WorldWideScience

Sample records for giant branch models

  1. Theoretical red-giant branches for globular clusters

    International Nuclear Information System (INIS)

    VandenBerg, D.A.

    1984-01-01

    The authors reports computations of stellar evolutionary sequences from the base of the red-giant branch to the helium flash. Representative models with masses in the range of 0.8 to 0.9 solar masses were selected in order that the stars on the giant branches had ages of approximately 16 billion yr. Initial numerical experiments indicated that a value of α = 1.6 for the ratio of the mixing length to the pressure scale height was needed to provide the best of the Z = 0.0001 model sequence with the observations of M92. Sequences for the other assumed metallicities, Z = 0.0003, 0.001, 0.003, and 0.006, were then computed for the same value of the mixing-length parameter and overlayed directly on the observations. (Auth.)

  2. AGB [asymptotic giant branch]: Star evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1987-01-01

    Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs

  3. STARDUST FROM ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Gail, H.-P.; Zhukovska, S. V.; Hoppe, P.; Trieloff, M.

    2009-01-01

    The formation of dust in the outflows of low- and intermediate-mass stars on the first giant branch and asymptotic giant branch (AGB) is studied and the relative contributions of stars of different initial masses and metallicities to the interstellar medium (ISM) at the instant of solar system formation are derived. These predictions are compared with the characteristics of the parent stars of presolar dust grains found in primitive meteorites and interplanetary dust particles (IDPs) inferred from their isotopic compositions. For this purpose, model calculations for dust condensation in stellar outflows are combined with synthetic models of stellar evolution on the first giant branch and AGB and an evolution model of the Milky Way for the solar neighborhood. The dust components considered are olivine, pyroxene, carbon, SiC, and iron. The corresponding dust production rates are derived for the solar vicinity. From these rates and taking into account dust destruction by supernova shocks in the ISM, the contributions to the inventory of presolar dust grains in the solar system are derived for stars of different initial masses and metallicities. It is shown that stars on the first giant branch and the early AGB are not expected to form dust, in accord with astronomical observations. Dust formation is concentrated in the last phase of evolution, the thermally pulsing AGB. Due to the limited lifetime of dust grains in the ISM only parent stars from a narrow range of metallicities are expected to contribute to the population of presolar dust grains. Silicate and silicon carbide dust grains are predicted to come from parent stars with metallicities not less than about Z ∼ 0.008 (0.6 x solar). This metallicity limit is higher than that inferred from presolar SiC grain isotope data. The population of presolar carbon dust grains is predicted to originate from a wider range of metallicities, down to Z ∼ 0.004. Masses of AGB stars that produce C-rich dust are in the range

  4. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  5. Chemical Analysis of Asymptotic Giant Branch Stars in M62

    NARCIS (Netherlands)

    Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Lanzoni, B.; Massari, D.; Dalessandro, E.

    2015-01-01

    We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al).

  6. Gradients in giant branch morphology in the core of 47 Tucanae

    Science.gov (United States)

    Bailyn, Charles D.

    1994-01-01

    I describe an algorithm which uses the high spatial resolution of the Hubble Space Telescope to complement the high spatial-to-noise, approximately symmetric point response function, relatively large spatial coverage, and standard filters available from ground based images of crowded fields. Applying this technique to the central regions of the globular cluster 47 Tucanae, I find that the morphology of the giant branch in the core is significantly different from that in more distant regions (r approximately equals 5 to 10 core radii) of the cluster. In particular, there appear to be fewer bright giants in the core, along with an enhanced `asymptotic giant branch' (AGB) sequence. Depletion of giants has been observed in the cores of other dense clusters, and may be due to `stripping' of large stars by stellar encounters and/or mass transfer in binary systems. Central concentrations of true asymptotic giant branch stars are not expected to result from dynamical processes; possibly some of these stars may be evolved blue stragglers.

  7. DEEP MIXING IN EVOLVED STARS. II. INTERPRETING Li ABUNDANCES IN RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Palmerini, S.; Busso, M.; Maiorca, E.; Cristallo, S.; Abia, C.; Uttenthaler, S.; Gialanella, L.

    2011-01-01

    We reanalyze the problem of Li abundances in red giants of nearly solar metallicity. After outlining the problems affecting our knowledge of the Li content in low-mass stars (M ≤ 3 M sun ), we discuss deep-mixing models for the red giant branch stages suitable to account for the observed trends and for the correlated variations of the carbon isotope ratio; we find that Li destruction in these phases is limited to masses below about 2.3 M sun . Subsequently, we concentrate on the final stages of evolution for both O-rich and C-rich asymptotic giant branch (AGB) stars. Here, the constraints on extra-mixing phenomena previously derived from heavier nuclei (from C to Al), coupled to recent updates in stellar structure models (including both the input physics and the set of reaction rates used), are suitable to account for the observations of Li abundances below A(Li) ≡ log ε(Li) ≅ 1.5 (and sometimes more). Also, their relations with other nucleosynthesis signatures of AGB phases (like the abundance of F, and the C/O and 12 C/ 13 C ratios) can be explained. This requires generally moderate efficiencies (M-dot -6 M sun yr -1 ) for non-convective mass transport. At such rates, slow extra mixing does not remarkably modify Li abundances in early AGB phases; on the other hand, faster mixing encounters a physical limit in destroying Li, set by the mixing velocity. Beyond this limit, Li starts to be produced; therefore, its destruction on the AGB is modest. Li is then significantly produced by the third dredge up. We also show that effective circulation episodes, while not destroying Li, would easily bring the 12 C/ 13 C ratios to equilibrium, contrary to the evidence in most AGB stars, and would burn F beyond the limits shown by C(N) giants. Hence, we do not confirm the common idea that efficient extra mixing drastically reduces the Li content of C stars with respect to K-M giants. This misleading appearance is induced by biases in the data, namely: (1) the difficulty

  8. The giant branch of Omega Centauri. II. Mixing versus primordial abundance variations

    International Nuclear Information System (INIS)

    Norris, J.; Bessell, M.S.

    1977-01-01

    The lower giant branch of ω Centauri in the magnitude range 13< V<14 contains weak-G-band stars, CH stars, and CN stars; five stars from a sample of 20 members are clearly peculiar. There is also a positive correlation between the strength of the CN band at lambda3883 and the Ca II H and K lines in this sample, with the calcium lines being strongest in the CH and CN stars. All available BVRI data show that while the wide giant branch of ω Cen in the (V, B--V) -plane extends redward almost to that of 47 Tuc, there is a clear separation of ω Cen from 47 Tuc in the (V, R--I) -plane. This suggests that there are no stars on the giant branch of ω Cen with metal abundance as high as that in 47 Tuc. We obtain an upper limit [Fe/H]approx.-1.0 for a sample of approx.60 ω Cen giants brighter than V=14. This is surprising in view of the result of Freeman and Rodgers that there exist strong-lined RR Lyrae stars on the horizontal branch of ω Cen which are most easily understood in terms of 47 Tucanae-like abundances. While we offer no explanation for the strong-lined RR Lyrae stars, we suggest that the mixed stars on the giant branch of ω Cen are stronger lined than normal because of the effect of CN opacity on their atmospheric structure

  9. Infrared studies of asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Willems, F.J.

    1987-01-01

    In this thesis studies are presented of asymptotic giant branch stars, which are thought to be an important link in the evolution of the galaxy. The studies were performed on the basis of data collected by the IRAS, the infrared astronomical satelite. 233 refs.; 33 figs.; 16 tabs

  10. Mass loss by stars on the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Yu.L.

    1986-01-01

    The theoretical populations of white dwarfs and carbon stars were generated for Salpeter initial mass function and constant stellar birth rate history. The effect of very strong mass loss on the mass distribution of white dwarfs and luminosity distribution of carbon stars is discussed and the results are compared with observations. This comparison suggested that a signioficant mass loss by stars on the asymptotic giant branch occurs besides stellar wind and planetary nebulae ejection. Thus it is possible to explain the absence of carbon stars with Msub(bol) 1.0 Msub(sun). The luminosity of asymptotic giant branch stars in the globular clusters of the Magellanic Clouds appears to be a very good indicator of the age

  11. The giant branch of omega Centauri. I. Abundance variations due to mixing

    International Nuclear Information System (INIS)

    Bessell, M.S.; Norris, J.

    1976-01-01

    David Dunlap Observatory (DDO) intermediate-band and RI photometry, together with low-dispersion spectra of a representative sample of stars on the upper giant branch were analysed. Several conclusions were: i) The large width of the giant branch is inseparably connected with mixing. All stars on the red side of the upper giant branch appear to have greatly enhanced features of the CN molecule, with no comparable enhancement of [Fe/H]. ii) A positive correlation between [Fe/H] and the CN excess deltaC (41--42) exists in ω Cen similar to that reported by McClure and Norris for NGC 362. We suggest that this can be explained by the effect of the strong CN band at lambda3800 on the 38 filter of the DDO system. A broad continuum depression around lambda4000 exists in the mixed stars and may also contribute to the correlation. iii) The stars on the blue side of the giant branch show no evidence for mixing and yield an abundance [Fe/H]=-2.1 +- 0.2. It appears that the material from which the cluster formed was as metal deficient as the very metal poor globular clusters. iv) The strong CN enhancement in stars on the red side of the giant branch is not accompanied by greatly enhanced features of CH and C 2 as found in the CH stars. We suggest that the CN stars have O/C>1 and that during the mixing process much of the material now seen at the surface of these objects has been processed through the CN cycle. v) The large width of the branch seen in the (V, B--V) -plane is greatly reduced in the (R, R--I) -plane. This suggests to us that blocking effects are predominant in causing the observed spread in (B--V). We consider the problem that ω Cen is apparently unique in possessing an anomalously wide giant branch. We investigate the possibility that the effect could result from anomalously large angular momentum, and suggest that it might be profitable to observe the highly flattened cluster NGC 6273 to ascertain if it exhibits the same phenomenon

  12. Mass loss by stars at the stage of the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Y.L.

    1986-01-01

    For a given initial stellar mass function, star formation function, and initial chemical composition, distributions have been constructed for stars of the asymptotic giant branch by luminosity, and for white dwarfs by mass, by calculating the approximate evolution of a large number of stars. Variants are calculated with different assumptions about the mass loss in the asymptotic branch. Theory can be reconciled with observation only if it is assumed that at this stage there is also a still large mass loss in addition to the stellar wind and the ejection of a planetary nebula shell. This provides the explanation for the absence in the Magellanic clouds of carbon stars with M /sub bol/ 1.0M /sub ./. The degenerate carbon-oxygen nuclei of stars evolving along the asymptotic giant branch cannot attain the Chandrasekhar limit on account of the great mass loss by the stars. The luminosity of stars of the asymptotic giant branch in the globular clusters of the Magellanic Clouds is a good indicator of the age of the clusters

  13. FLUORINE ABUNDANCES IN GALACTIC ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; DomInguez, I.; Cunha, K.; Hinkle, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Eriksson, K.; Wahlin, R.; Gialanella, L.; Imbriani, G.; Straniero, O.

    2010-01-01

    An analysis of the fluorine abundance in Galactic asymptotic giant branch (AGB) carbon stars (24 N-type, 5 SC-type, and 5 J-type) is presented. This study uses the state-of-the-art carbon-rich atmosphere models and improved atomic and molecular line lists in the 2.3 μm region. Significantly lower F abundances are obtained in comparison to previous studies in the literature. This difference is mainly due to molecular blends. In the case of carbon stars of SC-type, differences in the model atmospheres are also relevant. The new F enhancements are now in agreement with the most recent theoretical nucleosynthesis models in low-mass AGB stars, solving the long-standing problem of F in Galactic AGB stars. Nevertheless, some SC-type carbon stars still show larger F abundances than predicted by stellar models. The possibility that these stars are of larger mass is briefly discussed.

  14. FUNDAMENTAL PARAMETERS, INTEGRATED RED GIANT BRANCH MASS LOSS, AND DUST PRODUCTION IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    International Nuclear Information System (INIS)

    McDonald, I.; Zijlstra, A. A.; Boyer, M. L.; Gordon, K.; Meixner, M.; Sewilo, M.; Shiao, B.; Whitney, B.; Van Loon, J. Th.; Hora, J. L.; Robitaille, T.; Babler, B.; Meade, M.; Block, M.; Misselt, K.

    2011-01-01

    Fundamental parameters and time evolution of mass loss are investigated for post-main-sequence stars in the Galactic globular cluster 47 Tucanae (NGC 104). This is accomplished by fitting spectral energy distributions (SEDs) to existing optical and infrared photometry and spectroscopy, to produce a true Hertzsprung-Russell diagram. We confirm the cluster's distance as d = 4611 +213 -200 pc and age as 12 ± 1 Gyr. Horizontal branch models appear to confirm that no more red giant branch mass loss occurs in 47 Tuc than in the more metal-poor ω Centauri, though difficulties arise due to inconsistencies between the models. Using our SEDs, we identify those stars that exhibit infrared excess, finding excess only among the brightest giants: dusty mass loss begins at a luminosity of ∼1000 L sun , becoming ubiquitous above L = 2000 L sun . Recent claims of dust production around lower-luminosity giants cannot be reproduced, despite using the same archival Spitzer imagery.

  15. Mass loss on the Asymptotic Giant Branch

    OpenAIRE

    Zijlstra, Albert

    2006-01-01

    Mass loss on the Asymptotic Giant Branch provides the origin of planetary nebulae. This paper reviews several relevant aspects of AGB evolution: pulsation properties, mass loss formalisms and time variable mass loss, evidence for asymmetries on the AGB, binarity, ISM interaction, and mass loss at low metallicity. There is growing evidence that mass loss on the AGB is already asymmetric, but with spherically symmetric velocity fields. The origin of the rings may be in pulsational instabilities...

  16. Standard globular cluster giant branches in the (MI/V-IO) plane

    International Nuclear Information System (INIS)

    Da Costa, G.S.; Armandroff, T.E.

    1990-01-01

    CCD photometry in the V, I (Cousins) bandpasses is presented for a large number of giants in eight galactic globular clusters. The (V-I) O color of the giant branch accurately ranks clusters in metal abundance, and can accordingly be used to ascertain both metal abundances and abundance dispersions in old stellar populations. A relation is derived that yields the bolometric correction to the I magnitude for red giants as a function of (V-I) O color. With this relation, and the assumption of the LDZ distance scale, the bolometric magnitudes of the brightest red giants in the clusters were determined; good agreement is obtained with the predictions of stellar evolution theory for the luminosity of the He core flash. 63 refs

  17. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements

    Science.gov (United States)

    Höfner, Susanne; Olofsson, Hans

    2018-01-01

    As low- and intermediate-mass stars reach the asymptotic giant branch (AGB), they have developed into intriguing and complex objects that are major players in the cosmic gas/dust cycle. At this stage, their appearance and evolution are strongly affected by a range of dynamical processes. Large-scale convective flows bring newly-formed chemical elements to the stellar surface and, together with pulsations, they trigger shock waves in the extended stellar atmosphere. There, massive outflows of gas and dust have their origin, which enrich the interstellar medium and, eventually, lead to a transformation of the cool luminous giants into white dwarfs. Dust grains forming in the upper atmospheric layers play a critical role in the wind acceleration process, by scattering and absorbing stellar photons and transferring their outward-directed momentum to the surrounding gas through collisions. Recent progress in high-angular-resolution instrumentation, from the visual to the radio regime, is leading to valuable new insights into the complex dynamical atmospheres of AGB stars and their wind-forming regions. Observations are revealing asymmetries and inhomogeneities in the photospheric and dust-forming layers which vary on time-scales of months, as well as more long-lived large-scale structures in the circumstellar envelopes. High-angular-resolution observations indicate at what distances from the stars dust condensation occurs, and they give information on the chemical composition and sizes of dust grains in the close vicinity of cool giants. These are essential constraints for building realistic models of wind acceleration and developing a predictive theory of mass loss for AGB stars, which is a crucial ingredient of stellar and galactic chemical evolution models. At present, it is still not fully possible to model all these phenomena from first principles, and to predict the mass-loss rate based on fundamental stellar parameters only. However, much progress has been made

  18. THE ASYMPTOTIC GIANT BRANCH AND THE TIP OF THE RED GIANT BRANCH AS PROBES OF STAR FORMATION HISTORY: THE NEARBY DWARF IRREGULAR GALAXY KKH 98

    International Nuclear Information System (INIS)

    Melbourne, J.; Williams, B.; Dalcanton, J.; Ammons, S. M.; Max, C.; Koo, D. C.; Girardi, Leo; Dolphin, A.

    2010-01-01

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D = 2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (near-IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR-bright stars reaching over 1 mag below the tip of the RGB. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the red clump and the main-sequence turnoff for 0.5 Gyr old populations. Compared to the optical color-magnitude diagram (CMD), the near-IR CMD shows significantly tighter AGB sequences, providing a good probe of the intermediate-age (0.5-5 Gyr) populations. We match observed CMDs with stellar evolution models to recover the SFH of KKH 98. On average, the galaxy has experienced relatively constant low-level star formation (5 x 10 -4 M sun yr -1 ) for much of cosmic time. Except for the youngest main-sequence populations (age <0.1 Gyr), which are typically fainter than the AO data flux limit, the SFH estimated from the 592 IR-bright stars is a reasonable match to that derived from the much larger optical data set. Differences between the optical- and IR-derived SFHs for 0.1-1 Gyr populations suggest that current stellar evolution models may be overproducing the AGB by as much as a factor of 3 in this galaxy. At the depth of the AO data, the IR-luminous stars are not crowded. Therefore, these techniques can potentially be used to determine the stellar populations of galaxies at significantly further distances.

  19. THE INTERACTION OF ASYMPTOTIC GIANT BRANCH STARS WITH THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Villaver, Eva [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, Cantoblanco 28049 Madrid (Spain); Manchado, Arturo [Instituto de Astrofisica de Canarias, Via Lactea S/N, E-38200 La Laguna, Tenerife (Spain); Garcia-Segura, Guillermo, E-mail: eva.villaver@uam.es, E-mail: amt@ll.iac.es, E-mail: ggs@astrosen.unam.mx [Instituto de Astronomia-UNAM, Apartado postal 877, Ensenada, 22800 Baja California (Mexico)

    2012-04-01

    We study the hydrodynamical behavior of the gas expelled by moving asymptotic giant branch stars interacting with the interstellar medium (ISM). Our models follow the wind modulations prescribed by stellar evolution calculations, and we cover a range of expected relative velocities (10-100 km s{sup -1}), ISM densities (between 0.01 and 1 cm{sup -3}), and stellar progenitor masses (1 and 3.5 M{sub Sun }). We show how and when bow shocks and cometary-like structures form, and in which regime the shells are subject to instabilities. Finally, we analyze the results of the simulations in terms of the different kinematical stellar populations expected in the Galaxy.

  20. Evolution and nucleosynthesis of asymptotic giant branch stellar models of low metallicity

    Energy Technology Data Exchange (ETDEWEB)

    Fishlock, Cherie K.; Karakas, Amanda I.; Yong, David [Research School of Astronomy and Astrophysics, Australian National University, Canberra ACT 2611 (Australia); Lugaro, Maria, E-mail: cherie.fishlock@anu.edu.au, E-mail: amanda.karakas@anu.edu.au, E-mail: david.yong@anu.edu.au, E-mail: maria.lugaro@monash.edu [Monash Centre for Astrophysics, Monash University, Clayton VIC 3800 (Australia)

    2014-12-10

    We present stellar evolutionary tracks and nucleosynthetic predictions for a grid of stellar models of low- and intermediate-mass asymptotic giant branch (AGB) stars at Z = 0.001 ([Fe/H] =–1.2). The models cover an initial mass range from 1 M {sub ☉} to 7 M {sub ☉}. Final surface abundances and stellar yields are calculated for all elements from hydrogen to bismuth as well as isotopes up to the iron group. We present the first study of neutron-capture nucleosynthesis in intermediate-mass AGB models, including a super-AGB model, of [Fe/H] = –1.2. We examine in detail a low-mass AGB model of 2 M {sub ☉} where the {sup 13}C(α,n){sup 16}O reaction is the main source of neutrons. We also examine an intermediate-mass AGB model of 5 M {sub ☉} where intershell temperatures are high enough to activate the {sup 22}Ne neutron source, which produces high neutron densities up to ∼10{sup 14} n cm{sup –3}. Hot bottom burning is activated in models with M ≥ 3 M {sub ☉}. With the 3 M {sub ☉} model, we investigate the effect of varying the extent in mass of the region where protons are mixed from the envelope into the intershell at the deepest extent of each third dredge-up. We compare the results of the low-mass models to three post-AGB stars with a metallicity of [Fe/H] ≅ – 1.2. The composition is a good match to the predicted neutron-capture abundances except for Pb and we confirm that the observed Pb abundances are lower than what is calculated by AGB models.

  1. POST ASYMPTOTIC GIANT BRANCH BIPOLAR REFLECTION NEBULAE: RESULT OF DYNAMICAL EJECTION OR SELECTIVE ILLUMINATION?

    International Nuclear Information System (INIS)

    Koning, N.; Kwok, Sun; Steffen, W.

    2013-01-01

    A model for post asymptotic giant branch bipolar reflection nebulae has been constructed based on a pair of evacuated cavities in a spherical dust envelope. Many of the observed features of bipolar nebulae, including filled bipolar lobes, an equatorial torus, searchlight beams, and a bright central light source, can be reproduced. The effects on orientation and dust densities are studied and comparisons with some observed examples are offered. We suggest that many observed properties of bipolar nebulae are the result of optical effects and any physical modeling of these nebulae has to take these factors into consideration.

  2. ON THE NEED FOR DEEP-MIXING IN ASYMPTOTIC GIANT BRANCH STARS OF LOW MASS

    International Nuclear Information System (INIS)

    Busso, M.; Palmerini, S.; Maiorca, E.; Cristallo, S.; Abia, C.; Straniero, O.; Gallino, R.; Cognata, M. La

    2010-01-01

    The photospheres of low-mass red giants show CNO isotopic abundances that are not satisfactorily accounted for by canonical stellar models. The same is true for the measurements of these isotopes and of the 26 Al/ 27 Al ratio in presolar grains of circumstellar origin. Non-convective mixing, occurring during both red giant branch (RGB) and asymptotic giant branch (AGB) stages, is the explanation commonly invoked to account for the above evidence. Recently, the need for such mixing phenomena on the AGB was questioned, and chemical anomalies usually attributed to them were suggested to be formed in earlier phases. We have therefore re-calculated extra-mixing effects in low-mass stars for both the RGB and AGB stages, in order to verify the above claims. Our results contradict them; we actually confirm that slow transport below the convective envelope occurs also on the AGB. This is required primarily by the oxygen isotopic mix and the 26 Al content of presolar oxide grains. Other pieces of evidence exist, in particular from the isotopic ratios of carbon stars of type N, or C(N), in the Galaxy and in the LMC, as well as of SiC grains of AGB origin. We further show that, when extra-mixing occurs in the RGB phases of Population I stars above about 1.2 M sun , this consumes 3 He in the envelope, probably preventing the occurrence of thermohaline diffusion on the AGB. Therefore, we argue that other extra-mixing mechanisms should be active in those final evolutionary phases.

  3. Surface effects on the red giant branch

    Science.gov (United States)

    Ball, W. H.; Themeßl, N.; Hekker, S.

    2018-05-01

    Individual mode frequencies have been detected in thousands of individual solar-like oscillators on the red giant branch (RGB). Fitting stellar models to these mode frequencies, however, is more difficult than in main-sequence stars. This is partly because of the uncertain magnitude of the surface effect: the systematic difference between observed and modelled frequencies caused by poor modelling of the near-surface layers. We aim to study the magnitude of the surface effect in RGB stars. Surface effect corrections used for main-sequence targets are potentially large enough to put the non-radial mixed modes in RGB stars out of order, which is unphysical. Unless this can be circumvented, model-fitting of evolved RGB stars is restricted to the radial modes, which reduces the number of available modes. Here, we present a method to suppress gravity modes (g-modes) in the cores of our stellar models, so that they have only pure pressure modes (p-modes). We show that the method gives unbiased results and apply it to three RGB solar-like oscillators in double-lined eclipsing binaries: KIC 8410637, KIC 9540226 and KIC 5640750. In all three stars, the surface effect decreases the model frequencies consistently by about 0.1-0.3 μHz at the frequency of maximum oscillation power νmax, which agrees with existing predictions from three-dimensional radiation hydrodynamics simulations. Though our method in essence discards information about the stellar cores, it provides a useful step forward in understanding the surface effect in RGB stars.

  4. Precision Distances with the Tip of the Red Giant Branch Method

    Science.gov (United States)

    Beaton, Rachael Lynn; Carnegie-Chicago Hubble Program Team

    2018-01-01

    The Carnegie-Chicago Hubble Program aims to construct a distance ladder that utilizes old stellar populations in the outskirts of galaxies to produce a high precision measurement of the Hubble Constant that is independent of Cepheids. The CCHP uses the tip of the red giant branch (TRGB) method, which is a statistical measurement technique that utilizes the termination of the red giant branch. Two innovations combine to make the TRGB a competitive route to the Hubble Constant (i) the large-scale measurement of trigonometric parallax by the Gaia mission and (ii) the development of both precise and accurate means of determining the TRGB in both nearby (~1 Mpc) and distant (~20 Mpc) galaxies. Here I will summarize our progress in developing these standardized techniques, focusing on both our edge-detection algorithm and our field selection strategy. Using these methods, the CCHP has determined equally precise (~2%) distances to galaxies in the Local Group (< 1 Mpc) and across the Local Volume (< 20 Mpc). The TRGB is, thus, an incredibly powerful and straightforward means to determine distances to galaxies of any Hubble Type and, thus, has enormous potential for putting any number of astrophyiscal phenomena on absolute units.

  5. THE ACS NEARBY GALAXY SURVEY TREASURY. IX. CONSTRAINING ASYMPTOTIC GIANT BRANCH EVOLUTION WITH OLD METAL-POOR GALAXIES

    International Nuclear Information System (INIS)

    Girardi, Leo; Williams, Benjamin F.; Gilbert, Karoline M.; Rosenfield, Philip; Dalcanton, Julianne J.; Marigo, Paola; Boyer, Martha L.; Dolphin, Andrew; Weisz, Daniel R.; Skillman, Evan; Melbourne, Jason; Olsen, Knut A. G.; Seth, Anil C.

    2010-01-01

    In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color-magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M sun , [Fe/H]∼ sun . This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.

  6. FLUORINE IN ASYMPTOTIC GIANT BRANCH CARBON STARS REVISITED

    International Nuclear Information System (INIS)

    Abia, C.; Dominguez, I.; Recio-Blanco, A.; De Laverny, P.; Cristallo, S.; Straniero, O.

    2009-01-01

    A re-analysis of the fluorine abundance in three Galactic asymptotic giant branch (AGB) carbon stars (TX Psc, AQ Sgr, and R Scl) has been performed from the molecular HF (1-0) R9 line at 2.3358 μm. High resolution (R ∼ 50,000) and high signal-to-noise spectra obtained with the CRIRES spectrograph and the VLT telescope or from the NOAO archive (for TX Psc) have been used. Our abundance analysis uses the latest generation of MARCS model atmospheres for cool carbon-rich stars. Using spectral synthesis in local thermodynamic equilibrium, we derive for these stars fluorine abundances that are systematically lower by ∼0.8 dex in average with respect to the sole previous estimates by Jorissen et al. The possible reasons of this discrepancy are explored. We conclude that the difference may rely on the blending with C-bearing molecules (CN and C 2 ) that were not properly taken into account in the former study. The new F abundances are in better agreement with the prediction of full network stellar models of low-mass AGB stars. These models also reproduce the s-process elements distribution in the sampled stars. This result, if confirmed in a larger sample of AGB stars, might alleviate the current difficulty to explain the largest [F/O] ratios found by Jorissen et al. In particular, it may not be necessary to search for alternative nuclear chains affecting the production of F in AGB stars.

  7. VLT/FLAMES spectroscopy of red giant branch stars in the Carina dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; Hill, V.; Tolstoy, E.; Venn, K. A.; Shetrone, M. D.; Irwin, M. J.; de Boer, T. J. L.; Starkenburg, E.; Salvadori, S.

    Context. The ages of individual red giant branch stars can range from 1 Gyr old to the age of the Universe, and it is believed that the abundances of most chemical elements in their photospheres remain unchanged with time (those that are not affected by the first dredge-up). This means that they

  8. Heavy-element yields and abundances of asymptotic giant branch models with a Small Magellanic Cloud metallicity

    Science.gov (United States)

    Karakas, Amanda I.; Lugaro, Maria; Carlos, Marília; Cseh, Borbála; Kamath, Devika; García-Hernández, D. A.

    2018-06-01

    We present new theoretical stellar yields and surface abundances for asymptotic giant branch (AGB) models with a metallicity appropriate for stars in the Small Magellanic Cloud (SMC, Z = 0.0028, [Fe/H] ≈ -0.7). New evolutionary sequences and post-processing nucleosynthesis results are presented for initial masses between 1 and 7 M⊙, where the 7 M⊙ is a super-AGB star with an O-Ne core. Models above 1.15 M⊙ become carbon rich during the AGB, and hot bottom burning begins in models M ≥ 3.75 M⊙. We present stellar surface abundances as a function of thermal pulse number for elements between C to Bi and for a selection of isotopic ratios for elements up to Fe and Ni (e.g. 12C/13C), which can be compared to observations. The integrated stellar yields are presented for each model in the grid for hydrogen, helium, and all stable elements from C to Bi. We present evolutionary sequences of intermediate-mass models between 4 and 7 M⊙ and nucleosynthesis results for three masses (M = 3.75, 5, and 7 M⊙) including s-process elements for two widely used AGB mass-loss prescriptions. We discuss our new models in the context of evolved AGB and post-AGB stars in the SMCs, barium stars in our Galaxy, the composition of Galactic globular clusters including Mg isotopes with a similar metallicity to our models, and to pre-solar grains which may have an origin in metal-poor AGB stars.

  9. New asteroseismic scaling relations based on the Hayashi track relation applied to red giant branch stars in NGC 6791 and NGC 6819

    International Nuclear Information System (INIS)

    Wu, T.; Li, Y.; Hekker, S.

    2014-01-01

    Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on a relation for stars on the Hayashi track (√(T eff )∼g p R q ) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and ν max (frequency of maximum oscillation power). The Δν and ν max values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and ν max , with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - ν max relation for red giant branch stars.

  10. FLUORINE IN THE SOLAR NEIGHBORHOOD: IS IT ALL PRODUCED IN ASYMPTOTIC GIANT BRANCH STARS?

    Energy Technology Data Exchange (ETDEWEB)

    Jönsson, H.; Ryde, N. [Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund (Sweden); Harper, G. M. [School of Physics, Trinity College, Dublin 2 (Ireland); Richter, M. J. [Physics Department, University of California, Davis, CA 95616 (United States); Hinkle, K. H., E-mail: henrikj@astro.lu.se [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States)

    2014-07-10

    The origin of ''cosmic'' fluorine is uncertain, but there are three proposed production sites/mechanisms for the origin: asymptotic giant branch (AGB) stars, ν nucleosynthesis in Type II supernovae, and/or the winds of Wolf-Rayet stars. The relative importance of these production sites has not been established even for the solar neighborhood, leading to uncertainties in stellar evolution models of these stars as well as uncertainties in the chemical evolution models of stellar populations. We determine the fluorine and oxygen abundances in seven bright, nearby giants with well determined stellar parameters. We use the 2.3 μm vibrational-rotational HF line and explore a pure rotational HF line at 12.2 μm. The latter has never been used before for an abundance analysis. To be able to do this, we have calculated a line list for pure rotational HF lines. We find that the abundances derived from the two diagnostics agree. Our derived abundances are well reproduced by chemical evolution models including only fluorine production in AGB stars and, therefore, we draw the conclusion that this might be the main production site of fluorine in the solar neighborhood. Furthermore, we highlight the advantages of using the 12 μm HF lines to determine the possible contribution of the ν process to the fluorine budget at low metallicities where the difference between models including and excluding this process is dramatic.

  11. FLUORINE IN THE SOLAR NEIGHBORHOOD: IS IT ALL PRODUCED IN ASYMPTOTIC GIANT BRANCH STARS?

    International Nuclear Information System (INIS)

    Jönsson, H.; Ryde, N.; Harper, G. M.; Richter, M. J.; Hinkle, K. H.

    2014-01-01

    The origin of ''cosmic'' fluorine is uncertain, but there are three proposed production sites/mechanisms for the origin: asymptotic giant branch (AGB) stars, ν nucleosynthesis in Type II supernovae, and/or the winds of Wolf-Rayet stars. The relative importance of these production sites has not been established even for the solar neighborhood, leading to uncertainties in stellar evolution models of these stars as well as uncertainties in the chemical evolution models of stellar populations. We determine the fluorine and oxygen abundances in seven bright, nearby giants with well determined stellar parameters. We use the 2.3 μm vibrational-rotational HF line and explore a pure rotational HF line at 12.2 μm. The latter has never been used before for an abundance analysis. To be able to do this, we have calculated a line list for pure rotational HF lines. We find that the abundances derived from the two diagnostics agree. Our derived abundances are well reproduced by chemical evolution models including only fluorine production in AGB stars and, therefore, we draw the conclusion that this might be the main production site of fluorine in the solar neighborhood. Furthermore, we highlight the advantages of using the 12 μm HF lines to determine the possible contribution of the ν process to the fluorine budget at low metallicities where the difference between models including and excluding this process is dramatic

  12. NON-RADIAL OSCILLATIONS IN M-GIANT SEMI-REGULAR VARIABLES: STELLAR MODELS AND KEPLER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Stello, Dennis; Compton, Douglas L.; Bedding, Timothy R.; Kiss, Laszlo L.; Bellamy, Beau [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); García, Rafael A. [Laboratoire AIM, CEA/DSM-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Mathur, Savita, E-mail: stello@physics.usyd.edu.au [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States)

    2014-06-10

    The success of asteroseismology relies heavily on our ability to identify the frequency patterns of stellar oscillation modes. For stars like the Sun this is relatively easy because the mode frequencies follow a regular pattern described by a well-founded asymptotic relation. When a solar-like star evolves off the main sequence and onto the red giant branch its structure changes dramatically, resulting in changes in the frequency pattern of the modes. We follow the evolution of the adiabatic frequency pattern from the main sequence to near the tip of the red giant branch for a series of models. We find a significant departure from the asymptotic relation for the non-radial modes near the red giant branch tip, resulting in a triplet frequency pattern. To support our investigation we analyze almost four years of Kepler data of the most luminous stars in the field (late K and early M type) and find that their frequency spectra indeed show a triplet pattern dominated by dipole modes even for the most luminous stars in our sample. Our identification explains previous results from ground-based observations reporting fine structure in the Petersen diagram and sub-ridges in the period-luminosity diagram. Finally, we find ''new ridges'' of non-radial modes with frequencies below the fundamental mode in our model calculations, and we speculate they are related to f modes.

  13. Obscured asymptotic giant branch stars in the Magellanic Clouds .2. Near-infrared and mid-infrared counterparts

    NARCIS (Netherlands)

    Zijlstra, AA; Loup, C; Waters, LBFM; Whitelock, PA; vanLoon, JT; Guglielmo, F

    1996-01-01

    We have carried out an infrared search for obscured asymptotic giant branch (AGB) stars in the Magellanic Clouds. Fields were observed in the vicinity of IRAS sources with colours and flux densities consistent with such a classification. The survey uncovered a number of obscured AGE stars as well as

  14. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-04-10

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  15. The Horizontal Branch of the Sculptor Dwarf galaxy

    NARCIS (Netherlands)

    Salaris, Maurizio; de Boer, Thomas; Tolstoy, Eline; Fiorentino, Giuliana; Cassisi, Santi

    2013-01-01

    We have performed the first detailed simulation of the horizontal branch of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from the main sequence and red giant branch

  16. IS DUST FORMING ON THE RED GIANT BRANCH IN 47 Tuc?

    International Nuclear Information System (INIS)

    Boyer, Martha L.; Gordon, Karl D.; Meixner, Margaret; Sewilo, Marta; Shiao, Bernie; Van Loon, Jacco Th.; McDonald, Iain; Babler, Brian; Bracker, Steve; Meade, Marilyn; Block, Miwa; Engelbracht, Charles; Misselt, Karl; Hora, Joe; Indebetouw, Remy; Whitney, Barbara

    2010-01-01

    Using Spitzer Infrared Array Camera (IRAC) observations from the SAGE-SMC Legacy program and archived Spitzer IRAC data, we investigate dust production in 47 Tuc, a nearby massive Galactic globular cluster. A previous study detected infrared excess, indicative of circumstellar dust, in a large population of stars in 47 Tuc, spanning the entire red giant branch (RGB). We show that those results suffered from effects caused by stellar blending and imaging artifacts and that it is likely that no stars below ∼1 mag from the tip of the RGB are producing dust. The only stars that appear to harbor dust are variable stars, which are also the coolest and most luminous stars in the cluster.

  17. Asymptotic giant branch stars as producers of carbon and of neutron-rich isotopes

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1984-01-01

    Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22 Ne(α,n) 25 Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13 C(α,n) 16 reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes

  18. First detection of rotational CO line emission in a red giant branch star

    Science.gov (United States)

    Groenewegen, M. A. T.

    2014-01-01

    Context. For stars with initial masses below ~1 M⊙, the mass loss during the first red giant branch (RGB) phase dominates mass loss in the later asymptotic giant branch (AGB) phase. Nevertheless, mass loss on the RGB is still often parameterised by a simple Reimers law in stellar evolution models. Aims: To try to detect CO thermal emission in a small sample of nearby RGB stars with reliable Hipparcos parallaxes that were shown to have infrared excess in an earlier paper. Methods: A sample of five stars was observed in the CO J = 2-1 and J = 3-2 lines with the IRAM and APEX telescopes. Results: One star, the one with the largest mass-loss rate based on the previous analysis of the spectral energy distribution, was detected. The expansion velocity is unexpectedly large at 12 km s-1. The line profile and intensity are compared to the predictions from a molecular line emission code. The standard model predicts a double-peaked profile, while the observations indicate a flatter profile. A model that does fit the data has a much smaller CO envelope (by a factor of 3), and a CO abundance that is two times larger and/or a larger mass-loss rate than the standard model. This could indicate that the phase of large mass loss has only recently started. Conclusions: The detection of CO in an RGB star with a luminosity of only ~1300 L⊙ and a mass-loss rate as low as a few 10-9M⊙ yr-1 is important and the results also raise new questions. However, ALMA observations are required in order to study the mass-loss process of RGB stars in more detail, both for reasons of sensitivity (6 h of integration in superior weather at IRAM were needed to get a 4σ detection in the object with the largest detection probability), and spatial resolution (to determine the size of the CO envelope). Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme ID 091.D-0073 (ESO time) and 091.F-9322 (Swedish time). Based on observations with the Atacama

  19. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T. J. L.; Hill, V.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.; Ballet, J.; Martins, F.; Bournaud, F.; Monier, R.; Reylé, C.

    2014-01-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between --2.0 and

  20. On the necessity of composition-dependent low-temperature opacity in models of metal-poor asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Constantino, Thomas; Campbell, Simon; Lattanzio, John [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Victoria 3800 (Australia); Gil-Pons, Pilar, E-mail: thomas.constantino@monash.edu [Department of Applied Physics, Polytechnic University of Catalonia, 08860 Barcelona (Spain)

    2014-03-20

    The vital importance of composition-dependent low-temperature opacity in low-mass (M ≤ 3 M {sub ☉}) asymptotic giant branch (AGB) stellar models of metallicity Z ≥ 0.001 has recently been demonstrated. Its significance to more metal-poor, intermediate-mass (M ≥ 2.5 M {sub ☉}) models has yet to be investigated. We show that its inclusion in lower-metallicity models ([Fe/H] ≤–2) is essential and that there exists no threshold metallicity below which composition-dependent molecular opacity may be neglected. We find it to be crucial in all intermediate-mass models investigated ([Fe/H] ≤–2 and 2.5 ≤ M/M {sub ☉} ≤ 5), because of the evolution of the surface chemistry, including the orders of magnitude increase in the abundance of molecule-forming species. Its effect on these models mirrors that previously reported for higher-metallicity models—increase in radius, decrease in T {sub eff}, faster mass loss, shorter thermally pulsing AGB lifetime, reduced enrichment in third dredge-up products (by a factor of 3-10), and an increase in the mass limit for hot bottom burning. We show that the evolution of low-metallicity models with composition-dependent low-temperature opacity is relatively independent of initial metal abundance because its contribution to the opacity is far outweighed by changes resulting from dredge-up. Our results imply a significant reduction in the expected number of nitrogen-enhanced metal-poor stars, which may help explain their observed paucity. We note that these findings are partially a product of the macrophysics adopted in our models, in particular, the Vassiliadis and Wood mass loss rate which is strongly dependent on radius.

  1. The Core Mass Growth and Stellar Lifetime of Thermally Pulsing Asymptotic Giant Branch Stars

    Science.gov (United States)

    Kalirai, Jason S.; Marigo, Paola; Tremblay, Pier-Emmanuel

    2014-02-01

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M initial = 2.8-3.8 M ⊙. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M initial = 1.6 and 2.0 M ⊙. Over this range of initial masses, stellar evolutionary models for metallicity Z initial = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M initial = 1.6 to 2.0 M ⊙. At larger masses, the core-mass growth decreases steadily to ~10% at M initial = 3.4 M ⊙, after which there is a small hint of a upturn out to M initial = 3.8 M ⊙. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ~ 3 Myr and E = 1.2 × 1010 L ⊙ yr for M initial ~ 2 M ⊙ (t ~ 2 Myr

  2. Herschel/HIFI Observations of IRC+10216: Water Vapor in the Inner Envelope of a Carbon-rich Asymptotic Giant Branch Star

    NARCIS (Netherlands)

    Neufeld, D. A.; González-Alfonso, E.; Melnick, G.; Szczerba, R.; Schmidt, M.; Decin, L.; de Koter, A.; Schöier, F. L.; Cernicharo, J.

    2011-01-01

    We report the results of observations of 10 rotational transitions of water vapor toward the carbon-rich asymptotic giant branch (AGB) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch

  3. THE FIRST FLUORINE ABUNDANCE DETERMINATIONS IN EXTRAGALACTIC ASYMPTOTIC GIANT BRANCH CARBON STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; Dominguez, I.; Cunha, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Straniero, O.

    2011-01-01

    Fluorine ( 19 F) abundances (or upper limits) are derived in six extragalactic asymptotic giant branch (AGB) carbon stars from the HF(1-0) R9 line at 2.3358 μm in high-resolution spectra. The stars belong to the Local Group galaxies, Large Magellanic Cloud, Small Magellanic Cloud, and Carina dwarf spheroidal, spanning more than a factor of 50 in metallicity. This is the first study to probe the behavior of F with metallicity in intrinsic extragalactic C-rich AGB stars. Fluorine could be measured only in four of the target stars, showing a wide range in F enhancements. Our F abundance measurements together with those recently derived in Galactic AGB carbon stars show a correlation with the observed carbon and s-element enhancements. The observed correlations, however, display a different dependence on the stellar metallicity with respect to theoretical predictions in low-mass, low-metallicity AGB models. We briefly discuss the possible reasons for this discrepancy. If our findings are confirmed in a larger number of metal-poor AGBs, the issue of F production in AGB stars will need to be revisited.

  4. Chemical Abundances of Red Giant Branch Stars in the Globular Cluster NGC 288

    Science.gov (United States)

    Hsyu, Tiffany; Johnson, C. I.; Pilachowski, C. A.; Lee, Y.; Rich, R. M.

    2013-01-01

    We present chemical abundances and radial velocities for ~30 red giant branch (RGB) stars in the globular cluster NGC 288. The results are based on moderate resolution (R≈18,000) and moderate signal-to-noise ratio 50-75) obtained with the Hydra multi-object spectrograph on the Blanco 4m telescope. NGC 288 has been shown to exhibit two separate RGBs and we investigate possible differences in metallicity and/or light element abundances between stars on each branch. We present a new filter tracing for the CTIO Calcium HK narrow band filter and explore its effects on previous globular cluster color-magnitude diagrams. We also compare the light element abundance patterns of NGC 288 to those of other similar metallicity halo clusters. This material is based upon work supported by the National Science Foundation under award No.AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grants AST-0709479 and AST-121120995.

  5. Evolution of thermally pulsing asymptotic giant branch stars. IV. Constraining mass loss and lifetimes of low mass, low metallicity AGB stars

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfield, Philip; Dalcanton, Julianne J.; Weisz, Daniel; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Marigo, Paola [Department of Physics and Astronomy G. Galilei, University of Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Girardi, Léo; Gullieuszik, Marco [Osservatorio Astronomico di Padova—INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Bressan, Alessandro [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Dolphin, Andrew [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Aringer, Bernhard [Department of Astrophysics, University of Vienna, Turkenschanzstraße 17, A-1180 Wien (Austria)

    2014-07-20

    The evolution and lifetimes of thermally pulsating asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. In this work, we analyze the numbers and luminosity functions of TP-AGB stars in six quiescent, low metallicity ([Fe/H] ≲ –0.86) galaxies taken from the ACS Nearby Galaxy Survey Treasury sample, using Hubble Space Telescope (HST) photometry in both optical and near-infrared filters. The galaxies contain over 1000 TP-AGB stars (at least 60 per field). We compare the observed TP-AGB luminosity functions and relative numbers of TP-AGB and red giant branch (RGB) stars, N{sub TP-AGB}/N{sub RGB}, to models generated from different suites of TP-AGB evolutionary tracks after adopting star formation histories derived from the HST deep optical observations. We test various mass-loss prescriptions that differ in their treatments of mass loss before the onset of dust-driven winds (pre-dust). These comparisons confirm that pre-dust mass loss is important, since models that neglect pre-dust mass loss fail to explain the observed N{sub TP-AGB}/N{sub RGB} ratio or the luminosity functions. In contrast, models with more efficient pre-dust mass loss produce results consistent with observations. We find that for [Fe/H] ≲ –0.86, lower mass TP-AGB stars (M ≲ 1 M{sub ☉}) must have lifetimes of ∼0.5 Myr and higher masses (M ≲ 3 M{sub ☉}) must have lifetimes ≲ 1.2 Myr. In addition, assuming our best-fitting mass-loss prescription, we show that the third dredge-up has no significant effect on TP-AGB lifetimes in this mass and metallicity range.

  6. Mass loss from red giants - A simple evolutionary model for NGC 7027

    Science.gov (United States)

    Jura, M.

    1984-01-01

    NGC 7027 is a young planetary nebula with the remnants of a red giant circumstellar envelope surrounding the central, ionized region. By comparing the outer molecular envelope with the inner ionized material, it is argued that the mass loss rate has decreased by at least a factor of 3, and more probably by about a factor of 10, during the past 1000 years. From this result, it is argued that the luminosity of the central star has also decreased substantially during the same time, consistent with models for the rapid evolution of stars just after they evolve off the asymptotic giant branch. In this picture, the distance to NGC 7027 is less than 1300 pc. NGC 7027 was the last (and best) example of a star where apparently the momentum in the outflowing mass /M(dot)v/ is considerably greater than the momentum in the radiation field (L/c). With the above description of this object, the evidence is now strong that quite often the mass lost from late-type giants is ultimately driven to infinity by radiation pressure on grains. If M(dot)v is as large as L/c for asymptotic branch stars, then it is expected that the total amount of mass lost during this stage of evolution is of the same magnitude as the initial mass of the star, and therefore this mass loss can profoundly affect the star's ultimate fate.

  7. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel; Marigo, Paola

    2014-01-01

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M initial = 2.8-3.8 M ☉ . We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M initial = 1.6 and 2.0 M ☉ . Over this range of initial masses, stellar evolutionary models for metallicity Z initial = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M initial = 1.6 to 2.0 M ☉ . At larger masses, the core-mass growth decreases steadily to ∼10% at M initial = 3.4 M ☉ , after which there is a small hint of a upturn out to M initial = 3.8 M ☉ . These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ∼ 3 Myr and E = 1.2 × 10 10 L ☉ yr for M initial ∼ 2 M

  8. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marigo, Paola, E-mail: jkalirai@stsci.edu, E-mail: paola.marigo@unipd.it, E-mail: ptremblay@lsw.uni-heidelberg.de [Department of Physics and Astronomy, University of Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy)

    2014-02-10

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M {sub initial} = 2.8-3.8 M {sub ☉}. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M {sub initial} = 1.6 and 2.0 M {sub ☉}. Over this range of initial masses, stellar evolutionary models for metallicity Z {sub initial} = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M {sub initial} = 1.6 to 2.0 M {sub ☉}. At larger masses, the core-mass growth decreases steadily to ∼10% at M {sub initial} = 3.4 M {sub ☉}, after which there is a small hint of a upturn out to M {sub initial} = 3.8 M {sub ☉}. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t

  9. The termination of the asymptotic giant branch phase imposed by helium shell flashes - description and conclusions

    International Nuclear Information System (INIS)

    Tuchman, Y.

    1984-01-01

    The increase in the surface luminosity associated with the well-known helium shell flashes might be a trigger for an early mass ejection process. This phenomenon has a significant influence on the global statistical features of the Mira variables as well as on the mass distribution of white dwarfs. The above situation is analysed by adopting the luminosity behaviour during helium shell flashes presented by previous authors to a dynamical picture for the asymptotic giant branch stars. The main observational implications are described and discussed. (author)

  10. The direct neutron decay of giant resonances in 208Pb

    International Nuclear Information System (INIS)

    Bracco, A.

    1988-01-01

    The neutron decay of the giant multipole resonance region from 9 to 15 MeV of excitation energy in 208 Pb has been studied. Neutron branching ratios for the decay to the ground state and to the low-lying excited states of 207 Pb were measured as a function of the excitation energy of 208 Pb and compared to Hauser-Feshbach calculations. While the neutron branching ratios from the energy region of the isoscalar giant quadrupole resonance are reproduced by the calculations, the ratios from the energy region of the isoscalar giant monopole resonance show a conspicuous excess with respect to the statistical model predictions. The neutron yield from this energy region was analysed in terms of a multistep model of the compound nucleus which includes collective doorway channels. The total direct escape width as well as the associated direct partial escape widths to the lowest five valence hole states of 207 Pb were determined. (orig.)

  11. Mass and age of red giant branch stars observed with LAMOST and Kepler

    Science.gov (United States)

    Wu, Yaqian; Xiang, Maosheng; Bi, Shaolan; Liu, Xiaowei; Yu, Jie; Hon, Marc; Sharma, Sanjib; Li, Tanda; Huang, Yang; Liu, Kang; Zhang, Xianfei; Li, Yaguang; Ge, Zhishuai; Tian, Zhijia; Zhang, Jinghua; Zhang, Jianwei

    2018-04-01

    Obtaining accurate and precise masses and ages for large numbers of giant stars is of great importance for unraveling the assemblage history of the Galaxy. In this paper, we estimate masses and ages of 6940 red giant branch (RGB) stars with asteroseismic parameters deduced from Kepler photometry and stellar atmospheric parameters derived from LAMOST spectra. The typical uncertainties of mass is a few per cent, and that of age is ˜20 per cent. The sample stars reveal two separate sequences in the age-[α/Fe] relation - a high-α sequence with stars older than ˜8 Gyr and a low-α sequence composed of stars with ages ranging from younger than 1 Gyr to older than 11 Gyr. We further investigate the feasibility of deducing ages and masses directly from LAMOST spectra with a machine learning method based on kernel based principal component analysis, taking a sub-sample of these RGB stars as a training data set. We demonstrate that ages thus derived achieve an accuracy of ˜24 per cent. We also explored the feasibility of estimating ages and masses based on the spectroscopically measured carbon and nitrogen abundances. The results are quite satisfactory and significantly improved compared to the previous studies.

  12. The development of the red giant branch. II - Astrophysical properties

    Science.gov (United States)

    Sweigart, Allen V.; Greggio, Laura; Renzini, Alvio

    1990-01-01

    Evolutionary sequences developed in another paper are used here to investigate the properties of the red giant branch (RGB) phase transition. Results are found for compositions in the range Y(MS) between 0.20 and 0.30 and Z between 0.004 and 0.04. The transition mass M(HeF) increases as either Y(MS) decreases or Z increases. The stellar population transition age t(HeF) is virtually independent of composition and close to 0.6 Gyr. The RGB phase transition occurs almost abruptly over a mass range of only a few tenths of a solar mass or, equivalently, over a time interval of about 0.2 Gyr in the life of a stellar population. During the RGB phase transition the core mass Mc at helium ignition increases very rapidly by about 0.15 solar mass, while the luminosity at the tip of the RGB increases by about one order of magnitude. Absolute minima are found for the values of Mc and the RGB tip luminosity.

  13. Stellar Evolution in NGC 6791: Mass Loss on the Red Giant Branch and the Formation of Low-Mass White Dwarfs

    Science.gov (United States)

    Kalirai, Jasonjot S.; Bergeron, P.; Hansen, Brad M. S.; Kelson, Daniel D.; Reitzel, David B.; Rich, R. Michael; Richer, Harvey B.

    2007-12-01

    We present the first detailed study of the properties (temperatures, gravities, and masses) of the NGC 6791 white dwarf population. This unique stellar system is both one of the oldest (8 Gyr) and most metal-rich ([Fe/H]~+0.4) open clusters in our Galaxy and has a color-magnitude diagram (CMD) that exhibits both a red giant clump and a much hotter extreme horizontal branch. Fitting the Balmer lines of the white dwarfs in the cluster using Keck/LRIS spectra suggests that most of these stars are undermassive, =0.43+/-0.06 Msolar, and therefore could not have formed from canonical stellar evolution involving the helium flash at the tip of the red giant branch. We show that at least 40% of NGC 6791's evolved stars must have lost enough mass on the red giant branch to avoid the flash and therefore did not convert helium into carbon-oxygen in their core. Such increased mass loss in the evolution of the progenitors of these stars is consistent with the presence of the extreme horizontal branch in the CMD. This unique stellar evolutionary channel also naturally explains the recent finding of a very young age (2.4 Gyr) for NGC 6791 from white dwarf cooling theory; helium-core white dwarfs in this cluster will cool ~3 times slower than carbon-oxygen-core stars, and therefore the corrected white dwarf cooling age is in fact >~7 Gyr, consistent with the well-measured main-sequence turnoff age. These results provide direct empirical evidence that mass loss is much more efficient in high-metallicity environments and therefore may be critical in interpreting the ultraviolet upturn in elliptical galaxies. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based on observations obtained at the

  14. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. D. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Srinivasan, S.; Kemper, F.; Ling, B. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  15. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.

    2014-01-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  16. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    Science.gov (United States)

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  17. High-resolution Spectroscopic Abundances of Red Giant Branch Stars in NGC 6681

    Energy Technology Data Exchange (ETDEWEB)

    O’Malley, Erin M.; Chaboyer, Brian [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03784 (United States); Knaizev, Alexei [South African Astronomical Observatory, Cape Town (South Africa); McWilliam, Andrew [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2017-09-01

    We obtain high-resolution spectra of nine red giant branch stars in NGC 6681 and perform the first detailed abundance analysis of stars in this cluster. We confirm cluster membership for these stars based on consistent radial velocities of 214.5 ± 3.7 km s{sup −1} and find a mean [Fe/H] = −1.63 ± 0.07 dex and [ α /Fe] = 0.42 ± 0.11 dex. Additionally, we confirm the existence of a Na–O anti-correlation in NGC 6681 and identify two populations of stars with unique abundance trends. With the use of HST photometry from Sarajedini et al. and Piotto et al. we are able to identify these two populations as discrete sequences in the cluster CMD. Although we cannot confirm the nature of the polluter stars responsible for the abundance differences in these populations, these results do help put constraints on possible polluter candidates.

  18. POPULATION EFFECTS ON THE METALLICITY DISTRIBUTION FUNCTION DERIVED FROM THE RED GIANT BRANCH

    International Nuclear Information System (INIS)

    Ordoñez, Antonio J.; Sarajedini, Ata

    2015-01-01

    We have tested the reliability of the red giant branch (RGB) as a metallicity indicator accounting for observational errors as well as the complexity of star formation histories and chemical evolution histories observed in various stellar systems. We generate model color–magnitude diagrams (CMDs) produced with a variety of evolutionary histories and compare the resultant metallicity estimates from the colors and magnitudes of RGB stars to the true input metallicities. We include realistic models for photometric errors and completeness in our synthetic CMDs. As expected, for simple simple stellar populations dominated by old stars, the RGB provides a very accurate estimate of the modular metallicity value for a population. An error in the age of a system targeted for this type of study may produce metallicity errors of a few tenths of a dex. The size of this metallicity error depends linearly on the age error, and we find this dependence to be stronger with more precise photometry. If the population has experienced any significant star formation within the last ∼6 Gyr, the metallicity estimates, [M/H], derived from the RGB may be in error by up to ∼0.5 dex. Perhaps the most important consideration for this technique is an accurate, independent estimate of the average age for the target stellar system, especially if it is probable that a significant fraction of the population formed less than ∼6 Gyr ago

  19. STRUCTURAL GLITCHES NEAR THE CORES OF RED GIANTS REVEALED BY OSCILLATIONS IN G-MODE PERIOD SPACINGS FROM STELLAR MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, M. S.; Avelino, P. P. [Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Stello, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Christensen-Dalsgaard, J. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Townsend, R. H. D., E-mail: mcunha@astro.up.pt [Department of Astronomy, University of Wisconsin–Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States)

    2015-06-01

    With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations—glitches—in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacing and inertia of non-radial modes during several phases of red giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the échelle diagram. Interestingly, along the red giant branch glitch-induced variation occurs only at the luminosity bump, potentially providing a direct seismic indicator of stars in that particular evolution stage. Similarly, we find the variation at only certain post-helium-ignition evolution stages, namely, in the early phases of helium core burning and at the beginning of helium shell burning, signifying the asymptotic giant branch bump. Based on our results, we note that assuming stars to be glitch-free, while they are not, can result in an incorrect estimate of the period spacing. We further note that including diffusion and mixing beyond classical Schwarzschild could affect the characteristics of the glitches, potentially providing a way to study these physical processes.

  20. The Near-infrared Tip of the Red Giant Branch. II. An Absolute Calibration in the Large Magellanic Cloud

    Science.gov (United States)

    Hoyt, Taylor J.; Freedman, Wendy L.; Madore, Barry F.; Seibert, Mark; Beaton, Rachael L.; Hatt, Dylan; Jang, In Sung; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.

    2018-05-01

    We present a new empirical JHK absolute calibration of the tip of the red giant branch (TRGB) in the Large Magellanic Cloud (LMC). We use published data from the extensive Near-Infrared Synoptic Survey containing 3.5 million stars, 65,000 of which are red giants that fall within one magnitude of the TRGB. Adopting the TRGB slopes from a companion study of the isolated dwarf galaxy IC 1613, as well as an LMC distance modulus of μ 0 = 18.49 mag from (geometric) detached eclipsing binaries, we derive absolute JHK zero points for the near-infrared TRGB. For a comparison with measurements in the bar alone, we apply the calibrated JHK TRGB to a 500 deg2 area of the 2MASS survey. The TRGB reveals the 3D structure of the LMC with a tilt in the direction perpendicular to the major axis of the bar, which is in agreement with previous studies.

  1. METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY

    International Nuclear Information System (INIS)

    Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.; Gilmore, Gerard F.; Grebel, Eva K.; Bienaymé, Olivier; Siebert, Arnaud; Bland-Hawthorn, Joss; Freeman, Ken C.; Gibson, Brad K.; Munari, Ulisse; Navarro, Julio F.; Parker, Quentin A.; Watson, Fred G.; Reid, Warren; Seabroke, George M.; Siviero, Alessandro; Steinmetz, Matthias; Williams, Mary; Zwitter, Tomaz

    2011-01-01

    We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] 7 Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) 7 Be (which burns to 7 Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.

  2. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

  3. Electromagnetic decay of giant resonances

    International Nuclear Information System (INIS)

    Beene, J.R.; Bertrand, F.E.; Halbert, M.L.; Auble, R.L.; Hensley, D.C.; Horen, D.J.; Robinson, R.L.; Sayer, R.O.; Sjoreen, T.P.

