles’ γ-ray emissivity. Inverse Compton emission from primary electrons contributes at the 10%-30% level. Our model suggests that the bubbles are signatures of a comparatively weak but sustained nuclear outflow driven by Galactic center star formation over ≳few × 108 yr.
Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model
Michtchenko, T. A.; Vieira, R. S. S.; Barros, D. A.; Lépine, J. R. D.
2017-01-01
Context. Resonances in the stellar orbital motion under perturbations from the spiral arm structure can play an important role in the evolution of the disks of spiral galaxies. The epicyclic approximation allows the determination of the corresponding resonant radii on the equatorial plane (in the context of nearly circular orbits), but is not suitable in general. Aims: We expand the study of resonant orbits by analysing stellar motions perturbed by spiral arms with Gaussian-shaped groove profiles without any restriction on the stellar orbital configurations, and we expand the concept of Lindblad (epicyclic) resonances for orbits with large radial excursions. Methods: We define a representative plane of initial conditions, which covers the whole phase space of the system. Dynamical maps on representative planes of initial conditions are constructed numerically in order to characterize the phase-space structure and identify the precise location of the co-rotation and Lindblad resonances. The study is complemented by the construction of dynamical power spectra, which provide the identification of fundamental oscillatory patterns in the stellar motion. Results: Our approach allows a precise description of the resonance chains in the whole phase space, giving a broader view of the dynamics of the system when compared to the classical epicyclic approach. We generalize the concept of Lindblad resonances and extend it to cases of resonant orbits with large radial excursions, even for objects in retrograde motion. The analysis of the solar neighbourhood shows that, depending on the current azimuthal phase of the Sun with respect to the spiral arms, a star with solar kinematic parameters (SSP) may evolve in dynamically distinct regions, either inside the stable co-rotation resonance or in a chaotic zone. Conclusions: Our approach contributes to quantifying the domains of resonant orbits and the degree of chaos in the whole Galactic phase-space structure. It may serve as a
Relativistic Stark resonances in a simple exactly soluble model for a diatomic molecule
Fillion-Gourdeau, Francois; Bandrauk, Andre D
2012-01-01
A simple 1-D relativistic model for a diatomic molecule with a double point interaction potential is solved exactly in a constant electric field. The Weyl-Titchmarsh-Kodaira method is used to evaluate the spectral density function, allowing the correct normalization of continuum states. The boundary conditions at the potential wells are evaluated using Colombeau's generalized function theory along with charge conjugation invariance and general properties of self-adjoint extensions for point-like interactions. The resulting spectral density function exhibits resonances for quasibound states which move in the complex energy plane as the model parameters are varied. It is observed that for a monotonically increasing interatomic distance, the ground state resonance can either go deeper into the negative continuum or can give rise to a sequence of avoided crossings, depending on the strength of the potential wells. For sufficiently low electric field strength or small interatomic distance, the behavior of resonanc...
Gneiding, N., E-mail: Natalia.Gneiding@physik.uni-erlangen.de [Erlangen Graduate School in Advanced Optical Technologies (SAOT), University of Erlangen-Nuremberg, 91052 Erlangen (Germany); Zhuromskyy, O.; Peschel, U. [Institute of Optics, Information and Photonics, University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Shamonina, E. [Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford (United Kingdom)
2014-10-28
Metamaterials are comprised of metallic structures with a strong response to incident electromagnetic radiation, like, for example, split ring resonators. The interaction of resonator ensembles with electromagnetic waves can be simulated with finite difference or finite elements algorithms, however, above a certain ensemble size simulations become inadmissibly time or memory consuming. Alternatively a circuit description of metamaterials, a well developed modelling tool at radio and microwave frequencies, allows to significantly increase the simulated ensemble size. This approach can be extended to the IR spectral range with an appropriate set of circuit element parameters accounting for physical effects such as electron inertia and finite conductivity. The model is verified by comparing the coupling coefficients with the ones obtained from the full wave numerical simulations, and used to optimize the nano-antenna design with improved radiation characteristics.
Coupled-Channel Model for $\\bar{K}N$ Scattering in the Resonant Region
Fernandez-Ramirez, C; Manley, D M; Mathieu, V; Szczepaniak, A P
2015-01-01
We present a unitary multichannel model for $\\bar{K}N$ scattering in the resonance region that fulfills unitarity. It has the correct analytical properties for the amplitudes once they are extended to the complex-$s$ plane and the partial waves have the right threshold behavior. To determine the parameters of the model, we have fitted single-energy partial waves up to $J=7/2$ and up to 2.15 GeV of energy in the center-of-mass reference frame obtaining the poles of the $\\Lambda^*$ and $\\Sigma^*$ resonances, which are compared to previous analyses. We provide the most comprehensive picture of the $S=-1$ hyperon spectrum to date. Important differences are found between the available analyses making the gathering of further experimental information on $\\bar{K}N$ scattering mandatory to make progress in the assessment of the hyperon spectrum.
D-dimensional Conformal Field Theories with anomalous dimensions as Dual Resonance Models
Mack, Gerhard
2009-01-01
An exact correspondence is pointed out between conformal field theories in D dimensions and dual resonance models in D' dimensions, where D' may differ from D. Dual resonance models, pioneered by Veneziano, were forerunners of string theory. The analog of scattering amplitudes are called Mellin amplitudes; they depend on complex variables which substitute for the Mandelstam variables on which scattering amplitudes depend. The Mellin amplitudes satisfy exact duality - i.e. meromorphy with simple poles in single variables, and crossing symmetry - and an appropriate form of factorization which is implied by operator product expansions (OPE). Duality is a D-independent property. The positions of the leading poles are given by the dimensions of fields in the OPE; their residues depend on D and determine satellites. Dimensional reduction and induction D goes to D-1 and D+1 are discussed. Dimensional reduction leads to the appearence of Anti de Sitter space.
Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models
Rosenthal, C. S.
1992-01-01
Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.
Thermodynamics of strong interaction matter from lattice QCD and the hadron resonance gas model
Karsch, Frithjof
2013-01-01
We compare recent lattice QCD calculations of higher order cumulants of net-strangeness fluctuations with hadron resonance gas (HRG) model calculations. Up to the QCD transition temperature Tc=( 154 +/- 9) MeV we find good agreement between QCD and HRG model calculations of second and fourth order cumulants, even when subtle aspects of net-baryon number, strangeness and electric charge fluctuations are probed. In particular, the fourth order cumulants indicate that also in the strangeness sector of QCD the failure of HRG model calculations sets in quite abruptly in the vicinity of the QCD transition temperature and is apparent in most observables for T > 160 MeV.
Bodily tides near the 1:1 spin-orbit resonance. Correction to Goldreich's dynamical model
Williams, James G
2012-01-01
Spin-orbit coupling is often described in the "MacDonald torque" approach which has become the textbook standard. Within this method, a concise expression for the additional tidal potential, derived by MacDonald (1964; Rev. Geophys. 2, 467), is combined with an assumption that the Q factor is frequency-independent (i.e., that the geometric lag angle is constant in time). This makes the approach unphysical because MacDonald's derivation of the said formula was implicitly based on keeping the time lag frequency-independent, which is equivalent to setting Q to scale as the inverse tidal frequency. The contradiction requires the MacDonald treatment of both non-resonant and resonant rotation to be rewritten. The non-resonant case was reconsidered by Efroimsky & Williams (2009; CMDA 104, 257), in application to spin modes distant from the major commensurabilities. We continue this work by introducing the necessary alterations into the MacDonald-torque-based model of falling into a 1:1 resonance. (For the origin...