WorldWideScience

Sample records for ghelzatha-ye mokhtalef-e uranium

  1. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  2. Uranium

    International Nuclear Information System (INIS)

    Cuney, M.; Pagel, M.; Leroy, J.

    1992-01-01

    First, this book presents the physico-chemical properties of Uranium and the consequences which can be deduced from the study of numerous geological process. The authors describe natural distribution of Uranium at different scales and on different supports, and main Uranium minerals. A great place in the book is assigned to description and classification of uranium deposits. The book gives also notions on prospection and exploitation of uranium deposits. Historical aspects of Uranium economical development (Uranium resources, production, supply and demand, operating costs) are given in the last chapter. 7 refs., 17 figs

  3. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article briefly discusses the Australian government policy and the attitude of political party factions towards the mining and exporting of the uranium resources in Australia. Australia has a third of the Western World's low-cost uranium resources

  4. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    With the worldwide revival of nuclear energy comes the question of uranium reserves. For more than 20 years, nuclear energy has been neglected and uranium prospecting has been practically abandoned. Therefore, present day production covers only 70% of needs and stocks are decreasing. Production is to double by 2030 which represents a huge industrial challenge. The FBR-type reactors technology, which allows to consume the whole uranium content of the fuel, is developing in several countries and will ensure the long-term development of nuclear fission. However, the implementation of these reactors (the generation 4) will be progressive during the second half of the 21. century. For this reason an active search for uranium ores will be necessary during the whole 21. century to ensure the fueling of light water reactors which are huge uranium consumers. This dossier covers all the aspects of natural uranium production: mineralogy, geochemistry, types of deposits, world distribution of deposits with a particular attention given to French deposits, the exploitation of which is abandoned today. Finally, exploitation, ore processing and the economical aspects are presented. Contents: 1 - the uranium element and its minerals: from uranium discovery to its industrial utilization, the main uranium minerals (minerals with tetravalent uranium, minerals with hexavalent uranium); 2 - uranium in the Earth's crust and its geochemical properties: distribution (in sedimentary rocks, in magmatic rocks, in metamorphic rocks, in soils and vegetation), geochemistry (uranium solubility and valence in magmas, uranium speciation in aqueous solution, solubility of the main uranium minerals in aqueous solution, uranium mobilization and precipitation); 3 - geology of the main types of uranium deposits: economical criteria for a deposit, structural diversity of deposits, classification, world distribution of deposits, distribution of deposits with time, superficial deposits, uranium

  5. Uranium

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    The author discusses the contribution made by various energy sources in the production of electricity. Estimates are made of the future nuclear contribution, the future demand for uranium and future sales of Australian uranium. Nuclear power growth in the United States, Japan and Western Europe is discussed. The present status of the six major Australian uranium deposits (Ranger, Jabiluka, Nabarlek, Koongarra, Yeelerrie and Beverley) is given. Australian legislation relevant to the uranium mining industry is also outlined

  6. Uranium

    International Nuclear Information System (INIS)

    1982-01-01

    The development, prospecting, research, processing and marketing of South Africa's uranium industry and the national policies surrounding this industry form the headlines of this work. The geology of South Africa's uranium occurences and their positions, the processes used in the extraction of South Africa's uranium and the utilisation of uranium for power production as represented by the Koeberg nuclear power station near Cape Town are included in this publication

  7. Uranium

    International Nuclear Information System (INIS)

    Stewart, E.D.J.

    1974-01-01

    A discussion is given of uranium as an energy source in The Australian economy. Figures and predictions are presented on the world supply-demand position and also figures are given on the added value that can be achieved by the processing of uranium. Conclusions are drawn about Australia's future policy with regard to uranium (R.L.)

  8. Uranium

    International Nuclear Information System (INIS)

    Toens, P.D.

    1981-03-01

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  9. Uranium

    International Nuclear Information System (INIS)

    Whillans, R.T.

    1981-01-01

    Events in the Canadian uranium industry during 1980 are reviewed. Mine and mill expansions and exploration activity are described, as well as changes in governmental policy. Although demand for uranium is weak at the moment, the industry feels optimistic about the future. (LL)

  10. Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R M

    1976-01-01

    Evidence of expanding markets, improved prices and the short supply of uranium became abundantly clear in 1975, providing the much needed impetus for widespread activity in all phases of uranium operations. Exploration activity that had been at low levels in recent years in Canada was evident in most provinces as well as the Northwest Territories. All producers were in the process of expanding their uranium-producing facilities. Canada's Atomic Energy Control Board (AECB) by year-end had authorized the export of over 73,000 tons of U/sub 3/0/sub 8/ all since September 1974, when the federal government announced its new uranium export guidelines. World production, which had been in the order of 25,000 tons of U/sub 3/0/sub 8/ annually, was expected to reach about 28,000 tons in 1975, principally from increased output in the United States.

  11. Uranium

    International Nuclear Information System (INIS)

    Perkin, D.J.

    1982-01-01

    Developments in the Australian uranium industry during 1980 are reviewed. Mine production increased markedly to 1841 t U 3 O 8 because of output from the new concentrator at Nabarlek and 1131 t of U 3 O 8 were exported at a nominal value of $37.19/lb. Several new contracts were signed for the sale of yellowcake from Ranger and Nabarlek Mines. Other developments include the decision by the joint venturers in the Olympic Dam Project to sink an exploration shaft and the release of an environmental impact statement for the Honeymoon deposit. Uranium exploration expenditure increased in 1980 and additions were made to Australia's demonstrated economic uranium resources. A world review is included

  12. Uranium

    International Nuclear Information System (INIS)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-01-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U 3 O 8 ; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables

  13. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Recent decisions by the Australian Government will ensure a significant expansion of the uranium industry. Development at Roxby Downs may proceed and Ranger may fulfil two new contracts but the decision specifies that apart from Roxby Downs, no new mines should be approved. The ACTU maintains an anti-uranium policy but reaction to the decision from the trade union movement has been muted. The Australian Science and Technology Council (ASTEC) has been asked by the Government to conduct an inquiry into a number of issues relating to Australia's role in the nuclear fuel cycle. The inquiry will examine in particular Australia's nuclear safeguards arrangements and the adequacy of existing waste management technology. In two additional decisions the Government has dissociated itself from a study into the feasibility of establishing an enrichment operation and has abolished the Uranium Advisory Council. Although Australian reserves account for 20% of the total in the Western World, Australia accounts for a relatively minor proportion of the world's uranium production

  14. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The French Government has decided to freeze a substantial part of its nuclear power programme. Work has been halted on 18 reactors. This power programme is discussed, as well as the effect it has on the supply of uranium by South Africa

  15. Uranium

    International Nuclear Information System (INIS)

    Battey, G.C.; McKay, A.D.

    1988-01-01

    Production for 1986 was 4899 t U 3 O 8 (4154 t U), 30% greater than in 1985, mainly because of a 39% increase in production at Ranger. Exports for 1986 were 4166 t U 3 O 8 at an average f.o.b. unit value of $40.57/lb U 3 O 8 . Private exploration expenditure for uranium in Australia during the 1985-86 fiscal year was $50.2 million. Plans were announced to increase the nominal capacity of the processing plant at Ranger from 3000 t/year U 3 O 8 to 4500 t and later to 6000 t/year. Construction and initial mine development at Olympic Dam began in March. Production is planned for mid 1988 at an annual rate of 2000 t U 3 O 8 , 30 000 t Cu, and 90 000 oz (2800 kg) Au. The first long-term sales agreement was concluded in September 1986. At the Manyingee deposit, testing of the alkaline solution mining method was completed, and the treatment plant was dismantled. Spot market prices (in US$/lb U 3 O 8 ) quoted by Nuexco were generally stable. From January-October the exchange value fluctuated from US$17.00-US$17.25; for November and December it was US$16.75. Australia's Reasonably Assured Resources of uranium recoverable at less than US$80/kg U at December 1986 were estimated as 462 000 t U, 3000 t U less than in 1985. This represents 30% of the total low-cost RAR in the WOCA (World Outside the Centrally Planned Economy Areas) countries. Australia also has 257 000 t U in the low-cost Estimated Additional Resources Category I, 29% of the WOCA countries' total resources in this category

  16. Depleted uranium

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2001-02-01

    This document deals with the physical, chemical and radiological properties of the depleted uranium. What is the depleted uranium? Why do the military use depleted uranium and what are the risk for the health? (A.L.B.)

  17. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  18. Uranium exploration

    International Nuclear Information System (INIS)

    De Voto, R.H.

    1984-01-01

    This paper is a review of the methodology and technology that are currently being used in varying degrees in uranium exploration activities worldwide. Since uranium is ubiquitous and occurs in trace amounts (0.2 to 5 ppm) in virtually all rocks of the crust of the earth, exploration for uranium is essentially the search of geologic environments in which geologic processes have produced unusual concentrations of uranium. Since the level of concentration of uranium of economic interest is dependent on the present and future price of uranium, it is appropriate here to review briefly the economic realities of uranium-fueled power generation. (author)

  19. Czechoslovak uranium

    International Nuclear Information System (INIS)

    Pluskal, O.

    1992-01-01

    Data and knowledge related to the prospecting, mining, processing and export of uranium ores in Czechoslovakia are presented. In the years between 1945 and January 1, 1991, 98,461.1 t of uranium were extracted. In the period 1965-1990 the uranium industry was subsidized from the state budget to a total of 38.5 billion CSK. The subsidies were put into extraction, investments and geologic prospecting; the latter was at first, ie. till 1960 financed by the former USSR, later on the two parties shared costs on a 1:1 basis. Since 1981 the prospecting has been entirely financed from the Czechoslovak state budget. On Czechoslovak territory uranium has been extracted from deposits which may be classified as vein-type deposits, deposits in uranium-bearing sandstones and deposits connected with weathering processes. The future of mining, however, is almost exclusively being connected with deposits in uranium-bearing sandstones. A brief description and characteristic is given of all uranium deposits on Czechoslovak territory, and the organization of uranium mining in Czechoslovakia is described as is the approach used in the world to evaluate uranium deposits; uranium prices and actual resources are also given. (Z.S.) 3 figs

  20. Uranium ores

    International Nuclear Information System (INIS)

    Poty, B.; Roux, J.

    1998-01-01

    The processing of uranium ores for uranium extraction and concentration is not much different than the processing of other metallic ores. However, thanks to its radioactive property, the prospecting of uranium ores can be performed using geophysical methods. Surface and sub-surface detection methods are a combination of radioactive measurement methods (radium, radon etc..) and classical mining and petroleum prospecting methods. Worldwide uranium prospecting has been more or less active during the last 50 years, but the rise of raw material and energy prices between 1970 and 1980 has incited several countries to develop their nuclear industry in order to diversify their resources and improve their energy independence. The result is a considerable increase of nuclear fuels demand between 1980 and 1990. This paper describes successively: the uranium prospecting methods (direct, indirect and methodology), the uranium deposits (economical definition, uranium ores, and deposits), the exploitation of uranium ores (use of radioactivity, radioprotection, effluents), the worldwide uranium resources (definition of the different categories and present day state of worldwide resources). (J.S.)

  1. Uranium market

    International Nuclear Information System (INIS)

    Rubini, L.A.; Asem, M.A.D.

    1990-01-01

    The historical development of the uranium market is present in two periods: The initial period 1947-1970 and from 1970 onwards, with the establishment of a commercial market. The world uranium requirements are derived from the corresponding forecast of nuclear generating capacity, with, particular emphasis to the brazilian requirements. The forecast of uranium production until the year 2000 is presented considering existing inventories and the already committed demand. The balance between production and requirements is analysed. Finally the types of contracts currently being used and the development of uranium prices in the world market are considered. (author)

  2. Uranium enrichment

    International Nuclear Information System (INIS)

    1990-01-01

    This report looks at the following issues: How much Soviet uranium ore and enriched uranium are imported into the United States and what is the extent to which utilities flag swap to disguise these purchases? What are the U.S.S.R.'s enriched uranium trading practices? To what extent are utilities required to return used fuel to the Soviet Union as part of the enriched uranium sales agreement? Why have U.S. utilities ended their contracts to buy enrichment services from DOE?

  3. Uranium mining

    International Nuclear Information System (INIS)

    Lange, G.

    1975-01-01

    The winning of uranium ore is the first stage of the fuel cycle. The whole complex of questions to be considered when evaluating the profitability of an ore mine is shortly outlined, and the possible mining techniques are described. Some data on uranium mining in the western world are also given. (RB) [de

  4. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  5. Uranium resources

    International Nuclear Information System (INIS)

    1976-01-01

    This is a press release issued by the OECD on 9th March 1976. It is stated that the steep increases in demand for uranium foreseen in and beyond the 1980's, with doubling times of the order of six to seven years, will inevitably create formidable problems for the industry. Further substantial efforts will be needed in prospecting for new uranium reserves. Information is given in tabular or graphical form on the following: reasonably assured resources, country by country; uranium production capacities, country by country; world nuclear power growth; world annual uranium requirements; world annual separative requirements; world annual light water reactor fuel reprocessing requirements; distribution of reactor types (LWR, SGHWR, AGR, HWR, HJR, GG, FBR); and world fuel cycle capital requirements. The information is based on the latest report on Uranium Resources Production and Demand, jointly issued by the OECD's Nuclear Energy Agency (NEA) and the International Atomic Energy Agency. (U.K.)

  6. Uranium supply and demand

    Energy Technology Data Exchange (ETDEWEB)

    Spriggs, M J

    1976-01-01

    Papers were presented on the pattern of uranium production in South Africa; Australian uranium--will it ever become available; North American uranium resources, policies, prospects, and pricing; economic and political environment of the uranium mining industry; alternative sources of uranium supply; whither North American demand for uranium; and uranium demand and security of supply--a consumer's point of view. (LK)

  7. Uranium, depleted uranium, biological effects; Uranium, uranium appauvri, effets biologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  8. Uranium toxicology

    International Nuclear Information System (INIS)

    Ferreyra, Mariana D.; Suarez Mendez, Sebastian

    1997-01-01

    In this paper are presented the methods and procedures optimized by the Nuclear Regulatory Authority (ARN) for the determination of: natural uranium mass, activity of enriched uranium in samples of: urine, mucus, filters, filter heads, rinsing waters and Pu in urine, adopted and in some cases adapted, by the Environmental Monitoring and Internal Dosimetry Laboratory. The analyzed material corresponded to biological and environmental samples belonging to the staff professionally exposed that work in plants of the nuclear fuel cycle. For a better comprehension of the activities of this laboratory, it is included a brief description of the uranium radiochemical toxicity and the limits internationally fixed to preserve the workers health

  9. Rossing uranium

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    In this article the geology of the deposits of the Rossing uranium mine in Namibia is discussed. The planning of the open-pit mining, the blasting, drilling, handling and the equipment used for these processes are described

  10. Uranium, depleted uranium, biological effects

    International Nuclear Information System (INIS)

    2001-01-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  11. Uranium loans

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    When NUEXCO was organized in 1968, its founders conceived of a business based on uranium loans. The concept was relatively straightforward; those who found themselves with excess supplies of uranium would deposit those excesses in NUEXCO's open-quotes bank,close quotes and those who found themselves temporarily short of uranium could borrow from the bank. The borrower would pay interest based on the quantity of uranium borrowed and the duration of the loan, and the bank would collect the interest, deduct its service fee for arranging the loan, and pay the balance to those whose deposits were borrowed. In fact, the original plan was to call the firm Nuclear Bank Corporation, until it was discovered that using the word open-quotes Bankclose quotes in the name would subject the firm to various US banking regulations. Thus, Nuclear Bank Corporation became Nuclear Exchange Corporation, which was later shortened to NUEXCO. Neither the nuclear fuel market nor NUEXCO's business developed quite as its founders had anticipated. From almost the very beginning, the brokerage of uranium purchases and sales became a more significant activity for NUEXCO than arranging uranium loans. Nevertheless, loan transactions have played an important role in the international nuclear fuel market, requiring the development of special knowledge and commercial techniques

  12. Uranium extraction from gold-uranium ores

    Energy Technology Data Exchange (ETDEWEB)

    Laskorin, B.N.; Golynko, Z.Sh.

    1981-01-01

    The process of uranium extraction from gold-uranium ores in the South Africa is considered. Flowsheets of reprocessing gold-uranium conglomerates, pile processing and uranium extraction from the ores are presented. Continuous counter flow ion-exchange process of uranium extraction using strong-active or weak-active resins is noted to be the most perspective and economical one. The ion-exchange uranium separation with the succeeding extraction is also the perspective one.

  13. Uranium mining

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The economic and environmental sustainability of uranium mining has been analysed by Monash University researcher Dr Gavin Mudd in a paper that challenges the perception that uranium mining is an 'infinite quality source' that provides solutions to the world's demand for energy. Dr Mudd says information on the uranium industry touted by politicians and mining companies is not necessarily inaccurate, but it does not tell the whole story, being often just an average snapshot of the costs of uranium mining today without reflecting the escalating costs associated with the process in years to come. 'From a sustainability perspective, it is critical to evaluate accurately the true lifecycle costs of all forms of electricity production, especially with respect to greenhouse emissions, ' he says. 'For nuclear power, a significant proportion of greenhouse emissions are derived from the fuel supply, including uranium mining, milling, enrichment and fuel manufacture.' Dr Mudd found that financial and environmental costs escalate dramatically as the uranium ore is used. The deeper the mining process required to extract the ore, the higher the cost for mining companies, the greater the impact on the environment and the more resources needed to obtain the product. I t is clear that there is a strong sensitivity of energy and water consumption and greenhouse emissions to ore grade, and that ore grades are likely to continue to decline gradually in the medium to long term. These issues are critical to the current debate over nuclear power and greenhouse emissions, especially with respect to ascribing sustainability to such activities as uranium mining and milling. For example, mining at Roxby Downs is responsible for the emission of over one million tonnes of greenhouse gases per year and this could increase to four million tonnes if the mine is expanded.'

  14. Uranium enrichment

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.

    1988-06-01

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  15. Uranium update

    International Nuclear Information System (INIS)

    Steane, R.

    1997-01-01

    This paper is about the current uranium mining situation, especially that in Saskatchewan. Canada has a unique advantage with the Saskatchewan uranium deposits. Making the most of this opportunity is important to Canada. The following is reviewed: project development and the time and capital it takes to bring a new project into production; the supply and demand situation to show where the future production fits into the world market; and our foreign competition and how we have to be careful not to lose our opportunity. (author)

  16. Machining of uranium and uranium alloys

    International Nuclear Information System (INIS)

    Morris, T.O.

    1981-01-01

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures

  17. Uranium mining

    International Nuclear Information System (INIS)

    Cheeseman, E.W.

    1980-01-01

    The international uranium market appears to be currently over-supplied with a resultant softening in prices. Buyers on the international market are unhappy about some of the restrictions placed on sales by the government, and Canadian sales may suffer as a result. About 64 percent of Canada's shipments come from five operating Ontario mines, with the balance from Saskatchewan. Several other properties will be producing within the next few years. In spite of the adverse effects of the Three Mile Island incident and the default by the T.V.A. of their contract, some 3 600 tonnes of new uranium sales were completed during the year. The price for uranium had stabilized at US $42 - $44 by mid 1979, but by early 1980 had softened somewhat. The year 1979 saw the completion of major environmental hearings in Ontario and Newfoundland and the start of the B.C. inquiry. Two more hearings are scheduled for Saskatchewan in 1980. The Elliot Lake uranium mining expansion hearings are reviewed, as are other recent hearings. In the production of uranium for nuclear fuel cycle, environmental matters are of major concern to the industry, the public and to governments. Research is being conducted to determine the most effective method for removing radium from tailings area effluents. Very stringent criteria are being drawn up by the regulatory agencies that must be met by the industry in order to obtain an operating licence from the AECB. These criteria cover seepages from the tailings basin and through the tailings retention dam, seismic stability, and both short and long term management of the tailings waste management area. (auth)

  18. Uranium industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  19. Uranium industry annual 1996

    International Nuclear Information System (INIS)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs

  20. Uranium industry annual, 1991

    International Nuclear Information System (INIS)

    1992-10-01

    In the Uranium Industry Annual 1991, data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2. A feature article entitled ''The Uranium Industry of the Commonwealth of Independent States'' is included in this report

  1. Uranium - what role

    International Nuclear Information System (INIS)

    Grey, T.; Gaul, J.; Crooks, P.; Robotham, R.

    1980-01-01

    Opposing viewpoints on the future role of uranium are presented. Topics covered include the Australian Government's uranium policy, the status of nuclear power around the world, Australia's role as a uranium exporter and problems facing the nuclear industry

  2. Brazilian uranium exploration program

    International Nuclear Information System (INIS)

    Marques, J.P.M.

    1981-01-01

    General information on Brazilian Uranium Exploration Program, are presented. The mineralization processes of uranium depoits are described and the economic power of Brazil uranium reserves is evaluated. (M.C.K.) [pt

  3. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-11-01

    This paper analyzes under four different scenarios the adequacy of a $500 million annual deposit into a fund to pay for the cost of cleaning up the Department of Energy's (DOE) three aging uranium enrichment plants. These plants are located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. In summary the following was found: A fixed annual $500 million deposit made into a cleanup fund would not be adequate to cover total expected cleanup costs, nor would it be adequate to cover expected decontamination and decommissioning (D and D) costs. A $500 million annual deposit indexed to an inflation rate would likely be adequate to pay for all expected cleanup costs, including D and D costs, remedial action, and depleted uranium costs

  4. Uranium production

    International Nuclear Information System (INIS)

    Spriggs, M.

    1980-01-01

    The balance between uranium supply and demand is examined. Should new resources become necessary, some unconventional sources which could be considered include low-grade extensions to conventional deposits, certain types of intrusive rock, tuffs, and lake and sea-bed sediments. In addition there are large but very low grade deposits in carbonaceous shales, granites, and seawater. The possibility of recovery is discussed. Programmes of research into the feasibility of extraction of uranium from seawater, as a by-product from phosphoric acid production, and from copper leach solutions, are briefly discussed. Other possible sources are coal, old mine dumps and tailings, the latter being successfully exploited commercially in South Africa. The greatest constraints on increased development of U from lower grade sources are economics and environmental impact. It is concluded that apart from U as a by-product from phosphate, other sources are unlikely to contribute much to world requirements in the foreseeable future. (U.K.)

  5. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector

  6. Derived enriched uranium market

    International Nuclear Information System (INIS)

    Rutkowski, E.

    1996-01-01

    The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market

  7. Uranium industry annual, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Uranium industry data collected in the EIA-858 survey provide a comprehensive statistical characterization of annual activities of the industry and include some information about industry plans over the next several years. This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities utility market requirements and related topics

  8. Uranium Industry. Annual 1984

    International Nuclear Information System (INIS)

    Lawrence, M.S.S.

    1985-01-01

    This report provides a statistical description of activities of the US uranium industry during 1984 and includes a statistical profile of the status of the industry at the end of 1984. It is based on the results of an Energy Information Administration (EIA) survey entitled ''Uranium Industry Annual Survey'' (Form EIA-858). The principal findings of the survey are summarized under two headings - Uranium Raw Materials Activities and Uranium Marketing Activities. The first heading covers exploration and development, uranium resources, mine and mill production, and employment. The second heading covers uranium deliveries and delivery commitments, uranium prices, foreign trade in uranium, inventories, and other marketing activities. 32 figs., 48 tabs

  9. Uranium price reporting systems

    International Nuclear Information System (INIS)

    1987-09-01

    This report describes the systems for uranium price reporting currently available to the uranium industry. The report restricts itself to prices for U 3 O 8 natural uranium concentrates. Most purchases of natural uranium by utilities, and sales by producers, are conducted in this form. The bulk of uranium in electricity generation is enriched before use, and is converted to uranium hexafluoride, UF 6 , prior to enrichment. Some uranium is traded as UF 6 or as enriched uranium, particularly in the 'secondary' market. Prices for UF 6 and enriched uranium are not considered directly in this report. However, where transactions in UF 6 influence the reported price of U 3 O 8 this influence is taken into account. Unless otherwise indicated, the terms uranium and natural uranium used here refer exclusively to U 3 O 8 . (author)

  10. Uranium Industry Annual, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ''Decommissioning of US Conventional Uranium Production Centers,'' is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2

  11. Uranium Industry Annual, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  12. Provision by the uranium and uranium products

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    2005-01-01

    International uranium market is converted from the buyer market into the seller market. The prices of uranium are high and the market attempts to adapt to changing circumstances. The industry of uranium enrichment satisfies the increasing demands but should to increase ots capacities. On the whole the situation is not stable and every year may change the existing position [ru

  13. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  14. Uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1982-01-01

    The separation of uranium isotopes in order to enrich the fuel for light water reactors with the light isotope U-235 is an important part of the nuclear fuel cycle. After the basic principals of isotope separation the gaseous diffusion and the centrifuge process are explained. Both these techniques are employed on an industrial scale. In addition a short review is given on other enrichment techniques which have been demonstrated at least on a laboratory scale. After some remarks on the present situation on the enrichment market the progress in the development and the industrial exploitation of the gas centrifuge process by the trinational Urenco-Centec organisation is presented. (orig.)

  15. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  16. Issues in uranium availability

    International Nuclear Information System (INIS)

    Schanz, J.J. Jr.; Adams, S.S.; Gordon, R.L.

    1982-01-01

    The purpose of this publication is to show the process by which information about uranium reserves and resources is developed, evaluated and used. The following three papers in this volume have been abstracted and indexed for the Energy Data Base: (1) uranium reserve and resource assessment; (2) exploration for uranium in the United States; (3) nuclear power, the uranium industry, and resource development

  17. Australian uranium industry

    Energy Technology Data Exchange (ETDEWEB)

    Warner, R K

    1976-04-01

    Various aspects of the Australian uranium industry are discussed including the prospecting, exploration and mining of uranium ores, world supply and demand, the price of uranium and the nuclear fuel cycle. The market for uranium and the future development of the industry are described.

  18. Irradiated uranium reprocessing

    International Nuclear Information System (INIS)

    Gal, I.

    1961-12-01

    Task concerned with reprocessing of irradiated uranium covered the following activities: implementing the method and constructing the cell for uranium dissolving; implementing the procedure for extraction of uranium, plutonium and fission products from radioactive uranium solutions; studying the possibilities for using inorganic ion exchangers and adsorbers for separation of U, Pu and fission products

  19. Uranium processing and properties

    CERN Document Server

    2013-01-01

    Covers a broad spectrum of topics and applications that deal with uranium processing and the properties of uranium Offers extensive coverage of both new and established practices for dealing with uranium supplies in nuclear engineering Promotes the documentation of the state-of-the-art processing techniques utilized for uranium and other specialty metals

  20. Recovering uranium from phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Bergeret, M [Compagnie de Produits Chimiques et Electrometallurgiques Pechiney-Ugine Kuhlmann, 75 - Paris (France)

    1981-06-01

    Processes for the recovery of the uranium contained in phosphates have today become competitive with traditional methods of working uranium sources. These new possibilities will make it possible to meet more rapidly any increases in the demand for uranium: it takes ten years to start working a new uranium deposit, but only two years to build a recovery plant.

  1. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Gagne, R.W.; Thomas, D.C.

    1977-01-01

    The status of existing uranium enrichment contracts in the US is reviewed and expected natural uranium requirements for existing domestic uranium enrichment contracts are evaluated. Uncertainty in natural uranium requirements associated with requirements-type and fixed-commitment type contracts is discussed along with implementation of variable tails assay

  2. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Thomas, D.C.; Gagne, R.W.

    1978-01-01

    The following topics are covered: the status of the Government's existing uranium enrichment services contracts, natural uranium requirements based on the latest contract information, uncertainty in predicting natural uranium requirements based on uranium enrichment contracts, and domestic and foreign demand assumed in enrichment planning

  3. Uranium industry annual 1985

    International Nuclear Information System (INIS)

    1986-11-01

    This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities, utility market requirements, and related topics. A glossary and appendices are included to assist the reader in interpreting the substantial array of statistical data in this report and to provide background information about the survey

  4. Uranium industry framework

    International Nuclear Information System (INIS)

    Riley, K.

    2008-01-01

    The global uranium market is undergoing a major expansion due to an increase in global demand for uranium, the highest uranium prices in the last 20 years and recognition of the potential greenhouse benefits of nuclear power. Australia holds approximately 27% of the world's uranium resources (recoverable at under US$80/kg U), so is well placed to benefit from the expansion in the global uranium market. Increasing exploration activity due to these factors is resulting in the discovery and delineation of further high grade uranium deposits and extending Australia's strategic position as a reliable and safe supplier of low cost uranium.

  5. Reduction of uranium hexafluoride to uranium tetrafluoride

    International Nuclear Information System (INIS)

    Chang, I.S.; Do, J.B.; Choi, Y.D.; Park, M.H.; Yun, H.H.; Kim, E.H.; Kim, Y.W.

    1982-01-01

    The single step continuous reduction of uranium hexafluoride (UF 6 ) to uranium tetrafluoride (UF 4 ) has been investigated. Heat required to initiate and maintain the reaction in the reactor is supplied by the highly exothermic reaction of hydrogen with a small amount of elemental fluorine which is added to the uranium hexafluoride stream. When gases uranium hexafluoride and hydrogen react in a vertical monel pipe reactor, the green product, UF 4 has 2.5g/cc in bulk density and is partly contaminated by incomplete reduction products (UF 5 ,U 2 F 9 ) and the corrosion product, presumably, of monel pipe of the reactor itself, but its assay (93% of UF 4 ) is acceptable for the preparation of uranium metal with magnesium metal. Remaining problems are the handling of uranium hexafluoride, which is easily clogging the flowmeter and gas feeding lines because of extreme sensitivity toward moisture, and a development of gas nozzel for free flow of uranium hexafluoride gas. (Author)

  6. Uranium - the world picture

    International Nuclear Information System (INIS)

    Silver, J.M.; Wright, W.J.

    1976-01-01

    The world resources of uranium and the future demand for uranium are discussed. The amount of uranium available depends on the price which users are prepared to pay for its recovery. As the price is increased, there is an incentive to recover uranium from lower grade or more difficult deposits. In view of this, attention is drawn to the development of the uranium industry in Australias

  7. Natural uranium

    International Nuclear Information System (INIS)

    Ammerich, Marc; Frot, Patricia; Gambini, Denis-Jean; Gauron, Christine; Moureaux, Patrick; Herbelet, Gilbert; Lahaye, Thierry; Pihet, Pascal; Rannou, Alain

    2014-08-01

    This sheet belongs to a collection which relates to the use of radionuclides essentially in unsealed sources. Its goal is to gather on a single document the most relevant information as well as the best prevention practices to be implemented. These sheets are made for the persons in charge of radiation protection: users, radioprotection-skill persons, labor physicians. Each sheet treats of: 1 - the radio-physical and biological properties; 2 - the main uses; 3 - the dosimetric parameters; 4 - the measurement; 5 - the protection means; 6 - the areas delimitation and monitoring; 7 - the personnel classification, training and monitoring; 8 - the effluents and wastes; 9 - the authorization and declaration administrative procedures; 10 - the transport; and 11 - the right conduct to adopt in case of incident or accident. This sheet deals specifically with natural uranium

  8. Uranium management activities

    International Nuclear Information System (INIS)

    Jackson, D.; Marshall, E.; Sideris, T.; Vasa-Sideris, S.

    2001-01-01

    One of the missions of the Department of Energy's (DOE) Oak Ridge Office (ORO) has been the management of the Department's uranium materials. This mission has been accomplished through successful integration of ORO's uranium activities with the rest of the DOE complex. Beginning in the 1980's, several of the facilities in that complex have been shut down and are in the decommissioning process. With the end of the Cold War, the shutdown of many other facilities is planned. As a result, inventories of uranium need to be removed from the Department facilities. These inventories include highly enriched uranium (HEU), low enriched uranium (LEU), normal uranium (NU), and depleted uranium (DU). The uranium materials exist in different chemical forms, including metals, oxides, solutions, and gases. Much of the uranium in these inventories is not needed to support national priorities and programs. (author)

  9. Uranium industry annual 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data provides a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ''Uranium Industry Annual Survey'' is provided in Appendix C. The Form EIA-858 ''Uranium Industry Annual Survey'' is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs

  10. Uranium industry annual 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data collected on the ''Uranium Industry Annual Survey'' (UIAS) provide a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ''Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,'' is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2

  11. Uranium: a basic evaluation

    International Nuclear Information System (INIS)

    Crull, A.W.

    1978-01-01

    All energy sources and technologies, including uranium and the nuclear industry, are needed to provide power. Public misunderstanding of the nature of uranium and how it works as a fuel may jeopardize nuclear energy as a major option. Basic chemical facts about uranium ore and uranium fuel technology are presented. Some of the major policy decisions that must be made include the enrichment, stockpiling, and pricing of uranium. Investigations and lawsuits pertaining to uranium markets are reviewed, and the point is made that oil companies will probably have to divest their non-oil energy activities. Recommendations for nuclear policies that have been made by the General Accounting Office are discussed briefly

  12. Uranium health physics

    International Nuclear Information System (INIS)

    1980-01-01

    This report contains the papers delivered at the Summer School on Uranium Health Physics held in Pretoria on the 14 and 15 April 1980. The following topics were discussed: uranium producton in South Africa; radiation physics; internal dosimetry and radiotoxicity of long-lived uranium isotopes; uranium monitoring; operational experience on uranium monitoring; dosimetry and radiotoxicity of inhaled radon daughters; occupational limits for inhalation of radon-222, radon-220 and their short-lived daughters; radon monitoring techniques; radon daughter dosimeters; operational experience on radon monitoring; and uranium mill tailings management

  13. Uranium: one utility's outlook

    International Nuclear Information System (INIS)

    Gass, C.B.

    1983-01-01

    The perspective of the Arizona Public Service Company (APS) on the uncertainty of uranium as a fuel supply is discussed. After summarizing the history of nuclear power and the uranium industries, a projection is made for the future uranium market. An uncrtain uranium market is attributed to various determining factors that include international politics, production costs, non-commercial government regulation, production-company stability, and questionable levels of uranium sales. APS offers its solutions regarding type of contract, choice of uranium producers, pricing mechanisms, and aids to the industry as a whole. 5 references, 10 figures, 1 table

  14. Recovery of uranium from crude uranium tetrafluoride

    International Nuclear Information System (INIS)

    Ghosh, S.K.; Bellary, M.P.; Keni, V.S.

    1994-01-01

    An innovative process has been developed for recovery of uranium from crude uranium tetrafluoride cake. The process is based on direct dissolution of uranium tetrafluoride in nitric acid in presence of aluminium hydroxide and use of solvent extraction for removal of fluorides and other bulk impurities to make uranium amenable for refining. It is a simple process requiring minimum process step and has advantage of lesser plant corrosion. This process can be applied for processing of uranium tetrafluoride generated from various sources like uranium by-product during thorium recovery from thorium concentrate, first stage product of uranium recovery from phosphoric acid by OPPA process and off grade uranium tetrafluoride material. The paper describes the details of the process developed and demonstrated on bench and pilot scale and its subsequent modification arising out of bulky solid waste generation. The modified process uses a lower quantity of aluminium hydroxide by allowing a lower dissolution of uranium per cycle and recycles the undissolved material to the next cycle, maintaining the overall recovery at high level. This innovation has reduced the solid waste generated by a factor of four at the cost of a slightly larger dissolution vessel and its increased corrosion rate. (author)

  15. Recovery of uranium from crude uranium tetrafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S K; Bellary, M P; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    An innovative process has been developed for recovery of uranium from crude uranium tetrafluoride cake. The process is based on direct dissolution of uranium tetrafluoride in nitric acid in presence of aluminium hydroxide and use of solvent extraction for removal of fluorides and other bulk impurities to make uranium amenable for refining. It is a simple process requiring minimum process step and has advantage of lesser plant corrosion. This process can be applied for processing of uranium tetrafluoride generated from various sources like uranium by-product during thorium recovery from thorium concentrate, first stage product of uranium recovery from phosphoric acid by OPPA process and off grade uranium tetrafluoride material. The paper describes the details of the process developed and demonstrated on bench and pilot scale and its subsequent modification arising out of bulky solid waste generation. The modified process uses a lower quantity of aluminium hydroxide by allowing a lower dissolution of uranium per cycle and recycles the undissolved material to the next cycle, maintaining the overall recovery at high level. This innovation has reduced the solid waste generated by a factor of four at the cost of a slightly larger dissolution vessel and its increased corrosion rate. (author). 4 refs., 1 fig., 3 tabs.

  16. Uranium production

    International Nuclear Information System (INIS)

    Jones, J.Q.

    1981-01-01

    The domestic uranium industry is in a state of stagflation. Costs continue to rise while the market for the product remains stagnant. During the last 12 months, curtailments and closures of mines and mills have eliminated over 5000 jobs in the industry, plus many more in those industries that furnish supplies and services. By January 1982, operations at four mills and the mines that furnish them ore will have been terminated. Other closures may follow, depending on cost trends, duration of current contracts, the degree to which mills have been amortized, the feasibility of placing mines on standby, the grade of the ore, and many other factors. Open-pit mines can be placed on standby without much difficulty, other than the possible cost of restoration before all the ore has been removed. There are a few small, dry, underground mines that could be mothballed; however, the major underground producers are wet sandstone mines that in most cases could not be reopened after a prolonged shutdown; mills can be mothballed for several years. Figure 8 shows the location of all the production centers in operation, as well as those that have operated or are on standby. Table 1 lists the same production centers plus those that have been deferred, showing nominal capacity of conventional mills in tons of ore per calendar day, and the industry production rate for those mills as of October 1, 1981

  17. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Known uranium deposits and the companies involved in uranium mining and exploration in Australia are listed. The status of the development of the deposits is outlined and reasons for delays to mining are given

  18. Uranium Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — An integral part of Y‑12's transformation efforts and a key component of the National Nuclear Security Administration's Uranium Center of Excellence, the Uranium...

  19. Uranium in Niger

    International Nuclear Information System (INIS)

    Gabelmann, E.

    1978-03-01

    This document presents government policy in the enhancement of uranium resources, existing mining companies and their productions, exploitation projects and economical outcome related to the uranium mining and auxiliary activities [fr

  20. Price of military uranium

    International Nuclear Information System (INIS)

    Klimenko, A.V.

    1998-01-01

    The theoretical results about optimum strategy of use of military uranium confirmed by systems approach accounts are received. The numerical value of the system approach price of the highly enriched military uranium also is given

  1. Uranium market and resources

    International Nuclear Information System (INIS)

    Capus, G.; Arnold, Th.

    2004-01-01

    The controversy about the extend of the uranium resources worldwide is still important, this article sheds some light on this topic. Every 2 years IAEA and NEA (nuclear energy agency) edit an inventory of uranium resources as reported by contributing countries. It appears that about 4.6 millions tons of uranium are available at a recovery cost less than 130 dollars per kg of uranium and a total of 14 millions tons of uranium can be assessed when including all existing or supposed resources. In fact there is enough uranium to sustain a moderate growth of the park of nuclear reactors during next decades and it is highly likely that the volume of uranium resources can allow a more aggressive development of nuclear energy. It is recalled that a broad use of the validated breeder technology can stretch the durability of uranium resources by a factor 50. (A.C.)

  2. Uranium from phosphate ores

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant

  3. Industrial realities: Uranium

    International Nuclear Information System (INIS)

    Thiron, H.

    1990-01-01

    In this special issue are examined ores and metals in France and in the world for 1988. The chapter on uranium gives statistical data on the uranium market: Demand, production, prices and reserves [fr

  4. Brazilian uranium deposits

    International Nuclear Information System (INIS)

    Santos, L.C.S. dos.

    1985-01-01

    Estimatives of uranium reserves carried out in Figueira, Itataia, Lagoa Real and Espinharas, in Brazil are presented. The samples testing allowed to know geological structures, and the characteristics of uranium mineralization. (M.C.F.) [pt

  5. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The mining of uranium in Australia is criticised in relation to it's environmental impact, economics and effects on mine workers and Aborigines. A brief report is given on each of the operating and proposed uranium mines in Australia

  6. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    Western world requirements for uranium based on increasing energy consumption and a changing energy mix, will warrant the development of Australia's resources. By 1985 Australian mines could be producing 9500 tonnes of uranium oxide yearly and by 1995 the export value from uranium could reach that from wool. In terms of benefit to the community the economic rewards are considerable but, in terms of providing energy to the world, Australias uranium is vital

  7. Radiation damage of uranium

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1966-11-01

    Study of radiation damage covered the following: Kinetics of electric resistance of uranium and uranium alloy with 1% of molybdenum dependent on the second phase and burnup rate; Study of gas precipitation and diffusion of bubbles by transmission electron microscopy; Numerical analysis of the influence of defects distribution and concentration on the rare gas precipitation in uranium; study of thermal sedimentation of uranium alloy with molybdenum; diffusion of rare gas in metal by gas chromatography method

  8. Bicarbonate leaching of uranium

    International Nuclear Information System (INIS)

    Mason, C.

    1998-01-01

    The alkaline leach process for extracting uranium from uranium ores is reviewed. This process is dependent on the chemistry of uranium and so is independent on the type of mining system (conventional, heap or in-situ) used. Particular reference is made to the geochemical conditions at Crownpoint. Some supporting data from studies using alkaline leach for remediation of uranium-contaminated sites is presented

  9. Bicarbonate leaching of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.

    1998-12-31

    The alkaline leach process for extracting uranium from uranium ores is reviewed. This process is dependent on the chemistry of uranium and so is independent on the type of mining system (conventional, heap or in-situ) used. Particular reference is made to the geochemical conditions at Crownpoint. Some supporting data from studies using alkaline leach for remediation of uranium-contaminated sites is presented.

  10. Uranium in fossil bones

    International Nuclear Information System (INIS)

    Koul, S.L.

    1978-01-01

    An attempt has been made to determine the uranium content and thus the age of certain fossil bones Haritalyangarh (Himachal Pradesh), India. The results indicate that bones rich in apatite are also rich in uranium, and that the radioactivity is due to radionuclides in the uranium series. The larger animals apparently have a higher concentration of uranium than the small. The dating of a fossil jaw (elephant) places it in the Pleistocene. (Auth.)

  11. Method for converting uranium oxides to uranium metal

    International Nuclear Information System (INIS)

    Duerksen, W.K.