    1985-01-01

    Coincidence experiments were done to investigate the photon and neutron emission from the giant resonance regions of 208 Pb and 90 Zr using the ORNL Spin Spectrometer, a 72-segment NaI detector system. We have determined the total gamma-decay probability, the ground-state gamma branching ratio, and the branching ratios to a number of low-lying states as a function of excitation energy in 208 Pb to approx.15 MeV. Similar data were also obtained on 90 Zr. The total yield of ground-state E2 gamma radiation in 208 Pb and the comparative absence of such radiation in 90 Zr can only be understood if decay of compound (damped) states is considered. Other observations in 208 Pb include the absence of a significant branch from the giant quadrupole resonance (GQR) to the 3 - state at 2.6 MeV, a strong branch to a 3 - state at 4.97 MeV from the same region, and transitions to various 1 - states between 5 to 7 MeV from the E* approx. 14 MeV region (EO resonance)

  4. The Near-infrared Tip of the Red Giant Branch. I. A Calibration in the Isolated Dwarf Galaxy IC 1613

    Science.gov (United States)

    Madore, Barry F.; Freedman, Wendy L.; Hatt, Dylan; Hoyt, Taylor J.; Monson, Andrew J.; Beaton, Rachael L.; Rich, Jeffrey A.; Jang, In Sung; Lee, Myung Gyoon; Scowcroft, Victoria; Seibert, Mark

    2018-05-01

    Based on observations from the FourStar near-infrared camera on the 6.5 m Baade-Magellan telescope at Las Campanas, Chile, we present calibrations of the JHK luminosities of stars defining the tip of the red giant branch (TRGB) in the halo of the Local Group dwarf galaxy IC 1613. We employ metallicity-independent (rectified) T-band magnitudes—constructed using J-, H-, and K-band magnitudes and both (J ‑ H) and (J ‑ K) colors to flatten the upward-sloping red giant branch tips as otherwise seen in their apparent color–magnitude diagrams. We describe and quantify the advantages of working at these particular near-infrared wavelengths, which are applicable to both the Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST). We also note that these same wavelengths can be accessed from the ground for an eventual tie-in to Gaia for absolute astrometry and parallaxes to calibrate the intrinsic luminosity of the TRGB. Adopting the color terms derived from the IC 1613 data, as well as the zero points from a companion study of the Large Magellanic Cloud, whose distance is anchored to the geometric distances of detached eclipsing binaries, we find a true distance modulus of 24.32 ± 0.02 (statistical) ±0.05 mag (systematic) for IC 1613, which compares favorably with the recently published multi-wavelength, multi-method consensus modulus of 24.30 ± 0.05 mag by Hatt et al.

  5. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  6. Infrared Spectroscopic Studies of the Properties of Dust in the Ejecta of Galactic Oxygen-Rich Asymptotic Giant Branch Stars

    Science.gov (United States)

    Sargent, Benjamin A.; Srinivasan, Sundar; Kastner, Joel; Meixner, Margaret; Riley, Allyssa

    2018-06-01

    We are conducting a series of infrared studies of large samples of mass-losing asymptotic giant branch (AGB) stars to explore the relationship between the composition of evolved star ejecta and host galaxy metallicity. Our previous studies focused on mass loss from evolved stars in the relatively low-metallicity Large and Small Magellanic Clouds. In our present study, we analyze dust in the mass-losing envelopes of AGB stars in the Galaxy, with special focus on the ejecta of oxygen-rich (O-rich) AGB stars. We have constructed detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra from, e.g., the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed modeling of dust features in IRS spectra informs our choice of dust properties to use in radiative transfer modeling of the broadband SEDs of Bulge AGB stars. We investigate the effects of dust grain composition, size, shape, etc. on the AGB stars' infrared spectra, studying both the silicate dust and the opacity source(s) commonly attributed to alumina (Al2O3). BAS acknowledges funding from NASA ADAP grant 80NSSC17K0057.

  7. ON THE SERENDIPITOUS DISCOVERY OF A Li-RICH GIANT IN THE GLOBULAR CLUSTER NGC 362

    Energy Technology Data Exchange (ETDEWEB)

    D’Orazi, Valentina; Gratton, Raffaele G.; Lucatello, Sara; Momany, Yazan [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova (Italy); Angelou, George C. [Max Planck Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Bragaglia, Angela; Carretta, Eugenio; Sollima, Antonio [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127, Bologna (Italy); Lattanzio, John C., E-mail: valentina.dorazi@oapd.inaf.it [Monash Centre for Astrophysics (MoCA), Monash University, Melbourne, VIC 3800 (Australia)

    2015-03-10

    We have serendipitously identified the first lithium-rich giant star located close to the red giant branch bump in a globular cluster. Through intermediate-resolution FLAMES spectra we derived a lithium abundance of A(Li) = 2.55 (assuming local thermodynamical equilibrium), which is extremely high considering the star’s evolutionary stage. Kinematic and photometric analysis confirm the object as a member of the globular cluster NGC 362. This is the fourth Li-rich giant discovered in a globular cluster, but is the only one known to exist at a luminosity close to the bump magnitude. The three previous detections are clearly more evolved, located close to, or beyond, the tip of their red giant branch. Our observations are able to discard the accretion of planets/brown dwarfs, as well as an enhanced mass-loss mechanism as a formation channel for this rare object. While the star sits just above the cluster bump luminosity, its temperature places it toward the blue side of the giant branch in the color–magnitude diagram. We require further dedicated observations to unambiguously identify the star as a red giant: we are currently unable to confirm whether Li production has occurred at the bump of the luminosity function or if the star is on the pre-zero-age horizontal branch. The latter scenario provides the opportunity for the star to have synthesized Li rapidly during the core helium flash or gradually during its red giant branch ascent via some extra mixing process.

  8. Asteroseismology of 16,000 Kepler Red Giants

    DEFF Research Database (Denmark)

    Yu, Jie; Huber, Daniel; Bedding, Timothy R.

    2018-01-01

    (sigma(M) = 7.8%), radius (sigma(R) = 2.9%), and thus surface gravity (sigma(log g) = 0.01 dex). Thanks to the large red giant sample, we confirm that red-giant-branch (RGB) and helium-core-burning (HeB) stars collectively differ in the distribution of oscillation amplitude, granulation power, and width...

  9. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    International Nuclear Information System (INIS)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-01-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  10. Star-to-star Iron Abundance Variations in Red Giant Branch Stars in the Galactic Globular Cluster NGC 3201

    Science.gov (United States)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-02-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  11. THE INCIDENCE OF NON-SPHERICAL CIRCUMSTELLAR ENVELOPES IN ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Politano, Michael; Taam, Ronald E.

    2011-01-01

    The relative occurrence of asymmetric structures in the circumstellar envelopes (CSEs) of asymptotic giant branch (AGB) stars in detached binary star systems is studied based on a population synthesis method. The effects of envelope shaping by the gravitational interaction of the companion on an outflowing stellar wind are incorporated using previously derived empirical fits to numerical simulations. It is shown that significant asymmetries in the CSE, characterized by a ratio of the density in the equatorial direction relative to the polar direction, can exceed 10 for AGB stars characterized by luminosities in the range of 1000-10, 000 L sun in systems with orbital separations of 3-30 AU and mass ratios of 0.25-1. The incidence of such systems relative to a present-day field population of AGB stars (single + binary) is estimated to be 1%-6%, depending upon input parameter choices. For more modest density contrasts exceeding a factor of two, the incidence increases to 4%-15%. With the advent of future high-resolution molecular line studies of CSEs with the Atacama Large Millimeter Array, it is anticipated that the number of AGB stars exhibiting detectable asymmetries will significantly increase.

  12. Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models

    Science.gov (United States)

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065

  13. Tree branching: Leonardo da Vinci's rule versus biomechanical models.

    Science.gov (United States)

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule.

  14. A BAYESIAN APPROACH TO LOCATING THE RED GIANT BRANCH TIP MAGNITUDE. II. DISTANCES TO THE SATELLITES OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Conn, A. R.; Parker, Q. A.; Zucker, D. B. [Department of Physics and Astronomy, Macquarie University, NSW 2109 (Australia); Ibata, R. A.; Martin, N. F. [Observatoire Astronomique, Universite de Strasbourg, CNRS, F-67000 Strasbourg (France); Lewis, G. F. [Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, Sydney, NSW 2006 (Australia); McConnachie, A. W. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, British Columbia V9E 2E7 (Canada); Irwin, M. J.; Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Tanvir, N. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Fardal, M. A. [University of Massachusetts, Department of Astronomy, LGRT 619-E, 710 N. Pleasant Street, Amherst, MA 01003-9305 (United States); Ferguson, A. M. N. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Valls-Gabaud, D. [Observatoire de Paris, LERMA, 61 Avenue de l' Observatoire, F-75014 Paris (France)

    2012-10-10

    In 'A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (Part I)', a new technique was introduced for obtaining distances using the tip of the red giant branch (TRGB) standard candle. Here we describe a useful complement to the technique with the potential to further reduce the uncertainty in our distance measurements by incorporating a matched-filter weighting scheme into the model likelihood calculations. In this scheme, stars are weighted according to their probability of being true object members. We then re-test our modified algorithm using random-realization artificial data to verify the validity of the generated posterior probability distributions (PPDs) and proceed to apply the algorithm to the satellite system of M31, culminating in a three-dimensional view of the system. Further to the distributions thus obtained, we apply a satellite-specific prior on the satellite distances to weight the resulting distance posterior distributions, based on the halo density profile. Thus in a single publication, using a single method, a comprehensive coverage of the distances to the companion galaxies of M31 is presented, encompassing the dwarf spheroidals Andromedas I-III, V, IX-XXVII, and XXX along with NGC 147, NGC 185, M33, and M31 itself. Of these, the distances to Andromedas XXIV-XXVII and Andromeda XXX have never before been derived using the TRGB. Object distances are determined from high-resolution tip magnitude posterior distributions generated using the Markov Chain Monte Carlo technique and associated sampling of these distributions to take into account uncertainties in foreground extinction and the absolute magnitude of the TRGB as well as photometric errors. The distance PPDs obtained for each object both with and without the aforementioned prior are made available to the reader in tabular form. The large object coverage takes advantage of the unprecedented size and photometric depth of the Pan-Andromeda Archaeological Survey

  15. Computational models of airway branching morphogenesis.

    Science.gov (United States)

    Varner, Victor D; Nelson, Celeste M

    2017-07-01

    The bronchial network of the mammalian lung consists of millions of dichotomous branches arranged in a highly complex, space-filling tree. Recent computational models of branching morphogenesis in the lung have helped uncover the biological mechanisms that construct this ramified architecture. In this review, we focus on three different theoretical approaches - geometric modeling, reaction-diffusion modeling, and continuum mechanical modeling - and discuss how, taken together, these models have identified the geometric principles necessary to build an efficient bronchial network, as well as the patterning mechanisms that specify airway geometry in the developing embryo. We emphasize models that are integrated with biological experiments and suggest how recent progress in computational modeling has advanced our understanding of airway branching morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Measuring Precise Radii of Giants Orbiting Giants to Distinguish Between Planet Evolution Models

    Science.gov (United States)

    Grunblatt, Samuel; Huber, Daniel; Lopez, Eric; Gaidos, Eric; Livingston, John

    2017-10-01

    Despite more than twenty years since the initial discovery of highly irradiated gas giant planets, the mechanism for planet inflation remains unknown. However, proposed planet inflation mechanisms can now be separated into two general classes: those which allow for post-main sequence planet inflation by direct irradiation from the host star, and those which only allow for slowed cooling of the planet over its lifetime. The recent discovery of two inflated warm Jupiters orbiting red giant stars with the NASA K2 Mission allows distinction between these two classes, but uncertainty in the planet radius blurs this distinction. Observing transits of these planets with the Spitzer Space Telescope would reduce stellar variability and thus planet radius uncertainties by approximately 50% relative to K2, allowing distinction between the two planet inflation model classes at a 3-sigma level. We propose to observe one transit of both known warm Jupiters orbiting red giant stars, K2-97b and EPIC228754001.01, to distinguish between planet model inflation classes and measure the planetary heating efficiency to 3-sigma precision. These systems are benchmarks for the upcoming NASA TESS Mission, which is predicted to discover an order of magnitude more red giant planet systems after launching next year.

  17. Intermittency in branching models

    International Nuclear Information System (INIS)

    Chiu, C.B.; Texas Univ., Austin; Hwa, R.C.; Oregon Univ., Eugene

    1990-01-01

    The intermittency properties of three branching models have been investigated. The factorial moments show power-law behavior as function of small rapidity width. The slopes and energy dependences reveal different characteristics of the models. The gluon model has the weakest intermittency. (orig.)

  18. LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Evan N.; Cohen, Judith G. [California Institute of Technology, 1200 E. California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Guhathakurta, Puragra [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Zhang, Andrew J. [The Harker School, 500 Saratoga Avenue, San Jose, CA 95129 (United States); Hong, Jerry [Palo Alto High School, 50 Embarcadero Road, Palo Alto, CA, 94301 (United States); Guo, Michelle [Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Guo, Rachel [Irvington High School, 41800 Blacow Road, Fremont, CA 94538 (United States); Cunha, Katia [Observatório Nacional, São Cristóvão Rio de Janeiro (Brazil)

    2016-03-10

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.

  19. Vere-Jones' self-similar branching model

    International Nuclear Information System (INIS)

    Saichev, A.; Sornette, D.

    2005-01-01

    Motivated by its potential application to earthquake statistics as well as for its intrinsic interest in the theory of branching processes, we study the exactly self-similar branching process introduced recently by Vere-Jones. This model extends the ETAS class of conditional self-excited branching point-processes of triggered seismicity by removing the problematic need for a minimum (as well as maximum) earthquake size. To make the theory convergent without the need for the usual ultraviolet and infrared cutoffs, the distribution of magnitudes m ' of daughters of first-generation of a mother of magnitude m has two branches m ' ' >m with exponent β+d, where β and d are two positive parameters. We investigate the condition and nature of the subcritical, critical, and supercritical regime in this and in an extended version interpolating smoothly between several models. We predict that the distribution of magnitudes of events triggered by a mother of magnitude m over all generations has also two branches m ' ' >m with exponent β+h, with h=d√(1-s), where s is the fraction of triggered events. This corresponds to a renormalization of the exponent d into h by the hierarchy of successive generations of triggered events. For a significant part of the parameter space, the distribution of magnitudes over a full catalog summed over an average steady flow of spontaneous sources (immigrants) reproduces the distribution of the spontaneous sources with a single branch and is blind to the exponents β,d of the distribution of triggered events. Since the distribution of earthquake magnitudes is usually obtained with catalogs including many sequences, we conclude that the two branches of the distribution of aftershocks are not directly observable and the model is compatible with real seismic catalogs. In summary, the exactly self-similar Vere-Jones model provides an attractive new approach to model triggered seismicity, which alleviates delicate questions on the role of

  20. Evolution, Nucleosynthesis, and Yields of Low-mass Asymptotic Giant Branch Stars at Different Metallicities. II. The FRUITY Database

    Science.gov (United States)

    Cristallo, S.; Piersanti, L.; Straniero, O.; Gallino, R.; Domínguez, I.; Abia, C.; Di Rico, G.; Quintini, M.; Bisterzo, S.

    2011-12-01

    By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables & Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 3.0 and metallicities 1 × 10-3 <= Z <= 2 × 10-2, is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.

  1. Asteroseismology of old open clusters with Kepler: direct estimate of the integrated red giant branch mass-loss in NGC 6791 and 6819

    DEFF Research Database (Denmark)

    Miglio, A.; Brogaard, Karsten Frank; Stello, D.

    2012-01-01

    Mass-loss of red giant branch (RGB) stars is still poorly determined, despite its crucial role in the chemical enrichment of galaxies. Thanks to the recent detection of solar-like oscillations in G–K giants in open clusters with Kepler, we can now directly determine stellar masses...... for a statistically significant sample of stars in the old open clusters NGC 6791 and 6819. The aim of this work is to constrain the integrated RGB mass-loss by comparing the average mass of stars in the red clump (RC) with that of stars in the low-luminosity portion of the RGB [i.e. stars with L≲L(RC)]. Stellar...... masses were determined by combining the available seismic parameters νmax and Δν with additional photometric constraints and with independent distance estimates. We measured the masses of 40 stars on the RGB and 19 in the RC of the old metal-rich cluster NGC 6791. We find that the difference between...

  2. Calibrating the Near-Infrared Tip of the Red Giant Branch with Multiwavelength Photometry

    Science.gov (United States)

    Durbin, Meredith

    2017-08-01

    The near-infrared (NIR) tip of the red giant branch (TRGB) shows outstanding promise as a distance indicator. In the JWST era, the NIR-TRGB will bridge the gap from local geometric parallax (with Gaia) out to the low-velocity Hubble flow in a single step, in all types of galaxies. However, there currently exist several impediments to JWST's using the TRGB to full advantage. Dalcanton et al. (2012) presented the most comprehensive dataset available for calibrating the TRGB absolute magnitude, with optical and NIR coverage of 23 nearby dwarf and spiral galaxies spanning a wide range of ages and metallicities. However, subtle offsets between this dataset, theoretical models, and globular clusters raise concerns about the calibration.We propose to perform a complete re-reduction and re-analysis of this dataset. We have developed a pipeline that leverages simultaneous fitting of optical and NIR data to produce NIR photometry of higher quality and completeness, with up to 1.5 mag greater depth than can be achieved with the NIR alone. With this added depth, improvements in photometric precision, and updated WFC3/IR PSFs and flux calibration, we will derive uniform, precise, and accurate NIR TRGB measurements, with which we will be able to resolve standing issues with the TRGB color-absolute magnitude relation and its behavior with changing star-formation histories. This work will lay the groundwork for extending the TRGB distance scale out to at least 37 Mpc with JWST. We will release the resulting 4-filter optical-NIR photometry as HLSPs for use by the community before the launch of JWST, to serve as a resource for proposing for stellar population observations in the NIR.

  3. HORIZONTAL BRANCH MORPHOLOGY OF GLOBULAR CLUSTERS: A MULTIVARIATE STATISTICAL ANALYSIS

    International Nuclear Information System (INIS)

    Jogesh Babu, G.; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar; Mondal, Saptarshi

    2009-01-01

    The proper interpretation of horizontal branch (HB) morphology is crucial to the understanding of the formation history of stellar populations. In the present study a multivariate analysis is used (principal component analysis) for the selection of appropriate HB morphology parameter, which, in our case, is the logarithm of effective temperature extent of the HB (log T effHB ). Then this parameter is expressed in terms of the most significant observed independent parameters of Galactic globular clusters (GGCs) separately for coherent groups, obtained in a previous work, through a stepwise multiple regression technique. It is found that, metallicity ([Fe/H]), central surface brightness (μ v ), and core radius (r c ) are the significant parameters to explain most of the variations in HB morphology (multiple R 2 ∼ 0.86) for GGC elonging to the bulge/disk while metallicity ([Fe/H]) and absolute magnitude (M v ) are responsible for GGC belonging to the inner halo (multiple R 2 ∼ 0.52). The robustness is tested by taking 1000 bootstrap samples. A cluster analysis is performed for the red giant branch (RGB) stars of the GGC belonging to Galactic inner halo (Cluster 2). A multi-episodic star formation is preferred for RGB stars of GGC belonging to this group. It supports the asymptotic giant branch (AGB) model in three episodes instead of two as suggested by Carretta et al. for halo GGC while AGB model is suggested to be revisited for bulge/disk GGC.

  4. Quantification of branching in model three-arm star polyethylene

    KAUST Repository

    Ramachandran, Ramnath; Beaucage, Gregory B.; Rai, Durgesh K.; Lohse, David J.; Sun, Thomas; Tsou, Andy; Norman, Alexander Iain; Hadjichristidis, Nikolaos

    2012-01-01

    The versatility of a novel scaling approach in quantifying the structure of model well-defined 3-arm star polyethylene molecules is presented. Many commercial polyethylenes have long side branches, and the nature and quantity of these branches varies widely among the various forms. For instance, low-density polyethylene (LDPE) is typically a highly branched structure with broad distributions in branch content, branch lengths and branch generation (in hyperbranched structures). This makes it difficult to accurately quantify the structure and the inherent structure-property relationships. To overcome this drawback, model well-defined hydrogenated polybutadiene (HPB) structures have been synthesized via anionic polymerization and hydrogenation to serve as model analogues to long-chain branched polyethylene. In this article, model 3-arm star polyethylene molecules are quantified using the scaling approach. Along with the long-chain branch content in polyethylene, the approach also provides unique measurements of long-chain branch length and hyperbranch content. Such detailed description facilitates better understanding of the effect of branching on the physical properties of polyethylene. © 2012 American Chemical Society.

  5. Quantification of branching in model three-arm star polyethylene

    KAUST Repository

    Ramachandran, Ramnath

    2012-01-24

    The versatility of a novel scaling approach in quantifying the structure of model well-defined 3-arm star polyethylene molecules is presented. Many commercial polyethylenes have long side branches, and the nature and quantity of these branches varies widely among the various forms. For instance, low-density polyethylene (LDPE) is typically a highly branched structure with broad distributions in branch content, branch lengths and branch generation (in hyperbranched structures). This makes it difficult to accurately quantify the structure and the inherent structure-property relationships. To overcome this drawback, model well-defined hydrogenated polybutadiene (HPB) structures have been synthesized via anionic polymerization and hydrogenation to serve as model analogues to long-chain branched polyethylene. In this article, model 3-arm star polyethylene molecules are quantified using the scaling approach. Along with the long-chain branch content in polyethylene, the approach also provides unique measurements of long-chain branch length and hyperbranch content. Such detailed description facilitates better understanding of the effect of branching on the physical properties of polyethylene. © 2012 American Chemical Society.

  6. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  7. HERSCHEL /HIFI OBSERVATIONS OF IRC+10216: WATER VAPOR IN THE INNER ENVELOPE OF A CARBON-RICH ASYMPTOTIC GIANT BRANCH STAR

    International Nuclear Information System (INIS)

    Neufeld, David A.; Gonzalez-Alfonso, Eduardo; Melnick, Gary J.; Szczerba, Ryszard; Schmidt, Miroslaw; Decin, Leen; De Koter, Alex; Schoeier, Fredrik; Cernicharo, Jose

    2011-01-01

    We report the results of observations of 10 rotational transitions of water vapor toward the carbon-rich asymptotic giant branch (AGB) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch mode of HIFI. The measured line ratios imply that water vapor is present in the inner outflow at small distances (≤few x 10 14 cm) from the star, confirming recent results reported by Decin et al. from observations with Herschel's PACS and SPIRE instruments. This finding definitively rules out the hypothesis that the observed water results from the vaporization of small icy objects in circular orbits. The origin of water within the dense C-rich envelope of IRC+10216 remains poorly understood. We derive upper limits on the H 17 2 O/H 16 2 O and H 18 2 O/H 16 2 O isotopic abundance ratios of ∼5 x 10 -3 (3σ), providing additional constraints on models for the origin of the water vapor in IRC+10216.

  8. Modeling and simulation of flow field in giant magnetostrictive pump

    Science.gov (United States)

    Zhao, Yapeng; Ren, Shiyong; Lu, Quanguo

    2017-09-01

    Recent years, there has been significant research in the design and analysis of giant magnetostrictive pump. In this paper, the flow field model of giant magnetostrictive pump was established and the relationship between pressure loss and working frequency of piston was studied by numerical simulation method. Then, the influence of different pump chamber height on pressure loss in giant magnetostrictive pump was studied by means of flow field simulation. Finally, the fluid pressure and velocity vector distribution in giant magnetostrictive pump chamber were simulated.

  9. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF LOW-MASS ASYMPTOTIC GIANT BRANCH STARS AT DIFFERENT METALLICITIES. II. THE FRUITY DATABASE

    International Nuclear Information System (INIS)

    Cristallo, S.; Domínguez, I.; Abia, C.; Piersanti, L.; Straniero, O.; Gallino, R.; Di Rico, G.; Quintini, M.; Bisterzo, S.

    2011-01-01

    By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables and Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 ≤M/M ☉ ≤ 3.0 and metallicities 1 × 10 –3 ≤ Z ≤ 2 × 10 –2 , is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.

  10. The evolution of hydrocarbons past the asymptotic giant branch: the case of MSX SMC 029

    Science.gov (United States)

    Pauly, Tyler; Sloan, Gregory C.; Kraemer, Kathleen E.; Bernard-Salas, Jeronimo; Lebouteiller, Vianney; Goes, Christopher; Barry, Donald

    2015-01-01

    We present an optimally extracted high-resolution spectrum of MSX SMC 029 obtained by the Infrared Spectrograph on the Spitzer Space Telescope. MSX SMC 029 is a carbon-rich object in the Small Magellanic Cloud that has evolved past the asymptotic giant branch (AGB). The spectrum reveals a cool carbon-rich dust continuum with emission from polycyclic aromatic hydrocarbons (PAHs) and absorption from simpler hydrocarbons, both aliphatic and aromatic, including acetylene and benzene. The spectrum shows many similarities to the carbon-rich post-AGB objects SMP LMC 011 in the Large Magellanic Cloud and AFGL 618 in the Galaxy. Both of these objects also show infrared absorption features from simple hydrocarbons. All three spectra lack strong atomic emission lines in the infrared, indicating that we are observing the evolution of carbon-rich dust and free hydrocarbons in objects between the AGB and planetary nebulae. These three objects give us a unique view of the elusive phase when hydrocarbons exist both as relatively simple molecules and the much more complex and ubiquitous PAHs. We may be witnessing the assembly of amorphous carbon into PAHs.

  11. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints - The open cluster NGC 6633 and field stars-

    Science.gov (United States)

    Lagarde, Nadège; Miglio, Andrea; Eggenberger, Patrick; Morel, Thierry; Montalbàn, Josefina; Mosser, Benoit

    2015-08-01

    The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations.We use the first detailed spectroscopic study of CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars.In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch.We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red-giants targets. Tighter constraints on the physics of the models would be possible if there were detailed knowledge of the core rotation rate and the asymptotic period spacing.

  12. FLUORINE ABUNDANCES OF GALACTIC LOW-METALLICITY GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. N.; Zhao, G. [Key Lab of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang, Beijing 100012 (China); Ludwig, H.-G.; Caffau, E.; Christlieb, N., E-mail: lhn@nao.cas.cn, E-mail: gzhao@nao.cas.cn, E-mail: hludwig@lsw.uni-heidelberg.de, E-mail: ecaffau@lsw.uni-heidelberg.de, E-mail: N.Christlieb@lsw.uni-heidelberg.de [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany)

    2013-03-01

    With abundances and 2{sigma} upper limits of fluorine (F) in seven metal-poor field giants, nucleosynthesis of stellar F at low metallicity is discussed. The measurements are derived from the HF(1-0) R9 line at 23358 A using near-infrared K-band high-resolution spectra obtained with CRIRES at the Very Large Telescope. The sample reaches lower metallicities than previous studies on F of field giants, ranging from [Fe/H] = -1.56 down to -2.13. Effects of three-dimensional model atmospheres on the derived F and O abundances are quantitatively estimated and shown to be insignificant for the program stars. The observed F yield in the form of [F/O] is compared with two sets of Galactic chemical evolution models, which quantitatively demonstrate the contribution of Type II supernova (SN II) {nu}-process and asymptotic giant branch/Wolf-Rayet stars. It is found that at this low-metallicity region, models cannot well predict the observed distribution of [F/O], while the observations are better fit by models considering an SN II {nu}-process with a neutrino energy of E {sub {nu}} = 3 Multiplication-Sign 10{sup 53} erg. Our sample contains HD 110281, a retrograde orbiting low-{alpha} halo star, showing a similar F evolution as globular clusters. This supports the theory that such halo stars are possibly accreted from dwarf galaxy progenitors of globular clusters in the halo.

  13. Hybrid model for the decay of nuclear giant resonances

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1986-12-01

    The decay properties of nuclear giant multipole resonances are discussed within a hybrid model that incorporates, in a unitary consistent way, both the coherent and statistical features. It is suggested that the 'direct' decay of the GR is described with continuum first RPA and the statistical decay calculated with a modified Hauser-Feshbach model. Application is made to the decay of the giant monopole resonance in 208 Pb. Suggestions are made concerning the calculation of the mixing parameter using the statistical properties of the shell model eigenstates at high excitation energies. (Author) [pt

  14. Construction and analysis of a giant gartersnake (Thamnophis gigas) population projection model

    Science.gov (United States)

    Rose, Jonathan P.; Ersan, Julia S. M.; Wylie, Glenn D.; Casazza, Michael L.; Halstead, Brian J.

    2018-03-19

    The giant gartersnake (Thamnophis gigas) is a state and federally threatened species precinctive to California. The range of the giant gartersnake has contracted in the last century because its wetland habitat has been drained for agriculture and development. As a result of this habitat alteration, giant gartersnakes now largely persist in and near rice agriculture in the Sacramento Valley, because the system of canals that conveys water for rice growing approximates historical wetland habitat. Many aspects of the demography of giant gartersnakes are unknown, including how individuals grow throughout their life, how size influences reproduction, and how survival varies over time and among populations. We studied giant gartersnakes throughout the Sacramento Valley of California from 1995 to 2016 using capture-mark-recapture to study the growth, reproduction, and survival of this threatened species. We then use these data to construct an Integral Projection Model, and analyze this demographic model to understand which vital rates contribute most to the growth rate of giant gartersnake populations. We find that giant gartersnakes exhibit indeterminate growth; growth slows as individuals’ age. Fecundity, probability of reproduction, and survival all increase with size, although survival may decline for the largest female giant gartersnakes. The population growth rate of giant gartersnakes is most influenced by the survival and growth of large adult females, and the size at which 1 year old recruits enter the population. Our results indicate that management actions benefitting these influential demographic parameters will have the greatest positive effect on giant gartersnake population growth rates, and therefore population persistence. This study informs the conservation and management of giant gartersnakes and their habitat, and illustrates the effectiveness of hierarchical Bayesian models for the study of rare and elusive species.

  15. Radial velocity curves of ellipsoidal red giant binaries in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Nie, J. D.; Wood, P. R.

    2014-01-01

    Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.

  16. THE S4G PERSPECTIVE ON CIRCUMSTELLAR DUST EXTINCTION OF ASYMPTOTIC GIANT BRANCH STARS IN M100

    International Nuclear Information System (INIS)

    Meidt, Sharon E.; Schinnerer, Eva; Muñoz-Mateos, Juan-Carlos; Kim, Taehyun; Holwerda, Benne; Ho, Luis C.; Madore, Barry F.; Sheth, Kartik; Menéndez-Delmestre, Karín; Seibert, Mark; Knapen, Johan H.; Bosma, Albert; Athanassoula, E.; Hinz, Joannah L.; Regan, Michael; De Paz, Armando Gil; Mizusawa, Trisha; Gadotti, Dimitri A.; Laurikainen, Eija; Salo, Heikki

    2012-01-01

    We examine the effect of circumstellar dust extinction on the near-IR (NIR) contribution of asymptotic giant branch (AGB) stars in intermediate-age clusters throughout the disk of M100. For our sample of 17 AGB-dominated clusters we extract optical-to-mid-IR spectral energy distributions (SEDs) and find that NIR brightness is coupled to the mid-IR dust emission in such a way that a significant reduction of AGB light, of up to 1 mag in the K band, follows from extinction by the dust shell formed during this stage. Since the dust optical depth varies with AGB chemistry (C-rich or O-rich), our results suggest that the contribution of AGB stars to the flux from their host clusters will be closely linked to the metallicity and the progenitor mass of the AGB star, to which dust chemistry and mass-loss rate are sensitive. Our sample of clusters—each the analogue of a ∼1 Gyr old post-starburst galaxy—has implications within the context of mass and age estimation via SED modeling at high-z: we find that the average ∼0.5 mag extinction estimated here may be sufficient to reduce the AGB contribution in the (rest-frame) K band from ∼70%, as predicted in the latest generation of synthesis models, to ∼35%. Our technique for selecting AGB-dominated clusters in nearby galaxies promises to be effective for discriminating the uncertainties associated with AGB stars in intermediate-age populations that plague age and mass estimation in high-z galaxies.

  17. Axon Termination, Pruning, and Synaptogenesis in the Giant Fiber System of Drosophila melanogaster Is Promoted by Highwire.

    Science.gov (United States)

    Borgen, Melissa; Rowland, Kimberly; Boerner, Jana; Lloyd, Brandon; Khan, Aruna; Murphey, Rodney

    2017-03-01

    The ubiquitin ligase Highwire has a conserved role in synapse formation. Here, we show that Highwire coordinates several facets of central synapse formation in the Drosophila melanogaster giant fiber system, including axon termination, axon pruning, and synaptic function. Despite the similarities to the fly neuromuscular junction, the role of Highwire and the underlying signaling pathways are distinct in the fly's giant fiber system. During development, branching of the giant fiber presynaptic terminal occurs and, normally, the transient branches are pruned away. However, in highwire mutants these ectopic branches persist, indicating that Highwire promotes axon pruning. highwire mutants also exhibit defects in synaptic function. Highwire promotes axon pruning and synaptic function cell-autonomously by attenuating a mitogen-activated protein kinase pathway including Wallenda, c-Jun N-terminal kinase/Basket, and the transcription factor Jun. We also show a novel role for Highwire in non-cell autonomous promotion of synaptic function from the midline glia. Highwire also regulates axon termination in the giant fibers, as highwire mutant axons exhibit severe overgrowth beyond the pruning defect. This excessive axon growth is increased by manipulating Fos expression in the cells surrounding the giant fiber terminal, suggesting that Fos regulates a trans -synaptic signal that promotes giant fiber axon growth. Copyright © 2017 by the Genetics Society of America.

  18. The JHKs Magnitudes of the Red Giant Branch Tip and the Distance Moduli of Nearby Dwarf Galaxy NGC 205

    Directory of Open Access Journals (Sweden)

    M. Y. Jung

    2009-12-01

    Full Text Available We have used the near-infrared JHKS photometric data of resolved stars in a nearby dwarf elliptical galaxy NGC 205 to determine the magnitudes of the red giant branch tip (TRGB. By applying Savitzky-Golay filter to the observed luminosity functions (LFs in each band, we derived the second derivatives of the LFs so as to determine the magnitudes of the TRGB. Absolute magnitudes of the TRGB in JHKs bands were measured from the Yonsei-Yale isochrones. By comparing the determined apparent magnitudes and the theoretical absolute magnitudes of the TRGB, we estimated the distance moduli of NGC 205 to be (m-M = 24.10±0:08, 24.08±0.12 and 24.14±0.14 in J, H, and Ks bands, respectively.

  19. Astrophysical reaction rate for the neutron-generator reaction 13C(alpha,n)16O in asymptotic giant branch stars.

    Science.gov (United States)

    Johnson, E D; Rogachev, G V; Mukhamedzhanov, A M; Baby, L T; Brown, S; Cluff, W T; Crisp, A M; Diffenderfer, E; Goldberg, V Z; Green, B W; Hinners, T; Hoffman, C R; Kemper, K W; Momotyuk, O; Peplowski, P; Pipidis, A; Reynolds, R; Roeder, B T

    2006-11-10

    The reaction 13C(alpha,n) is considered to be the main source of neutrons for the s process in asymptotic giant branch stars. At low energies, the cross section is dominated by the 1/2+ 6.356 MeV subthreshold resonance in (17)O whose contribution at stellar temperatures is uncertain by a factor of 10. In this work, we performed the most precise determination of the low-energy astrophysical S factor using the indirect asymptotic normalization (ANC) technique. The alpha-particle ANC for the subthreshold state has been measured using the sub-Coulomb alpha-transfer reaction ((6)Li,d). Using the determined ANC, we calculated S(0), which turns out to be an order of magnitude smaller than in the nuclear astrophysics compilation of reaction rates.

  20. FROM THE COLOR-MAGNITUDE DIAGRAM OF {omega} CENTAURI AND (SUPER-)ASYMPTOTIC GIANT BRANCH STELLAR MODELS TO A GALACTIC PLANE PASSAGE GAS PURGING CHEMICAL EVOLUTION SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Herwig, Falk; VandenBerg, Don A.; Navarro, Julio F. [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada); Ferguson, Jason [Department of Physics, Wichita State University Wichita, KS 67260 (United States); Paxton, Bill, E-mail: fherwig@uvic.ca, E-mail: vandenbe@uvic.ca, E-mail: jason.ferguson@wichita.edu, E-mail: paxton@kitp.ucsb.edu [KITP/UC Santa Barbara, Santa Barbara, CA 93106 (United States)

    2012-10-01

    We have investigated the color-magnitude diagram of {omega} Centauri and find that the blue main sequence (bMS) can be reproduced only by models that have a helium abundance in the range Y = 0.35-0.40. To explain the faint subgiant branch of the reddest stars ('MS-a/RG-a' sequence), isochrones for the observed metallicity ([Fe/H] Almost-Equal-To -0.7) appear to require both a high age ({approx}13 Gyr) and enhanced CNO abundances ([CNO/Fe] Almost-Equal-To 0.9). Y Almost-Equal-To 0.35 must also be assumed in order to counteract the effects of high CNO on turnoff colors and thereby to obtain a good fit to the relatively blue turnoff of this stellar population. This suggests a short chemical evolution period of time (<1 Gyr) for {omega} Cen. Our intermediate-mass (super-)asymptotic giant branch (AGB) models are able to reproduce the high helium abundances, along with [N/Fe] {approx}2 and substantial O depletions if uncertainties in the treatment of convection are fully taken into account. These abundance features distinguish the bMS stars from the dominant [Fe/H] Almost-Equal-To -1.7 population. The most massive super-AGB stellar models (M{sub ZAMS} {>=} 6.8 M{sub Sun }, M{sub He,core} {>=} 1.245 M{sub Sun }) predict too large N enhancements, which limit their role in contributing to the extreme populations. In order to address the observed central concentration of stars with He-rich abundance, we show here quantitatively that highly He- and N-enriched AGB ejecta have particularly efficient cooling properties. Based on these results and on the reconstruction of the orbit of {omega} Cen with respect to the Milky Way, we propose the Galactic plane passage gas purging scenario for the chemical evolution of this cluster. The bMS population formed shortly after the purging of most of the cluster gas as a result of the passage of {omega} Cen through the Galactic disk (which occurs today every {approx}40 Myr for {omega} Cen) when the initial mass function of the

  1. Turing mechanism underlying a branching model for lung morphogenesis.

    Science.gov (United States)

    Xu, Hui; Sun, Mingzhu; Zhao, Xin

    2017-01-01

    The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.

  2. Chemical Abundances of Red Giant Branch Stars in the Globular Clusters NGC 6333 and NGC 6366

    Science.gov (United States)

    Johnson, Christian I.; Rich, R. M.; Pilachowski, C. A.; Kunder, A. M.

    2013-01-01

    We present chemical abundances and radial velocities for >20 red giant branch (RGB) stars in the Galactic globular clusters NGC 6333 ([Fe/H]≈-1.8) and NGC 6366 ([Fe/H]≈-0.6). The results are based on moderate resolution (R=18,000), high signal-to-noise ratio (>100) spectra obtained with the Hydra multifiber positioner and bench spectrograph on the WIYN 3.5m telescope at Kitt Peak National Observatory. Both objects are likely associated with the Galactic bulge globular cluster system, and we therefore compare the cluster abundance patterns with those of nearby bulge field stars. Additionally, we investigate differences in the O-Na anticorrelation and neutron-capture element dispersion between the two clusters, and compare their abundance patterns with those of similar metallicity halo globular clusters. This material is based upon work supported by the National Science Foundation under award No. AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grant AST-0709479 and AST-121120995.

  3. Infrared tip of the red giant branch and distances to the MAFFEI/IC 342 group

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Po-Feng; Tully, R. Brent; Jacobs, Bradley A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, HI 96822 (United States); Rizzi, Luca [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Karachentsev, Igor D. [Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnij Arkhyz, Karachai-Cherkessian Republic 369167 (Russian Federation)

    2014-07-01

    In this paper, we extend the use of the tip of the red giant branch (TRGB) method to near-infrared wavelengths from the previously used I-band, using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3). Upon calibration of a color dependency of the TRGB magnitude, the IR TRGB yields a random uncertainty of ∼5% in relative distance. The IR TRGB methodology has an advantage over the previously used Advance Camera for Surveys F606W and F814W filter set for galaxies that suffer from severe extinction. Using the IR TRGB methodology, we obtain distances toward three principal galaxies in the Maffei/IC 342 complex, which are located at low Galactic latitudes. New distance estimates using the TRGB method are 3.45{sub −0.13}{sup +0.13} Mpc for IC 342, 3.37{sub −0.23}{sup +0.32} Mpc for Maffei 1, and 3.52{sub −0.30}{sup +0.32} Mpc for Maffei 2. The uncertainties are dominated by uncertain extinction, especially for Maffei 1 and Maffei 2. Our IR calibration demonstrates the viability of the TRGB methodology for observations with the James Webb Space Telescope.

  4. Simple model of inhibition of chain-branching combustion processes

    Science.gov (United States)

    Babushok, Valeri I.; Gubernov, Vladimir V.; Minaev, Sergei S.; Miroshnichenko, Taisia P.

    2017-11-01

    A simple kinetic model has been suggested to describe the inhibition and extinction of flame propagation in reaction systems with chain-branching reactions typical for hydrocarbon systems. The model is based on the generalised model of the combustion process with chain-branching reaction combined with the one-stage reaction describing the thermal mode of flame propagation with the addition of inhibition reaction steps. Inhibitor addition suppresses the radical overshoot in flame and leads to the change of reaction mode from the chain-branching reaction to a thermal mode of flame propagation. With the increase of inhibitor the transition of chain-branching mode of reaction to the reaction with straight-chains (non-branching chain reaction) is observed. The inhibition part of the model includes a block of three reactions to describe the influence of the inhibitor. The heat losses are incorporated into the model via Newton cooling. The flame extinction is the result of the decreased heat release of inhibited reaction processes and the suppression of radical overshoot with the further decrease of the reaction rate due to the temperature decrease and mixture dilution. A comparison of the results of modelling laminar premixed methane/air flames inhibited by potassium bicarbonate (gas phase model, detailed kinetic model) with the results obtained using the suggested simple model is presented. The calculations with the detailed kinetic model demonstrate the following modes of combustion process: (1) flame propagation with chain-branching reaction (with radical overshoot, inhibitor addition decreases the radical overshoot down to the equilibrium level); (2) saturation of chemical influence of inhibitor, and (3) transition to thermal mode of flame propagation (non-branching chain mode of reaction). The suggested simple kinetic model qualitatively reproduces the modes of flame propagation with the addition of the inhibitor observed using detailed kinetic models.

  5. Nitrogen depletion in field red giants

    DEFF Research Database (Denmark)

    Masseron, T.; Lagarde, N.; Miglio, A.

    2017-01-01

    , the behaviour of nitrogen data along the evolution confirms the existence of non-canonical extramixing on the red giant branch (RGB) for all low-mass stars in the field. But more surprisingly, the data indicate that nitrogen has been depleted between the RGB tip and the red clump. This may suggest that some...

  6. Metallicities for old stellar systems from Ca II triplet strengths in member giants

    International Nuclear Information System (INIS)

    Armandroff, T.E.; Da costa, G.S.

    1991-01-01

    The spectra of giants in six well-studied Galactic globulars spanning a wide range of abundance are used to investigate the utility of the Ca II triplet as an abundance indicator. The calibration resulting from these clusters is used to derive metal abundances from the spectra of giants in Eridanus, Pal 12, and the Carina dwarf spheroidal galaxy. The results obtained are compared with earlier determinations based on giant branch photometry. 37 refs

  7. Giant grains

    International Nuclear Information System (INIS)

    Leitch-Devlin, M.A.; Millar, T.J.; Williams, D.A.

    1976-01-01

    Infrared observations of the Orion nebula have been interpreted by Rowan-Robinson (1975) to imply the existence of 'giant' grains, radius approximately 10 -2 cm, throughout a volume about a parsec in diameter. Although Rowan-Robinson's model of the nebula has been criticized and the presence of such grains in Orion is disputed, the proposition is accepted, that they exist, and in this paper situations in which giant grains could arise are examined. It is found that, while a giant-grain component to the interstellar grain density may exist, it is difficult to understand how giant grains arise to the extent apparently required by the Orion nebula model. (Auth.)

  8. GLOBULAR AND OPEN CLUSTERS OBSERVED BY SDSS/SEGUE: THE GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Heather L.; Ma, Zhibo; Connor, Thomas; Schechtman-Rook, Andrew; Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Clem, James L. [Department of Physics, Grove City College, 100 Campus Dr., Grove City, PA 16127 (United States); An, Deokkeun [Department of Science Education, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Casagrande, Luca [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611 (Australia); Rockosi, Constance [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064 (United States); Yanny, Brian [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia IL 60510 (United States); Beers, Timothy C. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46656 (United States); Johnson, Jennifer A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Schneider, Donald P., E-mail: hlm5@case.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-01-15

    We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the Sloan Digital Sky Survey (SDSS)/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, we also present a new variable reddening map and a new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from T{sub eff} to g–r for giants of near solar abundance, using IRFM T{sub eff} measures of stars with good ugriz  and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.

  9. THE S{sup 4}G PERSPECTIVE ON CIRCUMSTELLAR DUST EXTINCTION OF ASYMPTOTIC GIANT BRANCH STARS IN M100

    Energy Technology Data Exchange (ETDEWEB)

    Meidt, Sharon E.; Schinnerer, Eva [Max-Planck-Institut fuer Astronomie/Koenigstuhl 17, D-69117 Heidelberg (Germany); Munoz-Mateos, Juan-Carlos; Kim, Taehyun [National Radio Astronomy Observatory, Charlottesville, VA (United States); Holwerda, Benne [European Space Agency, ESTEC, Keplerlaan 1, 2200 AG, Noordwijk (Netherlands); Ho, Luis C.; Madore, Barry F.; Sheth, Kartik; Menendez-Delmestre, Karin; Seibert, Mark [The Observatories of the Carnegie Institution for Science, Pasadena, CA (United States); Knapen, Johan H. [Instituto de Astrofisica de Canarias, Tenerife (Spain); Bosma, Albert; Athanassoula, E. [Laboratoire d' Astrophysique de Marseille (LAM), Marseille (France); Hinz, Joannah L. [Department of Astronomy, University of Arizona, Tucson, AZ (United States); Regan, Michael [Space Telescope Science Institute, Baltimore, MD (United States); De Paz, Armando Gil [Departamento de Astrofisica, Universidad Complutense Madrid, Madrid (Spain); Mizusawa, Trisha [Spitzer Science Center, Pasadena, CA (United States); Gadotti, Dimitri A. [European Southern Observatory, Santiago (Chile); Laurikainen, Eija; Salo, Heikki [Astronomy Division, Department of Physical Sciences, University of Oulu, Oulu (Finland); and others

    2012-04-01

    We examine the effect of circumstellar dust extinction on the near-IR (NIR) contribution of asymptotic giant branch (AGB) stars in intermediate-age clusters throughout the disk of M100. For our sample of 17 AGB-dominated clusters we extract optical-to-mid-IR spectral energy distributions (SEDs) and find that NIR brightness is coupled to the mid-IR dust emission in such a way that a significant reduction of AGB light, of up to 1 mag in the K band, follows from extinction by the dust shell formed during this stage. Since the dust optical depth varies with AGB chemistry (C-rich or O-rich), our results suggest that the contribution of AGB stars to the flux from their host clusters will be closely linked to the metallicity and the progenitor mass of the AGB star, to which dust chemistry and mass-loss rate are sensitive. Our sample of clusters-each the analogue of a {approx}1 Gyr old post-starburst galaxy-has implications within the context of mass and age estimation via SED modeling at high-z: we find that the average {approx}0.5 mag extinction estimated here may be sufficient to reduce the AGB contribution in the (rest-frame) K band from {approx}70%, as predicted in the latest generation of synthesis models, to {approx}35%. Our technique for selecting AGB-dominated clusters in nearby galaxies promises to be effective for discriminating the uncertainties associated with AGB stars in intermediate-age populations that plague age and mass estimation in high-z galaxies.

  10. Relativistic Coulomb excitation of giant resonances in the hydrodynamic model

    International Nuclear Information System (INIS)

    Vasconcellos Gomes, Ana Cristina de.

    1990-05-01

    We investigate the Coulomb excitation of giant dipole resonances in relativistic heavy ion collisions using a macroscopic hydrodynamical model for the harmonic vibrations of the nuclear fluid. The motion is treated as a combination of the Goldhaber-Teller displacement mode and the Steinwedel-Jensen acoustic mode, and the restoring forces are calculated using the droplet model. This model is used as input to study the characteristics of multiple excitation of giant dipole resonances in nuclei. Possible signatures for the existence of such states are also discussed quantitatively. (author). 52 refs., 14 figs., 3 tabs

  11. Giant hepatic regenerative nodules in Alagille syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Jordan B. [Lewis Katz School of Medicine at Temple University, Department of Radiology, Temple University Hospital, Philadelphia, PA (United States); Bellah, Richard D.; Anupindi, Sudha A. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); Maya, Carolina [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Pawel, Bruce R. [University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); The Children' s Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Philadelphia, PA (United States)

    2017-02-15

    Children with Alagille syndrome undergo surveillance radiologic examinations as they are at risk for developing cirrhosis and hepatocellular carcinoma. There is limited literature on the imaging of liver masses in Alagille syndrome. We report the ultrasound (US) and magnetic resonance imaging (MRI) appearances of incidental benign giant hepatic regenerative nodules in this population. To describe the imaging findings of giant regenerative nodules in patients with Alagille syndrome. A retrospective search of the hospital database was performed to find all cases of hepatic masses in patients with Alagille syndrome during a 10-year period. Imaging, clinical charts, laboratory data and available pathology were reviewed and analyzed and summarized for each patient. Twenty of 45 patients with confirmed Alagille syndrome had imaging studies. Of those, we identified six with giant focal liver masses. All six patients had large central hepatic masses that were remarkably similar on US and MRI, in addition to having features of cirrhosis. In each case, the mass was located in hepatic segment VIII and imaging showed the mass splaying the main portal venous branches at the hepatic hilum, as well as smaller portal and hepatic venous branches coursing through them. On MRI, signal intensity of the mass was isointense to liver on T1-weighted sequences in four of six patients, but hyperintense on T1 in two of six patients. In all six cases, the mass was hypointense on T2- weighted sequences. The mass post-contrast was isointense to adjacent liver in all phases in five the cases. Five out of six patients had pathological correlation demonstrating preserved ductal architecture confirming the final diagnosis of a regenerative nodule. Giant hepatic regenerative nodules with characteristic US and MR features can occur in patients with Alagille syndrome with underlying cirrhosis. Recognizing these lesions as benign giant hepatic regenerative nodules should, thereby, mitigate any need for

  12. Giant hepatic regenerative nodules in Alagille syndrome

    International Nuclear Information System (INIS)

    Rapp, Jordan B.; Bellah, Richard D.; Anupindi, Sudha A.; Maya, Carolina; Pawel, Bruce R.

    2017-01-01

    Children with Alagille syndrome undergo surveillance radiologic examinations as they are at risk for developing cirrhosis and hepatocellular carcinoma. There is limited literature on the imaging of liver masses in Alagille syndrome. We report the ultrasound (US) and magnetic resonance imaging (MRI) appearances of incidental benign giant hepatic regenerative nodules in this population. To describe the imaging findings of giant regenerative nodules in patients with Alagille syndrome. A retrospective search of the hospital database was performed to find all cases of hepatic masses in patients with Alagille syndrome during a 10-year period. Imaging, clinical charts, laboratory data and available pathology were reviewed and analyzed and summarized for each patient. Twenty of 45 patients with confirmed Alagille syndrome had imaging studies. Of those, we identified six with giant focal liver masses. All six patients had large central hepatic masses that were remarkably similar on US and MRI, in addition to having features of cirrhosis. In each case, the mass was located in hepatic segment VIII and imaging showed the mass splaying the main portal venous branches at the hepatic hilum, as well as smaller portal and hepatic venous branches coursing through them. On MRI, signal intensity of the mass was isointense to liver on T1-weighted sequences in four of six patients, but hyperintense on T1 in two of six patients. In all six cases, the mass was hypointense on T2- weighted sequences. The mass post-contrast was isointense to adjacent liver in all phases in five the cases. Five out of six patients had pathological correlation demonstrating preserved ductal architecture confirming the final diagnosis of a regenerative nodule. Giant hepatic regenerative nodules with characteristic US and MR features can occur in patients with Alagille syndrome with underlying cirrhosis. Recognizing these lesions as benign giant hepatic regenerative nodules should, thereby, mitigate any need for

  13. Modeling of branching density and branching distribution in low-density polyethylene polymerization

    NARCIS (Netherlands)

    Kim, D.M.; Iedema, P.D.

    2008-01-01

    Low-density polyethylene (ldPE) is a general purpose polymer with various applications. By this reason, many publications can be found on the ldPE polymerization modeling. However, scission reaction and branching distribution are only recently considered in the modeling studies due to difficulties

  14. The Segue K giant survey. II. A catalog of distance determinations for the Segue K giants in the galactic halo

    International Nuclear Information System (INIS)

    Xue, Xiang-Xiang; Rix, Hans-Walter; Ma, Zhibo; Morrison, Heather L.; Harding, Paul; Beers, Timothy C.; Ivans, Inese I.; Jacobson, Heather R.; Johnson, Jennifer; Lee, Young Sun; Lucatello, Sara; Rockosi, Constance M.; Sobeck, Jennifer S.; Yanny, Brian; Zhao, Gang; Allende Prieto, Carlos

    2014-01-01

    We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g – r) 0 color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes, and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25 mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125 kpc from the Galactic center, with 283 stars beyond 50 kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.

  15. Electromagnetic decay of giant resonances

    International Nuclear Information System (INIS)

    Beene, J.R.; Bertrand, F.E.; Halbert, M.L.; Auble, R.L.; Hensley, D.C.; Horen, D.J.; Robinson, R.L.; Sayer, R.O.; Sjoreen, T.P.

    1985-01-01

    Coincidence experiments are carried out to investigate the photon and neutron emission from the giant resonance regions of 208 Pb and 90 Zr using the ORNL Spin Spectrometer, a 72-segment NaI detector system. The authors determined the total gamma-decay probability, the ground-state gamma branching ratio, and the branching ratios to a number of low-lying states as a function of excitation energy in 208 Pb to ∼15 MeV. Similar data were also obtained on 90 Zr. The total yield of ground-state E2 gamma radiation in 208 Pb and the comparative absence of such radiation in 90 Zr can only be understood if decay of compound (damped) states is considered. (Auth.)

  16. From red giants to planetary nebulae: Asymmetries, dust, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1990-01-01

    In order to investigate the development of aspherical planetary nebulae, polarimetry was obtained for a group of planetary nebulae and for objects that will evolve into planetary nebulae, i.e., red giants, late asymptotic giant branch (AGB) objects, proto-planetary nebulae, and young planetary nebulae. To study the dust around the objects in our sample, we also used data from the Infrared Astronomy Satellite (IRAS) mission. The youngest objects in our survey, red giants, had the hottest dust temperatures while planetary nebulae had the coolest. Most of the objects were intrinsically polarized, including the red giants. This indicated that the circumstellar dust shells of these objects were aspherical. Both carbon- and oxygen-rich objects could be intrinsically polarized. The intrinsic polarizations of a sample of our objects were modeled using an ellipsoidal circumstellar dust shell. The findings of this study suggest that the asphericities that lead to an aspherical planetary nebula originate when a red giant begins to undergo mass loss. The polarization and thus the asphericity as the star evolves, with both reaching a maximum during the proto-planetary nebula stage. The circumstellar dust shell will dissipate after the proto-planetary nebulae stage since no new material is being added. The polarization of planetary nebulae will thus be low. In the most evolved planetary nebulae, the dust has either been destroyed or dissipated into the interstellar medium. In these objects no polarization was observed

  17. Fast Winds and Mass Loss from Metal-Poor Field Giants

    Science.gov (United States)

    Dupree, A. K.; Smith, Graeme H.; Strader, Jay

    2009-11-01

    Echelle spectra of the infrared He I λ10830 line were obtained with NIRSPEC on the Keck 2 telescope for 41 metal-deficient field giant stars including those on the red giant branch (RGB), asymptotic giant branch (AGB), and red horizontal branch (RHB). The presence of this He I line is ubiquitous in stars with T effgsim 4500 K and MV fainter than -1.5, and reveals the dynamics of the atmosphere. The line strength increases with effective temperature for T effgsim 5300 K in RHB stars. In AGB and RGB stars, the line strength increases with luminosity. Fast outflows (gsim 60 km s-1) are detected from the majority of the stars and about 40% of the outflows have sufficient speed as to allow escape of material from the star as well as from a globular cluster. Outflow speeds and line strengths do not depend on metallicity for our sample ([Fe/H]= -0.7 to -3.0), suggesting the driving mechanism for these winds derives from magnetic and/or hydrodynamic processes. Gas outflows are present in every luminous giant, but are not detected in all stars of lower luminosity indicating possible variability. Mass loss rates ranging from ~3 × 10-10 to ~6 × 10-8 M sun yr-1 estimated from the Sobolev approximation for line formation represent values with evolutionary significance for red giants and RHB stars. We estimate that 0.2 M sun will be lost on the RGB, and the torque of this wind can account for observations of slowly rotating RHB stars in the field. About 0.1-0.2 M sun will be lost on the RHB itself. This first empirical determination of mass loss on the RHB may contribute to the appearance of extended horizontal branches in globular clusters. The spectra appear to resolve the problem of missing intracluster material in globular clusters. Opportunities exist for "wind smothering" of dwarf stars by winds from the evolved population, possibly leading to surface pollution in regions of high stellar density. Data presented herein were obtained at the W. M. Keck Observatory, which

  18. Total tree, merchantable stem and branch volume models for ...

    African Journals Online (AJOL)

    Total tree, merchantable stem and branch volume models for miombo woodlands of Malawi. Daud J Kachamba, Tron Eid. Abstract. The objective of this study was to develop general (multispecies) models for prediction of total tree, merchantable stem and branch volume including options with diameter at breast height (dbh) ...

  19. Cyanogen distribution of M4 and the possible connection between horizontal branch morphology and chemical inhomogeneity

    International Nuclear Information System (INIS)

    Norris, J.

    1981-01-01

    A spectroscopic survey of 45 red giants in the globular cluster M4 has been completed with a view to ascertaining whether the bimodal distribution of stars on the horizontal branch (Lee) is accompanied by a cyanogen dichotomy on the giant branch, similar to the situation found in NGC 6752. From analysis of some 118 spectra, it is concluded that the red giants in M4 (in the magnitude range M/sub V/approx.0.3 to -1.2) do show a bimodal cyanogen distribution. There appears also to be an anticorrelation between the behavior of CN and CH. A working hypothesis is proposed which will explain most of the known peculiarities of the three globular clusters 47 Tuc, M4, and NGC 6752, for which comprehensive cyanogen surveys are available. It is suggested that there is a spectrum of core rotational velocity in the main-sequence stars of globular clusters. Beyond some critical value of the rotational velocity, a star will mix the products of the CN cycle into its outer layers, while still on or near the main sequence. The range in angular momentum leads also to a range in luminosity at which helium flash occurs and, thereby, to a range in envelope mass on the horizontal branch. Both the distribution of the products of mixing in the red giants and that of stars along the horizontal branch are thus determined by the spectrum of angular velocities in the cluster stars. This work thus supports the contention that core rotation is a parameter which effects horizontal branch morphology (the case is made that it should be regarded as the third parameter). The hypothesis has the advantage that it makes several predictions which are open to observational test

  20. Formation of Ice Giant Satellites During Thommes Model Mirgration

    Science.gov (United States)

    Fuse, Christopher; Spiegelberg, Josephine

    2018-01-01

    Inconsistencies between ice giant planet characteristics and classic planet formation theories have led to a re-evaluation of the formation of the outer Solar system. Thommes model migration delivers proto-Uranus and Neptune from orbits interior to Saturn to their current locations. The Thommes model has also been able to reproduce the large Galilean and Saturnian moons via interactions between the proto-ice giants and the gas giant moon disks.As part of a series of investigations examining the effects of Thommes model migration on the formation of moons, N-body simulations of the formation of the Uranian and Neptunian satellite systems were performed. Previous research has yielded conflicting results as to whether satellite systems are stable during planetary migration. Some studies, such as Beaugé (2002) concluded that the system was not stable over the proposed duration of migration. Conversely, Fuse and Neville (2011) and Yokoyama et al. (2011) found that moons were retained, though the nature of the resulting system was heavily influenced by interactions with planetesimals and other large objects. The results of the current study indicate that in situ simulations of the Uranus and Neptune systems can produce stable moons. Whether with current orbital parameters or located at pre-migration, inner Solar system semi-major axes, the simulations end with 5.8 ± 0.15 or 5.9 ± 0.7 regular satellites around Uranus and Neptune, respectively. Preliminary simulations of a proto-moon disk around a single planet migrating via the Thommes model have failed to retain moons. Furthermore, simulations of ejection of the current Uranian satellite system retained at most one moon. Thus, for the Thommes model to be valid, it is likely that moon formation did not begin until after migration ended. Future work will examine the formation of gas and ice giant moons through other migration theories, such as the Nice model (Tsiganis et al. 2006).

  1. DETERMINING AGES OF APOGEE GIANTS WITH KNOWN DISTANCES

    Energy Technology Data Exchange (ETDEWEB)

    Feuillet, Diane K.; Holtzman, Jon [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Bovy, Jo [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Girardi, Léo [Osservatorio Astronomico di Padova—INAF, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); MacDonald, Nick [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Nidever, David L., E-mail: feuilldk@nmsu.edu [Large Synoptic Survey Telescope, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2016-01-20

    We present a sample of 705 local giant stars observed using the New Mexico State University 1 m telescope with the Sloan Digital Sky Survey-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph, for which we estimate stellar ages and the local star formation history (SFH). The high-resolution (R ∼ 22,500), near infrared (1.51–1.7 μm) APOGEE spectra provide measurements of stellar atmospheric parameters (temperature, surface gravity, [M/H], and [α/M]). Due to the smaller uncertainties in surface gravity possible with high-resolution spectra and accurate Hipparcos distance measurements, we are able to calculate the stellar masses to within 30%. For giants, the relatively rapid evolution up the red giant branch allows the age to be constrained by the mass. We examine methods of estimating age using both the mass–age relation directly and a Bayesian isochrone matching of measured parameters, assuming a constant SFH. To improve the SFH prior, we use a hierarchical modeling approach to constrain the parameters of the model SFH using the age probability distribution functions of the data. The results of an α-dependent Gaussian SFH model show a clear age–[α/M] relation at all ages. Using this SFH model as the prior for an empirical Bayesian analysis, we determine ages for individual stars. The resulting age–metallicity relation is flat, with a slight decrease in [M/H] at the oldest ages and a ∼0.5 dex spread in metallicity across most ages. For stars with ages ≲1 Gyr we find a smaller spread, consistent with radial migration having a smaller effect on these young stars than on the older stars.

  2. The Correlation between Mixing Length and Metallicity on the Giant Branch: Implications for Ages in the Gaia Era

    International Nuclear Information System (INIS)

    Tayar, Jamie; Somers, Garrett; Pinsonneault, Marc H.; Johnson, Jennifer A.; Stello, Dennis; Mints, Alexey; Zamora, O.; García-Hernández, D. A.; Prieto, Carlos Allende; Maraston, Claudia; Serenelli, Aldo; Bastien, Fabienne A.; Basu, Sarbani; Bird, J. C.; Cohen, R. E.; Cunha, Katia; Elsworth, Yvonne; García, Rafael A.

    2017-01-01

    In the updated APOGEE- Kepler catalog, we have asteroseismic and spectroscopic data for over 3000 first ascent red giants. Given the size and accuracy of this sample, these data offer an unprecedented test of the accuracy of stellar models on the post-main-sequence. When we compare these data to theoretical predictions, we find a metallicity dependent temperature offset with a slope of around 100 K per dex in metallicity. We find that this effect is present in all model grids tested, and that theoretical uncertainties in the models, correlated spectroscopic errors, and shifts in the asteroseismic mass scale are insufficient to explain this effect. Stellar models can be brought into agreement with the data if a metallicity-dependent convective mixing length is used, with Δ α ML,YREC ∼ 0.2 per dex in metallicity, a trend inconsistent with the predictions of three-dimensional stellar convection simulations. If this effect is not taken into account, isochrone ages for red giants from the Gaia data will be off by as much as a factor of two even at modest deviations from solar metallicity ([Fe/H] = −0.5).

  3. The Correlation between Mixing Length and Metallicity on the Giant Branch: Implications for Ages in the Gaia Era

    Energy Technology Data Exchange (ETDEWEB)

    Tayar, Jamie; Somers, Garrett; Pinsonneault, Marc H.; Johnson, Jennifer A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, OH 43210 (United States); Stello, Dennis [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Mints, Alexey [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Zamora, O.; García-Hernández, D. A.; Prieto, Carlos Allende [Instituto de Astrofísica de Canarias (IAC), Vía Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Maraston, Claudia [ICG—University of Portsmouth, Burnaby Road, PO1 3FX, Portsmouth (United Kingdom); Serenelli, Aldo [Institute of Space Sciences (CSIC-IEEC), Carrer de Can Magrans, Barcelona, E-08193 (Spain); Bastien, Fabienne A. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16803 (United States); Basu, Sarbani [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Bird, J. C. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Circle, Nashville, TN 37235 (United States); Cohen, R. E. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Cunha, Katia [Observatório Nacional-MCTI (Brazil); Elsworth, Yvonne [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); García, Rafael A. [Laboratoire AIM, CEA/DRF-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191, Gif-sur-Yvette (France); and others

    2017-05-01

    In the updated APOGEE- Kepler catalog, we have asteroseismic and spectroscopic data for over 3000 first ascent red giants. Given the size and accuracy of this sample, these data offer an unprecedented test of the accuracy of stellar models on the post-main-sequence. When we compare these data to theoretical predictions, we find a metallicity dependent temperature offset with a slope of around 100 K per dex in metallicity. We find that this effect is present in all model grids tested, and that theoretical uncertainties in the models, correlated spectroscopic errors, and shifts in the asteroseismic mass scale are insufficient to explain this effect. Stellar models can be brought into agreement with the data if a metallicity-dependent convective mixing length is used, with Δ α {sub ML,YREC} ∼ 0.2 per dex in metallicity, a trend inconsistent with the predictions of three-dimensional stellar convection simulations. If this effect is not taken into account, isochrone ages for red giants from the Gaia data will be off by as much as a factor of two even at modest deviations from solar metallicity ([Fe/H] = −0.5).

  4. Giant halos in medium nuclei within modified relativistic mean field (MRMF) model

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, A. M., E-mail: alpi.mahisha@gmail.com; Sulaksono, A. [Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Sumaryada, T. [Department of Physics, Bogor Agricultural University, Jalan Meranti Kampus IPB Dramaga Bogor 16680 (Indonesia)

    2016-04-19

    The large number of neutrons in a region beyond a closed shell core indicates the presence of giant halos in nuclei. In this work, by using the Rotival method within a modified relativistic mean field (MRMF) model, we predict theoretically the formation of giant halos in Cr and Zr isotopes. The MRMF model is a modification of standard RMF model augmented with isoscalar and isovector tensor terms, isovector-isoscalar vector cross coupling term and electromagnetic exchange term for Coulomb interaction in local density approximation (LDA).

  5. Allometry indicates giant eyes of giant squid are not exceptional.

    Science.gov (United States)

    Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C

    2013-02-18

    The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.

  6. A spatially-averaged mathematical model of kidney branching morphogenesis

    KAUST Repository

    Zubkov, V.S.

    2015-08-01

    © 2015 Published by Elsevier Ltd. Kidney development is initiated by the outgrowth of an epithelial ureteric bud into a population of mesenchymal cells. Reciprocal morphogenetic responses between these two populations generate a highly branched epithelial ureteric tree with the mesenchyme differentiating into nephrons, the functional units of the kidney. While we understand some of the mechanisms involved, current knowledge fails to explain the variability of organ sizes and nephron endowment in mice and humans. Here we present a spatially-averaged mathematical model of kidney morphogenesis in which the growth of the two key populations is described by a system of time-dependant ordinary differential equations. We assume that branching is symmetric and is invoked when the number of epithelial cells per tip reaches a threshold value. This process continues until the number of mesenchymal cells falls below a critical value that triggers cessation of branching. The mathematical model and its predictions are validated against experimentally quantified C57Bl6 mouse embryonic kidneys. Numerical simulations are performed to determine how the final number of branches changes as key system parameters are varied (such as the growth rate of tip cells, mesenchyme cells, or component cell population exit rate). Our results predict that the developing kidney responds differently to loss of cap and tip cells. They also indicate that the final number of kidney branches is less sensitive to changes in the growth rate of the ureteric tip cells than to changes in the growth rate of the mesenchymal cells. By inference, increasing the growth rate of mesenchymal cells should maximise branch number. Our model also provides a framework for predicting the branching outcome when ureteric tip or mesenchyme cells change behaviour in response to different genetic or environmental developmental stresses.

  7. A spatially-averaged mathematical model of kidney branching morphogenesis

    KAUST Repository

    Zubkov, V.S.; Combes, A.N.; Short, K.M.; Lefevre, J.; Hamilton, N.A.; Smyth, I.M.; Little, M.H.; Byrne, H.M.

    2015-01-01

    © 2015 Published by Elsevier Ltd. Kidney development is initiated by the outgrowth of an epithelial ureteric bud into a population of mesenchymal cells. Reciprocal morphogenetic responses between these two populations generate a highly branched epithelial ureteric tree with the mesenchyme differentiating into nephrons, the functional units of the kidney. While we understand some of the mechanisms involved, current knowledge fails to explain the variability of organ sizes and nephron endowment in mice and humans. Here we present a spatially-averaged mathematical model of kidney morphogenesis in which the growth of the two key populations is described by a system of time-dependant ordinary differential equations. We assume that branching is symmetric and is invoked when the number of epithelial cells per tip reaches a threshold value. This process continues until the number of mesenchymal cells falls below a critical value that triggers cessation of branching. The mathematical model and its predictions are validated against experimentally quantified C57Bl6 mouse embryonic kidneys. Numerical simulations are performed to determine how the final number of branches changes as key system parameters are varied (such as the growth rate of tip cells, mesenchyme cells, or component cell population exit rate). Our results predict that the developing kidney responds differently to loss of cap and tip cells. They also indicate that the final number of kidney branches is less sensitive to changes in the growth rate of the ureteric tip cells than to changes in the growth rate of the mesenchymal cells. By inference, increasing the growth rate of mesenchymal cells should maximise branch number. Our model also provides a framework for predicting the branching outcome when ureteric tip or mesenchyme cells change behaviour in response to different genetic or environmental developmental stresses.

  8. Deformation-induced splitting of the monopole giant resonance in 24Mg

    Directory of Open Access Journals (Sweden)

    Kvasil J.

    2016-01-01

    Full Text Available The strong deformation splitting of the isoscalar giant monopole resonance (ISGMR, recently observed in (α, α′ reaction in prolate 24Mg, is analyzed in the framework of the Skyrme quasiparticle randomphase-approximation (QRPA approach with the Skyrme forces SkM*, SVbas and SkPδ. The calculations with these forces give close results and confirm that the low-energy E0-peak is caused by the deformation-induced coupling of ISGMR with the K = 0 branch of the isoscalar giant quadrupole resonance.

  9. Modeling and Control for Giant Magnetostrictive Actuators with Rate-Dependent Hysteresis

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2013-01-01

    Full Text Available The rate-dependent hysteresis in giant magnetostrictive materials is a major impediment to the application of such material in actuators. In this paper, a relevance vector machine (RVM model is proposed for describing the hysteresis nonlinearity under varying input current. It is possible to construct a unique dynamic model in a given rate range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set input signal. Subsequently, a proportional integral derivative (PID control scheme combined with a feedforward compensation is implemented on a giant magnetostrictive actuator (GMA for real-time precise trajectory tracking. Simulations and experiments both verify the effectiveness and the practicality of the proposed modeling and control methods.

  10. The Carnegie–Chicago Hubble Program. III. The Distance to NGC 1365 via the Tip of the Red Giant Branch

    Science.gov (United States)

    Jang, In Sung; Hatt, Dylan; Beaton, Rachael L.; Lee, Myung Gyoon; Freedman, Wendy L.; Madore, Barry F.; Hoyt, Taylor J.; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark

    2018-01-01

    The Carnegie–Chicago Hubble Program (CCHP) seeks to anchor the distance scale of Type Ia supernovae via the Tip of the Red Giant Branch (TRGB) method. Based on deep Hubble Space Telescope ACS/WFC imaging, we present an analysis of the TRGB for the metal-poor halo of NGC 1365, a giant spiral galaxy in the Fornax cluster that was host to the Type Ia supernova SN 2012fr. We have measured the extinction-corrected TRGB magnitude of NGC 1365 to be F814W = 27.34 ± 0.03stat ± 0.04sys mag. In advance of future direct calibration by Gaia, we adopt a provisional I-band TRGB luminosity set at the Large Magellanic Cloud and find a true distance modulus μ 0 = 31.29 ± 0.04stat ± 0.06sys mag or D = 18.1 ± 0.3stat ± 0.5sys Mpc. This measurement is in excellent agreement with recent Cepheid-based distances to NGC 1365 and reveals no significant difference in the distances derived from stars of Populations I and II for this galaxy. We revisit the error budget for the CCHP path to the Hubble constant based on the analysis presented here, i.e., that for one of the most distant Type Ia supernova hosts within our Program, and find that a 2.5% measurement is feasible with the current sample of galaxies and TRGB absolute calibration. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13691.

  11. The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars

    Science.gov (United States)

    Abia, C.; Hedrosa, R. P.; Domínguez, I.; Straniero, O.

    2017-03-01

    Context. The abundance ratios of the main isotopes of carbon, nitrogen and oxygen are modified by the CNO-cycle in the stellar interiors. When the different dredge-up events mix the burning material with the envelope, valuable information on the nucleosynthesis and mixing processes can be extracted by measuring these isotope ratios. Aims: Previous determinations of the oxygen isotopic ratios in asymptotic giant branch (AGB) carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Methods: Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in local thermodynamic equillibrium (LTE) with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M⊙) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. Results: For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the first dredge-up (FDU) according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies

  12. Spectroscopy of Six Red Giants in the Draco Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Smith, Graeme H.; Siegel, Michael H.; Shetrone, Matthew D.; Winnick, Rebeccah

    2006-10-01

    Keck Observatory LRIS-B (Low Resolution Imaging Spectrometer) spectra are reported for six red giant stars in the Draco dwarf spheroidal galaxy and several comparison giants in the globular cluster M13. Indexes that quantify the strengths of the Ca II H and K lines, the λ3883 and λ4215 CN bands, and the λ4300 G band have been measured. These data confirm evidence of metallicity inhomogeneity within Draco obtained by previous authors. The four brightest giants in the sample have absolute magnitudes in the range -2.6intermediate-mass asymptotic giant branch stars to enrich the interstellar medium while star formation was still occurring. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  13. ON IRON MONOXIDE NANOPARTICLES AS A CARRIER OF THE MYSTERIOUS 21 μm EMISSION FEATURE IN POST-ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Li, Aigen; Jiang, B. W.; Liu, J. M.

    2013-01-01

    A prominent mysterious emission feature peaking at ∼20.1 μm—historically known as the '21 μm' feature—is seen in over two dozen Galactic and Magellanic Cloud carbon-rich, post-asymptotic giant branch (post-AGB) stars. The nature of its carrier remains unknown since the first detection of the 21 μm feature in 1989. Over a dozen materials have been suggested as possible carrier candidates. However, none of them has been accepted: they either require too much material (compared to what is available in the circumstellar shells around these post-AGB stars), or exhibit additional emission features that are not seen in these 21 μm sources. Recently, iron monoxide (FeO) nanoparticles seem to be a promising carrier candidate as Fe is an abundant element and FeO emits exclusively at ∼21 μm. In this work, using the proto-typical protoplanetary nebula HD 56126 as a test case, we examine FeO nanoparticles as a carrier for the 21 μm feature by modeling their infrared emission, with FeO being stochastically heated by single stellar photons. We find that FeO emits too broad a 21 μm feature to explain that observed and the Fe abundance required to be locked up in FeO exceeds what is available in HD 56126. We therefore conclude that FeO nanoparticles are not likely to be responsible for the 21 μm feature

  14. Anomalous scaling in an age-dependent branching model

    OpenAIRE

    Keller-Schmidt, Stephanie; Tugrul, Murat; Eguiluz, Victor M.; Hernandez-Garcia, Emilio; Klemm, Konstantin

    2010-01-01

    We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age $\\tau$ as $\\tau^{-\\alpha}$. Depending on the exponent $\\alpha$, the scaling of tree depth with tree size $n$ displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition ($\\alpha=1$) tree depth grows as $(\\log n)^2$. This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus p...

  15. Galactic planetary nebulae with precise nebular abundances as a tool to understand the evolution of asymptotic giant branch stars

    Science.gov (United States)

    García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; Di Criscienzo, M.; Yagüe, A.

    2016-09-01

    We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z⊙/4 nebular abundances in a sample of Galactic planetary nebulae (PNe) that is divided among double-dust chemistry (DC) and oxygen-dust chemistry (OC) according to the infrared dust features. Unlike the similar subsample of Galactic carbon-dust chemistry PNe recently analysed by us, here the individual abundance errors, the higher metallicity spread, and the uncertain dust types/subtypes in some PNe do not allow a clear determination of the AGB progenitor masses (and formation epochs) for both PNe samples; the comparison is thus more focused on a object-by-object basis. The lowest metallicity OC PNe evolve from low-mass (˜1 M⊙) O-rich AGBs, while the higher metallicity ones (all with uncertain dust classifications) display a chemical pattern similar to the DC PNe. In agreement with recent literature, the DC PNe mostly descend from high-mass (M ≥ 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6M⊙). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.

  16. Giant osteoblastoma of temporal bone: case report

    Directory of Open Access Journals (Sweden)

    FIGUEIREDO EBERVAL GADELHA

    1998-01-01

    Full Text Available Benign osteoblastoma is an uncommon bone tumor accounting for approximately 1% of all bone tumors. There are only 35 cases of skull osteoblastoma reported in the literature. We describe the case of a 23 year old male with a giant osteoblastoma of temporal bone submitted to a total removal of the tumor after an effective embolization of all external carotid branches. The authors discuss diagnostic and management aspects of this uncommon skull tumor.

  17. TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS

    International Nuclear Information System (INIS)

    Ida, S.; Lin, D. N. C.; Nagasawa, M.

    2013-01-01

    The ubiquity of planets and diversity of planetary systems reveal that planet formation encompasses many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches have led to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interactions between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamical interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (∼> 30 AU) gas giants with nearly circular orbits

  18. Tests of the Giant Impact Hypothesis

    Science.gov (United States)

    Jones, J. H.

    1998-01-01

    The giant impact hypothesis has gained popularity as a means of explaining a volatile-depleted Moon that still has a chemical affinity to the Earth. As Taylor's Axiom decrees, the best models of lunar origin are testable, but this is difficult with the giant impact model. The energy associated with the impact would be sufficient to totally melt and partially vaporize the Earth. And this means that there should he no geological vestige of Barber times. Accordingly, it is important to devise tests that may be used to evaluate the giant impact hypothesis. Three such tests are discussed here. None of these is supportive of the giant impact model, but neither do they disprove it.

  19. Red giants: then and now

    Science.gov (United States)

    Faulkner, John

    Fred Hoyle's work on the structure and evolution of red giants, particularly his pathbreaking contribution with Martin Schwarzschild (Hoyle and Schwarzschild 1955), is both lauded and critically assessed. In his later lectures and work with students in the early 1960s, Hoyle presented more physical ways of understanding some of the approximations used, and results obtained, in that seminal paper. Although later ideas by other investigators will be touched upon, Hoyle's viewpoint - that low-mass red giants are essentially white dwarfs with a serious mass-storage problem - is still extremely fruitful. Over the years, I have further developed his method of attack. Relatively recently, I have been able to deepen and broaden the approach, finally extending the theory to provide a unifying treatment of the structure of low-mass stars from the main sequence though both the red-giant and horizontal-branch phases of evolution. Many aspects of these stars that had remained puzzling, even mysterious, for decades have now fallen into place, and some questions have been answered that were not even posed before. With low-mass red giants as the simplest example, this recent work emphasizes that stars, in general, may have at least two distinct but very important centres: (I) a geometrical centre, and (II) a separate nuclear centre, residing in a shell outside a zero-luminosity dense core for example. This two-centre perspective leads to an explicit, analytical, asymptotic theory of low-mass red-giant structure. It enables one to appreciate that the problem of understanding why such stars become red giants is one of anticipating a remarkable yet natural structural bifurcation that occurs in them. This bifurcation occurs because of a combination of known and understandable facts just summarized namely that, following central hydrogen exhaustion, a thin nuclear-burning shell does develop outside a more-or-less dense core. In the resulting theory, both ρsh/ρolinec and

  20. Particle-in-cell modeling of streamer branching in CO2 gas

    KAUST Repository

    Levko, Dmitry

    2017-07-07

    The mechanism of streamer branching remains one of the unsolved problems of low-temperature plasma physics. The understanding of this phenomenon requires very high-fidelity models that include, for instance, the kinetic description of electrons. In this paper, we use a two-dimensional particle-in-cell Monte Carlo collisional model to study the branching of anode-directed streamers propagating through short cathode-anode gap filled with atmospheric-pressure CO2 gas. We observe three key phenomena leading to the streamer branching at the considered conditions: flattening of the streamer head, the decrease of the streamer head thickness, and the generation at the streamer head of electrons having the energy larger than 50 eV. For the conditions of our studies, the non-homogeneous distribution of such energetic electrons at the streamer head is probably the primary mechanism responsible for the streamer branching.

  1. Comparative Modelling of the Spectra of Cool Giants

    Science.gov (United States)

    Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.; hide

    2012-01-01

    Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.

  2. Flood-inundation and flood-mitigation modeling of the West Branch Wapsinonoc Creek Watershed in West Branch, Iowa

    Science.gov (United States)

    Cigrand, Charles V.

    2018-03-26

    The U.S. Geological Survey (USGS) in cooperation with the city of West Branch and the Herbert Hoover National Historic Site of the National Park Service assessed flood-mitigation scenarios within the West Branch Wapsinonoc Creek watershed. The scenarios are intended to demonstrate several means of decreasing peak streamflows and improving the conveyance of overbank flows from the West Branch Wapsinonoc Creek and its tributary Hoover Creek where they flow through the city and the Herbert Hoover National Historic Site located within the city.Hydrologic and hydraulic models of the watershed were constructed to assess the flood-mitigation scenarios. To accomplish this, the models used the U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC–HMS) version 4.2 to simulate the amount of runoff and streamflow produced from single rain events. The Hydrologic Engineering Center-River Analysis System (HEC–RAS) version 5.0 was then used to construct an unsteady-state model that may be used for routing streamflows, mapping areas that may be inundated during floods, and simulating the effects of different measures taken to decrease the effects of floods on people and infrastructure.Both models were calibrated to three historic rainfall events that produced peak streamflows ranging between the 2-year and 10-year flood-frequency recurrence intervals at the USGS streamgage (05464942) on Hoover Creek. The historic rainfall events were calibrated by using data from two USGS streamgages along with surveyed high-water marks from one of the events. The calibrated HEC–HMS model was then used to simulate streamflows from design rainfall events of 24-hour duration ranging from a 20-percent to a 1-percent annual exceedance probability. These simulated streamflows were incorporated into the HEC–RAS model.The unsteady-state HEC–RAS model was calibrated to represent existing conditions within the watershed. HEC–RAS model simulations with the

  3. THE SEGUE K GIANT SURVEY. III. QUANTIFYING GALACTIC HALO SUBSTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo; Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Rockosi, Constance [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Starkenburg, Else [Department of Physics and Astronomy, University of Victoria, P.O. Box 1700, STN CSC, Victoria BC V8W 3P6 (Canada); Xue, Xiang Xiang; Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Johnson, Jennifer [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Lee, Young Sun [Department of Astronomy and Space Science, Chungnam National University, Daejeon 34134 (Korea, Republic of); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-01-10

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5–125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position–velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (∼33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.

  4. Anomalous scaling in an age-dependent branching model.

    Science.gov (United States)

    Keller-Schmidt, Stephanie; Tuğrul, Murat; Eguíluz, Víctor M; Hernández-García, Emilio; Klemm, Konstantin

    2015-02-01

    We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ(-α). Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)(2). This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of a critical point.

  5. Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants

    Science.gov (United States)

    Deheuvels, S.; Doğan, G.; Goupil, M. J.; Appourchaux, T.; Benomar, O.; Bruntt, H.; Campante, T. L.; Casagrande, L.; Ceillier, T.; Davies, G. R.; De Cat, P.; Fu, J. N.; García, R. A.; Lobel, A.; Mosser, B.; Reese, D. R.; Regulo, C.; Schou, J.; Stahn, T.; Thygesen, A. O.; Yang, X. H.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Eggenberger, P.; Gizon, L.; Mathis, S.; Molenda-Żakowicz, J.; Pinsonneault, M.

    2014-04-01

    Context. We still do not understand which physical mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the clear signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this question. Aims: Our aim is to probe the radial dependence of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts. Methods: We first extracted the rotational splittings and frequencies of the modes for six young Kepler red giants. We then performed a seismic modeling of these stars using the evolutionary codes Cesam2k and astec. By using the observed splittings and the rotational kernels of the optimal models, we inverted the internal rotation profiles of the six stars. Results: We obtain estimates of the core rotation rates for these stars, and upper limits to the rotation in their convective envelope. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, while their envelope spins down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found to be most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand. Conclusions: We characterized the differential rotation pattern of six young giants with a range of metallicities, and with both radiative and convective cores on the main sequence. This will bring observational constraints to the

  6. The Lithium-, r- and s-Enhanced Metal-Poor Giant HK-II 17435-00532

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Prieto, Carlos Allende; Sneden, Christopher; Frebel, Anna; Shetrone, Matthew; Rhee, Jaehyon; Gallino, Roberto; Bisterzo, Sara; Beers, Timothy C.; Cowan, John J.

    2008-01-01

    We present the first detailed abundance analysis of the metal-poor giant HK-II 17435-00532. This star was observed as part of the University of Texas Long-Term Chemical Abundances of Stars in the Halo (CASH) Project. A spectrum was obtained with the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope with a resolving power of R∼15000. Our analysis reveals that this star may be located on the red giant branch, red horizontal branch, or early asymptotic giant branch. We find that this metal-poor ([Fe/H] = -2.2) star has an unusually high lithium abundance (logε(Li) = +2.1), mild carbon ([C/Fe] = +0.7) and sodium ([Na/Fe] = +0.6) enhancement, as well as enhancement of both s-process ([Ba/Fe] = +0.8) and r-process ([Eu/Fe] = +0.5) material. The high Li abundance can be explained by self-enrichment through extra mixing mechanisms that connect the convective envelope with the outer regions of the H-burning shell. If so, HK-II 17435-00532 is the most metal-poor starin which this short-lived phase of Li enrichment has been observed. The r- and s-process material was not produced in this star but was either present in the gas from which HK-II 17435-00532 formed or was transferred to it from a more massive binary companion. Despite the current non-detection of radial velocity variations (over a time span of ∼180 days), it is possible that HK-II 17435-00532 is in a long-period binary system, similar to other stars with both r and s enrichment

  7. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    International Nuclear Information System (INIS)

    Gaulme, P.; McKeever, J.; Rawls, M. L.; Jackiewicz, J.; Mosser, B.; Guzik, J. A.

    2013-01-01

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentially offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a δ-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the

  8. GIANT CELL AORTITIS DIAGNOSED WITH PET/CT - PARANEOPLASTIC SYNDROME?

    Science.gov (United States)

    Bakula, Marija; Cerovec, Mislav; Mayer, Miroslav; Huić, Dražen; Anić, Branimir

    2016-05-01

    Vasculitides are heterogenic group of autoimmune connective tissue diseases which often present difficulties in early diagnosing. Giant cell arteritis is vasculitis of large and medium arteries. It predominantly presents with symptoms of affection of the external carotid artery branches. Furthermore, the only symptoms can be constitutional. In clinical practice, vasculitides are sometimes considered as paraneoplastic, but no definite association with malignancies has been established and the mechanisms are still debated. The gold standard for diagnosing giant cell arteritis is a positive temporal artery biopsy, but the results can often be false negative. Additionally, more than half of the patients have aorta and its main branches affected. Considering aforementioned, imaging studies are essential in confirming large-vessel vasculitis, amongst which is highly sensitive PET/CT. We present the case of a 70-year-old female patient with constitutional symptoms and elevated sedimentation rate. After extensive diagnostic tests, she was admitted to our Rheumatology unit. Aortitis of the abdominal aorta has been confirmed by PET/CT and after the introduction of glucocorticoids the disease soon went into clinical and laboratory remission. Shortly after aortitis has been diagnosed, lung carcinoma was revealed of which the patient died. At the time of the comprehensive diagnostics, there was no reasonable doubt for underlying malignoma. To the best of our knowledge, there are no recent publications concerning giant cell arteritis and neoplastic processes in the context of up-to-date non-invasive diagnostic methods (i.e. PET/CT). In the light of previous research results, we underline that the sensitivity of PET/CT is not satisfactory when estimating cancer dissemination in non-enlarged lymph nodes and that its value can at times be overestimated.

  9. Path integral formulation and Feynman rules for phylogenetic branching models

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, P D; Bashford, J D; Sumner, J G [School of Mathematics and Physics, University of Tasmania, GPO Box 252C, 7001 Hobart, TAS (Australia)

    2005-11-04

    A dynamical picture of phylogenetic evolution is given in terms of Markov models on a state space, comprising joint probability distributions for character types of taxonomic classes. Phylogenetic branching is a process which augments the number of taxa under consideration, and hence the rank of the underlying joint probability state tensor. We point out the combinatorial necessity for a second-quantized, or Fock space setting, incorporating discrete counting labels for taxa and character types, to allow for a description in the number basis. Rate operators describing both time evolution without branching, and also phylogenetic branching events, are identified. A detailed development of these ideas is given, using standard transcriptions from the microscopic formulation of non-equilibrium reaction-diffusion or birth-death processes. These give the relations between stochastic rate matrices, the matrix elements of the corresponding evolution operators representing them, and the integral kernels needed to implement these as path integrals. The 'free' theory (without branching) is solved, and the correct trilinear 'interaction' terms (representing branching events) are presented. The full model is developed in perturbation theory via the derivation of explicit Feynman rules which establish that the probabilities (pattern frequencies of leaf colourations) arising as matrix elements of the time evolution operator are identical with those computed via the standard analysis. Simple examples (phylogenetic trees with two or three leaves), are discussed in detail. Further implications for the work are briefly considered including the role of time reparametrization covariance.

  10. Path integral formulation and Feynman rules for phylogenetic branching models

    International Nuclear Information System (INIS)

    Jarvis, P D; Bashford, J D; Sumner, J G

    2005-01-01

    A dynamical picture of phylogenetic evolution is given in terms of Markov models on a state space, comprising joint probability distributions for character types of taxonomic classes. Phylogenetic branching is a process which augments the number of taxa under consideration, and hence the rank of the underlying joint probability state tensor. We point out the combinatorial necessity for a second-quantized, or Fock space setting, incorporating discrete counting labels for taxa and character types, to allow for a description in the number basis. Rate operators describing both time evolution without branching, and also phylogenetic branching events, are identified. A detailed development of these ideas is given, using standard transcriptions from the microscopic formulation of non-equilibrium reaction-diffusion or birth-death processes. These give the relations between stochastic rate matrices, the matrix elements of the corresponding evolution operators representing them, and the integral kernels needed to implement these as path integrals. The 'free' theory (without branching) is solved, and the correct trilinear 'interaction' terms (representing branching events) are presented. The full model is developed in perturbation theory via the derivation of explicit Feynman rules which establish that the probabilities (pattern frequencies of leaf colourations) arising as matrix elements of the time evolution operator are identical with those computed via the standard analysis. Simple examples (phylogenetic trees with two or three leaves), are discussed in detail. Further implications for the work are briefly considered including the role of time reparametrization covariance

  11. Gravity mode offset and properties of the evanescent zone in red-giant stars

    Science.gov (United States)

    Hekker, S.; Elsworth, Y.; Angelou, G. C.

    2018-03-01

    Context. The wealth of asteroseismic data for red-giant stars and the precision with which these data have been observed over the last decade calls for investigations to further understand the internal structures of these stars. Aim. The aim of this work is to validate a method to measure the underlying period spacing, coupling term, and mode offset of pure gravity modes that are present in the deep interiors of red-giant stars. We subsequently investigate the physical conditions of the evanescent zone between the gravity mode cavity and the pressure mode cavity. Methods: We implement an alternative mathematical description compared to what is used in the literature to analyse observational data and to extract the underlying physical parameters that determine the frequencies of mixed modes. This description takes the radial order of the modes explicitly into account, which reduces its sensitivity to aliases. Additionally, and for the first time, this method allows us to constrain the gravity mode offset ɛg for red-giant stars. Results: We find that this alternative mathematical description allows us to determine the period spacing ΔΠ and the coupling term q for the dipole modes within a few percent of values found in the literature. Additionally, we find that ɛg varies on a star-by-star basis and should not be kept fixed in the analysis. Furthermore, we find that the coupling factor is logarithmically related to the physical width of the evanescent region normalised by the radius at which the evanescent zone is located. Finally, the local density contrast at the edge of the core of red-giant branch models shows a tentative correlation with the offset ɛg. Conclusions: We are continuing to exploit the full potential of the mixed modes to investigate the internal structures of red-giant stars; in this case we focus on the evanescent zone. It remains, however, important to perform comparisons between observations and models with great care as the methods employed

  12. Branching structure and strain hardening of branched metallocene polyethylenes

    International Nuclear Information System (INIS)

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M.

    2015-01-01

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers

  13. Branching structure and strain hardening of branched metallocene polyethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M., E-mail: john.dealy@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C4 (Canada)

    2015-09-15

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers.

  14. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-01

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z ∼> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z ∼> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  15. Simple statistical model for branched aggregates

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Hansen, Jesper Schmidt

    2015-01-01

    , given that it already has bonds with others. The model is applied here to asphaltene nanoaggregates observed in molecular dynamics simulations of Cooee bitumen. The variation with temperature of the probabilities deduced from this model is discussed in terms of statistical mechanics arguments....... The relevance of the statistical model in the case of asphaltene nanoaggregates is checked by comparing the predicted value of the probability for one molecule to have exactly i bonds with the same probability directly measured in the molecular dynamics simulations. The agreement is satisfactory......We propose a statistical model that can reproduce the size distribution of any branched aggregate, including amylopectin, dendrimers, molecular clusters of monoalcohols, and asphaltene nanoaggregates. It is based on the conditional probability for one molecule to form a new bond with a molecule...

  16. Modelling primary branch growth based on a multilevel nonlinear ...

    African Journals Online (AJOL)

    In addition to random effects, various time series correlation structures were evaluated to account for residual autocorrelation, and the AR(1) and ARMA(1,1) structures were selected for the branch diameter and length growth models, respectively. Model validation results using an independent data set confirmed that ...

  17. Isoscalar giant resonances in a relativistic model

    International Nuclear Information System (INIS)

    L'Huillier, M.; Nguyen Van Giai.

    1988-07-01

    Isoscalar giant resonances in finite nuclei are studied in a relativistic Random Phase Approximation (RRPA) approach. The model is self-consistent in the sense that one set of coupling constants generates the Dirac-Hartree single-particle spectrum and the residual particle-hole interaction. The RRPA is used to calculate response functions of multipolarity L = 0,2,3, and 4 in light and medium nuclei. It is found that monopole and quadrupole modes exhibit a collective character. The peak energies are overestimated, but not as much as one might think if the bulk properties (compression modulus, effective mass) were the only relevant quantities

  18. A (giant) void is not mandatory to explain away dark energy with a Lemaître-Tolman model

    Science.gov (United States)

    Célérier, M.-N.; Bolejko, K.; Krasiński, A.

    2010-07-01

    Context. Lemaître-Tolman (L-T) toy models with a central observer have been used to study the effect of large scale inhomogeneities on the SN Ia dimming. Claims that a giant void is mandatory to explain away dark energy in this framework are currently dominating. Aims: Our aim is to show that L-T models exist that reproduce a few features of the ΛCDM model, but do not contain the giant cosmic void. Methods: We propose to use two sets of data - the angular diameter distance together with the redshift-space mass-density and the angular diameter distance together with the expansion rate - both defined on the past null cone as functions of the redshift. We assume that these functions are of the same form as in the ΛCDM model. Using the Mustapha-Hellaby-Ellis algorithm, we numerically transform these initial data into the usual two L-T arbitrary functions and solve the evolution equation to calculate the mass distribution in spacetime. Results: For both models, we find that the current density profile does not exhibit a giant void, but rather a giant hump. However, this hump is not directly observable, since it is in a spacelike relation to a present observer. Conclusions: The alleged existence of the giant void was a consequence of the L-T models used earlier because their generality was limited a priori by needless simplifying assumptions, like, for example, the bang-time function being constant. Instead, one can feed any mass distribution or expansion rate history on the past light cone as initial data to the L-T evolution equation. When a fully general L-T metric is used, the giant void is not implied.

  19. THE DUST BUDGET OF THE SMALL MAGELLANIC CLOUD: ARE ASYMPTOTIC GIANT BRANCH STARS THE PRIMARY DUST SOURCE AT LOW METALLICITY?

    International Nuclear Information System (INIS)

    Boyer, M. L.; Gordon, K. D.; Meixner, M.; Sargent, B. A.; Srinivasan, S.; Riebel, D.; McDonald, I.; Van Loon, J. Th.; Clayton, G. C.; Sloan, G. C.

    2012-01-01

    We estimate the total dust input from the cool evolved stars in the Small Magellanic Cloud, using the 8 μm excess emission as a proxy for the dust-production rate (DPR). We find that asymptotic giant branch (AGB) and red supergiant (RSG) stars produce (8.6-9.5) × 10 –7 M ☉ yr –1 of dust, depending on the fraction of far-infrared sources that belong to the evolved star population (with 10%-50% uncertainty in individual DPRs). RSGs contribute the least ( –3 M ☉ of dust each, then the total SN dust input and AGB input are roughly equivalent. We consider several scenarios of SN dust production and destruction and find that the interstellar medium (ISM) dust can be accounted for solely by stellar sources if all SNe produce dust in the quantities seen around the dustiest examples and if most SNe explode in dense regions where much of the ISM dust is shielded from the shocks. We find that AGB stars contribute only 2.1% of the ISM dust. Without a net positive contribution from SNe to the dust budget, this suggests that dust must grow in the ISM or be formed by another unknown mechanism.

  20. A STAR IN THE M31 GIANT STREAM: THE HIGHEST NEGATIVE STELLAR VELOCITY KNOWN

    International Nuclear Information System (INIS)

    Caldwell, Nelson; Kenyon, Scott J.; Morrison, Heather; Harding, Paul; Schiavon, Ricardo; Rose, James A.

    2010-01-01

    We report on a single star, B030D, observed as part of a large survey of objects in M31, which has the unusual radial velocity of -780 km s -1 . Based on details of its spectrum, we find that the star is an F supergiant, with a circumstellar shell. The evolutionary status of the star could be one of a post-main-sequence close binary, a symbiotic nova, or less likely, a post-asymptotic giant branch star, which additional observations could help sort out. Membership of the star in the Andromeda Giant Stream can explain its highly negative velocity.

  1. An Extremely Lithium-rich Bright Red Giant in the Globular Cluster M3

    Science.gov (United States)

    Kraft, Robert P.; Peterson, Ruth C.; Guhathakurta, Puragra; Sneden, Christopher; Fulbright, Jon P.; Langer, G. Edward

    1999-06-01

    We have serendipitously discovered an extremely lithium-rich star on the red giant branch of the globular cluster M3 (NGC 5272). An echelle spectrum obtained with the Keck I High-Resolution Echelle Spectrograph reveals a Li I λ6707 resonance doublet of 520 mÅ equivalent width, and our analysis places the star among the most Li-rich giants known: logε(Li)~=+3.0. We determine the elemental abundances of this star, IV-101, and three other cluster members of similar luminosity and color and conclude that IV-101 has abundance ratios typical of giants in M3 and M13 that have undergone significant mixing. We discuss mechanisms by which a low-mass star may be so enriched in Li, focusing on the mixing of material processed by the hydrogen-burning shell just below the convective envelope. While such enrichment could conceivably happen only rarely, it may in fact regularly occur during giant-branch evolution but be rarely detected because of rapid subsequent Li depletion. Based on observations obtained with the Keck I Telescope of the W. M. Keck Observatory, which is operated by the California Association for Research in Astronomy (CARA), Inc., on behalf of the University of California and the California Institute of Technology. This Letter is dedicated to the memory of our beloved colleague Ed Langer, who died after a brief illness on February 16, 1999. Ed brought a unique theoretical perspective to our globular cluster abundance studies. His career truly embodied the academic ideals of inspiration in both teaching and research. He made friends wherever he traveled, and was an inspiration to students. We will miss him greatly.

  2. Pure laparoscopic right hepatectomy for giant hemangioma using anterior approach.

    Science.gov (United States)

    Kim, Seok-Hwan; Kim, Ki-Hun; Kirchner, Varvara A; Lee, Sang-Kyung

    2017-05-01

    Laparoscopic major hepatectomy remains a challenging procedure [1, 2]. In the case of giant tumors in the right liver, conventional approach (complete mobilization of the right liver before parenchymal transection) could be dangerous during mobilization because of large volume and weight [3, 4]. We present the case of a pure laparoscopic right hepatectomy for a giant hemangioma using an anterior approach. We achieved the informed consent with this patient and approved by the Ethics Committee of the Asan Medical Center. Giant hemangioma (13 × 11 × 14 cm) was located in right liver. After glissonean approach [5], Pringle maneuver was performed during the hepatic parenchymal transection. For the transection, the Cavitron Ultrasonic Surgical Aspirator was used. Small hepatic vein branches along the middle hepatic vein and small glissonean pedicles were sealed and divided with a THUNDERBEATTM (Olympus), which is the device with integration of both bipolar and ultrasonic energies delivered simultaneously. iDriveTM Ultra Powered Stapling device (Medtronic) was used for division of right glissonean pedicle and large hepatic veins. Hemangioma was removed through the lower abdominal transverse incision using the endo-bag. This technique has the advantage of avoiding excessive bleeding caused by avulsion of the hepatic vein and caval branches, iatrogenic tumor rupture [3]. By means of the anterior approach, pure laparoscopic right hepatectomy was performed successfully without intraoperative complications and transfusions. The operation time was 202 min, and the estimated blood loss was less than 150 ml. On postoperative day 3, computed tomographic scan showed no pathological findings. The patient was discharged on postoperative day 5 without complications. Laparoscopic approach has good results because of the view with magnification enabling meticulous hemostasis and the small wounds that give patients less pain [6, 7]. The authors recommend that the laparoscopic

  3. PHOTOMETRIC AND SPECTRAL SIGNATURES OF THREE-DIMENSIONAL MODELS OF TRANSITING GIANT EXOPLANETS

    International Nuclear Information System (INIS)

    Burrows, A.; Spiegel, D. S.; Rauscher, E.; Menou, K.

    2010-01-01

    Using a three-dimensional general circulation model, we create dynamical model atmospheres of a representative transiting giant exoplanet, HD 209458b. We post-process these atmospheres with an opacity code to obtain transit radius spectra during the primary transit. Using a spectral atmosphere code, we integrate over the face of the planet seen by an observer at various orbital phases and calculate light curves as a function of wavelength and for different photometric bands. The products of this study are generic predictions for the phase variations of a zero-eccentricity giant planet's transit spectrum and of its light curves. We find that for these models the temporal variations in all quantities and the ingress/egress contrasts in the transit radii are small (<1.0%). Moreover, we determine that the day/night contrasts and phase shifts of the brightness peaks relative to the ephemeris are functions of photometric band. The J, H, and K bands are shifted most, while the IRAC bands are shifted least. Therefore, we verify that the magnitude of the downwind shift in the planetary 'hot spot' due to equatorial winds is strongly wavelength dependent. The phase and wavelength dependence of light curves, as well as the associated day/night contrasts, can be used to constrain the circulation regime of irradiated giant planets and to probe different pressure levels of a hot Jupiter atmosphere. We posit that though our calculations focus on models of HD 209458b, similar calculations for other transiting hot Jupiters in low-eccentricity orbits should yield transit spectra and light curves of a similar character.

  4. The sympletic model for giant monopole resonances

    International Nuclear Information System (INIS)

    Oliveira, M.M.B.M.

    1985-01-01

    Following recently published articles, it's investigated how to apply the sympletic model to the study of giant monopole resonances in spherical nuclei. The results obtained agree with those already published for monopole mode energies, wave functions, radii and nuclear incompressibility of 16 O and 40 Ca nuclei. An analyse of how the spurious center-of-mass motion influence resonance energies is made. The sum rules of the monopole operator, m-bar e , o ≤ e ≤ 3, are calculated, demonstrating at first that they are conserved in the sympletic model. Then it's studied, for those sum rules, the importance of n-boson correlations in the fundamental state, which is an extension of those sum rules, of the analysis for the nuclear incompressibility, performed in above mentioned articles. (Author) [pt

  5. Assessing allometric models to predict vegetative growth of mango (Mangifera indica; Anacardiaceae) at the current-year branch scale.

    Science.gov (United States)

    Normand, Frédéric; Lauri, Pierre-Éric

    2012-03-01

    Accurate and reliable predictive models are necessary to estimate nondestructively key variables for plant growth studies such as leaf area and leaf, stem, and total biomass. Predictive models are lacking at the current-year branch scale despite the importance of this scale in plant science. We calibrated allometric models to estimate leaf area and stem and branch (leaves + stem) mass of current-year branches, i.e., branches several months old studied at the end of the vegetative growth season, of four mango cultivars on the basis of their basal cross-sectional area. The effects of year, site, and cultivar were tested. Models were validated with independent data and prediction accuracy was evaluated with the appropriate statistics. Models revealed a positive allometry between dependent and independent variables, whose y-intercept but not the slope, was affected by the cultivar. The effects of year and site were negligible. For each branch characteristic, cultivar-specific models were more accurate than common models built with pooled data from the four cultivars. Prediction quality was satisfactory but with data dispersion around the models, particularly for large values. Leaf area and stem and branch mass of mango current-year branches could be satisfactorily estimated on the basis of branch basal cross-sectional area with cultivar-specific allometric models. The results suggested that, in addition to the heteroscedastic behavior of the variables studied, model accuracy was probably related to the functional plasticity of branches in relation to the light environment and/or to the number of growth units composing the branches.

  6. Carbon-rich dust past the asymptotic giant branch: Aliphatics, aromatics, and fullerenes in the Magellanic Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, G. C.; Lagadec, E. [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853-6801 (United States); Zijlstra, A. A. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Kraemer, K. E. [Institute for Scientific Research, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); Weis, A. P. [Department of Astronomy and Astrophysics, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Matsuura, M. [Astrophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Peeters, E.; Cami, J. [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Duley, W. W. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada); Bernard-Salas, J. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Kemper, F. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C (China); Sahai, R., E-mail: sloan@isc.astro.cornell.edu [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-08-10

    Infrared spectra of carbon-rich objects that have evolved off the asymptotic giant branch reveal a range of dust properties, including fullerenes, polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons, and several unidentified features, including the 21 μm emission feature. To test for the presence of fullerenes, we used the position and width of the feature at 18.7-18.9 μm and examined other features at 17.4 and 6-9 μm. This method adds three new fullerene sources to the known sample, but it also calls into question three previous identifications. We confirm that the strong 11 μm features seen in some sources arise primarily from SiC, which may exist as a coating around carbonaceous cores and result from photo-processing. Spectra showing the 21 μm feature usually show the newly defined Class D PAH profile at 7-9 μm. These spectra exhibit unusual PAH profiles at 11-14 μm, with weak contributions at 12.7 μm, which we define as Class D1, or show features shifted to ∼11.4, 12.4, and 13.2 μm, which we define as Class D2. Alkyne hydrocarbons match the 15.8 μm feature associated with 21 μm emission. Sources showing fullerene emission but no PAHs have blue colors in the optical, suggesting a clear line of sight to the central source. Spectra with 21 μm features and Class D2 PAH emission also show photometric evidence for a relatively clear line of sight to the central source. The multiple associations of the 21 μm feature with aliphatic hydrocarbons suggest that the carrier is related to this material in some way.

  7. Carbon-rich dust past the asymptotic giant branch: Aliphatics, aromatics, and fullerenes in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Sloan, G. C.; Lagadec, E.; Zijlstra, A. A.; Kraemer, K. E.; Weis, A. P.; Matsuura, M.; Volk, K.; Peeters, E.; Cami, J.; Duley, W. W.; Bernard-Salas, J.; Kemper, F.; Sahai, R.

    2014-01-01

    Infrared spectra of carbon-rich objects that have evolved off the asymptotic giant branch reveal a range of dust properties, including fullerenes, polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons, and several unidentified features, including the 21 μm emission feature. To test for the presence of fullerenes, we used the position and width of the feature at 18.7-18.9 μm and examined other features at 17.4 and 6-9 μm. This method adds three new fullerene sources to the known sample, but it also calls into question three previous identifications. We confirm that the strong 11 μm features seen in some sources arise primarily from SiC, which may exist as a coating around carbonaceous cores and result from photo-processing. Spectra showing the 21 μm feature usually show the newly defined Class D PAH profile at 7-9 μm. These spectra exhibit unusual PAH profiles at 11-14 μm, with weak contributions at 12.7 μm, which we define as Class D1, or show features shifted to ∼11.4, 12.4, and 13.2 μm, which we define as Class D2. Alkyne hydrocarbons match the 15.8 μm feature associated with 21 μm emission. Sources showing fullerene emission but no PAHs have blue colors in the optical, suggesting a clear line of sight to the central source. Spectra with 21 μm features and Class D2 PAH emission also show photometric evidence for a relatively clear line of sight to the central source. The multiple associations of the 21 μm feature with aliphatic hydrocarbons suggest that the carrier is related to this material in some way.

  8. Surface Compositions of Red Giant Stars in Globular Clusters

    Science.gov (United States)

    Cheng, Eric; Lau, Marie; Smith, Graeme; Chen, Brian

    2018-01-01

    Globular clusters (GCs) are excellent “laboratories” to study the formation and evolution of our galaxy. In order to understand, more specifically, the chemical compositions and stellar evolution of the stars in GCs, we ask whether or not deep internal mixing occurs in red giants or if in fact the compositions come from the primordial interstellar medium or previous generations of stars. It has been discovered that as a star evolves up the red giant branch, the surface carbon abundance decreases, which is evidence of deep internal mixing. We questioned whether these processes also affect O or Na abundance as a star evolves. We collected measurement data of red giants from GCs out of academic journals and sorted the data into catalogs. Then, we plotted the catalogs into figures, comparing surface O and Na each with stellar luminosity. Statistical tests were ran to quantify the amount of correlation between the variables. Out of 27 GCs, we concluded that eight show a positive correlation between Na and luminosity, and two show a negative correlation between O and luminosity. Properties of GCs were compared to determine if chemical distribution in stars depends on GCs as the self-enrichment scenario suggests. We created histograms of sodium distribution to test for bimodality to examine if there are separate trends in each GC. In six GCs, two different sequences of red giants appear for Na versus luminosity, suggesting evidence that the depth of mixing may differ among each red giant in a GC. This study has provided new evidence that the changing chemical abundances on the surfaces of red giants can be due to stellar evolutionary effects and deep internal mixing, which may not necessarily depend on the GC and may differ in depth among each red giant. Through this study, we learn more about stellar evolution which will eventually help us understand the origins of our universe. Most of this work was carried out by high school students working under the auspices of

  9. Modeling the Formation of Giant Planet Cores I: Evaluating Key Processes

    OpenAIRE

    Levison, H. F.; Thommes, E.; Duncan, M. J.

    2009-01-01

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the the solar nebula dispersed. The most popular model of giant planet formation is the so-called 'core accretion' model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very...

  10. Calculating Production Rate of each Branch of a Multilateral Well Using Multi-Segment Well Model: Field Example

    Directory of Open Access Journals (Sweden)

    Mohammed S. Al-Jawad

    2017-11-01

    Full Text Available Multilateral wells require a sophisticated type of well model to be applied in reservoir simulators to represent them. The model must be able to determine the flow rate of each fluid and the pressure throughout the well. The production rate calculations are very important because they give an indication about some main issues associated with multi-lateral wells such as one branch may produce water or gas before others, no production rate from one branch, and selecting the best location of a new branch for development process easily. This paper states the way to calculate production rate of each branch of a multilateral well-using multi-segment well model. The pressure behaviour of each branch is simulated dependent on knowing its production rate. This model has divided a multi-lateral well into an arbitrary number of segments depending on the required degree of accuracy and run time of the simulator. The model implemented on a field example (multi-lateral well HF-65ML in Halfaya Oil Field/Mishrif formation. The production rate and pressure behaviour of each branch are simulated during the producing interval of the multilateral well. The conclusion is that production rate of the main branch is slightly larger than a lateral branch.

  11. Modelling the Galactic bar using OGLE-II red clump giant stars

    NARCIS (Netherlands)

    Rattenbury, Nicholas J.; Mao, Shude; Sumi, Takahiro; Smith, Martin C.

    2007-01-01

    Red clump giant (RCG) stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration data base to constrain analytic triaxial models for the Galactic bar. We find the bar major-axis is

  12. Towards realistic modelling of spectral line formation - lessons learnt from red giants

    Science.gov (United States)

    Lind, Karin

    2015-08-01

    Many decades of quantitative spectroscopic studies of red giants have revealed much about the formation histories and interlinks between the main components of the Galaxy and its satellites. Telescopes and instrumentation are now able to deliver high-resolution data of superb quality for large stellar samples and Galactic archaeology has entered a new era. At the same time, we have learnt how simplifying physical assumptions in the modelling of spectroscopic data can bias the interpretations, in particular one-dimensional homogeneity and local thermodynamic equilibrium (LTE). I will present lessons learnt so far from non-LTE spectral line formation in 3D radiation-hydrodynamic atmospheres of red giants, the smaller siblings of red supergiants.

  13. IRAS 17423-1755 (HEN 3-1475) REVISITED: AN O-RICH HIGH-MASS POST-ASYMPTOTIC GIANT BRANCH STAR

    International Nuclear Information System (INIS)

    Manteiga, M.; GarcIa-Hernandez, D. A.; Manchado, A.; Ulla, A.; GarcIa-Lario, P.

    2011-01-01

    The high-resolution (R ∼ 600) Spitzer/IRS spectrum of the bipolar protoplanetary nebula (PN) IRAS 17423-1755 is presented in order to clarify the dominant chemistry (C-rich versus O-rich) of its circumstellar envelope as well as to constrain its evolutionary stage. The high-quality Spitzer/IRS spectrum shows weak 9.7 μm absorption from amorphous silicates. This confirms for the first time the O-rich nature of IRAS 17423-1755 in contradiction to a previous C-rich classification, which was based on the wrong identification of the strong 3.1 μm absorption feature seen in the Infrared Space Observatory spectrum as due to acetylene (C 2 H 2 ). The high-resolution Spitzer/IRS spectrum displays a complete lack of C-rich mid-IR features such as molecular absorption features (e.g., 13.7 μm C 2 H 2 , 14.0 μm HCN, etc.) or the classical polycyclic aromatic hydrocarbon infrared emission bands. Thus, the strong 3.1 μm absorption band toward IRAS 17423-1755 has to be identified as water ice. In addition, an [Ne II] nebular emission line at 12.8 μm is clearly detected, indicating that the ionization of its central region may be already started. The spectral energy distribution in the infrared (∼2-200 μm) and other observational properties of IRAS 17423-1755 are discussed in comparison with the similar post-asymptotic giant branch (AGB) objects IRAS 19343+2926 and IRAS 17393-2727. We conclude that IRAS 17423-1755 is an O-rich high-mass post-AGB object that represents a link between OH/IR stars with extreme outflows and highly bipolar PN.

  14. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  15. METALLICITIES, AGE-METALLICITY RELATIONSHIPS, AND KINEMATICS OF RED GIANT BRANCH STARS IN THE OUTER DISK OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Carrera, R.; Gallart, C.; Aparicio, A.; Hardy, E.

    2011-01-01

    The outer disk of the Large Magellanic Cloud (LMC) is studied in order to unveil clues about its formation and evolution. Complementing our previous studies in innermost fields (3 kpc ∼< R ∼< 7 kpc), we obtained deep color-magnitude diagrams in six fields with galactocentric distances from 5.2 kpc to 9.2 kpc and different azimuths. The comparison with isochrones shows that while the oldest population is approximately coeval in all fields, the age of the youngest populations increases with increasing radius. This agrees with the results obtained in the innermost fields. Low-resolution spectroscopy in the infrared Ca II triplet region has been obtained for about 150 stars near the tip of the red giant branch in the same fields. Radial velocities and stellar metallicities have been obtained from these spectra. The metallicity distribution of each field has been analyzed together with those previously studied. The metal content of the most metal-poor objects, which are also the oldest according to the derived age-metallicity relationships, is similar in all fields independently of the galactocentric distance. However, while the metallicity of the most metal-rich objects measured, which are the youngest ones, remains constant in the inner 6 kpc, it decreases with increasing radius from there on. The same is true for the mean metallicity. According to the derived age-metallicity relationships, which are consistent with being the same in all fields, this result may be interpreted as an outside-in formation scheme in opposition with the inside-out scenario predicted by ΛCDM cosmology for a galaxy like the LMC. The analysis of the radial velocities of our sample of giants shows that they follow a rotational cold disk kinematics. The velocity dispersion increases as metallicity decreases indicating that the most metal-poor/oldest objects are distributed in a thicker disk than the most metal-rich/youngest ones in agreement with the findings in other disks such as that of

  16. A stepped leader model for lightning including charge distribution in branched channels

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Zhang, Li [School of Electrical Engineering, Shandong University, Jinan 250061 (China); Li, Qingmin, E-mail: lqmeee@ncepu.edu.cn [Beijing Key Lab of HV and EMC, North China Electric Power University, Beijing 102206 (China); State Key Lab of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206 (China)

    2014-09-14

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.

  17. A stepped leader model for lightning including charge distribution in branched channels

    International Nuclear Information System (INIS)

    Shi, Wei; Zhang, Li; Li, Qingmin

    2014-01-01

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.

  18. Controls on stream network branching angles, tested using landscape evolution models

    Science.gov (United States)

    Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.

    2016-04-01

    Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349

  19. ON THE POSSIBLE EXISTENCE OF SHORT-PERIOD g-MODE INSTABILITIES POWERED BY NUCLEAR-BURNING SHELLS IN POST-ASYMPTOTIC GIANT BRANCH H-DEFICIENT (PG1159-TYPE) STARS

    International Nuclear Information System (INIS)

    Corsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Gonzalez Perez, J. M.; Kepler, S. O.

    2009-01-01

    We present a pulsational stability analysis of hot post-asymptotic giant branch (AGB) H-deficient pre-white dwarf stars with active He-burning shells. The stellar models employed are state-of-the-art equilibrium structures representative of PG1159 stars derived from the complete evolution of the progenitor stars, through the thermally pulsing AGB phase and born-again episode. On the basis of fully nonadiabatic pulsation computations, we confirmed theoretical evidence for the existence of a separate PG1159 instability strip in the log T eff -log g diagram characterized by short-period g-modes excited by the ε-mechanism. This instability strip partially overlaps the already known GW Vir instability strip of intermediate/long-period g-modes destabilized by the classical κ-mechanism acting on the partial ionization of C and/or O in the envelope of PG1159 stars. We found that PG1159 stars characterized by thick He-rich envelopes and located inside this overlapping region could exhibit both short and intermediate/long periods simultaneously. As a natural application of our results, we study the particular case of VV 47, a pulsating planetary nebula nucleus (PG1159 type) that is particularly interesting because it has been reported to exhibit a rich and complex pulsation spectrum including a series of unusually short pulsation periods. We found that the long periods exhibited by VV 47 can be readily explained by the classical κ-mechanism, while the observed short-period branch below ∼300 s could correspond to modes triggered by the He-burning shell through the ε-mechanism, although more observational work is needed to confirm the reality of these short-period modes. Were the existence of short-period g-modes in this star convincingly confirmed by future observations, VV 47 could be the first known pulsating star in which both the κ-mechanism and the ε-mechanism of mode driving are simultaneously operating.