    1988-01-01

    A method for converting uranium oxide to uranium metal is described comprising the steps of heating uranium oxide in the presence of a reducing agent to a temperature sufficient to reduce the uranium oxide to uranium metal and form a heterogeneous mixture of a uranium metal product and oxide by-products, heating the mixture in a hydrogen atmosphere at a temperature sufficient to convert uranium metal in the mixture to uranium hydride, cooling the resulting uranium hydride-containing mixture to a temperature sufficient to produce a ferromagnetic transition in the uranium hydride, magnetically separating the cooled uranium hydride from the mixture, and thereafter heating the separated uranium hydride in an inert atmosphere to a temperature sufficient to convert the uranium hydride to uranium metal

  12. Microbial accumulation of uranium

    International Nuclear Information System (INIS)

    Zhang Wei; Dong Faqin; Dai Qunwei

    2005-01-01

    The mechanism of microbial accumulation of uranium and the effects of some factors (including pH, initial uranium concentration, pretreatment of bacteria, and so on) on microbial accumulation of uranium are discussed briefly. The research direction and application prospect are presented. (authors)

  13. Uranium energy dependence

    International Nuclear Information System (INIS)

    Erkes, P.

    1981-06-01

    Uranium supply and demand as projected by the Uranium Institute is discussed. It is concluded that for the industrialized countries, maximum energy independence is a necessity. Hence it is necessary to achieve assurance of supply for uranium used in thermal power reactors in current programs and eventually to move towards breeders

  14. Australian uranium today

    International Nuclear Information System (INIS)

    Fisk, B.

    1978-01-01

    The subject is covered in sections, entitled: Australia's resources; Northern Territory uranium in perspective; the government's decision [on August 25, 1977, that there should be further development of uranium under strictly controlled conditions]; Government legislation; outlook [for the Australian uranium mining industry]. (U.K.)

  15. Uranium resources, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The specific character of uranium as energy resources, the history of development of uranium resources, the production and reserve of uranium in the world, the prospect regarding the demand and supply of uranium, Japanese activity of exploring uranium resources in foreign countries and the state of development of uranium resources in various countries are reported. The formation of uranium deposits, the classification of uranium deposits and the reserve quantity of each type are described. As the geological environment of uranium deposits, there are six types, that is, quartz medium gravel conglomerate deposit, the deposit related to the unconformity in Proterozoic era, the dissemination type magma deposit, pegmatite deposit and contact deposit in igneaus rocks and metamorphic rocks, vein deposit, sandstone type deposit and the other types of deposit. The main features of respective types are explained. The most important uranium resources in Japan are those in the Tertiary formations, and most of the found reserve belongs to this type. The geological features, the state of yield and the scale of the deposits in Ningyotoge, Tono and Kanmon Mesozoic formation are reported. Uranium minerals, the promising districts in the world, and the matters related to the exploration and mining of uranium are described. (Kako, I.)

  16. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  17. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  18. PROCESS OF RECOVERING URANIUM

    Science.gov (United States)

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  19. Method for converting uranium oxides to uranium metal

    Science.gov (United States)

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  20. Uranium speciation in plants

    International Nuclear Information System (INIS)

    Guenther, A.; Bernhard, G.; Geipel, G.; Reich, T.; Rossberg, A.; Nitsche, H.

    2003-01-01

    Detailed knowledge of the nature of uranium complexes formed after the uptake by plants is an essential prerequisite to describe the migration behavior of uranium in the environment. This study focuses on the determination of uranium speciation after uptake of uranium by lupine plants. For the first time, time-resolved laser-induced fluorescence spectroscopy and X-ray absorption spectroscopy were used to determine the chemical speciation of uranium in plants. Differences were detected between the uranium speciation in the initial solution (hydroponic solution and pore water of soil) and inside the lupine plants. The oxidation state of uranium did not change and remained hexavalent after it was taken up by the lupine plants. The chemical speciation of uranium was identical in the roots, shoot axis, and leaves and was independent of the uranium speciation in the uptake solution. The results indicate that the uranium is predominantly bound as uranyl(VI) phosphate to the phosphoryl groups. Dandelions and lamb's lettuce showed uranium speciation identical to lupine plants. (orig.)

  1. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...

  2. Uranium of Kazakhstan

    International Nuclear Information System (INIS)

    Tsalyuk, Yu.; Gurevich, D.

    2000-01-01

    Over 25 % of the world's uranium reserves are concentrated in Kazakhstan. So, the world's largest Shu-Sarysu uranium province is situated on southern Kazakhstan, with resources exceeding 1 billion tonnes of uranium. No less, than 3 unique deposits with resources exceeding 100,000 tonnes are situated here. From the economic point of view the most important thing is that these deposits are suitable for in-situ leaching, which is the cheapest, environmentally friendly and most efficient method available for uranium extracting. In 1997 the Kazatomprom National Joint-Stock Company united all Kazakhstan's uranium enterprises (3 mine and concentrating plants, Volkovgeologiya Joint-Stock Company and the Ulbinskij Metallurgical plant). In 1998 uranium production came to 1,500 tonnes (860 kg in 1997). In 1999 investment to the industry were about $ 30 million. Plans for development of Kazakhstan's uranium industry provide a significant role for foreign partners. At present, 2 large companies (Comeco (Canada), Cogema (France) working in Kazakhstan. Kazakatomprom continues to attract foreign investors. The company's administration announced that in that in next year they have plan to make a radical step: to sell 67 % of stocks to strategic investors (at present 100 % of stocks belongs to state). Authors of the article regard, that the Kazakhstan's uranium industry still has significant reserves to develop. Even if the scenario for the uranium industry could be unfavorable, uranium production in Kazakhstan may triple within the next three to four years. The processing of uranium by the Ulbinskij Metallurgical Plant and the production of some by-products, such as rhenium, vanadium and rare-earth elements, may provide more profits. Obviously, the sale of uranium (as well as of any other reserves) cannot make Kazakhstan a prosperous country. However, country's uranium industry has a god chance to become one of the most important and advanced sectors of national economy

  3. Titrimetric determination of uranium

    International Nuclear Information System (INIS)

    Florence, T.M.

    1989-01-01

    Titrimetric methods are almost invariably used for the high precision assay of uranium compounds, because gravimetric methods are nonselective, and not as reliable. Although precipitation titrations have been used, for example with cupferron and ferrocyanide, and chelate titrations with EDTA and oxine give reasonable results, in practice only redox titrations find routine use. With all redox titration methods for uranium a precision of 01 to 02 percent can be achieved, and precisions as high as 0.003 percent have been claimed for the more refined techniques. There are two types of redox titrations for uranium in common use. The first involves the direct titration of uranium (VI) to uranium (IV) with a standard solution of a strong reductant, such as chromous chloride or titanous chloride, and the second requires a preliminary reduction of uranium to the (IV) or (III) state, followed by titration back to the (VI) state with a standard oxidant. Both types of redox titrations are discussed. 4 figs

  4. Politics of Uranium

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Uranium is the most political of all the elements, the material for the production of both the large amounts of electricity and the most destructive weapons in the world. The problems that its dual potential creates are only now beginning to become evident. Author Norman Moss looks at this situation and sheds light on many of the questions that emerge. The nuclear issue always comes back to how much uranium there is, what can be done with it, and which countries have it. Starting with a concise history of uranium and explaining its technology in terms the nonspecialist can understand, The Politics of Uranium considers the political issues that technical arguments obscure. It tells the little-known story of the international uranium cartel, explains the entanglements of governments with the uranium trade, and describes the consequences of wrong decisions and blunders-especially the problems of nuclear waste. It also examines the intellectual and emotional roots of the anti-nuclear movement

  5. Uranium resources and supply

    International Nuclear Information System (INIS)

    Cameron, J.

    1973-01-01

    The future supply of uranium has to be considered against a background of forecasts of uranium demand over the next decades which show increases of a spectacular nature. It is not necessary to detail these forecasts, they are well known. A world survey by the Joint NEA/IAEA Working Party on 'Uranium Resources, Production and Demand', completed this summer, indicates that from a present production level of just over 19,000 tonnes uranium per year, the demand will rise to the equivalent of an annual production requirement of 50,000 tonnes uranium by 1980, 100,000 by 1985 and 180,000 by 1990. Few, if any, mineral production industries have been called upon to plan for a near tenfold increase in production in a space of about 15 years as these forecasts imply. This might possibly mean that, perhaps, ten times the present number of uranium mines will have to be planned and engineered by 1990

  6. How much uranium

    International Nuclear Information System (INIS)

    Kenward, M.

    1976-01-01

    Comment is made on the latest of a series of reports on world uranium resources from the OECD's Nuclear Energy Agency and the UN's International Atomic Energy Agency (Uranium resources, production and demand (including other nuclear fuel cycle data), published by the Organisation for Economic Cooperation and Development, Paris). The report categories uranium reserves by their recovery cost and looks at power demand and the whole of the nuclear fuel cycle, including uranium enrichment and spent fuel reprocessing. The effect that fluctuations in uranium prices have had on exploration for new uranium resources is considered. It is stated that increased exploration is essential considering the long lead times involved but that thanks to today's higher prices there are distinct signs that prospecting activities are increasing again. (U.K.)

  7. Uranium Mill Tailings Management

    International Nuclear Information System (INIS)

    Nelson, J.D.

    1982-01-01

    This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements)

  8. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    This Technical Report is designed mainly to introduce the methods and techniques of uranium geochemical exploration to exploration geologists who may not have had experience with geochemical exploration methods in their uranium programmes. The methods presented have been widely used in the uranium exploration industry for more than two decades. The intention has not been to produce an exhaustive, detailed manual, although detailed instructions are given for a field and laboratory data recording scheme and a satisfactory analytical method for the geochemical determination of uranium. Rather, the intention has been to introduce the concepts and methods of uranium exploration geochemistry in sufficient detail to guide the user in their effective use. Readers are advised to consult general references on geochemical exploration to increase their understanding of geochemical techniques for uranium

  9. Classification of Uranium deposits

    International Nuclear Information System (INIS)

    Dahlkamp, F.J.

    1978-01-01

    A listing of the recognized types of uranium mineralization shows nineteen determinable types out of which only six can be classified as of economic significance at present: Oligomiitic quartz pebble conglomerates, sandstone types, calcretes, intra-intrusive types, hydrothermal veins, veinlike types. The different types can be genetically related to prevalent geological environments, i.e. 1. the primary uranium occurrences formed by endogenic processes, 2. the secondary derived from the primary by subsequent exogenic processes, 3. the tertiary occurrences are assumed to be formed by endogenic metamorphic processes, although little is known about the behaviour of the uranium during the metamorphosis and therefore the metallogenesis of this tertiary uranium generation is still vague. A metallotectonic-geochronologic correlation of the uranium deposits shows a distinct affinity of the uranium to certain geological epochs: The Upper Archean, Lower Proterozoic, the Hercynian and, in a less established stage, the Upper Proterozoic. (orig.) 891 HP/orig. 892 MKO [de

  10. Uranium Newsletter. No. 1

    International Nuclear Information System (INIS)

    1987-03-01

    The new Uranium Newsletter is presented as an IAEA annual newsletter. The organization of the IAEA and its involvement with uranium since its founding in 1957 is described. The ''Red Book'' (Uranium Resources, Production and Demand) is mentioned. The Technical Assistance Programme of the IAEA in this field is also briefly mentioned. The contents also include information on the following meetings: The Technical Committee Meeting on Uranium Deposits in Magmatic and Metamorphic Rocks, Advisory Group Meeting on the Use of Airborne Radiometric Data, and the Technical Committee Meeting on Metallogenesis. Recent publications are listed. Current research contracts in uranium exploration are mentioned. IAEA publications on uranium (in press) are listed also. Country reports from the following countries are included: Australia, Brazil, Canada, China (People's Republic of), Denmark, Finland, Germany (Federal Republic of), Malaysia, Philippines, Portugal, South Africa (Republic of), Spain, Syrian Arab Republic, United Kingdom, United States of America, Zambia, and Greece. There is also a report from the Commission of European Communities

  11. Uranium purchases report 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Data reported by domestic nuclear utility companies in their responses to the 1991 and 1992 ''Uranium Industry Annual Survey,'' Form EIA-858, Schedule B ''Uranium Marketing Activities,are provided in response to the requirements in the Energy Policy Act 1992. Data on utility uranium purchases and imports are shown on Table 1. Utility enrichment feed deliveries and secondary market acquisitions of uranium equivalent of US DOE separative work units are shown on Table 2. Appendix A contains a listing of firms that sold uranium to US utilities during 1992 under new domestic purchase contracts. Appendix B contains a similar listing of firms that sold uranium to US utilities during 1992 under new import purchase contracts. Appendix C contains an explanation of Form EIA-858 survey methodologies with emphasis on the processing of Schedule B data

  12. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  13. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  14. New french uranium mineral species

    International Nuclear Information System (INIS)

    Branche, G.; Chervet, J.; Guillemin, C.

    1952-01-01

    In this work, the authors study the french new uranium minerals: parsonsite and renardite, hydrated phosphates of lead and uranium; kasolite: silicate hydrated of uranium and lead uranopilite: sulphate of uranium hydrated; bayleyite: carbonate of uranium and of hydrated magnesium; β uranolite: silicate of uranium and of calcium hydrated. For all these minerals, the authors give the crystallographic, optic characters, and the quantitative chemical analyses. On the other hand, the following species, very rare in the french lodgings, didn't permit to do quantitative analyses. These are: the lanthinite: hydrated uranate oxide; the α uranotile: silicate of uranium and of calcium hydrated; the bassetite: uranium phosphate and of hydrated iron; the hosphuranylite: hydrated uranium phosphate; the becquerelite: hydrated uranium oxide; the curite: oxide of uranium and lead hydrated. Finally, the authors present at the end of this survey a primary mineral: the brannerite, complex of uranium titanate. (author) [fr

  15. Uranium demand. An exploration challenge

    Energy Technology Data Exchange (ETDEWEB)

    Roux, A J.A.

    1976-10-01

    The estimated world resources of uranium as well as the estimated consumption of uranium over the next 25 years are briefly discussed. Attention is also given to the prospecting for uranium in South Africa and elsewhere in the world.

  16. Uranium industry annual, 1988

    International Nuclear Information System (INIS)

    1989-01-01

    This report presents data on US uranium raw materials and marketing activities of the domestic uranium industry. It contains aggregated data reported by US companies on the ''Uranium Industry Annual Survey'' (1988), Form EIA-858, and historical data from prior data collections and other pertinent sources. The report was prepared by the Energy Information Administration (EIA), the independent agency for data collection and analysis with the US Department of Energy

  17. Gold and uranium extraction

    International Nuclear Information System (INIS)

    James, G.S.; Davidson, R.J.

    1977-01-01

    A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution

  18. Uranium mine ventilation

    International Nuclear Information System (INIS)

    Katam, K.; Sudarsono

    1982-01-01

    Uranium mine ventilation system aimed basically to control and decreasing the air radioactivity in mine caused by the radon emanating from uranium ore. The control and decreasing the air ''age'' in mine, with adding the air consumption volume, increasing the air rate consumption, closing the mine-out area; using closed drainage system. Air consumption should be 60m 3 /minute for each 9m 2 uranium ore surfaces with ventilation rate of 15m/minute. (author)

  19. Pine Creek uranium province

    International Nuclear Information System (INIS)

    Bower, M.B.; Needham, R.S.; Page, R.W.; Stuart-Smith, P.G.; Wyborn, L.A.I.

    1985-01-01

    The objective of this project is to help establish a sound geological framework of the Pine Creek region through regional geological, geochemical and geophysical studies. Uranium ore at the Coronation Hill U-Au mine is confined to a wedge of conglomerate in faulted contact with altered volcanics. The uranium, which is classified as epigenetic sandstone type, is derived from a uranium-enriched felsic volcanic source

  20. Chemical thermodynamics of uranium

    International Nuclear Information System (INIS)

    Grenthe, I.; Fuger, J.; Lemire, R.J.; Muller, A.B.; Nguyen-Trung Cregu, C.; Wanner, H.

    1992-01-01

    A comprehensive overview on the chemical thermodynamics of those elements that are of particular importance in the safety assessment of radioactive waste disposal systems is provided. This is the first volume in a series of critical reviews to be published on this subject. The book provides an extensive compilation of chemical thermodynamic data for uranium. A description of procedures for activity corrections and uncertainty estimates is given. A critical discussion of data needed for nuclear waste management assessments, including areas where significant gaps of knowledge exist is presented. A detailed inventory of chemical thermodynamic data for inorganic compounds and complexes of uranium is listed. Data and their uncertainty limits are recommended for 74 aqueous complexes and 199 solid and 31 gaseous compounds containing uranium, and on 52 aqueous and 17 solid auxiliary species containing no uranium. The data are internally consistent and compatible with the CODATA Key Values. The book contains a detailed discussion of procedures used for activity factor corrections in aqueous solution, as well as including methods for making uncertainty estimates. The recommended data have been prepared for use in environmental geochemistry. Containing contributions written by experts the chapters cover various subject areas such a s: oxide and hydroxide compounds and complexes, the uranium nitrides, the solid uranium nitrates and the arsenic-containing uranium compounds, uranates, procedures for consistent estimation of entropies, gaseous and solid uranium halides, gaseous uranium oxides, solid phosphorous-containing uranium compounds, alkali metal uranates, uncertainties, standards and conventions, aqueous complexes, uranium minerals dealing with solubility products and ionic strength corrections. The book is intended for nuclear research establishments and consulting firms dealing with uranium mining and nuclear waste disposal, as well as academic and research institutes

  1. Uranium in Canada

    International Nuclear Information System (INIS)

    1985-09-01

    In 1974 the Minister of Energy, Mines and Resources (EMR) established a Uranium Resource Appraisal Group (URAG) within EMR to audit annually Canada's uranium resources for the purpose of implementing the federal government's uranium export policy. A major objective of this policy was to ensure that Canadian uranium supplies would be sufficient to meet the needs of Canada's nuclear power program. As projections of installed nuclear power growth in Canada over the long term have been successively revised downwards (the concern about domestic security of supply is less relevant now than it was 10 years ago) and as Canadian uranium supply capabilities have expanded significantly. Canada has maintained its status as the western world's leading exporter of uranium and has become the world's leading producer. Domestic uranium resource estimates have increased to 551 000 tonnes U recoverable from mineable ore since URAG completed its last formal assessment (1982). In 1984, Canada's five primary uranium producers employed some 5800 people at their mining and milling operations, and produced concentrates containing some 11 170 tU. It is evident from URAG's 1984 assessment that Canada's known uranium resources, recoverable at uranium prices of $150/kg U or less, are more than sufficient to meet the 30-year fuelling requirements of those reactors that are either in opertaion now or committed or expected to be in-service by 1995. A substantial portion of Canada's identified uranium resources, recoverable within the same price range, is thus surplus to Canadian needs and available for export. Sales worth close to $1 billion annually are assured. Uranium exploration expenditures in Canada in 1983 and 1984 were an estimated $41 million and $35 million, respectively, down markedly from the $128 million reported for 1980. Exploration drilling and surface development drilling in 1983 and 1984 were reported to be 153 000 m and 197 000 m, respectively, some 85% of which was in

  2. Uranium production from phosphates

    International Nuclear Information System (INIS)

    Ketzinel, Z.; Folkman, Y.

    1979-05-01

    According to estimates of the world's uranium consumption, exploitation of most rich sources is expected by the 1980's. Forecasts show that the rate of uranium consumption will increase towards the end of the century. It is therefore desirable to exploit poor sources not yet in use. In the near future, the most reasonable source for developing uranium is phosphate rock. Uranium reserves in phosphates are estimated at a few million tons. Production of uranium from phosphates is as a by-product of phosphate rock processing and phosphoric acid production; it will then be possible to save the costs incurred in crushing and dissolving the rock when calculating uranium production costs. Estimates show that the U.S. wastes about 3,000 tons of uranium per annum in phosphoric acid based fertilisers. Studies have also been carried out in France, Yugoslavia and India. In Israel, during the 1950's, a small plant was operated in Haifa by 'Chemical and Phosphates'. Uranium processes have also been developed by linking with the extraction processes at Arad. Currently there is almost no activity on this subject because there are no large phosphoric acid plants which would enable production to take place on a reasonable scale. Discussions are taking place about the installation of a plant for phosphoric acid production utilising the 'wet process', producing 200 to 250,000 tons P 2 O 5 per annum. It is necessary to combine these facilities with uranium production plant. (author)

  3. Phospholyl-uranium complexes

    International Nuclear Information System (INIS)

    Gradoz, Philippe

    1993-01-01

    After having reported a bibliographical study on penta-methylcyclopentadienyl uranium complexes, and a description of the synthesis and radioactivity of uranium (III) and (IV) boron hydrides compounds, this research thesis reports the study of mono and bis-tetramethyl-phospholyl uranium complexes comprising chloride, boron hydride, alkyl and alkoxide ligands. The third part reports the comparison of structures, stabilities and reactions of homologue complexes in penta-methylcyclopentadienyl and tetramethyl-phospholyl series. The last part addresses the synthesis of tris-phospholyl uranium (III) and (IV) complexes. [fr

  4. International trade in uranium

    International Nuclear Information System (INIS)

    Two reports are presented; one has been prepared by the Uranium Institute and is submitted by the United Kingdom delegation, the other by the United States delegation. The report of the Uranium Institute deals with the influence of the government on international trade in uranium. This influence becomes apparent predominantly by export and import restrictions, as well as by price controls. The contribution submitted by the United States is a uranium market trend analysis, with pricing methods and contracting modes as well as the effect of government policies being investigated in the light of recent developments

  5. Uranium concentration in fossils

    International Nuclear Information System (INIS)

    Okano, J.; Uyeda, C.

    1988-01-01

    Recently it is known that fossil bones tend to accumulate uranium. The uranium concentration, C u in fossils has been measured so far by γ ray spectroscopy or by fission track method. The authors applied secondary ion mass spectrometry, SIMS, to detect the uranium in fossil samples. The purpose of this work is to investigate the possibility of semi-quantitative analyses of uranium in fossils, and to study the correlation between C u and the age of fossil bones. The further purpose of this work is to apply SIMS to measure the distribution of C u in fossil teeth

  6. METHOD OF ROLLING URANIUM

    Science.gov (United States)

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  7. URANIUM LEACHING AND RECOVERY PROCESS

    Science.gov (United States)

    McClaine, L.A.

    1959-08-18

    A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

  8. Trends in uranium supply

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M [International Atomic Energy Agency, Division of Nuclear Power and Reactors, Nuclear Materials and Fuel Cycle Section, Vienna (Austria)

    1976-07-01

    Prior to the development of nuclear power, uranium ores were used to a very limited extent as a ceramic colouring agent, as a source of radium and in some places as a source of vanadium. Perhaps before that, because of the bright orange and yellow colours of its secondary ores, it was probably used as ceremonial paint by primitive man. After the discovery of nuclear fission a whole new industry emerged, complete with its problems of demand, resources and supply. Spurred by special incentives in the early years of this new nuclear industry, prospectors discovered over 20 000 occurrences of uranium in North America alone, and by 1959 total world production reached a peak of 34 000 tonnes uranium from mines in South Africa, Canada and United States. This rapid growth also led to new problems. As purchases for military purposes ended, government procurement contracts were not renewed, and the large reserves developed as a result of government purchase incentives, in combination with lack of substantial commercial market, resulted in an over-supply of uranium. Typically, an over-supply of uranium together with national stockpiling at low prices resulted in depression of prices to less than $5 per pound by 1971. Although forecasts made in the early 1970's increased confidence in the future of nuclear power, and consequently the demand for uranium, prices remained low until the end of 1973 when OPEC announced a very large increase in oil prices and quite naturally, prices for coal also rose substantially. The economics of nuclear fuel immediately improved and prices for uranium began to climb in 1974. But the world-wide impact of the OPEC decision also produced negative effects on the uranium industry. Uranium production costs rose dramatically, as did capital costs, and money for investment in new uranium ventures became more scarce and more expensive. However, the uranium supply picture today offers hope of satisfactory development in spite of the many problems to be

  9. Uranium industry annual 1993

    International Nuclear Information System (INIS)

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U 3 O 8 (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U 3 O 8 (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world's largest producer in 1993 with an output of 23.9 million pounds U 3 O 8 (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market

  10. Trends in uranium supply

    International Nuclear Information System (INIS)

    Hansen, M.

    1976-01-01

    Prior to the development of nuclear power, uranium ores were used to a very limited extent as a ceramic colouring agent, as a source of radium and in some places as a source of vanadium. Perhaps before that, because of the bright orange and yellow colours of its secondary ores, it was probably used as ceremonial paint by primitive man. After the discovery of nuclear fission a whole new industry emerged, complete with its problems of demand, resources and supply. Spurred by special incentives in the early years of this new nuclear industry, prospectors discovered over 20 000 occurrences of uranium in North America alone, and by 1959 total world production reached a peak of 34 000 tonnes uranium from mines in South Africa, Canada and United States. This rapid growth also led to new problems. As purchases for military purposes ended, government procurement contracts were not renewed, and the large reserves developed as a result of government purchase incentives, in combination with lack of substantial commercial market, resulted in an over-supply of uranium. Typically, an over-supply of uranium together with national stockpiling at low prices resulted in depression of prices to less than $5 per pound by 1971. Although forecasts made in the early 1970's increased confidence in the future of nuclear power, and consequently the demand for uranium, prices remained low until the end of 1973 when OPEC announced a very large increase in oil prices and quite naturally, prices for coal also rose substantially. The economics of nuclear fuel immediately improved and prices for uranium began to climb in 1974. But the world-wide impact of the OPEC decision also produced negative effects on the uranium industry. Uranium production costs rose dramatically, as did capital costs, and money for investment in new uranium ventures became more scarce and more expensive. However, the uranium supply picture today offers hope of satisfactory development in spite of the many problems to be

  11. Uranium industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  12. Uranium geochemistry, mineralogy, geology, exploration and resources

    International Nuclear Information System (INIS)

    De Vivo, B.

    1984-01-01

    This book comprises papers on the following topics: history of radioactivity; uranium in mantle processes; transport and deposition of uranium in hydrothermal systems at temperatures up to 300 0 C: Geological implications; geochemical behaviour of uranium in the supergene environment; uranium exploration techniques; uranium mineralogy; time, crustal evolution and generation of uranium deposits; uranium exploration; geochemistry of uranium in the hydrographic network; uranium deposits of the world, excluding Europe; uranium deposits in Europe; uranium in the economics of energy; role of high heat production granites in uranium province formation; and uranium deposits

  13. Uranium enrichment techniques

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    This article includes an introduction about the isotopes of natural uranium, their existence and the difficulty of the separation between them. Then it goes to the details of a number of methods used to enrich uranium: Gaseous Diffusion method, Electromagnetic method, Jet method, Centrifugal method, Chemical method, Laser method and Plasma method.

  14. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1979-01-01

    Sintered uranium dioxide pellets composed of particles of size > 50 microns suitable for power reactor use are made by incorporating a small amount of sulphur into the uranium dioxide before sintering. The increase in grain size achieved results in an improvement in overall efficiency when such pellets are used in a power reactor. (author)

  15. Uranium's scientific history

    International Nuclear Information System (INIS)

    Goldschmidt, B.

    1990-01-01

    The bicentenary of the discovery of uranium coincides with the fiftieth anniversary of the discovery of fission, an event of worldwide significance and the last episode in the uranium -radium saga which is the main theme of this paper. Uranium was first identified by the German chemist Martin Klaproth in 1789. He extracted uranium oxide from the ore pitchblende which was a by-product of the silver mines at Joachimsthal in Bohemia. For over a century after its discovery, the main application for uranium derived from the vivid colours of its oxides and salts which are used in glazes for ceramics, and porcelain. In 1896, however, Becquerel discovered that uranium emitted ionizing radiation. The extraction by Pierre and Marie Curie of the more radioactive radium from uranium in the early years of the twentieth century and its application to the treatment of cancer shifted the chief interest to radium production. In the 1930s the discovery of the neutron and of artificial radioactivity stimulated research in a number of European laboratories which culminated in the demonstration of fission by Otto Frisch in January 1939. The new found use of uranium for the production of recoverable energy, and the creation of artificial radioelements in nuclear reactors, eliminated the radium industry. (author)

  16. Uranium: biokinetics and toxicity

    International Nuclear Information System (INIS)

    Menetrier, F.; Renaud-Salis, V.; Flury-Herard, A.

    2000-01-01

    This report was achieved as a part of a collaboration with the Fuel Cycle Direction. Its aim was to give the state of the art about: the behaviour of uranium in the human organism (biokinetics) after ingestion, its toxicity (mainly renal) and the current regulation about its incorporation. Both in the upstream and in the downstream of the fuel cycle, uranium remains, quantitatively, the first element in the cycle which is, at the present time, temporarily disposed or recycled. Such a considerable quantity of uranium sets the problem of its risk on the health. In the long term, the biosphere may be affected and consequently the public may ingest water or food contaminated with uranium. In this way, radiological and chemical toxicity risk may be activated. This report emphasizes: the necessity of confirming some experimental and epidemiological biokinetic data used or not in the ICRP models. Unsolved questions remain about the gastrointestinal absorption according to chemical form (valency state, mixtures...), mass and individual variations (age, disease) further a chronic ingestion of uranium. It is well established that uranium is mainly deposited in the skeleton and the kidney. But the skeleton kinetics following a chronic ingestion and especially in some diseases has to be more elucidated; the necessity of taking into account uranium at first as a chemical toxic, essentially in the kidney and determining the threshold of functional lesion. In this way, it is important to look for some specific markers; the problem of not considering chemical toxicity of uranium in the texts regulating its incorporation

  17. Rheinbraun's Australian uranium business

    International Nuclear Information System (INIS)

    Kirschbaum, S.

    1989-01-01

    The leaflet argues against the mining activities of the Rheinische Braunkohlenwerke AG in Germany and especially against uranium mining in Australia. The ethno-ecological impact on flora and fauna, aborigines and miners are pointed out. Uranium mining and lignite mining are compared. (HSCH) [de

  18. Australia and uranium

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A brief justification of the Australian Government's decision to mine and export Australian Uranium is presented along with a description of the Alligator River Region in the Northern Territory where the major mines are to be located. Aboriginal interests and welfare in the region, the proposed Kakadu National Park and the economic benefits resulting from uranium development are also briefly covered. (J.R.)

  19. Nuclear and uranium policies

    International Nuclear Information System (INIS)

    MacNabb, G.M.; Uranium Canada Ltd., Ottawa, Ontario)

    The background of the uranium industry in Canada is described. Government policies with respect to ownership of the uranium mining industry, price stabilization, and especially reservation of sufficient supplies of nuclear fuels for domestic utilities, are explained. Canadian policy re nuclear exports and safeguards is outlined. (E.C.B.)

  20. Uranium and transuranium analysis

    International Nuclear Information System (INIS)

    Regnaud, F.

    1989-01-01

    Analytical chemistry of uranium, neptunium, plutonium, americium and curium is reviewed. Uranium and neptunium are mainly treated and curium is only briefly evoked. Analysis methods include coulometry, titration, mass spectrometry, absorption spectrometry, spectrofluorometry, X-ray spectrometry, nuclear methods and radiation spectrometry [fr

  1. Preparation of uranium tetrafluoride

    International Nuclear Information System (INIS)

    Wirths, G.

    1981-01-01

    Uranium dioxide is converted to uranium tetrafluoride under stoichiometric excess of hydrogen fluoride. The water formed in the process and the unreacted hydrogen fluoride are cooled and the condensate fractionally distilled into water and approx. 40% hydrofluoric acid. The hydrofluoric acid and water-free hydrogen fluoride are fed back into the process. (WI) [de

  2. Rossing uranium 1979

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This report describes the activities and organization of the Rossing uranium mine in South West Africa. The development of the mine during the last six years is described as well as the geology of the uranium deposits and aspects of the mining operations. The manpower structure and training possibilities for personnel are described

  3. Management of depleted uranium

    International Nuclear Information System (INIS)

    2001-01-01

    Large stocks of depleted uranium have arisen as a result of enrichment operations, especially in the United States and the Russian Federation. Countries with depleted uranium stocks are interested in assessing strategies for the use and management of depleted uranium. The choice of strategy depends on several factors, including government and business policy, alternative uses available, the economic value of the material, regulatory aspects and disposal options, and international market developments in the nuclear fuel cycle. This report presents the results of a depleted uranium study conducted by an expert group organised jointly by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It contains information on current inventories of depleted uranium, potential future arisings, long term management alternatives, peaceful use options and country programmes. In addition, it explores ideas for international collaboration and identifies key issues for governments and policy makers to consider. (authors)

  4. Uranium dioxide electrolysis

    Science.gov (United States)

    Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  5. Uranium deposit research, 1983

    International Nuclear Information System (INIS)

    Ruzicka, V.; LeCheminant, G.M.

    1984-01-01

    Research on uranium deposits in Canada, conducted as a prerequisite for assessment of the Estimated Additional Resources of uranium, revealed that (a) the uranium-gold association in rudites of the Huronian Supergroup preferably occurs in the carbon layers; (b) chloritized ore at the Panel mine, Elliot Lake, Ontario, occurs locally in tectonically disturbed areas in the vicinity of diabase dykes; (c) mineralization in the Black Sturgeon Lake area, Ontario, formed from solutions in structural and lithological traps; (d) the Cigar Lake deposit, Saskatchewan, has two phases of mineralization: monomineralic and polymetallic; (e) mineralization of the JEB (Canoxy Ltd.) deposit is similar to that at McClean Lake; (f) the uranium-carbon assemblage was identified in the Claude deposit, Carswell Structure; and (g) the Otish Mountains area, Quebec, should be considered as a significant uranium-polymetallic metallogenic province

  6. Uranium oxide recovering method

    International Nuclear Information System (INIS)

    Ota, Kazuaki; Takazawa, Hiroshi; Teramae, Naoki; Onoue, Takeshi.

    1997-01-01

    Nitrates containing uranium nitrate are charged in a molten salt electrolytic vessel, and a heat treatment is applied to prepare molten salts. An anode and a cathode each made of a graphite rod are disposed in the molten salts. AC voltage is applied between the anode and the cathode to conduct electrolysis of the molten salts. Uranium oxides are deposited as a recovered product of uranium, on the surface of the anode. The nitrates containing uranium nitrate are preferably a mixture of one or more nitrates selected from sodium nitrate, potassium nitrate, calcium nitrate and magnesium nitrate with uranium nitrate. The nitrates may be liquid wastes of nitrates. The temperature for the electrolysis of the molten salts is preferably from 150 to 300degC. The voltage for the electrolysis of the molten salts is preferably an AC voltage of from 2 to 6V, more preferably from 4 to 6V. (I.N.)

  7. Uranium mines of Tajikistan

    International Nuclear Information System (INIS)

    Razykov, Z.A; Gusakov, E.G.; Marushenko, A.A.; Botov, A.Yu.; Yunusov, M.M.

    2002-12-01

    The book describes location laws, the main properties of geological structure and industrial perspectives for known uranium mines of the Republic of Tajikistan. Used methods of industrial processing of uranium mines are described. The results of investigations of technological properties of main types of uranium ores and methods of industrial processing of some of them are shown. Main properties of uranium are shortly described as well as problems, connected with it, which arise during exploitation, mining and processing of uranium ores. The main methods of solution of these problems are shown. The book has interest for specialists of mining, geological, chemical, and technological fields as well as for students of appropriate universities. This book will be interested for usual reader, too, if they are interested in mineral resources of their country [ru

  8. Uranium chemistry research unit

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The initial field of research of this Unit, established in 1973, was the basic co-ordination chemistry of uranium, thorium, copper, cobalt and nickel. Subsequently the interest of the Unit extended to extractive metallurgy relating to these metals. Under the term 'co-ordination chemistry' is understood the interaction of the central transition metal ion with surrounding atoms in its immediate vicinity (within bonding distance) and the influence they have on each other - for example, structural studies for determining the number and arrangement of co-ordinated atoms and spectrophotometric studies to establish how the f electron energy levels of uranium are influenced by the environment. New types of uranium compounds have been synthesized and studied, and the behaviour of uranium ions in non-aqueous systems has also received attention. This work can be applied to the development and study of extractants and new extractive processes for uranium

  9. Jabiluka uranium project

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Jabiluka uranium and gold deposit located in the Northern Territory of Australia is the world's largest known primary uranium deposits and as such has the potential to become one of the most important uranium projects in the world. Despite the financial and structural challenges facing the major owner Pancontinental Mining Limited and the changing political policies in Australia, Jabiluka is well situated for development during the 1990's. With the availability of numerous financial and development alternatives, Jabiluka could, by the turn of the century, take its rightful place among the first rank of world uranium producers. The paper discusses ownership, location, property rights, licensing, environmental concerns, marketing and development, capital costs, royalties, uranium policy considerations, geologic exploration history, regional and site geology, and mining and milling operations

  10. EPR of uranium ions

    International Nuclear Information System (INIS)

    Ursu, I.; Lupei, V.

    1984-02-01

    A review of the electron paramagnetic resonance data on the uranium ions is given. After a general account of the electronic structure of the uranium free atoms and ions, the influence of the external fields (magnetic field, crystal fields) is discussed. The main information obtained from EPR studies on the uranium ions in crystals are emphasized: identification of the valence and of the ground electronic state, determination of the structure of the centers, crystal field effects, role of the intermediate coupling and of the J-mixing, role of the covalency, determination of the nuclear spin, maqnetic dipole moment and electric quadrupole moment of the odd isotopes of uranium. These data emphasize the fact that the actinide group has its own identity and this is accutely manifested at the beginning of the 5fsup(n) series encompassed by the uranium ions. (authors)

  11. Uranium in Canada

    International Nuclear Information System (INIS)

    1987-09-01

    Canadian uranium exploration and development efforts in 1985 and 1986 resulted in a significant increase in estimates of measured uranium resources. New discoveries have more than made up for production during 1985 and 1986, and for the elimination of some resources from the overall estimates, due to the sustained upward pressure on production costs and the stagnation of uranium prices in real terms. Canada possesses a large portion of the world's uranium resources that are of current economic interest and remains the major focus of inter-national uranium exploration activity. Expenditures for uranium exploration in Canada in 1985 and 1986 were $32 million and $33 million, respectively. Although much lower than the $130 million total reported for 1979, expenditures for 1987 are forecast to increase. Exploration and surface development drilling in 1985 and 1986 were reported to be 183 000 m and 165σ2 000 m, respectively, 85 per cent of which was in Saskatchewan. Canada has maintained its position as the world's leading producer and exporter of uranium. By the year 2000, Canada's annual uranium requirements will be about 2 100 tU. Canada's known uranium resources are more than sufficient to meet the 30-year fuel requirements of those reactors in Canada that are either in operation now or expected to be in service by the late 1990s. A substantial portion of Canada's identified uranium resources is thus surplus to Canadian needs and available for export. Annual sales currently approach $1 billion, of which exports account for 85 per cent. Forward domestic and export contract commitments totalled 73 000 tU and 62 000 tU, respectively, as of early 1987

  12. Uranium rich granite and uranium productive granite in south China

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng; Debao, He [CNNC Key Laboratory of Uranium Resource Exploration and Evaluation Technology, Beijing Research Institute of Uranium Geology (China)

    2012-07-15

    The paper briefly introduces the differences between uranium rich granite and uranium productive granite in the 5 provinces of South China, and discusses their main characteristics in 4 aspects, the uranium productive granite is highly developed in fracture, very strong in alteration, often occurred as two-mica granite and regularly developed with intermediate-basic and acid dikes. The above characteristics distinguish the uranium productive granite from the uranium rich granite. (authors)

  13. Uranium rich granite and uranium productive granite in south China

    International Nuclear Information System (INIS)

    Feng Mingyue; He Debao

    2012-01-01

    The paper briefly introduces the differences between uranium rich granite and uranium productive granite in the 5 provinces of South China, and discusses their main characteristics in 4 aspects, the uranium productive granite is highly developed in fracture, very strong in alteration, often occurred as two-mica granite and regularly developed with intermediate-basic and acid dikes. The above characteristics distinguish the uranium productive granite from the uranium rich granite. (authors)

  14. Pengaruh Kandungan Uranium Dalam Umpan Terhadap Efisiensi Pengendapan Uranium

    OpenAIRE

    Torowati

    2010-01-01

    PENGARUH KANDUNGAN URANIUM DALAM UMPAN TERHADAP EFISIENSI PENGENDAPAN URANIUM. Setiap aktivitas analisis di Laboratorium Kendali Kualitas, Bidang Bahan Bakar Nuklir selalu dihasilkan limbah radioaktif cair. Limbah radioaktif cair di laboratorium masih mengandung uranium yang cukup besar ± 0,600 g U/l dengan keasamaan yang cukup besar pula. Karena uranium mempunyai nilai ekonomis yang cukup tinggi maka perlu USAha untuk mengambil kembali uranium tersebut. Pada kegiatan ini telah dilak...

  15. Uranium and the fast reactor

    International Nuclear Information System (INIS)

    Price, T.

    1982-01-01

    The influence of uranium availability upon the future of the fast reactor is reviewed. The important issues considered are uranium reserves and resources, uranium market prices, fast reactor economics and the political availability of uranium to customers in other countries. (U.K.)

  16. Uranium producers foresee new boom

    International Nuclear Information System (INIS)

    McIntyre, H.

    1979-01-01

    The status of uranium production in Canada is reviewed. Uranium resources in Saskatchewan and Ontario are described and the role of the Cluff Lake inquiry in securing a government decision in favour of further uranium development is mentioned. There have been other uranium strikes near Kelowna, British Columbia and in the Northwest Territories. Increasing uranium demand and favourable prices are making the development of northern resources economically attractive. In fact, all uranium currently produced has been committed to domestic and export contracts so that there is considerable room for expanding the production of uranium in Canada. (T.I.)

  17. Uranium tipped ammunition

    International Nuclear Information System (INIS)

    Roche, P.

    1993-01-01

    During the uranium enrichment process required to make nuclear weapons or fuel, the concentration of the 'fissile' U-235 isotope has to be increased. What is left, depleted uranium, is about half as radioactive as natural uranium, but very dense and extremely hard. It is used in armour piercing shells. External radiation levels from depleted uranium (DU) are low. However DU is about as toxic as lead and could be harmful to the kidneys if eaten or inhaled. It is estimated that between 40 and 300 tonnes of depleted uranium were left behind by the Allied armies after the Gulf war. The biggest hazard would be from depleted uranium shells which have hit Iraqui armoured vehicles and the resulting dust inhaled. There is a possible link between depleted uranium shells and an illness known as 'Desert Storm Syndrome' occurring in some Gulf war veterans. As these shells are a toxic and radioactive hazard to health and the environment their use and testing should be stopped because of the risks to troops and those living near test firing ranges. (UK)

  18. US uranium market developments

    International Nuclear Information System (INIS)

    Krusiewski, S.V.; Patterson, J.A.