  20. Post-giant evolution of helium stars

    International Nuclear Information System (INIS)

    Schoenberner, D.

    1977-01-01

    Extremely hydrogen deficient stars (helium stars and R Coronae Borealis variables) are considered to be remnants of double shell source stars (of the asymptotic giant branch). The evolution of stars with a condensed C/O-core and a helium envelope is followed numerically from the red giant stage to the white dwarf domain, crossing the regions of R CrB- and helium stars (so far analyzed). They have typically masses M/M(sun) = 0.7 and luminosities log L/L(sun) = 4.1. The time for crossing the helium star domain is some 10 3 years. The corresponding times in the R CrB-region amounts up to several 10 4 years. The lower limit of the death rate of helium stars is estimated to be 4 x 10 -14 pc -3 yr -1 . This value is only a factor of ten lower than the birth rate of all non-DA white dwarfs. It is therefore possible that the helium stars are the precursors of helium rich white dwarfs. As a consequence, a significant fraction of all stars which end their lives as white dwarfs should pass through the helium star phase. (orig.) [de

  1. The Droplet model of the Giant Fipole Resonance

    International Nuclear Information System (INIS)

    Myers, W.D.; Kodama, T.; El-Jaick, L.J.; Hilf, E.R.

    1976-10-01

    The nuclear Giant Dipole Resonance (GDR) energies are calculated using a macroscopic hydronamical model with two new features. The motion is treated as a combination of the usual Goldhaber-Teller (GT) and Steinwedel-Jensen (SJ) modes, and the restoring forces are all calculated using the Droplet Model. The A dependence of the resonance energies is well reproduced without any adjustable parameters, and the measured magnitude of the energies serves to fix the value of the effective mass m* used in the theory. The GDR is found to consist mainly of a GT-type motion with the SJ-mode becoming more important for heavy nuclei. The width P of the GDR is also estimated on the basis of an expression for one-body damping [pt

  2. Current perpendicular to plane giant magnetoresistance and tunneling magnetoresistance treated with unified model

    NARCIS (Netherlands)

    Jonkers, PAE

    2002-01-01

    The conceptual similarity between current perpendicular to plane giant magnetoresistance (CPP-GMR) and tunneling magnetoresistance (TMR) is exploited by utilizing a unified single-particle model accounting for both types of magnetoresistance. By defining structures composed of ferromagnetic,

  3. PLANET ENGULFMENT BY ∼1.5-3 Msun RED GIANTS

    International Nuclear Information System (INIS)

    Kunitomo, M.; Ikoma, M.; Sato, B.; Ida, S.; Katsuta, Y.

    2011-01-01

    Recent radial-velocity surveys for GK clump giants have revealed that planets also exist around ∼1.5-3 M sun stars. However, no planets have been found inside 0.6 AU around clump giants, in contrast to solar-type main-sequence stars, many of which harbor short-period planets such as hot Jupiters. In this study, we examine the possibility that planets were engulfed by host stars evolving on the red-giant branch (RGB). We integrate the orbital evolution of planets in the RGB and helium-burning phases of host stars, including the effects of stellar tide and stellar mass loss. Then we derive the critical semimajor axis (or the survival limit) inside which planets are eventually engulfed by their host stars after tidal decay of their orbits. Specifically, we investigate the impact of stellar mass and other stellar parameters on the survival limit in more detail than previous studies. In addition, we make detailed comparisons with measured semimajor axes of planets detected so far, which no previous study has done. We find that the critical semimajor axis is quite sensitive to stellar mass in the range between 1.7 and 2.1 M sun , which suggests a need for careful comparison between theoretical and observational limits of the existence of planets. Our comparison demonstrates that all planets orbiting GK clump giants that have been detected are beyond the survival limit, which is consistent with the planet-engulfment hypothesis. However, on the high-mass side (>2.1M sun ), the detected planets are orbiting significantly far from the survival limit, which suggests that engulfment by host stars may not be the main reason for the observed lack of short-period giant planets. To confirm our conclusion, the detection of more planets around clump giants, especially with masses ∼> 2.5M sun , is required.

  4. [«Man-in-the-barrel» syndrome: atypical manifestation of giant cell arteritis].

    Science.gov (United States)

    Calle-Lopez, Y; Fernandez-Ramirez, A F; Franco-Dager, E; Gomez-Lopera, J G; Vanegas-Garcia, A L

    2018-06-01

    «Man-in-the-barrel» syndrome refers to diplegia of the upper extremities in which mobility of the head and lower limbs is preserved. Brachial plexitis that presents as «man-in-the-barrel» syndrome is an unusual manifestation of giant cell arteritis. We report a case of C5-C6 plexitis as part of the clinical features of a patient with giant cell arteritis. A 70-year-old male with a two-month history of weight loss, headache, facial pain and jaw claudication, associated with a persistent elevation of acute phase reactants and bilateral brachial plexopathy, with no evidence of neck or brain injuries or occult neoplasm and with negative autoimmunity tests. Results of the biopsy study of the temporal artery were compatible with giant cell arteritis, and the positron emission tomography scan revealed extensive vascular involvement of the aorta and its branches. Although the typical clinical manifestations of giant cell arteritis are headache, jaw claudication, loss of sight, constitutional symptoms and polymyalgia rheumatica, its presence must be suspected in patients over the age of 50 who manifest alterations affecting the peripheral nerve, including brachial diplegia with no other demonstrable cause.

  5. Giant lipoma arising from deep lobe of the parotid gland

    Directory of Open Access Journals (Sweden)

    Hsu Ying-Che

    2006-06-01

    Full Text Available Abstract Background Lipomas are common benign soft tissue neoplasms but they are found very rarely in the deep lobe of parotid gland. Surgical intervention in these tumors is challenging because of the proximity of the facial nerve, and thus knowledge of the anatomy and meticulous surgical technique are essential. Case presentation A 71-year-old female presented with a large asymptomatic mass, which had occupied the left facial area for over the past fifteen years, and she requested surgical excision for a cosmetically better facial appearance. The computed tomography (CT scan showed a well-defined giant lipoma arising from the left deep parotid gland. The lipoma was successfully enucleated after full exposure and mobilization of the overlying facial nerve branches. The surgical specimen measured 9 × 6 cm in size, and histopathology revealed fibrolipoma. The patient experienced an uneventful recovery, with a satisfying facial contour and intact facial nerve function. Conclusion Giant lipomas involving the deep parotid lobe are extremely rare. The high-resolution CT scan provides an accurate and cost-effective preoperative investigative method. Surgical management of deep lobe lipoma should be performed by experienced surgeons due to the need for meticulous dissection of the facial nerve branches. Superficial parotidectomy before deep lobe lipoma removal may be unnecessary in selected cases because preservation of the superficial lobe may contribute to a better aesthetic and functional result.

  6. RADIAL VELOCITY OBSERVATIONS AND LIGHT CURVE NOISE MODELING CONFIRM THAT KEPLER-91b IS A GIANT PLANET ORBITING A GIANT STAR

    International Nuclear Information System (INIS)

    Barclay, Thomas; Huber, Daniel; Rowe, Jason F.; Quintana, Elisa V.; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Foreman-Mackey, Daniel

    2015-01-01

    Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73 ± 0.13 M Jup planet orbiting a red giant star

  7. SYNTHETIC AGB EVOLUTION .1. A NEW MODEL

    NARCIS (Netherlands)

    GROENEWEGEN, MAT; DEJONG, T

    We have constructed a model to calculate in a synthetic way the evolution of stars on the asymptotic giant branch (AGB). The evolution is started at the first thermal pulse (TP) and is terminated when the envelope mass has been lost due to mass loss or when the core mass reaches the Chandrasekhar

  8. Giant right atrial aneurysm presenting as right heart failure

    Directory of Open Access Journals (Sweden)

    V.S. Narain

    2012-03-01

    Full Text Available Idiopathic aneurysmal dilatations of the right atrium are rare anomalies. We report one such case of a young man presenting with fatigue, abdominal distension, pedal oedema, unremarkable cardiac examination except for raised jugular venous pressure, an electrocardiogram showing normal sinus rhythm with right bundle-branch block, and an radiograph of the chest showing cardiomegaly. The echocardiographic examination revealed a giant right atrium with low pressure tricuspid regurgitation. The computed tomography confirmed the findings of two-dimensional echocardiography. He was put on medical treatment and remained symptomatically controlled on follow-up.

  9. From red giant to planetary nebula - Dust, asymmetry, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.; Jones, T.J.

    1991-01-01

    The polarization characteristics of stars in the stages of evolution from red giant to planetary nebula are investigated. Polarization is found to be a characteristic of the majority of these stars. The maximum observed polarization increases with age as the star evolves up the asymptotic giant branch (AGB) to the protoplanetary nebula phase, where the polarization reaches a maximum. The polarization then decreases as the star further evolves into a planetary nebula. These results indicate that aspherical mass loss is likely to be a continual feature of the late stages of stellar evolution, maintaining a clear continuity throughout the life of a star from the moment it first develops a measurable dust shell. The aspherical morphology seen in planetary nebulae has its origin in an intrinsic property of the star that is present at least as early as its arrival at the base of the AGB. 77 refs

  10. The effect of a giant wind farm on precipitation in a regional climate model

    International Nuclear Information System (INIS)

    Fiedler, B H; Bukovsky, M S

    2011-01-01

    The Weather Research and Forecasting (WRF) model is employed as a nested regional climate model to study the effect of a giant wind farm on warm-season precipitation in the eastern two-thirds of the USA. The boundary conditions for WRF are supplied by 62 years of NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research) global reanalysis. In the model, the presence of a mid-west wind farm, either giant or small, can have an enormous impact on the weather and the amount of precipitation for one season, which is consistent with the known sensitivity of long-term weather forecasts to initial conditions. The effect on climate is less strong. In the average precipitation of 62 warm seasons, there is a statistically significant 1.0% enhancement of precipitation in a multi-state area surrounding and to the south-east of the wind farm.

  11. Riboflavin and chlorophyll as photosensitizers in electroformed giant unilamellar vesicles as food models

    DEFF Research Database (Denmark)

    Wang, Hui Jing; Liang, Ran; du, Hui Hui

    2017-01-01

    Electroformed giant unilamellar vesicles (GUVs) were found to have optimal sizes (~10 µm average diameter) for studying effects of photosensitizers and antioxidants in lipid bilayers as food models. By using optical microscopy and digital image processing techniques, no membrane damage was found ...

  12. ASTEROSEISMIC-BASED ESTIMATION OF THE SURFACE GRAVITY FOR THE LAMOST GIANT STARS

    International Nuclear Information System (INIS)

    Liu, Chao; Wu, Yue; Deng, Li-Cai; Wang, Liang; Wang, Wei; Li, Guang-Wei; Fang, Min; Fu, Jian-Ning; Hou, Yong-Hui; Zhang, Yong

    2015-01-01

    Asteroseismology is one of the most accurate approaches to estimate the surface gravity of a star. However, most of the data from the current spectroscopic surveys do not have asteroseismic measurements, which is very expensive and time consuming. In order to improve the spectroscopic surface gravity estimates for a large amount of survey data with the help of the small subset of the data with seismic measurements, we set up a support vector regression (SVR) model for the estimation of the surface gravity supervised by 1374 Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) giant stars with Kepler seismic surface gravity. The new approach can reduce the uncertainty of the estimates down to about 0.1 dex, which is better than the LAMOST pipeline by at least a factor of 2, for the spectra with signal-to-noise ratio higher than 20. Compared with the log g estimated from the LAMOST pipeline, the revised log g values provide a significantly improved match to the expected distribution of red clump and red giant branch stars from stellar isochrones. Moreover, even the red bump stars, which extend to only about 0.1 dex in log g, can be discriminated from the new estimated surface gravity. The method is then applied to about 350,000 LAMOST metal-rich giant stars to provide improved surface gravity estimates. In general, the uncertainty of the distance estimate based on the SVR surface gravity can be reduced to about 12% for the LAMOST data

  13. ASTEROSEISMIC-BASED ESTIMATION OF THE SURFACE GRAVITY FOR THE LAMOST GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Wu, Yue; Deng, Li-Cai; Wang, Liang; Wang, Wei; Li, Guang-Wei [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20 A Datun Road, Beijing 100012 (China); Fang, Min [Departamento de Física Teórica, Facultad de Ciencias, Universidad Autonóma de Madrid, E-28049 Cantoblanco, Madrid (Spain); Fu, Jian-Ning [Department of Astronomy, Beijing Normal University, 19 Avenue Xinjiekouwai, Beijing 100875 (China); Hou, Yong-Hui; Zhang, Yong, E-mail: liuchao@nao.cas.cn [Nanjing Institute of Astronomical Optics and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing 210042 (China)

    2015-07-01

    Asteroseismology is one of the most accurate approaches to estimate the surface gravity of a star. However, most of the data from the current spectroscopic surveys do not have asteroseismic measurements, which is very expensive and time consuming. In order to improve the spectroscopic surface gravity estimates for a large amount of survey data with the help of the small subset of the data with seismic measurements, we set up a support vector regression (SVR) model for the estimation of the surface gravity supervised by 1374 Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) giant stars with Kepler seismic surface gravity. The new approach can reduce the uncertainty of the estimates down to about 0.1 dex, which is better than the LAMOST pipeline by at least a factor of 2, for the spectra with signal-to-noise ratio higher than 20. Compared with the log g estimated from the LAMOST pipeline, the revised log g values provide a significantly improved match to the expected distribution of red clump and red giant branch stars from stellar isochrones. Moreover, even the red bump stars, which extend to only about 0.1 dex in log g, can be discriminated from the new estimated surface gravity. The method is then applied to about 350,000 LAMOST metal-rich giant stars to provide improved surface gravity estimates. In general, the uncertainty of the distance estimate based on the SVR surface gravity can be reduced to about 12% for the LAMOST data.

  14. Multipole giant resonances of 12C nucleus electro excitation in intermediate coupling model

    International Nuclear Information System (INIS)

    Goncharova, N.G.; Zhivopistsev, F.A.

    1977-01-01

    Multipole giant resonances in 12 C electroexcitation are considered using the shell model with coupling. Cross sections are calculated for the states of 1 - , 2 - , 3 - , 4 - , at T=1. The distributions of the transverse form factor at transferred momenta equal to q approximately 0.75, 1.04, 1.22 and 1.56 Fm -1 and the longitudinal form factor for q = 0.75, 1.04, 1.56 Fm -1 are presented. For the excitation energies in the range from 18 to 28 MeV positive-parity states have a small contribution in the cross section. The distribution of the total form factor in the excitation energies is given. It is concluded that the multipole giant resonances of anomalous parity levels calculated within the interatomic-coupling shell model show a satisfactorily close agreement with the behavior of experimental form factors in the excitation energy range from 18 to 28 MeV

  15. Pen Branch Delta and Savannah River Swamp Hydraulic Model

    International Nuclear Information System (INIS)

    Chen, K.F.

    1999-01-01

    The proposed Savannah River Site (SRS) Wetlands Restoration Project area is located in Barnwell County, South Carolina on the southwestern boundary of the SRS Reservation. The swamp covers about 40.5 km2 and is bounded to the west and south by the Savannah River and to the north and east by low bluffs at the edge of the Savannah River floodplain. Water levels within the swamp are determined by stage along the Savannah River, local drainage, groundwater seepage, and inflows from four tributaries, Beaver Dam Creek, Fourmile Branch, Pen Branch, and Steel Creek. Historic discharges of heated process water into these tributaries scoured the streambed, created deltas in the adjacent wetland, and killed native vegetation in the vicinity of the delta deposits. Future releases from these tributaries will be substantially smaller and closer to ambient temperatures. One component of the proposed restoration project will be to reestablish indigenous wetland vegetation on the Pen Branch delta that covers about 1.0 km2. Long-term predictions of water levels within the swamp are required to determine the characteristics of suitable plants. The objective of the study was to predict water levels at various locations within the proposed SRS Wetlands Restoration Project area for a range of Savannah River flows and regulated releases from Pen Branch. TABS-MD, a United States Army Corps of Engineer developed two-dimensional finite element open channel hydraulic computer code, was used to model the SRS swamp area for various flow conditions

  16. Mediterranean salt giants beyond the evaporite model: The Sicily perspective

    Science.gov (United States)

    Carmelo Manuella, Fabio; Scribano, Vittorio; Carbone, Serafina; Hovland, Martin; Johnsen, Hans-Konrad; Rueslåtten, Håkon

    2017-04-01

    Mediterranean salt giants, occurring both in sub-seafloor and in onshore settings (the "Gessoso Solfifera Group"), are traditionally explained by repeated cycles of desiccation and replenishment of the entire basin. However, such hypotheses are strongly biased by mass balance calculations and geodynamic considerations. In addition, any hypothesis without full desiccation, still based on the evaporite model, should consider that seawater brines start to precipitate halite when 2/3 of the seawater has evaporated, and hence the level of the basin cannot be the same as the adjacent ocean. On the other hand, hydrothermal venting of hot saline brines onto the seafloor can precipitate salt in a deep marine basin if a layer of heavy brine exists along the seafloor. This process, likely related to sub-surface boiling or supercritical out-salting (Hovland et al., 2006), is consistent with geological evidence in the Red Sea "Deeps" (Hovland et al., 2015). Although supercritical out-salting and phase separation can sufficiently explain the formation of several marine salt deposits, even in deep marine settings, the Mediterranean salt giant formations can also be explained by the serpentinization model (Scribano et al., 2016). Serpentinization of abyssal peridotites does not involve seawater salts, and large quantities of saline brines accumulate in pores and fractures of the sub-seafloor serpentinites. If these rocks undergo thermal dehydration, for example, due to igneous intrusions, brines and salt slurries can migrate upwards as hydrothermal plumes, eventually venting at the seafloor, giving rise to giant salt deposits over time. These hydrothermal processes can take place in a temporal sequence, as it occurred in the "Caltanissetta Basin" (Sicily). There, salt accumulation associated with serpentinization started during Triassic times (and even earlier), and venting of heavy brines onto the seafloor eventually occurred in the Messinian via the hydrothermal plume mechanism

  17. Macroscopic description of isoscalar giant multipole resonances

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1980-01-01

    On the basis of a simple macroscopic model, we calculate the isoscalar giant-resonance energy as a function of mass number and multipole degree. The restoring force is determined from the distortion of the Fermi surface, and the inertia is determined for the incompressible, irrotational flow of nucleons with unit effective mass. With no adjustable parameters, the resulting closed expression reproduces correctly the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole energy and the magnitude of the giant octupole energy for 208 Pb. We also calculate the isoscalar giant-resonance width as a function of mass number and multipole degree for various macroscopic damping mechanisms, including two-body viscosity, one-body dissipation, and modified one-body dissipation. None of these damping mechanisms reproduces correctly all features of the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole width and the magnitude of the giant octupole width for 208 Pb

  18. New red giant star in the Kepler open cluster NGC 6819

    Science.gov (United States)

    Komucyeya, E.; Abedigamba, O. P.; Jurua, E.; Anguma, S. K.

    2018-05-01

    A recent study indicated that 39 red giant stars showing solar-like oscillations were discovered in the field of Kepleropen cluster NGC 6819. The study was based on photometric distance estimates of 27 stars out of the 39. Using photometric method alone may not be adequate to confirm the membership of these stars. The stars were not previously known in literature to belong to the open cluster NGC 6819. In this study, Kepler data was used to study the membership of the 27 stars. A plot of apparent magnitude as a function of the large frequency separation, supplemented with the proper motion and radial velocity values from literature revealed KIC 5112840 to lie on the same plane with the well known members of the cluster. Echelle diagram was constructed, and the median gravity-mode period spacings (ΔP) calculated for KIC 5112840. A value of ΔP = 66.3 s was obtained, thus placing the red giant star KIC 5112840 on the Red Giant Branch stage of evolution. Our evolutionary status result using the approach in this paper is in agreement with what is in the available literature.

  19. A Mathematical Model with Pulse Effect for Three Populations of the Giant Panda and Two Kinds of Bamboo

    Directory of Open Access Journals (Sweden)

    Xiang-yun Shi

    2013-01-01

    Full Text Available A mathematical model for the relationship between the populations of giant pandas and two kinds of bamboo is established. We use the impulsive perturbations to take into account the effect of a sudden collapse of bamboo as a food source. We show that this system is uniformly bounded. Using the Floquet theory and comparison techniques of impulsive equations, we find conditions for the local and global stabilities of the giant panda-free periodic solution. Moreover, we obtain sufficient conditions for the system to be permanent. The results provide a theoretical basis for giant panda habitat protection.

  20. Cross-Section Measurements of the Kr86(γ,n) Reaction to Probe the s-Process Branching at Kr85

    Science.gov (United States)

    Raut, R.; Tonchev, A. P.; Rusev, G.; Tornow, W.; Iliadis, C.; Lugaro, M.; Buntain, J.; Goriely, S.; Kelley, J. H.; Schwengner, R.; Banu, A.; Tsoneva, N.

    2013-09-01

    We have carried out photodisintegration cross-section measurements on Kr86 using monoenergetic photon beams ranging from the neutron separation energy, Sn=9.86MeV, to 13 MeV. We combine our experimental Kr86(γ,n)Kr85 cross section with results from our recent Kr86(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of Kr86. The new experimental information is used to predict the neutron capture cross section of Kr85, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise Kr85(n,γ)Kr86 cross section allows us to produce more precise predictions of the Kr86 abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the C13 neutron source burns convectively rather than radiatively, represent a possible solution for the highest Kr86∶Kr82 ratios observed in meteoritic stardust SiC grains.

  1. Cross-section measurements of the 86Kr(γ,n) reaction to probe the s-process branching at 85Kr.

    Science.gov (United States)

    Raut, R; Tonchev, A P; Rusev, G; Tornow, W; Iliadis, C; Lugaro, M; Buntain, J; Goriely, S; Kelley, J H; Schwengner, R; Banu, A; Tsoneva, N

    2013-09-13

    We have carried out photodisintegration cross-section measurements on 86Kr using monoenergetic photon beams ranging from the neutron separation energy, S(n) = 9.86  MeV, to 13 MeV. We combine our experimental 86Kr(γ,n)85Kr cross section with results from our recent 86Kr(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of 86Kr. The new experimental information is used to predict the neutron capture cross section of 85Kr, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise 85Kr(n,γ)86Kr cross section allows us to produce more precise predictions of the 86Kr abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the 13C neutron source burns convectively rather than radiatively, represent a possible solution for the highest 86Kr:82Kr ratios observed in meteoritic stardust SiC grains.

  2. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    International Nuclear Information System (INIS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array

  3. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550 (Japan); Spiegel, David S. [Analytics and Algorithms, Stitch Fix, San Francisco, CA 94103 (United States); Mroczkowski, Tony [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Nordhaus, Jason [Department of Science and Mathematics, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Zimmerman, Neil T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Parsons, Aaron R. [Astronomy Department, University of California, Berkeley, CA (United States); Mirbabayi, Mehrdad [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Madhusudhan, Nikku, E-mail: yuka.fujii@elsi.jp [Astronomy Department, University of Cambridge (United Kingdom)

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  4. Radio Emission from Red-Giant Hot Jupiters

    Science.gov (United States)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  5. Giant resonances: reaction theory approach

    International Nuclear Information System (INIS)

    Toledo Piza, A.F.R. de; Foglia, G.A.

    1989-09-01

    The study of giant resonances through the use of reaction theory approach is presented and discussed. Measurements of cross-sections to the many available decay channels following excitation of giant multipole resonances (GMR) led one to view these phenomena as complicated dynamical syndromes so that theoretical requirements for their study must be extended beyond the traditional bounds of nuclear structure models. The spectra of decay products following GMR excitation in heavy nuclei are well described by statistical model (Hauser-Feshback, HF) predictions indicated that spreading of the collective modes plays a major role in shaping exclusive cross-sections. (A.C.A.S.) [pt

  6. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints

    Science.gov (United States)

    Nadège, Lagarde

    The availability of asteroseismic constraints for a large sample of red-giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. We use a detailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al. 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. This study is already published in Lagarde et al. (2015)

  7. Revealing the microstructure of the giant component in random graph ensembles

    Science.gov (United States)

    Tishby, Ido; Biham, Ofer; Katzav, Eytan; Kühn, Reimer

    2018-04-01

    The microstructure of the giant component of the Erdős-Rényi network and other configuration model networks is analyzed using generating function methods. While configuration model networks are uncorrelated, the giant component exhibits a degree distribution which is different from the overall degree distribution of the network and includes degree-degree correlations of all orders. We present exact analytical results for the degree distributions as well as higher-order degree-degree correlations on the giant components of configuration model networks. We show that the degree-degree correlations are essential for the integrity of the giant component, in the sense that the degree distribution alone cannot guarantee that it will consist of a single connected component. To demonstrate the importance and broad applicability of these results, we apply them to the study of the distribution of shortest path lengths on the giant component, percolation on the giant component, and spectra of sparse matrices defined on the giant component. We show that by using the degree distribution on the giant component one obtains high quality results for these properties, which can be further improved by taking the degree-degree correlations into account. This suggests that many existing methods, currently used for the analysis of the whole network, can be adapted in a straightforward fashion to yield results conditioned on the giant component.

  8. THE BANKRUPT RISK IN FEED DISTRIBUTION BRANCH IN DOLJ DISTRICT – FDR MODEL

    Directory of Open Access Journals (Sweden)

    Ovidiu CĂPRARIU

    2010-01-01

    Full Text Available Abstract:In this article, we are intending to present a score function in order to calculate the bankrupt risk for a special domain: feed distribution.All analysis models of the bankruptcy risk have at their basis a score function according to which it is determined with approximation whether the company would get bankruptcy or would have performing economic results, in a period immediately following the analysis.Having a personal analysis in feed distribution branch, I elaborated a score function for counting bankrupt risk, based on financial and non-financial studies of many companies and we called this model “Feed Distribution Risk Model” (FDR. The target was to obtain a high level of precision, so I choose the feed industry and more specific only feed distribution branch and I analyzed statistics about the evolution of the feed distribution companies in Romania and about the normal level of some financial or non-financial indicators for these companies.I have choose five feed distribution companies and I counted two international score functions and two Romanian score function with FDR function. Finally, I concluded that the three main differences between the classic models and this one are that the FDR model is for a specified branch – the feed distribution, it uses an important number of indicators and uses non-financial indicators, which explain the shareholders bonity. As directions to continue the investigations, I propose the elaboration of another models for other branches and adjust the financial information with true dates.

  9. Giant Oil Fields - The Highway to Oil: Giant Oil Fields and their Importance for Future Oil Production

    International Nuclear Information System (INIS)

    Robelius, Fredrik

    2007-01-01

    Since the 1950s, oil has been the dominant source of energy in the world. The cheap supply of oil has been the engine for economic growth in the western world. Since future oil demand is expected to increase, the question to what extent future production will be available is important. The belief in a soon peak production of oil is fueled by increasing oil prices. However, the reliability of the oil price as a single parameter can be questioned, as earlier times of high prices have occurred without having anything to do with a lack of oil. Instead, giant oil fields, the largest oil fields in the world, can be used as a parameter. A giant oil field contains at least 500 million barrels of recoverable oil. Only 507, or 1 % of the total number of fields, are giants. Their contribution is striking: over 60 % of the 2005 production and about 65 % of the global ultimate recoverable reserve (URR). However, giant fields are something of the past since a majority of the largest giant fields are over 50 years old and the discovery trend of less giant fields with smaller volumes is clear. A large number of the largest giant fields are found in the countries surrounding the Persian Gulf. The domination of giant fields in global oil production confirms a concept where they govern future production. A model, based on past annual production and URR, has been developed to forecast future production from giant fields. The results, in combination with forecasts on new field developments, heavy oil and oil sand, are used to predict future oil production. In all scenarios, peak oil occurs at about the same time as the giant fields peak. The worst-case scenario sees a peak in 2008 and the best-case scenario, following a 1.4 % demand growth, peaks in 2018

  10. Mathematical Modeling of the Process for Microbial Production of Branched Chained Amino Acids

    Directory of Open Access Journals (Sweden)

    Todorov K.

    2009-12-01

    Full Text Available This article deals with modelling of branched chained amino acids production. One of important branched chained amino acid is L-valine. The aim of the article is synthesis of dynamic unstructured model of fed-batch fermentation process with intensive droppings for L-valine production. The presented approach of the investigation includes the following main procedures: description of the process by generalized stoichiometric equations; preliminary data processing and calculation of specific rates for main kinetic variables; identification of the specific rates takes into account the dissolved oxygen tension; establishment and optimisation of dynamic model of the process; simulation researches. MATLAB is used as a research environment.

  11. Giant first-forbidden resonances

    International Nuclear Information System (INIS)

    Krmpotic, F.; Nakayama, K.; Sao Paulo Univ.; Pio Galeao, A.; Sao Paulo Univ.

    1983-01-01

    Recent experimental data on first-forbidden charge-exchange resonances are discussed in the framework of a schematic model. We also evaluate the screening of the weak coupling constants induced by both the giant resonances and the δ-isobar. It is shown that the last effect does not depend on the multipolarity of the one-particle moment. Due to the same reason, the fraction of the reaction strength pushed up into the δ-resonance region is always the same regardless of the quantum numbers carried by the excitation. Simple expressions are derived for the dependence of the excitation energies of the first-forbidden giant resonances on the mass number and isospin of the target. The model reproduces consistently both the Gamow-Teller and the first-forbidden resonances. (orig.)

  12. Soft hadronic production by ECCO in the geometrical branching model

    International Nuclear Information System (INIS)

    Pan, J.; Hwa, R.C.

    1993-01-01

    Soft production of hadrons in hadronic collisions is described in the geometrical branching model and implemented by the eikonal cascade code (ECCO). It is shown that the major global features of multiparticle production can be reproduced by one essential characterization of the dynamics of branching, namely, a scaling law for the mass distribution of daughter clusters. Without further adjustment of any parameters, the event generator can produce local features of multiplicity fluctuations in agreement with the NA22 intermittency data. The scaling exponent ν is determined to be 1.522 at √s =22 GeV, independent of the dimensionality of the intermittency analysis. It is shown that ν is approximately independent of the collision energy

  13. Giant Glial Cell: New Insight Through Mechanism-Based Modeling

    DEFF Research Database (Denmark)

    Postnov, D. E.; Ryazanova, L. S.; Brazhe, Nadezda

    2008-01-01

    The paper describes a detailed mechanism-based model of a tripartite synapse consisting of P- and R-neurons together with a giant glial cell in the ganglia of the medical leech (Hirudo medicinalis), which is a useful object for experimental studies in situ. We describe the two main pathways...... of the glial cell activation: (1) via IP3 production and Ca2+ release from the endoplasmic reticulum and (2) via increase of the extracellular potassium concentration, glia depolarization, and opening of voltage-dependent Ca2+ channels. We suggest that the second pathway is the more significant...

  14. Particle-in-cell modeling of streamer branching in CO2 gas

    KAUST Repository

    Levko, Dmitry; Pachuilo, Michael; Raja, Laxminarayan L

    2017-01-01

    The mechanism of streamer branching remains one of the unsolved problems of low-temperature plasma physics. The understanding of this phenomenon requires very high-fidelity models that include, for instance, the kinetic description of electrons

  15. Giant resonance of electrical multipole from droplet model

    International Nuclear Information System (INIS)

    Tauhata, L.

    1984-01-01

    The formalism of the electrical multipole resonance developed from the Droplet nuclear model is presented. It combines the approaches of Goldhaber-Teller (GT) and Steinwedel-Jensen (SJ) and it shows the relative contribution of Coulomb, superficial and neutron excess energies. It also discusses the calculation of half-width. The model evaluates correctly the resonance energies as a function of nuclear mass and allows, through the Mixture Index, the prediction of the complementary participation of modes SJ and GT in the giant nuclear resonance. Values of the mixture index, for each multipolarity, reproduce well the form factors obtained from experiments of charged particle inelastic scattering. The formalism presented for the calculation of the half-width gives a macroscopic description of the friction mechanism. The establishment of the macroscopic structure of the Dissipation Function is used as a reference in the comparison of microscopic calculations. (Author) [pt

  16. TESTING CONVECTIVE-CORE OVERSHOOTING USING PERIOD SPACINGS OF DIPOLE MODES IN RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Montalban, J.; Noels, A.; Dupret, M.-A.; Scuflaire, R. [Institut d' Astrophysique et Geophysique de l' Universite de Liege, Allee du six Aout, 17 B-4000 Liege (Belgium); Miglio, A. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Ventura, P. [Osservatorio Astronomico di Roma-INAF, via Frascati 33, I-00040 Monteporzio Catone, Rome (Italy)

    2013-04-01

    Uncertainties on central mixing in main-sequence (MS) and core He-burning (He-B) phases affect key predictions of stellar evolution such as late evolutionary phases, chemical enrichment, ages, etc. We propose a test of the extension of extra-mixing in two relevant evolutionary phases based on period spacing ({Delta}P) of solar-like oscillating giants. From stellar models and their corresponding adiabatic frequencies (respectively, computed with ATON and LOSC codes), we provide the first predictions of the observable {Delta}P for stars in the red giant branch and in the red clump (RC). We find (1) a clear correlation between {Delta}P and the mass of the helium core (M{sub He}); the latter in intermediate-mass stars depends on the MS overshooting, and hence it can be used to set constraints on extra-mixing during MS when coupled with chemical composition; and (2) a linear dependence of the average value of the asymptotic period spacing (({Delta}P){sub a}) on the size of the convective core during the He-B phase. A first comparison with the inferred asymptotic period spacing for Kepler RC stars also suggests the need for extra-mixing during this phase, as evinced from other observational facts.

  17. Multipole giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Xia Keding; Cai Yanhuang

    1989-01-01

    The isoscalar giant surface resonance and giant dipole resonance in highly excited nuclei are discussed. Excitation energies of the giant modes in 208 Pb are calculated in a simplified model, using the concept of energy wieghted sum rule (EWSR), and the extended Thomas-Fermi approximation at the finite temperature is employed to describe the finite temperature is employed to describe the finite temperature equilibrium state. It is shown that EWSR and the energy of the resonance depend only weakly on temperature in the system. This weak dependence is analysed

  18. Multifractal structure of multiparticle production in the branching models

    International Nuclear Information System (INIS)

    Chiu, C.B.; Hwa, R.C.

    1990-01-01

    A procedure is described for the multifractal analysis of data on multiparticle production obtained at high energy either in experiment or in Monte Carlo simulation. It is shown how the spectrum f(α) of the rapidity-density index α can be determined from the multiplicity fluctuation of the rapidity distribution, as the resolution is changed. The branching model is used to illustrate the procedure. It is found that the φ 3 model has a narrower f(α) than the gluon model, suggesting that multifractality is a useful arena for confrontation between theory and experiment. 13 refs., 2 figs

  19. OPTIMIZATION OF ATM AND BRANCH CASH OPERATIONS USING AN INTEGRATED CASH REQUIREMENT FORECASTING AND CASH OPTIMIZATION MODEL

    Directory of Open Access Journals (Sweden)

    Canser BİLİR

    2018-04-01

    Full Text Available In this study, an integrated cash requirement forecasting and cash inventory optimization model is implemented in both the branch and automated teller machine (ATM networks of a mid-sized bank in Turkey to optimize the bank’s cash supply chain. The implemented model’s objective is to minimize the idle cash levels at both branches and ATMs without decreasing the customer service level (CSL by providing the correct amount of cash at the correct location and time. To the best of our knowledge, the model is the first integrated model in the literature to be applied to both ATMs and branches simultaneously. The results demonstrated that the integrated model dramatically decreased the idle cash levels at both branches and ATMs without degrading the availability of cash and hence customer satisfaction. An in-depth analysis of the results also indicated that the results were more remarkable for branches. The results also demonstrated that the utilization of various seasonal indices plays a very critical role in the forecasting of cash requirements for a bank. Another unique feature of the study is that the model is the first to include the recycling feature of ATMs. The results demonstrated that as a result of the inclusion of the deliberate seasonal indices in the forecasting model, the integrated cash optimization models can be used to estimate the cash requirements of recycling ATMs.

  20. Thermodynamic admissibility of the extended Pom-Pom model for branched polymers

    NARCIS (Netherlands)

    Soulages, J.; Hütter, M.; Öttinger, H.C.

    2006-01-01

    The thermodynamic consistency of the eXtended Pom-Pom (XPP) model for branched polymers of Verbeeten et al. [W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens, Differential constitutive equations for polymer melts: the extended pom-pom model, J. Rheol. 45 (4) (2001) 823–843; W.M.H. Verbeeten, G.W.M.

  1. Modeling of the branching influence on liquid–liquid equilibrium of binary and ternary polymer solutions by lattice–cluster theory

    International Nuclear Information System (INIS)

    Browarzik, Dieter; Langenbach, Kai; Enders, Sabine; Browarzik, Christina

    2013-01-01

    Highlights: ► Liquid–liquid equilibrium (LLE) is calculated with the lattice–cluster theory (LCT). ► Equations of the LCT are reduced to only three geometrical parameters. ► Branching influence on the LLE is modeled for binary and ternary polymer solutions. ► Branched and linear solvents and polymers are compared in their influence on LLE. ► Solutions of branched polymers in branched solvents show the best miscibility. -- Abstract: The liquid–liquid equilibrium (LLE) of ternary model systems of the type solvent A + polymer B + solvent C is treated in the framework of lattice–cluster theory (LCT). There are a linear and a branched type of A-molecules as well as a linear and two types of strongly branched polymer molecules. The C-molecules are assumed to occupy only one lattice site. For nine binary and six ternary polymer solutions the branching influence on LLE is discussed. Currently, the LCT is the most useful model to take the architecture of the molecules into account. However, particularly for ternary systems the model is not comfortable because of the very numerous terms of the Gibbs energy. Using some relationships between the geometrical parameters of the model a considerable simplification is possible. In this paper the new and simpler equations of the LCT are presented. For comparison with experimental data critical temperatures of solutions of linear and branched polyethylene samples in diphenyl ether are calculated

  2. Derrida's Generalized Random Energy models; 4, Continuous state branching and coalescents

    CERN Document Server

    Bovier, A

    2003-01-01

    In this paper we conclude our analysis of Derrida's Generalized Random Energy Models (GREM) by identifying the thermodynamic limit with a one-parameter family of probability measures related to a continuous state branching process introduced by Neveu. Using a construction introduced by Bertoin and Le Gall in terms of a coherent family of subordinators related to Neveu's branching process, we show how the Gibbs geometry of the limiting Gibbs measure is given in terms of the genealogy of this process via a deterministic time-change. This construction is fully universal in that all different models (characterized by the covariance of the underlying Gaussian process) differ only through that time change, which in turn is expressed in terms of Parisi's overlap distribution. The proof uses strongly the Ghirlanda-Guerra identities that impose the structure of Neveu's process as the only possible asymptotic random mechanism.

  3. Marking behavior of the giant anteater Myrmecophaga tridactyla (Mammalia: Myrmecophagidae in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Fernanda G. Braga

    2010-02-01

    Full Text Available This research presents novel data on tree marking by the giant anteater, a large Neotropical mammal threatened in the state of Paraná and other areas of Brazil, and nearly threatened worldwide. Field work was carried out in the municipality of Jaguariaíva, Paraná (Southern Brazil with the goal of evaluating the pine marking behavior of the giant anteater and ascertaining whether wildfires interfere with it. Anteater marks were searched for on the trunks of pine trees in stands as well as pine trees dispersed throughout the landscape. For each pine tree, the following features were recorded: height, diameter breast height (DBH, height of first branch, presence/absence of scratch marks, geographical location, substrate, and matrix. The total number of scratches, scratch directions, scratch length, and height of top mark were also recorded. The scratches were defined as horizontal or vertical. Tree scratching was directly observed in three instances. Ninety-one trees were measured in the study area. The differences between marked and non-marked pines were significant for DBH and height of first branch. All scratches were found on pines dispersed throughout the landscape. Trees with horizontal and vertical marks were significantly different in terms of DBH, first branch height, and top mark height. After a wildfire that affected part of the study area, 54% of the previously marked trees were marked anew. We suggest that the marking behavior is used for communication between conspecifics with overlapping home ranges, possibly during the mating season. Additionally, we advance the hypothesis that pine marking behavior becomes more frequent with increased population stress due to anthropic interference.

  4. A collective model description of the low lying and giant dipole resonant properties of 40424446Ca

    International Nuclear Information System (INIS)

    Weise, J.I.

    1982-01-01

    The low-lying and giant dipole resonant properties of the even-even calcium isotopes are calculated within the framework of the Gneuss-Greiner model and compared with the experimental data. In the low energy region, comparison is also made with the predictions of a coexistence model

  5. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    International Nuclear Information System (INIS)

    Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.; Meszaros, Szabolcs; Allende Prieto, Carlos; Bizyaev, Dmitry; Garcìa Pèrez, Ana; Majewski, Steven R.; Schiavon, Ricardo; Holtzman, Jon; Johnson, Jennifer A.

    2013-01-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants (α Boo and μ Leo), two M-giants (β And and δ Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes 12 C, 13 C, 14 N, and 16 O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of 12 C synthesized during 4 He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to ∼0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  6. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Verne V.; Cunha, Katia [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Shetrone, Matthew D. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Meszaros, Szabolcs; Allende Prieto, Carlos [Instituto d' Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM 88349 (United States); Garcia Perez, Ana; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Schiavon, Ricardo [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5UX (United Kingdom); Holtzman, Jon [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Johnson, Jennifer A., E-mail: vsmith@noao.edu [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  7. Generalized Markov branching models

    OpenAIRE

    Li, Junping

    2005-01-01

    In this thesis, we first considered a modified Markov branching process incorporating both state-independent immigration and resurrection. After establishing the criteria for regularity and uniqueness, explicit expressions for the extinction probability and mean extinction time are presented. The criteria for recurrence and ergodicity are also established. In addition, an explicit expression for the equilibrium distribution is presented.\\ud \\ud We then moved on to investigate the basic proper...

  8. 3rd Workshop on Branching Processes and their Applications

    CERN Document Server

    González, Miguel; Gutiérrez, Cristina; Martínez, Rodrigo; Minuesa, Carmen; Molina, Manuel; Mota, Manuel; Ramos, Alfonso; WBPA15

    2016-01-01

    This volume gathers papers originally presented at the 3rd Workshop on Branching Processes and their Applications (WBPA15), which was held from 7 to 10 April 2015 in Badajoz, Spain (http://branching.unex.es/wbpa15/index.htm). The papers address a broad range of theoretical and practical aspects of branching process theory. Further, they amply demonstrate that the theoretical research in this area remains vital and topical, as well as the relevance of branching concepts in the development of theoretical approaches to solving new problems in applied fields such as Epidemiology, Biology, Genetics, and, of course, Population Dynamics. The topics covered can broadly be classified into the following areas: 1. Coalescent Branching Processes 2. Branching Random Walks 3. Population Growth Models in Varying and Random Environments 4. Size/Density/Resource-Dependent Branching Models 5. Age-Dependent Branching Models 6. Special Branching Models 7. Applications in Epidemiology 8. Applications in Biology and Genetics Offer...

  9. Synthetic horizontal branch models for globular clusters - the luminosity of the horizontal branch and the Oosterhoff effect

    International Nuclear Information System (INIS)

    Lee, Y.W.; Demarque, P.; Zinn, R.

    1987-01-01

    The variation of horizontal-branch (HB) luminosities with metal abundances is analyzed on the basis of HB models synthesized from theoretical HB evolutionary tracks. The focus is on the Oosterhoff effect, as related to period shifts in globular-cluster RR Lyr variables. The construction of the models and the Oosterhoff period groups is explained in detail, and the implications for globular-cluster ages are considered. The ratio of Delta M(bol) (RR) to Delta Fe/H for the HB is calculated as 0.24, slightly steeper than that found by Sandage (1981 and 1982). 35 references

  10. Markov branching in the vertex splitting model

    International Nuclear Information System (INIS)

    Stefánsson, Sigurdur Örn

    2012-01-01

    We study a special case of the vertex splitting model which is a recent model of randomly growing trees. For any finite maximum vertex degree D, we find a one parameter model, with parameter α element of [0,1] which has a so-called Markov branching property. When D=∞ we find a two parameter model with an additional parameter γ element of [0,1] which also has this feature. In the case D = 3, the model bears resemblance to Ford's α-model of phylogenetic trees and when D=∞ it is similar to its generalization, the αγ-model. For α = 0, the model reduces to the well known model of preferential attachment. In the case α > 0, we prove convergence of the finite volume probability measures, generated by the growth rules, to a measure on infinite trees which is concentrated on the set of trees with a single spine. We show that the annealed Hausdorff dimension with respect to the infinite volume measure is 1/α. When γ = 0 the model reduces to a model of growing caterpillar graphs in which case we prove that the Hausdorff dimension is almost surely 1/α and that the spectral dimension is almost surely 2/(1 + α). We comment briefly on the distribution of vertex degrees and correlations between degrees of neighbouring vertices

  11. Branching bisimulation congruence for probabilistic systems

    NARCIS (Netherlands)

    Trcka, N.; Georgievska, S.; Aldini, A.; Baier, C.

    2008-01-01

    The notion of branching bisimulation for the alternating model of probabilistic systems is not a congruence with respect to parallel composition. In this paper we first define another branching bisimulation in the more general model allowing consecutive probabilistic transitions, and we prove that

  12. Modelling linewidths of Kepler red giants in NGC 6819

    Science.gov (United States)

    Aarslev, Magnus J.; Houdek, Günter; Handberg, Rasmus; Christensen-Dalsgaard, Jørgen

    2018-04-01

    We present a comparison between theoretical, frequency-dependent, damping rates and linewidths of radial-mode oscillations in red-giant stars located in the open cluster NGC 6819. The calculations adopt a time-dependent non-local convection model, with the turbulent pressure profile being calibrated to results of 3D hydrodynamical simulations of stellar atmospheres. The linewidths are obtained from extensive peakbagging of Kepler lightcurves. These observational results are of unprecedented quality owing to the long continuous observations by Kepler. The uniqueness of the Kepler mission also means that, for asteroseismic properties, this is the best data that will be available for a long time to come. We therefore take great care in modelling nine RGB stars in NGC 6819 using information from 3D simulations to obtain realistic temperature stratifications and calibrated turbulent pressure profiles. Our modelled damping rates reproduce well the Kepler observations, including the characteristic depression in the linewidths around the frequency of maximum oscillation power. Furthermore, we thoroughly test the sensitivity of the calculated damping rates to changes in the parameters of the nonlocal convection model.

  13. Research of Jiles-Atherton Dynamic Model in Giant Magnetostrictive Actuator

    Directory of Open Access Journals (Sweden)

    Yongguang Liu

    2016-01-01

    Full Text Available Due to the existence of multicoupled nonlinear factors in the giant magnetostrictive actuator (GMA, building precise mathematical model is highly important to study GMA’s characteristics and control strategies. Minor hysteresis loops near the bias magnetic field would be often applied because of its relatively good linearity. Load, friction, and disc spring stiffness seriously affect the output characteristics of the GMA in high frequency. Therefore, the current-displacement dynamic minor loops mathematical model coupling of electric-magnetic-machine is established according to Jiles-Atherton (J-A dynamic model of hysteresis material, GMA structural dynamic equation, Ampere loop circuit law, and nonlinear piezomagnetic equation and demonstrates its correctness and effectiveness in the experiments. Finally, some laws are achieved between key structural parameters and output characteristics of GMA, which provides important theoretical foundation for structural design.

  14. Origin and distribution of the axillary nerve in the giant anteater (Myrmecophaga tridactyla

    Directory of Open Access Journals (Sweden)

    Daniela Cristina de Oliveira Silva

    2012-09-01

    Full Text Available The giant anteater (Myrmecophaga tridactyla, a mammal belonging to the order Xenarthra and family Myrmecophagidae, is an endangered species. For this reason, additional knowledge about its anatomy is of interest, especially the forelimb, which plays important roles in feeding and defense. The goal of this study was to learn more about the origin and distribution of the axillary nerve of Myrmecophaga tridactyla by studying two individuals (one male and one female that belong to the Research Laboratory of Wild Animals (UFU. The study material consisted of corpses fixed and preserved in 10% aqueous formalin solution. Dissection of the material followed standard procedures. In both animals, the axillary nerve was found in the ventral branch of the sixth cervical (C6 and seventh (C7 spinal nerve. This nerve showed symmetry in relation to its position in the two specimens and branched into the teres major, teres minor and deltoid muscles. In both specimens the axillary nerve originated in the cranial cutaneous branch of the lower leg.

  15. The Morphological Characteristics and Mechanical Formation of Giant Radial Dike Swarms on Venus: An Overview Emphasizing Recent Numerical Modeling Insights

    Science.gov (United States)

    McGovern, P. J., Jr.; Grosfils, E. B.; Le Corvec, N.; Ernst, R. E.; Galgana, G. A.

    2017-12-01

    Over 200 giant radial dike swarms have been identified on Venus using Magellan data, yielding insight into morphological characteristics long since erased by erosion and other processes on Earth. Since such radial dike systems are typically associated with magma reservoirs, large volcanoes and/or larger-scale plume activity—and because dike geometry reflects stress conditions at the time of intrusion—assessing giant radial dike formation in the context of swarm morphology can place important constraints upon this fundamental volcanotectonic process. Recent numerical models reveal that, contrary to what is reported in much of the published literature, it is not easy, mechanically, to produce either large or small radial dike systems. After extensive numerical examination of reservoir inflation, however, under conditions ranging from a simple halfspace to complex flexural loading, we have thus far identified four scenarios that produce radial dike systems. Two of these scenarios yield dike systems akin to those often associated with shield and stratocone volcanoes on Earth, while the other two, our focus here, are more consistent with the giant radial dike system geometries catalogued on Venus. In this presentation we will (a) review key morphological characteristics of the giant radial systems identified on Venus, (b) briefly illustrate why it is not easy, mechanically, to produce a radial dike system, (c) present the two volcanological circumstances we have identified that do allow a giant radial dike system to form, and (d) discuss current model limitations and potentially fruitful directions for future research.

  16. Distribution of degrees of polymerization in statistically branched polymers with tetrafunctional branch points: model calculations

    Czech Academy of Sciences Publication Activity Database

    Netopilík, Miloš; Kratochvíl, Pavel

    2006-01-01

    Roč. 55, č. 2 (2006), s. 196-203 ISSN 0959-8103 R&D Projects: GA AV ČR IAA100500501; GA AV ČR IAA4050403; GA AV ČR IAA4050409; GA ČR GA203/03/0617 Institutional research plan: CEZ:AV0Z40500505 Keywords : statistical branching * tetrafunctional branch points * molecular-weight distribution Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.475, year: 2006

  17. ZZ-CENPL, Chinese Evaluated Nuclear Parameter Library. ZZ CENPL-DLS, Discrete Level Schemes and Gamma Branching Ratios Library; ZZ CENPL-FBP, Fission Barrier Parameter Library; ZZ CENPL-GDRP, Giant Dipole Resonance Parameter Library; ZZ CENPL-NLD, Nuclear Level Density Parameter Library; ZZ CENPL-MCC, Nuclear Ground State Atomic Masses Library; ZZ CENPL-OMP, Optical Model Parameter Library

    International Nuclear Information System (INIS)

    Su Zongdi

    1995-01-01

    Description of program or function: CENPL - GDRP (Giant Dipole Resonance Parameters for Gamma-Ray): - Format: special format described in documentation; - Nuclides: V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Lu, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, Th, U, Np, Pu. - Origin: Experimental values offered by S.S. Dietrich and B.L. Berman. CENPL - FBP (Fission Barrier Parameter Sub-Library): - Format: special format described in documentation; - Nuclides: (1) 51 nuclei region from Th-230 to Cf-255, (2) 46 nuclei region from Th-229 to Cf-253, (3) 24 nuclei region from Pa-232 to Cf-253; - Origin: (1) Lynn, (2) Analysis of experimental data by Back et al., (3) Ohsawa. CENPL - DLS (Discrete level scheme and branch ratio of gamma decay: - Format: Special format described in documentation; - Origin: ENSDF - BNL. CENPL - NLD (Nuclear Level Density): - Format: Special format described in documentation; - Origin: Huang Zhongfu et al. CENPL - OMP (Optical model parameter sub-library): - Format: special format described in documentation ; - Origin: CENDL, ENDF/B-VI, JENDL-3. CENPL - MC (I) and (II) (Atomic masses and characteristic constants for nuclear ground states) : - Format: Brief table format; - Nuclides: 4760 nuclides ranging from Z=0 A=1 to Z=122 A=318. - Origin: Experimental data and systematic results evaluated by Wapstra, theoretical results calculated by Moller, ENSDF - BNL and Nuclear Wallet Cards. CENPL contains the following six sub-libraries: 1. Atomic Masses and Characteristic Constants for nuclear ground states (MCC). This data consists of calculated and in most cases also measured mass excesses, atomic masses, total binding energies, spins, parities, and half-lives of nuclear ground states, abundances, etc. for 4800 nuclides. 2. Discrete Level Schemes and branching ratios of gamma decay (DLS). The data on nuclear discrete levels are based on the Evaluated

  18. Model stars with degenerate dwarf cores and helium-burning shells - A stationary-burning approximation

    Energy Technology Data Exchange (ETDEWEB)

    Iben, I. Jr.; Tutukov, A.V. (Illinois Univ., Urbana (USA); Astronomicheskii Sovet, Moscow (USSR))

    1989-07-01

    The characteristics of model stars consisting of a degenerate dwarf core and an envelope which is burning a nuclear fuel or fuels in its interior are explored. The models are relevant to stars which are accreting matter from a companion, to single stars in late stages of evolution, to stripped noninteracting remnants of binary star evolution, and to merging and merged degenerate dwarfs. For any given mass and choice of nuclear fuels, a sequence of models is constructed which differ with respect to the mass of the degenerate core and the envelope characteristics. Each sequence has at least three distinct branches: a degenerate dwarf branch along which envelope mass increases with decreasing luminosity, a plateau branch characterized by a very small envelope mass and by a nearly constant luminosity which reaches the maximum achievable value for the sequence, and an asymptotic giant branch which is at the lowest temperatures achievable and along which envelope mass decreases with increasing luminosity. 78 refs.

  19. Model stars with degenerate dwarf cores and helium-burning shells - A stationary-burning approximation

    International Nuclear Information System (INIS)

    Iben, I. Jr.; Tutukov, A.V.

    1989-01-01

    The characteristics of model stars consisting of a degenerate dwarf core and an envelope which is burning a nuclear fuel or fuels in its interior are explored. The models are relevant to stars which are accreting matter from a companion, to single stars in late stages of evolution, to stripped noninteracting remnants of binary star evolution, and to merging and merged degenerate dwarfs. For any given mass and choice of nuclear fuels, a sequence of models is constructed which differ with respect to the mass of the degenerate core and the envelope characteristics. Each sequence has at least three distinct branches: a degenerate dwarf branch along which envelope mass increases with decreasing luminosity, a plateau branch characterized by a very small envelope mass and by a nearly constant luminosity which reaches the maximum achievable value for the sequence, and an asymptotic giant branch which is at the lowest temperatures achievable and along which envelope mass decreases with increasing luminosity. 78 refs

  20. Decay of the giant quadrupoles resonance and higher excitation states in 40Ca

    International Nuclear Information System (INIS)

    Alamanos, N.; Fernandez, B.; Gillibert, A.

    1991-01-01

    Light charged particles have been measured in coincidence with inelastically scattered fragments from the 40 Ca + 40 Ca reaction at 50 MeV/N. Such a measurement allows to unravel the different reaction mechanisms contributing to the inelastic spectrum: pick-up break-up reactions, knock out and inelastic excitations. The giant quadrupole resonance in 40 Ca is shown to present a 30% non statistical decay branch. A prominent structure at 34 MeV is attributed to target excitation, the decay of this structure is studied

  1. Geometrical scaling, furry branching and minijets

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1988-01-01

    Scaling properties and their violations in hadronic collisions are discussed in the framework of the geometrical branching model. Geometrical scaling supplemented by Furry branching characterizes the soft component, while the production of jets specifies the hard component. Many features of multiparticle production processes are well described by this model. 21 refs

  2. Research on pyrolysis behavior of Camellia sinensis branches via the Discrete Distributed Activation Energy Model.

    Science.gov (United States)

    Zhou, Bingliang; Zhou, Jianbin; Zhang, Qisheng

    2017-10-01

    This study aims at investigating the pyrolysis behavior of Camellia sinensis branches by the Discrete Distributed Activation Energy Model (DAEM) and thermogravimetric experiments. Then the Discrete DAEM method is used to describe pyrolysis process of Camellia sinensis branches dominated by 12 characterized reactions. The decomposition mechanism of Camellia sinensis branches and interaction with components are observed. And the reaction at 350.77°C is a significant boundary of the first and second reaction range. The pyrolysis process of Camellia sinensis branches at the heating rate of 10,000°C/min is predicted and provides valuable references for gasification or combustion. The relationship and function between four typical indexes and heating rates from 10 to 10,000°C/min are revealed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. FDTD modeling of solar energy absorption in silicon branched nanowires.

    Science.gov (United States)

    Lundgren, Christin; Lopez, Rene; Redwing, Joan; Melde, Kathleen

    2013-05-06

    Thin film nanostructured photovoltaic cells are increasing in efficiency and decreasing the cost of solar energy. FDTD modeling of branched nanowire 'forests' are shown to have improved optical absorption in the visible and near-IR spectra over nanowire arrays alone, with a factor of 5 enhancement available at 1000 nm. Alternate BNW tree configurations are presented, achieving a maximum absorption of over 95% at 500 nm.

  4. Chiral Lagrangian calculation of nucleon branching ratios in the supersymmetric SU(5) model

    International Nuclear Information System (INIS)

    Chadha, S.; Daniel, M.

    1983-12-01

    The branching ratios are calculated for the two body nucleon decay modes involving pseudoscalars in the minimal SU(5) supersymmetric model with three generations using the techniques of chiral dynamics. (author)

  5. The description of neutron and giant resonances within the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1978-01-01

    The general assumptions of the quasiparticle-phonon model of complex nuclei are given. The choice of the model Hamiltonian as an average field and residual forces is discussed. The phonon description and quasiparticle-phonon interaction are presented. The system of basic equations and their approximate solutions are obtained. The approximation is chosen so as to obtain the most correct description of few-quasiparticle components rather than of the whole wave function. The method of strength functions is presented, which plays a decisive role in practical realization of the quasiparticle-phonon model for the description of some properties of complex nuclei. The range of applicability of the quasiparticle-phonon nuclear model is determined as few-quasiparticle components of the wave functions at low, intermediate and high excitation energies averaged in a certain energy interval. The fragmentation of single-particle states in deformed nuclei is studied within this model. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reactions of the type (d,p) and (d,t). The s - ,p - , and d-wave neutron strength functions are calculated at the neutron binding energy Bsub(n). A satisfactory agreement with experiment is obtained. A correct description of the radiative strength functions in spherical nuclei is obtained. The influence of the tail of the giant dipole resonance on the E1-strength functions is studied. The energies and EΛ-strength functions for giant multipole resonances in spherical and deformed nuclei are calculated. A correct description of their widths is obtained. (author)

  6. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D.; Srinivasan, S.; Kemper, F.; Woods, Paul M.; Tielens, A. G. G. M.; Speck, A. K.; Matsuura, M.; Bernard, J.-Ph.; Hony, S.; Indebetouw, R.; Marengo, M.; Sloan, G. C.

    2010-01-01

    We model multi-wavelength broadband UBVIJHK s and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with γ of -3.5, a min of 0.01 μm, and a 0 of 0.1 μm to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be ∼5100 L sun and ∼36,000 L sun , respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of ∼3 M sun and ∼7 M sun . This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius ∼17 and ∼52 times the stellar radius, respectively, with dust temperatures there of

  7. Isoscalar giant resonances

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, D. H. [Texas A and M Univ., College Station (USA). Cyclotron Inst.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    The current status of the knowledges of giant quadrupole resonance (GQR), low energy octupole resonance (LEOR), and giant monopole resonance (GMR), is described. In the lowest order of multipole resonance, both isoscalar and isovector modes can occur. The characteristics of the GQR in light nuclei are apparent in the experimental result for Mg-24. All of the isoscalar E2 strength are known in Mg-24. The Goldhaber-Teller model is preferred over the Steinwedel-Jensen model for the giant dipole resonance (GDR) transition density. A few interesting and puzzling features have been seen in Pb-208. There is some conflict between inelastic alpha and electron scatterings. About LEOR, the RPA calculation of Liu and Brown was compared to the data for 3/sup -/ strength in Ca-40, Zr-90 and Pb-208. The calculation was employed the residual interaction of the Skyrme type. The agreement in Zr-90 was excellent. The effect of quadrupole deformation on the LEOR in Sm isotopes was large. The inelastic alpha scattering data on Al-27, Ca-40, Ti-48, Ni-58, Zn-64 and 66, Zr-90, Sn-116, 118, 120 and 124, Sm-144, 148 and 154, and Pb-208 were utilized in order to identify the GMR, and the GMR parameters were obtained. The GMR exhausting a large fraction of the sum rule was apparent in the nuclei with mass larger than 90. The splitting of the GDR and the broadening of the GQR in permanently deformed nuclei were established. The splitting of GMR was seen in Sm-154. The studies with heavy ions are also described.

  8. Exploring halo substructure with giant stars. XIV. The nature of the Triangulum-Andromeda stellar features

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, Allyson A.; Johnston, Kathryn V. [Department of Astronomy, Columbia University, Mail Code 5246, New York, NY 10027 (United States); Majewski, Steven R.; Damke, Guillermo; Richardson, Whitney; Beaton, Rachael [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Rocha-Pinto, Helio J., E-mail: asheffield@astro.columbia.edu, E-mail: kvj@astro.columbia.edu, E-mail: srm4n@virginia.edu, E-mail: gjd3r@virginia.edu, E-mail: wwr2u@virginia.edu, E-mail: rlb9n@virginia.edu, E-mail: helio@astro.ufrj.br [Observatório do Valongo, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2014-09-20

    As large-scale stellar surveys have become available over the past decade, the ability to detect and characterize substructures in the Galaxy has increased dramatically. These surveys have revealed the Triangulum-Andromeda (TriAnd) region to be rich with substructures in the distance range 20-30 kpc, and the relation of these features to each other, if any, remains unclear. An exploration using Two Micron All Sky Survey (2MASS) photometry reveals not only the faint sequence in M giants detected by Rocha-Pinto et al. spanning the range 100° < l < 160° and –50° < b < –15°, but, in addition, a second, brighter and more densely populated sequence. These sequences are likely associated with the distinct main sequences (MSs) discovered (and labeled TriAnd1 and TriAnd2) by Martin et al. in an optical survey in the direction of M31, where TriAnd2 is the optical counterpart of the fainter red giant branch (RGB)/asymptotic giant branch sequence of Rocha-Pinto et al. Here, the age, distance, and metallicity ranges for TriAnd1 and TriAnd2 are estimated by simultaneously fitting isochrones to the 2MASS RGB tracks and the optical MS/MS turn-off features. The two populations are clearly distinct in age and distance: the brighter sequence (TriAnd1) is younger (6-10 Gyr) and closer (distance of ∼15-21 kpc), whereas the fainter sequence (TriAnd2) is older (10-12 Gyr) and at an estimated distance of ∼24-32 kpc. A comparison with simulations demonstrates that the differences and similarities between TriAnd1 and TriAnd2 can simultaneously be explained if they represent debris originating from the disruption of the same dwarf galaxy, but torn off during two distinct pericentric passages.

  9. Giant CP stars

    International Nuclear Information System (INIS)

    Loden, L.O.; Sundman, A.

    1989-01-01

    This study is part of an investigation of the possibility of using chemically peculiar (CP) stars to map local galactic structure. Correct luminosities of these stars are therefore crucial. CP stars are generally regarded as main-sequence or near-main-sequence objects. However, some CP stars have been classified as giants. A selection of stars, classified in literature as CP giants, are compared to normal stars in the same effective temperature interval and to ordinary 'non giant' CP stars. There is no clear confirmation of a higher luminosity for 'CP giants', than for CP stars in general. In addition, CP characteristics seem to be individual properties not repeated in a component star or other cluster members. (author). 50 refs., 5 tabs., 3 figs

  10. Eyes in the sky. Interactions between asymptotic giant branch star winds and the interstellar magnetic field

    Science.gov (United States)

    van Marle, A. J.; Cox, N. L. J.; Decin, L.

    2014-10-01

    Context. The extended circumstellar envelopes (CSEs) of evolved low-mass stars display a large variety of morphologies. Understanding the various mechanisms that give rise to these extended structures is important to trace their mass-loss history. Aims: Here, we aim to examine the role of the interstellar magnetic field in shaping the extended morphologies of slow dusty winds of asymptotic giant branch (AGB) stars in an effort to pin-point the origin of so-called eye shaped CSEs of three carbon-rich AGB stars. In addition, we seek to understand if this pre-planetary nebula (PN) shaping can be responsible for asymmetries observed in PNe. Methods: Hydrodynamical simulations are used to study the effect of typical interstellar magnetic fields on the free-expanding spherical stellar winds as they sweep up the local interstellar medium (ISM). Results: The simulations show that typical Galactic interstellar magnetic fields of 5 to 10 μG are sufficient to alter the spherical expanding shells of AGB stars to appear as the characteristic eye shape revealed by far-infrared observations. The typical sizes of the simulated eyes are in accordance with the observed physical sizes. However, the eye shapes are transient in nature. Depending on the stellar and interstellar conditions, they develop after 20 000 to 200 000 yrs and last for about 50 000 to 500 000 yrs, assuming that the star is at rest relative to the local interstellar medium. Once formed, the eye shape develops lateral outflows parallel to the magnetic field. The explosion of a PN in the centre of the eye-shaped dust shell gives rise to an asymmetrical nebula with prominent inward pointing Rayleigh-Taylor instabilities. Conclusions: Interstellar magnetic fields can clearly affect the shaping of wind-ISM interaction shells. The occurrence of the eyes is most strongly influenced by stellar space motion and ISM density. Observability of this transient phase is favoured for lines-of-sight perpendicular to the

  11. Globular cluster metallicity scale: evidence from stellar models

    International Nuclear Information System (INIS)

    Demarque, P.; King, C.R.; Diaz, A.

    1982-01-01

    Theoretical giant branches have been constructed to determine their relative positions for metallicities in the range -2.3 0 )/sub 0,g/ based on these models is presented which yields good agreement over the observed range of metallicities for galactic globular clusters and old disk clusters. The metallicity of 47 Tuc and M71 given by this calibration is about -0.8 dex. Subject headings: clusters, globular: stars: abundances: stars: interiors

  12. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  13. Deep learning classification in asteroseismology using an improved neural network: results on 15 000 Kepler red giants and applications to K2 and TESS data

    Science.gov (United States)

    Hon, Marc; Stello, Dennis; Yu, Jie

    2018-05-01

    Deep learning in the form of 1D convolutional neural networks have previously been shown to be capable of efficiently classifying the evolutionary state of oscillating red giants into red giant branch stars and helium-core burning stars by recognizing visual features in their asteroseismic frequency spectra. We elaborate further on the deep learning method by developing an improved convolutional neural network classifier. To make our method useful for current and future space missions such as K2, TESS, and PLATO, we train classifiers that are able to classify the evolutionary states of lower frequency resolution spectra expected from these missions. Additionally, we provide new classifications for 8633 Kepler red giants, out of which 426 have previously not been classified using asteroseismology. This brings the total to 14983 Kepler red giants classified with our new neural network. We also verify that our classifiers are remarkably robust to suboptimal data, including low signal-to-noise and incorrect training truth labels.

  14. Modelling in vivo action potential propagation along a giant axon.

    Science.gov (United States)

    George, Stuart; Foster, Jamie M; Richardson, Giles

    2015-01-01

    A partial differential equation model for the three-dimensional current flow in an excitable, unmyelinated axon is considered. Where the axon radius is significantly below a critical value R(crit) (that depends upon intra- and extra-cellular conductivity and ion channel conductance) the resistance of the intracellular space is significantly higher than that of the extracellular space, such that the potential outside the axon is uniformly small whilst the intracellular potential is approximated by the transmembrane potential. In turn, since the current flow is predominantly axial, it can be shown that the transmembrane potential is approximated by a solution to the one-dimensional cable equation. It is noted that the radius of the squid giant axon, investigated by (Hodgkin and Huxley 1952e), lies close to R(crit). This motivates us to apply the three-dimensional model to the squid giant axon and compare the results thus found to those obtained using the cable equation. In the context of the in vitro experiments conducted in (Hodgkin and Huxley 1952e) we find only a small difference between the wave profiles determined using these two different approaches and little difference between the speeds of action potential propagation predicted. This suggests that the cable equation approximation is accurate in this scenario. However when applied to the it in vivo setting, in which the conductivity of the surrounding tissue is considerably lower than that of the axoplasm, there are marked differences in both wave profile and speed of action potential propagation calculated using the two approaches. In particular, the cable equation significantly over predicts the increase in the velocity of propagation as axon radius increases. The consequences of these results are discussed in terms of the evolutionary costs associated with increasing the speed of action potential propagation by increasing axon radius.

  15. Rapid formation of gas giants, ice giants and super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Boss, A P [DTM, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)], E-mail: boss@dtm.ciw.edu

    2008-08-15

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more.

  16. Rapid formation of gas giants, ice giants and super-Earths

    International Nuclear Information System (INIS)

    Boss, A P

    2008-01-01

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more

  17. Characterization of the Diameter, branch angle and longevity of axial branches of Nothofagusobliqua

    Directory of Open Access Journals (Sweden)

    Patricio Corvalán Vera

    2017-08-01

    Full Text Available The lack of knowledge about grow dynamics of the living tree crown of Nothofagusobliqua secondary growth forests strongly limits the objective formulation of silvicultural schemes oriented to the industrial production of high quality wood. Therefore, in this work, we described basic relationships between tree size, age and angle branches insertion and the crown. Considering a sample data of 59 dominant trees, distributed in different age conditions, we applied a combined analysis technique of stem analysis, steam taper analysis and thickest branch measurement in each decile of the total height. This approach allowed us to determine that there is a significant relationship between the steam diameter, the angle insertion and the age of the branch, as well as the size and age of the trees. Also, the thicker branches tend to have lower insertion angles, to be older, to be located at lower relative heights and to be located in larger diameter sections. Taking into consideration these relationships, it is possible to build new predicted branch models as tools for the development of silvicultural schemes to suit different log grade.

  18. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  19. A Color Mutation Hadronic Soft Interaction Model -- Eikonal Formalism and Branching Evolution

    OpenAIRE

    Cao, Zhen

    1998-01-01

    ECOMB is established as a hadronic multiparticle production generator by soft interaction. It incorporates the eikonal formalism, parton model, color mutation, branching, resonance production and decay. A partonic cluster, being color-neutral initially, splits into smaller color-neutral clusters successively due to the color mutation of the quarks. The process stops at hadronic resonance, $q\\bar q$ pair, formation. The model contains self-similar dynamics and exhibits scaling behavior in the ...

  20. Kinematics and Metallicity of M31 Red Giants: The Giant Southern Stream and Discovery of a Second Cold Component at R=20 kpc

    Science.gov (United States)

    Kalirai, Jasonjot S.; Guhathakurta, Puragra; Gilbert, Karoline M.; Reitzel, David B.; Majewski, Steven R.; Rich, R. Michael; Cooper, Michael C.

    2006-04-01

    We present spectroscopic observations of red giant branch (RGB) stars in the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10 m telescope. The three fields targeted in this study are in the M31 spheroid, outer disk, and giant southern stream. In this paper, we focus on the kinematics and chemical composition of RGB stars in the stream field located at a projected distance of R=20 kpc from M31's center. A mix of stellar populations is found in this field. M31 RGB stars are isolated from Milky Way dwarf star contaminants using a variety of spectral and photometric diagnostics. The radial velocity distribution of RGB stars displays a clear bimodality-a primary peak centered at v¯1=-513 km s-1 and a secondary one at v¯2=-417 km s-1-along with an underlying broad component that is presumably representative of the smooth spheroid of M31. Both peaks are found to be dynamically cold with intrinsic velocity dispersions of σ(v)~16 km s-1. The mean metallicity and metallicity dispersion of stars in the two peaks is also found to be similar: ~-0.45 and σ([Fe/H])=0.2. The observed velocity of the primary peak is consistent with that predicted by dynamical models for the stream, but there is no obvious explanation for the secondary peak. The nature of the secondary cold population is unclear: it may represent (1) tidal debris from a satellite merger event that is superimposed on, but unrelated to, the giant southern stream; (2) a wrapped around component of the giant southern stream; or (3) a warp or overdensity in M31's disk at Rdisk>50 kpc (this component is well above the outward extrapolation of the smooth exponential disk brightness profile). Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous

  1. Molecular weight​/branching distribution modeling of low-​density-​polyethylene accounting for topological scission and combination termination in continuous stirred tank reactor

    NARCIS (Netherlands)

    Yaghini, N.; Iedema, P.D.

    2014-01-01

    We present a comprehensive model to predict the molecular weight distribution (MWD),(1) and branching distribution of low-density polyethylene (IdPE),(2) for free radical polymerization system in a continuous stirred tank reactor (CSTR).(3) The model accounts for branching, by branching moment or

  2. Literature review of giant gartersnake (Thamnophis gigas) biology and conservation

    Science.gov (United States)

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2015-08-03

    This report reviews the available literature on giant gartersnakes (Thamnophis gigas) to compile existing information on this species and identify knowledge gaps that, if addressed, would help to inform conservation efforts for giant gartersnakes.  Giant gartersnakes comprise a species of semi-aquatic snake precinctive to wetlands in the Central Valley of California.  The diversion of surface water and conversion of wetlands to agricultural and other land uses resulted in the loss of more than 90 percent of natural giant gartersnake habitats.  Because of this habitat loss, giant gartersnakes are now listed by the United States and California Endangered Species Acts as Threatened.  Most extant populations occur in the rice-growing regions of the Sacramento Valley, which comprises the northern portion of the giant gartersnake’s former range.  The huge demand for water in California for agriculture, industry, recreation, and other human consumption, combined with periodic severe drought, places remaining giant gartersnake habitats at increased risk of degradation and loss.  This literature review summarizes the available information on giant gartersnake distribution, habitat relations, behavior, demography, and other aspects of its biology relevant to conservation.  This information is then compiled into a graphical conceptual model that indicates the importance of different aspects of giant gartersnake biology for maintaining positive population growth, and identifies those areas for which important information relevant for conservation is lacking.  Directing research efforts toward these aspects of giant gartersnake ecology will likely result in improvements to conserving this unique species while meeting the high demands for water in California.

  3. Giant monopole resonance in transitional and deformed nuclei

    International Nuclear Information System (INIS)

    Garg, U.; Bogucki, P.; Bronson, J.D.; Lui, Y.; Youngblood, D.H.

    1984-01-01

    Small-angle inelastic α-scattering measurements have been made at E/sub α/ = 129 MeV on /sup 144,148/Sm and /sup 142,146,150/Nd to investigate the giant monopole resonance in transitional and deformed nuclei. The experimental data reveal a mixing of L = 0 and L = 2 modes in 148 Sm resulting in almost identical angular distributions for the two components of the giant resonance peaks in the angular range 2 0 --6 0 . A ''splitting'' of the giant monopole resonance is observed in 150 Nd; the extent of this splitting is smaller than that reported for 154 Sm. Comparison is made with the predictions of various theoretical models

  4. Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana Elena; Freedman, Richard; Visscher, Channon

    2017-01-01

    Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure. In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations. We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 less than or equal to T(sub eff) less than or equal to 2400 K and 2.5 less than or equal to log g less than or equal to 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.

  5. Mapping and modelling the habitat of giant pandas in Foping Nature Reserve, China

    NARCIS (Netherlands)

    Liu, X.

    2001-01-01

    The fact that only about 1000 giant pandas and 29500 km2 of panda habitat are left in the west part of China makes it an urgent issue to save this endangered animal species and protect its habitat. For effective conservation of the giant panda and its habitat, a thorough evaluation of panda habitat

  6. Damping width of giant dipole resonances of cold and hot nuclei: A macroscopic model

    International Nuclear Information System (INIS)

    Mughabghab, S.F.; Sonzogni, A.A.

    2002-01-01

    A phenomenological macroscopic model of the giant dipole resonance (GDR) damping width of cold and hot nuclei with ground-state spherical and near-spherical shapes is developed. The model is based on a generalized Fermi liquid model which takes into account the nuclear surface dynamics. The temperature dependence of the GDR damping width is accounted for in terms of surface and volume components. Parameter-free expressions for the damping width and the effective deformation are obtained. The model is validated with GDR measurements of the following nuclides: 39,40 K, 42 Ca, 45 Sc, 59,63 Cu, 109-120 Sn, 147 Eu, 194 Hg, and 208 Pb, and is compared with the predictions of other models

  7. Giant resonance spectroscopy of 40Ca with the (e,e'x) reaction (III): Direct versus statistical decay

    International Nuclear Information System (INIS)

    Carter, J.; Diesener, H.; Helm, U.; Herbert, G.; Neumann-Cosel, P. von; Richter, A.; Schrieder, G.; Strauch, S.

    2001-01-01

    The present article is the third out of three on a study of the 40 Ca(e,e'x) reaction discussing the role of direct and statistical contributions to the decay of the observed giant resonance strengths. The proton and α decay modes leading to low-lying final states in 36 Ar and 39 K were investigated. The branching ratios for the p 0 , p 123 , α 0 and α 1 channels are compared to statistical model calculations. In the excitation region of dominant isoscalar E2 strength (E x =12-18 MeV) good agreement is observed. Model predictions of direct E2 decay for the (α 0 +α 1 )/(p 0 +p 1 ) ratio describe the data poorly. In the isovector E1 excitation region large excess strength is found in the population of low-lying states in 39 K. A fluctuation analysis shows the direct contributions to the p 0 , p 1 channels to be ≥85%. The presence of preequilibrium components is indicated by the significant nonstatistical decay to the p 3 level which has a dominant 'phonon·hole' structure. Cross correlations reveal no significant branching between the different channels. The correlations between different electron scattering angles in the p 0 , p 1 and p 3 decay result in an interaction radius compatible with the whole nucleus acting as an emitting source

  8. HST images of dark giants as dark matter: Part.I The black cocoon stars of Carina Nebula region

    International Nuclear Information System (INIS)

    Celis, S.L.

    2001-01-01

    dark giants can be connected to each other to form Unions of conglomerates. The associated objects -might configure a dark network structure that belongs to the spiral branches. The contribution of mass is indicated by the large amount of dark giants, which widely surpasses the luminosity matter of the Galaxy. Over 7,600 of these objects, located in a small sector of the Carina nebula image (∼30x40 arcseconds), were individualized by their clear definition. There are more than 60,000 objects in the full Carina nebula image. Assuming that this number of dark giants of the Hubble image is representative of all dark giants of the Galaxy, it is possible to conclude that they might represent 96.3% - 98.9% of dark matter in the spirals of the Galaxy. This percentage of dark giants could also represent the needed mass required to explain the dynamic of the galactic disc if they had an average of 0.8 solar masses

  9. Isotopic effect giant resonances

    International Nuclear Information System (INIS)

    Buenerd, M.; Lebrun, D.; Martin, P.; Perrin, G.; Saintignon, P. de; Chauvin, J.; Duhamel, G.

    1981-10-01

    The systematics of the excitation energy of the giant dipole, monopole, and quadrupole resonances are shown to exhibit an isotopic effect. For a given element, the excitation energy of the transition decreases faster with the increasing neutron number than the empirical laws fitting the overall data. This effect is discussed in terms of the available models

  10. GIANT API: an application programming interface for functional genomics.

    Science.gov (United States)

    Roberts, Andrew M; Wong, Aaron K; Fisk, Ian; Troyanskaya, Olga G

    2016-07-08

    GIANT API provides biomedical researchers programmatic access to tissue-specific and global networks in humans and model organisms, and associated tools, which includes functional re-prioritization of existing genome-wide association study (GWAS) data. Using tissue-specific interaction networks, researchers are able to predict relationships between genes specific to a tissue or cell lineage, identify the changing roles of genes across tissues and uncover disease-gene associations. Additionally, GIANT API enables computational tools like NetWAS, which leverages tissue-specific networks for re-prioritization of GWAS results. The web services covered by the API include 144 tissue-specific functional gene networks in human, global functional networks for human and six common model organisms and the NetWAS method. GIANT API conforms to the REST architecture, which makes it stateless, cacheable and highly scalable. It can be used by a diverse range of clients including web browsers, command terminals, programming languages and standalone apps for data analysis and visualization. The API is freely available for use at http://giant-api.princeton.edu. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Branching trajectory continual integral

    International Nuclear Information System (INIS)

    Maslov, V.P.; Chebotarev, A.M.

    1980-01-01

    Heuristic definition of the Feynman continual integral over branching trajectories is suggested which makes it possible to obtain in the closed form the solution of the Cauchy problem for the model Hartree equation. A number of properties of the solution is derived from an integral representation. In particular, the quasiclassical asymptotics, exact solution in the gaussian case and perturbation theory series are described. The existence theorem for the simpliest continual integral over branching trajectories is proved [ru

  12. Spectral Flattening at Low Frequencies in Crab Giant Pulses

    Science.gov (United States)

    Meyers, B. W.; Tremblay, S. E.; Bhat, N. D. R.; Shannon, R. M.; Kirsten, F.; Sokolowski, M.; Tingay, S. J.; Oronsaye, S. I.; Ord, S. M.

    2017-12-01

    We report on simultaneous wideband observations of Crab giant pulses with the Parkes radio telescope and the Murchison Widefield Array (MWA). The observations were conducted simultaneously at 732 and 3100 MHz with Parkes and at 120.96, 165.76, and 210.56 MHz with the MWA. Flux density calibration of the MWA data was accomplished using a novel technique based on tied-array beam simulations. We detected between 90 and 648 giant pulses in the 120.96-210.56 MHz MWA subbands above a 5.5σ threshold, while in the Parkes subbands we detected 6344 and 231 giant pulses above a threshold of 6σ at 732 and 3100 MHz, respectively. We show, for the first time over a wide frequency range, that the average spectrum of Crab giant pulses exhibits a significant flattening at low frequencies. The spectral index, α, for giant pulses evolves from a steep, narrow distribution with a mean α =-2.6 and width {σ }α =0.5 between 732 and 3100 MHz to a wide, flat distribution of spectral indices with a mean α =-0.7 and width {σ }α =1.4 between 120.96 and 165.76 MHz. We also comment on the plausibility of giant pulse models for fast radio bursts based on this spectral information.

  13. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Impact of high-performance work systems on individual- and branch-level performance: test of a multilevel model of intermediate linkages.

    Science.gov (United States)

    Aryee, Samuel; Walumbwa, Fred O; Seidu, Emmanuel Y M; Otaye, Lilian E

    2012-03-01

    We proposed and tested a multilevel model, underpinned by empowerment theory, that examines the processes linking high-performance work systems (HPWS) and performance outcomes at the individual and organizational levels of analyses. Data were obtained from 37 branches of 2 banking institutions in Ghana. Results of hierarchical regression analysis revealed that branch-level HPWS relates to empowerment climate. Additionally, results of hierarchical linear modeling that examined the hypothesized cross-level relationships revealed 3 salient findings. First, experienced HPWS and empowerment climate partially mediate the influence of branch-level HPWS on psychological empowerment. Second, psychological empowerment partially mediates the influence of empowerment climate and experienced HPWS on service performance. Third, service orientation moderates the psychological empowerment-service performance relationship such that the relationship is stronger for those high rather than low in service orientation. Last, ordinary least squares regression results revealed that branch-level HPWS influences branch-level market performance through cross-level and individual-level influences on service performance that emerges at the branch level as aggregated service performance.

  15. The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations

    Science.gov (United States)

    Jennings, Jeff; Ercolano, Barbara; Rosotti, Giovanni P.

    2018-04-01

    Gas giants' early (≲ 5 Myr) orbital evolution occurs in a disc losing mass in part to photoevaporation driven by high energy irradiance from the host star. This process may ultimately overcome viscous accretion to disperse the disc and halt migrating giants by starving their orbits of gas, imprinting on giant planet separations in evolved systems. Inversion of this distribution could then give insight into whether stellar FUV, EUV or X-ray flux dominates photoevaporation, constraining planet formation and disc evolution models. We use a 1D hydrodynamic code in population syntheses for gas giants undergoing Type II migration in a viscously evolving disc subject to either a primarily FUV, EUV or X-ray flux from a pre-solar T Tauri star. The photoevaporative mass loss profile's unique peak location and width in each energetic regime produces characteristic features in the distribution of giant separations: a severe dearth of ≲ 2 MJ planets interior to 5 AU in the FUV scenario, a sharp concentration of ≲ 3 MJ planets between ≈1.5 - 2 AU in the EUV case, and a relative abundance of ≈2 - 3.5 MJ giants interior to 0.5 AU in the X-ray model. These features do not resemble the observational sample of gas giants with mass constraints, though our results do show some weaker qualitative similarities. We thus assess how the differing photoevaporative profiles interact with migrating giants and address the effects of large model uncertainties as a step to better connect disc models with trends in the exoplanet population.

  16. Large scale multi-zone creep finite element modelling of a main steam line branch intersection

    International Nuclear Information System (INIS)

    Payten, Warwick

    2006-01-01

    A number of papers detail the non-linear creep finite element analysis of branch pieces. Predominately these models have incorporated only a single material zone representing the parent material. Multi-zone models incorporating weld material and heat affected zones have primarily been two-dimensional analyses, in part due to the large number of elements required to adequately represent all of the zones. This paper describes a non-linear creep analysis of a main steam line branch intersection using creep properties to represent the parent metal, weld metal, and heat affected zone (HAZ), the stress redistribution over 100,000 h is examined. The results show that the redistribution leads to a complex stress state, particularly at the heat affected zone. Although, there is damage on the external surface of the branch piece as expected, the results indicate that the damage would be more widespread through extensive sections of the heat affected zone. This would appear to indicate that the time between damage indications on the surface using techniques such as replication and full thickness damage may be more limited then previously expected

  17. Giant cardiac hydatid cyst with rare adhesions.

    Science.gov (United States)

    Poorzand, Hoorak; Teshnizi, Mohammad Abbasi; Baghini, Vahid Shojaei; Gifani, Mehrnoosh; Gholoobi, Arash; Zirak, Nahid

    2014-01-01

    We present a 29-year-old woman who was admitted to the emergency department with shortness of breath. Using echocardiography, a giant multi-cystic mass was detected in the right ventricle, attached to the septal leaflet of the tricuspid valve and basal portion of the interventricular septum. Serologic tests (hydatid cyst antibody) confirmed Echinococcus infection. Lung computed tomography with intravenous contrast showed involvement of the pulmonary vasculature. The patient underwent cardiac surgery and the large cardiac cyst and the one in the right pulmonary artery branch were both removed. The tricuspid valve was also replaced by a bioprosthetic one. Albendazole was started preoperatively and was continued for six months after surgery. The patient recovered uneventfully and was followed up for one year. This is a report of a rare case of a very large cardiac hydatid cyst complicated by pulmonary embolism with attachments to both the tricuspid valve and interventricular septum.

  18. An intracellular study on low-frequency acoustic signal processing in locust——Structure and function of the cercus-to-giant interneuron system

    Institute of Scientific and Technical Information of China (English)

    沈钧贤; 徐智敏

    1995-01-01

    The structure and function of the cercus-to-giant interneuron system,relevant to the receptionof low-frequency sound,within the terminal abdominal ganglion of the locust Locusta migratoria were revealedby using intracellular electrophysiological recording and dye labeling technique.This system consists of 4 bilater-al pairs of the giant interneurons(GIs 1—4).Each GI has distinct dendritic branching fields,position of thesoma,and location and orientation of its major axon.The characteristics of the system in responseto low-frequency sound,such as discharge patterns,the relationships between response threshold-frequency,in-tensity curves,and encoding of stimulus frequency,were also studied.The role of the system in low-frequencysound communication was discussed.

  19. THREE DISCRETE GROUPS WITH HOMOGENEOUS CHEMISTRY ALONG THE RED GIANT BRANCH IN THE GLOBULAR CLUSTER NGC 2808

    International Nuclear Information System (INIS)

    Carretta, E.

    2014-01-01

    We present the homogeneous reanalysis of Mg and Al abundances from high resolution UVES/FLAMES spectra for 31 red giants in the globular cluster NGC 2808. We found a well defined Mg-Al anticorrelation reaching a regime of subsolar Mg abundance ratios, with a spread of about 1.4 dex in [Al/Fe]. The main result from the improved statistics of our sample is that the distribution of stars is not continuous along the anticorrelation because they are neatly clustered into three distinct clumps, each with different chemical compositions. One group (P) shows a primordial composition of field stars of similar metallicity, and the other two (I and E) have increasing abundances of Al and decreasing abundances of Mg. The fraction of stars we found in the three components (P: 68%, I: 19%, E: 13%) is in excellent agreement with the ratios computed for the three distinct main sequences in NGC 2808: for the first time there is a clear correspondence between discrete photometric sequences of dwarfs and distinct groups of giants with homogeneous chemistry. The composition of the I group cannot be reproduced by mixing of matter with extreme processing in hot H-burning and gas with pristine, unprocessed composition, as also found in the recent analysis of three discrete groups in NGC 6752. This finding suggests that different classes of polluters were probably at work in NGC 2808 as well

  20. Asteroseismic Diagram for Subgiants and Red Giants

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Ning; Tang, Yanke [College of Physics and Electronic information, Dezhou University, Dezhou 253023 (China); Yu, Peng [College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Dou, Xianghua, E-mail: ning_gai@163.com, E-mail: tyk450@163.com [Shandong Provincial Key Laboratory of Biophysics, Dezhou University, Dezhou 253023 (China)

    2017-02-10

    Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ{sub 1}–Δ ν asteroseismic diagram from models of subgiants and red giants with various masses and metallicities. The relationship ΔΠ{sub 1}–Δ ν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M {sub ⊙}, the ΔΠ{sub 1}–Δ ν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ , which indicate similar evolution states especially for similar mass stars, on the ΔΠ{sub 1}–Δ ν diagram.

  1. A comprehensive dynamic modeling approach for giant magnetostrictive material actuators

    International Nuclear Information System (INIS)

    Gu, Guo-Ying; Zhu, Li-Min; Li, Zhi; Su, Chun-Yi

    2013-01-01

    In this paper, a comprehensive modeling approach for a giant magnetostrictive material actuator (GMMA) is proposed based on the description of nonlinear electromagnetic behavior, the magnetostrictive effect and frequency response of the mechanical dynamics. It maps the relationships between current and magnetic flux at the electromagnetic part to force and displacement at the mechanical part in a lumped parameter form. Towards this modeling approach, the nonlinear hysteresis effect of the GMMA appearing only in the electrical part is separated from the linear dynamic plant in the mechanical part. Thus, a two-module dynamic model is developed to completely characterize the hysteresis nonlinearity and the dynamic behaviors of the GMMA. The first module is a static hysteresis model to describe the hysteresis nonlinearity, and the cascaded second module is a linear dynamic plant to represent the dynamic behavior. To validate the proposed dynamic model, an experimental platform is established. Then, the linear dynamic part and the nonlinear hysteresis part of the proposed model are identified in sequence. For the linear part, an approach based on axiomatic design theory is adopted. For the nonlinear part, a Prandtl–Ishlinskii model is introduced to describe the hysteresis nonlinearity and a constrained quadratic optimization method is utilized to identify its coefficients. Finally, experimental tests are conducted to demonstrate the effectiveness of the proposed dynamic model and the corresponding identification method. (paper)

  2. Magnetic fields in starspots on late-type giants

    International Nuclear Information System (INIS)

    Jahn, K.

    1985-01-01

    Computations of models of magnetic starspots on cool active giants show that the value of the magnetic intensity in spots is generally of the order of one kilogauss, although in larger spots the field can be as weak as a few hundred gauss. It is also argued, that spots on giants qualitatively differ from those on late-type dwarfs, since they cannot be too large. The largest individual spots can cover at most about one percent of a stellar hemisphere. This is in a very good agreement with earlier suggestions based on observations of spotted giants. The assumption that spots are the regions of the strongest magnetic field allows to discuss recent attempts of detection of the magnetic field on late-type giants. Polarimetric measurements most probably cannot be successful, due to a small field strength and a complex topology of the field. It is shown that even if a whole surface was covered by spots with relatively strong field, the resulting not longitudinal field would be as weak as a few gauss. Also methods independent of polarimetric measurements, based on the analysis of Zeeman broadening, generally are not sensitive enough to detect the magnetic field on giants, even in spots. λ And is discussed as an example. The comparison of models of spots computed for that stars with photometric observations suggests, that a dark region on λ And consists of hundreds of small spots (each of them smaller than about 0.1% of the hemisphere), in which the magnetic intensity cannot exceed about 900 gauss, and most probably is even smaller. 23 refs., 4 figs., 4 tabs. (author)

  3. Interacting sp-boson model with isospin: an unified description of giant multipole resonances and other collective motions

    International Nuclear Information System (INIS)

    Chen, C.H.-T.

    1980-10-01

    A unified description of the following classes of nuclear collective states in terms of an interacting sp-boson model is proposed: (i) Low-lying collective states in the light nuclei, both odd-odd and even-even; (ii) Giant multipole resonances (GMR), and (iii) pairing collective motions. (Author) [pt

  4. Telocytes in pancreas of the Chinese giant salamander (Andrias davidianus).

    Science.gov (United States)

    Zhang, Hui; Yu, Pengcheng; Zhong, Shengwei; Ge, Tingting; Peng, Shasha; Guo, Xiaoquan; Zhou, Zuohong

    2016-11-01

    Telocytes (TCs), novel interstitial cells, have been identified in various organs of many mammals. However, information about TCs of lower animals remains rare. Herein, pancreatic TCs of the Chinese giant salamanders (Andrias davidianus) were identified by CD34 immunohistochemistry (IHC) and transmission electron microscopy (TEM). The IHC micrographs revealed CD34 + TCs with long telopodes (Tps) that were located in the interstitium of the pancreas. CD34 + TCs/Tps were frequently observed between exocrine acinar cells and were close to blood vessels. The TEM micrographs also showed the existence of TCs in the interstitium of the pancreas. TCs had distinctive ultrastructural features, such as one to three very long and thin Tps with podoms and podomers, caveolae, dichotomous branching, neighbouring exosomes and vesicles. The Tps and exosomes were found in close proximity to exocrine acinar cells and α cells. It is suggested that TCs may play a role in the regeneration of acinar cells and α cells. In conclusion, our results demonstrated the presence of TCs in the pancreas of the Chinese giant salamander. This finding will assist us in a better understanding of TCs functions in the amphibian pancreas. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Assessing vulnerability of giant pandas to climate change in the Qinling Mountains of China.

    Science.gov (United States)

    Li, Jia; Liu, Fang; Xue, Yadong; Zhang, Yu; Li, Diqiang

    2017-06-01

    Climate change might pose an additional threat to the already vulnerable giant panda ( Ailuropoda melanoleuca ). Effective conservation efforts require projections of vulnerability of the giant panda in facing climate change and proactive strategies to reduce emerging climate-related threats. We used the maximum entropy model to assess the vulnerability of giant panda to climate change in the Qinling Mountains of China. The results of modeling included the following findings: (1) the area of suitable habitat for giant pandas was projected to decrease by 281 km 2 from climate change by the 2050s; (2) the mean elevation of suitable habitat of giant panda was predicted to shift 30 m higher due to climate change over this period; (3) the network of nature reserves protect 61.73% of current suitable habitat for the species, and 59.23% of future suitable habitat; (4) current suitable habitat mainly located in Chenggu, Taibai, and Yangxian counties (with a total area of 987 km 2 ) was predicted to be vulnerable. Assessing the vulnerability of giant panda provided adaptive strategies for conservation programs and national park construction. We proposed adaptation strategies to ameliorate the predicted impacts of climate change on giant panda, including establishing and adjusting reserves, establishing habitat corridors, improving adaptive capacity to climate change, and strengthening monitoring of giant panda.

  6. Persistence-Based Branch Misprediction Bounds for WCET Analysis

    DEFF Research Database (Denmark)

    Puffitsch, Wolfgang

    2015-01-01

    Branch prediction is an important feature of pipelined processors to achieve high performance. However, it can lead to overly pessimistic worst-case execution time (WCET) bounds when being modeled too conservatively. This paper presents bounds on the number of branch mispredictions for local...... dynamic branch predictors. To handle interferences between branch instructions we use the notion of persistence, a concept that is also found in cache analyses. The bounds apply to branches in general, not only to branches that close a loop. Furthermore, the bounds can be easily integrated into integer...... linear programming formulations of the WCET problem. An evaluation on a number of benchmarks shows that with these bounds, dynamic branch prediction does not necessarily lead to higher WCET bounds than static prediction schemes....

  7. Rapidity distribution and duality of a phase-space branching model for multiparticle production

    International Nuclear Information System (INIS)

    Hwa, R.C.; Lam, C.S.

    1985-11-01

    A branching model is developed for the description of multiparticle production processes at high energy. The starting point is the essential phenomenological validity of approximate KNO scaling. A quasirapidity variable is introduced, in terms of which the exclusive distribution of the produced particles can be calculated. The model is then described in the context of s- and t-channel duality. The dual picture lends itself to a physical interpretation of the model, the contrast of which from dual topological unitarization is pointed out

  8. Occipital lobe infarction: a rare presentation of bilateral giant cavernous carotid aneurysms: a case report.

    Science.gov (United States)

    Vanikieti, Kavin; Poonyathalang, Anuchit; Jindahra, Panitha; Cheecharoen, Piyaphon; Chokthaweesak, Wimonwan

    2018-02-02

    Cavernous carotid aneurysm (CCA) represents 2-9% of all intracranial aneurysms and 15% of internal carotid artery (ICA) aneurysms; additionally, giant aneurysms are those aneurysms that are > 25 mm in size. Bilateral CCAs account for 11-29% of patients and are commonly associated with structural weaknesses in the ICA wall, secondary to systemic hypertension. CCAs are considered benign lesions, given the low risk for developing major neurologic morbidities (i.e., subarachnoid hemorrhage, cerebral infarction, or carotid cavernous fistula). Moreover, concurrent presentation with posterior circulation cerebral infarction is even rarer, given different circulation territory from CCA. Here, we report on a patient with bilateral giant CCAs who presented with both typical and atypical symptoms. An 88-year-old hypertensive woman presented with acute vertical oblique binocular diplopia, followed by complete ptosis of the right eye. Ophthalmic examination showed dysfunction of the right third, fourth, and sixth cranial nerves. Further examination revealed hypesthesia of the areas supplied by the ophthalmic (V1) and maxillary (V2) branches of the right trigeminal nerve. Bilateral giant cavernous carotid aneurysms, with a concurrent subacute right occipital lobe infarction, were discovered on brain imaging and angiogram. Additionally, a prominent right posterior communicating artery (PCOM) was revealed. Seven months later, clinical improvement with stable radiographic findings was documented without any intervention. Dysfunction of the third, fourth, and sixth cranial nerves, and the ophthalmic (V 1 ) and maxillary (V 2 ) branches of the trigeminal nerves, should necessitate brain imaging, with special attention given to the cavernous sinus. Despite unilateral symptomatic presentation, bilateral lesions cannot be excluded solely on the basis of clinical findings. CCA should be included in the differential diagnosis of cavernous sinus lesions. Although rare, ipsilateral

  9. Convection and Dynamo Action in Ice Giant Dynamo Models with Electrical Conductivity Stratification

    Science.gov (United States)

    Soderlund, K. M.; Featherstone, N. A.; Heimpel, M. H.; Aurnou, J. M.

    2017-12-01

    Uranus and Neptune are relatively unexplored, yet critical for understanding the physical and chemical processes that control the behavior and evolution of giant planets. Because their multipolar magnetic fields, three-jet zonal winds, and extreme energy balances are distinct from other planets in our Solar System, the ice giants provide a unique opportunity to test hypotheses for internal dynamics and magnetic field generation. While it is generally agreed that dynamo action in the ionic ocean generates their magnetic fields, the mechanisms that control the morphology, strength, and evolution of the dynamos - which are likely distinct from those in the gas giants and terrestrial planets - are not well understood. We hypothesize that the dynamos and zonal winds are dynamically coupled and argue that their characteristics are a consequence of quasi-three-dimensional turbulence in their interiors. Here, we will present new dynamo simulations with an inner electrically conducting region and outer electrically insulating layer to self-consistently couple the ionic oceans and molecular envelopes of these planets. For each simulation, the magnetic field morphology and amplitude, zonal flow profile, and internal heat flux pattern will be compared against corresponding observations of Uranus and Neptune. We will also highlight how these simulations will both contribute to and benefit from a future ice giant mission.

  10. Restricted access Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering

    Science.gov (United States)

    Miller, Robert J.; Lafferty, Kevin D.; Lamy, Thomas; Kui, Li; Rassweiler, Andrew; Reed, Daniel C.

    2018-01-01

    Foundation species define the ecosystems they live in, but ecologists have often characterized dominant plants as foundational without supporting evidence. Giant kelp has long been considered a marine foundation species due to its complex structure and high productivity; however, there is little quantitative evidence to evaluate this. Here, we apply structural equation modelling to a 15-year time series of reef community data to evaluate how giant kelp affects the reef community. Although species richness was positively associated with giant kelp biomass, most direct paths did not involve giant kelp. Instead, the foundational qualities of giant kelp were driven mostly by indirect effects attributed to its dominant physical structure and associated engineering influence on the ecosystem, rather than by its use as food by invertebrates and fishes. Giant kelp structure has indirect effects because it shades out understorey algae that compete with sessile invertebrates. When released from competition, sessile species in turn increase the diversity of mobile predators. Sea urchin grazing effects could have been misinterpreted as kelp effects, because sea urchins can overgraze giant kelp, understorey algae and sessile invertebrates alike. Our results confirm the high diversity and biomass associated with kelp forests, but highlight how species interactions and habitat attributes can be misconstrued as direct consequences of a foundation species like giant kelp.

  11. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    Science.gov (United States)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims

  12. TRACING SAGITTARIUS STRUCTURE WITH SDSS AND SEGUE IMAGING AND SPECTROSCOPY

    International Nuclear Information System (INIS)

    Yanny, Brian; Newberg, Heidi Jo; Johnson, Jennifer A.; Lee, Young Sun; Beers, Timothy C.; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie; Fiorentin, Paola Re; Harding, Paul

    2009-01-01

    We show that the Sagittarius dwarf tidal stream can be traced with very red K/M-giant stars, selected from Sloan Digital Sky Survey (SDSS) photometry. A subset of these stars are spectroscopically confirmed with SEGUE and SDSS spectra, and the distance scale of 2MASS and SDSS M giants is calibrated to the RR Lyrae distance scale. The absolute magnitude of the K/M-giant stars at the tip of the giant branch is M g 0 =-1.0. The line-of-sight velocities of the M giant and blue horizontal-branch (BHB) stars that are spatially coincident with the Sgr dwarf tidal stream are consistent with those of previous authors, reinforcing the need for new models that can explain all of the Sgr tidal debris stream observations. We estimate stellar densities along the tidal tails that can be used to help constrain future models. The K/M giant, BHB, and F-turnoff stars in the lower surface brightness tidal stream that is adjacent to the main leading Sgr dwarf tidal tail have velocities and metallicities that are similar to those of the stars in the leading tidal tail. The ratio of K/M giants to BHBs and BHBs to F-turnoff stars are also similar for both branches of the leading tidal tail. We show that there is an additional low-metallicity tidal stream near the Sgr trailing tidal tail.

  13. The influence of branch order on optimal leaf vein geometries: Murray's law and area preserving branching.

    Directory of Open Access Journals (Sweden)

    Charles A Price

    Full Text Available Models that predict the form of hierarchical branching networks typically invoke optimization based on biomechanical similitude, the minimization of impedance to fluid flow, or construction costs. Unfortunately, due to the small size and high number of vein segments found in real biological networks, complete descriptions of networks needed to evaluate such models are rare. To help address this we report results from the analysis of the branching geometry of 349 leaf vein networks comprising over 1.5 million individual vein segments. In addition to measuring the diameters of individual veins before and after vein bifurcations, we also assign vein orders using the Horton-Strahler ordering algorithm adopted from the study of river networks. Our results demonstrate that across all leaves, both radius tapering and the ratio of daughter to parent branch areas for leaf veins are in strong agreement with the expectation from Murray's law. However, as veins become larger, area ratios shift systematically toward values expected under area-preserving branching. Our work supports the idea that leaf vein networks differentiate roles of leaf support and hydraulic supply between hierarchical orders.

  14. Turbulence and the Li abundance in main sequence and giant stars

    International Nuclear Information System (INIS)

    Charbonneau, P.; Michaud, G.

    1990-01-01

    Calculations of Li burning via turbulent transport are conducted to determine the extent to which observed Li abundances in first ascent giants constrain the various turbulence parameterizations used to model the main-sequence surface Li abundance evolution. A full time-dependent solution to the transport equation is performed, including nuclear reaction terms and evolutionary effects. It is found that turbulence can lead to the extreme Li underabundances observed in giants of M67 and NGC 752. Consideration is given to the possibility of using observations of Li abundances to discriminate between turbulent particle transport and meridional circulation transport. Numerical solutions of the turbulent diffusion coefficient of Vauclair (1988) is used to model the Hyades Li abundance gap. The astrophysical implications of the results for main-sequence and giant stars are discussed. 36 refs

  15. A branch-heterogeneous model of protein evolution for efficient inference of ancestral sequences.

    Science.gov (United States)

    Groussin, M; Boussau, B; Gouy, M

    2013-07-01

    Most models of nucleotide or amino acid substitution used in phylogenetic studies assume that the evolutionary process has been homogeneous across lineages and that composition of nucleotides or amino acids has remained the same throughout the tree. These oversimplified assumptions are refuted by the observation that compositional variability characterizes extant biological sequences. Branch-heterogeneous models of protein evolution that account for compositional variability have been developed, but are not yet in common use because of the large number of parameters required, leading to high computational costs and potential overparameterization. Here, we present a new branch-nonhomogeneous and nonstationary model of protein evolution that captures more accurately the high complexity of sequence evolution. This model, henceforth called Correspondence and likelihood analysis (COaLA), makes use of a correspondence analysis to reduce the number of parameters to be optimized through maximum likelihood, focusing on most of the compositional variation observed in the data. The model was thoroughly tested on both simulated and biological data sets to show its high performance in terms of data fitting and CPU time. COaLA efficiently estimates ancestral amino acid frequencies and sequences, making it relevant for studies aiming at reconstructing and resurrecting ancestral amino acid sequences. Finally, we applied COaLA on a concatenate of universal amino acid sequences to confirm previous results obtained with a nonhomogeneous Bayesian model regarding the early pattern of adaptation to optimal growth temperature, supporting the mesophilic nature of the Last Universal Common Ancestor.

  16. PLANETS AROUND THE K-GIANTS BD+20 274 AND HD 219415

    International Nuclear Information System (INIS)

    Gettel, S.; Wolszczan, A.; Niedzielski, A.; Nowak, G.; Adamów, M.; Zieliński, P.; Maciejewski, G.

    2012-01-01

    We present the discovery of planet-mass companions to two giant stars by the ongoing Penn State-Toruń Planet Search conducted with the 9.2 m Hobby-Eberly Telescope. The less massive of these stars, K5-giant BD+20 274, has a 4.2 M J minimum mass planet orbiting the star at a 578 day period and a more distant, likely stellar-mass companion. The best currently available model of the planet orbiting the K0-giant HD 219415 points to a ∼> Jupiter-mass companion in a 5.7 year, eccentric orbit around the star, making it the longest period planet yet detected by our survey. This planet has an amplitude of ∼18 m s –1 , comparable to the median radial velocity 'jitter', typical of giant stars.

  17. SHOCKS AND A GIANT PLANET IN THE DISK ORBITING BP PISCIUM?

    International Nuclear Information System (INIS)

    Melis, C.; Zuckerman, B.; Gielen, C.; Chen, C. H.; Rhee, Joseph H.; Song, Inseok

    2010-01-01

    Spitzer Infrared Spectrograph data support the interpretation that BP Piscium, a gas and dust enshrouded star residing at high Galactic latitude, is a first-ascent giant rather than a classical T Tauri star. Our analysis suggests that BP Piscium's spectral energy distribution can be modeled as a disk with a gap that is opened by a giant planet. Modeling the rich mid-infrared emission line spectrum indicates that the solid-state emitting grains orbiting BP Piscium are primarily composed of ∼75 K crystalline, magnesium-rich olivine; ∼75 K crystalline, magnesium-rich pyroxene; ∼200 K amorphous, magnesium-rich pyroxene; and ∼200 K annealed silica (cristobalite). These dust grains are all sub-micron sized. The giant planet and gap model also naturally explains the location and mineralogy of the small dust grains in the disk. Disk shocks that result from disk-planet interaction generate the highly crystalline dust which is subsequently blown out of the disk mid-plane and into the disk atmosphere.

  18. Giant pulses of pulsar radio emission

    OpenAIRE

    Kuzmin, A. D.

    2007-01-01

    Review report of giant pulses of pulsar radio emission, based on our detections of four new pulsars with giant pulses, and the comparative analysis of the previously known pulsars with giant pulses, including the Crab pulsar and millisecond pulsar PSR B1937+21.

  19. Modeling of the branches of the Tsushima Warm Current in the eastern Japan sea

    International Nuclear Information System (INIS)

    Kawamura, Hideyuki; Ito, Toshimichi; Hirose, Naoki; Yoon, Jong-Hwan; Takikawa, Tetsutaro

    2009-01-01

    The branches of the Tsushima Warm Current (TWC) are realistically reproduced using a three-dimensional ocean general circulation model (OGCM). Simulated structures of the First Branch and the Second Branch of the TWC (FBTWC and SBTWC) in the eastern Japan Sea are mainly addressed in this study, being compared with measurement in the period September-October 2000. This is the first numerical experiment so far in which the OGCM is laterally exerted by real volume transports measured by acoustic Doppler current profiler (ADCP) through the Tsushima Straits and the Tsugaru Strait. In addition, sea level variation measured by tide-stations along the Japanese coast as well as satellite altimeters is assimilated into the OGCM through a sequential data assimilation method. It is demonstrated that the assimilation of sea level variation at the coastal tide-stations is useful in reproducing oceanic conditions in the nearshore region. We also examine the seasonal variation of the branches of the TWC in the eastern Japan Sea in 2000. It is suggested as a consequence that the FBTWC is continuous along northwestern Honshu Island in summertime, while it degenerates along the coast between the Sado Strait and the Oga Peninsula in other seasons. On the other hand, a mainstream of the SBTWC exists with meanders and eddies in the offshore region deeper than 1000 m to the north of the Sado Island throughout the year. (author)

  20. On the red giant titanium oxide bands

    Science.gov (United States)

    Hanni, L.; Sitska, J.

    1985-12-01

    The dependence of TiO absorption in cool oxygen-sequence giant stars on the Teff and log g of their atmospheres is investigated theoretically on the basis of spectra simulated using the computer program described by Hanni (1983) and the giant model atmospheres of Johnson et al. (1980). The temperature dependence of the intensity jumps at the head of the alpha(1.0) band is determined from simulated spectra, and the jumps are related to spectral types using the calibration of Ridgway et al. (1980). The results are presented in tables and graphs and shown to be in good agreement with the empirical Teff/intensity-jump correlation of Boyarchuk (1969).

  1. Mapping and modelling the habitat of giant pandas in Foping Nature Reserve, China

    OpenAIRE

    Liu, X.

    2001-01-01

    The fact that only about 1000 giant pandas and 29500 km2 of panda habitat are left in the west part of China makes it an urgent issue to save this endangered animal species and protect its habitat. For effective conservation of the giant panda and its habitat, a thorough evaluation of panda habitat and panda-habitat relationship based on each individual panda nature reserve is necessary and important. Mapping has been an effective approach for wildlife habitat evaluation and monitoring. There...

  2. Geometrical nonlinear deformation model and its experimental study on bimorph giant magnetostrictive thin film

    Institute of Scientific and Technical Information of China (English)

    Wei LIU; Zhenyuan JIA; Fuji WANG; Yongshun ZHANG; Dongming GUO

    2008-01-01

    The geometrical nonlinearity of a giant magne-tostrictive thin film (GMF) can be clearly detected under the magnetostriction effect. Thus, using geometrical linear elastic theory to describe the strain, stress, and constitutive relationship of GMF is inaccurate. According to nonlinear elastic theory, a nonlinear deformation model of the bimorph GMF is established based on assumptions that the magnetostriction effect is equivalent to the effect of body force loaded on the GMF. With Taylor series method, the numerical solution is deduced. Experiments on TbDyFe/Polyimide (PI)/SmFe and TbDyFe/Cu/SmFe are then conducted to verify the proposed model, respectively. Results indicate that the nonlinear deflection curve model is in good conformity with the experimental data.

  3. Electroexcitation of giant resonances in 181Ta

    International Nuclear Information System (INIS)

    Hicks, R.S.; Auer, I.P.; Bergstrom, J.C.; Caplan, H.S.

    1977-01-01

    The giant resonance region of 181 Ta has been investigated by means of inelastic electron scattering with primary electron energies of 79.1 to 118.3 MeV. A peak-fitting procedure was employed to separate the measured spectrum into nine different resonance components. Multipolarity and strength assignments were deduced using DWBA analysis with the Goldhaber-Teller and Steinwedel-Jensen models. In addition to the well-known giant dipole structure, other resonances were identified at 23.2+-0.3 MeV (E2), 9.5+-0.2 and 11.5+-0.2 MeV (E2 or E0), 19.5+-0.8 MeV (E3), 3.70+-0.14 MeV (E3 or E4), and 5.40+-0.15 MeV (E4 or E5). The model dependence of the analysis is discussed. (Auth.)

  4. Cell-based multi-parametric model of cleft progression during submandibular salivary gland branching morphogenesis.

    Directory of Open Access Journals (Sweden)

    Shayoni Ray

    Full Text Available Cleft formation during submandibular salivary gland branching morphogenesis is the critical step initiating the growth and development of the complex adult organ. Previous experimental studies indicated requirements for several epithelial cellular processes, such as proliferation, migration, cell-cell adhesion, cell-extracellular matrix (matrix adhesion, and cellular contraction in cleft formation; however, the relative contribution of each of these processes is not fully understood since it is not possible to experimentally manipulate each factor independently. We present here a comprehensive analysis of several cellular parameters regulating cleft progression during branching morphogenesis in the epithelial tissue of an early embryonic salivary gland at a local scale using an on lattice Monte-Carlo simulation model, the Glazier-Graner-Hogeweg model. We utilized measurements from time-lapse images of mouse submandibular gland organ explants to construct a temporally and spatially relevant cell-based 2D model. Our model simulates the effect of cellular proliferation, actomyosin contractility, cell-cell and cell-matrix adhesions on cleft progression, and it was used to test specific hypotheses regarding the function of these parameters in branching morphogenesis. We use innovative features capturing several aspects of cleft morphology and quantitatively analyze clefts formed during functional modification of the cellular parameters. Our simulations predict that a low epithelial mitosis rate and moderate level of actomyosin contractility in the cleft cells promote cleft progression. Raising or lowering levels of contractility and mitosis rate resulted in non-progressive clefts. We also show that lowered cell-cell adhesion in the cleft region and increased cleft cell-matrix adhesions are required for cleft progression. Using a classifier-based analysis, the relative importance of these four contributing cellular factors for effective cleft

  5. Abnormal notochord branching is associated with foregut malformations in the adriamycin treated mouse model.

    Science.gov (United States)

    Hajduk, Piotr; Sato, Hideaki; Puri, Prem; Murphy, Paula

    2011-01-01

    Oesophageal atresia (OA) and tracheooesophageal fistula (TOF) are relatively common human congenital malformations of the foregut where the oesophagus does not connect with the stomach and there is an abnormal connection between the stomach and the respiratory tract. They require immediate corrective surgery and have an impact on the future health of the individual. These abnormalities are mimicked by exposure of rat and mouse embryos in utero to the drug adriamycin. The causes of OA/TOF during human development are not known, however a number of mouse mutants where different signalling pathways are directly affected, show similar abnormalities, implicating multiple and complex signalling mechanisms. The similarities in developmental outcome seen in human infants and in the adriamycin treated mouse model underline the potential of this model to unravel the early embryological events and further our understanding of the processes disturbed, leading to such abnormalities. Here we report a systematic study of the foregut and adjacent tissues in embryos treated with adriamycin at E7 and E8 and analysed between E9 and E12, comparing morphology in 3D in 149 specimens. We describe a spectrum of 8 defects, the most common of which is ventral displacement and branching of the notochord (in 94% of embryos at E10) and a close spatial correspondence between the site of notochord branching and defects of the foregut. In addition gene expression analysis shows altered dorso-ventral foregut patterning in the vicinity of notochord branches. This study shows a number of features of the adriamycin mouse model not previously reported, implicates the notochord as a primary site of disturbance in such abnormalities and underlines the importance of the model to further address the mechanistic basis of foregut congenital abnormalities.

  6. Modelling the PCR amplification process by a size-dependent branching process and estimation of the efficiency

    NARCIS (Netherlands)

    Lalam, N.; Jacob, C.; Jagers, P.

    2004-01-01

    We propose a stochastic modelling of the PCR amplification process by a size-dependent branching process starting as a supercritical Bienaymé-Galton-Watson transient phase and then having a saturation near-critical size-dependent phase. This model allows us to estimate the probability of replication

  7. Tilting Saturn without Tilting Jupiter: Constraints on Giant Planet Migration

    Science.gov (United States)

    Brasser, R.; Lee, Man Hoi

    2015-11-01

    The migration and encounter histories of the giant planets in our solar system can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn’s spin axis to the current obliquity if the product of the migration timescale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today’s obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance crossing. Migration timescales sufficiently long to tilt Saturn generally suffice to tilt Jupiter more than is observed. The full N-body simulations tell a somewhat different story, with Jupiter generally being tilted as often as Saturn, but on average having a higher obliquity. The main obstacle is the final orbital spacing of the giant planets, coupled with the tail of Neptune’s migration. The resonant Nice case is barely able to simultaneously reproduce the orbital and spin properties of the giant planets, with a probability ˜ 0.15%. The loose five planet model is unable to match all our constraints (probability <0.08%). The compact five planet model has the highest chance of matching the orbital and obliquity constraints simultaneously (probability ˜0.3%).

  8. Magnetic fields in giant planet formation and protoplanetary discs

    Science.gov (United States)

    Keith, Sarah Louise

    2015-12-01

    Protoplanetary discs channel accretion onto their host star. How this is achieved is critical to the growth of giant planets which capture their massive gaseous atmosphere from the surrounding flow. Theoretical studies find that an embedded magnetic field could power accretion by hydromagnetic turbulence or torques from a large-scale field. This thesis presents a study of the inuence of magnetic fields in three key aspects of this process: circumplanetary disc accretion, gas flow across gaps in protoplanetary discs, and magnetic-braking in accretion discs. The first study examines the conditions needed for self-consistent accretion driven by magnetic fields or gravitational instability. Models of these discs typically rely on hydromagnetic turbulence as the source of effective viscosity. However, magnetically coupled,accreting regions may be so limited that the disc may not support sufficient inflow. An improved Shakura-Sunyaev ? disc is used to calculate the ionisation fraction and strength of non-ideal effects. Steady magnetically-driven accretion is limited to the thermally ionised, inner disc so that accretion in the remainder of the disc is time-dependent. The second study addresses magnetic flux transport in an accretion gap evacuated by a giant planet. Assuming the field is passively drawn along with the gas, the hydrodynamical simulation of Tanigawa, Ohtsuki & Machida (2012) is used for an a posteriori analysis of the gap field structure. This is used to post-calculate magnetohydrodynamical quantities. This assumption is self-consistent as magnetic forces are found to be weak, and good magnetic coupling ensures the field is frozen into the gas. Hall drift dominates across much of the gap, with the potential to facilitate turbulence and modify the toroidal field according to the global field orientation. The third study considers the structure and stability of magnetically-braked accretion discs. Strong evidence for MRI dead-zones has renewed interest in

  9. Excitation of giant resonances in heavy ion collisions

    International Nuclear Information System (INIS)

    Kuehn, W.