    1980-01-01

    Domestic uranium delivery commitments have risen significantly since January 1979, with the bulk of deliveries scheduled after 1990. Much of the long-term procurement will be obtained from captive production. However, buyers have adjusted their delivery schedules in the near term, deferring some procurement to later years, including a portion of planned captive production. Under current commitments, US imports of foreign uranium in the 1981 to 1985 period will be greater than our exports of domestic uranium. The anticipated supply of domestic uranium through 1985 is clearly more than adequate to fill the probable US demand in the meantime, uranium producers are continuing their efforts to increase future domestic supply by their considerable investments in new or expanded mine and mill facilities. Since January 1980, average contract prices including market-price settlements, for 1980 uranium deliveries have increased slightly, but average market-price settlements made this year have decreased by several dollars. While the general trend of US uranium prices has been upward since we began reporting price data in 1973, some reductions in average prices for future deliveries appeared in 1980. The softening of prices for new procurement can be expected to be increasingly apparent in future surveys

  19. Uranium deposits in Africa

    International Nuclear Information System (INIS)

    Wilpolt, R.H.; Simov, S.D.

    1979-01-01

    Africa is not only known for its spectacular diamond, gold, copper, chromium, platinum and phosphorus deposits but also for its uranium deposits. At least two uranium provinces can be distinguished - the southern, with the equatorial sub-province; and the south Saharan province. Uranium deposits are distributed either in cratons or in mobile belts, the first of sandstone and quartz-pebble conglomerate type, while those located in mobile belts are predominantly of vein and similar (disseminated) type. Uranium deposits occur within Precambrian rocks or in younger platform sediments, but close to the exposed Precambrian basement. The Proterozoic host rocks consist of sediments, metamorphics or granitoids. In contrast to Phanerozoic continental uranium-bearing sediments, those in the Precambrian are in marginal marine facies but they do contain organic material. The geology of Africa is briefly reviewed with the emphasis on those features which might control the distribution of uranium. The evolution of the African Platform is considered as a progressive reduction of its craton area which has been affected by three major Precambrian tectonic events. A short survey on the geology of known uranium deposits is made. However, some deposits and occurrences for which little published material is available are treated in more detail. (author)

  20. Uranium chemistry: significant advances

    International Nuclear Information System (INIS)

    Mazzanti, M.

    2011-01-01

    The author reviews recent progress in uranium chemistry achieved in CEA laboratories. Like its neighbors in the Mendeleev chart uranium undergoes hydrolysis, oxidation and disproportionation reactions which make the chemistry of these species in water highly complex. The study of the chemistry of uranium in an anhydrous medium has led to correlate the structural and electronic differences observed in the interaction of uranium(III) and the lanthanides(III) with nitrogen or sulfur molecules and the effectiveness of these molecules in An(III)/Ln(III) separation via liquid-liquid extraction. Recent work on the redox reactivity of trivalent uranium U(III) in an organic medium with molecules such as water or an azide ion (N 3 - ) in stoichiometric quantities, led to extremely interesting uranium aggregates particular those involved in actinide migration in the environment or in aggregation problems in the fuel processing cycle. Another significant advance was the discovery of a compound containing the uranyl ion with a degree of oxidation (V) UO 2 + , obtained by oxidation of uranium(III). Recently chemists have succeeded in blocking the disproportionation reaction of uranyl(V) and in stabilizing polymetallic complexes of uranyl(V), opening the way to to a systematic study of the reactivity and the electronic and magnetic properties of uranyl(V) compounds. (A.C.)

  1. Production of uranium dioxide

    International Nuclear Information System (INIS)

    Hart, J.E.; Shuck, D.L.; Lyon, W.L.

    1977-01-01

    A continuous, four stage fluidized bed process for converting uranium hexafluoride (UF 6 ) to ceramic-grade uranium dioxide (UO 2 ) powder suitable for use in the manufacture of fuel pellets for nuclear reactors is disclosed. The process comprises the steps of first reacting UF 6 with steam in a first fluidized bed, preferably at about 550 0 C, to form solid intermediate reaction products UO 2 F 2 , U 3 O 8 and an off-gas including hydrogen fluoride (HF). The solid intermediate reaction products are conveyed to a second fluidized bed reactor at which the mol fraction of HF is controlled at low levels in order to prevent the formation of uranium tetrafluoride (UF 4 ). The first intermediate reaction products are reacted in the second fluidized bed with steam and hydrogen at a temperature of about 630 0 C. The second intermediate reaction product including uranium dioxide (UO 2 ) is conveyed to a third fluidized bed reactor and reacted with additional steam and hydrogen at a temperature of about 650 0 C producing a reaction product consisting essentially of uranium dioxide having an oxygen-uranium ratio of about 2 and a low residual fluoride content. This product is then conveyed to a fourth fluidized bed wherein a mixture of air and preheated nitrogen is introduced in order to further reduce the fluoride content of the UO 2 and increase the oxygen-uranium ratio to about 2.25

  2. Purification of uranium metal

    International Nuclear Information System (INIS)

    Suzuki, Kenji; Shikama, Tatsuo; Ochiai, Akira.

    1993-01-01

    We developed the system for purifying uranium metal and its metallic compounds and for growing highly pure uranium compounds to study their intrinsic physical properties. Uranium metal was zone refined under low contamination conditions as far as possible. The degree of the purity of uranium metal was examined by the conventional electrical resistivity measurement and by the chemical analysis using the inductive coupled plasma emission spectrometry (ICP). The results show that some metallic impurities evaporated by the r.f. heating and other usual metallic impurities moved to the end of a rod with a molten zone. Therefore, we conclude that the zone refining technique is much effective to the removal of metallic impurities and we obtained high purified uranium metal of 99.99% up with regarding to metallic impurities. The maximum residual resistivity ratio, the r.r.r., so far obtained was about 17-20. Using the purified uranium, we are attempting to grow a highly pure uranium-titanium single crystals. (author)

  3. Strong demand for natural uranium

    International Nuclear Information System (INIS)

    Kalinowski, P.

    1975-01-01

    The Deutsches Atomforum and the task group 'fuel elements' of the Kerntechnische Gesellschaft had organized an international two-day symposium in Mainz on natural uranium supply which was attended by 250 experts from 20 countries. The four main themes were: Demand for natural uranium, uranium deposits and uranium production, attitude of the uranium producing countries, and energy policy of the industrial nations. (orig./AK) [de

  4. The uranium equation in 1982

    International Nuclear Information System (INIS)

    Bonny, J.; Fulton, M.

    1983-01-01

    The subject is discussed under the headings: comparison of world nuclear generating capacity forecasts; world uranium requirements; comparison of uranium production capability forecasts; supply and demand situation in 1990 and 1995; a perspective on the uranium equation (economic factors; development lead times as a factor affecting market stability; the influence of uncertainty; the uranium market in perspective; the uranium market in 1995). (U.K.)

  5. Uranium resource assessments

    International Nuclear Information System (INIS)

    1981-01-01

    The objective of this investigation is to examine what is generally known about uranium resources, what is subject to conjecture, how well do the explorers themselves understand the occurrence of uranium, and who are the various participants in the exploration process. From this we hope to reach a better understanding of the quality of uranium resource estimates as well as the nature of the exploration process. The underlying questions will remain unanswered. But given an inability to estimate precisely our uranium resources, how much do we really need to know. To answer this latter question, the various Department of Energy needs for uranium resource estimates are examined. This allows consideration of whether or not given the absence of more complete long-term supply data and the associated problems of uranium deliverability for the electric utility industry, we are now threatened with nuclear power plants eventually standing idle due to an unanticipated lack of fuel for their reactors. Obviously this is of some consequence to the government and energy consuming public. The report is organized into four parts. Section I evaluates the uranium resource data base and the various methodologies of resource assessment. Part II describes the manner in which a private company goes about exploring for uranium and the nature of its internal need for resource information. Part III examines the structure of the industry for the purpose of determining the character of the industry with respect to resource development. Part IV arrives at conclusions about the emerging pattern of industrial behavior with respect to uranium supply and the implications this has for coping with national energy issues

  6. Vacuum fusion of uranium

    International Nuclear Information System (INIS)

    Stohr, J.A.

    1957-01-01

    After having outlined that vacuum fusion and moulding of uranium and of its alloys have some technical and economic benefits (vacuum operations avoid uranium oxidation and result in some purification; precision moulding avoids machining, chip production and chemical reprocessing of these chips; direct production of the desired shape is possible by precision moulding), this report presents the uranium fusion unit (its low pressure enclosure and pumping device, the crucible-mould assembly, and the MF supply device). The author describes the different steps of cast production, and briefly comments the obtained results

  7. Depleted uranium management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  8. Uranium absorption study pile

    International Nuclear Information System (INIS)

    Raievski, V.; Sautiez, B.

    1959-01-01

    The report describes a pile designed to measure the absorption of fuel slugs. The pile is of graphite and comprises a central section composed of uranium rods in a regular lattice. RaBe sources and BF 3 counters are situated on either side of the center. A given uranium charge is compared with a specimen charge of about 560 kg, and the difference in absorption between the two noted. The sensitivity of the equipment will detect absorption variations of about a few ppm boron (10 -6 boron per gr. of uranium) or better. (author) [fr

  9. The politics of uranium

    International Nuclear Information System (INIS)

    Moss, N.

    1981-01-01

    The subject is covered in chapters, entitled: what God hath joined (historical and technical summary of the atomic bomb project and the post-war attempt at international control of atomic energy); finding uranium and using it; atoms for peace; nuclear optimists (development of nuclear power); the Treaty brake (Non-Proliferation Treaty); bending the rules; plowshares and swords; the club and the gambler (uranium production industry); turnabout (government policies); the uranium cycle; nuclear conflict; tiger in the nursery (radiation hazards; nuclear controversy); breaking the rules (proliferation); new answers, old questions. (U.K.)

  10. Uranium thiolate complexes

    International Nuclear Information System (INIS)

    Leverd, Pascal C.

    1994-01-01

    This research thesis proposes a new approach to the chemistry of uranium thiolate complexes as these compounds are very promising for various uses (in bio-inorganic chemistry, in some industrial processes like oil desulphurization). It more particularly addresses the U-S bond or more generally bonds between polarizable materials and hard metals. The author thus reports the study of uranium organometallic thiolates (tricyclo-penta-dienic and mono-cyclo-octa-tetraenylic complexes), and of uranium homoleptic thiolates (tetra-thiolate complexes, hexa-thiolate complexes, reactivity of homoleptic thiolate complexes) [fr

  11. Uranium mining and milling

    International Nuclear Information System (INIS)

    Floeter, W.

    1976-01-01

    In this report uranium mining and milling are reviewed. The fuel cycle, different types of uranium geological deposits, blending of ores, open cast and underground mining, the mining cost and radiation protection in mines are treated in the first part of this report. In the second part, the milling of uranium ores is treated, including process technology, acid and alkaline leaching, process design for physical and chemical treatment of the ores, and the cost. Each chapter is clarified by added figures, diagrams, tables, and flowsheets. (HK) [de

  12. Depleted uranium management alternatives

    International Nuclear Information System (INIS)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process

  13. Possible uranium sources of Streltsovsky uranium ore field

    International Nuclear Information System (INIS)

    Zhang Lisheng

    2005-01-01

    The uranium deposit of the Late Jurassic Streltsovaky caldera in Transbaikalia of Russia is the largest uranium field associated with volcanics in the world, its uranium reserves are 280 000 t U, and it is the largest uranium resources in Russia. About one third of the caldera stratigraphic pile consists of strongly-altered rhyolites. Uranium resources of the Streltsovsky caldera are much larger than any other volcanic-related uranium districts in the world. Besides, the efficiency of hydrothermal alteration, uranium resources appear to result from the juxtaposition of two major uranium sources; highly fractionated peralkaline rhyolites of Jurassic age in the caldera, and U-rich subalkaline granites of Variscan age in the basement in which the major uranium-bearing accessory minerals were metamict at the time of the hydrothermal ore formation. (authors)

  14. Uranium and nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Basic principles and definitions of reactor technology, biological radiation effects in man, and radioactive wastes are outlined. An argument is presented against Australia exploiting its uranium resources. (R.L.)

  15. Uranium hexafluoride purification

    International Nuclear Information System (INIS)

    Araujo, Eneas F. de

    1986-01-01

    Uranium hexafluoride might contain a large amount of impurities after manufacturing or handling. Three usual methods of purification of uranium hexafluoride were presented: selective sorption, sublimation, and distillation. Since uranium hexafluoride usually is contaminated with hydrogen fluoride, a theoretical study of the phase equilibrium properties was performed for the binary system UF 6 -HF. A large deviation from the ideal solution behaviour was observed. A purification unity based on a constant reflux batch distillation process was developed. A procedure was established in order to design the re boiler, condenser and packed columns for the UF 6 -HF mixture separation. A bench scale facility for fractional distillation of uranium hexafluoride was described. Basic operations for that facility and results extracted from several batches were discussed. (author)

  16. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1982-01-01

    A process for the preparation of a sintered, high density, large crystal grain size uranium dioxide pellet is described which involves: (i) reacting a uranyl nitrate of formula UO 2 (NO 3 ) 2 .6H 2 O with a sulphur source, at a temperature of from about 300 deg. C to provide a sulphur-containing uranium trioxide; (ii) reacting the thus-obtained modified uranium trioxide with ammonium nitrate to form an insoluble sulphur-containing ammonium uranate; (iii) neutralizing the thus-formed slurry with ammonium hydroxide to precipitate out as an insoluble ammonium uranate the remaining dissolved uranium; (iv) recovering the thus-formed precipitates in a dry state; (v) reducing the dry precipitate to UO 2 , and forming it into 'green' pellets; and (vi) sintering the pellets in a hydrogen atmosphere at an elevated temperature

  17. Uranium market activities

    International Nuclear Information System (INIS)

    Patterson, J.A.

    1975-01-01

    Results are summarized from the 1974 ERDA annual survey of buyers and sellers and from a survey of uranium price data which provided information on additional domestic buying activity during the first half of 1975 through 1982

  18. Heap leaching for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    Denison Mines Ltd. is using two bacterial leaching processes to combat the high cost of extracting uranium from low grade ore in thin reefs. Both processes use thiobacillus ferro-oxidans, a bacterium that employs the oxidation of ferrous iron and sulphur as its source of energy for growth. The first method is flood leaching, in which ore is subjected to successive flood, drain and rest cycles. The second, trickle leaching, uses sprinklers to douse the broken muck continuously with leaching solution. In areas where grades are too low to justify the expense of hauling the ore to the surface, the company is using this biological process underground to recover uranium. In 1987 Denison recovered 840 000 lb of uranium through bacterial heap leaching. It plans to have biological in-place leaching contribute 25% of the total uranium production by 1990. (fig.)

  19. Uranium purchases report 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Data reported by domestic nuclear utility companies in their responses to the 1991 through 1993 ''Uranium Industry Annual Survey,'' Form EIA-858, Schedule B,'' Uranium Marketing Activities,'' are provided in response to the requirements in the Energy Policy Act 1992. Appendix A contains an explanation of Form EIA-858 survey methodologies with emphasis on the processing of Schedule B data. Additional information published in this report not included in Uranium Purchases Report 1992, includes a new data table. Presented in Table 1 are US utility purchases of uranium and enrichment services by origin country. Also, this report contains additional purchase information covering average price and contract duration. Table 2 is an update of Table 1 and Table 3 is an update of Table 2 from the previous year's report. The report contains a glossary of terms

  20. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  1. Uranium in granites

    International Nuclear Information System (INIS)

    Maurice, Y.T.

    1982-01-01

    Recent research activities of the Canadian Uranium in Granites Study are presented in 18 papers and 3 abstracts. 'Granites' is used as a generic term for granitoids, granitic rocks, and plutonic rocks

  2. Uranium Research in Senegal

    International Nuclear Information System (INIS)

    Kanouté, Mamadou

    2015-01-01

    The work of mining companies have so far not proved economic uranium resources, but they have nevertheless contributed greatly to a better understanding of the geology, particularly in Eastern Senegal, on the upper Precambrian basin including which equivalents exist throughout West Africa (the uranium belt of Zaire) prospected by CEA-COGEMA teams. The researches carried out in Senegal, but also in Guinea and Mali helped establish a detailed map and understand the course of geological history. With new exploration techniques and data of airborne geophysical (radiometric) provided by the Mining Sector Support Programme (PASMI 9th EDF 9 ACP SE 09), AREVA, at the end of the first period validity of the exploration permit increased significantly, the resources. Prospects are favorable to a doubling of resources; objective of a uranium mine in Senegal. Synergies are possible and desirable with joint exploitation of uranium deposits located in Mali, near the border with Senegal.

  3. Uranium industry seminar

    International Nuclear Information System (INIS)

    1980-01-01

    The tenth annual Uranium Industry Seminar, sponsored by the US Department of Energy's (DOE) Grand Junction Office, was held in Grand Junction, Colorado, on October 22 and 23, 1980. There were 700 registered attendees as compared to 833 attending the previous year. The attendees were drawn largely from uranium and other energy resource companies, electric utility firms, energy consultants and service companies, and governmental agencies. In addition, there were representatives present from Indian tribes, universities, the media, DOE laboratories, and foreign countries and organizations. There were 14 papers presented at the seminar by speakers from the Department of Energy, US Geological Survey, and Bendix Field Engineering Corporation which is the on-site prime contractor for DOE's Grand Junction Office. The topics the papers dealt with were uranium policies, exploration, respources, supply, enrichment, and market conditions. There also were papers describing the National Uranium Resource Evaluation program and international activities. All 14 papers in this Proceedings have been abstracted and indexed

  4. Uranium in South Africa

    International Nuclear Information System (INIS)

    Ford, M.A.

    1993-01-01

    The history, sources, mineralogy, extraction metallurgy, conversion, and enrichment of uranium in South Africa is reviewed. Over the past 40 years extraction plants were built at 27 sites, and over 140 kt of uranium have been produced. Older plants have had to adapt to changing market conditions, no single technology has had the opportunity to become entrenched, and the costs have been reduced to a third of those of the original flowsheet. The research efforts aimed at developing the country's nuclear raw materials have been particularly rewarding, as they have enabled South Africa to become a world leader in the extraction of uranium from low-grade ores and to develop methods for uranium enrichment and the production of nuclear fuels. 43 refs., 7 figs., 4 tabs

  5. Ontario's uranium mining industry

    International Nuclear Information System (INIS)

    Runnalls, O.J.C.

    1981-01-01

    This report traces the Ontario uranium mining industry from the first discovery of uranium north of Sault Ste. Marie through the uranium boom of the 1950's when Elliot Lake and Bancroft were developed, the cutbacks of the 1960s, the renewed enthusiasm in exploration and development of the 1970s to the current position when continued production for the domestic market is assured. Ontario, with developed mines and operational expertise, will be in a position to compete for export markets as they reopen. The low level of expenditures for uranium exploration and the lack of new discoveries are noted. The report also reviews and places in perspective the development of policies and regulations governing the industry and the jurisdictional relationships of the Federal and Provincial governments

  6. Uranium dioxide. Sintering test

    International Nuclear Information System (INIS)

    Anon.

    Description of a sintering method and of the equipment devoted to uranium dioxide powder caracterization and comparison between different samples. Determination of the curve giving specific volume versus pressure and micrographic examination of a pellet at medium pressure [fr

  7. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  8. The uranium market prospects

    International Nuclear Information System (INIS)

    Lloyd, R.

    1981-01-01

    A historical analysis of the uranium market points out the cyclical nature of the market and suggests that the spot price, exploration levels, and mill capacity utilization rate are dependent on economic factors. An examination of the current uranium market suggests that the effects of the forecasted surplus supply, the diminishing returns in exploration and the long lead times and high costs of development may mean that future production levels are uncertain. The general prospects for the uranium industry are also uncertain because of barriers to trade, environmental regulations and public opinion. The paper concludes that by the use of long term contracts, appropriate inventory policy and greater discussion between producers and consumers the prospects for the uranium market can be made more certain and further imbalances in demand and supply can be avoided. (author)

  9. Uranium industry seminar: proceedings

    International Nuclear Information System (INIS)

    1981-01-01

    The eleventh annual Uranium Industry Seminar, sponsored by the Grand Junction Area Office of the US Department of Energy (DOE), was held in Grand Junction, Colorado, on October 21 and 22, 1981. There were 491 registered attendees as compared to 700 attending the previous year. The attendees were largely from uranium and other energy resource companies, electric utility firms, energy consultants and service companies, and governmental agencies. In addition, there were representatives present from Indian tribes, universities, the media, DOE laboratories, and foreign countries and organizations. Papers presented at the seminar dealt with uranium policies, exploration, resources, supply, enrichment, and market conditions. There also were papers on the National Uranium Resource Evaluation Program and international activities. Thirteen papers included in this report have been abstracted and indexed

  10. Internal friction in uranium

    International Nuclear Information System (INIS)

    Selle, J.E.

    1975-01-01

    Results are presented of studies conducted to relate internal friction measurements in U to allotropic transformations. It was found that several internal friction peaks occur in α-uranium whose magnitude changed drastically after annealing in the β phase. All of the allotropic transformations in uranium are diffusional in nature under slow heating and cooling conditions. Creep at regions of high stress concentration appears to be responsible for high temperature internal friction in α-uranium. The activation energy for grain boundary relaxation in α-uranium was found to be 65.1 +- 4 kcal/mole. Impurity atoms interfere with the basic mechanism for grain boundary relaxation resulting in a distribution in activation energies. A considerable distribution in ln tau 0 was also found which is a measure of the distribution in local order and in the Debye frequency around a grain boundary

  11. Uranium Location Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — A GIS compiled locational database in Microsoft Access of ~15,000 mines with uranium occurrence or production, primarily in the western United States. The metadata...

  12. Uranium - the plain facts

    International Nuclear Information System (INIS)

    Technical, political, environmental and sociological aspects are discussed under the headings: mining; milling; dangers (particularly, radiation hazards); human sacrifice; Namibia; future of uranium; what you can do. (U.K.)

  13. Uranium in Canada

    International Nuclear Information System (INIS)

    1989-01-01

    In 1988 Canada's five uranium producers reported output of concentrate containing a record 12,470 metric tons of uranium (tU), or about one third of total Western world production. Shipments exceeded 13,200 tU, valued at $Cdn 1.1 billion. Most of Canada's uranium output is available for export for peaceful purposes, as domestic requirements represent about 15 percent of production. The six uranium marketers signed new sales contracts for over 11,000 tU, mostly destined for the United States. Annual exports peaked in 1987 at 12,790 tU, falling back to 10,430 tU in 1988. Forward domestic and export contract commitments were more than 70,000 tU and 60,000 tU, respectively, as of early 1989. The uranium industry in Canada was restructured and consolidated by merger and acquisition, including the formation of Cameco. Three uranium projects were also advanced. The Athabasca Basin is the primary target for the discovery of high-grade low-cost uranium deposits. Discovery of new reserves in 1987 and 1988 did not fully replace the record output over the two-year period. The estimate of overall resources as of January 1989 was down by 4 percent from January 1987 to a total (measured, indicated and inferred) of 544,000 tU. Exploration expenditures reached $Cdn 37 million in 1987 and $59 million in 1988, due largely to the test mining programs at the Cigar Lake and Midwest projects in Saskatchewan. Spot market prices fell to all-time lows from 1987 to mid-1989, and there is little sign of relief. Canadian uranium production capability could fall below 12,000 tU before the late 1990s; however, should market conditions warrant output could be increased beyond 15,000 tU. Canada's known uranium resources are more than sufficient to meet the 30-year fuel requirements of those reactors in Canada that are now or are expected to be in service by the late 1990s. There is significant potential for discovering additional uranium resources. Canada's uranium production is equivalent, in

  14. U for uranium

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The Beisa Mine is unique in South Africa - it is the only underground mine with uranium as its main product and gold as a by-product. At the rate of 1,2 Mt/a, the life of Beisa is estimated on 26 years. Beisa's metallurgical plant is designed to handle initially a monthly throughput of 100 000t of ore, from which uranium, gold and silver will be extracted

  15. Uranium leads political stakes

    International Nuclear Information System (INIS)

    James, D.

    2009-01-01

    Until the announcement by the federal Environment Minister Peter Garrett that the government would permit uranium mining at Beverly Four Mile, South Australia, there had been little news flow from the sector over the past year. Uranium was the first to turn down, even before the United States sub-prime mortgage crisis began to cause shock waves through the global economy, a report by BGF Equities analyst Warwick Grigor shows.

  16. Uranium purchases report 1994

    International Nuclear Information System (INIS)

    1995-07-01

    US utilities are required to report to the Secretary of Energy annually the country of origin and the seller of any uranium or enriched uranium purchased or imported into the US, as well as the country of origin and seller of any enrichment services purchased by the utility. This report compiles these data and also contains a glossary of terms and additional purchase information covering average price and contract duration. 3 tabs

  17. Gases in uranium exploration

    International Nuclear Information System (INIS)

    Wright, R.J.; Pacer, J.C.

    1981-01-01

    Interest continues to grow in the use of helium and radon detection as a uranium exploration tool because, in many instances, these radiogenic gases are the only indicators of deeply buried mineralization. The origin of these gases, their migration in the ground, the type of samples and measurement techniques are discussed. Case histories of comparative tests conducted on known uranium deposits at three geologically diverse sites in the United States of America are also presented. (author)

  18. Argentinian uranium production

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A profit-making process for the exploitation of low grade uranium is presented. The process of lixiviation will be used, which will make it possible to obtain a final product whose humidity level will not exceed 10% and whose uranium oxide content will be no less than 68%. The operations of the plant are described. The plant can produce between 100 and 150 t of U 3 O 8 /yr in the form of yellow cake

  19. World uranium resources

    International Nuclear Information System (INIS)

    Deffeyes, K.S.; MacGregor, I.D.

    1980-01-01

    To estimate the total resource availability of uranium, the authors' approach has been to ask whether the distribution of uranium in the earth's crust can be reasonably approximated by a bell-shaped log-normal curve. In addition they have asked whether the uranium deposits actually mined appear to be a portion of the high-grade tail, or ascending slope, of the distribution. This approach preserves what they feel are the two most important guiding principles of Hubbert's work, for petroleum, namely recognizing the geological framework that contains the deposits of interest and examining the industry's historical record of discovering those deposits. Their findings, published recently in the form of a book-length report prepared for the US Department of Energy, suggest that for uranium the crustal-distribution model and the mining-history model can be brought together in a consistent picture. In brief, they conclude that both sets of data can be described by a single log-normal curve, the smoothly ascending slope of which indicates approximately a 300-fold increase in the amount of uranium recoverable for each tenfold decrease in ore grade. This conclusion has important implications for the future availability of uranium. They hasten to add, however, that this is only an approximative argument; no rigorous statistical basis exists for expecting a log-normal distribution. They continue, pointing out the enormously complex range of geochemical behavior of uranium - and its wide variety of different binds of economic deposit. Their case study, supported by US mining records, indicates that the supply of uranium will not be a limiting factor in the development of nuclear power

  20. Recovery of uranium values

    International Nuclear Information System (INIS)

    Rowden, G.A.

    1982-01-01

    A process is provided for the recovery of uranium from an organic extractant phase containing an amine. The extractant phase is contacted in a number of mixing stages with an acidic aqueous stripping phase containing sulphate ions, and the phases are passed together through a series of mixing stages while maintaining a dispersion of droplets of one phase in the other. Uranium is precipitated from the final stage by raising the pH. An apparatus having several mixing chambers is described

  1. Uranium - the nuclear fuel

    International Nuclear Information System (INIS)

    Smith, E.E.N.

    1976-01-01

    A brief history is presented of Canadian uranium exploration, production, and sales. Statistics show that Canada is a good customer for its own uranium due to a rapidly expanding nuclear power program. Due to an average 10 year lag between commencement of exploration and production, and with current producers sold out through 1985, it is imperative that exploration efforts be increased. (E.C.B.)

  2. Uranium project. Geochemistry prospection

    International Nuclear Information System (INIS)

    Lambert, J.

    1983-01-01

    Geochemistry studies the distribution of the chemicals elements in the terrestrial crust and its ways to migrate. The terminology used in this report is the following one: 1) Principles of the prospection geochemistry 2) Stages of the prospection geochemistry 3)utility of the prospection geochemistry 4) geochemistry of uranium 5) procedures used within the framework of uranium project 6) Average available 7) Selection of the zones of prospection geochemistry 8) Stages of the prospection, Sample preparation and analisis 9) Presentation of the results

  3. Worldwide developments in uranium

    International Nuclear Information System (INIS)

    Hoellen, E.E.

    1987-01-01

    World uranium production will continue to change in most major producing nations. Canadian production will increase and will be increasingly dominated by western producers as eastern Canadian high-cost production declines. Australian production will increase as major projects come into operation before 2000. US production will stabilize through the end of the century. South African production will be dependent upon the worldwide support for economic sanctions. China's entry into the world market injects yet another variable into the already cloudy supply picture. Many risks and uncertainties will face uranium producers through the 1980s. Recognizing that the uranium industry is not a fast-growing market, many existing and potential producers are seeking alternate investment courses, causing a restructuring of the world uranium production industry in ways not anticipated even a few years ago. During the restructuring process, world uranium production will most likely continue to exceed uranium consumption, resulting in a further buildup of world uranium inventories. Inventory sales will continue to redistribute this material. As inventory selling runs its course, users will turn to normal sources of supply, stimulating additional production to meet needs. Stimulation in the form of higher prices will be determined by how fast producers are willing and able to return to the market. Production costs are expected to have an increasing impact as it has become apparent that uranium resources are large in comparison to projected consumption. Conversely, security-of-supply issues have seemed to be of decreasing magnitude as Canada, Australia, and other non-US producers continue to meet delivery commitments

  4. Uranium tailings bibliography

    International Nuclear Information System (INIS)

    Holoway, C.F.; Goldsmith, W.A.; Eldridge, V.M.

    1975-12-01

    A bibliography containing 1,212 references is presented with its focus on the general problem of reducing human exposure to the radionuclides contained in the tailings from the milling of uranium ore. The references are divided into seven broad categories: uranium tailings pile (problems and perspectives), standards and philosophy, etiology of radiation effects, internal dosimetry and metabolism, environmental transport, background sources of tailings radionuclides, and large-area decontamination

  5. Saskatchewan resources. [including uranium

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The production of chemicals and minerals for the chemical industry in Saskatchewan are featured, with some discussion of resource taxation. The commodities mentioned include potash, fatty amines, uranium, heavy oil, sodium sulfate, chlorine, sodium hydroxide, sodium chlorate and bentonite. Following the successful outcome of the Cluff Lake inquiry, the uranium industry is booming. Some developments and production figures for Gulf Minerals, Amok, Cenex and Eldorado are mentioned.

  6. Ranger uranium environmental enquiry

    International Nuclear Information System (INIS)

    1976-07-01

    The submission is divided into three sections. Section A considers the international implications of the development of uranium resources including economic and resource aspects and environmental and social aspects. Section B outlines the government's position on export controls over uranium and its effect on the introduction of nuclear power in Australia. Section C describes the licensing and regulatory functions that would be needed to monitor the environmental and health aspects of the Ranger project. (R.L.)

  7. Uranium determination in water

    International Nuclear Information System (INIS)

    Prudenzo, E.J.; Puga, Maria J.; Cerchietti, Maria L.R.; Arguelles, Maria G.

    2005-01-01

    In our laboratory, a procedure has been assessed to determine uranium content of water in normal situations. The method proposed without sample pre-treatment, is simple and rapid. Uranium mass is measured by fluorimetry. For calculation of detection limit (Ld) and quantification level (Lq) we used blank samples and the results were analyzed for different statistical test. The calculation of total propagated uncertainty and sources contribution on real samples are presented. (author)

  8. US uranium market developments

    International Nuclear Information System (INIS)

    Krusiewski, S.V.; Thomas, D.C.

    1981-01-01

    Domestic uranium delivery commitments for the 1981 to 1990 period reached a peak in the July 1980 survey and then declined in the January 1981 survey and again in the July 1981 survey. However, there are sizable sales contracts through the mid-1980s. In the latter part of this decade, unfilled requirements increase which can provide a needed market for domestic producers. Older contracts are helping to keep the average contract prices, including market price settlements, rather stable. However, average market price settlements decreased from data reported in January 1981, but some of these deliveries represent settlement of litigation. Foreign uranium procurement is scheduled to exceed deliveries of US uranium to foreign buyers in the 1981 to 1990 period. However, the actual use of foreign uranium has been quite low as US enrichment services customers have preferred to buy US uranium. Based on over four and one-half years of data, only about 7% foreign uranium has been brought to the Department of Energy for enrichment. Inventories of natural and enriched uranium in buyers' hands continue to increase. This is a concern to the uranium-producing industry. However, the industry should not be concerned about DOE-owned inventories, which are needed to supply Government requirements. There is absolutely no plan to dispose of DOE inventories on the commercial market. Capital expenditures reached a peak of $800 million in 1979. This decreased to $780 million in 1980, although higher expenditures were planned for the year. A very sharp reduction in plans for 1981, from $830 to $450 million, has been reported. A further reduction to $350 million is planned for 1982. However, it is interesting to note that the planned expenditures for 1982 are above the expenditures for 1975, a period of industury expansion

  9. URANIUM SEPARATION PROCESS

    Science.gov (United States)

    Lyon, W.L.

    1962-04-17

    A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)

  10. Uranium production in Sweden

    International Nuclear Information System (INIS)

    Bergh, S.

    1994-01-01

    The history of uranium production in Sweden is reviewed in the article. The World War II led to an exploitation of the Swedish alum shale on a large scale. In the last phase of the war it also became obvious that the shale might be used for energy production of quite another kind than oil. In 1947 AB Atom energy was founded, an enterprise with one of its purposes to extract uranium for peaceful use. A plant with a yearly capacity of 120 tons of uranium was erected at Ranstad and ready for production by 1965. From the start in Ranstad and for many years to come there was hardly any interest in an immediate large uranium production. It was decided to use the plant for studies on its more effective exploitation in case of an expansion in the future, bearing in mind the reactor programme. In the course of time economical reasons began to speak against the project. The shale seemed to have a future neither as oil nor as uranium resource. The complete termination of the work on uranium production from shale occurred in 1989

  11. Uranium control in phosphogypsum

    International Nuclear Information System (INIS)

    Hurst, F.J.; Arnold, W.D.

    1980-01-01

    In wet-process phosphoric acid plants, both previous and recent test results show that uranium dissolution from phosphate rock is significantly higher when the rock is acidulated under oxidizing conditions than under reducing conditions. Excess sulfate and excess fluoride further enhance the distribution of uranium to the cake. Apparently the U(IV) present in the crystal lattice of the apatite plus that formed by reduction of U(IV) by FE(II) during acidulation is trapped or carried into the crystal lattice of the calcium sulfate crystals as they form and grow. The amount of uranium that distributes to hemihydrate filter cake is up to seven times higher than the amount that distributes to the dihydrate cake. About 60% of the uranium in hemihydrate cakes can be readily leached after hydration of the cake, but the residual uranium (20 to 30%) is very difficult to remove economically. Much additional research is needed to develop methods for minimizing uranium losses to calcium filter cakes

  12. Automated uranium titration system

    International Nuclear Information System (INIS)

    Takahashi, M.; Kato, Y.

    1983-01-01

    An automated titration system based on the Davies-Gray method has been developed for accurate determination of uranium. The system consists of a potentiometric titrator with precise burettes, a sample changer, an electronic balance and a desk-top computer with a printer. Fifty-five titration vessels are loaded in the sample changer. The first three contain the standard solution for standardizing potassium dichromate titrant, and the next two and the last two contain the control samples for data quality assurance. The other forty-eight measurements are carried out for sixteen unknown samples. Sample solution containing about 100 mg uranium is taken in a titration vessel. At the pretreatment position, uranium (VI) is reduced to uranium (IV) by iron (II). After the valency adjustment, the vessel is transferred to the titration position. The rate of titrant addition is automatically controlled to be slower near the end-point. The last figure (0.01 mL) of the equivalent titrant volume for uranium is calculated from the potential change. The results obtained with this system on 100 mg uranium gave a precision of 0.2% (RSD,n=3) and an accuracy of better than 0.1%. Fifty-five titrations are accomplished in 10 hours. (author)

  13. Analytical method of uranium (IV) and uranium (VI) in uranium ores and uranium-bearing rocks

    International Nuclear Information System (INIS)

    Shen Zhuqin; Zheng Yongfeng; Li Qingzhen; Zhong Miaolan; Gu Dingxiang

    1995-11-01

    The best conditions for keeping the original valences of uranium during the dissolution and separation procedure of geological samples (especially those micro uranium-bearing rock) were studied. With the exist of high concentration protectants, the sample was decomposed with concentration HF at 40 +- 5 degree C. The U(VI) was dissolved completely and formed stable complex UO 2 F 2 , the U(IV) was precipitated rapidly and carried by carrier. Quantitative separation was carried out immediately with suction. The decomposition of sample and separation of solid/liquid phases was completed within two minutes. After separation, the U(IV) and U(VI) were determined quantitatively with laser fluorescence or voltametry respectively according to the uranium content. The limit of detection for this method is 0.7 μg/g, RSD is 10.5%, the determinate range of uranium is 2 x 10 -6 ∼10 -1 g/g. The uranium contents and their valence state ratio were measured for more than one hundred samples of sand stone and granite, the accuracy and precision of these results are satisfactory for uranium geological research. (12 tabs.; 11 refs.)

  14. Production of uranium peroxide

    International Nuclear Information System (INIS)

    Caropreso, F.E.; Kreuz, D.F.

    1977-01-01

    A process is claimed of recovering uranium values as uranium peroxide from an aqueous uranyl solution containing dissolved vanadium and sodium impurities by treating the uranyl solution with hydrogen peroxide in an amount sufficient to have an excess of at least 0.5 parts H 2 O 2 per part of vanadium (V 2 O 5 ) above the stoichiometric amount required to form the uranium peroxide, the hydrogen peroxide treatment is carried out in three sequential phases consisting of I, a precipitation phase in which the hydrogen peroxide is added to the uranyl solution to precipitate the uranium peroxide and the pH of the reaction medium maintained in the range of 2.5 to 5.5 for a period of from about 1 to 60 minutes after the hydrogen peroxide addition; II, a digestion phase in which the pH of the reaction medium is maintained in the range of 3.0 to 7.0 for a period of about 5 to 180 minutes and III, a final phase in which the pH of the reaction medium is maintained in the range of 4.0 to 7.0 for a period of about 1 to 60 minutes during which time the uranium peroxide is separated from the reaction solution containing the dissolved vanadium and sodium impurities. The excess hydrogen peroxide is maintained during the entire treatment up until the uranium peroxide is separated from the reaction medium

  15. The Streltsovskoye uranium district

    International Nuclear Information System (INIS)

    Ischukova, L.P.

    1997-01-01

    This paper describes the geology of the Streltsovskoye uranium district located in south-eastern Zabaikalie region, Chita Province, Siberia, Russia. This district hosts Russia's only currently active uranium production centre. The uranium ore was discovered from 1963 to 1967 by drilling below fluorite veins which had minor associated uranium mineralization and radioactive anomalies. The uranium occurs as large scale vein stockwork deposits of hydrothermal origin within a volcano-tectonic caldera formed by continental volcanism of Late Mesozoic age. Rocks occurring in the caldera include basalt and trachydacite, overlain by rhyolite, and with associated interbedded sediments. The ore bodies occur in steeply dipping faults, with the greatest concentrations located where faults along the margins of the caldera intersect steeply dipping, cross cutting, northeasterly and northwesterly striking faults. The Streltsovskoye caldera extends over an area of 150 km 2 and is underlain by a large batholith. The 19 identified uranium deposits occurred in structural features that cut through the caldera sequence and extend into the basement rocks. The caldera has a maximum thickness of 1400 metres. Details of several deposits are given, including descriptions of mineralization and associated alteration. (author). 10 figs

  16. Uranium-scintillator device

    International Nuclear Information System (INIS)

    Smith, S.D.