    1991-01-01

    Introduction: What are Giant Resonances? General Features of Giant Resonances, Macroscopic Description and Classification, Basic Excitation Mechanisms, Decay Modes, Giant Resonances Built on Excited States, Relativistic Coulomb Excitation of Giant Resonances, Experimental Situation. (orig.)

  10. Floret-like multinucleated giant cells in neurofibroma

    Directory of Open Access Journals (Sweden)

    Golka Dariusz

    2007-12-01

    Full Text Available Abstract This short report discusses a case of neurofibroma containing floret-like multinucleated giant cells. This being the second such case in the literature. Floret-like multinucleated giant cells have been reported in gynaecomastia and neurofibroma in neurofibromatosis type 1. These cells have been reported in uncommon soft tissue tumours including pleomorphic lipoma, giant cell collagenoma, giant cell fibroblastoma and giant cell angiofibroma. We recommend these cells to be interpreted carefully keeping in mind the rare malignant change in neurofibromas. Immunohistochemistry would help in defining the nature of such cells.

  11. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS

    International Nuclear Information System (INIS)

    Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko

    2013-01-01

    The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a result of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to ∼0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of ∼30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.

  12. Airway branching morphogenesis in three dimensional culture

    Directory of Open Access Journals (Sweden)

    Gudjonsson Thorarinn

    2010-11-01

    Full Text Available Abstract Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10 recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs, to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2 and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to

  13. Nanodielectrics with giant permittivity

    Indian Academy of Sciences (India)

    Following the prediction, during the last couple of years we have investigated the effect of giant permittivity in one-dimensional systems of conventional metals and conjugated polymer chains. In this article, we have tried to summarize the works on giant permittivity and finally the fabrication of nanocapacitor using metal ...

  14. Physical properties of the red giant envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, W J [Instituto de Astronomia e Geofisico da Universidade de Sao Paulo (Brazil)

    1978-12-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained.

  15. The estimation of branching curves in the presence of subject-specific random effects.

    Science.gov (United States)

    Elmi, Angelo; Ratcliffe, Sarah J; Guo, Wensheng

    2014-12-20

    Branching curves are a technique for modeling curves that change trajectory at a change (branching) point. Currently, the estimation framework is limited to independent data, and smoothing splines are used for estimation. This article aims to extend the branching curve framework to the longitudinal data setting where the branching point varies by subject. If the branching point is modeled as a random effect, then the longitudinal branching curve framework is a semiparametric nonlinear mixed effects model. Given existing issues with using random effects within a smoothing spline, we express the model as a B-spline based semiparametric nonlinear mixed effects model. Simple, clever smoothness constraints are enforced on the B-splines at the change point. The method is applied to Women's Health data where we model the shape of the labor curve (cervical dilation measured longitudinally) before and after treatment with oxytocin (a labor stimulant). Copyright © 2014 John Wiley & Sons, Ltd.

  16. Stochastic and deterministic causes of streamer branching in liquid dielectrics

    International Nuclear Information System (INIS)

    Jadidian, Jouya; Zahn, Markus; Lavesson, Nils; Widlund, Ola; Borg, Karl

    2013-01-01

    Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer head is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching

  17. Best management strategies for sustainable giant clam fishery in French Polynesia islands: answers from a spatial modeling approach.

    Directory of Open Access Journals (Sweden)

    Simon Van Wynsberge

    Full Text Available The giant clam Tridacna maxima has been largely overexploited in many tropical regions over the past decades, and was therefore listed in appendix II of the Convention of International Trade in Endangered Species (CITES in 1985. In French Polynesia, several atolls and islands harbor the world's highest stocks of giant clams in very shallow and accessible areas, which are therefore highly vulnerable to fishing pressure. The local fishery authority (i.e., Direction des Resources Marines or "DRM" implemented several management schemes in 2002 to control and regulate fishing pressure. However, for further decisions DRM was missing a sensitivity analysis on the effectiveness of the possible management actions. Here, we report on the use of a deterministic Viable Population Analysis (VPA and spatially-explicit age-based population model that simulated the 30-year trajectory of a Tridacna maxima stock under different management approaches. Specifically, given various scenarios of intra-island larval dispersal, we tested which of No-take-Areas (NTAs, rotational closures, size limits, quotas, and restocking schemes would lead to the highest future stocks in Tubuai and Raivavae, two exploited islands of the Austral archipelago. For both islands, stock abundances were estimated in 2004/2010 and 2005/2010 respectively, and natural mortalities were assessed previously only in Tubuai. When compared to field data, the model successfully predicted the 2010 stocks for Tubuai, but proved to be less reliable for Raivavae, where natural mortality rates may well be different from those on Tubuai. For Tubuai, the spatial model suggested that reducing fishing effort (through fixed quotas and banning fishing below the 12 cm size limit (as currently implemented were the most effective management actions to sustain T. maxima populations into the future. Implementing NTAs was of poor effectiveness. NTAs increased giant clam stock inside the protected area, but also

  18. The chemical composition of red giants in 47 Tucanae. II. Magnesium isotopes and pollution scenarios

    Science.gov (United States)

    Thygesen, A. O.; Sbordone, L.; Ludwig, H.-G.; Ventura, P.; Yong, D.; Collet, R.; Christlieb, N.; Melendez, J.; Zaggia, S.

    2016-04-01

    Context. The phenomenon of multiple populations in globular clusters is still far from understood, with several proposed mechanisms to explain the observed behaviour. The study of elemental and isotopic abundance patterns are crucial for investigating the differences among candidate pollution mechanisms. Aims: We derive magnesium isotopic ratios for 13 stars in the globular cluster 47 Tucanae (NGC 104) to provide new, detailed information about the nucleosynthesis that has occurred within the cluster. For the first time, the impact of 3D model stellar atmospheres on the derived Mg isotopic ratios is investigated. Methods: Using both tailored 1D atmospheric models and 3D hydrodynamical models, we derive magnesium isotopic ratios from four features of MgH near 5135 Å in 13 giants near the tip of the red giant branch, using high signal-to-noise, high-resolution spectra. Results: We derive the magnesium isotopic ratios for all stars and find no significant offset of the isotopic distribution between the pristine and the polluted populations. Furthermore, we do not detect any statistically significant differences in the spread in the Mg isotopes in either population. No trends were found between the Mg isotopes and [Al/Fe]. The inclusion of 3D atmospheres has a significant impact on the derived 25Mg/24Mg ratio, increasing it by a factor of up to 2.5, compared to 1D. The 26Mg/24Mg ratio, on the other hand, essentially remains unchanged. Conclusions: We confirm the results seen from other globular clusters, where no strong variation in the isotopic ratios is observed between stellar populations, for observed ranges in [Al/Fe]. We see no evidence for any significant activation of the Mg-Al burning chain. The use of 3D atmospheres causes an increase of a factor of up to 2.5 in the fraction of 25Mg, resolving part of the discrepancy between the observed isotopic fraction and the predictions from pollution models. Based on observations made with the ESO Very Large Telescope

  19. OPTIMIZATION OF ATM AND BRANCH CASH OPERATIONS USING AN INTEGRATED CASH REQUIREMENT FORECASTING AND CASH OPTIMIZATION MODEL

    OpenAIRE

    Canser BİLİR

    2018-01-01

    In this study, an integrated cash requirement forecasting and cash inventory optimization model is implemented in both the branch and automated teller machine (ATM) networks of a mid-sized bank in Turkey to optimize the bank’s cash supply chain. The implemented model’s objective is to minimize the idle cash levels at both branches and ATMs without decreasing the customer service level (CSL) by providing the correct amount of cash at the correct location and time. To the best of our knowledge,...

  20. Tracheostomy in the giant anteater (Myrmecophaga tridactyla).

    Science.gov (United States)

    Brainard, Benjamin M; Newton, Alisa; Hinshaw, Keith C; Klide, Alan M

    2008-12-01

    Anesthesia in the giant anteater (Myrmecophaga tridactyla) may be complicated by apnea. Although emergent orotracheal intubation may be possible in other species, the particular anatomy of the anteater prevents a smooth intubation. A technique, developed on a cadaver model, is described for a surgical approach to the trachea of the giant anteater that may be used to secure an airway in an anesthetized animal under emergent conditions. The approach is complicated by the presence of the large paired submaxillary salivary gland and the relatively deep and caudal position of the larynx relative to the ramus of the mandible. This procedure, however, appears to be a feasible method to achieve endotracheal intubation in the anteater.

  1. Giant trochanteric pressure sore: Use of a pedicled chimeric perforator flap for cover

    Directory of Open Access Journals (Sweden)

    Mehrotra Sandeep

    2009-01-01

    Full Text Available Pressure sores are increasing in frequency commensurate with an ageing population with multi-system disorders and trauma. Numerous classic options are described for providing stable wound cover. With the burgeoning knowledge on perforator anatomy, recent approaches focus on the use of perforator-based flaps in bedsore surgery. A giant neglected trochanteric pressure sore in a paraplegic is presented. Since conventional options of reconstruction appeared remote, the massive ulcer was successfully managed by a chimeric perforator-based flap. The combined muscle and fasciocutaneous flaps were raised as separate paddles based on the anterolateral thigh perforator branches and provided stable cover without complications. Perforators allow versatility in managing complex wounds without compromising on established principles.

  2. Population Synthesis Models for Normal Galaxies with Dusty Disks

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2003-09-01

    Full Text Available To investigate the SEDs of galaxies considering the dust extinction processes in the galactic disks, we present the population synthesis models for normal galaxies with dusty disks. We use PEGASE (Fioc & Rocca-Volmerange 1997 to model them with standard input parameters for stars and new dust parameters. We find that the model results are strongly dependent on the dust parameters as well as other parameters (e.g. star formation history. We compare the model results with the observations and discuss about the possible explanations. We find that the dust opacity functions derived from studies of asymptotic giant branch stars are useful for modeling a galaxy with a dusty disk.

  3. Dynamic Properties of Star-Branched Polymer Brushes

    International Nuclear Information System (INIS)

    Sikorski, A.; Romiszowski, P.

    2004-01-01

    We studied a simplified model of a polymer brush. It consisted of star-branched chains, which were restricted to a simple cubic lattice. Each star-branched macromolecule consisted of three linear arms of equal length emanating from a common origin (the branching point). The chains were grafted to an impenetrable surface, i.e. they were terminally attached to the surface with one arm. The number of chains was varied from low to high grafting density. The model system was studied at good solvent conditions because the excluded volume effect was the only potential of interaction included in the model. The properties of this model system were studied by means of Monte Carlo simulation. The sampling algorithm was based on local changes of chain conformations. The dynamic properties of the polymer brush were studied and correlated with its structure. The differences in relaxation times of particular star arms were shown. The short-time mobility of polymer layers was analyzed. The lateral self-diffusion of chains was also studied and discussed. (author)

  4. Giant multipole resonances: an experimental review

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1979-01-01

    During the past several years experimental evidence has been published for the existance of nondipole giant resonances. These giant multipole resonances, the so-called new giant resonances were first observed through inelastic hadron and electron scattering and such measurements have continued to provide most of the information in this field. A summary is provided of the experimental evidence for these new resonances. The discussion deals only with results from inelastic scattering and only with the electric multipoles. Emphasis is placed on the recent observations of the giant monopole resonance. Results from recent heavy-ion and pion inelastic scattering are discussed. 38 references

  5. Giant dipole resonance in hot nuclei

    International Nuclear Information System (INIS)

    Mau, N.V.

    1993-01-01

    Giant resonances built on an excited state of the nucleus at a finite temperature T are studied. The following questions are investigated: how long such collective effects occur in a nucleus when T increases. How the properties of the giant resonances vary when the temperature increases. How the study of giant resonances in hot nuclei can give information on the structure of the nucleus in a highly excited state. The special case of the giant dipole resonance is studied. Some of the experimental results are reviewed and in their theoretical interpretation is discussed. (K.A.). 56 refs., 20 figs., 4 tabs

  6. The effects of diffusion in hot subdwarf progenitors from the common envelope channel

    Science.gov (United States)

    Byrne, Conor M.; Jeffery, C. Simon; Tout, Christopher A.; Hu, Haili

    2018-04-01

    Diffusion of elements in the atmosphere and envelope of a star can drastically alter its surface composition, leading to extreme chemical peculiarities. We consider the case of hot subdwarfs, where surface helium abundances range from practically zero to almost 100 percent. Since hot subdwarfs can form via a number of different evolution channels, a key question concerns how the formation mechanism is connected to the present surface chemistry. A sequence of extreme horizontal branch star models was generated by producing post-common envelope stars from red giants. Evolution was computed with MESA from envelope ejection up to core-helium ignition. Surface abundances were calculated at the zero-age horizontal branch for models with and without diffusion. A number of simulations also included radiative levitation. The goal was to study surface chemistry during evolution from cool giant to hot subdwarf and determine when the characteristic subdwarf surface is established. Only stars leaving the giant branch close to core-helium ignition become hydrogen-rich subdwarfs at the zero-age horizontal branch. Diffusion, including radiative levitation, depletes the initial surface helium in all cases. All subdwarf models rapidly become more depleted than observations allow. Surface abundances of other elements follow observed trends in general, but not in detail. Additional physics is required.

  7. Physical properties of the red giant envelopes

    International Nuclear Information System (INIS)

    Maciel, W.J.

    1978-01-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained [pt

  8. HIDE AND SEEK BETWEEN ANDROMEDA'S HALO, DISK, AND GIANT STREAM

    Energy Technology Data Exchange (ETDEWEB)

    Clementini, Gisella; Contreras Ramos, Rodrigo; Federici, Luciana; Macario, Giulia; Tosi, Monica; Bellazzini, Michele; Fusi Pecci, Flavio; Diolaiti, Emiliano; Cacciari, Carla [INAF, Osservatorio Astronomico di Bologna, Bologna (Italy); Beccari, Giacomo [European Southern Observatory, 85748 Garching bei Munchen (Germany); Testa, Vincenzo; Giallongo, Emanuele; Di Paola, Andrea; Gallozzi, Stefano [INAF, Osservatorio Astronomico di Roma, Monteporzio (Italy); Cignoni, Michele; Marano, Bruno [Dipartimento di Astronomia, Universita di Bologna, Bologna (Italy); Marconi, Marcella; Ripepi, Vincenzo [INAF, Osservatorio Astronomico di Capodimonte, Napoli (Italy); Ragazzoni, Roberto [INAF, Osservatorio Astronomico di Padova, Padova (Italy); Smareglia, Riccardo, E-mail: gisella.clementini@oabo.inaf.it [INAF, Osservatorio Astronomico di Trieste, Trieste (Italy)

    2011-12-10

    Photometry in B, V (down to V {approx} 26 mag) is presented for two 23' Multiplication-Sign 23' fields of the Andromeda galaxy (M31) that were observed with the blue channel camera of the Large Binocular Telescope during the Science Demonstration Time. Each field covers an area of about 5.1 Multiplication-Sign 5.1 kpc{sup 2} at the distance of M31 ({mu}{sub M31} {approx} 24.4 mag), sampling, respectively, a northeast region close to the M31 giant stream (field S2) and an eastern portion of the halo in the direction of the galaxy minor axis (field H1). The stream field spans a region that includes Andromeda's disk and giant stream, and this is reflected in the complexity of the color-magnitude diagram of the field. One corner of the halo field also includes a portion of the giant stream. Even though these demonstration time data were obtained under non-optimal observing conditions, the B photometry, which was acquired in time-series mode, allowed us to identify 274 variable stars (among which 96 are bona fide and 31 are candidate RR Lyrae stars, 71 are Cepheids, and 16 are binary systems) by applying the image subtraction technique to the selected portions of the observed fields. Differential flux light curves were obtained for the vast majority of these variables. Our sample mainly includes pulsating stars that populate the instability strip from the Classical Cepheids down to the RR Lyrae stars, thus tracing the different stellar generations in these regions of M31 down to the horizontal branch of the oldest (t {approx} 10 Gyr) component.

  9. Oscillatory Critical Amplitudes in Hierarchical Models and the Harris Function of Branching Processes

    Science.gov (United States)

    Costin, Ovidiu; Giacomin, Giambattista

    2013-02-01

    Oscillatory critical amplitudes have been repeatedly observed in hierarchical models and, in the cases that have been taken into consideration, these oscillations are so small to be hardly detectable. Hierarchical models are tightly related to iteration of maps and, in fact, very similar phenomena have been repeatedly reported in many fields of mathematics, like combinatorial evaluations and discrete branching processes. It is precisely in the context of branching processes with bounded off-spring that T. Harris, in 1948, first set forth the possibility that the logarithm of the moment generating function of the rescaled population size, in the super-critical regime, does not grow near infinity as a power, but it has an oscillatory prefactor (the Harris function). These oscillations have been observed numerically only much later and, while the origin is clearly tied to the discrete character of the iteration, the amplitude size is not so well understood. The purpose of this note is to reconsider the issue for hierarchical models and in what is arguably the most elementary setting—the pinning model—that actually just boils down to iteration of polynomial maps (and, notably, quadratic maps). In this note we show that the oscillatory critical amplitude for pinning models and the Harris function coincide. Moreover we make explicit the link between these oscillatory functions and the geometry of the Julia set of the map, making thus rigorous and quantitative some ideas set forth in Derrida et al. (Commun. Math. Phys. 94:115-132, 1984).

  10. Electrified BPS giants: BPS configurations on giant gravitons with static electric field

    International Nuclear Information System (INIS)

    Ali-Akbari, Mohammad; Sheikh-Jabbari, Mohammad Mahdi

    2007-01-01

    We consider D3-brane action in the maximally supersymmetric type IIB plane-wave background. Upon fixing the light-cone gauge, we obtain the light-cone Hamiltonian which is manifestly supersymmetric. The 1/2 BPS solutions of this theory (solutions which preserve 16 supercharges) are either of the form of spherical three branes, the giant gravitons, or zero size point like branes. We then construct specific classes of 1/4 BPS solutions of this theory in which static electric field on the brane is turned on. These solutions are deformations about either of the two 1/2 BPS solutions. In particular, we study in some detail 1/4 BPS configurations with electric dipole on the three sphere giant, i.e. BIons on the giant gravitons, which we hence call BIGGons. We also study BPS configurations corresponding to turning on a background uniform constant electric field. As a result of this background electric field the three sphere giant is deformed to squashed sphere, while the zero size point like branes turn into circular or straight fundamental strings in the plane-wave background, with their tension equal to the background electric field

  11. KIC 9821622: An interesting lithium-rich giant in the Kepler field

    Science.gov (United States)

    Jofré, E.; Petrucci, R.; García, L.; Gómez, M.

    2015-12-01

    We report the discovery of a new exceptional young lithium-rich giant, KIC 9821622, in the Kepler field that exhibits an unusually large enhancement of α, Fe-peak, and r-process elements. From high-resolution spectra obtained with GRACES at Gemini North, we derived fundamental parameters and detailed chemical abundances of 23 elements from equivalent widths and synthesis analysis. By combining atmospheric stellar parameters with available asteroseismic data, we obtained the stellar mass, radius, and age. The data analysis reveals that KIC 9821622 is a Li-rich (A(Li)NLTE = 1.80 ± 0.2) intermediate-mass giant star (M = 1.64 M⊙) located at the red giant branch near the luminosity bump. We find unexpectedly elevated abundances of Fe-peak and r-process elements. In addition, as previously reported, we find that this is a young star (2.37 Gyr) with unusually high abundances of α-elements ([α/Fe] = 0.31). The evolutionary status of KIC 9821622 suggests that its Li-rich nature is the result of internal fresh Li that is synthesized through the Cameron-Fowler mechanism near the luminosity bump. However, its peculiar enhancement of α, Fe-peak, and r-process elements opens the possibility of external contamination by material enriched by a supernova explosion. Although it is less likely, planet accretion cannot be ruled out. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).Appendix A is available in electronic form at http://www.aanda.org

  12. Giant cells around bone biomaterials: Osteoclasts or multi-nucleated giant cells?

    Science.gov (United States)

    Miron, Richard J; Zohdi, Hamoon; Fujioka-Kobayashi, Masako; Bosshardt, Dieter D

    2016-12-01

    Recently accumulating evidence has put into question the role of large multinucleated giant cells (MNGCs) around bone biomaterials. While cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials, it was originally thought that specifically in bone tissues, all giant cells were bone-resorbing osteoclasts whereas foreign body giant cells (FBGCs) were found associated with a connective tissue foreign body reaction resulting in fibrous encapsulation and/or material rejection. Despite the great majority of bone grafting materials routinely found with large osteoclasts, a special subclass of bone biomaterials has more recently been found surrounded by large giant cells virtually incapable of resorbing bone grafts even years after their implantation. While original hypotheses believed that a 'foreign body reaction' may be taking place, histological data retrieved from human samples years after their implantation have put these original hypotheses into question by demonstrating better and more stable long-term bone volume around certain bone grafts. Exactly how or why this 'special' subclass of giant cells is capable of maintaining long-term bone volume, or methods to scientifically distinguish them from osteoclasts remains extremely poorly studied. The aim of this review article was to gather the current available literature on giant cell markers and differences in expression patterns between osteoclasts and MNGCs utilizing 19 specific markers including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (previously referred to as FBGCs) as well as wound-healing M2-MNGCs is introduced and discussed. This review article presents 19 specific cell-surface markers to distinguish between osteoclasts and MNGCs including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (often

  13. Internal rotation of 13 low-mass low-luminosity red giants in the Kepler field

    Science.gov (United States)

    Triana, S. A.; Corsaro, E.; De Ridder, J.; Bonanno, A.; Pérez Hernández, F.; García, R. A.

    2017-06-01

    Context. The Kepler space telescope has provided time series of red giants of such unprecedented quality that a detailed asteroseismic analysis becomes possible. For a limited set of about a dozen red giants, the observed oscillation frequencies obtained by peak-bagging together with the most recent pulsation codes allowed us to reliably determine the core/envelope rotation ratio. The results so far show that the current models are unable to reproduce the rotation ratios, predicting higher values than what is observed and thus indicating that an efficient angular momentum transport mechanism should be at work. Here we provide an asteroseismic analysis of a sample of 13 low-luminosity low-mass red giant stars observed by Kepler during its first nominal mission. These targets form a subsample of the 19 red giants studied previously, which not only have a large number of extracted oscillation frequencies, but also unambiguous mode identifications. Aims: We aim to extend the sample of red giants for which internal rotation ratios obtained by theoretical modeling of peak-bagged frequencies are available. We also derive the rotation ratios using different methods, and compare the results of these methods with each other. Methods: We built seismic models using a grid search combined with a Nelder-Mead simplex algorithm and obtained rotation averages employing Bayesian inference and inversion methods. We compared these averages with those obtained using a previously developed model-independent method. Results: We find that the cores of the red giants in this sample are rotating 5 to 10 times faster than their envelopes, which is consistent with earlier results. The rotation rates computed from the different methods show good agreement for some targets, while some discrepancies exist for others.

  14. A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy

    International Nuclear Information System (INIS)

    Dimova, Rumiana; Aranda, Said; Bezlyepkina, Natalya; Nikolov, Vesselin; Riske, Karin A; Lipowsky, Reinhard

    2006-01-01

    Research on giant vesicles is becoming increasingly popular. Giant vesicles provide model biomembrane systems for systematic measurements of mechanical and rheological properties of bilayers as a function of membrane composition and temperature, as well as hydrodynamic interactions. Membrane response to external factors (for example electric fields, ions and amphiphilic molecules) can be directly visualized under the microscope. In this paper we review our current understanding of lipid bilayers as obtained from studies on giant unilamellar vesicles. Because research on giant vesicles increasingly attracts the interest of scientists from various backgrounds, we also try to provide a concise introduction for newcomers in the field. Finally, we summarize some recent developments on curvature effects induced by polymers, domain formation in membranes and shape transitions induced by electric fields

  15. Decay of the isoscalar 1(h/2π)ω giant E3 resonance in 92Mo

    International Nuclear Information System (INIS)

    Klein, R.A.

    1984-01-01

    By means of the Heidelberg tandem-post accelerator combination the decay of the isoscalar 1 (h/2π)ω giant E3 resonance (LEOR) in 92 Mo was studied by (α, α', γ) coincidence measurements. At an incident energy of 50.4 MeV of the α particles the scattered helium nuclei were spectroscoped by eight semiconductor detectors in a maximum of the L=3 angular distribution. The γ quanta emitted coincidently by the excited target nuclei were detected in three high-resolution Ge diodes. Because of the good resolution both in the alpha and in the gamma branch for about 30 states in the excitation energy range of 1-7 MeV branching ratios for the gamma decay could be measured. For 16 of these levels lifetimes were determined by the Doppler-shift attenuation method. Starting from the determined branching ratios and typical lifetimes (40-90 fs) for 3 - states in the excitation-energy range of the LEOR (5-10 MeV) an earlier reported strong ground-state decay (8%) of the LEOR can be excluded. Rather the LEOR decays so as it is expected by the model of the statistical decay namely dominantly to low-lying 3 - , 4 - , and above all 5 - levels. A likewise reported strong E1-decay of the LEOR to the 2 + 1 state in 90 Zr which is implicated in the framework of a collective model in connection with the E3 ground-state transitions can in 92 Mo also not be confirmed. In spite of the strongly collective nature of the first 2 + state in 92 Mo an increased LEOR decay to this level was not observed. Against that in the LEOR region ground-state transitions of 1 - states with isoscalar nature were spectroscoped. The observation of these levels is also reproduced by performed RPA calculations. A parallel measurement on 90 Zr confirms the results of this thesis. (orig./HSI) [de

  16. Giant Planets: Good Neighbors for Habitable Worlds?

    Science.gov (United States)

    Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian

    2018-04-01

    The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

  17. Branches of the Facial Artery.

    Science.gov (United States)

    Hwang, Kun; Lee, Geun In; Park, Hye Jin

    2015-06-01

    The aim of this study is to review the name of the branches, to review the classification of the branching pattern, and to clarify a presence percentage of each branch of the facial artery, systematically. In a PubMed search, the search terms "facial," AND "artery," AND "classification OR variant OR pattern" were used. The IBM SPSS Statistics 20 system was used for statistical analysis. Among the 500 titles, 18 articles were selected and reviewed systematically. Most of the articles focused on "classification" according to the "terminal branch." Several authors classified the facial artery according to their terminal branches. Most of them, however, did not describe the definition of "terminal branch." There were confusions within the classifications. When the inferior labial artery was absent, 3 different types were used. The "alar branch" or "nasal branch" was used instead of the "lateral nasal branch." The angular branch was used to refer to several different branches. The presence as a percentage of each branch according to the branches in Gray's Anatomy (premasseteric, inferior labial, superior labial, lateral nasal, and angular) varied. No branch was used with 100% consistency. The superior labial branch was most frequently cited (95.7%, 382 arteries in 399 hemifaces). The angular branch (53.9%, 219 arteries in 406 hemifaces) and the premasseteric branch were least frequently cited (53.8%, 43 arteries in 80 hemifaces). There were significant differences among each of the 5 branches (P < 0.05) except between the angular branch and the premasseteric branch and between the superior labial branch and the inferior labial branch. The authors believe identifying the presence percentage of each branch will be helpful for surgical procedures.

  18. Towards an abstract parallel branch and bound machine

    NARCIS (Netherlands)

    A. de Bruin (Arie); G.A.P. Kindervater (Gerard); H.W.J.M. Trienekens

    1995-01-01

    textabstractMany (parallel) branch and bound algorithms look very different from each other at first glance. They exploit, however, the same underlying computational model. This phenomenon can be used to define branch and bound algorithms in terms of a set of basic rules that are applied in a

  19. Giant dipole modes in heavy-ion reactions

    International Nuclear Information System (INIS)

    Suraud, E.; Schuck, P.

    1988-07-01

    A detailed study of the excitation of giant dipole modes (GDR) in intermediate energy heavy-ion collisions is presented in the framework of a full (non linearized) Landau-Vlasov equation. After having recalled the basic inputs of this dynamical formalism, within insisting upon the limitations of the Uehling-Uhlenbeck collision integral and upon the introduction of a realistic (isospin dependant) effective interaction, we present our tools for analysing the GDR in the simple case of isolated nuclei. We then pass on to simulations of collisions and discuss in some detail isospin modes in the model 12 Be + 12 C reaction. Results obtained for the energy of the excited dipole mode are in agreement with what is expected for excited, rotating, giant dipole oscillations in deformed nuclei

  20. Should the Endangered Status of the Giant Panda Really Be Reduced? The Case of Giant Panda Conservation in Sichuan, China.

    Science.gov (United States)

    Ma, Ben; Lei, Shuo; Qing, Qin; Wen, Yali

    2018-05-03

    The International Union for Conservation of Nature (IUCN) reduced the threat status of the giant panda from “endangered” to “vulnerable” in September 2016. In this study, we analyzed current practices for giant panda conservation at regional and local environmental scales, based on recent reports of giant panda protection efforts in Sichuan Province, China, combined with the survey results from 927 households within and adjacent to the giant panda reserves in this area. The results showed that household attitudes were very positive regarding giant panda protection efforts. Over the last 10 years, farmers’ dependence on the natural resources provided by giant panda reserves significantly decreased. However, socio-economic development increased resource consumption, and led to climate change, habitat fragmentation, environmental pollution, and other issues that placed increased pressure on giant panda populations. This difference between local and regional scales must be considered when evaluating the IUCN status of giant pandas. While the status of this species has improved in the short-term due to positive local attitudes, large-scale socio-economic development pressure could have long-term negative impacts. Consequently, the IUCN assessment leading to the classification of giant panda as “vulnerable” instead of “endangered”, should not affect its conservation intensity and effort, as such actions could negatively impact population recovery efforts, leading to the extinction of this charismatic species.

  1. Should the Endangered Status of the Giant Panda Really Be Reduced? The Case of Giant Panda Conservation in Sichuan, China

    Directory of Open Access Journals (Sweden)

    Ben Ma

    2018-05-01

    Full Text Available The International Union for Conservation of Nature (IUCN reduced the threat status of the giant panda from “endangered” to “vulnerable” in September 2016. In this study, we analyzed current practices for giant panda conservation at regional and local environmental scales, based on recent reports of giant panda protection efforts in Sichuan Province, China, combined with the survey results from 927 households within and adjacent to the giant panda reserves in this area. The results showed that household attitudes were very positive regarding giant panda protection efforts. Over the last 10 years, farmers’ dependence on the natural resources provided by giant panda reserves significantly decreased. However, socio-economic development increased resource consumption, and led to climate change, habitat fragmentation, environmental pollution, and other issues that placed increased pressure on giant panda populations. This difference between local and regional scales must be considered when evaluating the IUCN status of giant pandas. While the status of this species has improved in the short-term due to positive local attitudes, large-scale socio-economic development pressure could have long-term negative impacts. Consequently, the IUCN assessment leading to the classification of giant panda as “vulnerable” instead of “endangered”, should not affect its conservation intensity and effort, as such actions could negatively impact population recovery efforts, leading to the extinction of this charismatic species.

  2. A search for lithium-rich giant stars

    International Nuclear Information System (INIS)

    Brown, J.A.; Sneden, C.; Lambert, D.L.; Dutchover, E. Jr.

    1989-01-01

    Lithium abundances or upper limits have been determined for 644 bright G-K giant stars selected from the DDO photometric catalog. Two of these giants possess surface lithium abundances approaching the cosmic value of the interstellar medium and young main-sequence stars, and eight more giants have Li contents far in excess of standard predictions. At least some of these Li-rich giants are shown to be evolved to the stage of having convectively mixed envelopes, either from the direct evidence of low surface carbon isotope ratios, or from the indirect evidence of their H-R diagram positions. Suggestions are given for the unique conditions that might have allowed these stars to produce or accrete new lithium for their surface layers, or simply to preserve from destruction their initial lithium contents. The lithium abundance of the remaining stars demonstrates that giants only very rarely meet the expectations of standard first dredge-up theories; the average extra Li destruction required is about 1.5 dex. The evolutionary states of these giants and their average masses are discussed briefly, and the Li distribution of the giants is compared to predictions of Galactic chemical evolution. 110 refs

  3. Seismic probing of the first dredge-up event through the eccentric red-giant and red-giant spectroscopic binary KIC 9163796. How different are red-giant stars with a mass ratio of 1.015?

    Science.gov (United States)

    Beck, P. G.; Kallinger, T.; Pavlovski, K.; Palacios, A.; Tkachenko, A.; Mathis, S.; García, R. A.; Corsaro, E.; Johnston, C.; Mosser, B.; Ceillier, T.; do Nascimento, J.-D.; Raskin, G.

    2018-04-01

    Context. Binaries in double-lined spectroscopic systems (SB2) provide a homogeneous set of stars. Differences of parameters, such as age or initial conditions, which otherwise would have strong impact on the stellar evolution, can be neglected. The observed differences are determined by the difference in stellar mass between the two components. The mass ratio can be determined with much higher accuracy than the actual stellar mass. Aim. In this work, we aim to study the eccentric binary system KIC 9163796, whose two components are very close in mass and both are low-luminosity red-giant stars. Methods: We analysed four years of Kepler space photometry and we obtained high-resolution spectroscopy with the Hermes instrument. The orbital elements and the spectra of both components were determined using spectral disentangling methods. The effective temperatures, and metallicities were extracted from disentangled spectra of the two stars. Mass and radius of the primary were determined through asteroseismology. The surface rotation period of the primary is determined from the Kepler light curve. From representative theoretical models of the star, we derived the internal rotational gradient, while for a grid of models, the measured lithium abundance is compared with theoretical predictions. Results: From seismology the primary of KIC 9163796 is a star of 1.39 ± 0.06 M⊙, while the spectroscopic mass ratio between both components can be determined with much higher precision by spectral disentangling to be 1.015 ± 0.005. With such mass and a difference in effective temperature of 600 K from spectroscopy, the secondary and primary are, respectively, in the early and advanced stage of the first dredge-up event on the red-giant branch. The period of the primary's surface rotation resembles the orbital period within ten days. The radial rotational gradient between the surface and core in KIC 9163796 is found to be 6.9-1.0+2.0. This is a low value but not exceptional if

  4. A heuristic model for computational prediction of human branch point sequence.

    Science.gov (United States)

    Wen, Jia; Wang, Jue; Zhang, Qing; Guo, Dianjing

    2017-10-24

    Pre-mRNA splicing is the removal of introns from precursor mRNAs (pre-mRNAs) and the concurrent ligation of the flanking exons to generate mature mRNA. This process is catalyzed by the spliceosome, where the splicing factor 1 (SF1) specifically recognizes the seven-nucleotide branch point sequence (BPS) and the U2 snRNP later displaces the SF1 and binds to the BPS. In mammals, the degeneracy of BPS motifs together with the lack of a large set of experimentally verified BPSs complicates the task of BPS prediction in silico. In this paper, we develop a simple and yet efficient heuristic model for human BPS prediction based on a novel scoring scheme, which quantifies the splicing strength of putative BPSs. The candidate BPS is restricted exclusively within a defined BPS search region to avoid the influences of other elements in the intron and therefore the prediction accuracy is improved. Moreover, using two types of relative frequencies for human BPS prediction, we demonstrate our model outperformed other current implementations on experimentally verified human introns. We propose that the binding energy contributes to the molecular recognition involved in human pre-mRNA splicing. In addition, a genome-wide human BPS prediction is carried out. The characteristics of predicted BPSs are in accordance with experimentally verified human BPSs, and branch site positions relative to the 3'ss and the 5'end of the shortened AGEZ are consistent with the results of published papers. Meanwhile, a webserver for BPS predictor is freely available at http://biocomputer.bio.cuhk.edu.hk/BPS .

  5. A Patient-Specific Airway Branching Model for Mechanically Ventilated Patients

    Directory of Open Access Journals (Sweden)

    Nor Salwa Damanhuri

    2014-01-01

    Full Text Available Background. Respiratory mechanics models have the potential to guide mechanical ventilation. Airway branching models (ABMs were developed from classical fluid mechanics models but do not provide accurate models of in vivo behaviour. Hence, the ABM was improved to include patient-specific parameters and better model observed behaviour (ABMps. Methods. The airway pressure drop of the ABMps was compared with the well-accepted dynostatic algorithm (DSA in patients diagnosed with acute respiratory distress syndrome (ARDS. A scaling factor (α was used to equate the area under the pressure curve (AUC from the ABMps to the AUC of the DSA and was linked to patient state. Results. The ABMps recorded a median α value of 0.58 (IQR: 0.54–0.63; range: 0.45–0.66 for these ARDS patients. Significantly lower α values were found for individuals with chronic obstructive pulmonary disease (P<0.001. Conclusion. The ABMps model allows the estimation of airway pressure drop at each bronchial generation with patient-specific physiological measurements and can be generated from data measured at the bedside. The distribution of patient-specific α values indicates that the overall ABM can be readily improved to better match observed data and capture patient condition.

  6. Predicting the scanning branches of hysteretic soil water-retention capacity with use of the method of mathematical modeling

    Science.gov (United States)

    Terleev, V.; Ginevsky, R.; Lazarev, V.; Nikonorov, A.; Togo, I.; Topaj, A.; Moiseev, K.; Abakumov, E.; Melnichuk, A.; Dunaieva, I.

    2017-10-01

    A mathematical model of the hysteresis of the water-retention capacity of the soil is proposed. The parameters of the model are interpreted within the framework of physical concepts of the structure and capillary properties of soil pores. On the basis of the model, a computer program with an interface that allows for dialogue with the user is developed. The program has some of options: visualization of experimental data; identification of the model parameters with use of measured data by means of an optimizing algorithm; graphical presentation of the hysteresis loop with application of the assigned parameters. Using the program, computational experiments were carried out, which consisted in verifying the identifiability of the model parameters from data on the main branches, and also in testing the ability to predict the scanning branches of the hysteresis loop. For the experiments, literature data on two sandy soils were used. The absence of an “artificial pump effect” is proved. A sufficiently high accuracy of the prediction of the scanning branches of the hysteresis loop has been achieved in comparison with the three models of the precursors. The practical importance of the proposed model and computer program, which is developed on its basis, is to ensure the calculation of precision irrigation rates. The application of such rates in irrigation farming will help to prevent excess moisture from flowing beyond the root layer of the soil and, thus, minimize the unproductive loss of irrigation water and agrochemicals, as well as reduce the risk of groundwater contamination and natural water eutrophication.

  7. Impacts of temperature on giant panda habitat in the north Minshan Mountains.

    Science.gov (United States)

    Liu, Gang; Guan, Tianpei; Dai, Qiang; Li, Huixin; Gong, Minghao

    2016-02-01

    Understanding the impacts of meteorological factors on giant pandas is necessary for future conservation measures in response to global climate change. We integrated temperature data with three main habitat parameters (elevation, vegetation type, and bamboo species) to evaluate the influence of climate change on giant panda habitat in the northern Minshan Mountains using a habitat assessment model. Our study shows that temperature (relative importance = 25.1%) was the second most important variable influencing giant panda habitat excepting the elevation. There was a significant negative correlation between temperature and panda presence (ρ = -0.133, P pandas within the study area was 18-21°C, followed by 15-17°C and 22-24°C. The overall suitability of giant panda habitats will increase by 2.7%, however, it showed a opposite variation patterns between the eastern and northwestern region of the study area. Suitable and subsuitable habitats in the northwestern region of the study area, which is characterized by higher elevation and latitude, will increase by 18007.8 hm(2) (9.8% habitat suitability), while the eastern region will suffer a decrease of 9543.5 hm(2) (7.1% habitat suitability). Our results suggest that increasing areas of suitable giant panda habitat will support future giant panda expansion, and food shortage and insufficient living space will not arise as problems in the northwest Minshan Mountains, which means that giant pandas can adapt to climate change, and therefore may be resilient to climate change. Thus, for the safety and survival of giant pandas in the Baishuijiang Reserve, we propose strengthening the giant panda monitoring program in the west and improving the integrity of habitats to promote population dispersal with adjacent populations in the east.

  8. EFFECT OF METALLICITY ON THE EVOLUTION OF THE HABITABLE ZONE FROM THE PRE-MAIN SEQUENCE TO THE ASYMPTOTIC GIANT BRANCH AND THE SEARCH FOR LIFE

    Energy Technology Data Exchange (ETDEWEB)

    Danchi, William C. [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Lopez, Bruno, E-mail: william.c.danchi@nasa.gov, E-mail: bruno.lopez@oca.eu [Observatoire de la Cote d' Azur, Laboratoire Lagrange UMR 7293, BP 4229, F-06034 Nice Cedex 4 (France)

    2013-05-20

    During the course of stellar evolution, the location and width of the habitable zone changes as the luminosity and radius of the star evolves. The duration of habitability for a planet located at a given distance from a star is greatly affected by the characteristics of the host star. A quantification of these effects can be used observationally in the search for life around nearby stars. The longer the duration of habitability, the more likely it is that life has evolved. The preparation of observational techniques aimed at detecting life would benefit from the scientific requirements deduced from the evolution of the habitable zone. We present a study of the evolution of the habitable zone around stars of 1.0, 1.5, and 2.0 M{sub Sun} for metallicities ranging from Z = 0.0001 to Z = 0.070. We also consider the evolution of the habitable zone from the pre-main sequence until the asymptotic giant branch is reached. We find that metallicity strongly affects the duration of the habitable zone for a planet as well as the distance from the host star where the duration is maximized. For a 1.0 M{sub Sun} star with near solar metallicity, Z = 0.017, the duration of the habitable zone is >10 Gyr at distances 1.2-2.0 AU from the star, whereas the duration is >20 Gyr for high-metallicity stars (Z = 0.070) at distances of 0.7-1.8 AU, and {approx}4 Gyr at distances of 1.8-3.3 AU for low-metallicity stars (Z = 0.0001). Corresponding results have been obtained for stars of 1.5 and 2.0 solar masses.

  9. EFFECT OF METALLICITY ON THE EVOLUTION OF THE HABITABLE ZONE FROM THE PRE-MAIN SEQUENCE TO THE ASYMPTOTIC GIANT BRANCH AND THE SEARCH FOR LIFE

    International Nuclear Information System (INIS)

    Danchi, William C.; Lopez, Bruno

    2013-01-01

    During the course of stellar evolution, the location and width of the habitable zone changes as the luminosity and radius of the star evolves. The duration of habitability for a planet located at a given distance from a star is greatly affected by the characteristics of the host star. A quantification of these effects can be used observationally in the search for life around nearby stars. The longer the duration of habitability, the more likely it is that life has evolved. The preparation of observational techniques aimed at detecting life would benefit from the scientific requirements deduced from the evolution of the habitable zone. We present a study of the evolution of the habitable zone around stars of 1.0, 1.5, and 2.0 M ☉ for metallicities ranging from Z = 0.0001 to Z = 0.070. We also consider the evolution of the habitable zone from the pre-main sequence until the asymptotic giant branch is reached. We find that metallicity strongly affects the duration of the habitable zone for a planet as well as the distance from the host star where the duration is maximized. For a 1.0 M ☉ star with near solar metallicity, Z = 0.017, the duration of the habitable zone is >10 Gyr at distances 1.2-2.0 AU from the star, whereas the duration is >20 Gyr for high-metallicity stars (Z = 0.070) at distances of 0.7-1.8 AU, and ∼4 Gyr at distances of 1.8-3.3 AU for low-metallicity stars (Z = 0.0001). Corresponding results have been obtained for stars of 1.5 and 2.0 solar masses.

  10. GIANT PLANET MIGRATION, DISK EVOLUTION, AND THE ORIGIN OF TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Alexander, Richard D.; Armitage, Philip J.

    2009-01-01

    We present models of giant planet migration in evolving protoplanetary disks. Our disks evolve subject to viscous transport of angular momentum and photoevaporation, while planets undergo Type II migration. We use a Monte Carlo approach, running large numbers of models with a range in initial conditions. We find that relatively simple models can reproduce both the observed radial distribution of extrasolar giant planets, and the lifetimes and accretion histories of protoplanetary disks. The use of state-of-the-art photoevaporation models results in a degree of coupling between planet formation and disk clearing, which has not been found previously. Some accretion across planetary orbits is necessary if planets are to survive at radii ∼<1.5 AU, and if planets of Jupiter mass or greater are to survive in our models they must be able to form at late times, when the disk surface density in the formation region is low. Our model forms two different types of 'transitional' disks, embedded planets and clearing disks, which show markedly different properties. We find that the observable properties of these systems are broadly consistent with current observations, and highlight useful observational diagnostics. We predict that young transition disks are more likely to contain embedded giant planets, while older transition disks are more likely to be undergoing disk clearing.

  11. Hadron excitation of giant resonances

    International Nuclear Information System (INIS)

    Morsch, H.-P.

    1985-01-01

    A review is given on giant resonance studies in heavy nuclei using scattering of different hadronic probes. Concerning isoscalar giant resonances compression modes are discussed with the possibility to obtain more detailed structure information. From detailed studies of α scattering the distribution of isoscalar strengths of multipolarity up to L=6 was obtained. Some recent aspects of heavy ion excitation of collective modes are mentioned. The possibility to study isovector giant resonances in hadron charge exchange reactions is discussed. Finally, a comparison is made between α and 200 MeV proton scattering from which isoscalar and spin-isospin continuum response are extracted. (orig.)

  12. Analysis of giant electrorheological fluids.

    Science.gov (United States)

    Seo, Youngwook P; Seo, Yongsok

    2013-07-15

    The yield stress dependence on electric field strength for giant electrorheological (GER) fluids over the full range of electric fields was examined using Seo's scaling function which incorporated both the polarization and the conductivity models. If a proper scaling was applied to the yield stress data to collapse them onto a single curve, the Seo's scaling function could correctly fit the yield stress behavior of GER suspensions, even at very high electric field strengths. The model predictions were also compared with recently proposed Choi et al.'s model to allow a consideration of the universal framework of ER fluids. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Giant multimodal heart motoneurons of Achatina fulica: a new cardioregulatory input in pulmonates.

    Science.gov (United States)

    Zhuravlev, V; Bugaj, V; Kodirov, S; Safonova, T; Staruschenko, A

    2001-08-01

    The regulation of the heartbeat by the two largest neurons, d-VLN and d-RPLN, on the dorsal surface of visceral and right parietal ganglia of Giant African snail, Achatina fulica, was examined. Using the new method of animal preparation, for the first time, discrete biphasic inhibitory-excitatory junction potentials (I-EJPs) in the heart and several muscles of the visceral sac were recorded. The duration of hyperpolarizing phase (H-phase) of biphasic I-EJPs was 269+/-5.6 ms (n=5), which is 2-3 times less than that of the cholinergic inhibitory JPs (682+/-68.5 ms, n=5). The H-phase of I-EJPs was not altered by the application of atropine, picrotoxine, succinylcholinchloride, D-tubocurarine and tetraethylammonium or substitution of Cl(-) ions. Even the low-frequency neuronal discharges (1-2 imp/s) evoked significant facilitation and potentiation of the H-phase. Between the multimodal neurons d-VLN/d-RPLN and mantle or visceral organs there is evidence of direct synaptic connections. These neurons were found to have no axonal branches in the intestinal nerve as once suspected but reach the heart through several other nerves. New giant heart motoneurons do not interact with previously identified cardioregulatory neurons.

  14. Evaluating landscape options for corridor restoration between giant panda reserves.

    Directory of Open Access Journals (Sweden)

    Fang Wang

    Full Text Available The establishment of corridors can offset the negative effects of habitat fragmentation by connecting isolated habitat patches. However, the practical value of corridor planning is minimal if corridor identification is not based on reliable quantitative information about species-environment relationships. An example of this need for quantitative information is planning for giant panda conservation. Although the species has been the focus of intense conservation efforts for decades, most corridor projects remain hypothetical due to the lack of reliable quantitative researches at an appropriate spatial scale. In this paper, we evaluated a framework for giant panda forest corridor planning. We linked our field survey data with satellite imagery, and conducted species occupancy modelling to examine the habitat use of giant panda within the potential corridor area. We then conducted least-cost and circuit models to identify potential paths of dispersal across the landscape, and compared the predicted cost under current conditions and alternative conservation management options considered during corridor planning. We found that due to giant panda's association with areas of low elevation and flat terrain, human infrastructures in the same area have resulted in corridor fragmentation. We then identified areas with high potential to function as movement corridors, and our analysis of alternative conservation scenarios showed that both forest/bamboo restoration and automobile tunnel construction would significantly improve the effectiveness of corridor, while residence relocation would not significantly improve corridor effectiveness in comparison with the current condition. The framework has general value in any conservation activities that anticipate improving habitat connectivity in human modified landscapes. Specifically, our study suggested that, in this landscape, automobile tunnels are the best means to remove current barriers to giant panda

  15. Measurement of the inclusive charmless and double-charm B branching ratios

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Bates, M J; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozovic, I; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Brown, R; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerruti, C; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Ghodbane, N; Glege, F; Gokieli, R; Golob, B; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Niss, P; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Solovyanov, O; Sopczak, André; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Chikilev, O G; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Wolf, G; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1998-01-01

    The DELPHI experiment at LEP has measured the inclusive charmless $B$ hadron decay branching ratio, the $B$ branching ratio into two charmed particles, and the total number of charmed particles per $B$ decay, using the hadronic Z data taken between 1992 and 1995. The results are extracted from a fit to the $b$-tagging probability distribution based on the precise impact parameter measurements made using the microvertex detector. The inclusive charmless $B$ branching ratio, including $B$ decays into hidden charm ($c\\bar{c}$), is measured to be $0.033 \\pm 0.021$. The $B$ branching ratio into two open charmed particles is $0.136 \\pm 0.042$. The mean number of charmed particles per $B$ decay (including hidden charm) is $1.147 \\pm 0.041$. After subtracting the $B$ decay branching ratio into hidden charm, the charmless $B$ branching ratio is found to be $0.007 \\pm 0.021$, compatible with the Standard Model expectation. Models that predict an additional contribution to the charmless $B$ branching ratio of 0.037 or h...

  16. Tradeoffs Between Branch Mispredictions and Comparisons for Sorting Algorithms

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2005-01-01

    Branch mispredictions is an important factor affecting the running time in practice. In this paper we consider tradeoffs between the number of branch mispredictions and the number of comparisons for sorting algorithms in the comparison model. We prove that a sorting algorithm using O(dnlog n......) comparisons performs Omega(nlogd n) branch mispredictions. We show that Multiway MergeSort achieves this tradeoff by adopting a multiway merger with a low number of branch mispredictions. For adaptive sorting algorithms we similarly obtain that an algorithm performing O(dn(1+log (1+Inv/n))) comparisons must...... perform Omega(nlogd (1+Inv/n)) branch mispredictions, where Inv is the number of inversions in the input. This tradeoff can be achieved by GenericSort by Estivill-Castro and Wood by adopting a multiway division protocol and a multiway merging algorithm with a low number of branch mispredictions....

  17. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    International Nuclear Information System (INIS)

    Nesvorný, David

    2011-01-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ∼15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  18. Young Solar System's Fifth Giant Planet?

    Science.gov (United States)

    Nesvorný, David

    2011-12-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ~15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  19. Stability of the giant dipole resonance

    International Nuclear Information System (INIS)

    Espino, J.M.; Gallardo, M.

    1987-01-01

    The Giant Dipole Resonance (GDR), because of its stability and its typical period of vibration, can be used as a test for compound nucleus reactions at high temperatures. This stability is studied in a simple model up to 6 MeV of temperature. The experimental methods for getting the properties of the GDR at T ≠ 0 are also commented. (author)

  20. Statistical contribution in the giant multipolar resonance decay in hevay nuclei

    International Nuclear Information System (INIS)

    Teruya, N.

    1986-01-01

    Statistical calculations are made for the decay in the electric monopole giant resonance in 208 Pb and electric dipole giant resonance in 209 Bi, using the Hauser-Feshbach formalism. Calculations are done using the experimental energy levels of the corresponding residual nuclei. The particle-vibrator model is used for those experimental levels without spin and parity determination. The influence of different parametrizations of the optical potential in the statistical calculation result is also studied. (L.C.) [pt

  1. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2002-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch ...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved.......A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...

  2. Giant multipole resonances: perspectives after ten years

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1980-01-01

    Nearly ten years ago evidence was published for the first of the so-called giant multipole resonances, the giant quadrupole resonance. During the ensuing years research in this field has spread to many nuclear physics laboratories throughout the world. The present status of electric giant multipole resonances is reviewed. 24 figures, 1 table

  3. Inheritance of silicate differentiation during lunar origin by giant impact

    Science.gov (United States)

    Warren, Paul H.

    1992-01-01

    It is pointed out that the implication of the popular giant impact model of lunar origin (e.g., Hartmann and Davis, 1975; Cameron and Ward, 1976; Stevenson, 1987) is that any depth-related silicate differentiation within the impactor (and/or the earth) at the time of the impact must be partly inherited by the preferentially peripheral matter that forms the moon. This paper presents calculations of the magnitude of the net differentiation of the protolunar matter for a variety of elements and scenarios, with different assumptions regarding the geometries of the 'sampled' peripheral zones, the relative proportions of the earth-derived to impactor-derived matter in the final moon, and the degree to which the impactor mantle had crystallized prior to the giant impact. It is shown that these differention effects constrain the overall plausibility of the giant impact hypothesis.

  4. Finite-size scaling of survival probability in branching processes

    OpenAIRE

    Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Alvaro

    2014-01-01

    Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We reveal the finite-size scaling law of the survival probability for a given branching process ruled by a probability distribution of the number of offspring per element whose standard deviation is finite, obtaining the exact scaling function as well as the critical exponents. Our findings prove the universal behavi...

  5. Solitary ulcerated congenital giant juvenile xanthogranuloma

    Directory of Open Access Journals (Sweden)

    Su Yuen Ng

    2015-01-01

    Full Text Available A 3-month-old female patient with a giant ulcerated nodule over the back since birth was diagnosed as congenital giant juvenile xanthogranuloma (JXG based on clinical and histopathological examination. Congenital giant JXG with ulceration at birth is a rare presentation of JXG and commonly misdiagnosed. This case emphasizes the importance of being aware of the myriad presentations of JXG in order to make a correct diagnosis and avoid unnecessary investigations or treatment.

  6. Giant resonances in heavy-ion reactions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1982-11-01

    The several roles of multipole giant resonances in heavy-ion reactions are discussed. In particular, the modifications in the effective ion-ion potencial due to the virtual excitation of giant resonances at low energies, are considered and estimated for several systems. Real excitation of giant resonances in heavy-ion reactions at intermediate energies are then discussed and their importance in the approach phase of deeply inelastic processes in emphasized. Several demonstrative examples are given. (Author) [pt

  7. Dependence of the giant dipole strength function on excitation energy

    International Nuclear Information System (INIS)

    Draper, J.E.; Newton, J.O.; Sobotka, L.G.; Lindenberger, H.; Wozniak, G.J.; Moretto, L.G.; Stephens, F.S.; Diamond, R.M.; McDonald, R.J.

    1982-01-01

    Spectra of γ rays associated with deep-inelastic products from the 1150-MeV 136 Xe+ 181 Ta reaction have been measured. The yield of 10--20-MeV γ rays initially increases rapidly with the excitation energy of the products and then more slowly for excitation energies in excess of 120 MeV. Statistical-model calculations with ground-state values of the giant dipole strength function fail to reproduce the shape of the measured γ-ray spectra. This suggests a dependence of the giant dipole strength function on excitation energy

  8. Impact of a new wavelength-dependent representation of methane photolysis branching ratios on the modeling of Titan’s atmospheric photochemistry

    Science.gov (United States)

    Gans, B.; Peng, Z.; Carrasco, N.; Gauyacq, D.; Lebonnois, S.; Pernot, P.

    2013-03-01

    A new wavelength-dependent model for CH4 photolysis branching ratios is proposed, based on the values measured recently by Gans et al. (Gans, B. et al. [2011]. Phys. Chem. Chem. Phys. 13, 8140-8152). We quantify the impact of this representation on the predictions of a photochemical model of Titan’s atmosphere, on their precision, and compare to earlier representations. Although the observed effects on the mole fraction of the species are small (never larger than 50%), it is possible to draw some recommendations for further studies: (i) the Ly-α branching ratios of Wang et al. (Wang, J.H. et al. [2000]. J. Chem. Phys. 113, 4146-4152) used in recent models overestimate the CH2:CH3 ratio, a factor to which a lot of species are sensitive; (ii) the description of out-of-Ly-α branching ratios by the “100% CH3” scenario has to be avoided, as it can bias significantly the mole fractions of some important species (C3H8); and (iii) complementary experimental data in the 130-140 nm range would be useful to constrain the models in the Ly-α deprived 500-700 km altitude range.

  9. Assessing local population vulnerability to wind energy development with branching process models: an application to wind energy development

    Science.gov (United States)

    Erickson, Richard A.; Eager, Eric A.; Stanton, Jessica C.; Beston, Julie A.; Diffendorfer, James E.; Thogmartin, Wayne E.

    2015-01-01

    Quantifying the impact of anthropogenic development on local populations is important for conservation biology and wildlife management. However, these local populations are often subject to demographic stochasticity because of their small population size. Traditional modeling efforts such as population projection matrices do not consider this source of variation whereas individual-based models, which include demographic stochasticity, are computationally intense and lack analytical tractability. One compromise between approaches is branching process models because they accommodate demographic stochasticity and are easily calculated. These models are known within some sub-fields of probability and mathematical ecology but are not often applied in conservation biology and applied ecology. We applied branching process models to quantitatively compare and prioritize species locally vulnerable to the development of wind energy facilities. Specifically, we examined species vulnerability using branching process models for four representative species: A cave bat (a long-lived, low fecundity species), a tree bat (short-lived, moderate fecundity species), a grassland songbird (a short-lived, high fecundity species), and an eagle (a long-lived, slow maturation species). Wind turbine-induced mortality has been observed for all of these species types, raising conservation concerns. We simulated different mortality rates from wind farms while calculating local extinction probabilities. The longer-lived species types (e.g., cave bats and eagles) had much more pronounced transitions from low extinction risk to high extinction risk than short-lived species types (e.g., tree bats and grassland songbirds). High-offspring-producing species types had a much greater variability in baseline risk of extinction than the lower-offspring-producing species types. Long-lived species types may appear stable until a critical level of incidental mortality occurs. After this threshold, the risk of

  10. Swiss roll operation for giant fibroadenoma.

    Science.gov (United States)

    Soomro, Saleem A; Memon, Sohail A; Mohammad, Noor; Maher, Mumtaz

    2009-01-01

    Fibroadenoma 5 cm or more is called giant fibroadenoma. Giant fibroadenoma can distort the shape of breast and causes asymmetry, so it should be excised. There are several techniques for excision of giant fibroadenoma. In our technique we remove them through cosmetically acceptable circumareolar incision to maintain the shape and symmetry of breast. The objectives were to assess the cosmetic results of Swiss roll operation for giant fibroadenoma. The study was conducted for six years from January, 2002 to December, 2007. Seventy patients of giant fibroadenoma were included in this study. They were diagnosed on history and clinical examination supported by ultrasound and postoperative histopathological examination. Data were collected from outpatient department and operation theatre. Swiss roll operation was performed under general anaesthesia. Mean tumor size was 6.38 cm. Three cm and 4 cm incisions were used for tumour 6 cm in size respectively. Skin closed with Vicryl 3/0 subcuticular stitches. Sixteen out of 70 patients had no scar while others hadminimal scar. All patients had normal shape and symmetry of breast. On histopathology fibroadenoma was confirmed. Giant fibroadenoma should be removed through cosmetically acceptable cicumareolar incision especially in unmarried young females who have small breast. Swiss-roll operation is superior in maintaining the shape and symmetry of breast. No major complication was found in our series except seroma formation in 10 patients.