    1979-01-01

    The calorimeter subgroup of the 1977 ISABELLE Summer Workshop strongly recommended investigation of the uranium-scintillator device because of its several attractive features: (1) increased resolution for hadronic energy, (2) fast time response, (3) high density (i.e., 16 cm of calorimeter per interaction length), and, in comparison with uranium--liquid argon detectors, (4) ease of construction, (5) simple electronics, and (6) lower cost. The AFM group at the CERN ISR became interested in such a calorimeter for substantially the same reasons, and in the fall of 1977 carried out tests on a uranium-scintillator (U-Sc) calorimeter with the same uranium plates used in their 1974 studies of the uranium--liquid argon (U-LA) calorimeter. The chief disadvantage of the scintillator test was that the uranium plates were too small to fully contain the hadronic showers. However, since the scintillator and liquid argon tests were made with the plates, direct comparison of the two types of devices could be made

  17. Study of uranium plating measurement

    International Nuclear Information System (INIS)

    Lin Jufang; Wen Zhongwei; Wang Mei; Wang Dalun; Liu Rong; Jiang Li; Lu Xinxin

    2007-06-01

    In neutron physics experiments, the measurement for plate-thickness of uranium can directly affect uncertainties of experiment results. To measure the plate-thickness of transform target (enriched uranium plating and depleted uranium plating), the back to back ionization chamber, small solid angle device and Au-Si surface barrier semi-conductor, were used in the experiment study. Also, the uncertainties in the experiment were analyzed. Because the inhomo-geneous of uranium lay of plate can quantitively affect the result, the homogeneity of uranium lay is checked, the experiment result reflects the homogeneity of uranium lay is good. (authors)

  18. Recovery of uranium by chlorination

    International Nuclear Information System (INIS)

    Komoto, Shigetoshi; Taki, Tomihiro

    1988-01-01

    The recovery of uranium from uraniferous phosphate by conventional process is generally uneconomic, except that uranium is recovered as a by-product. If an economical process by which uranium is recovered efficiently as a chief product is discovered, uraniferous phosphate will be used effectively as uranium ore. By using chiorination which will be expected to be favorable in comparison with conventional process, the recovery of uranium from uraniferous phosphate has been carried out. The paper describes the reaction machanism and general characteristics of the uranium chiorination, and the research done so for. (author)

  19. Anticorrosion protection of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, Ivan D.; Kazakovskaya, Tatiana; Tukmakov, Victor; Shapovalov, Vyacheslav [Russian Federal Nuclear Center-VNIIEF, 37, Mira Ave., RU-607190 Sarov (Nizhnii Gorod), 010450 (Russian Federation)

    2004-07-01

    Uranium in atmospheric conditions is non-stable. Sloughing products are being generated on its surface during storage or use. These corrosion products make many difficulties because of necessity to provide personnel safety. Besides, uranium corrosion may cause damage in parts. The first works devoted to uranium corrosion were performed in the framework of the USA Manhattan Project in the early forties of last century. Various methods of uranium protection were investigated, among them the galvanic one was the most studied. Later on the galvanic technology was patented. The works on this problem remains urgent up to the present time. In Russia, many methods of uranium corrosion protection, mainly against atmospheric corrosion, were tried on. In particular, such methods as diffusion zinc and paint coating were investigated. In the first case, a complex intermetallic U-Zn compound was formed but its protection was not reliable enough, this protection system was inconvenient and uncertain and that is why an additional paint coating was necessary. In the case of paint coatings another problem appeared. It was necessary to find such a coating where gas-permeability would prevail over water-permeability. Otherwise significant uranium corrosion occurs. This circumstance together with low mechanical resistance of paint coatings does not allow to use paint coating for long-term protection of uranium. Currently, there are following methods of uranium protection: ion-plasma, galvanic and thermo-vacuum annealing. These are described in this paper. In the end the issue of corrosion protection in reactor core zones is addressed. Here the greatest difficulties are caused when enriched uranium heated up to 500 deg. C needs anticorrosion protection. In this case various metal coatings are not reliable because of brittle inter-metallide formation. The reliable protection may be provided only up to the temperature plus 400 - 500 deg. C with the help of galvanic copper coating since

  20. Anticorrosion protection of uranium

    International Nuclear Information System (INIS)

    Goncharov, Ivan D.; Kazakovskaya, Tatiana; Tukmakov, Victor; Shapovalov, Vyacheslav

    2004-01-01

    Uranium in atmospheric conditions is non-stable. Sloughing products are being generated on its surface during storage or use. These corrosion products make many difficulties because of necessity to provide personnel safety. Besides, uranium corrosion may cause damage in parts. The first works devoted to uranium corrosion were performed in the framework of the USA Manhattan Project in the early forties of last century. Various methods of uranium protection were investigated, among them the galvanic one was the most studied. Later on the galvanic technology was patented. The works on this problem remains urgent up to the present time. In Russia, many methods of uranium corrosion protection, mainly against atmospheric corrosion, were tried on. In particular, such methods as diffusion zinc and paint coating were investigated. In the first case, a complex intermetallic U-Zn compound was formed but its protection was not reliable enough, this protection system was inconvenient and uncertain and that is why an additional paint coating was necessary. In the case of paint coatings another problem appeared. It was necessary to find such a coating where gas-permeability would prevail over water-permeability. Otherwise significant uranium corrosion occurs. This circumstance together with low mechanical resistance of paint coatings does not allow to use paint coating for long-term protection of uranium. Currently, there are following methods of uranium protection: ion-plasma, galvanic and thermo-vacuum annealing. These are described in this paper. In the end the issue of corrosion protection in reactor core zones is addressed. Here the greatest difficulties are caused when enriched uranium heated up to 500 deg. C needs anticorrosion protection. In this case various metal coatings are not reliable because of brittle inter-metallide formation. The reliable protection may be provided only up to the temperature plus 400 - 500 deg. C with the help of galvanic copper coating since

  1. Oxidation of uranium and uranium alloys

    International Nuclear Information System (INIS)

    Orman, S.

    1976-01-01

    The corrosion behaviour of uranium in oxygen, water and water + oxygen mixtures is compared and contrasted. A considerable amount of work, much of it conflicting, has been published on the U + H 2 O and U + H 2 O + O 2 systems. An attempt has been made to summarise this data and to explain the reasons for the lack of agreement between the experimental results. The evidence for the mechanism involving OH - ion diffusion as the reacting entity in both the U + H 2 O and U + O 2 + H 2 O reactions is advanced. The more limited corrosion data on some lean uranium alloys and on some higher addition alloys referred to as stainless materials is summarised together with some previously unreported results obtained with these materials at AWRE. The data indicates that in the absence of oxygen the lean alloys behave in a similar manner to uranium and evolve hydrogen in approximately theoretical quantities. But the stainless alloys absorb most of the product hydrogen and assessments of reactivity based on hydrogen evolution would be very inaccurate. The direction that future corrosion work on these materials should take is recommended

  2. Process for electrolytically preparing uranium metal

    Science.gov (United States)

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  3. Uranium exploration in Australia

    International Nuclear Information System (INIS)

    Battey, G.C.; Hawkins, B.W.

    1977-01-01

    As a result of exploration which recommenced in 1966 Australia's uranium reserves increased from 6,200 tonnes in 1967 to 227,000 tonnes uranium by June 1976. Most discoveries in the early 1950's were made by prospectors. The increase in reserves during the past decade is the result of exploration by companies utilising improved technology in areas selected as geologically favourable. These reserves were established at relatively low cost. In the Alligator Rivers Uranium Province the ''vein'' type deposits at Jabiluka, Ranger, Koongarra and Nabarlek contain 17% of the world's reserves. Most of these discoveries resulted from the investigation of airborne radiometric anomalies but cover over the prospective host rocks will necessitate the future use of costlier and more indirect exploration techniques. There was exploration for sandstone type uranium deposits in most of Australia's sedimentary basins. The greatest success was achieved in the Lake Frome Basin in South Australia. Other deposits were found in the Ngalia and Amadeus Basins in Central Australia and in the Westmoreland area, N.W. Queensland. A major uranium deposit was found in an unusual environment at Yeelirrie, Western Australia where carnotite occurs in a caliche and clay host which fills a shallow, ancient drainage channel. Although caliche occurrences are relatively widespread on the Precambrian shield no other economic deposit has been found. Recent discoveries in the Georgetown area of Queensland indicate the presence of another uranium province but it is too early to assess its potential. The ore occurs in clastic sediments at the base of a volcanic sequence overlying a Precambrian basement. Several companies which have established large uranium reserves have a number of additional attractive prospects. Exploration activity in Australia in 1975 was at a lower level than in previous years, but the potential for discovering further deposits is considered to be high

  4. Australia's uranium export potential

    International Nuclear Information System (INIS)

    Mosher, D.V.

    1981-01-01

    During the period 1954-71 in Australia approximately 9000 MT of U 3 O 8 was produced from five separate localities. Of this, 7000 MT was exported to the United Kingdom and United States and the balance stockpiled by the Australian Atomic Energy Commission (AAEC). Australia's uranium ore reserves occur in eight deposits in three states and the Northern Territory. However, 83% of Australia's reserves are contained in four deposits in lower Proterozoic rocks in the East Alligator River region of the Northern Territory. The AAEC has calculated Australia's recoverable uranium reserves by eliminating estimated losses during the mining and milling of the ores. AAEC has estimated reasonably assured resources of 289,000 MT of uranium at a recovery cost of less than US$80 per kilogram uranium. The companies have collectively announced a larger ore reserve than the Australian Atomic Energy Commission. This difference is a result of the companies adopting different ore reserve categories. On August 25, 1977, the federal government announced that Australia would develop its uranium resources subject to stringent environmental controls, recognition of Aboriginal Land Rights, and international safeguards. Australian uranium production should gradually increase from 1981 onward, growing to 10,000 to 15,000 MT by 1985-86. Further increases in capacity may emerge during the second half of the 1980s when expansion plans are implemented. Exploration for uranium has not been intensive due to delays in developing the existing deposits. It is likely that present reserves can be substantially upgraded if more exploration is carried out. 6 figures, 3 tables

  5. Influence of uranium hydride oxidation on uranium metal behaviour

    International Nuclear Information System (INIS)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-01-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  6. Influence of uranium hydride oxidation on uranium metal behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  7. Uranium in Niger; L'uranium au Niger

    Energy Technology Data Exchange (ETDEWEB)

    Gabelmann, E

    1978-03-15

    This document presents government policy in the enhancement of uranium resources, existing mining companies and their productions, exploitation projects and economical outcome related to the uranium mining and auxiliary activities. [French] Le document presente la politique de l'Etat dans le cadre de la mise en valeur des ressources d'uranium, les societes minieres existantes et leurs productions, les projets d'exploitation d'uranium et les retombees economiques liees aux activites uraniferes et connexes.

  8. Pyrophoric behaviour of uranium hydride and uranium powders

    Science.gov (United States)

    Le Guyadec, F.; Génin, X.; Bayle, J. P.; Dugne, O.; Duhart-Barone, A.; Ablitzer, C.

    2010-01-01

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (Oxidation mechanisms are proposed.

  9. Uranium Supply Strategy of China

    International Nuclear Information System (INIS)

    Gao Shangxiong; Zhang Decun; Zhang Yi

    2014-01-01

    Conclusion: With the rapid development of nuclear power in the next few years, uranium demand will increase accordingly. Overseas uranium development will be the major channel to meet the future requirement of NPP demand in China.

  10. Collect method of uranium hexafluoride

    International Nuclear Information System (INIS)

    Moura, S.C.; Bustillos, O.W.V.

    1991-01-01

    A collect method of uranium hexafluoride was designed, constructed and assembled in Analytical Laboratory from Instituto de Energia Atomica, Sao Paulo, Brazil. This method of collect is main for quality control of uranium hexafluoride. (author)

  11. METHOD OF RECOVERING URANIUM COMPOUNDS

    Science.gov (United States)

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  12. The case against uranium mining

    International Nuclear Information System (INIS)

    Robotham, F.P.

    1980-01-01

    Australia is a potential uranium supplier. The case against uranium mining is presented. Biological effects of radiation, risks involved in reactor operation and the problems of waste disposal are discussed

  13. Uranium development in Nigeria

    International Nuclear Information System (INIS)

    Karniliyus, J.; Egieya, J.

    2014-01-01

    Nigeria uranium exploration started in 1973. Uranium was found in seven states of the country; Cross River, Adamawa, Taraba, Plateau, Bauchi, Kogi and Kano. Three government agencies were involved. At the end of the various exploration campaigns in 2001, the uranium reserve was estimated at about 200 t U. The Grade ranges from 0.63% - 0-9% at a vertical depth between 130 – 200 m. Currently, the Nigeria Atomic Energy Commission activated in 2006 is charged with the responsibility among others to prospect for and mine radioactive minerals. The main aim of this poster presentation is to review the development of uranium in Nigeria with a view to encourage local and international investors to develop and exploit these deposits. Nigeria is located on latitude 100 N and longitude 80 E surrounded in the north by Niger and Chad, in the east by Cameroun and in the west by the Benin Republic. Available data indicated the viability of mineral investment in the Nigerian uranium resources. With the current economic reforms and investment incentives in Nigeria, interested investors are highly welcome to take advantage of developing these mineral resources. (author)

  14. Uranium tailings sampling manual

    International Nuclear Information System (INIS)

    Feenstra, S.; Reades, D.W.; Cherry, J.A.; Chambers, D.B.; Case, G.G.; Ibbotson, B.G.

    1985-01-01

    The purpose of this manual is to describe the requisite sampling procedures for the application of uniform high-quality standards to detailed geotechnical, hydrogeological, geochemical and air quality measurements at Canadian uranium tailings disposal sites. The selection and implementation of applicable sampling procedures for such measurements at uranium tailings disposal sites are complicated by two primary factors. Firstly, the physical and chemical nature of uranium mine tailings and effluent is considerably different from natural soil materials and natural waters. Consequently, many conventional methods for the collection and analysis of natural soils and waters are not directly applicable to tailings. Secondly, there is a wide range in the physical and chemical nature of uranium tailings. The composition of the ore, the milling process, the nature of tailings depositon, and effluent treatment vary considerably and are highly site-specific. Therefore, the definition and implementation of sampling programs for uranium tailings disposal sites require considerable evaluation, and often innovation, to ensure that appropriate sampling and analysis methods are used which provide the flexibility to take into account site-specific considerations. The following chapters describe the objective and scope of a sampling program, preliminary data collection, and the procedures for sampling of tailings solids, surface water and seepage, tailings pore-water, and wind-blown dust and radon

  15. Uranium hexafluoride handling

    International Nuclear Information System (INIS)

    1991-01-01

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF 6 from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride

  16. Uranium hexafluoride handling. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  17. International uranium market

    International Nuclear Information System (INIS)

    Neff, T.L.; Jacoby, H.D.

    1980-12-01

    Discussed in this report are 1) how one might think about uranium demand, resources and supply, 2) how producers and consumers see the market and are likely to behave, including specifics about export and import commitments, and 3) how these actors are brought together in the international market. The general conclusion is that much of current anxiety about future uranium supply results primarily from a brief but difficult period in the mid- to late-1970's; and that current conditions and trends are favorable (at least to consumers) that there is now little basis for concern. Inventories contractual positions and producer commitments--when compared with realistic (or even unrealistic) demand estimates--imply a buyer's market for at least the next decade. The result will be considerable increases in market flexibility and resilience to shock, and real prices that are low relative to those of the past few years. There is a need to reconsider assumptions about desired directions of technological development, for many current programs were planned in an era of pessimism about uranium supply and process. Similar questions must be raided about nonproliferation policies that depend on some level of control of fuel supplies by the industrial nations. With a soft and more diversified uranium market, leverage that may have existed in the past is rapidly being eroded. Finally, as world prices turn soft, there may be significant problems created for U.S. uranium producers, who have relatively high costs in relation to several large-scale foreign suppliers

  18. Domestic uranium exploration activities

    International Nuclear Information System (INIS)

    Chenoweth, W.L.

    1980-01-01

    Uranium exploration in the United States reached its alltime high in 1978 when the chief exploration indicator, surface drilling, totaled 47 million feet. In 1979, however, total drilling declined to 41 million feet, and during the first 8 months of 1980 the trend continued, as surface drilling was 27% less than for the same period in 1979. The total drilling for 1980 now is expected to be below 30 million feet, far less than the 39.4 million feet planned by industry at the beginning of the year. Falling uranium prices, the uncertainties of future uranium demand, rising costs, and the possibility of stiff foreign competition are the prime causes for the current reduction in domestic uranium exploration. Uranium exploration in the United States continues to be concentrated in the vicinity of major producing areas such as the San Juan Basin, Wyoming Basins, Texas Coastal Plain, Paradox Basin, and northeastern Washington, and in areas of recent discoveries including the Henry Mountains, Utah, the McDermitt caldera in Nevada and Oregon, and central Colorado. The distributions, by location, of total surface drilling for 1979 and the first half of 1980 are presented

  19. Radiation damage of metal uranium

    International Nuclear Information System (INIS)

    Mihajlovic, A.

    1965-01-01

    This report is concerned with the role of dispersion second phase in uranium and burnup rate. The role of dispersion phases in radiation stability of metal uranium was studies by three methods: variation of electric conductivity dependent on the neutron flux and temperature of pure uranium for different states of dispersion second phase; influence of dispersion phase on the radiation creep; transmission electron microscopy of fresh and irradiated uranium

  20. Uranium market 1986-2000

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The report on the uranium market describes the technical and economic factors influencing the nuclear fuel industry in mid-1986. The contents of the report includes a discussion of: the nuclear generating capacity, the demand for uranium (requirements and procurements), supplies of uranium, and the interaction between supply and demand. The report does not study in depth the effects of the Chernobyl accident on the uranium market.

  1. Uranium resources, production and demand

    International Nuclear Information System (INIS)

    1988-01-01

    Nuclear power-generating capacity will continue to expand, albeit at a slower pace than during the past fifteen years. This expansion must be matched by an adequately increasing supply of uranium. This report compares uranium supply and demand data in free market countries with the nuclear industry's natural uranium requirements up to the year 2000. It also reviews the status of uranium exploration, resources and production in 46 countries

  2. The economics of uranium demand

    International Nuclear Information System (INIS)

    Owen, A.D.

    1983-01-01

    The major characteristics of the demand for uranium are identified, and a number of factors which determine the actual level of uranium requirements of the nuclear power industry are discussed. Since the role of inventories is central to the process of short-term price formation, by comparing projections of uranium production and apparent consumption, the relative level of total inventories is calculated and an assessment is made of its likely impact on the uranium market during the 1980s. (author)

  3. The Toxicity of Depleted Uranium

    OpenAIRE

    Briner, Wayne

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a c...

  4. Uranium extraction from underground deposits

    International Nuclear Information System (INIS)

    Wolfe, C.R.

    1982-01-01

    Uranium is extracted from underground deposits by passing an aqueous oxidizing solution of carbon dioxide over the ore in the presence of calcium ions. Complex uranium carbonate or bicarbonate ions are formed which enter the solution. The solution is forced to the surface and the uranium removed from it

  5. Uranium resources, demand and production

    International Nuclear Information System (INIS)

    Stipanicic, P.N.

    1985-05-01

    Estimations of the demand and production of principal uranium resource categories are presented. The estimations based on data analysis made by a joint 'NEA/IAEA Working Party on Uranium Resources' and the corresponding results are published by the OECD (Organization for Economic Co-operation and Development) in the 'Uranium Resources, Production and Demand' Known as 'Red Book'. (M.C.K.) [pt

  6. Uranium. Resources, production and demand

    International Nuclear Information System (INIS)

    1997-01-01

    The events characterising the world uranium market in the last several years illustrate the persistent uncertainly faced by uranium producers and consumers worldwide. With world nuclear capacity expanding and uranium production satisfying only about 60 per cent of demand, uranium stockpiles continue to be depleted at a high rate. The uncertainty related to the remaining levels of world uranium stockpiles and to the amount of surplus defence material that will be entering the market makes it difficult to determine when a closer balance between uranium supply and demand will be reached. Information in this report provides insights into changes expected in uranium supply and demand until well into the next century. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is the foremost reference on uranium. This world report is based on official information from 59 countries and includes compilations of statistics on resources, exploration, production and demand as of 1 January 1997. It provides substantial new information from all of the major uranium producing centres in Africa, Australia, Eastern Europe, North America and the New Independent States, including the first-ever official reports on uranium production in Estonia, Mongolia, the Russian Federation and Uzbekistan. It also contains an international expert analysis of industry statistics and worldwide projections of nuclear energy growth, uranium requirements and uranium supply

  7. Uranium industry in the USSR

    International Nuclear Information System (INIS)

    Nikipelov, B.V.; Chernov, A.G.

    1990-01-01

    A brief historical account of the Soviet production of natural and enriched uranium is given. The geological and geographical location of major uranium deposits are mentioned. The processing of natural ores including in-situ leaching (ISL) is also briefly described. Gas centrifuges play a large part in uranium enrichment. The role of Techsnabexport for the export of nuclear materials is explained

  8. Uranium content of Philippine coals

    International Nuclear Information System (INIS)

    De la Rosa, A.M.; Sombrito, E.Z.; Nuguid, Z.S.; Bulos, A.M.; Bucoy, B.M.; De la Cruz, M.

    1984-01-01

    Uranium content of coal samples from seven areas in the Philippines, i.e. Cebu, Semirara, Bislig, Albay, Samar, Malangas and Polilio Is. was found to contain trace quantities of uranium. The mean value of 0.401 ppm U is lower than reported mean uranium contents for coal from other countries. (ELC)

  9. Sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Finch, W.I.; Davis, J.F.

    1985-01-01

    World-class sandstone-type uranium deposits are defined as epigenetic concentrations of uranium minerals occurring as uneven impregnations and minor massive replacements primarily in fluvial, lacustrine, and deltaic sandstone formations. The main purpose of this introductory paper is to define, classify, and introduce to the general geologic setting for sandstone-type uranium deposits

  10. EXTRACTION OF URANIUM

    Science.gov (United States)

    Kesler, R.D.; Rabb, D.D.

    1959-07-28

    An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.

  11. Uranium extraction technology

    International Nuclear Information System (INIS)

    1993-01-01

    In 1983 the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA) and the IAEA jointly published a book on Uranium Extraction Technology. A primary objective of this report was to document the significant technological developments that took place during the 1970s. The purpose of this present publication is to update and expand the original book. It includes background information about the principle of the unit operations used in uranium ore processing and summarizes the current state of the art. The publication also seeks to preserve the technology and the operating 'know-how' developed over the past ten years. This publication is one of a series of Technical Reports on uranium ore processing that have been prepared by the Division of Nuclear Fuel Cycle and Waste Management at the IAEA. A complete list of these reports is included as an addendum. Refs, figs and tabs

  12. Uranium exploration in Ecuador

    International Nuclear Information System (INIS)

    Severne, B.; Penaherrera, P.F.; Fiallos, V.S.

    1981-01-01

    The 600-km segment of the Andean Cordillera in Ecuador includes zones that can be correlated, geologically, with uranium districts elsewhere in the Andes. It is believed that these essentially unexplored zones have the potential for economic uranium mineralization. Exploration activity to date has been limited, although it has involved both geochemical and radiometric techniques to evaluate geological concepts. Minor uranium occurrences (with chemical analyses up to 100 ppm) have been encountered, which provide further incentive to commence large-scale systematic exploration. It is recognized that a very large exploration budget and considerable technical expertise will be required to ensure exploration success. Consequently, participation by groups of proven capability from other countries will be sought for Ecuador's national exploration programme. (author)

  13. Uranium Enrichment, an overview

    International Nuclear Information System (INIS)

    Coates, J.H.

    1994-01-01

    This general presentation on uranium enrichment will be followed by lectures on more specific topics including descriptions of enrichment processes and assessments of the prevailing commercial and industrial situations. I shall therefore avoid as much as possible duplications with these other lectures, and rather dwell on: some theoretical aspects of enrichment in general, underlying the differences between statistical and selective processes, a review and comparison between enrichment processes, remarks of general order regarding applications, the proliferation potential of enrichment. It is noteworthy that enrichment: may occur twice in the LWR fuel cycle: first by enriching natural uranium, second by reenriching uranium recovered from reprocessing, must meet LWR requirements, and in particular higher assays required by high burn up fuel elements, bears on the structure of the entire front part of the fuel cycle, namely in the conversion/reconversion steps only involving UF 6 for the moment. (author). tabs., figs., 4 refs

  14. The Kintyre uranium project

    International Nuclear Information System (INIS)

    Larson, B.

    1997-01-01

    The Kintyre Uranium Project is being developed by Canning Resources Pty Ltd, a subsidiary of Rio Tinto (formerly CRA). The work on the project includes the planning and management of a number of background environmental studies. The company has also commissioned studies by external consultants into process technologies, mining strategies and techniques for extracting the uranium ore from the waste rock. In addition, Canning Resources has made a detailed assessment of the worldwide market potential for Australian uranium in the late 1990s and into the 21st century. The most significant factor affecting the future of this project is the current product price. This price is insufficient to justify the necessary investment to bring this project into production

  15. Uranium market and resources

    International Nuclear Information System (INIS)

    Capus, G.; Arnold, T.

    2005-01-01

    Under the combined effect of various factors, such as interrogations related to facing the climatic changes, the increasing prices of oil versus announced decrease of its resources, the major geopolitical evolution and the remarkable development of Asia, we live nowadays a revival of nuclear power in the very front of stage. In tis context, the following question is posed: could the nuclear fission be a sustainable source of energy when taking into consideration the availability of uranium resources? The article aims at pinpointing the knowledge we have about the world uranium resources, their limits of uncertainty and the relation between knowledge resources and market evolution. To conclude, some susceptible tracks are proposed to improve the using process of uranium resources particularly in softening the impact of high prices

  16. Uranium ore processing

    International Nuclear Information System (INIS)

    Ritcey, G.M.; Haque, K.E.; Lucas, B.H.; Skeaff, J.M.

    1983-01-01

    The authors have developed a complete method of recovering separately uranium, thorium and radium from impure solids such as ores, concentrates, calcines or tailings containing these metals. The technique involves leaching, in at least one stage. The impure solids in finely divided form with an aqueous leachant containing HCl and/or Cl 2 until acceptable amounts of uranium, thorium and radium are dissolved. Uranium is recovered from the solution by solvent extraction and precipitation. Thorium may also be recovered in the same manner. Radium may be recovered by at least one ion exchange, absorption and precipitation. This amount of iron in the solution must be controlled before the acid solution may be recycled for the leaching process. The calcine leached in the first step is prepared in a two stage roast in the presence of both Cl 2 and a metal sulfide. The first stage is at 350-450 0 and the second at 550-700 0

  17. Process for recovering uranium

    Science.gov (United States)

    MacWood, G. E.; Wilder, C. D.; Altman, D.

    1959-03-24

    A process useful in recovering uranium from deposits on stainless steel liner surfaces of calutrons is presented. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickel, copper, and iron is treated with an excess of ammonium hydroxide to precipitnte the uranium, iron, and chromium and convert the nickel and copper to soluble ammonio complexions. The precipitated material is removed, dried and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/ sub 4/, UCl/sub 5/, FeCl/sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temperature of about 500 to 400 deg C.

  18. Australian uranium resources

    International Nuclear Information System (INIS)

    Battey, G.C.; Miezitis, Y.; McKay, A.D.

    1987-01-01

    Australia's uranium resources amount to 29% of the WOCA countries (world outside centrally-planned-economies areas) low-cost Reasonably Assured Resources and 28% of the WOCA countries low-cost Estimated Additional Resources. As at 1 January 1986, the Bureau of Mineral Resources estimated Australia's uranium resources as: (1) Cost range to US$80/kg U -Reasonably Assured Resources, 465 000 t U; Estimated Additional Resources, 256 000 t U; (2) Cost range US$80-130/kg U -Reasonably Assured Resources, 56 000 t U; Estimated Additional Resources, 127 000 t U. Most resources are contained in Proterozoic unconformity-related deposits in the Alligator Rivers uranium field in the Northern Territory (Jabiluka, Ranger, Koongarra, Nabarlek deposits) and the Proterozoic stratabound deposit at Olympic Dam on the Stuart Shelf in South Australia

  19. Uranium deposits of Zaire

    International Nuclear Information System (INIS)

    Kitmut, D.; Malu wa Kalenga

    1979-01-01

    Since April 1960, following the closing of the Shinkolobwe mine, the Republic of Zaire has ceased to be a producer of uranium. Nevertheless, Gecamines (Generale des carrieres et mines du Zaire), a wholly state-owned company, is continuing its research on uranium occurrences which have been discovered in its concession in the course of aerial radiometric prospecting. The most recent campaign was the one carried out in 1969 and 1972 by Hunting Company. On-the-ground verification of these shows has not yet resulted in the discovery of a workable deposit. There are other sectors cutting across Zaire which might well contain uranium deposits: this is true of the sedimentary phosphates of the region of Lower Zaire as well as of the frontier region between Zaire and the Central African Empire. However, no detailed exploration work has yet been carried out. (author)

  20. Uranium extraction from seawater

    International Nuclear Information System (INIS)

    Bals, H.G.

    1976-03-01

    After an introduction to the physics and chemistry of the sea and an estimation of the chances for the absorption of uranium from rivers, the material-sepecific characteristics of the adsorber technology are decribed in detail. Then, the methods used for gaining uranium form seawater are described with special regard to the tidal and the so-called serial (sequency) method. Whether all methods described can be realised is an economic problem since very high quantitics of water are necessary because of the low contents of uranium. A positive energy balance (gained energy/lost energy) is not definitely ensured yet for the production methods used. The development measures to be taken to obtain a positive energy balance are briefly described, and the research programme of the UEBG is mentioned. (UA) [de

  1. Uranium dioxide calcining apparatus

    International Nuclear Information System (INIS)

    Cole, E.A.; Peterson, R.S.

    1978-01-01

    This invention relates to an improved continuous calcining apparatus for consistently and controllably producing from calcinable reactive solid compounds of uranium, such as ammonium diuranate, uranium dioxide (UO 2 ) having an oxygen to uranium ratio of less than 2.2. The apparatus comprises means at the outlet end of a calciner kiln for receiving hot UO 2 , means for cooling the UO 2 to a temperature of below 100 deg C and conveying the cooled UO 2 to storage or to subsequent UO 2 processing apparatus where it finally comes into contact with air, the means for receiving cooling and conveying being sealed to the outlet end of the calciner and being maintained full of UO 2 and so operable as to exclude atmospheric oxygen from coming into contact with any UO 2 which is at elevated temperatures where it would readily oxidize, without the use of extra hydrogen gas in said means. (author)

  2. The uranium International trade

    International Nuclear Information System (INIS)

    Gonzalez U, L.A.

    1993-01-01

    The aim of this thesis is the understanding of how the present dynamic of uranium International trade is developed, the variables which fall into, the factors that are affecting and conditioning it, in order to clarify which are going to be the outlook in the future of this important resource in front of the present ecological situation and the energetic panorama of XXI Century. For this purpose, as starting point, the uranium is considered as a strategic material which importance take root in its energetic potential as alternate energy source, and for this reason in Chapter I, the general problem of raw materials, its classification and present situation in the global market is presented. In Chapter II, by means of a historical review, is explain what uranium is, how it was discovered, and how since the end of the past Century and during the last three decades of present, uranium pass of practically unknown element, to the position of a strategic raw material, which by degrees, generate an International market, owing to its utilization as a basic resource in the generation of energy. Chapter III, introduce us in the roll played by uranium, since its warlike applications until its utilization in nuclear reactors for the generation of electricity. Also is explain the reason for this change in the perception at global level. Finally, in Chapter IV we enter upon specifically in the present conditions of the International market of this mineral throughout the trends of supply and demand, the main producers, users, price dynamics, and the correlation among these economical variables and other factors of political, social and ecological nature. All of these with the purpose to found out, if there exist, a meaning of the puzzle that seems to be the uranium International trade

  3. US uranium reserves

    International Nuclear Information System (INIS)

    Hansen, M.V.

    1981-01-01

    The current low level of demand, compounded by rapidly rising costs and low prices, has caused a significant reduction in drilling for uranium in the United States, and the trend is likely to continue for a few more years. The effect on uranium reserves will be fewer additions to reserves because less exploration is being done. Further reductions will occur, especially in low-cost reserves, because of increasing costs, continuing depletion through production, and erosion through the high grading of deposits to fulfill previous contractual commitments. During the past several years, it has been necessary to increase the upper reserve cost level twice to compensate for rising costs. Rising costs are reducing the $15 reserves, the cost category corresponding most closely to the present market price, to an insignificant level. An encouraging factor related to US uranium reserves is that the US position internationally, as far as quantity is concerned, is not bad for the longer term. Also, there is a general opinion that US consumers would rather contract for domestic uranium than for foreign because of greater assurance of supply. Still another factor, nearly impossible to assess, is what effect rising costs in other countries will have on their uranium reserves. The annual conferences between the Grand Junction Area Office staff and major uranium companies provide a broad overview of the industry's perception of the future. It is not optimistic for the short term. Many companies are reducing their exploration and mining programs; some are switching to other more marketable mineral commodities, and a few are investing more heavily in foreign ventures. However, there is general optimism for the long term, and many predict a growth in demand in the mid-1980s. If the industry can survive the few lean years ahead, rising prices may restore its viability to former levels

  4. Brazilian uranium reserves

    International Nuclear Information System (INIS)

    Marques, J.P.M.

    1981-01-01

    Due to a growing demand of electric power to support Brasil's development, the use of nuclear energy will be indispensable. The nuclear fuel cycle for the production of energy, starts with the uranium exploration. The work performed in this field led to the discovery of several deposits in the country, which to-date totalize a reserve of 236,300t of U 308 , ranking Brazil in the 6th place among the nations of the western world holding uranium reserves. (Author) [pt

  5. METHOD OF ELECTROPOLISHING URANIUM

    Science.gov (United States)

    Walker, D.E.; Noland, R.A.

    1959-07-14

    A method of electropolishing the surface of uranium articles is presented. The process of this invention is carried out by immersing the uranium anticle into an electrolyte which contains from 35 to 65% by volume sulfuric acid, 1 to 20% by volume glycerine and 25 to 50% by volume of water. The article is made the anode in the cell and polished by electrolyzing at a voltage of from 10 to 15 volts. Discontinuing the electrolysis by intermittently withdrawing the anode from the electrolyte and removing any polarized film formed therein results in an especially bright surface.

  6. Uranium ore deposits

    International Nuclear Information System (INIS)

    Angelelli, Victorio.

    1984-01-01

    The main uranium deposits and occurrences in the Argentine Republic are described, considering, in principle, their geologic setting, the kind of 'model' of the mineralization and its possible origin, and describing the ore species present in each case. The main uraniferous accumulations of the country include the models of 'sandstong type', veintype and impregnation type. There are also other kinds of accumulations, as in calcrete, etc. The main uranium production has been registered in the provinces of Mendoza, Salta, La Rioja, Chubut, Cordoba and San Luis. In each case, the minerals present are mentioned, having been recognized 37 different species all over the country (M.E.L.) [es

  7. PRODUCTION OF URANIUM TUBING

    Science.gov (United States)

    Creutz, E.C.

    1958-04-15

    The manufacture of thin-walled uranium tubing by the hot-piercing techique is described. Uranium billets are preheated to a temperature above 780 d C. The heated billet is fed to a station where it is engaged on its external surface by three convex-surfaced rotating rollers which are set at an angle to the axis of the billet to produce a surface friction force in one direction to force the billet over a piercing mandrel. While being formed around the mandrel and before losing the desired shape, the tube thus formed is cooled by a water spray.

  8. Joining uranium to steel

    International Nuclear Information System (INIS)

    Perkins, M.A.

    1976-05-01

    A method has been devised which will allow the joining of uranium to steel by fusion welding through the use of an intermediate material. Uranium-0.5 titanium was joined to AISI 304L stainless steel by using a vanadium insert. Also, a method is now available for selecting possible filler metals when two entirely dissimilar metals need to be joined. This method allows a quantitative ranking to be made of the possible filler metals and thus the most likely candidate can be selected

  9. Uranium mill tailings management

    International Nuclear Information System (INIS)

    1982-01-01

    Facilities for the disposal of uranium mill tailings will invariably be subjected to geomorphological and climatological influences in the long-term. Proceedings of a workshop discuss how the principles of geomorphology can be applied to the siting, design, construction, decommissioning and rehabilitation of disposal facilities in order to provide for long-term containment and stability of tailings. The characteristics of tailings and their behaviour after disposal influence the potential impacts which might occur in the long-term. Proceedings of another workshop examine the technologies for uranium ore processing and tailings conditioning with a view to identifying improvements that could be made in such characteristics

  10. Uranium exploration techniques

    International Nuclear Information System (INIS)

    Nichols, C.E.

    1984-01-01

    The subject is discussed under the headings: introduction (genetic description of some uranium deposits; typical concentrations of uranium in the natural environment); sedimentary host rocks (sandstones; tabular deposits; roll-front deposits; black shales); metamorphic host rocks (exploration techniques); geologic techniques (alteration features in sandstones; favourable features in metamorphic rocks); geophysical techniques (radiometric surveys; surface vehicle methods; airborne methods; input surveys); geochemical techniques (hydrogeochemistry; petrogeochemistry; stream sediment geochemistry; pedogeochemistry; emanometry; biogeochemistry); geochemical model for roll-front deposits; geologic model for vein-like deposits. (U.K.)

  11. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  12. Uranium extraction at Rossing

    International Nuclear Information System (INIS)

    Kesler, S.B.; Fahrbach, D.O.E.

    1982-01-01

    Rossing Uranium Ltd. operates a large open pit uranium mine and extraction plant at a remote site in the Namib desert. Production started at the plant in 1978. A ferric leach process was introduced later, and the new leach plant began commissioning in October 1981. The process has proved to be reliable and easily controlled. Ferric iron is supplied through recovery from the acid plant calcine, and levels can be maintained above the design levels. Leach extractions were increased more than expected when this process was adopted, and the throughput has been considerably reduced, allowing cost savings in mining and milling

  13. Uranium conversion wastes

    International Nuclear Information System (INIS)

    Vicente, R.; Dellamano, J.C.

    1989-12-01

    A set of mathematical equations was developed and used to estimate the radiological significance of each radionuclide potentially present in the uranium refining industry effluents. The equations described the evolution in time of the radionuclides activities in the uranium fuel cycle, from mining and milling, through the yellowcake, till the conversion effluents. Some radionuclides that are not usually monitored in conversion effluents (e.g. Pa-231 and Ac-227) were found to be potentially relevant from the radiological point of view in conversion facilities, and are certainly relevant in mining and milling industry, at least in a few waste streams. (author) [pt

  14. Production of sized particles of uranium oxides and uranium oxyfluorides

    International Nuclear Information System (INIS)

    Knudsen, I.E.; Randall, C.C.

    1976-01-01

    A process is claimed for converting uranium hexafluoride (UF 6 ) to uranium dioxide (UO 2 ) of a relatively large particle size in a fluidized bed reactor by mixing uranium hexafluoride with a mixture of steam and hydrogen and by preliminary reacting in an ejector gaseous uranium hexafluoride with steam and hydrogen to form a mixture of uranium and oxide and uranium oxyfluoride seed particles of varying sizes, separating the larger particles from the smaller particles in a cyclone separator, recycling the smaller seed particles through the ejector to increase their size, and introducing the larger seed particles from the cyclone separator into a fluidized bed reactor where the seed particles serve as nuclei on which coarser particles of uranium dioxide are formed. 9 claims, 2 drawing figures

  15. Uranium 2000 : International symposium on the process metallurgy of uranium

    International Nuclear Information System (INIS)

    Ozberk, E.; Oliver, A.J.

    2000-01-01

    The International Symposium on the Process Metallurgy of Uranium has been organized as the thirtieth annual meeting of the Hydrometallurgy Section of the Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum (CIM). This meeting is jointly organized with the Canadian Mineral Processors Division of CIM. The proceedings are a collection of papers from fifteen countries covering the latest research, development, industrial practices and regulatory issues in uranium processing, providing a concise description of the state of this industry. Topics include: uranium industry overview; current milling operations; in-situ uranium mines and processing plants; uranium recovery and further processing; uranium leaching; uranium operations effluent water treatment; tailings disposal, water treatment and decommissioning; mine decommissioning; and international regulations and decommissioning. (author)

  16. Uranium material removing and recovering device

    International Nuclear Information System (INIS)

    Takita, Shin-ichi.

    1997-01-01

    A uranium material removing and recovering device for use in removing surplus uranium heavy metal (UO 2 ) generated in a uranium handling facility comprises a uranium material removing device and a uranium material recovering device. The uranium material removing device comprises an adsorbing portion filled with a uranium adsorbent, a control portion for controlling the uranium adsorbent of the uranium adsorbing portion by a controlling agent, a uranium adsorbing device connected thereto and a jetting device for jetting the adsorbing liquid to equipments deposited with uranium. The recovering device comprises a recovering apparatus for recovering uranium materials deposited with the adsorbent liquid removed by the jetting device and a recovering tank for storing the recovered uranium materials. The device of the present invention can remove surplus uranium simply and safely, mitigate body's load upon removing and recovering operations, facilitate the processing for the exchange of the adsorbent and reduces the radioactive wastes. (T.M.)

  17. Uranium enriched granites in Sweden

    International Nuclear Information System (INIS)

    Wilson, M.R.; Aakerblom, G.

    1980-01-01

    Granites with uranium contents higher than normal occur in a variety of geological settings in the Swedish Precambrian, and represent a variety of granite types and ages. They may have been generated by (1) the anatexis of continental crust (2) processes occurring at a much greater depth. They commonly show enrichement in F, Sn, W and/or Mo. Only in one case is an important uranium mineralization thought to be directly related to a uranium-enriched granite, while the majority of epigenetic uranium mineralizations with economic potential are related to hydrothermal processes in areas where the bedrock is regionally uranium-enhanced. (Authors)

  18. The uranium market 1980 - 1990

    International Nuclear Information System (INIS)

    Darmayan, Philippe

    1980-01-01

    The Supply and Demand Committee of the Uranium Institute was established to monitor continuously information and developments bearing on the uranium market and to publish from time to time reports giving its views on the supply and demand outlook. The last Uranium institute supply and demand report was published in July 1979 and a summary was given by Mr. Erkes at the last Uranium Institute symposium. Its main conclusions were that from 1979 to 1990 the flexibilities of the market were such as to offer adequate scope to producers and consumers of uranium to ensure a balance between supply and demand. Is that conclusion still valid one and a half years later [fr

  19. Fault rocks and uranium mineralization

    International Nuclear Information System (INIS)

    Tong Hangshou.

    1991-01-01

    The types of fault rocks, microstructural characteristics of fault tectonite and their relationship with uranium mineralization in the uranium-productive granite area are discussed. According to the synthetic analysis on nature of stress, extent of crack and microstructural characteristics of fault rocks, they can be classified into five groups and sixteen subgroups. The author especially emphasizes the control of cataclasite group and fault breccia group over uranium mineralization in the uranium-productive granite area. It is considered that more effective study should be made on the macrostructure and microstructure of fault rocks. It is of an important practical significance in uranium exploration

  20. Recovery of uranium from seawater

    International Nuclear Information System (INIS)

    Hirotsu, Takahiro; Takagi, Norio; Katoh, Shunsaku

    1995-01-01

    Present status of the development of chelating adsorbents for the recovery of uranium from seawater is outlined with emphasis on the research by the author. Uranium is estimated to exist as stable tri (carbonate) uranylate (6) ion in seawater in a very low concentration. The adsorbent for uranium from seawater in a very low concentration. The adsorbent for uranium from seawater should have high selectivity and affinity for uranium around pH 8. The required characteristics for uranium adsorbent are examined. Various chelating adsorbents have been proposed for the uranium adsorbent and their structures are discussed. Amidoxime type adsorbents have the highest adsorbing power for uranium among the adsorbents hitherto developed and fibrous amidoxime adsorbents are most promising for the practical application. Synthesis, structure and suitable shape of the amidoxime adsorbents are discussed. Uranium adsorption behavior and the amount of saturated adsorption are examined theoretically based on the complexation of an amidoxime monomer and the formula for the adsorption equiliburium is derived. The adsorption and recovery process for uranium from seawater is composed of adsorption, desorption, separation and concentration and finally, uranium is recovered as the yellow cake. A floating body mooring system is proposed by Nobukawa. (T.H.)

  1. Sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Austin, S.R.; D'Andrea, R.F. Jr.

    1978-01-01

    Three overall factors are necessary for formation of uranium deposits in sandstone: a source of uranium, host rocks capable of transmitting uranium-bearing solutions, and a precipitant. Possible sources of uranium in sandstone-type deposits include groundwaters emanating from granitic highlands, arkosic sediments, tuffaceous material within or overlying the host rocks, connate fluids, and overlying black shales. The first three sources are considered the most likely. Host rocks are generally immature sandstones deposited in alluvial-fan, intermontane-basin or marginal-marine environments, but uranium deposits do occur in well-winnowed barrier-bar or eolian sands. Host rocks for uranium deposits generally show coefficients of permeability on the order of 1 to 100 gal/day/ft 2 . Precipitants are normally agents capable of reducing uranium from the uranyl to the uranous state. The association of uranium with organic matter is unequivocal; H 2 S, a powerful reductant, may have been present at the time of formation of some deposits but may go unnoticed today. Vanadium can serve to preserve the tabular characteristics of some deposits in the near-surface environment, but is considered an unlikely primary precipitant for uranium. Uranium deposits in sandstone are divided into two overall types: peneconcordant deposits, which occur in locally reducing environments in otherwise oxidized sandstones; and roll-type deposits, which occur at the margin of an area where an oxidized groundwater has permeated an otherwise reduced sandstone. Uranium deposits are further broken down into four subclasses; these are described

  2. Vaal Reefs South uranium plant

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The Vaal Reefs mining complex, part of the Anglo American Corporation, is the largest gold and uranium producing complex in the world, being South Africa's principal producer, accounting for about a quarter of the country's uranium production. Vaal Reefs South uranium plant in the Orkney district was recently officially opened by Dr AJA Roux, the retiring president of the Atomic Energy Board and chairman of the Uranium Enrichment Corporation and will increase the country's uranium production. In the field of technology, and particularly processing technology, South Africa has shown the world unprecedented technology achievement in the field of uranium extraction from low grade ores and the development of the unique uranium enrichment process. New technical innovations that have been incorporated in this new plant are discussed

  3. Uranium recovery from AVLIS slag

    International Nuclear Information System (INIS)

    D'Agostino, A.E.; Mycroft, J.R.; Oliver, A.J.; Schneider, P.G.; Richardson, K.L.

    2000-01-01

    Uranium metal for the Atomic Vapor Laser Isotope Separation (AVLIS) project was to have been produced by the magnesiothermic reduction of uranium tetrafluoride. The other product from this reaction is a magnesium fluoride slag, which contains fine and entrained natural uranium as metal and oxide. Recovery of the uranium through conventional mill leaching would not give a magnesium residue free of uranium but to achieve more complete uranium recovery requires the destruction of the magnesium fluoride matrix and liberation of the entrapped uranium. Alternate methods of carrying out such treatments and the potential for recovery of other valuable byproducts were examined. Based on the process flowsheets, a number of economic assessments were performed, conclusions were drawn and the preferred processing alternatives were identified. (author)

  4. Geophysics in uranium exploration

    International Nuclear Information System (INIS)

    Darnley, A.G.

    1975-01-01

    There are no revolutionary new methods of uranium exploration on the horizon. Continuing improvements in existing methods and types of instrumentation are to be expected, but the main scope of improvement will hinge upon using the best of the available methods more meticulously and systematically, and paying more attention to the analysis of data. (author)

  5. The neurotoxicology of uranium

    International Nuclear Information System (INIS)

    Dinocourt, Céline; Legrand, Marie; Dublineau, Isabelle; Lestaevel, Philippe

    2015-01-01

    The brain is a target of environmental toxic pollutants that impair cerebral functions. Uranium is present in the environment as a result of natural deposits and release by human applications. The first part of this review describes the passage of uranium into the brain, and its effects on neurological functions and cognitive abilities. Very few human studies have looked at its cognitive effects. Experimental studies show that after exposure, uranium can reach the brain and lead to neurobehavioral impairments, including increased locomotor activity, perturbation of the sleep-wake cycle, decreased memory, and increased anxiety. The mechanisms underlying these neurobehavioral disturbances are not clearly understood. It is evident that there must be more than one toxic mechanism and that it might include different targets in the brain. In the second part, we therefore review the principal mechanisms that have been investigated in experimental models: imbalance of the anti/pro-oxidant system and neurochemical and neurophysiological pathways. Uranium effects are clearly specific according to brain area, dose, and time. Nonetheless, this review demonstrates the paucity of data about its effects on developmental processes and the need for more attention to the consequences of exposure during development.

  6. Separation of uranium isotopes

    International Nuclear Information System (INIS)

    Porter, J.T.

    1980-01-01

    Methods and apparatus are disclosed for separation of uranium isotopes by selective isotopic excitation of photochemically reactive uranyl salt source material at cryogenic temperatures, followed by chemical separation of selectively photochemically reduced U+4 thereby produced from remaining uranyl source material

  7. Ranger uranium project

    International Nuclear Information System (INIS)

    1979-01-01

    This agreement between the Commonwealth of Australia, Peko-Wallsend Operations Ltd., Electrolytic Zinc Company of Australasia Limited, and the Australian Atomic Energy Commission sets out articles under which the Ranger uranium project in the Northern Territory of Australia is to be operated

  8. Uranium tailings reference materials

    International Nuclear Information System (INIS)

    Smith, C.W.; Steger, H.F.; Bowman, W.S.

    1984-01-01

    Samples of uranium tailings from Bancroft and Elliot Lake, Ontario, and from Beaverlodge and Rabbit Lake, Saskatchewan, have been prepared as compositional reference materials at the request of the National Uranium Tailings Research Program. The four samples, UTS-1 to UTS-4, were ground to minus 104 μm, each mixed in one lot and bottled in 200-g units for UTS-1 to UTS-3 and in 100-g units for UTS-4. The materials were tested for homogeneity with respect to uranium by neutron activation analysis and to iron by an acid-decomposition atomic absorption procedure. In a free choice analytical program, 18 laboratories contributed results for one or more of total iron, titanium, aluminum, calcium, barium, uranium, thorium, total sulphur, and sulphate for all four samples, and for nickel and arsenic in UTS-4 only. Based on a statistical analysis of the data, recommended values were assigned to all elements/constituents, except for sulphate in UTS-3 and nickel in UTS-4. The radioactivity of thorium-230, radium-226, lead-210, and polonium-210 in UTS-1 to UTS-4 and of thorium-232, radium-228, and thorium-228 in UTS-1 and UTS-2 was determined in a radioanalytical program composed of eight laboratories. Recommended values for the radioactivities and associated parameters were calculated by a statistical treatment of the results

  9. Uranium and nuclear issues

    International Nuclear Information System (INIS)

    1983-01-01

    This seminar focussed on the major issues affecting the future of the entire nuclear fuel cycle. In particular it covered issues bearing on the formation of public policy in relation to the use of uranium as an energy source: economic risk, industrial risks, health effects, site selection, environmental issues, and public acceptance

  10. Canada's uranium policies

    International Nuclear Information System (INIS)

    Smith, K.L.; Williams, R.M.

    1991-01-01

    The purpose of this paper is to provide an update on the Canadian Government policies which affect the uranium industry and, where appropriate, to provide some background on the development of these policies. This review is timely because of two recent announcements by the Minister of Energy, Mines and Resources - one concerning the Canadian Government's renewed commitment to maintain the nuclear power option for Canada, and the other concerning some adjustments to Canada's uranium export policy. The future of Canada's nuclear industry was subject to a thorough review by the Canadian Government during 1989. This review occurred at a time when environmental issues were attracting increasing attention around the world, and the environmental advantages of nuclear power were becoming increasingly recognised. The strong support for the nuclear industry in Canada is consistent with the government's long-standing efforts to maintain Canada's position as a reliable and competitive supplier of uranium. This paper is particularly devoted to an outline of the results of the uranium export policy review. (author)

  11. Uranium (IV) carboxylates - I

    Energy Technology Data Exchange (ETDEWEB)

    Satpathy, K C; Patnaik, A K [Sambalpur Univ. (India). Dept. of Chemistry

    1975-11-01

    A few uranium(IV) carboxylates with monochloro and trichloro acetic acid, glycine, malic, citric, adipic, o-toluic, anthranilic and salicylic acids have been prepared by photolytic methods. The I.R. spectra of these compounds are recorded and basing on the spectral data, structure of the compounds have been suggested.

  12. Uranium market remains steady

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Little change in the world uranium market is reported in the new edition of the NEA/IAEA Red Book published in March. However, the agencies still expect new production capacity to be required by the mid-1990s. Topics covered include: resources, exploration, production and demand. (author)

  13. Uranium distribution and availability

    International Nuclear Information System (INIS)

    Bowie, S.H.U.

    1977-01-01

    Uranium deposits are not uniformly distributed in the earth's crust but occur in well-defined provinces, mainly in Precambrian terrain and in association with acid igneous rocks. Deposits can conveniently be classified into four main groups; uranium in sandstones; uranium in conglomerates; vein-and similar-type deposits; and other uranium deposits. Most of the presently known reserves occur in sandstones; vein-type deposits are now second in importance; conglomerates are third and other deposits, excluding shales, fourth. The shales of southern Sweden constitute a special case; although recoverable reserves are large (300 000 t U), annual production from them is not likely to exceed 1000 to 2000 t U. The estimation of reserves has been complicated by rapid price rises since 1973 and by uncertainty as to what cost or price levels should be adopted in distinguishing between reserves and resources. Also there has been a tendency for requirements to be revised downwards, and this, together with the apparent acceptance of cost levels of around $30/lb U 3 O 8 , has relieved the medium-term prospects so far as supply is concerned. In the longer term, however, there is clearly a need for increased prospecting effort on a world scale and for the introduction of new search methods, particularly those aimed at the detection of hidden orebodies. this requirement will be greatly enhanced if there is any retardation in the introduction of fast reactors. (author)

  14. Uranium reserves fall: AAEC

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Figures released by the AAEC show that Australia's reasonably assured resources of uranium recoverable at US$80 a kg fell by 5,000 tonnes during 1980-81. Reserves at 30 June 1981 totalled 294,000 tonnes. This represented 17 per cent of the Western World's low cost reasonably assured resources

  15. Uranium resources in New Mexico

    International Nuclear Information System (INIS)

    McLemore, V.T.; Chenoweth, W.L.

    1989-01-01

    For nearly three decades (1951-1980), the Grants uranium district in northwestern New Mexico produced more uranium than any other district in the world. The most important host rocks containing economic uranium deposits in New Mexico are sandstones within the Jurassic Morrison Formation. Approximately 334,506,000 lb of U 3 O 8 were produced from this unit from 1948 through 1987, accounting for 38% of the total uranium production from the US. All of the economic reserves and most of the resources in New Mexico occur in the Morrison Formation. Uranium deposits also occur in sandstones of Paleozoic, Triassic, Cretaceous, Tertiary, and Quaternary formations; however, only 468,680 lb of U 3 O 8 or 0.14% of the total production from New Mexico have been produced from these deposits. Some of these deposits may have a high resource potential. In contrast, almost 6.7 million lb of U 3 O 8 have been produced from uranium deposits in the Todilto Limestone of the Wanakah Formation (Jurassic), but potential for finding additional economic uranium deposits in the near future is low. Other uranium deposits in New Mexico include those in other sedimentary rocks, vein-type uranium deposits, and disseminated magmatic, pegmatitic, and contact metasomatic uranium deposits in igneous and metamorphic rocks. Production from these deposits have been insignificant (less than 0.08% of the total production from New Mexico), but there could be potential for medium to high-grade, medium-sized uranium deposits in some areas. Total uranium production from New Mexico from 1948 to 1987 amounts to approximately 341,808,000 lb of U 3 O 8 . New Mexico has significant uranium reserves and resources. Future development of these deposits will depend upon an increase in price for uranium and lowering of production costs, perhaps by in-situ leaching techniques

  16. Uranium deposits in granitic rocks

    International Nuclear Information System (INIS)

    Nishimori, R.K.; Ragland, P.C.; Rogers, J.J.W.; Greenberg, J.K.

    1977-01-01

    This report is a review of published data bearing on the geology and origin of uranium deposits in granitic, pegmatitic and migmatitic rocks with the aim of assisting in the development of predictive criteria for the search for similar deposits in the U.S. Efforts were concentrated on the so-called ''porphyry'' uranium deposits. Two types of uranium deposits are primarily considered: deposits in pegmatites and alaskites in gneiss terrains, and disseminations of uranium in high-level granites. In Chapter 1 of this report, the general data on the distribution of uranium in igneous and metamorphic rocks are reviewed. Chapter 2 contains some comments on the classification of uranium deposits associated with igneous rocks and a summary of the main features of the geology of uranium deposits in granites. General concepts of the behavior of uranium in granites during crustal evolution are reviewed in Chapter 3. Also included is a discussion of the relationship of uranium mineralization in granites to the general evolution of mobile belts, plus the influence of magmatic and post-magmatic processes on the distribution of uranium in igneous rocks and related ore deposits. Chapter 4 relates the results of experimental studies on the crystallization of granites to some of the geologic features of uranium deposits in pegmatites and alaskites in high-grade metamorphic terrains. Potential or favorable areas for igneous uranium deposits in the U.S.A. are delineated in Chapter 5. Data on the geology of specific uranium deposits in granitic rocks are contained in Appendix 1. A compilation of igneous rock formations containing greater than 10 ppM uranium is included in Appendix 2. Appendix 3 is a report on the results of a visit to the Roessing area. Appendix 4 is a report on a field excursion to eastern Canada

  17. Sustainability of uranium sources

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael; Bayard, Andre-Samuel; Dones, Roberto

    2008-01-01

    Smith and Storm van Leeuwen (SSL, 2005) point out that the growth of the energy requirements for uranium mining and milling at decreasing ore grades will cause the output of the nuclear energy chain to become negative at uranium contents in the ore below 100 - 200 ppm. They conclude that an expiration of uranium will occur by 2076 in a business-as-usual scenario and by about 2050 when a 2.5 % annual growth of the consumption is assumed. The high relevance of this issue is the motivation for a detailed review of these results. The concept of a limiting ore grade was introduced by Chapman already in 1975. His model has been fitted to the performance data of the Roessing mine in Namibia operating at low grade, which makes further extrapolations more reliable. The performance data published in open literature allows quantifying the energy requirements for the removal of the waste rock separately from those for the mining of the ore, which is one of the concepts of Chapman. It is shown that the amount of waste rock to be removed per unit ore has a strong effect on the energy consumed in the mine. The limiting ore grade is much lower than the one predicted by SSL and much higher amounts of uranium are predicted for a continuation of the utilization of nuclear power. Despite of the fact that SSL cite the paper of Chapman (1975), they decide to develop an own oversimplified model based on a reciprocal proportionality of the energy requirements to the ore grade alone, which is a significant step back. SSL even cite a statement of Chapman directly, saying that the stripping ratio can influence the energy requirements of uranium mining 'by a factor of five', without drawing the right conclusions. Furthermore, neither a comparison to more recent mine data, nor any kind of an uncertainty analysis is presented. The approach of SSL must therefore be disqualified as unscientific and their results discarded. (authors)

  18. Uranium from seawater

    International Nuclear Information System (INIS)

    Gregg, D.; Folkendt, M.

    1982-01-01

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10 5 , which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10 3 in seawater instead of the reported values of 10 5 . However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10 5 in fresh water. However, the system was not tested in seawater

  19. Kvanefjeld uranium project

    International Nuclear Information System (INIS)

    Erlendsson, G.; Jensen, J.; Kofoed, S.; Paulsen, J.L.

    1983-11-01

    The draft uranium project ''Kvanefjeld'' describes the establishment and operation of an industrial plant for exploiting the uranium deposit at Kvanefjeld. The draft project is part of the overall pre-feasibility project and is based on its results. The draft project includes two alternative locations for the processing plant and the tailings deposit plant. The ore reserve is estimated at 56 million tons with an average content of 365 PPM. The mine will be established as an open pit, with a slope angle of 55deg. Conventional techniques are used in drilling, blasting and handling the ore. Waste rock with no uranium content will be disposed of in two ponds near the mine. The waste rock volume is estimated at 80 million tons. A processing plant for extracting uranium from the ore will be established. The technical layout of the plant is based on the extraction experiments performed at Risoe from 1981-83. Yearly capacity is 4.2 million tons of ore. Electrical energy will be supplied from a hydroelectric station to be built at Johan Dahl Land. Thermal energy (steam/heat) will be supplied from a coal-fired district heating plant to be built in connection with the processing plant. Expected power consumption is estimated at 225 GWh/year. Heat consumption is of the same order. In the third year the plant is expected to operate at full capacity. Operating costs will be Dkr. 121/ton of ore from years 1 through 7. Consumption of chemicals will be reduced from the 7th year, and operating costs will consequently drop to Dkr. 115/ton of ore. Calculations show that industrial extraction of the uranium deposit in Kvanefjeld is economically advantageous. In addition, the economy of the project is expected to improve by extracting byproducts from the ore. (EG)

  20. Radioactivity and the French uranium bearing minerals

    International Nuclear Information System (INIS)

    Guiollard, P.Ch.; Boisson, J.M.; Leydet, J.C.; Meisser, N.

    1998-01-01

    This special issue of Regne Mineral journal is entirely devoted to the French uranium mining industry. It comprises 4 parts dealing with: the uranium mining industry in France (history, uranium rush, deposits, geologic setting, prosperity and recession, situation in 1998, ore processing); radioactivity and the uranium and its descendants (discovery, first French uranium bearing ores, discovery of radioactivity, radium and other uranium descendants, radium mines, uranium mines, atoms, elements and isotopes, uranium genesis, uranium decay, isotopes in an uranium ore, spontaneous fission, selective migration of radionuclides, radon in mines and houses, radioactivity units, radioprotection standards, new standards and controversies, natural and artificial radioactivity, hazards linked with the handling and collecting of uranium ores, conformability with radioprotection standards, radioactivity of natural uranium minerals); the French uranium bearing minerals (composition, crystal structure, reference, etymology, fluorescence). (J.S.)

  1. Precise coulometric titration of uranium in a high-purity uranium metal and in uranium compounds

    International Nuclear Information System (INIS)

    Tanaka, Tatsuhiko; Yoshimori, Takayoshi

    1975-01-01

    Uranium in uranyl nitrate, uranium trioxide and a high-purity uranium metal was assayed by the coulometric titration with biamperometric end-point detection. Uranium (VI) was reduced to uranium (IV) by solid bismuth amalgam in 5M sulfuric acid solution. The reduced uranium was reoxidized to uranium (VI) with a large excess of ferric ion at a room temperature, and the ferrous ion produced was titrated with the electrogenerated manganese(III) fluoride. In the analyses of uranium nitrate and uranium trioxide, the results were precise enough when the error from uncertainty in water content in the samples was considered. The standard sample of pure uranium metal (JAERI-U4) was assayed by the proposed method. The sample was cut into small chips of about 0.2g. Oxides on the metal surface were removed by the procedure shown by National Bureau of Standards just before weighing. The mean assay value of eleven determinations corrected for 3ppm of iron was (99.998+-0.012) % (the 95% confidence interval for the mean), with a standard deviation of 0.018%. The proposed coulometric method is simple and permits accurate and precise determination of uranium which is matrix constituent in a sample. (auth.)

  2. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    Science.gov (United States)

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  3. Uranium resource technology, Seminar 3, 1980

    International Nuclear Information System (INIS)

    Morse, J.G.

    1980-01-01

    This conference proceedings contains 20 papers and 1 panel discussion on uranium mining and ore treatment, taking into account the environmental issues surrounding uranium supply. Topics discussed include: the US uranium resource base, the technology and economics of uranium recovery from phosphate resources, trends in preleash materials handling of sandstone uranium ores, groundwater restoration after in-situ uranium leaching, mitigation of the environmental impacts of open pit and underground uranium mining, remedial actions at inactive uranium mill tailings sites, environmental laws governing in-situ solution mining of uranium, and the economics of in-situ solution mining. 16 papers are indexed separately

  4. 31 CFR 540.309 - Natural uranium.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...

  5. Method of preparation of uranium nitride

    Science.gov (United States)

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  6. The French natural uranium industry in 1986

    International Nuclear Information System (INIS)

    Baron, Marcel

    1987-01-01

    France has relatively large uranium deposits. This led to the creation of an internationally significant uranium mining industry. The structure of this industry is explained. In 1985 world supply of uranium was greater than world demand leading to an increase in uranium stocks. However, as demand is expected to increase, the industry is undertaking extensive uranium exploration, mainly abroad. (UK)

  7. Uranium and environment in Kazakstan

    International Nuclear Information System (INIS)

    Fyodorov, G.; Bayadilov, E.; Zhelnov, V.; Akhmetov, M.; Abakumov, A.

    1997-01-01

    Kazakstan's data on uranium as a state report has been included for the first time in the Red Book. Therefore the report contains two large themes presented in Suggested Topics for Papers: Country report, based on the 1995 NEA/IAEA Red Book Questionnaire and environmental impact regulations. Kazakstan is considered as one of the world leaders on uranium supply. In Kazakstan there are many well known types of deposits but the main one is the sandstone-rollfront type. That type is represented by the group of deposits of the Syr-Darya uranium ore province. Deposits of that type include that main part of uranium ore of the Republic of Kazakstan and supply almost all of its uranium mining. At the large three enterprises the uranium is extracted by underground leaching. The mining method of uranium extraction is stopped. Because of the poor development of nuclear energy, Kazakstan's need for uranium is not very high. Presence of a large amount of cheap and technological uranium ores allow the Republic to export uranium. There are plans to increase uranium mining and perhaps to establish new mining facilities including joint-ventures. More than 50 uranium deposits are known in Kazakstan. During prospecting and exploitation of these deposits a large amount of rad wastes in the form of ore dumps and tailings were generated. They have a substantial influence on the environment. Moreover, near the sandstone-rollfront type uranium deposits the large amount of underground water has been contaminated by radionuclides. Special investigation of this phenomenon is necessary. In Kazakstan there are the rad waste disposal conception and contaminated earth recultivation regulations. At present ''The Rad Wastes Management Law'' is submitted for approval. (author). 2 figs

  8. Recovery of uranium from uranium bearing black shale

    International Nuclear Information System (INIS)

    Das, Amrita; Yadav, Manoj; Singh, Ajay K.

    2016-01-01

    Black shale is the unconventional resource of uranium. Recovery of uranium from black shale has been carried out by the following steps: i) size reduction, ii) leaching of uranium in the aqueous medium, iii) fluoride ion removal, iv) solvent extraction of uranium from the aqueous leach solution, v) scrubbing of the loaded solvent after extraction to remove impurities as much as possible and vi) stripping of uranium from the loaded organic into the aqueous phase. Leaching of black shale has been carried out in hydrochloric acid. Free acidity of the leach solution has been determined by potentiometric titration method. Removal of fluoride ions has been done using sodium chloride. Solvent extraction has been carried out by both tributyl phosphate and alamine-336 as extractants. Scrubbing has been tried with oxalic acid and sulphuric acid. Stripping with sodium carbonate solution has been carried out. Overall recovery of uranium is 95%. (author)

  9. Uranium complex recycling method of purifying uranium liquors

    International Nuclear Information System (INIS)

    Elikan, L.; Lyon, W.L.; Sundar, P.S.

    1976-01-01

    Uranium is separated from contaminating cations in an aqueous liquor containing uranyl ions. The liquor is mixed with sufficient recycled uranium complex to raise the weight ratio of uranium to said cations preferably to at least about three. The liquor is then extracted with at least enough non-interfering, water-immiscible, organic solvent to theoretically extract about all of the uranium in the liquor. The organic solvent contains a reagent which reacts with the uranyl ions to form a complex soluble in the solvent. If the aqueous liquor is acidic, the organic solvent is then scrubbed with water. The organic solvent is stripped with a solution containing at least enough ammonium carbonate to precipitate the uranium complex. A portion of the uranium complex is recycled and the remainder can be collected and calcined to produce U 3 O 8 or UO 2

  10. Method of preparing uranium nitride or uranium carbonitride bodies

    International Nuclear Information System (INIS)

    Wilhelm, H.A.; McClusky, J.K.

    1976-01-01

    Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U 3 O 8 and carbon by varying the weight ratio of carbon to U 3 O 8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies. 6 claims, no drawings

  11. Control of uranium hazards - Portsmouth uranium enrichment plant

    International Nuclear Information System (INIS)

    Wagner, E.R.

    1985-01-01

    This report summarizes the Environmental, Safety and Health programs to control uranium hazards at the Portsmouth Gaseous Diffusion Plant. A description of the physical plant, the facility processes and the attendant uranium flows and effluents are provided. The hazards of uranium are discussed and the control systems are outlined. Finally, the monitoring programs are described and summaries of recent data are provided. 11 figs., 20 tabs

  12. Preparation of uranium-230 as a new uranium tracer

    International Nuclear Information System (INIS)

    Hashimoto, T.; Kido, K.; Sotobayashi, T.

    1977-01-01

    A uranium isotope, 230 U(T=20.8 d), was produced from the 231 Pa(γ,n) 230 Pa→viaβ - decay 230 U process with a bremsstrahlung irradiation on a protactinium target. After standing for about one month to obtain a maximal growth of 230 U, the uranium was chemically purified, applying an ion-exchange method. The purity of the 230 U obtained was examined with alpha spectrometry and an intrinsic alpha peak due to 230 U as a new uranium tracer in an alpha spectrometric analysis of uranium isotopes is described. (author)

  13. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    Science.gov (United States)

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  14. Recovery of uranium from lignites

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1980-01-01

    Uranium in raw lignite is associated with the organic matter and is readily soluble in acid (and carbonate) solutions. However, beneficiation techniques were not successful for concentrating the uranium or removing part of the reagent-consuming materials. Once the lignite was heated, the uranium became much less soluble in both acid and carbonate solutions, and complete removal of carbon was required to convert it back to a soluble form. Proper burning improves acid-leaching efficiency; that is, it reduces the reagent consumption and concentrates the uranium, thereby reducing plant size for comparable uranium throughput, and it eliminates organic fouling of leach liquors. Restrictions are necessary during burning to prevent the uranium from becoming refractory. The most encouraging results were obtained by flash-burning lignite at 1200 to 1300 0 C and utilizing the released SO 2 to supplement the acid requirement. The major acid consumers were aluminum and iron

  15. World uranium production in 1995

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    For the first time since the political and economic opening of the former Soviet Union and Eastern Europe, world uranium production actually increased in 1995. Preliminary estimates for 1996 continue this trend, indicating additional (if slight) production increases over 1995 levels. Natural uranium production increased by about 5% in 1995 to 34,218 tons uranium or 89 Mlbs U3O8. This is an increase of approximately 1700 tons of uranium or 4.3 Mlbs of U3O8 over the updated 1994 quantities. Data is presented for each of the major uranium producing countries, for each of the world's largest uranium mines, for each of the world's largest corporate producers, and for major regions of the world

  16. Recovering uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Wet-process phosphoric acid contains a significant amount of uranium. This uranium totals more than 1,500 tons/yr in current U.S. acid output--and projections put the uranium level at 8,000 tons/yr in the year 2000. Since the phosphoric acid is a major raw material for fertilizers, uranium finds its way into those products and is effectively lost as a resource, while adding to the amount of radioactive material that can contaminate the food chain. So, resource-conservation and environmental considerations both make recovery of the uranium from phosphoric acid desirable. This paper describes the newly developed process for recovering uranium from phosphoric acid by using solvent-extraction technique. After many extractants had been tested, the researchers eventually selected the combination of di (2-ethylhexyl) phosphoric acid (DEPA) and trioctylphosphine oxide (TOPO) as the most suitable. The flowscheme of the process is included

  17. Optimization of uranium leach mining

    International Nuclear Information System (INIS)

    Schecter, R.S.; Bommer, P.M.

    1982-01-01

    The effects of well pattern and well spacing on uranium recovery and oxidant utilization are considered. As expected, formation permeability heterogeneities and anisotropies are found to be important issues requiring careful consideration; however, it also is shown that the oxidant efficiency and the produced uranium solution concentrations are sensitive to the presence of other minerals competing with uranium for oxidant. If the Damkohler number for competing minerals, which measures the speed of the reaction, exceeds that for uranium, the competing mineral will have to be oxidized completely to recover a large proportion of the uranium. If the Damkohler number is smaller, it may be possible to achieve considerable selectivity for uranium by adjusting the well spacing. 9 refs

  18. Uranium recovery from mine water

    International Nuclear Information System (INIS)

    Sarkar, K.M.

    1984-01-01

    In many plant trials it has been proven that very small amounts (10 to 20 ppm) of uranium dissolved in mine water can be effectively recovered by the use of ion exchange resins and this uranium recovery has many advantages. In this paper an economic analysis at different levels of uranium contamination and at different market prices of uranium are described. For this study an operating mine-mill complex with a sulphuric acid leach circuit, followed by solvent extraction (SX) process, is considered, where contaminated mine water is available in excess of process requirements. It is further assumed that the sulphuric acid eluant containing uranium would be mixed with the mill pregnant liquor stream that proceeds to the SX plant for final uranium recovery

  19. Promotion of uranium enrichment business

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1981-01-01

    The Committee on Nuclear Power has studied on the basic nuclear power policy, establishing its five subcommittees, entrusted by the Ministry of Nternational Trade and Industry. The results of examination by the subcommittee on uranium enrichment business are given along with a report in this connection by the Committee. In order to establish the nuclear fuel cycle, the aspect of uranium enrichment is essential. The uranium enrichment by centrifugal process has proceeded steadily in Power Reactor and Nuclear Fuel Development Corporation. The following matters are described: the need for domestic uranium enrichment, the outlook for overseas enrichment services and the schedule for establishing domestic enrichment business, the current state of technology development, the position of the prototype enrichment plant, the course to be taken to establish enrichment business the main organization operating the prototype and commercial plants, the system of supplying centrifuges, the domestic conversion of natural uranium the subsidies for uranium enrichment business. (J.P.N.)

  20. Yellowcake: the international uranium cartel

    International Nuclear Information System (INIS)

    Taylor, J.H.; Yokell, M.D.

    1979-01-01

    The dramatic events that occurred in the uranium market between 1972 and 1976, and their repercussions is discussed. In particular, the book concentrates on the international uranium cartel's attempt to fix yellowcake prices. The background of the yellowcake industry is discussed in Part I of the book, and the demand for uranium and the nuclear fuel cycle isdiscussed, along with a brief anecdotal history of the uranium industry. Part II describes the political conflicts in Australia which led to the public exposure of the uranium cartel and the situation in the world uranium market that led to the cartel's formation. The legal repercussions of the cartel's exposure are discussed in Part III, and in Part IV, the authors reflect on the ramifications of the events described in the book and some of the issues they raise

  1. Aluminum titanate crucible for molten uranium

    International Nuclear Information System (INIS)

    Asbury, J.J.

    1975-01-01

    An improved crucible for molten uranium is described. The crucible or crucible liner is formed of aluminum titanate which essentially eliminates contamination of uranium and uranium alloys during molten states thereof. (U.S.)

  2. Riddle of depleted uranium

    International Nuclear Information System (INIS)

    Hussein, A.S.

    2005-01-01

    Depleted Uranium (DU) is the waste product of uranium enrichment from the manufacturing of fuel rods for nuclear reactors in nuclear power plants and nuclear power ships. DU may also results from the reprocessing of spent nuclear reactor fuel. Potentially DU has both chemical and radiological toxicity with two important targets organs being the kidney and the lungs. DU is made into a metal and, due to its availability, low price, high specific weight, density and melting point as well as its pyrophoricity; it has a wide range of civilian and military applications. Due to the use of DU over the recent years, there appeared in some press on health hazards that are alleged to be due to DU. In these paper properties, applications, potential environmental and health effects of DU are briefly reviewed

  3. Future of uranium enrichment

    International Nuclear Information System (INIS)

    Hosmer, C.

    1981-01-01

    The increasing amount of separative work being done in government facilities to produce low-enriched uranium fuel for nuclear utilities again raises the question: should this business-type, industrial function be burned over the private industry. The idea is being looked at by the Reagan administration, but faces problems of national security as well as from the unique nature of the business. This article suggests that a joint government-private venture combining enriching, reprocessing, and waste disposal could be the answer. Further, a separate entity using advanced laser technology to deplete existing uranium tails and lease them for fertile blankets in breeder reactors might earn substantial revenues to help reduce the national debt

  4. Uranium enrichment. Enrichment processes

    International Nuclear Information System (INIS)

    Alexandre, M.; Quaegebeur, J.P.

    2009-01-01

    Despite the remarkable progresses made in the diversity and the efficiency of the different uranium enrichment processes, only two industrial processes remain today which satisfy all of enriched uranium needs: the gaseous diffusion and the centrifugation. This article describes both processes and some others still at the demonstration or at the laboratory stage of development: 1 - general considerations; 2 - gaseous diffusion: physical principles, implementation, utilisation in the world; 3 - centrifugation: principles, elementary separation factor, flows inside a centrifuge, modeling of separation efficiencies, mechanical design, types of industrial centrifuges, realisation of cascades, main characteristics of the centrifugation process; 4 - aerodynamic processes: vortex process, nozzle process; 5 - chemical exchange separation processes: Japanese ASAHI process, French CHEMEX process; 6 - laser-based processes: SILVA process, SILMO process; 7 - electromagnetic and ionic processes: mass spectrometer and calutron, ion cyclotron resonance, rotating plasmas; 8 - thermal diffusion; 9 - conclusion. (J.S.)

  5. Uranium resources and requirements

    International Nuclear Information System (INIS)

    Silver, J.M.; Wright, W.J.

    1975-08-01

    Australia has about 19% of the reasonably assured resources of uranium in the Western World recoverable at costs of less than $A20 per kilogram, or about 9% of the resources (reasonably assured and estimated additional) recoverable at costs of less than $A30 per kilogram. Australia's potential for further discoveries of uranium is good. Nevertheless, if Australia did not export any of these resources it would probably have only a marginal effect on the development of nuclear power; other resources would be exploited earlier and prices would rise, but not sufficiently to make the costs of nuclear power unattractive. On the other hand, this policy could deny to Australia real benefits in foreign currency earnings, employment and national development. (author)

  6. South Australia, uranium enrichment

    International Nuclear Information System (INIS)

    1976-02-01

    The Report sets out the salient data relating to the establishment of a uranium processing centre at Redcliff in South Australia. It is conceived as a major development project for the Commonwealth, the South Australian Government and Australian Industry comprising the refining and enrichment of uranium produced from Australian mines. Using the data currently available in respect of markets, demand, technology and possible financial return from overseas sales, the project could be initiated immediately with hexafluoride production, followed rapidly in stages by enrichment production using the centrifuge process. A conceptual development plan is presented, involving a growth pattern that would be closely synchronised with the mining and production of yellowcake. The proposed development is presented in the form of an eight-and-half-year programme. Costs in this Report are based on 1975 values, unless otherwise stated. (Author)

  7. Uranium industry update

    International Nuclear Information System (INIS)

    Poissonnet, M.

    1994-01-01

    Canada is the world's largest producer of uranium. With stockpiles becoming depleted, new sources of production will soon be needed. Production in Ontario was expected to cease in 1996, leaving decommissioning as the main activity there. Present production in Canada is almost entirely from the Athabasca basin in Saskatchewan, and mainly from three mines, Key Lake and Rabbit Lake (both owned by Cameco and Uranerz), and Cluff Lake (owned by Cogema). Following hearings in 1993, extensions to Cluff Lake and Rabbit Lake, and a new project at McClean Lake (by Minatco) received environmental approval, while the Midwest project as presented by Denison was rejected, but Cogema was revising it (at the time of the conference). An environmental impact statement for Cigar Lake was due to be submitted to the Assessment panel in October 1994. The author regrets that discussion of 'natural analogues' has created confusion between uranium mining and nuclear waste disposal in the public mind. 2 ills

  8. Hydrolysis of uranium monocarbide

    International Nuclear Information System (INIS)

    Hajek, B.; Karen, P.; Brozek, V.

    1984-01-01

    The substoichiometric uranium monocarbide UCsub(0.95) was hydrolyzed in acid medium at 80 degC. The composition of the products of hydrolysis corresponds to published data but it correlates better with the stoichiometric composition of the hydrolyzable carbide. The mechanisms of the hydrolytic reaction are discussed and a modified radical mechanism is suggested based on the concept of initiation of the radical process by Hsup(.) radicals formed owing to the nonstoichiometry of the substance. A relation is proposed for calculating the content of free hydrogen in the hydrolysis products of carbides of metallic nature for which a radical mechanism of their reaction with water can be assumed. Some effects occurring during the hydrolysis of uranium carbide, as described in literature, are explained in terms of the concept suggested. The results obtained by the authors for carbides of manganese (Mn 7 C 3 ) and for rare earth elements are discussed. (author)

  9. Spot market for uranium

    International Nuclear Information System (INIS)

    Colhoun, C.

    1982-01-01

    The spot market is always quoted for the price of uranium because little information is available about long-term contracts. A review of the development of spot market prices shows the same price curve swings that occur with all raw materials. Future long-term contracts will probably be lower to reflect spot market prices, which are currently in the real-value range of $30-$35. An upswing in the price of uranium could come in the next few months as utilities begin making purchases and trading from stockpiles. The US, unlike Europe and Japan, has already reached a supply and demand point where the spot market share is increasing. Forecasters cannot project the market price, they can only predict the presence of an oscillating spot or a secondary market. 5 figures

  10. Locating underground uranium deposits

    International Nuclear Information System (INIS)

    Felice, P.E.

    1979-01-01

    Underground uranium deposits are located by placing wires of dosimeters each about 5 to 18 mg/cm 2 thick underground in a grid pattern. Each dosimeter contains a phosphor which is capable of storing the energy of alpha particles. In each pair one dosimeter is shielded from alpha particles with more than 18 mg/cm 2 thick opaque material but not gamma and beta rays and the other dosimeter is shielded with less than 1 mg/cm 2 thick opaque material to exclude dust. After a period underground the dosimeters are heated which releases the stored energy as light. The amount of light produced from the heavily shielded dosimeter is subtracted from the amount of light produced from the thinly shielded dosimeter to give an indication of the location and quantity of uranium underground

  11. Kintyre uranium project

    International Nuclear Information System (INIS)

    1988-04-01

    This project book is designed to outline the nature of the Kintyre uranium project for those associated with the project as employees, contractors and consultants and others. It explains why Canning Resources Pty Limited and CRA Exploration believe this resource and other resources in the Rundall region should be developed. It also outlines the environmental and social issues involved and the proposed means of addressing those issues. The Kintyre resource and associated areas of geological prospectivity are located in the Rundall region on the edge of the Great Sandy Desert, in the East Pilbara region of Western Australia. Canning Resources with CRA Exploration has spent over $20 million in the past two years in intensive drilling and exploration efforts in the Kintyre area and intends to spend a further $10 million in 1988. Investigations so far reveal that the resource has features which make it competitive with the best uranium mines in the world

  12. Western Canada uranium perspective

    International Nuclear Information System (INIS)

    Lloyd, R.E.

    1984-01-01

    The current situation in the exploration for uranium in British Columbia, the Yukon, the Northwest Territories, and Saskatchewan is reviewed. A moratorium on exploration has been in effect in British Columbia since 1980; it is due to expire in 1987. Only the Blizzard deposit appears to have any economic potential. The Lone Gull discovery in the Thelon Basin of the Northwest Territories has proven reserves of more than 35 million pounds U 3 O 8 grading 0.4%. Potentially prospective areas of the northern Thelon Basin lie within a game sanctuary and cannot be explored. Exploration activity in Saskatchewan continues to decline from the peak in 1980. Three major deposits - Cluff Lake, Rabbit Lake and Key Lake - are in production. By 1985 Saskatchewan will produce 58% of Canada's uranium, and over 13% of the western world's output. (L.L.) (3 figs, 2 tabs.)

  13. Electrolytic recovery of uranium oxides

    International Nuclear Information System (INIS)

    Gurr, W.R.

    1979-01-01

    A method is described for extracting uranium oxide from a solution of one or more uranium compounds, e.g. leach liquors, comprising subjecting the solution to electrolysis utilizing a high current density, e.g. 500 to 4000 amp/m 2 , whereby uranium oxide is formed at the cathode and is recovered. The method is particularly suited to a continuous process using a rotating cathode cell. (author)

  14. The Namibian uranium mining model

    International Nuclear Information System (INIS)

    Swiegers, Wotan; Tibinyane, Axel

    2014-01-01

    Conclusions: • Namibia wishes to be a world class producer of Uranium and a prosperous country to achieve the Nation’s 2030 Vision. • The Government and the Uranium Industry formed a Smart Partnership to protect our ‘Brand’. • The Government and the Uranium Industry are committed to implement ‘world best practices’. • Namibia will be guided by the IAEA and the WNA.

  15. The Uranium Chemistry Research Unit

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The article discusses the research work done at the Uranium Chemistry Research Unit of the University of Port Elizabeth. The initial research programme dealt with fundamental aspects of uranium chemistry. New uranium compounds were synthesized and their chemical properties were studied. Research was also done to assist the mining industry, as well as on nuclear medicine. Special mentioning is made of the use of technetium for medical diagnosis and therapy

  16. Raw material uranium; Rohstoff Uran

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-03-15

    Uranium is an important raw material in human life. Mostly using nuclear fission uranium is used in nuclear medicine, industry and research. The most important application is the generation of electricity in nuclear power plants. Due to the global availability the worldwide uranium supply is guaranties for a long time. The contribution covers the issues medicine, neutron research, energy generation, occurrence, mining, processing, recycling and disposal.

  17. Uranium exploration techniques in Bolivia

    International Nuclear Information System (INIS)

    Virreira, V.

    1981-01-01

    The exploration techniques used by the Bolivian Nuclear Energy Commission/Comision Boliviana de Energia Nuclear (COBOEN) in certain areas of Bolivia that are considered promising from the standpoint of uranium deposits are presented in summary form. The methods and results obtained are described, including the techniques used by the Italian company AGIP-URANIUM during four years of exploration under contract with COBOEN. Statistical data are also given explaining the present level of uranium exploration in Bolivia. (author)

  18. The challenge of uranium exploration

    International Nuclear Information System (INIS)

    Fountain, D.K.