  11. Giant serpentine intracranial aneurysm: a case report

    International Nuclear Information System (INIS)

    Park, Jae Seong; Lee, Myeong Sub; Kim, Myung Soon; Kim, Dong Jin; Park, Joong Wha; Whang, Kum

    2001-01-01

    The authors present a case of giant serpentine aneurysm (a partially thrombosed aneurysm containing tortuous vascular channels with a separate entrance and outflow pathway). Giant serpentine aneurysms form a subgroup of giant intracranial aneurysms, distinct from saccular and fusiform varieties, and in this case, too, the clinical presentation and radiographic features of CT, MR imaging and angiography were distinct

  12. Investigation of thermalization in giant-spin models by different Lindblad schemes

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Christian; Schnack, Jürgen, E-mail: jschnack@uni-bielefeld.de

    2017-09-01

    Highlights: • The non-equilibrium magnetization is investigated with quantum master equations that rest on Lindblad schemes. • It is studied how different couplings to the bath modify the magnetization. • Various field protocols are employed; relaxation times are deduced. • Result: the time evolution depends strongly on the details of the transition operator used in the Lindblad term. - Abstract: The theoretical understanding of time-dependence in magnetic quantum systems is of great importance in particular for cases where a unitary time evolution is accompanied by relaxation processes. A key example is given by the dynamics of single-molecule magnets where quantum tunneling of the magnetization competes with thermal relaxation over the anisotropy barrier. In this article we investigate how good a Lindblad approach describes the relaxation in giant spin models and how the result depends on the employed operator that transmits the action of the thermal bath.

  13. The Coin Problem  and Pseudorandomness for Branching Programs

    DEFF Research Database (Denmark)

    Brody, Joshua; Verbin, Elad

    2010-01-01

    in the model of emph{read-once width-$w$ branching programs}. We prove that in order to succeed in this model, $beta$ must be at least $1/ (log n)^{Theta(w)}$. For constant $w$ this is tight by considering the recursive tribes function, and for other values of $w$ this is nearly tight by considering other read...... be distinguished by small-width read-once branching programs. We suggest one application for this kind of theorems: we prove that Nisan's Generator fools width-$w$ read-once emph{regular} branching programs, using seed length $O(w^4 log n log log n + log n log (1/eps))$. For $w=eps=Theta(1)$, this seed length...

  14. Cash efficiency for bank branches.

    Science.gov (United States)

    Cabello, Julia García

    2013-01-01

    Bank liquidity management has become a major issue during the financial crisis as liquidity shortages have intensified and have put pressure on banks to diversity and improve their liquidity sources. While a significant strand of the literature concentrates on wholesale liquidity generation and on the alternative to deposit funding, the management of an inventory of cash holdings within the banks' branches is also a relevant issue as any significant improvement in cash management at the bank distribution channels may have a positive effect in reducing liquidity tensions. In this paper, we propose a simple programme of cash efficiency for the banks' branches, very easy to implement, which conform to a set of instructions to be imposed from the bank to their branches. This model proves to significantly reduce cash holdings at branches thereby providing efficiency improvements in liquidity management. The methodology we propose is based on the definition of some stochastic processes combined with renewal processes, which capture the random elements of the cash flow, before applying suitable optimization programmes to all the costs involved in cash movements. The classical issue of the Transaction Demand for the Cash and some aspects of Inventory Theory are also present. Mathematics Subject Classification (2000) C02, C60, E50.

  15. Three ancient hormonal cues co-ordinate shoot branching in a moss.

    Science.gov (United States)

    Coudert, Yoan; Palubicki, Wojtek; Ljung, Karin; Novak, Ondrej; Leyser, Ottoline; Harrison, C Jill

    2015-03-25

    Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.

  16. Novel 12S mtDNA findings in sloths (Pilosa, Folivora) and anteaters (Pilosa, Vermilingua) suggest a true case of long branch attraction

    OpenAIRE

    Barros, Maria Claudene; Sampaio, Iracilda; Schneider, Horacio

    2008-01-01

    We sequenced 12S RNA mtDNA for the majority of the extant species of sloths and anteaters and compared our results with previous data obtained by our group using 16S RNA mtDNA in the same specimens and to GenBank sequences of the extinct giant sloth Mylodon. Our results suggest that pigmy-anteaters may be a case of the long-branch attraction phenomenon and also show the large genetic difference between the Amazonian and Atlantic forest three-toed sloths, contrasting with the small differences...

  17. Stellar oscillations in planet-hosting giant stars

    Energy Technology Data Exchange (ETDEWEB)

    Hatzes, Artie P; Zechmeister, Mathias [Thueringer Landessternwarte, Sternwarte 5, D-07778 (Germany)], E-mail: artie@tls-tautenburg.de

    2008-10-15

    Recently a number of giant extrasolar planets have been discovered around giant stars. These discoveries are important because many of these giant stars have intermediate masses in the range 1.2-3 Msun. Early-type main sequence stars of this mass range have been avoided by radial velocity planet search surveys due the difficulty of getting the requisite radial velocity precision needed for planet discoveries. Thus, giant stars can tell us about planet formation for stars more massive than the sun. However, the determination of stellar masses for giant stars is difficult due to the fact that evolutionary tracks for stars covering a wide range of masses converge to the same region of the H-R diagram. We report here on stellar oscillations in three planet-hosting giant stars: HD 13189, {beta} Gem, and {iota} Dra. Precise stellar radial velocity measurements for these stars show variations whose periods and amplitudes are consistent with solar-like p-mode oscillations. The implied stellar masses for these objects based on the characteristics of the stellar oscillations are consistent with the predictions of stellar isochrones. An investigation of stellar oscillations in planet hosting giant stars offers us the possibility of getting an independent determination of the stellar mass for these objects which is of crucial importance for extrasolar planet studies.

  18. Giant nuclear resonances

    International Nuclear Information System (INIS)

    Snover, K.A.

    1989-01-01

    Giant nuclear resonances are elementary mods of oscillation of the whole nucleus, closely related to the normal modes of oscillation of coupled mechanical systems. They occur systematically in most if not all nuclei, with oscillation energies typically in the range 10-30 MeV. One of the best - known examples is the giant electric dipole (El) resonance, in which all the protons and all the neutrons oscillate with opposite phase, producing a large time - varying electric dipole moment which acts as an effective antenna for radiating gamma ray. This paper discusses this mode as well as quadrupole and monopole modes

  19. Carbon-enhanced metal-poor stars in SDSS/Segue. II. Comparison of CEMP-star frequencies with binary population-synthesis models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Suda, Takuma [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Stancliffe, Richard J., E-mail: yslee@nmsu.edu [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn (Germany)

    2014-06-20

    We present a comparison of the frequencies of carbon-enhanced metal-poor (CEMP) giant and main-sequence turnoff (MSTO) stars with predictions from binary population-synthesis models involving asymptotic giant-branch (AGB) mass transfer. The giant and MSTO stars are selected from the Sloan Digital Sky Survey and the Sloan Extension for Galactic Understanding and Exploration. We consider two initial mass functions (IMFs)—a Salpeter IMF, and a mass function with a characteristic mass of 10 M {sub ☉}. For giant stars, the comparison indicates a good agreement between the observed CEMP frequencies and the AGB binary model using a Salpeter IMF for [Fe/H] > – 1.5, and a characteristic mass of 10 M {sub ☉} for [Fe/H] < – 2.5. This result suggests that the IMF shifted from high- to low-mass dominated in the early history of the Milky Way, which appears to have occurred at a 'chemical time' between [Fe/H] =–2.5 and [Fe/H] =–1.5. The CEMP frequency for the turnoff stars with [Fe/H] < – 3.0 is much higher than the AGB model prediction from the high-mass IMF, supporting the previous assertion that one or more additional mechanisms, not associated with AGB stars, are required for the production of carbon-rich material below [Fe/H] =–3.0. We also discuss possible effects of first dredge-up and extra mixing in red giants and internal mixing in turnoff stars on the derived CEMP frequencies.

  20. The overshoot problem and giant structures

    International Nuclear Information System (INIS)

    Itzhaki, Nissan

    2008-01-01

    Models of small-field inflation often suffer from the overshoot problem. A particularly efficient resolution to the problem was proposed recently in the context of string theory. We show that this resolution predicts the existence of giant spherically symmetric overdense regions with radius of at least 110 Mpc. We argue that if such structures will be found they could offer an experimental window into string theory.

  1. Branching process models of cancer

    CERN Document Server

    Durrett, Richard

    2015-01-01

    This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the authors calculate the probability that mutations that confer resistance to treatment are present at detection and quantify the extent of tumor heterogeneity. As applications, the authors evaluate ovarian cancer screening strategies and give rigorous proofs for results of Heano and Michor concerning tumor metastasis. These notes should be accessible to students who are familiar with Poisson processes and continuous time. Richard Durrett is mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D. students. Most of his current research concerns the applications of probability to biology: ecology, genetics, and most recently cancer.

  2. BPP: a sequence-based algorithm for branch point prediction.

    Science.gov (United States)

    Zhang, Qing; Fan, Xiaodan; Wang, Yejun; Sun, Ming-An; Shao, Jianlin; Guo, Dianjing

    2017-10-15

    Although high-throughput sequencing methods have been proposed to identify splicing branch points in the human genome, these methods can only detect a small fraction of the branch points subject to the sequencing depth, experimental cost and the expression level of the mRNA. An accurate computational model for branch point prediction is therefore an ongoing objective in human genome research. We here propose a novel branch point prediction algorithm that utilizes information on the branch point sequence and the polypyrimidine tract. Using experimentally validated data, we demonstrate that our proposed method outperforms existing methods. Availability and implementation: https://github.com/zhqingit/BPP. djguo@cuhk.edu.hk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY

    International Nuclear Information System (INIS)

    Ocvirk, P.

    2010-01-01

    Model color-magnitude diagrams of low-metallicity globular clusters (GCs) usually show a deficit of hot evolved stars with respect to observations. We investigate quantitatively the impact of such modeling inaccuracies on the significance of star formation history reconstructions obtained from optical integrated spectra. To do so, we analyze the sample of spectra of galactic globular clusters of Schiavon et al. with STECKMAP (Ocvirk et al.), and the stellar population models of Vazdekis et al. and Bruzual and Charlot, and focus on the reconstructed stellar age distributions. First, we show that background/foreground contamination correlates with E(B - V), which allows us to define a clean subsample of uncontaminated GCs, on the basis of an E(B - V) filtering. We then identify a 'confusion zone' where fake young bursts of star formation pop up in the star formation history although the observed population is genuinely old. These artifacts appear for 70%-100% of cases depending on the population model used, and contribute up to 12% of the light in the optical. Their correlation with the horizontal branch (HB) ratio indicates that the confusion is driven by HB morphology: red HB clusters are well fitted by old stellar population models while those with a blue HB require an additional hot component. The confusion zone extends over [Fe/H] = [ - 2, - 1.2], although we lack the data to probe extreme high and low metallicity regimes. As a consequence, any young starburst superimposed on an old stellar population in this metallicity range could be regarded as a modeling artifact, if it weighs less than 12% of the optical light, and if no emission lines typical of an H II region are present. This work also provides a practical method for constraining HB morphology from high signal to noise integrated light spectroscopy in the optical. This will allow post-asymptotic giant branch evolution studies in a range of environments and at distances where resolving stellar populations

  4. Determination of giant resonance strengths

    International Nuclear Information System (INIS)

    Serr, F.E.

    1983-01-01

    Using theoretical strength functions to describe the different giant resonances expected at excitation energies of the order of (60-85)/Asup(1/3) MeV, we calculate the double differential cross sections d 2 sigma/dΩ dE associated with the reactions 208 Pb(α, α') and 90 Zr(α, α') (Esub(α) = 152 MeV). The angular distributions for the giant quadrupole and giant monopole resonances obtained from fits to these spectra, making simple, commonly used assumptions for the peak shapes and background, are compared to the original angular distributions. The differences between them are an indication of some of the uncertainties affecting the giant resonance strengths extracted from hadron inelastic scattering data. Fits to limited angular regions lead to errors of up to 50% in the value of the energy-weighted sum rule, depending on the angles examined. While it seems possible to extract the correct EWSR for the GMR by carrying out the analyses at 0 0 , no single privileged angle seems to exist in the case of the GQR. (orig.)

  5. CMB lensing and giant rings

    Energy Technology Data Exchange (ETDEWEB)

    Rathaus, Ben; Itzhaki, Nissan, E-mail: nitzhaki@post.tau.ac.il, E-mail: ben.rathaus@gmail.com [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  6. Investigation of the relative effects of vascular branching structure and gravity on pulmonary arterial blood flow heterogeneity via an image-based computational model.

    Science.gov (United States)

    Burrowes, Kelly S; Hunter, Peter J; Tawhai, Merryn H

    2005-11-01

    A computational model of blood flow through the human pulmonary arterial tree has been developed to investigate the relative influence of branching structure and gravity on blood flow distribution in the human lung. Geometric models of the largest arterial vessels and lobar boundaries were first derived using multidetector row x-ray computed tomography (MDCT) scans. Further accompanying arterial vessels were generated from the MDCT vessel endpoints into the lobar volumes using a volume-filling branching algorithm. Equations governing the conservation of mass and momentum were solved within the geometric model to calculate pressure, velocity, and vessel radius. Blood flow results in the anatomically based model, with and without gravity, and in a symmetric geometric model were compared to investigate their relative contributions to blood flow heterogeneity. Results showed a persistent blood flow gradient and flow heterogeneity in the absence of gravitational forces in the anatomically based model. Comparison with flow results in the symmetric model revealed that the asymmetric vascular branching structure was largely responsible for producing this heterogeneity. Analysis of average results in varying slice thicknesses illustrated a clear flow gradient because of gravity in "lower resolution" data (thicker slices), but on examination of higher resolution data, a trend was less obvious. Results suggest that although gravity does influence flow distribution, the influence of the tree branching structure is also a dominant factor. These results are consistent with high-resolution experimental studies that have demonstrated gravity to be only a minor determinant of blood flow distribution.

  7. Stellar populations in medium redshift clusters

    International Nuclear Information System (INIS)

    Pickles, A.J.; van der Kruit, P.C.; Pickles, A.J.

    1990-01-01

    We present a set of model isochrone spectra formed by combining stellar spectra in the proportions appropriate to the isochrone tabulations of VandenBerg, together with a Miller-Scalo mass function. The model spectra cover the wave-length range 3000-10000 A and have been constructed for metallicities in the range - 1.0 ≤ [Fe/H] ≤ 0.5, and for isochrone ages of 2 to 15 billion years. The model spectra follow the isochrone tabulations by including contributions from stars along the main sequence and subgiant branch to the base of the giant branch, fully constraining the main sequence turnoff and early post main sequence evolutionary phases. They are useful for deconvolving the competing effects of age and metallicity dispersion in composite systems. Other important components such as Horizontal branch, red giant and asymptotic branch stars are not included explicitly because they are not yet tabulated by VandenBerg, and because their fractional contributions to a composite population are less certain. These components should be added as extra parameters from a stellar library when fitting real composite spectra

  8. Entanglement branching operator

    Science.gov (United States)

    Harada, Kenji

    2018-01-01

    We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.

  9. Survey of the (3He,t) reaction: Excitation of the isobaric analog of the giant dipole resonance

    International Nuclear Information System (INIS)

    Tabor, S.L.; Chang, C.C.; Collins, M.T.; Wagner, G.J.; Wu, J.R.; Halderson, D.W.; Petrovich, F.

    1982-01-01

    The ( 3 He,t) reaction at 130 and 170 MeV has been investigated on targets of 12 C, 16 O, 27 Al, 28 Si, 40 Ca, 46 Ti, and 90 Zr. Data for the ( 3 He, 3 He') reaction were measured simultaneously for reference purposes. Structure is observed in the spectra from the ( 3 He, 3 He') and ( 3 He,t) reaction at the expected positions of the giant quadrupole resonance and the isobaric analog of the giant dipole resonance, respectively. An angular distribution was measured for the suspected giant dipole resonance structure in the 40 Ca( 3 He,t) 40 Sc reaction at 130 MeV. The data are reasonably described by a collective model calculation based on the Goldhaber-Teller model for the giant dipole resonance. Several other strong peaks at excitation energies below the giant dipole resonance are observed in the ( 3 He,t) spectra. Most notable of these are the ones at the expected positions for analogs of well known 1 + states and 1hω stretched states in the targets

  10. Role of nature reserves in giant panda protection.

    Science.gov (United States)

    Kang, Dongwei; Li, Junqing

    2018-02-01

    Giant panda (Ailuropoda melanoleuca) is a flagship species in nature conservation of the world; to protect this species, 67 nature reserves have been established in China. To evaluate the protection effect of giant panda nature reserves, we analyzed the variation of giant panda number and habitat area of 23 giant panda nature reserves of Sichuan province based on the national survey data released by State Forestry Administration and Sichuan Forestry Department. Results showed that from the third national survey to the fourth, giant panda number and habitat area of 23 giant panda nature reserves of Sichuan province failed to realize the significant increase. Furthermore, we found that the total population growth rate of 23 nature reserves in the last 12 years was lower than those of the province total of Sichuan and the national total of China, and the total habitat area of the 23 nature reserves was decreasing in the last 12 years, but the province total and national total were all increasing. We propose that giant panda protection should pay more attention to how to improve the protective effects of nature reserves.

  11. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    Science.gov (United States)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Rediscovering the Giant Low Surface Brightness Spiral Galaxy Malin 1

    Science.gov (United States)

    Galaz, Gaspar

    2018-01-01

    I summarize the latest discoveries regarding this ramarkable diffuse and giant galaxy, the largest single spiral in the universe so far. I describe how the latest discoveries could have been done easily 20 years ago, but an incredible summation of facts and some astronomical sociology, keeped many of them undisclosed. I present the most conspicuous features of the giant spiral arms of Malin 1, including stellar density, colors, stellar populations and some modeling describing their past evolution to the current state. I conclude with pending issues regarding stellar formation in Malin 1, and the efforts to detect its elusive molecular gas.

  13. Extra-mixing in red giant stars: Challenges for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Palmerini, Sara; Maiorca, Enrico, E-mail: sara.pamerini@fisica.unipg.i [I.N.F.N. sezione di Perugia Dipartimento di Fisica Universita degli Studi di Perugia, via Pascoli, 06123, Perugia (Italy)

    2010-01-01

    The existence of extra-mixing phenomena has been often invoked as a possible solution for the Li-abundance puzzle in low-mass red giant stars. In particular, [1] have shown that extra-mixing phenomena induced by stellar magnetic fields can justify the surface Li enrichment as well as its depletion in low mass giants. In the framework of this model, we test here how sensitive is the Li production to the reaction rate for the {sup 7}Be electron capture, in order to establish whether the presence of intense magnetic fields can alter the Li yield.

  14. GIANT: a computer code for General Interactive ANalysis of Trajectories

    International Nuclear Information System (INIS)

    Jaeger, J.; Lee, M.; Servranckx, R.; Shoaee, H.

    1985-04-01

    Many model-driven diagnostic and correction procedures have been developed at SLAC for the on-line computer controlled operation of SPEAR, PEP, the LINAC, and the Electron Damping Ring. In order to facilitate future applications and enhancements, these procedures are being collected into a single program, GIANT. The program allows interactive diagnosis as well as performance optimization of any beam transport line or circular machine. The test systems for GIANT are those of the SLC project. The organization of this program and some of the recent applications of the procedures will be described in this paper

  15. CHEMICAL AND KINEMATICAL PROPERTIES OF BLUE STRAGGLER STARS AND HORIZONTAL BRANCH STARS IN NGC 6397

    International Nuclear Information System (INIS)

    Lovisi, L.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Contreras Ramos, R.; Gratton, R.

    2012-01-01

    We used three sets of high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 42 horizontal branch (HB) stars, 18 blue straggler stars (BSSs), and 86 main-sequence (MS) turnoff (TO) and sub-giant branch stars in the nearby globular cluster NGC 6397. We measured rotational velocities and Fe, O, and Mg abundances. All of the unevolved stars in our sample have low rotational velocites (vsin i –1 ), while the HB stars and BSSs show a broad distribution, with values ranging from 0 to ∼70 km s –1 . For HB stars with T 8200 K and T > 10,500 K, respectively) also show significant deviations in their iron abundance with respect to the cluster metallicity (as traced by the unevolved stars, [Fe/H] = –2.12). While similar chemical patterns have already been observed in other hot HB stars, this is the first evidence ever collected for BSSs. We interpret these abundance anomalies as due to the metal radiative levitation, occurring in stars with shallow or no convective envelopes.

  16. Maximum likelihood inference of small trees in the presence of long branches.

    Science.gov (United States)

    Parks, Sarah L; Goldman, Nick

    2014-09-01

    The statistical basis of maximum likelihood (ML), its robustness, and the fact that it appears to suffer less from biases lead to it being one of the most popular methods for tree reconstruction. Despite its popularity, very few analytical solutions for ML exist, so biases suffered by ML are not well understood. One possible bias is long branch attraction (LBA), a regularly cited term generally used to describe a propensity for long branches to be joined together in estimated trees. Although initially mentioned in connection with inconsistency of parsimony, LBA has been claimed to affect all major phylogenetic reconstruction methods, including ML. Despite the widespread use of this term in the literature, exactly what LBA is and what may be causing it is poorly understood, even for simple evolutionary models and small model trees. Studies looking at LBA have focused on the effect of two long branches on tree reconstruction. However, to understand the effect of two long branches it is also important to understand the effect of just one long branch. If ML struggles to reconstruct one long branch, then this may have an impact on LBA. In this study, we look at the effect of one long branch on three-taxon tree reconstruction. We show that, counterintuitively, long branches are preferentially placed at the tips of the tree. This can be understood through the use of analytical solutions to the ML equation and distance matrix methods. We go on to look at the placement of two long branches on four-taxon trees, showing that there is no attraction between long branches, but that for extreme branch lengths long branches are joined together disproportionally often. These results illustrate that even small model trees are still interesting to help understand how ML phylogenetic reconstruction works, and that LBA is a complicated phenomenon that deserves further study. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  17. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    1999-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....

  18. A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress

    International Nuclear Information System (INIS)

    Parmar, J H; Bhartiya, Sharad; Venkatesh, K V

    2009-01-01

    Adaptation to osmotic shock in Saccharomyces cerevisiae is brought about by the activation of two independent signaling pathways, Sho1 and Sln1, which in turn trigger the high osmolarity glycerol (HOG) pathway. The HOG pathway thereby activates the transcription of Gpd1p, an enzyme necessary to synthesize glycerol. The production of glycerol brings about a change in the intracellular osmolarity leading to adaptation. We present a detailed mechanistic model for the response of the yeast to hyperosmotic shock. The model integrates the two branches, Sho1 and Sln1, of the HOG pathway and also includes the mitogen-activated protein kinase cascade, gene regulation and metabolism. Model simulations are consistent with known experimental results for wild-type strain, and Ste11Δ and Ssk1Δ mutant strains subjected to osmotic stress. Simulation results predict that both the branches contribute to the overall wild-type response for moderate osmotic shock, while under severe osmotic shock, the cell responds mainly through the Sln1 branch. The analysis shows that the Sln1 branch helps the cell in preventing cross-talk to other signaling pathways by inhibiting ste11ste50 activation and also by increasing the phosphorylation of Ste50. We show that the negative feedbacks to the Sho1 branch must be faster than those to the Sln1 branch to simultaneously achieve pathway specificity and adaptation during hyperosmotic shock. Sensitivity analysis revealed that the presence of both branches imparts robust behavior to the cell under osmoadaptation to perturbations

  19. Pareto genealogies arising from a Poisson branching evolution model with selection.

    Science.gov (United States)

    Huillet, Thierry E

    2014-02-01

    We study a class of coalescents derived from a sampling procedure out of N i.i.d. Pareto(α) random variables, normalized by their sum, including β-size-biasing on total length effects (β Poisson-Dirichlet (α, -β) Ξ-coalescent (α ε[0, 1)), or to a family of continuous-time Beta (2 - α, α - β)Λ-coalescents (α ε[1, 2)), or to the Kingman coalescent (α ≥ 2). We indicate that this class of coalescent processes (and their scaling limits) may be viewed as the genealogical processes of some forward in time evolving branching population models including selection effects. In such constant-size population models, the reproduction step, which is based on a fitness-dependent Poisson Point Process with scaling power-law(α) intensity, is coupled to a selection step consisting of sorting out the N fittest individuals issued from the reproduction step.

  20. Near infrared photometry of globular clusters

    International Nuclear Information System (INIS)

    Evans, T.L.; Menzies, J.W.

    1977-01-01

    Photographic photometry on the V, Isub(K) system has been obtained for giant stars in the metal-rich globular clusters NGC 5927, 6171, 6352, 6356, 6388, 6522, 6528, 6712 and 6723. Colour-magnitude diagrams are presented. These data, with earlier observations of NGC 104 (47 Tuc), yield new parameters to describe the giant branch. These are the colour of the red variables, represented by their mean colour (V - Isub(K)) 0 or by the colour (V - Isub(K))sub(BO) of the bluest red variable on the giant branch of a cluster, and ΔV' which is the magnitude difference between the horizontal branch and the highest point on the giant branch. The latter is independent of reddening, since the giant branch of the most metal-rich clusters passes through a maximum in the V, V - Isub(K) plane. These parameters are correlated with the metal content, deduced from integrated photometry: the red variables are redder and the giant branch fainter the higher the metal content. Comparison with theoretical evolutionary tracks suggests that the range in metal content of these clusters is at most a factor of 10, the most metal-rich clusters possibly approaching the solar value. The cluster giant branches and those of open clusters, groups and field stars of the old disk population are compared. The assumption that all the globular clusters have an absolute magnitude on the horizontal branch of Msub(v) = + 0.9, as found recently for 47 Tuc, gives good agreement between the magnitudes of giant stars in the most metal rich of the globular clusters and those of field stars deduced from statistical parallaxes and moving group parallaxes. The values of the parameters ΔV' and (V - Isub(k))sub(BO) also approach those in the moving groups. The globular clusters have a longer horizontal branch, however, and the subgiants are bluer even when the values of ) 7Fe/H{ appear to be the same. (author). )

  1. Estimation of the growth curve and heritability of the growth rate for giant panda (Ailuropoda melanoleuca) cubs.

    Science.gov (United States)

    Che, T D; Wang, C D; Jin, L; Wei, M; Wu, K; Zhang, Y H; Zhang, H M; Li, D S

    2015-03-27

    Giant panda cubs have a low survival rate during the newborn and early growth stages. However, the growth and developmental parameters of giant panda cubs during the early lactation stage (from birth to 6 months) are not well known. We examined the growth and development of giant panda cubs by the Chapman growth curve model and estimated the heritability of the maximum growth rate at the early lactation stage. We found that 83 giant panda cubs reached their maximum growth rate at approximately 75-120 days after birth. The body weight of cubs at 75 days was 4285.99 g. Furthermore, we estimated that the heritability of the maximum growth rate was moderate (h(2) = 0.38). Our study describes the growth and development of giant panda cubs at the early lactation stage and provides valuable growth benchmarks. We anticipate that our results will be a starting point for more detailed research on increasing the survival rate of giant panda cubs. Feeding programs for giant panda cubs need further improvement.

  2. Giant lobelias exemplify convergent evolution

    Directory of Open Access Journals (Sweden)

    Givnish Thomas J

    2010-01-01

    Full Text Available Abstract Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution.

  3. Surgical treatment for giant incisional hernia

    DEFF Research Database (Denmark)

    Eriksson, A; Rosenberg, J; Bisgaard, T

    2014-01-01

    INTRODUCTION: Repair for giant incisional hernias is a challenge due to unacceptable high morbidity and recurrence rates. Several surgical techniques are available, but all are poorly documented. This systematic review was undertaken to evaluate the existing literature on repair for giant...... % with a wide range between studies of 4-100 %. The mortality ranged from 0 to 5 % (median 0 %) and recurrence rate ranged from 0 to 53 % (median 5 %). Study follow-up ranged from 15 to 97 months (median 36 months). Mesh repair should always be used for patients undergoing repair for a giant hernia......, and the sublay position may have advantages over onlay positioning. To avoid tension, it may be advisable to use a mesh in combination with a component separation technique. Inlay positioning of the mesh and repair without a mesh should be avoided. CONCLUSIONS: Evidence to optimise repair for giant hernias...

  4. Geochemical Constraints on the Size of the Moon-Forming Giant Impact

    Science.gov (United States)

    Piet, Hélène; Badro, James; Gillet, Philippe

    2017-12-01

    Recent models involving the Moon-forming giant impact hypothesis have managed to reproduce the striking isotopic similarity between the two bodies, albeit using two extreme models: one involves a high-energy small impactor that makes the Moon out of Earth's proto-mantle; the other supposes a gigantic collision between two half-Earths creating the Earth-Moon system from both bodies. Here we modeled the geochemical influence of the giant impact on Earth's mantle and found that impactors larger than 15% of Earth mass result in mantles always violating the present-day concentrations of four refractory moderately siderophile trace elements (Ni, Co, Cr, and V). In the aftermath of the impact, our models cannot further discriminate between a fully and a partially molten bulk silicate Earth. Then, the preservation of primordial geochemical reservoirs predating the Moon remains the sole argument against a fully molten mantle after the Moon-forming impact.

  5. Analyzing the spatial positioning of nuclei in polynuclear giant cells

    International Nuclear Information System (INIS)

    Stange, Maike; Hintsche, Marius; Sachse, Kirsten; Gerhardt, Matthias; Beta, Carsten; Valleriani, Angelo

    2017-01-01

    How cells establish and maintain a well-defined size is a fundamental question of cell biology. Here we investigated to what extent the microtubule cytoskeleton can set a predefined cell size, independent of an enclosing cell membrane. We used electropulse-induced cell fusion to form giant multinuclear cells of the social amoeba Dictyostelium discoideum . Based on dual-color confocal imaging of cells that expressed fluorescent markers for the cell nucleus and the microtubules, we determined the subcellular distributions of nuclei and centrosomes in the giant cells. Our two- and three-dimensional imaging results showed that the positions of nuclei in giant cells do not fall onto a regular lattice. However, a comparison with model predictions for random positioning showed that the subcellular arrangement of nuclei maintains a low but still detectable degree of ordering. This can be explained by the steric requirements of the microtubule cytoskeleton, as confirmed by the effect of a microtubule degrading drug. (paper)

  6. Analyzing the spatial positioning of nuclei in polynuclear giant cells

    Science.gov (United States)

    Stange, Maike; Hintsche, Marius; Sachse, Kirsten; Gerhardt, Matthias; Valleriani, Angelo; Beta, Carsten

    2017-11-01

    How cells establish and maintain a well-defined size is a fundamental question of cell biology. Here we investigated to what extent the microtubule cytoskeleton can set a predefined cell size, independent of an enclosing cell membrane. We used electropulse-induced cell fusion to form giant multinuclear cells of the social amoeba Dictyostelium discoideum. Based on dual-color confocal imaging of cells that expressed fluorescent markers for the cell nucleus and the microtubules, we determined the subcellular distributions of nuclei and centrosomes in the giant cells. Our two- and three-dimensional imaging results showed that the positions of nuclei in giant cells do not fall onto a regular lattice. However, a comparison with model predictions for random positioning showed that the subcellular arrangement of nuclei maintains a low but still detectable degree of ordering. This can be explained by the steric requirements of the microtubule cytoskeleton, as confirmed by the effect of a microtubule degrading drug.

  7. Evolution of viscous discs. 3. Giant discs in symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G T [Oxford Univ. (UK). Dept. of Astrophysics; Pringle, J E [Cambridge Univ. (UK). Inst. of Astronomy

    1982-10-01

    The structure of time-dependent accretion discs in giant binaries with separation of the order of 10/sup 13/ cm is examined. Radiative ..cap alpha..-viscosity discs with ..cap alpha.. of order unity accreting on to main-sequence stars at accretion rates which generate luminosities greater than a giant companion decay on time-scales of the same order as the binary period, unlike those in dwarf nova binaries which decay on time-scales 100 times longer than the binary period. This results from the lower gravitational potential and consequent larger disc thickness (relative to the radius) of luminous 'giant' discs accreting at high accretion rates. The eruptions of the symbiotic binary C I Cygni are modelled by an ..cap alpha.. = 1 disc with outer radius 8.5 x 10/sup 12/ cm and a sequence of five mass-transfer bursts at rates between 1.5 x 10/sup 21/ and 4 x 10/sup 22/g s/sup -1/.

  8. Static electromagnetic properties of giant resonances

    International Nuclear Information System (INIS)

    Koo, W.K.

    1986-03-01

    Static electric monopole and quadrupole matrix elements, which are related to the mean square radius and quadrupole moment respectively, are derived for giant resonances of arbitrary multipolarity. The results furnish information on the size and shape of the nucleus in the excited giant states. (author)

  9. On the Complexity of Model-Checking Branching and Alternating-Time Temporal Logics in One-Counter Systems

    DEFF Research Database (Denmark)

    Vester, Steen

    2015-01-01

    We study the complexity of the model-checking problem for the branching-time logic CTL ∗  and the alternating-time temporal logics ATL/ATL ∗  in one-counter processes and one-counter games respectively. The complexity is determined for all three logics when integer weights are input in unary (non...

  10. Applying Student Team Achievement Divisions (STAD) Model on Material of Basic Programme Branch Control Structure to Increase Activity and Student Result

    Science.gov (United States)

    Akhrian Syahidi, Aulia; Asyikin, Arifin Noor; Asy’ari

    2018-04-01

    Based on my experience of teaching the material of branch control structure, it is found that the condition of the students is less active causing the low activity of the students on the attitude assessment during the learning process on the material of the branch control structure i.e. 2 students 6.45% percentage of good activity and 29 students percentage 93.55% enough and less activity. Then from the low activity resulted in low student learning outcomes based on a daily re-examination of branch control material, only 8 students 26% percentage reached KKM and 23 students 74% percent did not reach KKM. The purpose of this research is to increase the activity and learning outcomes of students of class X TKJ B SMK Muhammadiyah 1 Banjarmasin after applying STAD type cooperative learning model on the material of branch control structure. The research method used is Classroom Action Research. The study was conducted two cycles with six meetings. The subjects of this study were students of class X TKJ B with a total of 31 students consisting of 23 men and 8 women. The object of this study is the activity and student learning outcomes. Data collection techniques used are test and observation techniques. Data analysis technique used is a percentage and mean. The results of this study indicate that: an increase in activity and learning outcomes of students on the basic programming learning material branch control structure after applying STAD type cooperative learning model.

  11. Landscape-scale variation in canopy water content of giant sequoias during drought

    Science.gov (United States)

    Paz-Kagan, Tarin; Vaughn, Nicolas R.; Martin, Roberta E.; Brodrick, Philip G.; Stephenson, Nathan L.; Das, Adrian; Nydick, Koren R.; Asner, Gregory P.

    2018-01-01

    Recent drought (2012–2016) caused unprecedented foliage dieback in giant sequoias (Sequoiadendron giganteum), a species endemic to the western slope of the southern Sierra Nevada in central California. As part of an effort to understand and map sequoia response to droughts, we studied the patterns of remotely sensed canopy water content (CWC), both within and among sequoia groves in two successive years during the drought period (2015 and 2016). Our aims were: (1) to quantify giant sequoia responses to severe drought stress at a landscape scale using CWC as an indicator of crown foliage status, and (2) to estimate the effect of environmental correlates that mediate CWC change within and among giant sequoia groves. We utilized airborne high fidelity imaging spectroscopy (HiFIS) and light detection and ranging (LiDAR) data from the Carnegie Airborne Observatory to assess giant sequoia foliage status during 2015 and 2016 of the 2012–2016 droughts. A series of statistical models were generated to classify giant sequoias and to map their location in Sequoia and Kings Canyon National Parks (SEKI) and vicinity. We explored the environmental correlates and the spatial patterns of CWC change at the landscape scale. The mapped CWC was highly variable throughout the landscape during the two observation years, and proved to be most closely related to geological substrates, topography, and site-specific water balance. While there was an overall net gain in sequoia CWC between 2015 and 2016, certain locations (lower elevations, steeper slopes, areas more distant from surface water sources, and areas with greater climate water deficit) showed CWC losses. In addition, we found greater CWC loss in shorter sequoias and those growing in areas with lower sequoia stem densities. Our results suggest that CWC change indicates sequoia response to droughts across landscapes. Long-term monitoring of giant sequoia CWC will likely be useful for modeling and predicting their population

  12. Electron inelastic scattering by compound nuclei and giant multipole resonances

    International Nuclear Information System (INIS)

    Dzhavadov, A.V.; Mukhtarov, A.I.; Mirabutalybov, M.M.

    1980-01-01

    Multipole giant resonances in heavy nuclei have been investigated with the application of the Danos-Greiner dynamic collective theory to the Tassi model. The monopole giant resonance has been studied in 158 Gd, 166 Er, 184 W, 232 Th and 238 V nuclei at the incident electron energy E=200 MeV. Dependences of the form factor square of electron scattering by a 166 Er nucleus on the scattering angle obtained in the distorted-wave high-energy approximation (DWHEA) are presented. Giant dipole and quadrupole resonances in 60 Ni and 90 Zr nuclei have been studied. A comparison has been made of theoretical results obtained in the DWHEA for the dependence of the form factor square on the effective momentum transfer with the experimental data. The analysis of the obtained results led to the following conclusions. To draw a conclusion about the validity of one or another nuclear model and methods for calculating form factors, it is necessary to investigate, both theoretically and experimentally, electron scattering at great angles (THETA>=70 deg). To obtain a good agreement it is necessary to take account of the actual proton and neutron distributions in the ground state and their dynamic properties in an excited state [ru

  13. Groundwater availability in the Crouch Branch and McQueen Branch aquifers, Chesterfield County, South Carolina, 1900-2012

    Science.gov (United States)

    Campbell, Bruce G.; Landmeyer, James E.

    2014-01-01

    Chesterfield County is located in the northeastern part of South Carolina along the southern border of North Carolina and is primarily underlain by unconsolidated sediments of Late Cretaceous age and younger of the Atlantic Coastal Plain. Approximately 20 percent of Chesterfield County is in the Piedmont Physiographic Province, and this area of the county is not included in this study. These Atlantic Coastal Plain sediments compose two productive aquifers: the Crouch Branch aquifer that is present at land surface across most of the county and the deeper, semi-confined McQueen Branch aquifer. Most of the potable water supplied to residents of Chesterfield County is produced from the Crouch Branch and McQueen Branch aquifers by a well field located near McBee, South Carolina, in the southwestern part of the county. Overall, groundwater availability is good to very good in most of Chesterfield County, especially the area around and to the south of McBee, South Carolina. The eastern part of Chesterfield County does not have as abundant groundwater resources but resources are generally adequate for domestic purposes. The primary purpose of this study was to determine groundwater-flow rates, flow directions, and changes in water budgets over time for the Crouch Branch and McQueen Branch aquifers in the Chesterfield County area. This goal was accomplished by using the U.S. Geological Survey finite-difference MODFLOW groundwater-flow code to construct and calibrate a groundwater-flow model of the Atlantic Coastal Plain of Chesterfield County. The model was created with a uniform grid size of 300 by 300 feet to facilitate a more accurate simulation of groundwater-surface-water interactions. The model consists of 617 rows from north to south extending about 35 miles and 884 columns from west to east extending about 50 miles, yielding a total area of about 1,750 square miles. However, the active part of the modeled area, or the part where groundwater flow is simulated

  14. Influence of complex particle emission on properties of giant dipole resonance of hot nuclei

    International Nuclear Information System (INIS)

    Wen Wanxin; Jin Genming

    2003-01-01

    The possible reasons for the discrepancy between calculation results based on the statistical evaporation model and experimental data of giant dipole resonance of very hot nuclei are discussed. Both of simulations with the standard CASCADE code and the code coupling complex particle emission are carried out. It is shown that the complex particle emission affects the properties of giant dipole resonance of very hot nuclei

  15. Controlling branching in streamer discharge by laser background ionization

    International Nuclear Information System (INIS)

    Takahashi, E; Kato, S; Furutani, H; Sasaki, A; Kishimoto, Y

    2011-01-01

    Irradiation with a KrF laser controlled the positive streamer branching in atmospheric argon gas. This laser irradiation changed the amount of background ionization before the streamer discharge. Measuring the ionization current allowed us to evaluate the initial electron density formed by the KrF laser. We observed characteristic feather-like branching structure and found that it was only suppressed in the irradiated region. The threshold of ionization density which can influence the branching was evaluated to be 5 x 10 5 cm -3 . The relationship between the size of avalanche head and mean distance between initial electrons explained this suppression behaviour. These experimental results support that the feather-like structure originates from the branching model of Loeb-Meek, a probabilistic merging of individual avalanches.

  16. Neuro-Oncology Branch

    Science.gov (United States)

    ... BTTC are experts in their respective fields. Neuro-Oncology Clinical Fellowship This is a joint program with ... can increase survival rates. Learn more... The Neuro-Oncology Branch welcomes Dr. Mark Gilbert as new Branch ...

  17. BranchAnalysis2D/3D automates morphometry analyses of branching structures.

    Science.gov (United States)

    Srinivasan, Aditya; Muñoz-Estrada, Jesús; Bourgeois, Justin R; Nalwalk, Julia W; Pumiglia, Kevin M; Sheen, Volney L; Ferland, Russell J

    2018-01-15

    Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology. To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call 'BranchAnalysis2D/3D', to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia. Our BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets. We validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification. BranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. DETAILED ABUNDANCES OF RED GIANTS IN THE GLOBULAR CLUSTER NGC 1851: C+N+O AND THE ORIGIN OF MULTIPLE POPULATIONS

    International Nuclear Information System (INIS)

    Villanova, S.; Geisler, D.; Piotto, G.

    2010-01-01

    We present chemical abundance analysis of a sample of 15 red giant branch (RGB) stars of the globular cluster NGC 1851 distributed along the two RGBs of the (v, v-y) color-magnitude diagram. We determined abundances for C+N+O, Na, α, iron-peak, and s-elements. We found that the two RGB populations significantly differ in their light (N, O, Na) and s-element content. On the other hand, they do not show any significant difference in their α and iron-peak element content. More importantly, the two RGB populations do not show any significant difference in their total C+N+O content. Our results do not support previous hypotheses suggesting that the origins of the two RGBs and the two subgiant branches of the cluster are related to different content of either α (including Ca) or iron-peak elements, or C+N+O abundance, due to a second generation polluted by Type II supernovae.

  19. Fragmentation of giant dipole resonance at finite temperature

    International Nuclear Information System (INIS)

    Vdovin, A.

    2005-01-01

    It is well known that the main part of a width of a collective giant resonance built on the ground state in heavy nuclei is due to coupling of one-phonon vibrational states with more complex ones like two phonon or two-particle - two-hole. So it seems natural that the same idea was also explored in studying of the formation and dependence on temperature of a width of giant resonances built on a compound nuclear state. The first microscopic calculations of a giant dipole resonance width at finite temperature have demonstrated its weak dependence on T whereas the experimental width Γ exp strongly increases up to T≤3 MeV. The observed thermal behaviour of Γ exp was attributed mainly to thermal fluctuations of a nuclear shape at finite T . However, further theoretical studies of the problem have shown a strengthening of the GDR spreading with T. We calculate a fragmentation of the giant dipole resonance in hot spherical nuclei within the approach based on the quasiparticle-phonon model extended to finite temperature in with the formalism of thermofield dynamics. The fragmentation of collective giant dipole vibrations at finite T is due to the coupling with 'two-thermal phonon' configurations. The energies and structures of thermal phonon states are calculated from the thermal RPA temperature dependence of the variance σ th of a theoretical E1 strength function and the experimental GDR width Γ exp in 120 Sn. The coupling of thermal phonons is determined by their fermionic structure. The variance σ th of the E1 strength function is found continuously increasing with temperature. The main reason of this behavior is the coupling of the dipole phonons with very low-lying particle-particle (hole-hole) thermal phonons. These phonons are noncollective ones and they appear only at T≠0. The calculated T dependence of σ th is quite similar to that of the experimental width Γ exp in 120 Sn and 208 Pb

  20. Bundle Branch Block

    Science.gov (United States)

    ... known cause. Causes can include: Left bundle branch block Heart attacks (myocardial infarction) Thickened, stiffened or weakened ... myocarditis) High blood pressure (hypertension) Right bundle branch block A heart abnormality that's present at birth (congenital) — ...

  1. Giant Urinary Bladder and Bilateral Giant Hydronephrosis due to Bladder Neck Obstruction: One Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Mohammed Fadl Tazi

    2012-01-01

    Full Text Available Bilateral hydronephrosis secondary to urinary obstruction leads to a buildup of back pressure in the urinary tract and may lead to impairment of renal function. Cases of giant hydronephrosis are rare and usually contain no more than 1-2 litres of fluid in the collecting system. Here, we report a rarely seen case with giant urinary bladder and bilateral giant hydronephrosis due to bladder neck obstruction which contains 4000 mL fluid in the collecting system of the kidney mimicking an ascites in an adult male.

  2. Giant dipole resonances in hot nuclear matter in the model of self-relaxing mean field

    International Nuclear Information System (INIS)

    Okolowicz, J.; Ploszajczak, M.; Drozdz, S.; Caurier, E.

    1989-01-01

    The extended time-dependent Hartree-Fock approach is applied for the description of the isovector giant dipole resonance in 40 Ca at finite temperatures. The thermalization process is described using the relaxation-time ansatz for the collision integral. Strong inhibition of the giant-dipole-resonance γ-decay is found due to the fast vaporization of the nuclear surface for thermal excitation energies above E * /A ≅ 4.5 MeV. This pre-equilibrium emission of particles in the vapor phase is associated with the radial expansion of nucleus and with the vanishing particle binding energies mainly for protons. (orig.)

  3. Giant cell arteritis of fallopian tube.

    Science.gov (United States)

    Azzena, A; Altavilla, G; Salmaso, R; Vasoin, F; Pellizzari, P; Doria, A

    1994-01-01

    One case of giant cells arteritis involving tubaric arteries in a postmenopausal woman is described. The patient was 59 years old and presented with asthenia, anemia, fever, weight loss, an abdominal palpable mass and elevated erythrocyte sedimentation rate. Exploratory laparotomy revealed a large ovarian cyst of 14 cm in diameter. Extensive giant cell arteritis, Horton's type, of the small-sizes arteries was found unexpectedly in the fallopian tube of the patient who had had a prior ovariectomy. Giant cell arteritis of the female genital tract is a rare finding in elderly women and may occur as an isolated finding or as part of generalised arteritis.

  4. GIANT IMPACT: AN EFFICIENT MECHANISM FOR THE DEVOLATILIZATION OF SUPER-EARTHS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shang-Fei [Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 (United States); Hori, Yasunori; Lin, D. N. C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Asphaug, Erik, E-mail: sliu26@ucsc.edu, E-mail: yahori@ucsc.edu, E-mail: lin@ucolick.org, E-mail: easphaug@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2015-10-20

    Mini-Neptunes and volatile-poor super-Earths coexist on adjacent orbits in proximity to host stars such as Kepler-36 and Kepler-11. Several post-formation processes have been proposed for explaining the origin of the compositional diversity between neighboring planets: mass loss via stellar XUV irradiation, degassing of accreted material, and in situ accumulation of the disk gas. Close-in planets are also likely to experience giant impacts during the advanced stage of planet formation. This study examines the possibility of transforming volatile-rich super-Earths/mini-Neptunes into volatile-depleted super-Earths through giant impacts. We present the results of three-dimensional hydrodynamic simulations of giant impacts in the accretionary and disruptive regimes. Target planets are modeled with a three-layered structure composed of an iron core, silicate mantle, and hydrogen/helium envelope. In the disruptive case, the giant impact can remove most of the H/He atmosphere immediately and homogenize the refractory material in the planetary interior. In the accretionary case, the planet is able to retain more than half of the original gaseous envelope, while a compositional gradient suppresses efficient heat transfer as the planetary interior undergoes double-diffusive convection. After the giant impact, a hot and inflated planet cools and contracts slowly. The extended atmosphere enhances the mass loss via both a Parker wind induced by thermal pressure and hydrodynamic escape driven by the stellar XUV irradiation. As a result, the entire gaseous envelope is expected to be lost due to the combination of those processes in both cases. Based on our results, we propose that Kepler-36b may have been significantly devolatilized by giant impacts, while a substantial fraction of Kepler-36c’s atmosphere may remain intact. Furthermore, the stochastic nature of giant impacts may account for the observed large dispersion in the mass–radius relationship of close-in super

  5. Grain-gas interaction in envelopes of red giants

    International Nuclear Information System (INIS)

    Maciel, W.J.

    1976-01-01

    A model for the ejection of the dust shell of red giant stars through the action of the stellar radiation pressure is developed. Being momentum-coupled to the gas, the dust shell can drive an effective mass loss. On the other hand, the grain injection rate into the interstellar space can be estimated [pt

  6. Polymers and Random graphs: Asymptotic equivalence to branching processes

    International Nuclear Information System (INIS)

    Spouge, J.L.

    1985-01-01

    In 1974, Falk and Thomas did a computer simulation of Flory's Equireactive RA/sub f/ Polymer model, rings forbidden and rings allowed. Asymptotically, the Rings Forbidden model tended to Stockmayer's RA/sub f/ distribution (in which the sol distribution ''sticks'' after gelation), while the Rings Allowed model tended to the Flory version of the RA/sub f/ distribution. In 1965, Whittle introduced the Tree and Pseudomultigraph models. We show that these random graphs generalize the Falk and Thomas models by incorporating first-shell substitution effects. Moreover, asymptotically the Tree model displays postgelation ''sticking.'' Hence this phenomenon results from the absence of rings and occurs independently of equireactivity. We also show that the Pseudomultigraph model is asymptotically identical to the Branching Process model introduced by Gordon in 1962. This provides a possible basis for the Branching Process model in standard statistical mechanics

  7. Giant 1/f noise in two-dimensional polycrystalline media

    International Nuclear Information System (INIS)

    Snarskii, A.; Bezsudnov, I.

    2008-01-01

    The behaviour of excess (1/f noise) in two-dimensional polycrystalline media is investigated. On the base of current trap model, it is shown that there exists a certain anisotropy value of conductivity tensor for polycrystalline media when the amplitude of 1/f noise becomes giant

  8. The Carnegie-Chicago Hubble Program. II. The Distance to IC 1613: The Tip of the Red Giant Branch and RR Lyrae Period-luminosity Relations

    Science.gov (United States)

    Hatt, Dylan; Beaton, Rachael L.; Freedman, Wendy L.; Madore, Barry F.; Jang, In-Sung; Hoyt, Taylor J.; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark

    2017-08-01

    IC 1613 is an isolated dwarf galaxy within the Local Group. Low foreground and internal extinction, low metallicity, and low crowding make it an invaluable testbed for the calibration of the local distance ladder. We present new, high-fidelity distance estimates to IC 1613 via its Tip of the Red Giant Branch (TRGB) and its RR Lyrae (RRL) variables as part of the Carnegie-Chicago Hubble Program, which seeks an alternate local route to H 0 using Population II stars. We have measured a TRGB magnitude {I}{ACS}{TRGB}=20.35+/- {0.01}{stat}+/- {0.01}{sys} mag using wide-field observations obtained from the IMACS camera on the Magellan-Baade telescope. We have further constructed optical and near-infrared RRL light curves using archival BI- and new H-band observations from the ACS/WFC and WFC3/IR instruments on board the Hubble Space Telescope (HST). In advance of future Gaia data releases, we set provisional values for the TRGB luminosity via the Large Magellanic Cloud and Galactic RRL zero-points via HST parallaxes. We find corresponding true distance moduli {μ }0{TRGB}=24.30+/- {0.03}{stat}+/- {0.05}{sys} {mag} and =24.28+/- {0.04}{stat+{sys}} mag. We compare our results to a body of recent publications on IC 1613 and find no statistically significant difference between the distances derived from Population I and II stars. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #10505 and #13691. Additional observations are credited to the Observatories of the Carnegie Institution of Washington for the use of Magellan-Baade IMACS. Presented as part of a dissertation to the Department of Astronomy and Astrophysics, The University of Chicago, in partial fulfillment of the requirements for the Ph.D. degree.

  9. Staged Closure of Giant Omphalocele using Synthetic Mesh

    OpenAIRE

    Parida, Lalit; Pal, Kamalesh; Al Buainain, Hussah; Elshafei, Hossam

    2014-01-01

    Giant omphalocele is difficult to manage and is associated with a poor outcome. A male newborn presented to our hospital with a giant omphalocele. We performed a staged closure of giant omphalocele using synthetic mesh to construct a silo and then mesh abdominoplasty in the neonatal period that led to a successful outcome within a reasonable period of hospital stay.

  10. Chromosphere of K giant stars. Geometrical extent and spatial structure detection

    Science.gov (United States)

    Berio, P.; Merle, T.; Thévenin, F.; Bonneau, D.; Mourard, D.; Chesneau, O.; Delaa, O.; Ligi, R.; Nardetto, N.; Perraut, K.; Pichon, B.; Stee, P.; Tallon-Bosc, I.; Clausse, J. M.; Spang, A.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2011-11-01

    Context. Interferometers provide accurate diameter measurements of stars by analyzing both the continuum and the lines formed in photospheres and chromospheres. Tests of the geometrical extent of the chromospheres are therefore possible by comparing the estimated radius in the continuum of the photosphere and the estimated radii in chromospheric lines. Aims: We aim to constrain the geometrical extent of the chromosphere of non-binary K giant stars and detect any spatial structures in the chromosphere. Methods: We performed observations with the CHARA interferometer and the VEGA beam combiner at optical wavelengths. We observed seven non-binary K giant stars (β and η Cet, δ Crt, ρ Boo, β Oph, 109 Her, and ι Cep). We measured the ratio of the radii of the photosphere to the chromosphere using the interferometric measurements in the Hα and the Ca II infrared triplet line cores. For β Cet, spectro-interferometric observations are compared to a non-local thermal equilibrium (NLTE) semi-empirical model atmosphere including a chromosphere. The NLTE computations provide line intensities and contribution functions that indicate the relative locations where the line cores are formed and can constrain the size of the limb-darkened disk of the stars with chromospheres. We measured the angular diameter of seven K giant stars and deduced their fundamental parameters: effective temperatures, radii, luminosities, and masses. We determined the geometrical extent of the chromosphere for four giant stars (β and η Cet, δ Crt and ρ Boo). Results: The chromosphere extents obtained range between 16% to 47% of the stellar radius. The NLTE computations confirm that the Ca II/849 nm line core is deeper in the chromosphere of β Cet than either of the Ca II/854 nm and Ca II/866 nm line cores. We present a modified version of a semi-empirical model atmosphere derived by fitting the Ca II triplet line cores of this star. In four of our targets, we also detect the signature of a

  11. Comparing the plant diversity between artificial forest and nature growth forest in a giant panda habitat.

    Science.gov (United States)

    Kang, Dongwei; Wang, Xiaorong; Li, Shuang; Li, Junqing

    2017-06-15

    Artificial restoration is an important way to restore forests, but little is known about its effect on the habitat restoration of the giant panda. In the present study, we investigated the characteristics of artificial forest in the Wanglang Nature Reserve to determine whether through succession it has formed a suitable habitat for the giant panda. We compared artificial forest characteristics with those of natural habitat used by the giant panda. We found that the dominant tree species in artificial forest differed from those in the natural habitat. The artificial forest had lower plant species richness and diversity in the tree and shrub layers than did the latter, and its community structure was characterized by smaller tree and bamboo sizes, and fewer and lower bamboo clumps, but more trees and larger shrub sizes. The typical community collocation of artificial forest was a "Picea asperata + no-bamboo" model, which differs starkly from the giant panda's natural habitat. After several years of restoration, the artificial forest has failed to become a suitable habitat for the giant panda. Therefore, a simple way of planting individual trees cannot restore giant panda habitat; instead, habitat restoration should be based on the habitat requirements of the giant panda.

  12. Giant microelectronics

    International Nuclear Information System (INIS)

    Della Sala, D.; Privato, C.; Di Lazzaro, P.; Fortunato, G.

    1999-01-01

    Giant microelectronics, on which the technology of flat liquid-crystal screens is based, is an example of fruitful interaction among independently-developed technologies, in this case thin film micro devices and laser applications. It typifies the interdisciplinary approach needed to produce innovations in microelectronics [it

  13. A conceptual model for site-level ecology of the giant gartersnake (Thamnophis gigas) in the Sacramento Valley, California

    Science.gov (United States)

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.; Hansen, Eric C.; Scherer, Rick D.; Patterson, Laura C.

    2015-08-14

    Giant gartersnakes (Thamnophis gigas) comprise a species of semi-aquatic snakes precinctive to marshes in the Central Valley of California (Hansen and Brode, 1980; Rossman and others, 1996). Because more than 90 percent of their historical wetland habitat has been converted to other uses (Frayer and others, 1989; Garone, 2007), giant gartersnakes have been listed as threatened by the State of California (California Department of Fish and Game Commission , 1971) and the United States (U.S. Fish and Wildlife Service, 1993). Giant gartersnakes currently occur in a highly modified landscape, with most extant populations occurring in the rice - growing regions of the Sacramento Valley, especially near areas that historically were tule marsh habitat (Halstead and others, 2010, 2014).

  14. The magnetic fields at the surface of active single G-K giants

    Science.gov (United States)

    Aurière, M.; Konstantinova-Antova, R.; Charbonnel, C.; Wade, G. A.; Tsvetkova, S.; Petit, P.; Dintrans, B.; Drake, N. A.; Decressin, T.; Lagarde, N.; Donati, J.-F.; Roudier, T.; Lignières, F.; Schröder, K.-P.; Landstreet, J. D.; Lèbre, A.; Weiss, W. W.; Zahn, J.-P.

    2015-02-01

    Aims: We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. In our sample, 24 stars are identified from the literature as presenting moderate to strong signs of magnetic activity. An additional 7 stars are identified as those in which thermohaline mixing appears not to have occured, which could be due to hosting a strong magnetic field. Finally, we observed 17 additional very bright stars which enable a sensitive search to be performed with the spectropolarimetric technique. Methods: We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets. We treat the spectropolarimetric data using the least-squares deconvolution method to create high signal-to-noise ratio mean Stokes V profiles. We also measure the classical S-index activity indicator for the Ca ii H&K lines, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. Results: We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars. However no detections were obtained in the 7 thermohaline deviant giants. The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a "magnetic strip" for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro

  15. Poisson branching point processes

    International Nuclear Information System (INIS)

    Matsuo, K.; Teich, M.C.; Saleh, B.E.A.

    1984-01-01

    We investigate the statistical properties of a special branching point process. The initial process is assumed to be a homogeneous Poisson point process (HPP). The initiating events at each branching stage are carried forward to the following stage. In addition, each initiating event independently contributes a nonstationary Poisson point process (whose rate is a specified function) located at that point. The additional contributions from all points of a given stage constitute a doubly stochastic Poisson point process (DSPP) whose rate is a filtered version of the initiating point process at that stage. The process studied is a generalization of a Poisson branching process in which random time delays are permitted in the generation of events. Particular attention is given to the limit in which the number of branching stages is infinite while the average number of added events per event of the previous stage is infinitesimal. In the special case when the branching is instantaneous this limit of continuous branching corresponds to the well-known Yule--Furry process with an initial Poisson population. The Poisson branching point process provides a useful description for many problems in various scientific disciplines, such as the behavior of electron multipliers, neutron chain reactions, and cosmic ray showers

  16. Giant prolactinomas in women

    DEFF Research Database (Denmark)

    Delgrange, Etienne; Raverot, Gerald; Bex, Marie

    2014-01-01

    OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg/l and id......OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg....../l and identified 19 similar cases from the literature; a gender-based comparison of the frequency and age distribution was obtained from a literature review. RESULTS: The initial PubMed search using the term 'giant prolactinomas' identified 125 patients (13 women) responding to the inclusion criteria. The female......:male ratio was 1:9. Another six female patients were found by extending the literature search, while our own series added 15 patients. The median age at diagnosis was 44 years in women compared with 35 years in men (Pwomen (n=34), we...

  17. Branching bisimulation congruence for probabilistic systems

    NARCIS (Netherlands)

    Andova, S.; Georgievska, S.; Trcka, N.

    2012-01-01

    A notion of branching bisimilarity for the alternating model of probabilistic systems, compatible with parallel composition, is defined. For a congruence result, an internal transition immediately followed by a non-trivial probability distribution is not considered inert. A weaker definition of

  18. Observing giant panda habitat and forage abundance from space

    NARCIS (Netherlands)

    Wang, T.