    1982-06-01

    The first uranium discoveries at Beaverlodge were made using simple radiometric methods: hand-held geiger counters. Since then techniques of uranium exploration have evolved through airborne radiometric surveys, tracking glacial boulder trains to their origins, and electromagnetic surveys to detect graphite associated with buried uranium deposits. Simple radiometric surveys can cost around $1 000. per day, while testing for deposits at depths of over 400 meters will cost more than $60 000. per drill hole

  19. Uranium extraction from phosphoric acid

    International Nuclear Information System (INIS)

    Araujo Figueiredo, C. de

    1984-01-01

    The recovery of uranium from phosphoric liquor by two extraction process is studied. First, uranium is reduced to tetravalent condition and is extracted by dioctypyrophosphoric acid. The re-extraction is made by concentrated phosphoric acid with an oxidizing agent. The re-extract is submitted to the second process and uranium is extracted by di-ethylhexilphosphoric acid and trioctylphosphine oxide. (M.A.C.) [pt

  20. COGEMA's UMF [Uranium Management Facility

    International Nuclear Information System (INIS)

    Lamorlette, G.; Bertrand, J.P.

    1988-01-01

    The French government-owned corporation, COGEMA, is responsible for the nuclear fuel cycle. This paper describes the activities at COGEMA's Pierrelatte facility, especially its Uranium Management Facility. UF6 handling and storage is described for natural, enriched, depleted, and reprocessed uranium. UF6 quality control specifications, sampling, and analysis (halocarbon and volatile fluorides, isotopic analysis, uranium assay, and impurities) are described. In addition, the paper discusses the filling and cleaning of containers and security at UMF

  1. Review of DREV uranium research

    International Nuclear Information System (INIS)

    Drolet, J.P.; Erickson, W.H.; Tardif, H.P.

    1976-01-01

    This report presents a brief review of the DREV uranium research carried out on various aspects of the physical metallurgy of depleted uranium alloys. It includes (1) a survey of the early work on polynary alloys, (2) recent metallurgical investigations on various alloy systems and (3) miscellaneous studies on grain size refinement, grain growth, powder metallurgy, pyrophoricity and directional casting of uranium alloys. A general summary of most of the studies carried out during the last ten years is also presented

  2. Geophysical methods in uranium mining

    International Nuclear Information System (INIS)

    Koehler, K.

    1989-01-01

    In uranium prospecting, exploration, milling, and mining there is an urgent need to have information on the concentration of uranium at all steps of handling uranium containing materials. To gain this information in an effective way modern geophysical methods have to be applied. Publications of the IAEA and NEA in this field are reviewed in order to characterize the state of the art of these methods. 55 refs

  3. METHOD OF DISSOLVING URANIUM METAL

    Science.gov (United States)

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  4. PROCESS FOR PREPARING URANIUM METAL

    Science.gov (United States)

    Prescott, C.H. Jr.; Reynolds, F.L.

    1959-01-13

    A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

  5. Uranium seminar '89

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The face of the uranium industry and indeed the nuclear industry itself is changing. New actors, new suppliers are taking an active role in changing traditional supplier relationships. Advances in technologies promise to change the industry even further. How U.S. policy responds to these changing relationships, and the extent to which that policy is influenced by legislative and technical considerations, will determine the role the U.S. will play in the future global market

  6. Uranium tailings in Canada

    International Nuclear Information System (INIS)

    Boulden, R.S.; Bragg, K.

    1982-01-01

    The last few years have produced significant changes in the way uranium tailings are managed in Canada. This is due both to the development of new technology and to changes in regulatory approach. The interrelationships between these two areas are examined with particular attention paid to the long term and the development of close-out criteria. New technological initiatives are examined including dry placement techniques, pit disposal and deep lake disposal

  7. Uranium enrichment: an overview

    International Nuclear Information System (INIS)

    Cazalet, J.

    1995-01-01

    This paper is a general presentation of uranium enrichment processes and assessments of the prevailing commercial and industrial situations. It gives first some theoretical aspects of enrichment in general and explains the differences between statistical and selective processes in particular. Then a review of the different processes is made with a comparison between them. Finally, some general remarks concerning applications are given and the risks of proliferation related to enrichment are mentioned. (J.S.). 4 refs., 5 figs., 8 tabs

  8. Uranium in blood

    International Nuclear Information System (INIS)

    Koul, S.L.; Chadderton, L.T.

    1979-01-01

    The authors conduct a feasibility study of a determination of the concentration of uranium in human blood. Smples of blood from six individuals were taken, predivided into two groups of three. One group was of healthy males and used as a norm. The other group was of patients with certified leukemia. The samples were irradiated by thermal neutrons and fission fragments detected using Lexan polycarbonate discs. (G.T.H.)

  9. Raw material uranium

    International Nuclear Information System (INIS)

    Arnold, O.

    1975-01-01

    In this paper some aspects are being considered, in as far as they can contribute to a better understanding of uranium as a raw material and an energy carrier, and as they can indicate the possible ways and means open to the German Federal Republic for securing this highly desirable raw material, without becoming even more dependent on the economic and political views of the producing countries, than it is the case in respect of oil. (orig.) [de

  10. Uranium mining in Saskatchewan

    International Nuclear Information System (INIS)

    Scales, M.

    2006-01-01

    The mines of northern Saskatchewan make Canada the worlds leading uranium producer in Canada supplied 29% of global demand, or 11.60 million tonnes of the metal in 2004. Here are two bright ideas - how to mine an orebody by neither pit nor underground method, and how to mine high-grade ore without miners - that Cogema and Cameco are pursuing in the Athabasca Basin

  11. Radiochemistry of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Gindler, J.E.

    1962-03-01

    This volume which deals with the radiochemistry of uranium is one of a series of monographs on radiochemistry of the elements. There is included a review of the nuclear and chemical features of particular interest to the radiochemist, a discussion of problems of dissolution of a sample and counting technique, and finally, a collection of radiochemical procedures for the element as found in the literature.

  12. Molybdenum from uranium solutions

    International Nuclear Information System (INIS)

    Gardner, H.E.

    1981-01-01

    A method of removing molybdenum from a uranium bearing solution is claimed. It comprises adding sufficient reactive lead compound to supply at least 90 percent of the stoichiometric quantity of lead ion required to fully react with the molybdenum present to form insoluble lead molybdate and continuing the reaction with agitation until the desired percentage of the molybdenum present has reacted with the lead ion

  13. Uranium and electricity

    International Nuclear Information System (INIS)

    1982-05-01

    Producing and using uranium as a fuel for the generation of electricity involves many activities and industries. Some 100,000 Canadian jobs are dependent upon the nuclear power industry. Of these, 38,000 people are employed directly by more than 100 corporations. This publication describes the components, relationships and some special aspects of 'the nuclear fuel cycle,' which includes exploration, mining, milling, refining, conversion, enrichment, fuel fabrication, reactors, and waste management

  14. Uranium price forecasting methods

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1994-01-01

    This article reviews a number of forecasting methods that have been applied to uranium prices and compares their relative strengths and weaknesses. The methods reviewed are: (1) judgemental methods, (2) technical analysis, (3) time-series methods, (4) fundamental analysis, and (5) econometric methods. Historically, none of these methods has performed very well, but a well-thought-out model is still useful as a basis from which to adjust to new circumstances and try again

  15. Topical and working papers on uranium resources and availability

    International Nuclear Information System (INIS)

    Basic topics relative to world-wide resources and availability of uranium resources; potential for recovery of uranium from mill tailings in Canada; uranium from seawater; depleted uranium as an energy source; world uranium requirements in perspective

  16. URANIUM MARKET TRENDS

    Directory of Open Access Journals (Sweden)

    Serghei MĂRGULESCU

    2016-06-01

    Full Text Available The recent UN Climate Talks in Paris have put forward the goal of limiting the global temperature rise to two degrees Celsius by the end of the century. This is providing a strong political base for expanding the nuclear power capacity because of the critical role that nuclear power plants play in the production of electricity without emissions of greenhouse gases. In all, more than a dozen countries get over 25% of their energy from nuclear power, with 437 nuclear reactors operating around the world. On top of that, there are another 71 reactors under construction, 165 planned, and 315 proposed. Global uranium demand is expected to rise 40% by 2025 and 81% by 2035. Mined supply of uranium will struggle to keep pace amid rising demand and falling secondary supplies. A cumulative supply deficit is expected to emerge by 2021 while 2016 marks a huge inflection point for the industry, beeing the first year that demand will actually exceed supplies, creating a 60,000-tonne shortfall by 2018. Over the next 10 years, we're going to see uranium prices more than double while the bull run will begin in earnest in 2016.

  17. Geological history of uranium

    International Nuclear Information System (INIS)

    Niini, Heikki

    1989-01-01

    Uranium is widely distributed in continental geological environments. The order of magnitude of uranium abundance in felsitic igneous rocks is 2-15 ppm, whereas it is less than 1 ppm in mafic rocks. Sedimentary rocks show a large range: from less than 0.1 ppm U in certain evaporites to over 100 ppm in phosphate rocks and organogenic matter. The content of U in seawater varies from 0.0005 to 0.005 ppm. The isotopic ratio U-238/U-235 is presently 137.5+-0.5, having gradually increased during geological time. The third natural isotope is U-234. On the basis of three fundamental economic criteria for ore reserves assessment (geological assurance, technical feasibility, and the grade and quantity of the deposits), the author finally comes to the following conclusions: Although the global uranium ores are not geologically renewable but continuously mined, they still, due to exploration and technical development, will tend to progressively increase for centuries to come

  18. Uranium in blood

    International Nuclear Information System (INIS)

    Koul, S.L.; Chadderton, L.T.

    1979-01-01

    When fission fragments pass through certain solids they leave trails of radiation damage which can be observed by transmission electron microscopy. If the solid can be chemically etched these tracks are 'developed' and brought within the resolving power of the light optical microscope. Since its introduction the etching technique has been used to reveal tracks formed due to the thermal neutron induced fission of U 235 atoms in many uranium bearing materials of both terrestrial and extraterrestrial origin. Successful experiments have been performed in determining the distribution of uranium in selected botanical species. On the basis of this most recent work it was decided to make a feasibility study of a determination of the concentration in human blood. This short report produces evidence not only that the fission track etching technique is useful for this purpose but that there are significant uranium concentration differences in blood taken from leukemia patients compared with samples taken from healthy norms. Whilst experiments of this kind generally employ direct registration of the fission fragments in the material itself, as with minerals, an alternative procedure is to employ some overlay, such as thin sheets of muscovite mica, or of a suitable plastic. In the present investigations the plastic Lexan polycarbonate (C 6 H 15 O 3 ) was selected as an overlay since it is easy to etch chemically. (author)

  19. ERA's Ranger uranium mine

    International Nuclear Information System (INIS)

    Davies, W.

    1997-01-01

    Energy Resource of Australia (ERA) is a public company with 68% of its shares owned by the Australian company North Limited. It is currently operating one major production centre - Ranger Mine which is 260 kilometres east of Darwin, extracting and selling uranium from the Ranger Mine in the Northern Territory to nuclear electricity utilities in Japan, South Korea, Europe and North America. The first drum of uranium oxide from Ranger was drummed in August 1981 and operations have continued since that time. ERA is also in the process of working towards obtaining approvals for the development of a second mine - Jabiluka which is located 20 kilometres north of Ranger. The leases of Ranger and Jabiluka adjoin. The Minister for the Environment has advised the Minister for Resources and Energy that there does not appear to be any environmental issue which would prevent the preferred Jabiluka proposal from proceeding. Consent for the development of ERA's preferred option for the development of Jabiluka is being sought from the Aboriginal Traditional Owners. Ranger is currently the third largest producing uranium mine in the world producing 4,237 tonnes of U 3 O 8 in the year to June 1997

  20. The Toxicity of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Wayne Briner

    2010-01-01

    Full Text Available Depleted uranium (DU is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.

  1. The recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Lannegrace, J.-P.

    1991-01-01

    The 1990 update to the Uranium Institute's report ''Uranium Market Issues'', presented to this Symposium last year (1990) stated that the impact of recycled reprocessing products on uranium demand would be limited in the near future to that due to MOX fuel fabrication. The report stated that the recycling of reprocessed uranium was still at an early discussion stage, rather than being a short-term prospect. This paper will set out to challenge this assertion, on the basis both of facts and of economic and environmental incentives. (author)

  2. Developments in uranium in 1986

    International Nuclear Information System (INIS)

    Chenoweth, W.L.

    1987-01-01

    Imported uranium and low prices continued to plague the domestic uranium industry and, as a result, the Secretary of Energy declared the domestic industry to be nonviable for the second straight year. Uranium exploration expenditures in the US declined for the eighth consecutive year. In 1986, an estimated $19 million was spent on uranium exploration, including 1.9 million ft of surface drilling. This drilling was done mainly in producing areas and in areas of recent discoveries. Production of uranium concentrate increased in 1986, when 13.8 million lb of uranium oxide (U 3 O 8 ) were produced, a 22% increase over 1985. Uranium produced as the result of solution mining and as the by-product of phosphoric acid production accounted for about 37% of the total production in the US. At the end of 1986, only 6 uranium mills were operating in the US. Canada continued to dominate the world market. The development under way at the huge Olympic Dam deposit in Australia will increase that country's production. US uranium production is expected to show a small decrease in 1987. 3 figures, 2 tables

  3. Yellowcake processing in uranium recovery

    International Nuclear Information System (INIS)

    Paul, J.M.

    1981-01-01

    This information relates to the recovery of uranium from uranium peroxide yellowcake produced by precipitation with hydrogen peroxide. The yellowcake is calcined at an elevated temperature to effect decomposition of the yellowcake to uranium oxide with the attendant evolution of free oxygen. The calcination step is carried out in the presence of a reducing agent which reacts with the free oxygen, thus retarding the evolution of chlorine gas from sodium chloride in the yellowcake. Suitable reducing agents include ammonia producing compounds such as ammonium carbonate and ammonium bicarbonate. Ammonium carbonate and/or ammonium bicarbonate may be provided in the eluant used to desorb the uranium from an ion exchange column

  4. Uranium geochemistry of Orca Basin

    International Nuclear Information System (INIS)

    Weber, F.F. Jr.; Sackett, W.M.

    1981-01-01

    Orca Basin, an anoxic, brine-filled depression at a depth of 2200 m in the Northwestern Gulf of Mexico continental slope, has been studied with respect to its uranium geochemistry. Uranium concentration profiles for four cores from within the basin were determined by delayed-neutron counting. Uranium concentrations ranged from 2.1 to 4.1 ppm on a salt-free and carbonate-corrected basis. The highest uranium concentrations were associated with the lowest percentage and delta 13 C organic carbon values. For comparison, cores from the brine-filled Suakin and Atlantis II Deeps, both in the Red Sea, were also analyzed. Uranium concentrations ranged from 1.2 to 2.6 ppm in the Suakin Deep and from 8.0 to 11.0 ppm in the Atlantis II Deep. No significant correlation was found between uranium concentrations and organic carbon concentrations and delta 13 C values for these cores. Although anoxic conditions are necessary for significant uranium uptake by non-carbonate marine sediments, other factors such as dilution by rapidly depositing materials and uranium supply via mixing and diffusion across density gradients may be as important in determining uranium concentrations in hypersaline basin sediments. (author)

  5. Laser excitation spectroscopy of uranium

    International Nuclear Information System (INIS)

    Solarz, R.W.

    1976-01-01

    Laser excitation spectroscopy, recently applied to uranium enrichment research at LLL, has produced a wealth of new and vitally needed information about the uranium atom and its excited states. Among the data amassed were a large number of cross sections, almost a hundred radiative lifetimes, and many level assignments. Rydberg states, never before observed in uranium or any of the actinides, have been measured and cataloged. This work puts a firm experimental base under laser isotope separation, and permits a choice of the laser frequencies most appropriate for practical uranium enrichment

  6. Yellowcake processing in uranium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J.M.

    1981-10-06

    This information relates to the recovery of uranium from uranium peroxide yellowcake produced by precipitation with hydrogen peroxide. The yellowcake is calcined at an elevated temperature to effect decomposition of the yellowcake to uranium oxide with the attendant evolution of free oxygen. The calcination step is carried out in the presence of a reducing agent which reacts with the free oxygen, thus retarding the evolution of chlorine gas from sodium chloride in the yellowcake. Suitable reducing agents include ammonia producing compounds such as ammonium carbonate and ammonium bicarbonate. Ammonium carbonate and/or ammonium bicarbonate may be provided in the eluant used to desorb the uranium from an ion exchange column.

  7. Uranium extraction history using pressure leaching

    International Nuclear Information System (INIS)

    Fraser, K.S.; Thomas, K.G.

    2010-01-01

    Over the past 60 years of uranium process development only a few commercial uranium plants have adopted a pressure leaching process in their flowsheet. The selection of acid versus alkaline pressure leaching is related to the uranium and gangue mineralogy. Tetravalent (U"+"4) uranium has to be oxidized to hexavalent (U"+"6) uranium to be soluble. Refractory tetravalent uranium requires higher temperature and pressure, as practised in pressure leaching, for conversation to soluble hexavalent uranium. This paper chronicles the history of these uranium pressure leaching facilities over the past 60 years, with specific details of each design and operation. (author)

  8. Sustainability of uranium sources

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, Horst-Michael; Bayard, Andre-Samuel [ETH Zurich, 8092 Zurich (Switzerland); Dones, Roberto [Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2008-07-01

    Smith and Storm van Leeuwen (SSL, 2005) point out that the growth of the energy requirements for uranium mining and milling at decreasing ore grades will cause the output of the nuclear energy chain to become negative at uranium contents in the ore below 100 - 200 ppm. They conclude that an expiration of uranium will occur by 2076 in a business-as-usual scenario and by about 2050 when a 2.5 % annual growth of the consumption is assumed. The high relevance of this issue is the motivation for a detailed review of these results. The concept of a limiting ore grade was introduced by Chapman already in 1975. His model has been fitted to the performance data of the Roessing mine in Namibia operating at low grade, which makes further extrapolations more reliable. The performance data published in open literature allows quantifying the energy requirements for the removal of the waste rock separately from those for the mining of the ore, which is one of the concepts of Chapman. It is shown that the amount of waste rock to be removed per unit ore has a strong effect on the energy consumed in the mine. The limiting ore grade is much lower than the one predicted by SSL and much higher amounts of uranium are predicted for a continuation of the utilization of nuclear power. Despite of the fact that SSL cite the paper of Chapman (1975), they decide to develop an own oversimplified model based on a reciprocal proportionality of the energy requirements to the ore grade alone, which is a significant step back. SSL even cite a statement of Chapman directly, saying that the stripping ratio can influence the energy requirements of uranium mining 'by a factor of five', without drawing the right conclusions. Furthermore, neither a comparison to more recent mine data, nor any kind of an uncertainty analysis is presented. The approach of SSL must therefore be disqualified as unscientific and their results discarded. (authors)

  9. Corrosion resistant coatings for uranium and uranium alloys

    International Nuclear Information System (INIS)

    Weirick, L.J.; Lynch, C.T.

    1977-01-01

    Coatings to prevent the corrosion of uranium and uranium alloys are considered in two military applications: kinetic energy penetrators and aircraft counterweights. This study, which evaluated organic films and metallic coatings, demonstrated that the two most promising coatings are based on an electrodeposited nickel system and a galvanized zinc system

  10. Uranium prospecting; La prospection de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Roubault, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    This report is an instruction book for uranium prospecting. It appeals to private prospecting. As prospecting is now a scientific and technical research, it cannot be done without preliminary studies. First of all, general prospecting methods are given with a recall of fundamental geologic data and some general principles which are common with all type of prospecting. The peculiarities of uranium prospecting are also presented and in particular the radioactivity property of uranium as well as the special aspect of uranium ores and the aspect of neighbouring ores. In a third part, a description of the different uranium ores is given and separated in two different categories: primary and secondary ores, according to the place of transformation, deep or near the crust surface respectively. In the first category, the primary ores include pitchblende, thorianite and rare uranium oxides as euxenite and fergusonite for example. In the second category, the secondary ores contain autunite and chalcolite for example. An exhaustive presentation of the geiger-Mueller counter is given with the presentation of its different components, its functioning and utilization and its maintenance. The radioactivity interpretation method is showed as well as the elaboration of a topographic map of the measured radioactivity. A brief presentation of other detection methods than geiger-Mueller counters is given: the measurement of fluorescence and a chemical test using the fluorescence properties of uranium salts. Finally, the main characteristics of uranium deposits are discussed. (M.P.)

  11. Mechanical behaviour of uranium; Comportement mecanique de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J L; Coureau, G [Commissariat a l' Energie Atomique, Dir. Industrielle, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The chief mechanical properties of uranium, taken at room and at different temperatures, are presented in this report. (author) [French] Dans ce rapport sont presentees les principales caracteristiques mecaniques de l'uranium, relevees a l'ambiante et a differentes temperatures. (auteur)

  12. Uranium prospecting; La prospection de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Roubault, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    This report is an instruction book for uranium prospecting. It appeals to private prospecting. As prospecting is now a scientific and technical research, it cannot be done without preliminary studies. First of all, general prospecting methods are given with a recall of fundamental geologic data and some general principles which are common with all type of prospecting. The peculiarities of uranium prospecting are also presented and in particular the radioactivity property of uranium as well as the special aspect of uranium ores and the aspect of neighbouring ores. In a third part, a description of the different uranium ores is given and separated in two different categories: primary and secondary ores, according to the place of transformation, deep or near the crust surface respectively. In the first category, the primary ores include pitchblende, thorianite and rare uranium oxides as euxenite and fergusonite for example. In the second category, the secondary ores contain autunite and chalcolite for example. An exhaustive presentation of the geiger-Mueller counter is given with the presentation of its different components, its functioning and utilization and its maintenance. The radioactivity interpretation method is showed as well as the elaboration of a topographic map of the measured radioactivity. A brief presentation of other detection methods than geiger-Mueller counters is given: the measurement of fluorescence and a chemical test using the fluorescence properties of uranium salts. Finally, the main characteristics of uranium deposits are discussed. (M.P.)

  13. Process for producing uranium oxide rich compositions from uranium hexafluoride

    International Nuclear Information System (INIS)

    DeHollander, W.R.; Fenimore, C.P.

    1978-01-01

    Conversion of gaseous uranium hexafluoride to a uranium dioxide rich composition in the presence of an active flame in a reactor defining a reaction zone is achieved by separately introducing a first gaseous reactant comprising a mixture of uranium hexafluoride and a reducing carrier gas, and a second gaseous reactant comprising an oxygen-containing gas. The reactants are separated by a shielding gas as they are introduced to the reaction zone. The shielding gas temporarily separates the gaseous reactants and temporarily prevents substantial mixing and reacting of the gaseous reactants. The flame occurring in the reaction zone is maintained away from contact with the inlet introducing the mixture to the reaction zone. After suitable treatment, the uranium dioxide rich composition is capable of being fabricated into bodies of desired configuration for loading into nuclear fuel rods. Alternatively, an oxygen-containing gas as a third gaseous reactant is introduced when the uranium hexafluoride conversion to the uranium dioxide rich composition is substantially complete. This results in oxidizing the uranium dioxide rich composition to a higher oxide of uranium with conversion of any residual reducing gas to its oxidized form

  14. Uranium exploration, mining and ore enrichment techniques

    International Nuclear Information System (INIS)

    Fuchs, H.D.; Wentzlau, D.

    1985-01-01

    The paper describes the different types of uranium deposits and their importance. It is shown that during the present depressed uranium market situation, mainly high grade deposits such as unconformity-related deposits can be mined economically. The different successive exploration steps are outlined including methods used for uranium. Uranium mining does not greatly differ from normal mining, but the uranium metallurgy needs its own specialized but already classic technology. Only a relative small amount of uranium can be expected from projects where uranium is produced by in situ leach methods or by extraction from phosphoric acid. A short summary of investment costs and operating costs is given for an average uranium mine. The last chapter deals with the definition of different reserve categories and outlines the uranium reserves of the western world including the uranium production (1983) and the expected uranium production capacity for 1985 and 1990. (orig.) [de

  15. Solubility measurement of uranium in uranium-contaminated soils

    International Nuclear Information System (INIS)

    Lee, S.Y.; Elless, M.; Hoffman, F.

    1993-08-01

    A short-term equilibration study involving two uranium-contaminated soils at the Fernald site was conducted as part of the In Situ Remediation Integrated Program. The goal of this study is to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the equilibration study to predict the on-site uranium leaching and transport processes. The soluble levels of total uranium, calcium, magnesium, and carbonate increased continually for the first four weeks. After the first four weeks, these components either reached a steady-state equilibrium or continued linearity throughout the study. Aluminum, potassium, and iron, reached a steady-state concentration within three days. Silica levels approximated the predicted solubility of quartz throughout the study. A much higher level of dissolved uranium was observed in the soil contaminated from spillage of uranium-laden solvents and process effluents than in the soil contaminated from settling of airborne uranium particles ejected from the nearby incinerator. The high levels observed for soluble calcium, magnesium, and bicarbonate are probably the result of magnesium and/or calcium carbonate minerals dissolving in these soils. Geochemical modeling confirms that the uranyl-carbonate complexes are the most stable and dominant in these solutions. The use of carbonate minerals on these soils for erosion control and road construction activities contributes to the leaching of uranium from contaminated soil particles. Dissolved carbonates promote uranium solubility, forming highly mobile anionic species. Mobile uranium species are contaminating the groundwater underlying these soils. The development of a site-specific remediation technology is urgently needed for the FEMP site

  16. Uranium in soils and water; Uran in Boden und Wasser

    Energy Technology Data Exchange (ETDEWEB)

    Dienemann, Claudia; Utermann, Jens

    2012-07-15

    The report of the Umweltbundesamt (Federal Environmental Agency) on uranium in soils and water covers the following chapters: (1) Introduction. (2) Deposits and properties: Use of uranium; toxic effects on human beings, uranium in ground water and drinking water, uranium in surface waters, uranium in soils, uranium in the air. (3) Legal regulations. (4) Uranium deposits, uranium mining, polluted area recultivation. (5) Diffuse uranium entry in soils and water: uranium insertion due to fertilizers, uranium insertion due to atmospheric precipitation, uranium insertion from the air. (6) Diffuse uranium release from soils and transfer in to the food chain. (7) Conclusions and recommendations.

  17. Calibration of uranium 232 solution

    International Nuclear Information System (INIS)

    Galan, M.P.; Acena, M.L.

    1988-01-01

    A method for acertainning the activity by alpha spectroscopy with semiconductor detectors, of a solution of Uranium-232 is presented. It consists of the comparison with a Uranium-233 solution activity previously measured in a gridded ionization chamber of 2 π geometry. The total measurement uncertainty is about +- 0,02. (Author)

  18. Overseas uranium exploration by PNC

    International Nuclear Information System (INIS)

    Nagashima, Reiji; Iida, Yoshimasa; Shigeta, Naotaka; Takahashi, Osamu; Yamagishi, Akiko; Miyada, Hatsuho; Kobayashi, Takao

    1998-01-01

    Japan entirely depends on overseas countries for uranium resources for its nuclear electric power generation due to the lack of domestic resources. In order to secure a steady supply of natural uranium, Japanese government has implemented a long-term procurement policy through purchase contracts by private sectors, subsidizing private sectors' exploration and initial stage exploration outside the reach of private sectors' activity by PNC (Power Reactor and Nuclear Fuel Development Corporation). The subsequent long slump in the price of uranium, however, led most of Japanese private sectors to discontinue their exploration activity. Upon this situation, PNC has pursued a little more advanced stage exploration in addition to basic research and initial stage exploration and has improved its exploration techniques to enable the discovery of deep-seated uranium ore deposits. As the result, PNC has acquired significant uranium exploration tenements and interests similar to those owned by major uranium companies such as Cameco and Cogema. PNC has also contributed to discovery of new uranium deposits. In this report, the history of PNC's activities and its role in the long-term uranium procurement policy are reviewed and it is also described about the outcome thorough its activities and future exploration trend and the tasks. (author)

  19. Electrolytic nickel deposits upon uranium

    International Nuclear Information System (INIS)

    Baudin, G.; Chauvin, G.; Coriou, H.; Hure, J.

    1958-01-01

    The authors present a new possibility to protect uranium by very adherent nickel deposits got by aqueous medium electrolysis. Surface treatment of uranium is based upon the chemical etching method from Lietazke. After thermal treatments at 600, 700 and 800 deg. C, under vacuum, a good intermetallic U-Ni diffusion is observed for each case. (author) [fr

  20. Uranium project DINAMIGE-BRGM

    International Nuclear Information System (INIS)

    Pirelli, H.

    1982-01-01

    This Uranium review was carried out in the frame work of Uranium prospecting programme between (DINAMIGE-BRGM) from February to June 1982. It was included radimetric cutting in sedimentaries and crystallines ground (gondwanic basin of the NE).The task was developed (1.300.000 scale) in Cunapiru, Carrillada, Vichadero, Minas de Corrales, Paso Mazangano and Yaguari zones.

  1. Uranium hexafluoride. Bromine spectrophotometric determination

    International Nuclear Information System (INIS)

    Anon.

    Bromine determination in hydrolized uranium hexafluoride by reduction of bromates by ferrous sulfate, oxidation of bromides by potassium permanganate to give bromine which is extracted into carbon tetrachloride and transformed in eosine for spectrophotometry at 510 nm. The method is suitable for determining 5 to 150 ppm with respect to uranium [fr

  2. Australian uranium: the boomerang brand

    International Nuclear Information System (INIS)

    Borton, D.

    1988-01-01

    An overview of the status of each of the existing three sites of mining activity and the major sites of exploration for uranium in Australia is provided. It is intended to be a source of useful information for all people involved in debating the issues of uranium mining. 1 map., ills

  3. Blueprint for domestic uranium enrichment

    International Nuclear Information System (INIS)

    1981-01-01

    The AEC advisory committee on domestic production of uranium enrichment has studied for more than a year how to achieve the domestic enrichment of uranium by the construction and operation of a commercial enriching plant using centrifugal separation method, and the report was submitted to the Atomic Energy Commission on August 18, 1980. Japan has depended wholly on overseas services for her uranium enrichment needs, but the development of domestic enrichment has been carried on in parallel. The AEC decided to construct a uranium enrichment pilot plant using centrifuges, and it has been forwarded as a national project. The plant is operated by the Power Reactor and Nuclear Fuel Development Corp. since 1979. The capacity of the plant will be raised to approximately 75 ton SWU a year. The centrifuges already operated have provided the first delivery of fuel of about 1 ton for the ATR ''Fugen''. The demand-supply balance of uranium enrichment service, the significance of the domestic enrichment of uranium, the evaluation of uranium enrichment technology, the target for domestic enrichment plan, the measures to promote domestic uranium enrichment, and the promotion of the construction of a demonstration plant are reported. (Kako, I.)

  4. Fossile fuel and uranium resources

    International Nuclear Information System (INIS)

    Gorkum, A.A. van.

    1975-01-01

    The world's resources of coal, lignite, oil, natural gas, shale oil and uranium are reviewed. These quantities depend on the prices which make new resources exploitable. Uranium resources are given exclusively for the USSR, Eastern Europe and China. Their value in terms of energy depends heavily on the reactor type used. All figures given are estimated to be conservative

  5. NURE uranium deposit model studies

    International Nuclear Information System (INIS)

    Crew, M.E.

    1981-01-01

    The National Uranium Resource Evaluation (NURE) Program has sponsored uranium deposit model studies by Bendix Field Engineering Corporation (Bendix), the US Geological Survey (USGS), and numerous subcontractors. This paper deals only with models from the following six reports prepared by Samuel S. Adams and Associates: GJBX-1(81) - Geology and Recognition Criteria for Roll-Type Uranium Deposits in Continental Sandstones; GJBX-2(81) - Geology and Recognition Criteria for Uraniferous Humate Deposits, Grants Uranium Region, New Mexico; GJBX-3(81) - Geology and Recognition Criteria for Uranium Deposits of the Quartz-Pebble Conglomerate Type; GJBX-4(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits in Mixed Fluvial-Shallow Marine Sedimentary Sequences, South Texas; GJBX-5(81) - Geology and Recognition Criteria for Veinlike Uranium Deposits of the Lower to Middle Proterozoic Unconformity and Strata-Related Types; GJBX-6(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits of the Salt Wash Type, Colorado Plateau Province. A unique feature of these models is the development of recognition criteria in a systematic fashion, with a method for quantifying the various items. The recognition-criteria networks are used in this paper to illustrate the various types of deposits

  6. Problems of natural uranium supply

    Energy Technology Data Exchange (ETDEWEB)

    Huwyler, S [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1977-11-01

    The estimated uranium reserves in the Western World and the forecast uranium requirement in this region make the supply of nuclear power stations appear guaranteed well beyond the turn of the century. At least in the next decade it will be possible to exploit the advantageous uranium reserves in low price category, provided that prospection activities are stepped up soon and production capacities are expanded in time which are not even fully utilized today. However, difficulties could arise earlier in those countries which have no uranium reserves of their own. There is an increasing tendency among uranium producing countries to link supplies of their uranium with restrictive conditions. This makes long term contractual uranium supply guarantees a most pressing matter for those countries which have no uranium of their own. Even if the delays in the addition of new nuclear power plants are likely to improve the supply situation in the next few years, supply shortages will have to be anticipated at least from the nineties onward, unless exploitation and dressing activities are expanded considerably and also low grade ores are included in the production. At the same time it appears that the use of plutonium fueled fast breeder reactors will be unavoidable in the nineties.

  7. Uranium: the nuclear fuel. [Canada

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E E.N. [Eldorado Nuclear Ltd., Ottawa, Ontario (Canada)

    1976-05-01

    A brief history is presented of Canadian uranium exploration, production, and sales. Statistics show that Canada is a good customer for its own uranium due to a rapidly expanding nuclear power program. Due to an average 10 year lag between commencement of exploration and production, and with current producers sold out through 1985, it is imperative that exploration efforts be increased.

  8. Unconformity-related uranium deposits

    International Nuclear Information System (INIS)

    Ewers, G.R.; Ferguson, J.

    1985-01-01

    Documentation of ore deposit characterisation is being undertaken to assess the controls of uranium mineralisation associated with Proterozoic unconformities. The Turee Creek uranium prospect in Western Australia is associated with a faulted contact between the Middle Proterozoic Kunderong Sandstone and the Lower Proterozoic Wyloo Group

  9. Unconventional uranium resources in China

    International Nuclear Information System (INIS)

    Qi Fucheng; Zhang Zilong; Li Zhixing; Wang Zhiming; He Zhongbo; Wang Wenquan

    2011-01-01

    Unconventional uranium resources in China mainly include black-rock series, peat, salt lake and evaporitic rocks. Among them, uraniferous black-rock series, uraniferous phosphorite and uranium-polymetallic phosphorite connected with black-rock series are important types for the sustainable support of uranium resources in China. Down-faulting and epocontinental rift in continental margin are the most important and beneficial ore-forming environment for unconventional uranium resources of black-rock series in China and produced a series of geochemistry combinations, such as, U-Cd, U-V-Mo, U-V-Re, U-V-Ni-Mo and U-V-Ni-Mo-Re-Tl. Unconventional uranium resources of black-rock series in China is related to uranium-rich marine black-rock series which are made up of hydrothermal sedimentary siliceous rocks, siliceous phospheorite and carbonaceous-siliceous-pelitic rock and settled in the continental margin down-faulting and epicontinental rift accompanied by submarine backwash and marine volcano eruption. Hydrothermal sedimentation or exhalation sedimentary is the mechanism to form unconventional uranium resources in black-rock series or large scale uranium-polymetallic mineralization in China. (authors)

  10. Uranium purchasers reassert their influence

    International Nuclear Information System (INIS)

    Braatz, U.

    1976-01-01

    The growing uranium requirement in the Western world in the long run can be met only by a participation of the electricity generating industry and the governments of the participating countries in the development costs of new deposits, according to statements by leading representatives of the uranium producers and consumers at a symposium organized by the Uranium Institute in the summer of 1976. On the other hand, the uranium market is likely to get under more and more pressure because of the delays in nuclear power programs worldwide. It is probable that the price of uranium will soon have reached its peak for a long time to come. Uranium producers also will have to bear in mind that a price policy which makes the use of uranium unattractive compared with other sources of energy could well result in a situation in which the largest uranium consumers would build more conventional thermal power stations to bridge the time to commercial introduction of fast breeder reactors. (orig.) [de

  11. Vein-type uranium deposits

    International Nuclear Information System (INIS)

    Rich, R.A.; Holland, H.D.; Petersen, U.

    1975-01-01

    A critical review is presented of published data bearing on the mineralogy, paragenesis, geochemistry, and origin of veiw-type uranium deposits. Its aim is to serve as a starting point for new research and as a basis for the development of new exploration strategies. During the formation of both vein and sandstone types of deposits uranium seems to have been dissolved by and transported in rather oxidized solutions, and deposited where these solutions encountered reducing agents such as carbon, sulfides, ferrous minerals and hydrocarbons. Granitic rocks abnormally enriched in uranium have apparently been the most common source for uranium in vein-type deposits. Oxidizing solutions have been derived either from the surface or from depth. Surface solutions saturated with atmospheric oxygen have frequently passed through red bed or clean sandstone conduits on their way to and from uranium source rocks. Deep solutions of non-surface origin have apparently become sufficiently oxidizing by passage through and equilibration with red beds. The common association of clean sandstones or red beds with uranium-rich granites in the vicinity of vein-type uranium deposits is probably not fortuitous, and areas where these rock types are found together are considered particularly favorable targets for uranium exploration

  12. ELECTRODEPOSITION OF NICKEL ON URANIUM

    Science.gov (United States)

    Gray, A.G.

    1958-08-26

    A method is described for preparing uranium objects prior to nickel electroplating. The process consiats in treating the surface of the uranium with molten ferric chloride hexahydrate, at a slightiy elevated temperature. This treatment etches the metal surface providing a structure suitable for the application of adherent electrodeposits and at the same time plates the surface with a thin protective film of iron.

  13. Developments in uranium in 1982

    International Nuclear Information System (INIS)

    Chenoweth, W.L.

    1983-01-01

    Slippage in demand, increasing costs, and low spot market prices continued to influence the uranium industry during 1982. The supply of uranium exceeds the current demand and, as a result, exploration for uranium declined in the United States for the fourth straight year. During 1982, 92 companies spent $73.86 million on uranium exploration, including 6.1 million ft of surface drilling. This drilling was done mainly in the producing areas and in the areas of recent discoveries. During the year, a significant discovery was announced in south-central Virginia, the first major discovery in the eastern United States. Production of uranium concentrate declined in 1982, when 1,343 short tons of uranium oxide were produced. Numerous mines and 4 mills were closed during the year. Domestic uranium reserves, as calculated by the Department of Energy, decreased during 1982, mainly because of increasing production costs and the lack of exploration to find new reserves. Exploration for uranium in foreign countries also declined during 1982. Canada and Australia continue to dominate the long-term supply

  14. Review of uranium market price

    International Nuclear Information System (INIS)

    Maragatham Kumar; Nik Arlina Nik Ali; Koh You Beng

    2007-01-01

    Uranium is used as an abundant source of concentrated energy and is the principal fuel for the generation of electricity by nuclear reactors. In nuclear reactors, the uranium fuel is assembled in such a way that a controlled fission chain reaction can be achieved. Since uranium is the main source of nuclear energy, demand prospects for uranium has increased dramatically with the renewed global interest in nuclear power generation in recent years. Although the global uranium market is relatively small worldwide, compared to other mineral and energy sources, it is a very important market as nuclear power generation accounts for about 18% of global electricity supply. After reaching historic lows in 1990s, uranium prices have risen substantially in recent years. The outlook for nuclear power has changed since 2000, with concerns over global warming, proven excellent safety record, competitive costs, progress on nuclear waste disposal issues and also continuing new nuclear plant construction around the world. These and various other influencing factors have resulted in the uranium market evolving from one that was driven by excess secondary supplies to that by primary production. This paper reviews the global market prices for the years 1987 until 2006 and the factors, which influence the changes in global uranium market prices. (Author)

  15. Uranium exploration in Bangladesh

    International Nuclear Information System (INIS)

    Faruquee, A.R.

    1988-01-01

    The sedimentary succession of Bangladesh has continental sandstones with lignite and organic matter which are favourable host rocks for sedimentary uranium. The shield areas around Bangladesh are considered good source areas for uranium. Encouraged by this idea, the Bangladesh Atomic Energy Commission (BAEC) started an exploration programme in 1976 with the assistance of the IAEA and the United Nations Development Programme. Preliminary reconnaissance radiometric surveys carried out in 1976-1977 in the Chittagong, Chittagong hill tract and Sylhet districts identified some anomalies with 3 to 5 times the background (XBG). This was followed by regional reconnaissance radiometric surveys which were carried out between 1977 and 1985 in some of the anticlines of the Chittagong and Sylhet districts, including an airborne (helicopter) survey over the Jaldi area. These surveys resulted in the discovery of more than 300 radiometric anomalies of 3 to 60 XBG. They occur in the medium to fine grained ferruginous sandstones of the Dupitila and Tipam Formations of Mio-Pliocene age. These anomalous beds show variation in slime and heavy mineral contents. Some samples collected from the anomalous beds contain uranium and thorium ranging from 20 to 100 ppm and 100 to 1000 ppm, respectively. Exploratory drilling to a depth of about 400 ft was carried out on a very limited scale in the northeastern part of the Sylhet district. Gamma logging of these holes indicated many subsurface anomalies (3 to 21 XBG) in the Dupitila Formation. These anomalies are linked to thin layers with restricted lateral extensions. Geochemical orientation studies and radon surveys were done in some selected areas of Sylhet to test their suitability for further surveys. 9 refs, 13 figs, 4 tabs

  16. Uranium from sea water

    International Nuclear Information System (INIS)

    Westermark, T.; Forsberg, S.