    2009-01-01

    Giant pandas are obligate bamboo grazers. The bamboos favoured by giant
    pandas are typical forest understorey plants. Therefore, the availability and
    abundance of understorey bamboo is a key factor in determining the quantity
    and quality of giant panda food resources. However,

  19. Metastatic giant basal cell carcinoma: a case report.

    Science.gov (United States)

    Bellahammou, Khadija; Lakhdissi, Asmaa; Akkar, Othman; Rais, Fadoua; Naoual, Benhmidou; Elghissassi, Ibrahim; M'rabti, Hind; Errihani, Hassan

    2016-01-01

    Basal cell carcinoma is the most common skin cancer, characterised by a slow growing behavior, metastasis are extremely rare, and it occurs in less than 0, 1% of all cases. Giant basal cell carcinoma is a rare form of basal cell carcinoma, more aggressive and defined as a tumor measuring more than 5 cm at its largest diameter. Only 1% of all basal cell carcinoma develops to a giant basal cell carcinoma, resulting of patient's negligence. Giant basal cell carcinoma is associated with higher potential of metastasis and even death, compared to ordinary basal cell carcinoma. We report a case of giant basal cell carcinoma metastaticin lung occurring in a 79 years old male patient, with a fatal evolution after one course of systemic chemotherapy. Giant basal cell carcinoma is a very rare entity, early detection of these tumors could prevent metastasis occurrence and improve the prognosis of this malignancy.

  20. On the minimum core mass for giant planet formation at wide separations

    International Nuclear Information System (INIS)

    Piso, Ana-Maria A.; Youdin, Andrew N.

    2014-01-01

    In the core accretion hypothesis, giant planets form by gas accretion onto solid protoplanetary cores. The minimum (or critical) core mass to form a gas giant is typically quoted as 10 M ⊕ . The actual value depends on several factors: the location in the protoplanetary disk, atmospheric opacity, and the accretion rate of solids. Motivated by ongoing direct imaging searches for giant planets, this study investigates core mass requirements in the outer disk. To determine the fastest allowed rates of gas accretion, we consider solid cores that no longer accrete planetesimals, as this would heat the gaseous envelope. Our spherical, two-layer atmospheric cooling model includes an inner convective region and an outer radiative zone that matches onto the disk. We determine the minimum core mass for a giant planet to form within a typical disk lifetime of 3 Myr. The minimum core mass declines with disk radius, from ∼8.5 M ⊕ at 5 AU to ∼3.5 M ⊕ at 100 AU, with standard interstellar grain opacities. Lower temperatures in the outer disk explain this trend, while variations in disk density are less influential. At all distances, a lower dust opacity or higher mean molecular weight reduces the critical core mass. Our non-self-gravitating, analytic cooling model reveals that self-gravity significantly affects early atmospheric evolution, starting when the atmosphere is only ∼10% as massive as the core.

  1. Giant Chancroid

    Directory of Open Access Journals (Sweden)

    Bhushan Kumar

    1980-01-01

    Full Text Available A case of giant chancroid following rupture of inguinal bubo and having systemic symptoms is described. Response with sulfa and streptomycin combination was excellent and the lesion healed completely in 3 weeks. Early diagnosis and treatment of chancroid will prevent this debilitating complication.

  2. Giant cystic craniopharyngiomas

    International Nuclear Information System (INIS)

    Young, S.C.; Zimmerman, R.A.; Nowell, M.A.; Bilaniuk, L.T.; Hackney, D.B.; Grossman, R.I.; Goldberg, H.I.

    1987-01-01

    Three cases of giant cystic craniopharyngiomas with large areas of extension beyond the suprasellar area are presented. The magnetic resonance (MR) appearance in one case is described. These giant tumors had large, multilobulated cysts that comprised the bulk of the tumors. In one case, there was an unusual extension of the large tumor cyst into the lateral ventricle. In two cases, the tumors extended to the level of the foramen magnum. On CT, the cyst contents of these two tumors were hyperdense and became hypodense postoperatively. All three tumors harbored calcifications in the form of clumps in the suprasellar region and rim calcifications around the cysts. None of the tumors exhibited contrast enhancement. A literature review of the radiographic features of craniopharyngiomas is discussed. (orig.)

  3. Branches of the landscape

    International Nuclear Information System (INIS)

    Dine, Michael; O'Neil, Deva; Sun Zheng

    2005-01-01

    With respect to the question of supersymmetry breaking, there are three branches of the flux landscape. On one of these, if one requires small cosmological constant, supersymmetry breaking is predominantly at the fundamental scale; on another, the distribution is roughly flat on a logarithmic scale; on the third, the preponderance of vacua are at very low scale. A priori, as we will explain, one can say little about the first branch. The vast majority of these states are not accessible even to crude, approximate analysis. On the other two branches one can hope to do better. But as a result of the lack of access to branch one, and our poor understanding of cosmology, we can at best conjecture about whether string theory predicts low energy supersymmetry or not. If we hypothesize that are on branch two or three, distinctive predictions may be possible. We comment of the status of naturalness within the landscape, deriving, for example, the statistics of the first branch from simple effective field theory reasoning

  4. Collective Cellular Decision-Making Gives Developmental Plasticity: A Model of Signaling in Branching Roots

    Science.gov (United States)

    McCleery, W. Tyler; Mohd-Radzman, Nadiatul A.; Grieneisen, Veronica A.

    Cells within tissues can be regarded as autonomous entities that respond to their local environment and signaling from neighbors. Cell coordination is particularly important in plants, where root architecture must strategically invest resources for growth to optimize nutrient acquisition. Thus, root cells are constantly adapting to environmental cues and neighbor communication in a non-linear manner. To explain such plasticity, we view the root as a swarm of coupled multi-cellular structures, ''metamers'', rather than as a continuum of identical cells. These metamers are individually programmed to achieve a local objective - developing a lateral root primordia, which aids in local foraging of nutrients. Collectively, such individual attempts may be halted, structuring root architecture as an emergent behavior. Each metamer's decision to branch is coordinated locally and globally through hormone signaling, including processes of controlled diffusion, active polar transport, and dynamic feedback. We present a physical model of the signaling mechanism that coordinates branching decisions in response to the environment. This work was funded by the European Commission 7th Framework Program, Project No. 601062, SWARM-ORGAN.

  5. Violet and visual flux problems in red giant stars

    International Nuclear Information System (INIS)

    Faulkner, D.R.

    1989-01-01

    Red giant stars are sites of many astrophysically interesting processes and are important links to late stages of stellar evolution and the chemical history of the galaxy. Much of what is known about stars comes from their spectra, which are formed in the outer layers (atmospheres). Unfortunately the low temperatures in red giant atmospheres promote the formation of many molecules, and the resultant complexity of the spectra has slowed progress in obtaining good models of these objects and leaves many unanswered questions. Several of these problems are investigated. Spectra of red giants provide a natural classification according to composition: M stars are oxygen rich, C stars are carbon rich, while S stars are intermediate. One long standing problem with C stars has been the explanation of the severe lack of energy flux in the violet and near ultraviolet part of their spectrum, generally attributed to an unusual opacity. Results show that one source, SiC, is untenable, while the case for the other, C3, is severely weakened. Synthetic spectra from atmospheric models are compared to spectra of TX Psc, a C star, to show that the contribution of thousands of atomic lines are probably responsible for the violet and ultraviolet flux deficiency. The agreement between the synthetic spectra and observations is very good. K and M type stars also have a violet flux deficiency, though it is less severe than with carbon stars

  6. Modelling of deep gaps created by giant planets in protoplanetary disks

    Science.gov (United States)

    Kanagawa, Kazuhiro D.; Tanaka, Hidekazu; Muto, Takayuki; Tanigawa, Takayuki

    2017-12-01

    A giant planet embedded in a protoplanetary disk creates a gap. This process is important for both theory and observation. Using results of a survey for a wide parameter range with two-dimensional hydrodynamic simulations, we constructed an empirical formula for the gap structure (i.e., the radial surface density distribution), which can reproduce the gap width and depth obtained by two-dimensional simulations. This formula enables us to judge whether an observed gap is likely to be caused by an embedded planet or not. The propagation of waves launched by the planet is closely connected to the gap structure. It makes the gap wider and shallower as compared with the case where an instantaneous wave damping is assumed. The hydrodynamic simulations show that the waves do not decay immediately at the launching point of waves, even when the planet is as massive as Jupiter. Based on the results of hydrodynamic simulations, we also obtained an empirical model of wave propagation and damping in cases of deep gaps. The one-dimensional gap model with our wave propagation model is able to reproduce the gap structures in hydrodynamic simulations well. In the case of a Jupiter-mass planet, we also found that the waves with a smaller wavenumber (e.g., m = 2) are excited and transport the angular momentum to a location far away from the planet. The wave with m = 2 is closely related with a secondary wave launched by a site opposite from the planet.

  7. Inheritance of magma ocean differentiation during lunar origin by giant impact

    Science.gov (United States)

    Warren, Paul H.

    1992-01-01

    The giant impact model for the Moon has won widespread support. It seems to satisfactorily explain the high angular momentum of the Earth-Moon system, and the strong depletion of FeNi in the Moon. This model is usually assumed to entail no significant fractionation of nonvolatile lithophile elements relative to a simple binary mixture of impactor silicates plus protoearth silicates. Although the Earth may have been hot enough before the impact to be completely molten, analysis of the likely number and timing of major impacts in the prehistory of the impactor indicates that a fully molten, undifferentiated condition for that relatively small body is unlikely. Given selective sampling by the giant impact, any significant vertical differentiation within the noncore portion of the impactor would have been largely inherited by the Moon.

  8. On Landau Vlasov simulations of giant resonances

    International Nuclear Information System (INIS)

    Pi, M.; Schuck, P.; Suraud, E.; Gregoire, C.; Remaud, B.; Sebille, F.

    1987-05-01

    We present VUU calculations of giant resonances obtained in energetic heavy ion collisions. Also is considered the case of the giant dipole in 40 Ca and the possibility of studying the effects of rotation on such collective modes

  9. Magma Reservoirs Feeding Giant Radiating Dike Swarms: Insights from Venus

    Science.gov (United States)

    Grosfils, E. B.; Ernst, R. E.

    2003-01-01

    Evidence of lateral dike propagation from shallow magma reservoirs is quite common on the terrestrial planets, and examination of the giant radiating dike swarm population on Venus continues to provide new insight into the way these complex magmatic systems form and evolve. For example, it is becoming clear that many swarms are an amalgamation of multiple discrete phases of dike intrusion. This is not surprising in and of itself, as on Earth there is clear evidence that formation of both magma reservoirs and individual giant radiating dikes often involves periodic magma injection. Similarly, giant radiating swarms on Earth can contain temporally discrete subswarms defined on the basis of geometry, crosscutting relationships, and geochemical or paleomagnetic signatures. The Venus data are important, however, because erosion, sedimentation, plate tectonic disruption, etc. on Earth have destroyed most giant radiating dike swarm's source regions, and thus we remain uncertain about the geometry and temporal evolution of the magma sources from which the dikes are fed. Are the reservoirs which feed the dikes large or small, and what are the implications for how the dikes themselves form? Does each subswarm originate from a single, periodically reactivated reservoir, or do subswarms emerge from multiple discrete geographic foci? If the latter, are these discrete foci located at the margins of a single large magma body, or do multiple smaller reservoirs define the character of the magmatic center as a whole? Similarly, does the locus of magmatic activity change with time, or are all the foci active simultaneously? Careful study of giant radiating dike swarms on Venus is yielding the data necessary to address these questions and constrain future modeling efforts. Here, using giant radiating dike swarms from the Nemesis Tessera (V14) and Carson (V43) quadrangles as examples, we illustrate some of the dike swarm focal region diversity observed on Venus and briefly explore some

  10. Globally intertwined evolutionary history of giant barrel sponges

    Science.gov (United States)

    Swierts, Thomas; Peijnenburg, Katja T. C. A.; de Leeuw, Christiaan A.; Breeuwer, Johannes A. J.; Cleary, Daniel F. R.; de Voogd, Nicole J.

    2017-09-01

    Three species of giant barrel sponge are currently recognized in two distinct geographic regions, the tropical Atlantic and the Indo-Pacific. In this study, we used molecular techniques to study populations of giant barrel sponges across the globe and assessed whether the genetic structure of these populations agreed with current taxonomic consensus or, in contrast, whether there was evidence of cryptic species. Using molecular data, we assessed whether giant barrel sponges in each oceanic realm represented separate monophyletic lineages. Giant barrel sponges from 17 coral reef systems across the globe were sequenced for mitochondrial (partial CO1 and ATP6 genes) and nuclear (ATPsβ intron) DNA markers. In total, we obtained 395 combined sequences of the mitochondrial CO1 and ATP6 markers, which resulted in 17 different haplotypes. We compared a phylogenetic tree constructed from 285 alleles of the nuclear intron ATPsβ to the 17 mitochondrial haplotypes. Congruent patterns between mitochondrial and nuclear gene trees of giant barrel sponges provided evidence for the existence of multiple reproductively isolated species, particularly where they occurred in sympatry. The species complexes in the tropical Atlantic and the Indo-Pacific, however, do not form separate monophyletic lineages. This rules out the scenario that one species of giant barrel sponge developed into separate species complexes following geographic separation and instead suggests that multiple species of giant barrel sponges already existed prior to the physical separation of the Indo-Pacific and tropical Atlantic.

  11. Photon scattering by the giant dipole resonance

    International Nuclear Information System (INIS)

    Bowles, T.J.; Holt, R.J.; Jackson, H.E.; McKeown, R.D.; Specht, J.R.

    1979-01-01

    Although many features of the giant dipole resonance are well known, the coupling between the basic dipole oscillation and other nuclear collective degrees of freedom such as surface vibrations and rotations is poorly understood. This aspect was investigated by elastic and inelastic bremsstrahlung scattering of tagged photons over the energy range 15 to 22 MeV. Target nuclei were 60 Ni, 52 Cr, 56 Fe, 92 Mo, and 96 Mo. Scattering and absorption cross sections are tabulated, along with parameters obtained from a two-Lorentzian analysis of the scattering cross sections; measured spectra are shown. It was necessary to remove Thomson scattering from the experimental results. It was found that coupling to surface vibrations in the giant dipole resonance is much weaker than the dynamic collective model suggests. The elastic scattering cross section for all targets but 60 Ni showed structure that is not evident in the absorption cross section measurement. 12 figures, 2 tables

  12. Dissecting Genetic Network of Fruit Branch Traits in Upland Cotton by Association Mapping Using SSR Markers.

    Directory of Open Access Journals (Sweden)

    Yongjun Mei

    Full Text Available Genetic architecture of branch traits has large influences on the morphological structure, photosynthetic capacity, planting density, and yield of Upland cotton (Gossypium hirsutum L.. This research aims to reveal the genetic effects of six branch traits, including bottom fruit branch node number (BFBNN, bottom fruit branch length (BFBL, middle fruit branch node number (MFBNN, middle fruit branch length (MFBL, upper fruit branch node number (UFBNN, and upper fruit branch length (UFBL. Association mapping was conducted for these traits of 39 lines and their 178 F1 hybrids in three environments. There were 20 highly significant Quantitative Trait SSRs (QTSs detected by mixed linear model approach analyzing a full genetic model with genetic effects of additive, dominance, epistasis and their environment interaction. The phenotypic variation explained by genetic effects ranged from 32.64 ~ 91.61%, suggesting these branch traits largely influenced by genetic factors.

  13. Geometric branching model of high-energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Chen, W.

    1988-01-01

    A phenomenological model is proposed to describe collisions between hadrons at high energies. In the context of the eikonal formalism, the model consists of two components: soft and hard. The former only involves the production of particles with small transverse momenta; the latter is characterized by jet production. Geometrical scaling is taken as an essential input to describe the geometrical properties of hadrons as extended objects on the one hand, and on the other to define the soft component in both regions below and above the jet threshold. A stochastical Furry branching process is adopted as the mechanism of soft particle production, while the jet fragmentation and gluon initial-state bremsstrahlung are for the production of hadrons in hard collisions. Impact parameter and virtuality are smeared to describe the statistical averaging effects of hadron-hadron collisions. Many otherwise separated issues, ranging from elastic scattering to parton decay function, are connected together in the framework of this model. The descriptions of many prominent features of hadronic collisions are in good agreement with the observed experimental data at all available energies. Multiplicity distributions at all energies are discussed as a major issue in this paper. KNO scaling is achieved for energies within ISR range. The emergence of jets is found to be responsible not only for the violation of both geometrical scaling and KNO scaling, but also for the continuous broadening of the multiplicity distribution with ever increasing energy. It is also shown that the geometrical size of a hadron reaches an asymptote in the energy region of CERN-SppS. A Monte Carlo version of the model for soft production is constructed

  14. Evidence for deformation effect on the giant monopole resonance

    International Nuclear Information System (INIS)

    Buenerd, M.; Lebrun, D.; Martin, P.; de Saintignon, P.; Perrin, C.

    1980-01-01

    The giant monopole resonance in the region of deformed nuclei has been investigated by inelastic scattering of 108.5 MeV 3 He at very small scattering angles. Evidence is reported for coupling between the giant monopole and giant quadrupole vibrations, based both on energy shift and transition strength

  15. Fatal canine distemper virus infection of giant pandas in China.

    Science.gov (United States)

    Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu

    2016-06-16

    We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species.

  16. Modeling of Red Giant and AGB Stars Atmospheres: Constraints from VLTI and HST Observations

    Science.gov (United States)

    Rau, Gioia

    2018-04-01

    The chemical enrichment of the Universe is considerably affected by the contributions of low-to-intermediate mass stars through the mass-loss provided via their stellar winds. First, we will present our investigation in the near-IR with VLTI/GRAVITY (Wittkowski, Rau, et al., in prep.). Our aim was to verify at different epochs the model-predicted variability of the visibility spectra. We use CODEX model atmospheres, as well as best-fit 3D radiation hydrodynamic simulations (e.g. Freytag et al., 2017), for comparison with the observations. Our preliminary results on R Peg suggest a decreasing contribution by extended CO layers as the star transitions from maximum to minimum phase. Second, we will show a preliminary modeling of UV spectra obtained with HST/GHRS that contain chromospheric emission lines of, e.g., Mg II and Fe II. Via Sobolev with Exact Integration (SEI) modeling, we determined for the two M-giant stars γ Cru and µ Gem the characteristics of their winds (turbulence, acceleration, and opacity), and their average global mass-loss rates (Rau, Carpenter et al., in prep.). Finally, we briefly discuss the impact of instruments on board JWST in progressing this investigation.

  17. Module for the organization of a branch of the universal branch driver in the CAMAC standard

    International Nuclear Information System (INIS)

    Nguen Fuk; Smirnov, V.A.; Khmelevski, E.

    1976-01-01

    A module is elaborated for the organization of a branch of the universal branch driver in the CAMAC standard for the conjugation of a control crate trunk with a branch trunk. A block diagram of the module is described; its principal specifications are given. The universal branch driver system may accomodate up to 10 branch organization modules with one control source module

  18. Final Masses of Giant Planets II: Jupiter Formation in a Gas-Depleted Disk

    OpenAIRE

    Tanigawa, Takayuki; Tanaka, Hidekazu

    2015-01-01

    Firstly, we study the final masses of giant planets growing in protoplanetary disks through capture of disk gas, by employing an empirical formula for the gas capture rate and a shallow disk gap model, which are both based on hydrodynamical simulations. The shallow disk gaps cannot terminate growth of giant planets. For planets less massive than 10 Jupiter masses, their growth rates are mainly controlled by the gas supply through the global disk accretion, rather than their gaps. The insuffic...

  19. Giants among larges: how gigantism impacts giant virus entry into amoebae.

    Science.gov (United States)

    Rodrigues, Rodrigo Araújo Lima; Abrahão, Jônatas Santos; Drumond, Betânia Paiva; Kroon, Erna Geessien

    2016-06-01

    The proposed order Megavirales comprises the nucleocytoplasmic large DNA viruses (NCLDV), infecting a wide range of hosts. Over time, they co-evolved with different host cells, developing various strategies to penetrate them. Mimiviruses and other giant viruses enter cells through phagocytosis, while Marseillevirus and other large viruses explore endocytosis and macropinocytosis. These differing strategies might reflect the evolution of those viruses. Various scenarios have been proposed for the origin and evolution of these viruses, presenting one of the most enigmatic issues to surround these microorganisms. In this context, we believe that giant viruses evolved independently by massive gene/size gain, exploring the phagocytic pathway of entry into amoebas. In response to gigantism, hosts developed mechanisms to evade these parasites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Collisional damping of giant monopole and quadrupole resonances

    International Nuclear Information System (INIS)

    Yildirim, S.; Gokalp, A.; Yilmaz, O.; Ayik, S.

    2001-01-01

    Collisional damping widths of giant monopole and quadrupole excitations for 120 Sn and 208 Pb at zero and finite temperatures are calculated within Thomas-Fermi approximation by employing the microscopic in-medium cross-sections of Li and Machleidt and the phenomenological Skyrme and Gogny forces, and are compared with each other. The results for the collisional widths of giant monopole and quadrupole vibrations at zero temperature as a function of the mass number show that the collisional damping of giant monopole vibrations accounts for about 30 - 40% of the observed widths at zero temperature, while for giant quadrupole vibrations it accounts for only 20 - 30% of the observed widths at zero temperature. (orig.)

  1. Giant cell phlebitis: a potentially lethal clinical entity.

    Science.gov (United States)

    Kunieda, Takeshige; Murayama, Masanori; Ikeda, Tsuneko; Yamakita, Noriyoshi

    2012-08-01

    An 83-year-old woman presented to us with a 4-week history of general malaise, subjective fever and lower abdominal pain. Despite the intravenous infusion of antibiotics, her blood results and physical condition worsened, resulting in her sudden death. Autopsy study revealed that the medium-sized veins of the mesentery were infiltrated by eosinophil granulocytes, lymphocytes, macrophages and multinucleated giant cells; however, the arteries were not involved. Microscopically, venous giant cell infiltration was observed in the gastrointestinal tract, bladder, retroperitoneal tissues and myocardium. The final diagnosis was giant cell phlebitis, a rare disease of unknown aetiology. This case demonstrates for the first time that giant cell phlebitis involving extra-abdominal organs, including hearts, can cause serious morbidity.

  2. Finite-size scaling of survival probability in branching processes.

    Science.gov (United States)

    Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Álvaro

    2015-04-01

    Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G(y)=2ye(y)/(e(y)-1), with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.

  3. Annealed star-branched polyelectrolytes in solution

    NARCIS (Netherlands)

    Klein Wolterink, J.; Male, van J.; Cohen Stuart, M.A.; Koopal, L.K.; Zhulina, E.B.; Borisov, O.V.

    2002-01-01

    Equilibrium conformations of annealed star-branched polyelectrolytes (polyacids) are calculated with a numerical self-consistent-field (SCF) model. From the calculations we obtain also the size and charge of annealed polyelectrolyte stars as a function of the number of arms, pH, and the ionic

  4. A branch-and-price algorithm for solving the cutting strips problem

    NARCIS (Netherlands)

    Chen, Zhiping; Hurkens, C.A.J.; Jong, de J.L.

    1997-01-01

    After giving a suitable model for the cutting strips problem, we present a branch-and-price algorithm for it by combining the column generation technique and the branch-and-bound method with LP relaxations. Some theoretical issues and implementation details about the algorithm are discussed,

  5. Distribution of the largest aftershocks in branching models of triggered seismicity: Theory of the universal Baath law

    International Nuclear Information System (INIS)

    Saichev, A.; Sornette, D.

    2005-01-01

    Using the epidemic-type aftershock sequence (ETAS) branching model of triggered seismicity, we apply the formalism of generating probability functions to calculate exactly the average difference between the magnitude of a mainshock and the magnitude of its largest aftershock over all generations. This average magnitude difference is found empirically to be independent of the mainshock magnitude and equal to 1.2, a universal behavior known as Baath's law. Our theory shows that Baath's law holds only sufficiently close to the critical regime of the ETAS branching process. Allowing for error bars ±0.1 for Baath's constant value around 1.2, our exact analytical treatment of Baath's law provides new constraints on the productivity exponent α and the branching ratio n: 0.9 < or approx. α≤1 and 0.8 < or approx. n≤1. We propose a method for measuring α based on the predicted renormalization of the Gutenberg-Richter distribution of the magnitudes of the largest aftershock. We also introduce the 'second Baath law for foreshocks': the probability that a main earthquake turns out to be the foreshock does not depend on its magnitude ρ

  6. Multispin giant magnons

    International Nuclear Information System (INIS)

    Bobev, N. P.; Rashkov, R. C.

    2006-01-01

    We investigate giant magnons from classical rotating strings in two different backgrounds. First we generalize the solution of Hofman and Maldacena and investigate new magnon excitations of a spin chain which are dual to a string on RxS 5 with two nonvanishing angular momenta. Allowing string dynamics along the third angle in the five sphere, we find a dispersion relation that reproduces the Hofman and Maldacena one and the one found by Dorey for the two spin case. In the second part of the paper we generalize the two 'spin' giant magnon to the case of β-deformed AdS 5 xS 5 background. We find agreement between the dispersion relation of the rotating string and the proposed dispersion relation of the magnon bound state on the spin chain

  7. Risk Assessment of Canine Distemper in the Distribution Area of Giant Panda in Sichuan, Shaanxi and Gansu Provinces, China

    Directory of Open Access Journals (Sweden)

    Weigeng Shao

    2017-11-01

    Full Text Available Giant panda is the world-class precious endangered species, facing the canine distemper and other important infectious diseases on its wild and captive population of a serious threat. In this study, we used MaxEnt model and combined with ArcGIS analysis to predict the potential risk of canine distemper to giant panda habitat in Sichuan, Gansu and Shaanxi Provinces, China. The results showed that 35.05% and 19.47% of the distribution areas of the giant pandas were in the high risk and medium risk of canine distemper, respectively. The canine distemper pose a great risk to the healthy survival of giant pandas in China. In future, epidemic prevention, vaccine development and application of wild animals should be enhanced so as to effectively protect the giant panda.

  8. Giant Congenital Melanocytic Naevi: review of literature

    Directory of Open Access Journals (Sweden)

    A. Marchesi

    2012-04-01

    Full Text Available giant congenital pigmented naevi is a great reconstructive challenge for the pediatric and plastic surgeons. due to the increased risk of malignant transformation in such lesions, many procedures have been used to remove giant congenital naevi like dermoabrasion, laser treatment or surgical excision combined with reconstruction through skin expansion or skin grafting; among these, only a complete excision can offer an efficacious treatment. in our centre we use the “tissue expansion” technique in order to achieve a sufficient quantity of normal skin to perform a both staged and radical excision of these giant lesions.

  9. Giant magnetic anisotropy of heavy p-elements on high-symmetry substrates: a new paradigm for supported nanostructures

    Science.gov (United States)

    Pang, Rui; Deng, Bei; Shi, Xingqiang; Zheng, Xiaohong

    2018-04-01

    Nanostructures with giant magnetic anisotropy energies (MAEs) are desired in designing miniaturized magnetic storage and quantum computing devices. Previous works focused mainly on materials or elements with d electrons. Here, by taking Bi–X(X = In, Tl, Ge, Sn, Pb) adsorbed on nitrogenized divacancy of graphene and Bi atoms adsorbed on MgO(100) as examples, through ab initio and model calculations, we propose that special p-element dimers and single-adatoms on symmetry-matched substrates possess giant atomic MAEs of 72–200 meV, and has room temperature structural stability. The huge MAEs originate from the p-orbital degeneracy around the Fermi level in a symmetry-matched surface ligand field and the lifting of this degeneracy when spin–orbit interaction (SOI) is taken into account. Especially, we developed a simplified quantum mechanical model for the design principles of giant MAEs of supported magnetic adatoms and dimers. Thus, our discoveries and mechanisms provide a new paradigm to design giant atomic MAE of p electrons in supported nanostructures.

  10. Electroexcitation of giant multipole resonances in 208Pb

    International Nuclear Information System (INIS)

    Sasao, M.; Torizuka, Y.

    1977-01-01

    Electroexcitation of the nuclear continuum for 208 Pb at excitation energies up to 100 MeV has been measured at momentum transfers in the range from 0.45 to 1.2 fm -1 . Unfolding of the radiation tail was performed using a tail function which takes into account the multiple-photon emission effect. The spectra at these momentum transfers deviate significantly from the prediction of the Fermi-gas model but are consistent with the sum of the multipole strengths of the random-phase approximation; the excess cross section on the low excitation energy side indicates the excitation of multipole resonances. A series of 208 Pb spectra at low momentum transfers was expanded into E1, E2 (E0), E3, and higher multipole components using the q dependence of the Tassie model for isoscalar modes and the Goldhaber-Teller or Steinwedel-Jensen model for isovector modes. The giant dipole resonance thus obtained is consistent with that from photoreactions. Isoscalar and isovector giant quadrupole resonances are seen, respectively, at 11 and 22.5 MeV and an octupole resonance at 16 MeV. A monopole resonance is suggested at 13.5 MeV. The reduced 2 > 2 , B (E1), B (E2), and B (E3) consume most of the corresponding energy weighted sum rule if the q dependences of the Tassie and Goldhaber-Teller models are assumed. The results with these models are consistent with the random-phase approximation

  11. Fatal canine distemper virus infection of giant pandas in China

    Science.gov (United States)

    Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species. PMID:27310722

  12. A New Formation Mechanism for the Hottest Horizontal-Branch Stars

    Science.gov (United States)

    Sweigart, Allen V.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Hot subluminous stars lying up to 0.7 mag below the extreme horizontal branch (EHB) are found in the ultraviolet color-magnitude diagrams (CMDs) of both omega Cen and NGC 2808. In order to investigate the origin of these subluminous stars, we have constructed a detailed set of evolutionary sequences that follow the evolution of low-mass stars continuously from the zero-age main sequence through the helium-core flash to the HB for a wide range in the mass loss along the red-giant branch (RGB). Stars with the largest mass loss evolve off the RGB to high effective temperatures before igniting helium in their cores. Our results indicate that the subluminous EHB stars, as well as the high temperature gap along the EHB of NGC 2808, can be explained if these stars undergo a late helium-core flash while descending the white-dwarf cooling curve. Under these conditions the convection zone produced by the main helium flash will penetrate into the stellar envelope, thereby mixing most, if not all, of the envelope hydrogen into the hot helium-burning interior, where it is rapidly consumed. This phenomenon is analogous to the 'born-again' scenario for producing hydrogen-deficient stars following a very late helium-shell flash. This 'flash mixing' of the envelope during a late helium-core flash greatly enhances the envelope helium and carbon abundances and, as a result, leads to a discontinuous increase in the HB effective temperature. We argue that the hot HB gap observed in NGC 2808 is associated with this theoretically predicted dichotomy in the RB properties. Using new helium- and carbon-rich stellar atmospheres, we show that the changes in the envelope abundances due to flash mixing will suppress the ultraviolet flux in the spectra of hot EHB stars. We suggest that such changes in the emergent spectral energy distribution are primarily responsible for explaining the hot subluminous EHB stars in omega Cen and NGC 2808. Moreover, we demonstrate that models without flash mixing

  13. The interiors of the giant planets - 1983

    International Nuclear Information System (INIS)

    Smoluchowski, R.

    1983-01-01

    The last few years brought progress in understanding the interiors of the giant planets especially of the two larger ones which have been visited by Pioneer and Voyager spacecraft. An analysis of the formation of the giant planets also helped to clarify certain important common features. The presently available model of Jupiter is still based on certain somewhat bothersome approximations but it appears to satisfy the main observational constraints. Saturn's interior is much better understood than it was previously although the quantitative aspects of the role of the miscibility gap in the hydrogen-helium system have not yet been entirely resolved. Much attention has been directed at the interiors of Uranus and Neptune and the outstanding question appears to be the location and the amount of ices and methane present in their outer layers. Both the two- and the three-layer models are moderately successful. Serious difficulties arise from the considerable uncertainties concerning the rotational periods of both planets. Also the estimates of the internal heat fluxes and of the magnetic fields of both planets are not sufficiently certain. It is hoped that the forthcoming flyby of these two planets by a Voyager spacecraft will provide important new data for a future study of their interiors. (Auth.)

  14. The Geometry Optimisation of a Triple Branch Pipe Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Dorian Nedelcu

    2008-01-01

    Full Text Available The paper presents the geometrical optimization of a triple branch pipesubmitted to an internal pressure. The goal of the optimization was todetermine the optimum thickness of piping and branch pipe ribs, in thecondition of reaching admissible values of the stress and displacement.The resistance calculus was realized with Cosmos DesignStar softwareand the geometry was modeled with Microstation Modeler software.

  15. Giant urinary bladder calculus: Case report | Otieno | East African ...

    African Journals Online (AJOL)

    A vertical calculus weighing more than 100 g is categorised as a giant urinary bladder stone. Giant urinary bladder stones are very rare and very few cases have been reported in English literature and only one case from Africa. This is a case report of a patient with a giant urinary bladder calculus presenting as a rectal ...

  16. Environmental control of branching in petunia.

    Science.gov (United States)

    Drummond, Revel S M; Janssen, Bart J; Luo, Zhiwei; Oplaat, Carla; Ledger, Susan E; Wohlers, Mark W; Snowden, Kimberley C

    2015-06-01

    Plants alter their development in response to changes in their environment. This responsiveness has proven to be a successful evolutionary trait. Here, we tested the hypothesis that two key environmental factors, light and nutrition, are integrated within the axillary bud to promote or suppress the growth of the bud into a branch. Using petunia (Petunia hybrida) as a model for vegetative branching, we manipulated both light quality (as crowding and the red-to-far-red light ratio) and phosphate availability, such that the axillary bud at node 7 varied from deeply dormant to rapidly growing. In conjunction with the phenotypic characterization, we also monitored the state of the strigolactone (SL) pathway by quantifying SL-related gene transcripts. Mutants in the SL pathway inhibit but do not abolish the branching response to these environmental signals, and neither signal is dominant over the other, suggesting that the regulation of branching in response to the environment is complex. We have isolated three new putatively SL-related TCP (for Teosinte branched1, Cycloidia, and Proliferating cell factor) genes from petunia, and have identified that these TCP-type transcription factors may have roles in the SL signaling pathway both before and after the reception of the SL signal at the bud. We show that the abundance of the receptor transcript is regulated by light quality, such that axillary buds growing in added far-red light have greatly increased receptor transcript abundance. This suggests a mechanism whereby the impact of any SL signal reaching an axillary bud is modulated by the responsiveness of these cells to the signal. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. Spiral-arm instability: giant clump formation via fragmentation of a galactic spiral arm

    Science.gov (United States)

    Inoue, Shigeki; Yoshida, Naoki

    2018-03-01

    Fragmentation of a spiral arm is thought to drive the formation of giant clumps in galaxies. Using linear perturbation analysis for self-gravitating spiral arms, we derive an instability parameter and define the conditions for clump formation. We extend our analysis to multicomponent systems that consist of gas and stars in an external potential. We then perform numerical simulations of isolated disc galaxies with isothermal gas, and compare the results with the prediction of our analytic model. Our model describes accurately the evolution of the spiral arms in our simulations, even when spiral arms dynamically interact with one another. We show that most of the giant clumps formed in the simulated disc galaxies satisfy the instability condition. The clump masses predicted by our model are in agreement with the simulation results, but the growth time-scale of unstable perturbations is overestimated by a factor of a few. We also apply our instability analysis to derive scaling relations of clump properties. The expected scaling relation between the clump size, velocity dispersion, and circular velocity is slightly different from that given by the Toomre instability analyses, but neither is inconsistent with currently available observations. We argue that the spiral-arm instability is a viable formation mechanism of giant clumps in gas-rich disc galaxies.

  18. A Model of Silicate Grain Nucleation and Growth in Circumstellar Outflows

    Science.gov (United States)

    Paquette, John A.; Ferguson, Frank T.; Nuth, Joseph A., III

    2011-01-01

    Based on its abundance, high bond energy, and recent measurements of its vapor pressure SiO is a natural candidate for dust nucleation in circumstellar outflows around asymptotic giant branch stars. In this paper, we describe a model of the nucleation and growth of silicate dust in such outflows. The sensitivity of the model to varying choices of poorly constrained chemical parameters is explored, and the merits of using scaled rather than classical nucleation theory are briefly considered, An elaboration of the model that includes magnesium and iron as growth species is then presented and discussed. The composition of the bulk of the grains derived from the model is consistent with olivines and pyroxenes, but somewhat metal-rich grains and very small, nearly pure SiO grains are also produced,

  19. An investigation of cognitive 'branching' processes in major depression

    Directory of Open Access Journals (Sweden)

    Williams Steven CR

    2009-11-01

    Full Text Available Abstract Background Patients with depression demonstrate cognitive impairment on a wide range of cognitive tasks, particularly putative tasks of frontal lobe function. Recent models of frontal lobe function have argued that the frontal pole region is involved in cognitive branching, a process requiring holding in mind one goal while performing sub-goal processes. Evidence for this model comes from functional neuroimaging and frontal-pole lesion patients. We have utilised these new concepts to investigate the possibility that patients with depression are impaired at cognitive 'branching'. Methods 11 non-medicated patients with major depression were compared to 11 matched controls in a behavioural study on a task of cognitive 'branching'. In the version employed here, we recorded participant's performance as they learnt to perform the task. This involved participants completing a control condition, followed by a working memory condition, a dual-task condition and finally the branching condition, which integrates processes in the working memory and dual-task conditions. We also measured participants on a number of other cognitive tasks as well as mood-state before and after the branching experiment. Results Patients took longer to learn the first condition, but performed comparably to controls after six runs of the task. Overall, reaction times decreased with repeated exposure on the task conditions in controls, with this effect attenuated in patients. Importantly, no differences were found between patients and controls on the branching condition. There was, however, a significant change in mood-state with patients increasing in positive affect and decreasing in negative affect after the experiment. Conclusion We found no clear evidence of a fundamental impairment in anterior prefrontal 'branching processes' in patients with depression. Rather our data argue for a contextual learning impairment underlying cognitive dysfunction in this disorder. Our

  20. An investigation of cognitive 'branching' processes in major depression.

    Science.gov (United States)

    Walsh, Nicholas D; Seal, Marc L; Williams, Steven C R; Mehta, Mitul A

    2009-11-10

    Patients with depression demonstrate cognitive impairment on a wide range of cognitive tasks, particularly putative tasks of frontal lobe function. Recent models of frontal lobe function have argued that the frontal pole region is involved in cognitive branching, a process requiring holding in mind one goal while performing sub-goal processes. Evidence for this model comes from functional neuroimaging and frontal-pole lesion patients. We have utilised these new concepts to investigate the possibility that patients with depression are impaired at cognitive 'branching'. 11 non-medicated patients with major depression were compared to 11 matched controls in a behavioural study on a task of cognitive 'branching'. In the version employed here, we recorded participant's performance as they learnt to perform the task. This involved participants completing a control condition, followed by a working memory condition, a dual-task condition and finally the branching condition, which integrates processes in the working memory and dual-task conditions. We also measured participants on a number of other cognitive tasks as well as mood-state before and after the branching experiment. Patients took longer to learn the first condition, but performed comparably to controls after six runs of the task. Overall, reaction times decreased with repeated exposure on the task conditions in controls, with this effect attenuated in patients. Importantly, no differences were found between patients and controls on the branching condition. There was, however, a significant change in mood-state with patients increasing in positive affect and decreasing in negative affect after the experiment. We found no clear evidence of a fundamental impairment in anterior prefrontal 'branching processes' in patients with depression. Rather our data argue for a contextual learning impairment underlying cognitive dysfunction in this disorder. Our data suggest that MDD patients are able to perform high

  1. Giant cell angiofibroma or localized periorbital lymphedema?

    Science.gov (United States)

    Lynch, Michael C; Chung, Catherine G; Specht, Charles S; Wilkinson, Michael; Clarke, Loren E

    2013-12-01

    Giant cell angiofibroma represents a rare soft tissue neoplasm with a predilection for the orbit. We recently encountered a mass removed from the lower eyelid of a 56-year-old female that histopathologically resembled giant cell angiofibroma. The process consisted of haphazardly arranged CD34-positive spindled and multinucleated cells within an edematous, densely vascular stroma. However, the patient had recently undergone laryngectomy and radiotherapy for a laryngeal squamous cell carcinoma. A similar mass had arisen on the contralateral eyelid, and both had developed several months post-therapy. Lymphedema of the orbit can present as tumor-like nodules and in some cases may share histopathologic features purported to be characteristic of giant cell angiofibroma. A relationship between giant cell angiofibroma and lymphedema has not been established, but our case suggests there may be one. The potential overlap of these two conditions should be recognized, as should other entities that may enter the differential diagnosis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. [Giant paraovarian cyst in childhood - Case report].

    Science.gov (United States)

    Torres, Janina P; Íñiguez, Rodrigo D

    2015-01-01

    Paraovarian cysts are very uncommon in children To present a case of giant paraovarian cyst case in a child and its management using a modified laparoscopic-assisted technique A 13-year-old patient with a 15 day-history of intermittent abdominal pain, located in the left hemiabdomen and associated with progressive increase in abdominal volume. Diagnostic imaging was inconclusive, describing a giant cystic formation that filled up the abdomen, but without specifying its origin. Laboratory tests and tumor markers were within normal range. Video-assisted transumbilical cystectomy, a modified laparoscopic procedure with diagnostic and therapeutic intent, was performed with a successful outcome. The histological study reported giant paraovarian cyst. Cytology results were negative for tumor cells. The patient remained asymptomatic during the postoperative follow-up. The video-assisted transumbilical cystectomy is a safe procedure and an excellent diagnostic and therapeutic alternative for the treatment of giant paraovarian cysts. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  3. [Tissular expansion in giant congenital nevi treatment].

    Science.gov (United States)

    Nguyen Van Nuoi, V; Francois-Fiquet, C; Diner, P; Sergent, B; Zazurca, F; Franchi, G; Buis, J; Vazquez, M-P; Picard, A; Kadlub, N

    2014-08-01

    Surgical management of giant melanotic naevi remains a surgical challenge. Tissue expansion provides tissue of the same quality for the repair of defects. The aim of this study is to review tissular expansion for giant melanotic naevi. We conducted a retrospective study from 2000 to 2012. All children patients who underwent a tissular expansion for giant congenital naevi had been included. Epidemiological data, surgical procedure, complication rate and results had been analysed. Thirty-tree patients had been included; they underwent 61 procedures with 79 tissular-expansion prosthesis. Previous surgery, mostly simple excision had been performed before tissular expansion. Complete naevus excision had been performed in 63.3% of the cases. Complications occurred in 45% of the cases, however in 50% of them were minor. Iterative surgery increased the complication rate. Tissular expansion is a valuable option for giant congenital naevus. However, complication rate remained high, especially when iterative surgery is needed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Global and nonglobal parameters of horizontal-branch morphology of globular clusters

    International Nuclear Information System (INIS)

    Milone, A. P.; Marino, A. F.; Dotter, A.; Norris, J. E.; Jerjen, H.; Asplund, M.

    2014-01-01

    The horizontal-branch (HB) morphology of globular clusters (GCs) is mainly determined by metallicity. However, the fact that GCs with almost the same metallicity exhibit different HB morphologies demonstrates that at least one more parameter is needed to explain the HB morphology. It has been suggested that one of these should be a global parameter that varies from GC to GC and the other a nonglobal parameter that varies within the GC. In this study we provide empirical evidence corroborating this idea. We used the photometric catalogs obtained with the Advanced Camera for Surveys of the Hubble Space Telescope and analyze the color-magnitude diagrams of 74 GCs. The HB morphology of our sample of GCs has been investigated on the basis of the two new parameters L1 and L2 that measure the distance between the red giant branch and the coolest part of the HB and the color extension of the HB, respectively. We find that L1 correlates with both metallicity and age, whereas L2 most strongly correlates with the mass of the hosting GC. The range of helium abundance among the stars in a GC, characterized by ΔY and associated with the presence of multiple stellar populations, has been estimated in a few GCs to date. In these GCs we find a close relationship among ΔY, GC mass, and L2. We conclude that age and metallicity are the main global parameters, while the range of helium abundance within a GC is the main nonglobal parameter defining the HB morphology of Galactic GCs.

  5. A spherical electron cloud hopping model for studying product branching ratios of dissociative recombination.

    Science.gov (United States)

    Yu, Hua-Gen

    2008-05-21

    A spherical electron cloud hopping (SECH) model is proposed to study the product branching ratios of dissociative recombination (DR) of polyatomic systems. In this model, the fast electron-captured process is treated as an instantaneous hopping of a cloud of uniform spherical fractional point charges onto a target M+q ion (or molecule). The sum of point charges (-1) simulates the incident electron. The sphere radius is determined by a critical distance (Rc eM) between the incoming electron (e-) and the target, at which the potential energy of the e(-)-M+q system is equal to that of the electron-captured molecule M+q(-1) in a symmetry-allowed electronic state with the same structure as M(+q). During the hopping procedure, the excess energies of electron association reaction are dispersed in the kinetic energies of M+q(-1) atoms to conserve total energy. The kinetic energies are adjusted by linearly adding atomic momenta in the direction of driving forces induced by the scattering electron. The nuclear dynamics of the resultant M+q(-1) molecule are studied by using a direct ab initio dynamics method on the adiabatic potential energy surface of M+q(-1), or together with extra adiabatic surface(s) of M+q(-1). For the latter case, the "fewest switches" surface hopping algorithm of Tully was adapted to deal with the nonadiabaticity in trajectory propagations. The SECH model has been applied to study the DR of both CH+ and H3O+(H2O)2. The theoretical results are consistent with the experiment. It was found that water molecules play an important role in determining the product branching ratios of the molecular cluster ion.

  6. Branch Development of Five-Year-Old Betula alnoides Plantations in Response to Planting Density

    Directory of Open Access Journals (Sweden)

    Chun-Sheng Wang

    2018-01-01

    Full Text Available Branch development in the lower part of stem is critical to both early stem growth and wood quality of the most valuable section of tree, and its regulation through planting density has always been greatly concerned. Here the effect of planting density on branch development was examined in a five-year-old plantation of Betula alnoides with six planting densities (625, 833, 1111, 1250, 1667, and 2500 stems per hectare (sph in Guangdong Province, South China. Branch quantity (number, proportion, and density, morphology (diameter, length, and angle, position (height and orientation, and branch status (dead or alive were investigated for 54 dominant or co-dominant trees under six treatments of planting density after the growth of each tree was measured. Factors influencing branch development were also explored by mixed modelling. The results showed that the mean tree heights of 1250 and 1667 sph treatments were higher than those of other planting density treatments. The quantity of live branches decreased with increasing planting density. However, planting density had no significant effect on the number of all branches, and there existed no remarkable difference in branch number and proportion among four orientations. As for branch morphology, only the largest branch diameter had a significantly negative correlation with planting density. In addition, high planting density significantly increased the height of the largest branch within the crown. Mixed effects models indicated that branch diameter, length, and angle were closely correlated with each other, and they were all in positively significant correlation to the branch height at the stem section below six meters. It was concluded that properly increasing planting density will promote natural pruning, improve early branch control, and be beneficial for wood production from the most valuable section of the stem.

  7. Ion association at discretely-charged dielectric interfaces: Giant charge inversion [Dielectric response controlled ion association at physically heterogeneous surfaces: Giant charge reversal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi -Yong [Chongqing Univ. of Technology, Chongqing (China); Univ. of California, Riverside, CA (United States); Wu, Jianzhong [Univ. of California, Riverside, CA (United States)

    2017-07-11

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Lastly, our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.

  8. [Croatian Medical Association--Branch Zagreb].

    Science.gov (United States)

    Kaić, Zvonimir; Sain, Snjezana; Gulić, Mirjana; Mahovlić, Vjekoslav; Krznarić, Zeljko

    2014-01-01

    The available literature shows us that "Druztvo ljeciteljah u Zagrebus (the Society of Healers in Zagreb) was founded as far back as the year 1845 by a total of thirteen members. This data allows us to follow the role of doctors and health workers in Zagreb through their everyday profession, research, organizational and social work as well as management through a period of over one hundred to seventy years. The Branch Zagreb was active before the official establishment of subsidiaries of CMA which is evident from the minutes of the regular annual assembly of the Croatian Medical Association on 21 March 1948. Until the end of 1956, there was no clear division of labor, functions and competencies between the Branch and the Main Board. Their actions were instead consolidated and the Branch operated within and under the name of Croatian Medical Association. In that year the Branch became independent. The Branch Zagreb is the largest and one of the most active branches of the Croatian Medical Association. At the moment, the Branch brings together 3621 members, regular members--doctors of medicine (2497), doctors of dental medicine (384), retired physicians (710), and associate members (30 specialists with higher education who are not doctors). The Branch is especially accomplished in its activities in the area of professional development of its members and therefore organizes a series of scientific conferences in the framework of continuous education of physicians, allowing its members to acquire necessary points for the extension of their operating license. The choir "Zagrebacki lijecnici pjevaci" (Zagreb Physicians' Choir) of the Croatian Medical Music Society of the CMA and its activities are inseparable from the Branch Zagreb. The Branch is firmly linked to the parent body, the CMA, and thus has a visible impact on the strategy and the activities of the Association as a whole. Most professional societies of the CMA have their headquarters in Zagreb and this is

  9. Nutritional evaluation of the giant grassropper (Zonocerus ...

    African Journals Online (AJOL)

    The biological value of giant grasshopper protein (Zonocerus variegatus) was evaluated by comparing the weight gained, food efficiency ratio (FER), protein efficiency ratio (PER) of rats fed standard laboratory chow with that of rats fed giant grasshopper, Soyabean(Glycine max) and crayfish. The effect of high fibre content ...

  10. Convergence in gradient systems with branching of equilibria

    International Nuclear Information System (INIS)

    Galaktionov, V A; Pohozaev, Stanislav I; Shishkov, A E

    2007-01-01

    The basic model is a semilinear elliptic equation with coercive C 1 non-linearity: Δψ+f(ψ)=0 in Ω, ψ=0 on ∂Ω, where Ω subset of R N is a bounded smooth domain. The main hypothesis (H R ) about resonance branching is as follows: if a branching of equilibria occurs at a point ψ with k-dimensional kernel of the linearized operator Δ+f'(ψ)I, then the branching subset S k at ψ is a locally smooth k-dimensional manifold. For N=1 the first result on the stabilization to a single equilibrium is due to Zelenyak (1968). It is shown that Zelenyak's approach, which is based on the analysis of Lyapunov functions, can be extended to general gradient systems in Hilbert spaces with smooth resonance branching. The case of asymptotically small non-autonomous perturbations of such systems is also considered. The approach developed here represents an alternative to Hale's stabilization method (1992) and other similar techniques in the theory of gradient systems. Bibliography: 32 titles.

  11. Giant duodenal ulcers

    Institute of Scientific and Technical Information of China (English)

    Eric Benjamin Newton; Mark R Versland; Thomas E Sepe

    2008-01-01

    Giant duodenal ulcers (GDUs) are a subset of duodenal ulcers that have historically resulted in greater morbidity than usual duodenal ulcers. Until recently,few cases had been successfully treated with medical therapy. However, the widespread use of endoscopy,the introduction of H-2 receptor blockers and proton pump inhibitors, and the improvement in surgical techniques all have revolutionized the diagnosis,treatment and outcome of this condition. Nevertheless,GDUs are still associated with high rates of morbidity,mortality and complications. Thus, surgical evaluation of a patient with a GDU should remain an integral part of patient care. These giant variants, while usually benign, can frequently harbor malignancy. A careful review of the literature highlights the important differences when comparing GDUs to classical peptic ulcers and why they must be thought of differently than their more common counterpart.

  12. Multifocal tenosynovial giant cell tumors in a child with Noonan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Arthur B. [Children' s Hospital of Wisconsin, Department of Radiology, Milwaukee, WI (United States); Nemours Children' s Health System/Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States); Awomolo, Agboola O. [Children' s Hospital of Wisconsin, Department of Radiology, Milwaukee, WI (United States); Szabo, Sara [Medical College of Wisconsin and Children' s Hospital of Wisconsin, Department of Pathology, Milwaukee, WI (United States); Cincinnati Children' s Hospital Medical Center, Division of Pathology and Laboratory Medicine, Cincinnati, OH (United States)

    2017-03-15

    Noonan syndrome is a genetic disorder with variable expression of distinctive facial features, webbed neck, chest deformity, short stature, cryptorchidism and congenital heart disease. The association of Noonan syndrome and giant cell granulomas of the mandible is widely reported. However, Noonan syndrome may also be associated with single or multifocal tenosynovial giant cell tumors, also referred to as pigmented villonodular synovitis. We report a child with Noonan syndrome, giant cell granulomas of the mandible and synovial and tenosynovial giant cell tumors involving multiple joints and tendon sheaths who was initially misdiagnosed with juvenile idiopathic arthritis. It is important for radiologists to be aware of the association of Noonan syndrome and multifocal giant cell lesions, which can range from the more commonly described giant cell granulomas of the mandible to isolated or multifocal intra- or extra-articular tenosynovial giant cell tumors or a combination of all of these lesions. (orig.)

  13. Multifocal tenosynovial giant cell tumors in a child with Noonan syndrome.

    Science.gov (United States)

    Meyers, Arthur B; Awomolo, Agboola O; Szabo, Sara

    2017-03-01

    Noonan syndrome is a genetic disorder with variable expression of distinctive facial features, webbed neck, chest deformity, short stature, cryptorchidism and congenital heart disease. The association of Noonan syndrome and giant cell granulomas of the mandible is widely reported. However, Noonan syndrome may also be associated with single or multifocal tenosynovial giant cell tumors, also referred to as pigmented villonodular synovitis. We report a child with Noonan syndrome, giant cell granulomas of the mandible and synovial and tenosynovial giant cell tumors involving multiple joints and tendon sheaths who was initially misdiagnosed with juvenile idiopathic arthritis. It is important for radiologists to be aware of the association of Noonan syndrome and multifocal giant cell lesions, which can range from the more commonly described giant cell granulomas of the mandible to isolated or multifocal intra- or extra-articular tenosynovial giant cell tumors or a combination of all of these lesions.

  14. Multifocal tenosynovial giant cell tumors in a child with Noonan syndrome

    International Nuclear Information System (INIS)

    Meyers, Arthur B.; Awomolo, Agboola O.; Szabo, Sara

    2017-01-01

    Noonan syndrome is a genetic disorder with variable expression of distinctive facial features, webbed neck, chest deformity, short stature, cryptorchidism and congenital heart disease. The association of Noonan syndrome and giant cell granulomas of the mandible is widely reported. However, Noonan syndrome may also be associated with single or multifocal tenosynovial giant cell tumors, also referred to as pigmented villonodular synovitis. We report a child with Noonan syndrome, giant cell granulomas of the mandible and synovial and tenosynovial giant cell tumors involving multiple joints and tendon sheaths who was initially misdiagnosed with juvenile idiopathic arthritis. It is important for radiologists to be aware of the association of Noonan syndrome and multifocal giant cell lesions, which can range from the more commonly described giant cell granulomas of the mandible to isolated or multifocal intra- or extra-articular tenosynovial giant cell tumors or a combination of all of these lesions. (orig.)

  15. Giant Panda habitat selection in the Foping Nature Reserve, China

    NARCIS (Netherlands)

    Liu, X.; Toxopeus, A.G.; Skidmore, A.K.; Shao, X.; Dang, D.; Wang, T.; Prins, H.H.T.

    2005-01-01

    Little is known about habitat selection of the giant panda (Ailuropoda melanoleuca), especially about the relationship between giant panda presence and bamboo and tree structures. We presented data on giant panda habitat use and selection in Foping Nature Reserve (NR), China. We used 1,066

  16. Branch-pipe-routing approach for ships using improved genetic algorithm

    Science.gov (United States)

    Sui, Haiteng; Niu, Wentie

    2016-09-01

    Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into threedimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.

  17. The Specific Features of design and process engineering in branch of industrial enterprise

    Science.gov (United States)

    Sosedko, V. V.; Yanishevskaya, A. G.

    2017-06-01

    Production output of industrial enterprise is organized in debugged working mechanisms at each stage of product’s life cycle from initial design documentation to product and finishing it with utilization. The topic of article is mathematical model of the system design and process engineering in branch of the industrial enterprise, statistical processing of estimated implementation results of developed mathematical model in branch, and demonstration of advantages at application at this enterprise. During the creation of model a data flow about driving of information, orders, details and modules in branch of enterprise groups of divisions were classified. Proceeding from the analysis of divisions activity, a data flow, details and documents the state graph of design and process engineering was constructed, transitions were described and coefficients are appropriated. To each condition of system of the constructed state graph the corresponding limiting state probabilities were defined, and also Kolmogorov’s equations are worked out. When integration of sets of equations of Kolmogorov the state probability of system activity the specified divisions and production as function of time in each instant is defined. On the basis of developed mathematical model of uniform system of designing and process engineering and manufacture, and a state graph by authors statistical processing the application of mathematical model results was carried out, and also advantage at application at this enterprise is shown. Researches on studying of loading services probability of branch and third-party contractors (the orders received from branch within a month) were conducted. The developed mathematical model of system design and process engineering and manufacture can be applied to definition of activity state probability of divisions and manufacture as function of time in each instant that will allow to keep account of loading of performance of work in branches of the enterprise.

  18. Gamma graphic findings in giant hepatic hemangioma

    International Nuclear Information System (INIS)

    Cano, R.; Morales, R.; Mendoza, P.; Ramirez, E.; Aguilar, C.

    1994-01-01

    The aim of the present work is to describe gamma graphic findings in patients with giant hepatic hemangiomas, when evaluated with 99m Tc red blood cell (RBC) imaging. Three patients with clinical suspicion of giant hepatic hemangiomas, who had had, ultrasound and computed tomography were studied with RBC using in vivo labelling with pyrophosphate. All cases had dynamic and static views. All cases showed hypoperfusion in dynamics views and over perfusion in delayed studies. Surgery confirmed diagnosis in two cases. 99m Tc RBC is a good method for diagnosis of giant hepatic hemangioma, which generally needs surgical treatment. (Authors). 24 refs., 2 figs

  19. The Fuzziness of Giant Planets’ Cores

    Energy Technology Data Exchange (ETDEWEB)

    Helled, Ravit [Institute for Computational Science, University of Zurich, Zurich (Switzerland); Stevenson, David [Division of Geological and Planetary Sciences, Caltech, Pasadena, CA (United States)

    2017-05-01

    Giant planets are thought to have cores in their deep interiors, and the division into a heavy-element core and hydrogen–helium envelope is applied in both formation and structure models. We show that the primordial internal structure depends on the planetary growth rate, in particular, the ratio of heavy elements accretion to gas accretion. For a wide range of likely conditions, this ratio is in one-to-one correspondence with the resulting post-accretion profile of heavy elements within the planet. This flux ratio depends sensitively on the assumed solid-surface density in the surrounding nebula. We suggest that giant planets’ cores might not be distinct from the envelope and includes some hydrogen and helium, and the deep interior can have a gradual heavy-element structure. Accordingly, Jupiter’s core may not be well defined. Accurate measurements of Jupiter’s gravitational field by Juno could put constraints on Jupiter’s core mass. However, as we suggest here, the definition of Jupiter’s core is complex, and the core’s physical properties (mass, density) depend on the actual definition of the core and on the planet’s growth history.

  20. The Fuzziness of Giant Planets’ Cores

    International Nuclear Information System (INIS)

    Helled, Ravit; Stevenson, David

    2017-01-01

    Giant planets are thought to have cores in their deep interiors, and the division into a heavy-element core and hydrogen–helium envelope is applied in both formation and structure models. We show that the primordial internal structure depends on the planetary growth rate, in particular, the ratio of heavy elements accretion to gas accretion. For a wide range of likely conditions, this ratio is in one-to-one correspondence with the resulting post-accretion profile of heavy elements within the planet. This flux ratio depends sensitively on the assumed solid-surface density in the surrounding nebula. We suggest that giant planets’ cores might not be distinct from the envelope and includes some hydrogen and helium, and the deep interior can have a gradual heavy-element structure. Accordingly, Jupiter’s core may not be well defined. Accurate measurements of Jupiter’s gravitational field by Juno could put constraints on Jupiter’s core mass. However, as we suggest here, the definition of Jupiter’s core is complex, and the core’s physical properties (mass, density) depend on the actual definition of the core and on the planet’s growth history.