    1980-01-01

    The prevalent situation in the field of uranium extraction from the oceans was reviewed from a scientific and technological standpoint and as to legality too. No international convention seems to limit the access to dissolved or suspended matter in free area of the oceans. All publications received through 1979 point to adsorption as the method of choice, at some form of hydrated titanium ''oxide'' as the most promising sorbent, and, generally spoken, at the cost of pumping water through the contacting system as a huge economical problem. A recent Swedish invention may circumvent the pumping problem by making available, in a previously unknown manner, some kind of self-renewing energy from the oceans. A simple economic calculus has resulted in costs from two to six times the present world market price of crude uranium oxide (which is assumed to be US dollar 43.-/1b), with a possibility to compete really after some technical and systematic developments. Results from a small-scale adsorption experiment in genuine sea water are presented: During a few weeks sea water was pumped through tiny, 10 cm high beds of sodium titanate ion exchangers, partly in the hydrogen form. The grain size was 250-500 μm, the flow rate 0.15-0.61 m/min. About 5% of the total amount of uranium passing the columns was retained, resulting in 8-11 μg/Ug. Also, large amounts of manganese, strontium, vanadium and zink were retained. Some of these elements and plankton as well may perhaps be recovered with an economic gain

  17. Inhalation of uranium ores

    International Nuclear Information System (INIS)

    Stuart, B.O.; Jackson, P.O.

    1975-01-01

    In previous studies the biological dispositions of individual long-lived alpha members of the uranium chain ( 238 U, 234 U and 230 Th) were determined during and following repeated inhalation exposures of rats to pitchblende (26 percent U 3 O 8 ) ore. Although finely dispersed ore in secular equilibrium was inhaled, 230 Th/ 234 U radioactivity ratios in the lungs rose from 1.0 to 2.5 during 8 weeks of exposures and increased to 9.2 by four months after cessation of exposures. Marked non-equilibrium levels were also found in the tracheobronchial lymph nodes, kidneys, liver, and femur. Daily exposures of beagle dogs to high levels of this ore for 8 days resulted in lung 230 Th/ 234 U ratios of >2.0. Daily exposures of dogs to lower levels (0.1 mg/1) for 6 months, with sacrifice 15 months later, resulted in lung and thoracic lymph node 230 Th/ 234 U ratios ranging from 3.6 to 9 and nearly 7, respectively. The lungs of hamsters exposed to carnotite (4 percent U 3 O 8 ) ore in current lifespan studies show 230 Th/ 234 U ratios as high as 2.0 during daily inhalation of this ore in secular equilibrium. Beagle dogs sacrificed after several years of daily inhalations of the same carnotite ore plus radon daughters also showed marked non-equilibrium ratios of 230 Th/ 234 U, ranging from 5.6 to 7.4 in lungs and 6.2 to 9.1 in thoracic lymph nodes. This pattern of higher retention of 230 Th than 234 U in lungs, thoracic lymph nodes, and other tissues is thus consistent for two types of uranium ore among several species and suggests a reevaluation of maximum permissible air concentrations of ore, currently based only on uranium content

  18. Prospects for the uranium market

    International Nuclear Information System (INIS)

    Murray, J.

    1989-01-01

    The Uranium Institute tries to find reasonably meaningful figures to identify the market for uranium. Reactor requirements are expected to rise by about 12000 tonnes by the year 2000. Actual uranium production has been lower than reactor requirements since the mid-1980s, but a high level of inventory was built up during years of excess production. United States buyers are less concerned about the future security of supplies of uranium than their European and Far Eastern counterparts. The absence of uranium resources results in inevitable dependence on the international market and higher concern with supply security. The higher the level of dependence on nuclear power, the greater becomes the penalty of failing to assure security of supply. The US utility regulatory system has discouraged long term coverage. US buyers are confident that production will respond in a timely fashion when demand calls for it

  19. Deradiating the former uranium capital

    International Nuclear Information System (INIS)

    Merz, B.

    1987-01-01

    The city that once proclaimed itself The Uranium Capital of America is in the process of divorcing itself from the radioactive element - literally as well as symbolically. The last vestiges of uranium are being shoveled from the community. The removal is part of the federal Department of Energy's (DOE) Remedial Action program. It was established in 1972 to clean up areas of the country in which radiation exposure in excess of normal background levels could be attributed to wastes from DOE-operated uranium processing plants. Grand Junction was the first area to qualify. A good portion of the city is built on radioactive tailings - by-products of a uranium-processing industry. The DOE and the Environmental Protection Agency established guidelines for action levels of radiation. The standards were extrapolated from data from studies of lung cancer incidence in uranium miners in Europe and the US

  20. Uranium extraction in phosphoric acid

    International Nuclear Information System (INIS)

    Araujo Figueiredo, C. de

    1984-01-01

    Uranium is recovered from the phosphoric liquor produced from the concentrate obtained from phosphorus-uraniferous mineral from Itataia mines (CE, Brazil). The proposed process consists of two extraction cycles. In the first one, uranium is reduced to its tetravalent state and then extracted by dioctylpyrophosphoric acid, diluted in Kerosene. Re-extraction is carried out with concentrated phosphoric acid containing an oxidising agent to convert uranium to its hexavalent state. This extract (from the first cycle) is submitted to the second cycle where uranium is extracted with DEPA-TOPO (di-2-hexylphosphoric acid/tri-n-octyl phosphine oxide) in Kerosene. The extract is then washed and uranium is backextracted and precipitated as commercial concentrate. The organic phase is recovered. Results from discontinuous tests were satisfactory, enabling to establish operational conditions for the performance of a continuous test in a micro-pilot plant. (Author) [pt

  1. Inhalation hazards to uranium miners

    International Nuclear Information System (INIS)

    Cross, F.T.

    1986-01-01

    This project is investigating levels of uranium mine air contaminants, using both large and small experimental animals to model human respiratory system diseases. Lung cancer and deaths by degenerative lung disease have reached epidemic proportions among uranium miners, but the cause-effect relationships for these diseases are based on inadequate epidemiological data. This project identifies uranium mine air agents or combinations of agents (both chemical and radiological), and their exposure levels, that produce respiratory tract lesions, including respiratory epithelial carcinoma, pneumoconiosis, and emphysema. Histopathologic data from serially sacrificed rats are reported for approximately 20- to 640- working-level-month (WLM) radon-daughter exposures delivered at one-tenth the rate of previous exposures. Exposure of male rats to radon daughters and uranium ore dust continues, along with exposure of male and female beagle dogs to uranium ore dust alone

  2. On the search for uranium

    International Nuclear Information System (INIS)

    Forland, A.

    1987-01-01

    The research reactor JEEP, which was completed in 1951 at Institutt for atomenergi (IFA), Kjeller, Norway, became the first reactor in the world to be built outside the big-power states. Due to Norwegian production of heavy water, the reactor was constructed as a heavy water reactor using natural uranium as fuel. A graphite reflector surrounded the reactor tank. Both uranium and graphite had to be purchased abroad. Because of the Anglo-American monopoly of all sizable uranium sources in the Western part of the world, no uranium for the reactor was available on the free market. The present study analyses Norway's and IFA's foreign relations at the time of the reactor project, and focuses in particular on the choice of the future partner that IFA had to make in order to solve its uranium problem. Political considerations were among the factors behind the decision in 1951 to establish a joint Dutch-Norwegian atomic energy research institute

  3. Fluorescence uranium determination

    International Nuclear Information System (INIS)

    Fernandez Cellini, R.; Crus Castillo, F. de la; Barrera Pinero, R.

    1960-01-01

    An equipment for analysis of uranium by fluorescence was developed in order to determine it at such a low concentration that it can not be determined by the most sensible analytical methods. this new fluorimeter was adapted to measure the fluorescence emitted by the phosphorus sodium fluoride-sodium carbonate-potasium carbonate-uranyl, being excited by ultraviolet light of 3,650 A the intensity of the light emitted was measure with a photomultiplicator RCA 5819 and the adequate electronic equipment. (Author) 19 refs

  4. Uranium mill tailings

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1982-11-01

    This bibliography contains information on uranium mill tailings included in the Department of Energy's Energy Data Base from January 1981 through October 1982. The abstracts are grouped by subject category as shown in the table of contents. Entries in the subject index also facilitate access by subject, e.g., Mill Tailings/Radiation Hazards. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. (335 abstracts)

  5. Advanced uranium enrichment processes

    International Nuclear Information System (INIS)

    Clerc, M.; Plurien, P.

    1986-01-01

    Three advanced Uranium enrichment processes are dealt with in the report: AVLIS (Atomic Vapour LASER Isotope Separation), MLIS (Molecular LASER Isotope Separation) and PSP (Plasma Separation Process). The description of the physical and technical features of the processes constitutes a major part of the report. If further presents comparisons with existing industrially used enrichment technologies, gives information on actual development programmes and budgets and ends with a chapter on perspectives and conclusions. An extensive bibliography of the relevant open literature is added to the different subjects discussed. The report was drawn up by the nuclear research Centre (CEA) Saclay on behalf of the Commission of the European Communities

  6. Australian uranium mining policy

    International Nuclear Information System (INIS)

    Fisk, B.

    1985-01-01

    Australian government policy is explained in terms of adherence to the Non-Proliferation Treaty. Two alleged uncertainties are discussed: the future of Australian mining industry as a whole -on which it is said that Australian uranium mines will continue to be developed; and detailed commercial policy of the Australian government - on which it is suggested that the three-mines policy of limited expansion of the industry would continue. Various aspects of policy, applying the principles of the NPT, are listed. (U.K.)

  7. Unconventional uranium transactions

    International Nuclear Information System (INIS)

    Anderson, S.C.

    1981-01-01

    The purpose of this paper is to describe some representative unconventional transactions which have been observed in the uranium market; to explain the circumstances giving rise to these transactions; and to describe the benefits resulting from these transactions. Unconventional transactions are usually quite specialized, since they are tailored to meet the particular needs of specific market participants. Nevertheless, most of these transactions fall into the following basic categories: multi-party (back-to-back; bridge); swap (deconversion; nationality); barter; inventory financing (leasing with repurchase obligation; sale with repurchase option). These transactions are explained and discussed. (U.K.)

  8. Searching for uranium

    International Nuclear Information System (INIS)

    Spaargaren, F.A.

    1988-01-01

    In the not-so-distant past, the search for uranium usually followed a conceptual approach in which an unexplored terrain was selected because of its presumed similarities with one that is known to contain one or more deposits. A description, in general terms, is given of the methodology adopted during the different stages of the exploration programme, up to the point of a discovery. Three case histories prove that, in order to reach this point, a certain amount of improvisation and luck is usually required. (author)

  9. Current uranium activities in Pakistan

    International Nuclear Information System (INIS)

    Moghal, M.Y.

    2001-01-01

    The rocks of Siwaliks group in Pakistan, extending from Kashmir in the east through Potwar Plateau, Bannu Basin and Sulaiman range up to the Arabian Sea in the west have been extensively explored for uranium. The Dhok Pathan Formation, which is younger member of the middle Siwaliks has been aeroradiometrically surveyed and extensively prospected on foot. A large number of anomalies were encountered in Kashmir, Potwar Plateau, Bannu Basin and Sulaiman range. While exploratory work in Sulaiman range and Bannu Basin yielded a few workable deposits, none of the anomalous areas yielded an ore grade concentration in Potwar Plateau. As conventional exploration activities in Potwar Plateau did not yield any ore grade concentration therefore a resource potential evaluation programme through geological modeling was started under the guidance of an IAEA expert. The volcanic material found in the middle Siwaliks is considered to be the main source of uranium and siliceous cement in the sandstones. These findings have considerably increased uranium potential in Siwaliks. The tectonic deformation during and after the deposition of Siwaliks is considered to be the main reason for mobilization of uranium, while permeability barriers and upward movement of oil products may provide trappings for the mobilized uranium. Through this survey south western part of Potwar Plateau being relatively less deformed is considered to provide conducive environments for concentration of uranium. Low grade uranium concentrations have also been discovered in carbonatites in northern part of Pakistan. Preliminary exploration in Sallai Patti carbonatite through drilling supplemented by trenching, pitting and aditing, subsurface continuation of surface concentrations has been confirmed. The ore contains about 200 ppm of uranium and 3 to 4% phosphate in addition to magnetite, rare metals and rare earths. It has been demonstrated on laboratory/pilot scale that the concentrations of uranium and phosphate

  10. Uranium distribution in Brazilian granitic rocks. Identification of uranium provinces

    International Nuclear Information System (INIS)

    Tassinari, C.G.G.

    1993-01-01

    The research characterized and described uranium enriched granitoids in Brazil. They occur in a variety of tectonic environments and are represented by a variety granite types of distinct ages. It may be deduced that in general they have been generated by partial melting process of continental crust. However, some of them, those with tonality composition, indicate a contribution from mantle derived materials, thus suggesting primary uranium enrichment from the upper mantle. Through this study, the identification and characterization of uranium enriched granite or uranium provinces in Brazil can be made. This may also help identify areas with potential for uranium mineralization although it has been note that uranium mineralization in Brazil are not related to the uranium enrichment process. In general the U-anomalous granitoids are composed of granites with alkaline composition and granite ''sensu strictu'' which comprise mainly of syenites, quartz-syenites and biotite-hornblende granites, with ages between 1,800 - 1,300 M.a. The U-anomalous belongings to this period present high Sr initial ratios values, above 0.706, and high Rb contents. Most of the U-enriched granitoids occur within ancient cratonic areas, or within Early to Mid-Proterozoic mobile belts, but after their cratonization. Generally, these granitoids are related to the border zones of the mobile belts or deep crustal discontinuity. Refs, 12 figs, 3 tabs

  11. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  12. Manhattan Project Technical Series: The Chemistry of Uranium (I)

    International Nuclear Information System (INIS)

    Rabinowitch, E. I.; Katz, J. J.

    1947-01-01

    This constitutes Chapters 11 through 16, inclusive, of the Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Uranium Oxides, Sulfides, Selenides, and Tellurides; The Non-Volatile Fluorides of Uranium; Uranium Hexafluoride; Uranium-Chlorine Compounds; Bromides, Iodides, and Pseudo-Halides of Uranium; and Oxyhalides of Uranium.

  13. Manhattan Project Technical Series: The Chemistry of Uranium (I)

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitch, E. I. [Argonne National Lab. (ANL), Argonne, IL (United States); Katz, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    1947-03-10

    This constitutes Chapters 11 through 16, inclusive, of the Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Uranium Oxides, Sulfides, Selenides, and Tellurides; The Non-Volatile Fluorides of Uranium; Uranium Hexafluoride; Uranium-Chlorine Compounds; Bromides, Iodides, and Pseudo-Halides of Uranium; and Oxyhalides of Uranium.

  14. Sedimentary rocks Uranium in Cerro Largo Province

    International Nuclear Information System (INIS)

    Scaron, P.; Garau Tous, M.

    1976-01-01

    With the aim of the uranium minerals exploration has been carried out several studies by UTE technicians in Cerro Largo Province from 1968 to 1969. In uranium concentration has been found pyrite, phosphate, iron oxides and manganese in uranium. Furthermore in La Divisa Ore were studied concentration Uranium enrichment has been studied in La Divisa ore

  15. Statistical data of the uranium industry

    International Nuclear Information System (INIS)

    1976-01-01

    Historical facts and figures of the uranium industry through 1975 are compiled. Areas covered are ore and concentrate purchases; uranium resources; distribution of $10, $15, and $30 reserves; drilling statistics; uranium exploration expenditures; land holdings for uranium mining and exploration; employment; commercial U 3 O 8 sales and requirements; and processing mills

  16. The U.S. uranium industry

    International Nuclear Information System (INIS)

    Glasier, G.E.

    1987-01-01

    This presentation concentrates on the future of the U.S. uranium industry in light of potential embargo legislation and the uranium producers' lawsuit. The author discusses several possible resolutions which would lead to a more certain and possibly stable uranium market. The probability of one or more Six possible actions which would effect the uranium industry are addressed

  17. 77 FR 14837 - Bioassay at Uranium Mills

    Science.gov (United States)

    2012-03-13

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0057] Bioassay at Uranium Mills AGENCY: Nuclear Regulatory..., ``Bioassay at Uranium Mills.'' This guide describes a bioassay program acceptable to the NRC staff for uranium mills and applicable portions of uranium conversion facilities where the possibility of exposure...

  18. Irradiated uranium reprocessing; Prerada ozracenog urana

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorijaza visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Task concerned with reprocessing of irradiated uranium covered the following activities: implementing the method and constructing the cell for uranium dissolving; implementing the procedure for extraction of uranium, plutonium and fission products from radioactive uranium solutions; studying the possibilities for using inorganic ion exchangers and adsorbers for separation of U, Pu and fission products.

  19. Are uranium reserves adequate?

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    Against a backdrop of growing concerns about global warming and geopolitical pressures on fossil energies, especially natural gas and oil, interest in nuclear power has revived considerably. Conscious of its addiction to oil and reeling from a series of gigantic blackouts, the United States, in the words of its president, must 'aggressively move forward with the construction of nuclear power plants'. Some European countries have approved new power plant construction (Finland and France), while the more reserved ones (Belgium, Germany and Sweden) have begun to show a change in attitude. Asia, meanwhile, is host to the planet's largest number of potential nuclear construction projects in this first half of the 21. century. All these signs point to a sharp rise in uranium consumption, the basic fuel for these plants. But are there enough resources to support a nuclear revival on a planetary scale? The publication of the Red Book on uranium in late May 2006 was an opportunity for Thierry Dujardin, Deputy Director of Science and Development at the OECD's Nuclear Energy Agency, to take stock of resources. He gives his opinion in this paper

  20. Uranium recovery from seawater

    International Nuclear Information System (INIS)

    Bitte, J.; Fremery, M.I.; Kellner, A.; Schroeer, K.; Knippenberg, W.

    1984-09-01

    The present publication describes the development work of a process to recover uranium from seawater and the proposition of a commercial demonstration plant. The essential components of this process are verified in the laboratory scale as well as in some field tests. A detailed engineering design for a model plant in a semi-technical scale to allow field tests in the marine environment is also presented. These field tests are expected to produce more realistic data on the technical and economical feasibility of the proposed technology. Production cost estimates based on state-of-the-art technology lie around 250 Dollar/1b U 3 O 8 . However, the effect of a corresponding uranium price increase on electricity costs are comparable to cost increases in coal operated power plants caused by the desulfurisation of coal. Further reductions of the production costs in the range below 150 Dollar/1b U 3 O 8 seem possible through special research efforts in the area of sorber development and concept design. (orig.) [de

  1. Uranium mill tailings stabilization

    International Nuclear Information System (INIS)

    Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.

    1980-02-01

    Uranium mill tailings pose a potential radiation health hazard to the public. Therefore, stabilization or disposal of these tailings in a safe and environmentally sound way is needed to minimize radon exhalation and other environmental hazards. One of the most promising concepts for stabilizing U tailings is the use of asphalt emulsion to contain radon and other hazardous materials within uranium tailings. This approach is being investigated at the Pacific Northwest Laboratory. Results of these studies indicate that a radon flux reduction of greater than 99% can be obtained using either a poured-on/sprayed-on seal (3.0 to 7.0 mm thick) or an admixture seal (2.5 to 12.7 cm thick) containing about 18 wt % residual asphalt. A field test was carried out in June 1979 at the Grand Junction tailings pile in order to demonstrate the sealing process. A reduction in radon flux ranging from 4.5 to greater than 99% (76% average) was achieved using a 15.2-cm (6-in.) admix seal with a sprayed-on top coat. A hydrostatic stabilizer was used to apply the admix. Following compaction, a spray coat seal was applied over the admix as the final step in construction of a radon seal. Overburden was applied to provide a protective soil layer over the seal. Included in part of the overburden was a herbicide to prevent root penetration

  2. Another comeback for uranium

    International Nuclear Information System (INIS)

    Boyden, T.A.

    1983-01-01

    The uranium market has been unstable since private industry entered the nuclear power generating business in the early 1960s. Uranium supply has always exceeded demand throughout the Free World. In 1982, production was 106 million pounds U308 and accumulated inventory totaled over 400 million pounds; consumption was only 63 million pounds. Recent inventory selling, production cutbacks and producers buying from consumers, have led to decreasing prices and further market instability. It now appears that the market is beginning to change to a more stable situation. Current forecasts indicate that Free World demand will double by 1996, led by Europe and the US. Annual production will average about 100 million pounds during the same period. A closer balance between supply and demand should allow market prices to improve between now and 1990. The situation in the US is more complex. Consumption will increase to 35 million pounds through the 1990s while annual production is expected to decrease to about 12 million pounds, (down from a 1980 high of almost 44 million pounds) before higher prices allow a recovery to an annual production level of about 16 million pounds. The balance of US consumption will be met with imports and inventory drawdowns. Higher prices in the latter part of the decade will support a number of new solution mining projects, and allow the development of high-grade ore deposits by conventional methods. The US producer industry will survive, but will be secondary to those in Canada, South Africa and probably Australia

  3. Uranium from seawater

    International Nuclear Information System (INIS)

    1974-12-01

    The report concerns the possibilities of extracting uranium from seawater using either 'tidal' and 'pumped' schemes. It was decided to undertake an initial exercise on the pumped scheme. It was to take into account not only the direct energy requirements, but also the indirect energy inputs needed to produce the capital equipment, operating materials, etc. The report begins with a discussion of the technique of energy accounting, and the merits and limitations of the two principal approaches are compared. These are: 'Process Analysis' (or 'Energy Cost of Materials') and 'Input-Output Analysis' (or 'Energy Cost of Money'). A comparison is made between the energy cost of the tidal and pumped schemes, by both methods of analysis. A 'Best Estimate' is compiled calling on both methods, and this indicates that on an energy cost basis the pumped scheme is three times as expensive as the tidal scheme. Intermediate schemes are feasible, however. There is some evidence that the energy cost of an ore refining process with an initial concentration of 0.007% would be of the same order as that of the pumped seawater scheme. The energy cost of generating electricity using seawater uranium in an SGHWR is compared with the present UK generating system as a whole. (U.K.)

  4. Uranium in river water

    International Nuclear Information System (INIS)

    Palmer, M.R.; Edmond, J.M.

    1993-01-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains do not represent a significant source of U in river waters. In addition, the authors have determined dissolved U levels in forty rivers from around the world and coupled these data with previous measurements to obtain an estimate for the global flux of dissolved U to the oceans. The average concentration of U in river waters is 1.3 nmol/kg, but this value is biased by very high levels observed in the Ganges-Brahmaputra and Yellow rivers. When these river systems are excluded from the budget, the global average falls to 0.78 nmol/kg. The global riverine U flux lies in the range of 3-6 x 10 7 mol/yr. The major uncertainty that restricts the accuracy of this estimate (and that of all other dissolved riverine fluxes) is the difficulty in obtaining representative samples from rivers which show large seasonal and annual variations in runoff and dissolved load

  5. Method for the recovery of uranium values from uranium tetrafluoride

    International Nuclear Information System (INIS)

    Kreuzmann, A.B.

    1984-01-01

    The invention comprises reacting particulate uranium tetrafluoride and alkaline earth metal oxide (e.g. CaO, MgO) in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. (author)

  6. The future of the uranium mining industry

    International Nuclear Information System (INIS)

    Capus, G.; Galaud, G.

    1993-01-01

    This paper presents the state of natural Uranium market today. In a first part, the author gives a brief history about nuclear programs history in Usa and Europe and describes natural Uranium demand and supply (Uranium mines, recycling, excessive civil stocks, military stocks using). In a second part, evolutions and futures of Uranium industry is studied: using of excessive stocks in Western Europe, using of military stocks, recycling of Uranium from spent fuels reprocessing, uranium deposits, future natural uranium market. 6 refs., 4 figs., 3 tabs., 3 photos

  7. Microbial bioremediation of Uranium: an overview

    International Nuclear Information System (INIS)

    Acharya, Celin

    2015-01-01

    Uranium contamination is a worldwide problem. Preventing uranium contamination in the environment is quite challenging and requires a thorough understanding of the microbiological, ecological and biogeochemical features of the contaminated sites. Bioremediation of uranium is largely dependent on reducing its bioavailability in the environment. In situ bioremediation of uranium by microbial processes has been shown to be effective for immobilizing uranium in contaminated sites. Such microbial processes are important components of biogeochemical cycles and regulate the mobility and fate of uranium in the environment. It is therefore vital to advance our understanding of the uranium-microbe interactions to develop suitable bioremediation strategies for uranium contaminated sites. This article focuses on the fundamental mechanisms adopted by various microbes to mitigate uranium toxicity which could be utilized for developing various approaches for uranium bioremediation. (author)

  8. Lung Cancer in uranium miners

    International Nuclear Information System (INIS)

    Zhou Chundi; Fan Jixiong; Wang Liuhu; Huang Yiehan; Nie Guanghua

    1987-01-01

    This paper analyese the clinical data of 39 uranium miners with lung cancer and of 20 patients with lung cancer who have not been exposed to uranium as control. The age of uranium miners with lung cancer was 36∼61 with an average of 48.8, nine years earlier than that of the control group (57.3). In the uranium miner patients the right lung was more susceptible to cancer than the left, the ratio being 2.5:1. However, in the control group the right lung had an equal incidence of cancer as the left lung. The relative frequency of small cell anaplastic carcinoma in uranium miner was higher than that in the control group. In the miner patients the mean occupation history was 11.1 ± 5.2 years; the exposure dose to radon and its daughters in 50% patients was 0.504J(120 WLM). The etiologic factor of lung cancer in uranium miners is strongly attributed, in addition to smoking, to the exposure to radon and its daughters in uranium mines

  9. Bioassay for uranium mill tailings

    International Nuclear Information System (INIS)

    Tschaeche, A.N.

    1986-01-01

    Uranium mill tailings are composed of fine sand that contains, among other things, some uranium (U/sup 238/ primarily), and all of the uranium daughters starting with /sup 230/Th that are left behind after the usable uranium is removed in the milling process. Millions of pounds of tailings are and continue to be generated at uranium mills around the United States. Discrete uranium mill tailings piles exist near the mills. In addition, the tailings materials were used in communities situated near mill sites for such purposes as building materials, foundations for buildings, pipe runs, sand boxes, gardens, etc. The Uranium Mill Tailings Remedial Action Project (UMTRAP) is a U.S. Department of Energy Program designed with the intention of removing or stabilizing the mill tailings piles and the tailings used to communities so that individuals are not exposed above the EPA limits established for such tailings materials. This paper discusses the bioassay programs that are established for workers who remove tailings from the communities in which they are placed

  10. Status of uranium in Brazil

    International Nuclear Information System (INIS)

    Majdalani, S.A.; Tavares, A.M.

    2001-01-01

    Uranium exploration in Brazil was started in 1952 by the Brazilian National Research Council. This led to the discovery of the first uranium deposits in Pocos de Caldas and Jacobina. These activities was later continued by the National Energy Commission/Comissao Nacional de Energia Nuclear (CNEN), formed in 1962. The founding of NUCLEBRAS at the end of 1974 marked the increasing effort of the country's uranium exploration programme. At this time only the Pocos de Caldas deposit was known with measurable resources. Due to the reorganization of the Brazilian nuclear programme in 1988, all uranium exploration in the country was stopped. By then, eight areas with uranium reserves has been identified. Brazil uranium resources in the RAR category at ≤ $80/kg U cost range are estimated to be 162,000 tonnes U, out of which 56,100 tonnes are in the ≤ $40/kg U cost range. Additional resources in the EAR-I category and the cost range ≤ 80/kg U are in the order of 100,200 tonnes U. The first production of uranium in Brazil, at the Osamu Utsumi mine (Pocos de Caldas deposit), started in 1982. Because of escalated costs and reduced demand, this activity was put on stand-by status between 1990 and 1992. The mine was restarted in 1993, but was stopped again in October 1995. The cumulative production of the mine to 1996 was 1241 tonnes U. The Lagoa Real deposit is currently being prepared as a new producing mine. (author)

  11. The uranium industry of Bulgaria

    International Nuclear Information System (INIS)

    Pool, T.C.

    1991-01-01

    For 45 years, the Bulgarian uranium industry operated behind an impenetrable veil of secrecy. As this veil is slowly lifted, the breadth and structure of the industry are becoming apparent-and so are the problems. Bulgaria's uranium industry began in 1945 with the evaluation of several uranium mineral occurrences in the Balkan Mountains. These occurrences provided to be mineable deposits and became the foundation for a continuing program of exploration and development. Mining commenced in 1946, and all production was exported under contract to the Soviet Union in exchange for an eventual supply of fabricated nuclear fuel. In concert with most other countries of the COMECON block, Bulgaria's exploration and development program reached its zenith in the late 1960s and early 1970s. Like other COMECON countries, the contract with the Soviet Union was reduced during the 1980s and finally terminated. The Bulgarian uranium industry now is under substantial pressure to: (1) Maintain uranium production as a base of support for its 10,000 employees. (2) Develop mineral deposits other than uranium as a replacement for high-cost uranium production. (3) Clean up past and present production sites, most of which have significant environmental problems. The probability of successfully completing these three tasks without outside assistance is limited. Bulgaria's almost complete dependence for four and a half decades on Soviet aid, contracts, and technology has taken its toll

  12. Australia: uranium and nuclear policy

    International Nuclear Information System (INIS)

    Crick, R.

    1991-01-01

    Australia's uranium and nuclear policies have gone through several stages of development since the commercialisation of the industry. The early stages laid the foundations and built the superstructure of Australia's uranium development, export and safeguards policies. The uranium industry and other governments have understood the nature and operation of these policies. An important aim of this paper will be to explain the design and current construction stage of policies. This needs to be done against the background of broader industry developments. Within the past twelve months (1989/90) there have been dramatic changes, both within Australia and internationally, which have affected the uranium market. Internationally, we have seen the spot price indicators for uranium fall to an all time low. Within Australia, we have seen the removal of the fixed floor price requirement for the sale of Australia uranium. This was replaced by a requirement that contract prices reflect the market. This change in policy allowed the outcome of several major long-term contract renegotiations to be approved. It also allowed Australian producers to secure several new long-term contracts, despite the overall depressed state of the market. The 'three mines' policy remains in place although only two, Ranger in Northern Territory and Olympic Dare in Southern Australia are currently operating. The biggest unknown is the extent of future uranium demand. (author)

  13. The Uranium Institute: the first ten years

    International Nuclear Information System (INIS)

    1985-01-01

    As noted in its Memorandum of Association, the Uranium Institute was founded: to promote the use of uranium for peaceful purposes; to conduct research into uranium requirements, uranium resources and uranium production; to consult for these purposes with governments and other bodies; and to provide a forum for the exchange of information on these matters. A brief account of Institute organisation and activities during the period 1975-1985 is given. (author)

  14. About the elaboration of pure uranium dicarbide

    International Nuclear Information System (INIS)

    Besson, J.; Blum, P.; Guinet, Ph.; Spitz, J.

    1963-01-01

    In order to develop methods for the elaboration of as pure as possible uranium dicarbide, the authors report the study of different elaboration processes based on the reaction between uranium and carbon, or between uranium and hydrocarbon, or between uranium oxide and carbon. They finally choose a method which comprises an arc-induced fusion of a mixture of uranium dioxide and carbon. The fusion process is described. The influence of thermal treatments is discussed as well as the graphite electrode carburization

  15. Western Australian uranium opening to global markets

    International Nuclear Information System (INIS)

    Hall, G.

    2008-01-01

    The change of government in Western Australia (WA) in September 2008 brought with it a change in the state policy on uranium mining. For a period previously, although uranium exploration was allowed, mining leases were granted excluding the right to mine uranium. The Barnett Liberal/National Government has reversed that policy, and is now granting mining leases including uranium, and will allow uranium mining projects to proceed into production subject to all appropriate approvals processes.

  16. Uranium refining by solvent extraction

    International Nuclear Information System (INIS)

    Kraikaew, J.; Srinuttrakul, W.

    2014-01-01

    The solvent extraction process to produce higher purity uranium from yellowcake was studied in laboratory scale. Yellowcake, which the uranium purity is around 70% and the main impurity is thorium, was obtained from monazite processing pilot plant of Rare Earth Research and Development Center in Thailand. For uranium re-extraction process, the extractant chosen was Tributylphosphate (TBP) in kerosene. It was found that the optimum concentration of TBP was 10% in kerosene and the optimum nitric acid concentration in uranyl nitrate feed solution was 4 N. An increase in concentrations of uranium and thorium in feed solution resulted in a decrease in the distribution of both components in the extractant. However, the distribution of uranium into the extractant was found to be more than that of thorium. The equilibration study of the extraction system, UO_2(NO_3)/4N HNO_3 – 10%TBP/Kerosene, was also investigated. Two extraction stages were calculated graphically from 100,000 ppm uranium concentration in feed solution input with 90% extraction efficiency and the flow ratio of aqueous phase to organic phase was adjusted to 1.0. For thorium impurity scrubbing process, 10% TBP in kerosene was loaded with uranium and minor thorium from uranyl nitrate solution prepared from yellowcake and was scrubbed with different low concentration nitric acid. The results showed that at nitric acid normality was lower than 1 N, uranium distributed well to aqueous phase. As conclusion, optimum nitric acid concentration for scrubbing process should not less than 1 N and diluted nitric acid or de-ionized water should be applied to strip uranium from organic phase in the final refining process. (author)

  17. Glances on uranium. From uranium in the earth to electric power

    International Nuclear Information System (INIS)

    Valsardieu, C.

    1995-01-01

    This book is a technical, scientific and historical analysis of the nuclear fuel cycle from the origin of uranium in the earth and the exploitation of uranium ores to the ultimate storage of radioactive wastes. It comprises 6 chapters dealing with: 1) the different steps of uranium history (discovery, history of uranium chemistry, the radium era, the physicists and the structure of matter, the military uses, the nuclear power, the uranium industry and economics), 2) the uranium in nature (nuclear structure, physical-chemical properties, radioactivity, ores, resources, cycle, deposits), 3) the sidelights on uranium history (mining, prospecting, experience, ore processing, resources, reserves, costs), 4) the uranium in the fuel cycle, energy source and industrial product (fuel cycle, fission, refining, enrichment, fuel processing and reprocessing, nuclear reactors, wastes management), 5) the other energies in competition and the uranium market (other uranium uses, fossil fuels and renewable energies, uranium market), and 6) the future of uranium (forecasting, ecology, economics). (J.S.)

  18. Uranium resources: the Canadian status

    International Nuclear Information System (INIS)

    Runnalls, O.J.C.

    1976-01-01

    The history of the uranium industry in Canada is reviewed beginning with the first discoveries and progressing through the booming years of the 1950's, the doldrums of the 1960's, to the present bouyant seller's market and the promising prospects for new discoveries. The upsurge in demand has led to the establishment of a uranium export policy which is described in detail. Recent estimates of resources, production capacity, and domestic demand are also outlined. Finally, a brief description of the utilization of natural uranium in CANDU power reactors is presented

  19. Uranium determination in dental ceramics

    International Nuclear Information System (INIS)

    Jacobson, I.; Gamboa, I.; Espinosa, G.; Moreno, A.

    1984-01-01

    There are many reports of high uranium concentration in dental ceramics, so they require to be controlled. The SSNTD is an optional method to determine the uranium concentration. In this work the analysis of several commercial dental ceramics used regularly in Mexico by dentists is presented. The chemical and electrochemical processes are used and the optimal conditions for high sensitivity are determined. CR-39 (allyl diglycol polycarbonate) was used as detector. The preliminary results show some materials with high uranium concentrations. Next step will be the analysis of equivalent dose and the effects in the public health. (author)

  20. Old dumps of uranium mining

    International Nuclear Information System (INIS)

    Gatzweiler, R.; Mager, D.

    1993-01-01

    The production of natural uranium through mining and milling results in large volumes of low-level radioactive waste, mainly in mine dumps and mill tailings. Hazards which relate to abandoned uranium production sites and environmental remediation approaches are described in reference to the Wismut case. During the period 1947 to 1990 the former Soviet-German Wismut Corporation produced about 200 000 t of uranium from several deposits in Thuringia and Saxonia within a relatively small and densely populated area. These activities resulted in major land disturbance and other environmental damage. Restoration problems are highlighted. (orig.)

  1. Search for uranium: a perspective

    International Nuclear Information System (INIS)

    Grutt, E.W. Jr.

    1975-01-01

    The history of uranium mining in the USA is reviewed. It is postulated that some two million tons of U 3 O 8 will be needed to provide fuel for US nuclear power plants through the year 2000. World resources of U ores are reviewed. The functions of the ERDA National Uranium Resources Evaluation Program (NURE), including aerial surveying, in relation to the assessment of potential uranium reserves in the USA are discussed. The scope of ERDA research and development programs are briefly reviewed. (U.S.)

  2. Uranium exploration in developing countries

    International Nuclear Information System (INIS)

    Premoli, C.

    1982-01-01

    The advantages to the developing countries of exploiting their uranium deposits in the next two decades to aid their own economic growth are considered. It is pointed out that in spite of the little known geology of these countries less sophisticated surveying methods have turned up large uranium deposits even in developed countries. Carborne surveys with simple crystal-detectors coupled to scintillators can be effective. Intelligent exploration in developing countries can be cheap due to low labour costs and less stringent environmental restraints and the uranium found could be sold to developed countries for their nuclear power programme. (U.K.)

  3. Hinkler Well - Centipede uranium deposits

    International Nuclear Information System (INIS)

    Crabb, D.; Dudley, R.; Mann, A.W.

    1984-01-01

    The Hinkler Well - Centipede deposits are near the northeastern margin of the Archean Yilgarn Block on a drainage system entering Lake Way. Basement rocks are granitoids and greenstones. The rocks are deeply weathered and overlain by alluvism. Granitoids, the probable uranium source, currently contain up to 25 ppm uranium, in spite of the weathering. The host calcrete body is 33 km long and 2 km wide. Uranium up to 1000 ppm occurs in carnotite over a 15 km by 2.5 km area. (author)

  4. Uranium Task Force final report

    International Nuclear Information System (INIS)

    1991-03-01

    Site-specific data on the management of uranium of 17 facilities have been assembled and analyzed to develop a comprehensive report on uranium processes, treatment, storage, and disposal on a Department of Energy-wide basis. By integrating a variety of waste generation sources, treatment processes, storage facilities, and disposal options, this waste management system study aims to effectively characterize and evaluate the performance and effectiveness of the total Department of Energy system for the management of uranium, as well as the individual sites. 7 refs., 7 figs., 2 tabs

  5. Beta activity of enriched uranium

    International Nuclear Information System (INIS)

    Nambiar, P.P.V.J.; Ramachandran, V.

    1975-01-01

    Use of enriched uranium as reactor fuel necessitates its handling in various forms. For purposes of planning and organising radiation protection measures in enriched uranium handling facilities, it is necessary to have a basic knowledge of the radiation status of enriched uranium systems. The theoretical variations in beta activity and energy with U 235 enrichment are presented. Depletion is considered separately. Beta activity build up is also studied for two specific enrichments, in respect of which experimental values for specific alpha activity are available. (author)

  6. Uranium project GEO 2 attachment: cronostratigraphy aplied to Uranium research

    International Nuclear Information System (INIS)

    1983-01-01

    In the article, different sources of information about Uranium stratigraphy from Uruguay have been reviewed. Some results have been presented in Upper Cambrian period and Precambrian era, specially Devonian, Carboniferous and Silurian period

  7. Uranium and the use of depleted uranium in weaponry

    International Nuclear Information System (INIS)

    Roussel, R.

    2000-01-01

    In this brief report the author shows that the use of shells involving a load of depleted uranium might lead to lasting hazards to civil population and environment. These hazards come from the part of the shell that has been dispersed as contaminating radioactive dusts. The author describes some features of radioactivity and highlights the role of Uranium-238 as a provider of energy to the planet. (A.C.)

  8. Formation and types of uranium deposits, uranium resources

    International Nuclear Information System (INIS)

    Dahlkamp, F.J.

    1975-01-01

    To begin with, the formation and origin of uranium deposits is described, and uranium deposits are classified into four basic categories. Of these, those that are of economic interest are described in detail with regard to their characteristic geological features, and their geographic distribution in the western world is outlined. The major facts and data regarding the geological and geochronological classification of these deposits and their size are given in tables and easy-to-interpret diagrams. (RB) [de

  9. Airborne uranium, its concentration and toxicity in uranium enrichment facilities

    International Nuclear Information System (INIS)

    Thomas, J.; Mauro, J.; Ryniker, J.; Fellman, R.

    1979-02-01

    The release of uranium hexafluoride and its hydrolysis products into the work environment of a plant for enriching uranium by means of gas centrifuges is discussed. The maximum permissible mass and curie concentration of airborne uranium (U) is identified as a function of the enrichment level (i.e., U-235/total U), and chemical and physical form. A discussion of the chemical and radiological toxicity of uranium as a function of enrichment and chemical form is included. The toxicity of products of UF 6 hydrolysis in the atmosphere, namely, UO 2 F 2 and HF, the particle size of toxic particulate material produced from this hydrolysis, and the toxic effects of HF and other potential fluoride compounds are also discussed. Results of an investigation of known effects of humidity and temperature on particle size of UO 2 F 2 produced by the reaction of UF 6 with water vapor in the air are reported. The relationship of the solubility of uranium compounds to their toxic effects was studied. Identification and discussion of the standards potentially applicable to airborne uranium compounds in the working environment are presented. The effectiveness of High Efficiency Particulate (HEPA) filters subjected to the corrosive environment imposed by the presence of hydrogen fluoride is discussed

  10. Flotation of uranium from uranium ores in Canada. Part 1

    International Nuclear Information System (INIS)

    Muthuswami, S.V.; Vigayan, S.; Woods, D.R.; Banerjee, S.

    1983-01-01

    About 150 flotation tests were done on Elliot Lake ore with 15 reagents as collectors in order to screen and choose an attractive collector for uranium flotation. Several variables were studied including pH, conditioning time and mode of collector addition. The tests were done in a Denver or Agitair subaeration cell. The particle size of the ore was kept at 85% below -325 mesh. Three reagents (Kelex 00, TOPO, and cupferron) were identified as having the most promise. The best results were obtained with cupferron, where 93-95% of the uranium was recovered in 25-30% of the mass of original ore. Radium in the tails varied between 5 and 30 pCi/g depending on the mass of uranium floated. Radium was recovered in proportion to uranium in the tests done at neutral pH. The preconcentration results obtained by flotation alone were comparable to those obtained using pyrite flotation and wet high-intensity magnetic separation of uranium. The consumption of cupferron was 4 kg/Mg ore for each flotation stage. This was 10-15 times larger than the collector usage in conventional oxide flotation. This scheme did not require other reagents as depressants, activators or modifiers. Reproducibility was good and similar recoveries were obtained with fresh or old ores, and with distilled or mine water. The selectivity of cupferron for uranium in the ore studied was outstanding

  11. Elements beyond uranium

    International Nuclear Information System (INIS)

    Seaborg, G.T.; Loveland, W.D.

    1990-01-01

    This book is the 12th volume in a series on transuranium elements. Varied techniques for production of these elements, the methods used in the identification, and the exquisitely refined microchemical techniques required to deal wth samples sometimes involving only a few atoms are described in detail. The chapter on synthesis of the new elements is liberally laced with reminiscences of the proud progenitors as well as the criteria for the discovery of a new chemical element. The authors lament that the superheavy elements (elements in the region of atomic number 114) still elude detection even though their creation should be possible, and some, at least, should survive long enough to be detected. One chapter in the book is devoted to practical applictions of uranium, and the transuranic elements

  12. Uranium plutonium oxide fuels

    International Nuclear Information System (INIS)

    Cox, C.M.; Leggett, R.D.; Weber, E.T.

    1981-01-01

    Uranium plutonium oxide is the principal fuel material for liquid metal fast breeder reactors (LMFBR's) throughout the world. Development of this material has been a reasonably straightforward evolution from the UO 2 used routinely in the light water reactor (LWR's); but, because of the lower neutron capture cross sections and much lower coolant pressures in the sodium cooled LMFBR's, the fuel is operated to much higher discharge exposures than that of a LWR. A typical LMFBR fuel assembly is shown. Depending on the required power output and the configuration of the reactor, some 70 to 400 such fuel assemblies are clustered to form the core. There is a wide variation in cross section and length of the assemblies where the increasing size reflects a chronological increase in plant size and power output as well as considerations of decreasing the net fuel cycle cost. Design and performance characteristics are described

  13. The uranium machine

    International Nuclear Information System (INIS)

    Walker, M.

    1990-01-01

    The German atom bomb is a chimera. Scientists such as Carl Friedrich von Weizsaecker and Werner Heisenberg have been claiming for a long time that they refused to carry out research in the Third Reich because they did not want to put such a terrible weapon into Hitler's hand. The author produces evidence proving that the German physicists were never in a position to carry out a research project on the scale of the 'Manhattan Project', quite apart from the fact that they were lacking important technical prerequisites for splitting isotopes. With a detective's touch the author succeeds in reconstructing the competition for the bomb in minute detail. This book is the most detailed and precise analysis of the reality of that uranium machine which for four decades has haunted scientific and journalistic literature. (orig./HP) [de

  14. Plutonium in uranium deposits

    International Nuclear Information System (INIS)

    Curtis, D.; Fabryka-Martin, J.; Aguilar, R.; Attrep, M. Jr.; Roensch, F.

    1992-01-01

    Plutonium-239 (t 1/2 , 24,100 yr) is one of the most persistent radioactive constituents of high-level wastes from nuclear fission power reactors. Effective containment of such a long-lived constituent will rely heavily upon its containment by the geologic environment of a repository. Uranium ore deposits offer a means to evaluate the geochemical properties of plutonium under natural conditions. In this paper, analyses of natural plutonium in several ores are compared to calculated plutonium production rates in order to evaluate the degree of retention of plutonium by the ore. The authors find that current methods for estimating production rates are neither sufficiently accurate nor precise to provide unambiguous measures of plutonium retention. However, alternative methods for evaluating plutonium mobility are being investigated, including its measurement in natural ground waters. Preliminary results are reported and establish the foundation for a comprehensive characterization of plutonium geochemistry in other natural environments

  15. Uranium production in Australia

    International Nuclear Information System (INIS)

    Fisk, B.G.

    1984-01-01

    The history of uranium mining and milling in Australia is briefly outlined, particular attention being given to the development of Australia's only two operating mills, Nabarlek and Ranger, and its only operating mine, Ranger. The latter project is used to illustrate the prerequisites for development of the industry and the complex roles of the various parties involved in establishing a new mine: equity holders, customers, financiers, the securities industry, trade unions, and the public. The moves currently being taken to resolve the future of the industry in Australia, particularly the examination of issues relating to Australia's role in the nuclear fuel cycle being conducted by the Australian Science and Technology Council, preclude any firm conclusions being drawn, but the various options open to the government are reviewed and the record of Australian governments and unions and the attitude of the Australian public are described. (Author) (3 tabs., fig.)

  16. Uranium nucleophilic carbene complexes

    International Nuclear Information System (INIS)

    Tourneux, Jean-Christophe

    2012-01-01

    The only stable f-metal carbene complexes (excluding NHC) metals f present R 2 C 2- groups having one or two phosphorus atoms in the central carbon in alpha position. The objective of this work was to develop the chemistry of carbenes for uranium (metal 5f) with the di-anion C{Ph 2 P(=S)} 2 2- (SCS 2- ) to extend the organometallic chemistry of this element in its various oxidation states (+3-+6), and to reveal the influence of the 5f orbitals on the nature and reactivity of the double bond C=U. We first isolated the reactants M(SCHS) (M = Li and K) and demonstrated the role of the cation M + on the evolution of the di-anion M 2 SCS (M = Li, K, Tl) which is transformed into LiSCHS in THF or into product of intramolecular cyclization K 2 [C(PhPS) 2 (C 6 H 4 )]. We have developed the necessary conditions mono-, bis- and tris-carbene directly from the di-anion SCS 2- and UCl 4 , as the precursor used in uranium chemistry. The protonolysis reactions of amides compounds (U-NEt 2 ) by the neutral ligand SCH 2 S were also studied. The compounds [Li(THF)] 2 [U(SCS)Cl 3 ] and [U(SCS)Cl 2 (THF) 2 ] were then used to prepare a variety of cyclopentadienyl and mono-cyclo-octa-tetra-enyliques uranium(IV) carbene compounds of the DFT analysis of compounds [M(SCS)Cl 2 (py) 2 ] and [M(Cp) 2 (SCS)] (M = U, Zr) reveals the strong polarization of the M=C double bond, provides information on the nature of the σ and π interactions in this binding, and shows the important role of f orbitals. The influence of ancillary ligands on the M=C bond is revealed by examining the effects of replacing Cl - ligands and pyridine by C 5 H 5 - groups. Mulliken and NBO analyzes show that U=C bond, unlike the Zr=C bond, is not affected by the change in environment of the metal center. While the oxidation tests of carbene complexes of U(IV) were disappointing, the first carbene complex of uranium (VI), [UO 2 (SCS)(THF) 2 ], was isolated with the uranyl ion UO 2 2+ . The reactions of compounds UO 2 X 2

  17. Health in uranium mining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-01-15

    Safety in mining radioactive ores, and in milling and treating them, has been a serious preoccupation for some thirty years. Much earlier than this, however, a high incidence of lung cancer had been reported among the miners of the Erzgebirge mountains in the German-Czechoslovak border region (places familiar under the names of Schneeberg and St. Joachims thai). Investigations into deaths from radium poisoning began at these mines in 1937, and the results seemed to indicate a causal connection between the radioactive substances and the development of lung cancer and other diseases. These matters were discussed in Vienna at the symposium on Radiological Health and Safety in Nuclear Materials Mining and Milling, 26-31 August 1963. The symposium was organized by IAEA and co-sponsored by ILO and WHO; some 70 papers were presented. The purpose of the meeting was to collect and compare the very widely scattered research results and practical experience in this field. One conclusion which emerged was that the milling of uranium ore involves no unusual problem. Provided standard controls - as applied to the treatment of other minerals - are strictly enforced, exposure to radiation can be kept to a minimum. In the actual mining of uranium, the problems are only beginning to be clearly defined, but it seems to be well established that exposure of miners to excessive levels of radon will have most serious consequences. In a complicated pattern there are many factors at work, ranging from the physical behaviour of sundry radioactive substances to the personal histories of individual miners. The need for considerably more research was stressed throughout the discussions.

  18. Health in uranium mining

    International Nuclear Information System (INIS)

    1964-01-01

    Safety in mining radioactive ores, and in milling and treating them, has been a serious preoccupation for some thirty years. Much earlier than this, however, a high incidence of lung cancer had been reported among the miners of the Erzgebirge mountains in the German-Czechoslovak border region (places familiar under the names of Schneeberg and St. Joachims thai). Investigations into deaths from radium poisoning began at these mines in 1937, and the results seemed to indicate a causal connection between the radioactive substances and the development of lung cancer and other diseases. These matters were discussed in Vienna at the symposium on Radiological Health and Safety in Nuclear Materials Mining and Milling, 26-31 August 1963. The symposium was organized by IAEA and co-sponsored by ILO and WHO; some 70 papers were presented. The purpose of the meeting was to collect and compare the very widely scattered research results and practical experience in this field. One conclusion which emerged was that the milling of uranium ore involves no unusual problem. Provided standard controls - as applied to the treatment of other minerals - are strictly enforced, exposure to radiation can be kept to a minimum. In the actual mining of uranium, the problems are only beginning to be clearly defined, but it seems to be well established that exposure of miners to excessive levels of radon will have most serious consequences. In a complicated pattern there are many factors at work, ranging from the physical behaviour of sundry radioactive substances to the personal histories of individual miners. The need for considerably more research was stressed throughout the discussions.

  19. Ventilation of uranium mines

    International Nuclear Information System (INIS)

    Francois, Y.; Pradel, J.; Zettwoog, P.; Dumas, M.

    1975-01-01

    In the first part of the paper the authors describe the ventilation of French mines in terms of the primary ventilation system, which brings the outside air close to the working places using the overall structure of the mine to form the airways, and the secondary ventilation system, which is for the distribution of the primary air or for the ventilation of the development drifts and blind tunnels. Brief mention is made of the French regulations on the ventilation of mines in general and uranium mines in particular. The authors describe the equipment used and discuss the installed capacities and air flow per man and per working place. The difficulties encountered in properly ventilating various types of working places are mentioned, such as sub-level development drifts, reinforced stopes, and storage chambers with an artificial crown. The second part of the paper is devoted to computer calculations of the primary ventilation system. It is explained why the Commissariat a l'energie atomique has found it necessary to make these calculations. Without restating the mathematical theories underlying the methods employed, the authors demonstrate how simple measuring instruments and a small-size computer can be used to solve the ventilation problems arising in French mines. Emphasis is given to the layout of the ventilation system and to air flow and negative pressure measurements at the base of the mine. The authors show how calculations can be applied to new heading operations, a change in resistance, the replacement or addition of a ventilator, and a new air inlet or outlet. The authors come to the conclusion that since ventilation is at present the most reliable way of avoiding the pollution of mines, a thorough knowledge of the capabilities in this respect can often help improve working conditions. Despite the progress made, however, constant surveillance of the ventilation systems in uranium mines by a separate team with no responsibility for production problems is

  20. Ventilation of uranium mines

    International Nuclear Information System (INIS)

    Francois, Y.; Pradel, J.; Zettwoog, P.; Dumas, M.

    1975-01-01

    In the first part of the paper the authors describe the ventilation of French mines in terms of the primary ventilation system, which brings the outside air close to the working places using the overall structure of the mine to form the airways, and the secondary ventilation system, which is for the distribution of the primary air or for the ventilation of the development drifts and blind tunnels. Brief mention is made of the French regulations on the ventilation of mines in general and uranium mines in particular. The authors describe the equipment used and discuss the installed capacities and air flow per man and per working place. The difficulties encountered in properly ventilating various types of working places are mentioned, such as sublevel development drifts, reinforced stopes, and storage chambers with an artificial crown. The second part of the paper is devoted to computer calculations of the primary ventilation system. It is explained why the Commissariat a l'energie atomique has found it necessary to make these calculations. Without restating the mathematical theories underlying the methods employed, the authors demonstrate how simple measuring instruments and a small-size computer can be used to solve the ventilation problems arising in French mines. Emphasis is given to the layout of the ventilation system and to air flow and negative pressure measurements at the base of the mine. The authors show how calculations can be applied to new heading operations, a change in resistance, the replacement or addition of a ventilator, and a new air inlet or outlet. The authors come to the conclusion that since ventilation is at present the most reliable way of avoiding the pollution of mines, a thorough knowledge of the capabilities in this respect can often help improve working conditions. Despite the progress made, however, constant surveillance of the ventilation systems in uranium mines by a separate team with no responsibility for production problems is

  1. The uranium cycle

    International Nuclear Information System (INIS)

    Ferguson, J.

    1988-01-01

    In identifying uranium provinces, and, more importantly, mineralized zones within these provinces, it is of paramount importance to attempt to trace the geochemical behaviour of an element through all stages of Earth's evolution. Aspects that need to be addressed in this regard include solar abundance levels and fractionation processes during accretion, changing patterns of crustal evolution, effects of an evolving atmosphere, and the weathering cycle. Abundance patterns and partition coefficients of some of the siderophile elements in mantle rocks lend support to a multistage accretionary process. Lack of a terrestrial record in the first 500 Ma necessitates that lunar models be invoked, which suggests that early fractionation of a mafic/ultramafic magma resulted in an anorthositic crust. Fractionation of the mantle and transfer of materials to the upper levels must be central to any model invoked for development of the crust. Given high heat flow conditions in the early Archaean it would seem inescapable that the process of sea floor spreading and plate tectonics was an ongoing process. If the plate tectonic model is taken back to 3500 Ma, and assuming current speading rates, then about half of the mantle has passed through the irreversible differentiation cycle. Arguments in support of recycled material must be balanced against mantle metasomatism effects. With the associated advent of partial melting of the mantle material a partitioning of minor and trace elements into the melt fraction would take place. The early primitive mafic and ultramafic komatiites exemplify this feature by concentrating U and Th by a factor of 5 compared to chondritic abundances. It is of tantamount importance to understand the generation of the magmas in order to predict which are the 'fertile' bodies in terms of radioelement concentrations. In that the granitoid magmas image their source compositions, the association of high radioelements will primarily be source-dependent. Uranium

  2. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    Rose, A.W.

    1977-01-01

    The processes and types of dispersion that produce anomalies in stream water, stream sediment, and ground water, and the factors that must be considered in planning and interpreting geochemical surveys are reviewed. Examples of surveys near known deposits show the types of results to be expected. Background values depend mainly on the content of U in rocks of the drainage area. In igneous rocks, U tends to increase with potassium from ultramafic rocks (0.01 ppM) to granitic rocks (1 to 5 ppM). Some alkalic rocks have unusually high contents of U (15 to 100 ppM). Uranium-rich provinces marked by igneous rocks unusually rich in U are recognized in several areas and appear to have a deep crustal or mantle origin. In western U.S., many tertiary tuffaceous rocks have a high U content. Sandstones, limestones, and many shales approximate the crustal abundance at 0.5 to 4 ppM, but black shales, phosphates, and some organic materials are notably enriched in U. Uranium is very soluble in most oxidizing waters at the earth's surface, but is precipitated by reducing agents (organic matter, H 2 S) and adsorbed by organic material and some Fe oxides. In most surface and ground waters, U correlates approximately with the total dissolved solids, conductivity, and bicarbonate concentration of the water, and with the U content of rocks it comes into contact with. Most surveys of stream water near known districts show distinct anomalies extending a few km to tens of km downstream. A complication with water is the large variability with time, up to x 50, as a result of changes in the ratio of ground water to direct runoff, and changes in rate of oxidation and leaching. Collection and analysis of water samples also pose some difficulties

  3. Surficial uranium deposits in Somalia

    International Nuclear Information System (INIS)

    Briot, P.

    1984-01-01

    Surficial uranium deposits in Somalia are of the valley-fill calcrete type and occur in the arid Mudugh Province of the Dusa Mareb-El Bur region. They are located in a belt about 240 km in length which is orientated parallel to the north-south regional tectonic framework. The uranium resources of the region amount to about 5,000 t U 3 O 8 at an average grade of 0.1% U 3 O 8 . Basement rocks constitute a 7,000 m thick succession of Jurassic to Quaternary sediments of the Somalian Basin. Uranium mineralization in the form of carnotite occurs in the uppermost Mercia Series. The origin of the uranium and vanadium is unclear due to a shortage of the favourable source rocks. (author)

  4. AEC determines uranium enrichment policy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Advisory Committee on Uranium Enrichment of the Atomic Energy Commission (AEC) has submitted a report to AEC chairman concerning the promotion of the introduction of advanced material, high performance centrifuges to replace conventional metallic drum centrifuges, and the development of next generation advanced centrifuges. The report also called for the postponement until around 1997 of the decision whether the development should be continued or not on atomic vapor laser isotope separation (AVLIS) and molecular laser isotope separation (MLIS) processes, as well as the virtual freezing of the construction of a chemical process demonstration plant. The report was approved by the AEC chairman in August. The uranium enrichment service market in the world will continue to be characterized by oversupply. The domestic situation of uranium enrichment supply-demand trend, progress of the expansion of Rokkasho enrichment plant, the trend in the development of gas centrifuge process and the basic philosophy of commercializing domestic uranium enrichment are reported. (K.I.)

  5. Inhalation hazards to uranium miners

    International Nuclear Information System (INIS)

    Cross, F.T.

    1985-01-01

    This project is investigating levels of uranium mine air contaminants, using both large and small experimental animals to model human respiratory system disease. Lung cancer and deaths by degenerative lung disease have reached epidemic proportions among uranium miners, but the cause-effect relationships for these diseases are based on inadequate epidemiological data. This project identifies agents or combinations of agents (both chemical and radiological), and their exposure levels, that produce respiratory tract lesions, including respiratory epithelial carcinoma, pneumoconiosis, and emphysema. Histopathologic data from rats are shown for approximately 300- to 10,000-working-level-month (WLM) radon-daughter exposures. Exposure of male rats to radon daughters and uranium ore dust continues, along with exposure of male and female beagle dogs to uranium ore dust alone. 4 tables

  6. Worldwide ISL Uranium Mining Outlook

    International Nuclear Information System (INIS)

    Boytsov, A.; Stander, S.; Martynenko, V.

    2014-01-01

    Contents: • ISL uranium production historical review and current status; • ISL versus conventional mining; • Acid versus alkaline ISL; • ISL cost considerations; • Principal criteria and parameters for ISL mining; • ISL production forecast and resources availability

  7. The implications of uranium export

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    It is argued that Australia should not enter the business of uranium mining enrichment and export because of the hazards of nuclear power and because there are practical alternatives to the development of nuclear power. (R.L.)

  8. Uranium and nuclear energy: 1986

    International Nuclear Information System (INIS)

    1987-01-01

    The papers (25 in all) cover energy policy issues (5 papers), uranium mining safety (4 papers), uranium production (3 papers), public attitudes and waste management (4 papers), advancing enrichment technology especially laser-based techniques (4 papers) and the uranium market (5 papers). The address by Lord Marshall, chairman of the Central Electricity Generating Board, which explains why an accident like the one at Chernobyl could not happen in a British reactor is also reprinted. All are indexed separately. The first appendix lists the nuclear power plants in the world, country by country, and gives details of type, supplier and commercial operation. The second appendix lists the uranium production facilities in the world country by country giving their status, ownership and some brief comments. (U.K.)

  9. On the spoor of uranium

    International Nuclear Information System (INIS)

    Herzberg, W.; Beeson, R.

    1976-01-01

    All types of investigatory techniques are being used in the intensive drive to define the Karoo Basin's uranium potential. Geochemistry is now being employed to delineate target areas for more detailed exploration

  10. United States uranium enrichment policies

    International Nuclear Information System (INIS)

    Roberts, R.W.

    1977-01-01

    ERDA's uranium enrichment program policies governing the manner in which ERDA's enrichment complex is being operated and expanded to meet customer requirements for separative work, research and development activities directed at providing technology alternatives for future enrichment capacity, and establishing the framework for additional domestic uranium enrichment capacity to meet the domestic and foreign nuclear industry's growing demand for enrichment services are considered. The ERDA enrichment complex consists of three gaseous diffusion plants located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Today, these plants provide uranium enrichment services for commercial nuclear power generation. These enrichment services are provided under contracts between the Government and the utility customers. ERDA's program involves a major pilot plant cascade, and pursues an advanced isotope separation technique for the late 1980's. That the United States must develop additional domestic uranium enrichment capacity is discussed

  11. The toxicology of uranium compounds

    International Nuclear Information System (INIS)

    Brickner, D.

    1988-11-01

    This review of literature presents and criticises the current knowledge relevant to risk assessment in cases of human exposure to natural uranium compounds due to industrial accidents. The major risk of high uranium exposure is renal-tubular damage which may lead to acute renal insufficiency and death. Radiation damage is not expected in these circumstances. In this review the metabolism of uranium in the body, the health effects and the possible medical treatment are discussed, with an emphasis on relatively large exposure of short duration. The current ICRP lung model does not represent all the factors affecting the kinetics of uranium oxides in the respiratory tract. The significance of these factors, not represented by the model, for risk assessment in such exposures, is not known. The current recommendations for treatment are not scientifically based. Further investigations are urgently needed to enable a rational medical preparadness

  12. In situ leaching of uranium

    International Nuclear Information System (INIS)

    Martin, B.

    1980-01-01

    A process is described for the in-situ leaching of uranium-containing ores employing an acidic leach liquor containing peroxymonosulphuric acid. Preferably, additionally, sulphuric acid is present in the leach liquor. (author)

  13. The latest figures on uranium

    International Nuclear Information System (INIS)

    Vance, R.

    2010-01-01

    According to the latest figures on uranium, soon to be published by the NEA, uranium resources, production and demand are all on the rise. Exploration efforts have increased recently in line with the expected expansion of nuclear energy in the coming years. Total identified resources have grown and are now sufficient to cover 100 years of supply at 2008 rates of consumption. Costs of production have, however, also increased. This article is based on the latest edition of the 'Red Book', Uranium 2009: Resources, Production and Demand, which presents the results of the most recent biennial review of world uranium market fundamentals and a statistical profile of the world uranium industry as of 1 January 2009. It contains official data provided by OECD Nuclear Energy Agency (NEA) and International Atomic Energy Agency (IAEA) member countries on uranium exploration, resources, production and reactor-related requirements. Projections of nuclear generating capacity and reactor-related uranium requirements through 2035 are also provided as well as a discussion of long-term uranium supply and demand issues. Despite recent declines stemming from the global financial crisis, world demand for electricity is expected to continue to grow significantly over the next several decades to meet the needs of an increasing population and economic growth. The recognition by an increasing number of governments that nuclear power can produce competitively priced, base-load electricity that is essentially free of greenhouse gas emissions, coupled with the role that nuclear can play in enhancing security of energy supply, increases the prospects for growth in nuclear generating capacity, although the magnitude of that growth remains to be determined. Regardless of the role that nuclear energy ultimately plays in meeting rising electricity demand, the uranium resource base is more than adequate to meet projected requirements. Meeting even high-case requirements to 2035 would consume less

  14. Inhalation hazards to uranium miners

    International Nuclear Information System (INIS)

    Cross, F.T.

    1983-01-01

    This project is investigating levels or uranium mine air contaminants, using both large and small experimental animals to model human respiratory system disease. Lung cancer and deaths by degenerative lung disease have reached epidemic proportions among uranium miners, but the cause-effect relationships for these diseases are based on inadequate epidemiological data. This project identifies agents or combinations of agents (both chemical and radiological), and their exposure levels, that produce respiratory tract lesions, including respiratory epithelial carcinoma, pneumoconiosis, and emphysema

  15. Canada: The largest uranium producer

    International Nuclear Information System (INIS)

    Lowell, A.F.

    1985-01-01

    Despite all the current difficulties, previous erroneous forecasts and other mistakes, the longer term future looks good for uranium mining and for Canada's industry in particular. Saskatchewan continues to offer the most exciting new prospects, the huge and fabulously high grade Cigar Lake deposits being the most spectacular of the recent discoveries. Notwithstanding continuous mining for 30 years from Elliot Lake there still remain there significant uncommitted reserves which can be developed when the market for uranium is in better balance

  16. Uranium exploration of Samar Island

    International Nuclear Information System (INIS)

    Santos, G. Jr.

    1979-02-01

    Uranium exploration is being undertaken to meet the requirements of the Philippine Nuclear Power Plant-1 (PNPP-1) programmed to operate in 1982, for about 140 metric tons annually or 2664 MT of U 3 O 8 up to the year 2000. Samar was chosen as the survey pilot project and the method used was a geochemical reconnaissance or low density observation survey to delineate broad areas where follow-up uranium surveys may be undertaken. Stream sediments or surface waters were collected at each sampling point at a density of one sample per 20-25 sq. km. The conductance and pH of the water were measured with a conductivity meter and pH respectively. Radioactivity was determined using a portable scintillometer. The stream sediment and heavy mineral samples were analyzed for uranium (U), copper (CCu), lead (Pb), zinc (Zn), manganese (Mn), silver (Ag), cobalt (Co), nickel (Ni). Water samples were analyzed for uranium only. The solid samples were digested in an acid mixture of 85% concentrated nitric acid and 15% concentrated hydrochloric acid, and the leachable uranium was determined using a fluorimeter. The detection limits for uranium were 0.3 ppb and 0.3 ppm for water and solid samples, respectively. Analysis for Cu, Pb, Zn, Mn, Ag, Co, and Ni were done by Atomic Absorption Spectrophotometry using the same leaching solution prepared for uranium analysis. Over 9000 determinations were done on nearly 1600 samples. The survey delineated at least two areas where follow-up surveys for uranium are warranted. These areas are the San Isidro - Catarman in Northwestern Samar, and the vicinity of Bagacay mines in Central Samar

  17. Inhalation hazards to uranium miners

    International Nuclear Information System (INIS)

    Cross, F.T.

    1982-01-01

    This project is investigating levels of uranium mine air contaminants, using both large and small experimental animals to model human respiratory system disease. Lung cancer and deaths by degenerative lung disease have reached epidemic proportions among uranium miners, but the cause-effect relationships for these diseases are based on inadequate epidemiological data. This project identifies agents or combinations of agents (both chemical and radiological) and their exposure levels that produce respiratory tract lesions, including respiratory epithelial carcinoma, pneumonconiosis and emphysema

  18. Uranium resource processing. Secondary resources

    International Nuclear Information System (INIS)

    Gupta, C.K.; Singh, H.

    2003-01-01

    This book concentrates on the processing of secondary sources for recovering uranium, a field which has gained in importance in recent years as it is environmental-friendly and economically in tune with the philosophy of sustainable development. Special mention is made of rock phosphate, copper and gold tailings, uranium scrap materials (both natural and enriched) and sea water. This volume includes related area of ore mineralogy, resource classification, processing principles involved in solubilization followed by separation and safety aspects

  19. The Espinharas uranium occurrence, Brazil

    International Nuclear Information System (INIS)

    Fuchs, H.D.; Fonte, J. da; Suckau, V.; Thakur, V.

    1981-01-01

    Nuclam has been exploring for uranium in Brazil since 1976. During this period one uranium ore body has been found in the vicinity of Espinharas, a village in Paraiba State, northeast Brazil. According to present knowledge, the mineralized ore body is caused by metasomatic action. The history of discovery and the exploration work until the end of 1979 is given, showing the conceptual change with increasing knowledge of the mineralized zone. (author)

  20. Uncertainties still dominate uranium market

    International Nuclear Information System (INIS)

    Geddes, W.P.

    1984-01-01

    Uranium Supply and Demand - perspectives to 1995, published by the Uranium Institute, is discussed. The report devotes less discussion than its predecessors to the technical influences underpinning the Institute's supply and demand forecasts, and more to the factors which influence the market behaviour of the nuclear industry's various participants. These latter influences can easily be overlooked when undue attention is given to physical imbalances between supply and demand. (U.K.)

  1. Australian uranium - the environmental issues

    International Nuclear Information System (INIS)

    Saddler, H.

    1980-01-01

    The principal theme of this paper is the changing pattern of issues which have dominated the environmental debate over uranium mining in Australia. These issues include the safeguards policy, a domestic energy policy, nuclear waste, economic development, particular environmental problems of the Alligator Rivers region and the social impact of uranium mining on the Aborigines. The special administrative arrangements which the Government has established for environmental protection in the Alligator Rivers region are outlined

  2. The market for natural uranium

    International Nuclear Information System (INIS)

    Bauder, P.

    1981-01-01

    The natural uranium market is characterized at present by its surplus. This is essentially due to a surplus on the production line. The uranium produced is no longer taken up by the market as it was up to the middle of 1979. The object of this contribution is therefore a survey on the present availability and demand situation, as well as to discuss market mechanisms and forecast the future market trend. (orig./IHO) [de

  3. Uranium - a challenging mining business

    International Nuclear Information System (INIS)

    Stadelhofer, J.W.; Wedig, M.J.

    2007-01-01

    The main application of uranium is its use as a fuel for the nuclear electricity generation. Presently about 68,000 t (177 mill. lbs) of uranium are annually required, of which 41,500 (108 mill. lbs) are provided from fresh mine production whereas 26,500 t (69 mill. lbs) are stock drawdown supplies from civil or military sources. Two-thirds of production are recovered by underground mining and about 75% (30,350 t) of the world's uranium mine production are extracted from top ten mines. All major uranium mining companies are making efforts to enlarge their production capacities: The paramount Cameco's Cigar Lake project has been delayed due to mine water inflow. Production is expected to commence by latest in 2010; the nameplate capacity of 6000 t/a should be reached in 2011. AREVA reported plans to invest about Euro 500 to 600 mill. to double its uranium production by 2010. In 2006 Denison Mines and International Uranium Corporation announced that they have entered into an agreement to merge the two companies in order to create a mid-tier, North American-focused uranium producer with the potential annual production of more than 5.5 mill. lbs of U 3 O 8 by 2010. The skyrocketing global electricity demand, growing public acceptance and more favourable policies have initiated a new round of global development of the nuclear industry. Against this backdrop, about 30,000 t/a to 40,000 t/a of additional mine production will be required within the upcoming 20 years to substitute secondary uranium supplies and to meet the expected increased demand; new start-up junior mining companies (e.g. Paladin) will contribute to this increased production. (orig.)

  4. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    Science.gov (United States)

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  5. Uranium retrieval support, storage, and marketing

    International Nuclear Information System (INIS)

    Jackson, J.D.; Marshall, E.M.

    2001-01-01

    The United States Department of Energy is implementing a stewardship approach to management of uranium assets. This life-cycle approach to managing uranium addresses current needs in the context of a long-term strategy. In June 1998, the United States Department of Energy established the Uranium Management Group. The mission of the UMG is to safely collect and store commercially viable uranium from various DOE facilities at a central location. The Oak Ridge Operations Office, in Oak Ridge, Tennessee, was given the task to establish a facility for the storage of these uranium materials. Materials collected are non-waste uranium and packaged to allow transport and long-term storage. Coordination of uranium management under the Uranium Management Group offers significant opportunities for sayings through improved planning and efficiency and creates an environmentally sound approach for the storage and reuse of excess uranium. (author)

  6. Uranium retrieval support, storage, and marketing

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.D.; Marshall, E.M. [U.S. Department of Energy, Oak Ridge, Tennessee (United States)

    2001-07-01

    The United States Department of Energy is implementing a stewardship approach to management of uranium assets. This life-cycle approach to managing uranium addresses current needs in the context of a long-term strategy. In June 1998, the United States Department of Energy established the Uranium Management Group. The mission of the UMG is to safely collect and store commercially viable uranium from various DOE facilities at a central location. The Oak Ridge Operations Office, in Oak Ridge, Tennessee, was given the task to establish a facility for the storage of these uranium materials. Materials collected are non-waste uranium and packaged to allow transport and long-term storage. Coordination of uranium management under the Uranium Management Group offers significant opportunities for sayings through improved planning and efficiency and creates an environmentally sound approach for the storage and reuse of excess uranium. (author)

  7. Uranium determination in different compositions

    International Nuclear Information System (INIS)

    Bulyanitsa, L.S.; Ivanova, K.S.; Ryzhinskij, M.V.; Alekseeva, N.A.; Solntseva, L.F.; Shereshevskaya, I.I.

    1978-01-01

    For clarifying the suitability of two different methods of analysis for determining uranium without its previous purification, the analysis of uranium carbides (UC, UC 2 , UC - ZrC) and alloys (U - Al, U - Zr - Nb, U- Ti) has been carried out. Dissolution of the compositions examined was carried out either after previous calcining (UC, UC 2 ) or fusion with KHSO 4 (UC - ZrC), or in phosphoric acid (alloys). The first method, a variant of potentiometric titration, has been modified for small amounts of uranium. Titration was carried out on a semiautomatic titrating unit. The uranium amount per titration is about 4 to 5 mg. The second method of analysis is the coulombmetric titration at a constant current intensity. The quantity of uranium per titration was equal to 1 - 3 mg. The statistical processing of the results obtained was carried out by a dispersion analysis that allowed to reveal the influence of separate factors, such as method of analysis, type of composition, the non-uniformity of a sample, the enumerated factors influencing the dispersion of the analysis results. It has been shown that the both methods are equally suitable for analysis of the uranium compounds examined

  8. Overview of Canada's uranium industry

    International Nuclear Information System (INIS)

    Lowell, A.F.

    1982-06-01

    This paper places Canada's uranium industry in its international context. Most uranium, except that produced in the United States, is traded internationally. A brief history of the industry worldwide is given to show how the principal producing areas have fared to date. The industry is young, highly cyclical, and still far from achieving stability. Uranium is a single end-use commodity, entirely dependent on the generation of electricity in nuclear stations, and is without price elasticity: lowering the price does not increase demand. The typical nuclear fuel processing chain has not encouraged or led to much vertical integration. Uranium is subject to more governmental control than any other commodity. The principal market is located in the industrial countries of western Europe, the United States, Canada, and the far east. The uranium supply-demand situation is reviewed, including the current and near-term oversupply and the longer term outlook to 1995. The major negative impact of reactor cancellations and deferments in the United States is discussed. Because of the difficulty in getting reactors on line, it has become easier to forecast the demand for uranium over the next 10 years. It is more difficult to predict how that demand will be met from the more than ample competing sources. Canada's potential for supplying a significant portion of this demand is considered in relation to producers and potential new producers in other countries

  9. Stratigraphic implications of uranium deposits

    International Nuclear Information System (INIS)

    Langford, F.F.

    1980-01-01

    One of the most consistent characteristics of economic uranium deposits is their restricted stratigraphic distribution. Uraninite deposited with direct igneous affiliation contains thorium, whereas chemical precipitates in sedimentary rocks are characterized by thorium-free primary uranium minerals with vanadium and selenium. In marine sediments, these minerals form low-grade disseminations; but in terrestrial sediments, chiefly fluvial sandstones, the concentration of uranium varies widely, with the high-grade portions constituting ore. Pitchblende vein deposits not only exhibit the same chemical characteristics as the Colorado-type sandstone deposits, but they have a stratigraphically consistent position at unconformities covered by fluvial sandstones. If deposits in such diverse situations have critical features in common, they are likely to have had many features of their origin in common. Thus, vein deposits in Saskatchewan and Australia may have analogues in areas that contain Colorado-type sandstone deposits. In New Mexico, the presence of continental sandstones with peneconformable uranium deposits should also indicate good prospecting ground for unconformity-type vein deposits. All unconformities within the periods of continental deposition ranging from Permian to Cretaceous should have uranium potential. Some situations, such as the onlap of the Abo Formation onto Precambrian basement in the Zuni Mountains, may be directly comparable to Saskatchewan deposition. However, uranium occurrences in the upper part of the Entrada Sandstone suggest that unconformities underlain by sedimentary rocks may also be exploration targets

  10. Uranium availability for power generation

    International Nuclear Information System (INIS)

    Stoller, S.M.; Hogerton, J.F.

    1977-01-01

    Utilities are encouraged to participate in the effort to explore and develop adequate supplies of uranium in order to assure a high level of effort and have some control over production rates. Regulatory commissions are likewise encouraged to be receptive to utility initiatives by granting assurances of favorable rate treatment to cover investments. Confusion arises over the difference between forward coverage based on proven reserves of commercial-grade uranium and long-range availability based on potential resources. Cancellations and delays in the licensing of nuclear power plants have made it difficult for uranium suppliers to proceed with confidence. Drilling difficulties and the short productive life of most uranium mines will probably keep proven reserve levels lower than long-term plant requirements. Several approaches are outlined for developing uranium reserve estimates. ERDA projections are based on ''favorable ground'' areas where uranium deposits are most probable. It is assumed that, where a market exists, minerals will be extracted and traditional procurement methods will evolve. Since utilities are the only industry committed to a viable fuel cycle, they are justified in joining in the search for supplies

  11. Uranium - resources development and availability

    International Nuclear Information System (INIS)

    1983-01-01

    Australia possesses a major portion of the world's low cost uranium and it is confidently expected that further exploration will delineate yet more reserves. The level of such exploration and the rate of development of new production will remain critically dependent on world market developments. For the foreseeable future all development will be dedicated to supplying the export market. Australian government policies for uranium take account of both domestic and international concerns. With Australia, the policies act to protect the interests of the Aboriginal people affected by uranium production. In response to national interests and concerns, foreign investment in uranium production ventures is regulated in a manner which requires Australian control but allows a measure of foreign equity. Environmental concerns are recognized and projects may only be approved after comprehensive environmental protection procedures have been complied with. Without these policies public acceptability, which provides the foundations for long-term stability of the industry, would be prejudiced. On the world scene, Australia's safeguards policy serves to support international nuclear safeguards and, in particular, to honour its obligations under the Nuclear Non-Proliferation Treaty. Export policy requires that reasonable sales contract conditions apply and that fair negotiated market prices are obtained for Australia's uranium. Australia's recent re-emergence as a major producer and exporter of uranium is convincing testimony to the success of these policies. (author)

  12. Uranium mining operations in Spain

    International Nuclear Information System (INIS)

    Rios, J.-M.; Arnaiz, J.; Criado, M.; Lopez, A.

    1995-01-01

    The Empresa Nacional del Uranio, SA (ENUSA) was founded in 1972 to undertake and develop the industrial and procurement activities of the nuclear fuel cycle in Spain. Within the organisation of ENUSA, the Uranium Division is directly responsible for the uranium mining and production operations that have been carried out since 1973 in the area of Ciudad Rodrigo in the province of Salamanca. These activities are based on open pit mining, heap leaching and a hydrometallurgical plant (Elefante) for extracting uranium concentrates from the ore. This plant was shut down in 1993 and a new plant was started up on the same site (Quercus) with a dynamic leaching process. The nominal capacity of the new plant is 950 t U 3 O 8 per year. Because of the historically low uranium prices which have recently prevailed, the plant is currently running at a strategic production rate of 300 t U 3 O 8 per year. From 1981 to 1990, in the area of La Haba (Badajoz province), ENUSA also operated a uranium production site, based on open pit mining, and an experimental extraction plant (Lobo-G). ENUSA is currently decommissioning these installations. This paper describes innovations and improvements that ENUSA has recently introduced in the field of uranium concentrates production with a view to cutting production costs, and to improving the decommissioning and site restoration processes in those sites where production is being shut down or resources have been worked out. (author)

  13. Uranium in the Black Sea

    International Nuclear Information System (INIS)

    Babinets, A.E.; Zhorov, V.A.; Bezborodov, A.A.; Kobylyanskaya, A.G.; Solov'eva, L.V.; Urdenko, V.A.

    1975-01-01

    Water samples for uranium analysis have been collected over the entire Black Sea, from the surface to the sea floor. As distinct from the previously known facts, it has been established that the uranium content in different parts of the sea appears to vary both in extent and with depth. A behaviour of uranium is governed by redox conditions of the environment. A decrease in pH value of water to 7.5 and a change of Eh value from +0.4 to -0.2 v lead to reduction of U 6+ → U 4+ and ensure higher sorption properties of the solid phases. The reducing reaction is proved possible through the calculated data. It is shown that the rate of uranium isolation is increasing with depth and its content is going down. Using optical properties of water, a hydrogeochemical behaviour of organic matter and uranium in water thickness is explained. Role of organic matter and mineral components in the uranium deposition is described. Sorption of U 6+ ions on twelve components, which constitute a base of suspensions and floor sediments, has been also studied [ru

  14. The opportunities for uranium development in South Australia

    International Nuclear Information System (INIS)

    Jackson, N.

    1979-07-01

    The opportunities for uranium development in South Australia are discussed. The author outlines the likely development of three known uranium deposits, shows the world energy and uranium requirements and makes some observations on uranium enrichment

  15. Uranium resources and the scope for nuclear power

    International Nuclear Information System (INIS)

    Vaughan, R.D.

    1975-01-01

    The subject is discussed under the following headings: uranium resources, forecast on nuclear programme, avenues for reduction in uranium consumption, uranium consumption for fixed programme with various breeders, possible nuclear growth determined by uranium supply. (U.K.)

  16. Uranium uptake by hydroponically cultivated crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Soudek, Petr; Petrova, Sarka [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Benesova, Dagmar [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Faculty of Environment Technology, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Dvorakova, Marcela [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Vanek, Tomas, E-mail: vanek@ueb.cas.cz [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic)

    2011-06-15

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC{sub 50} value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC{sub 50} = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. - Highlights: > The uranium accumulation in twenty different plant species varied from 0.160 to 0.011 mg/g DW. > Uranium is mainly localized in the root system. > Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba. > The phosphates deficiency increase the uranium uptake.

  17. Uranium uptake by hydroponically cultivated crop plants

    International Nuclear Information System (INIS)

    Soudek, Petr; Petrova, Sarka; Benesova, Dagmar; Dvorakova, Marcela; Vanek, Tomas

    2011-01-01

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC 50 value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC 50 = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. - Highlights: → The uranium accumulation in twenty different plant species varied from 0.160 to 0.011 mg/g DW. → Uranium is mainly localized in the root system. → Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba. → The phosphates deficiency increase the uranium uptake.

  18. Long-term management and use of depleted uranium

    International Nuclear Information System (INIS)

    Max, A.

    2001-01-01

    The products resulting from the process of enrichment of natural uranium, or reprocessed uranium, are enriched uranium products as the light fraction and depleted uranium (uranium tails) as the heavy fraction. If the source material is natural uranium, the mass ratios of uranium products and uranium tails can be derived relatively easily from the required enrichment level of the uranium product (product assay (% of U-235)) and the selected depletion level of the uranium tails (tails assay (% of U-235)). The paper discusses among other aspects the dependence of the tails mass on the required enrichment level of the relevant uranium product, for various tails assays. (orig./CB) [de

  19. Uranium production in thorium/denatured uranium fueled PWRs

    International Nuclear Information System (INIS)

    Arthur, W.B.

    1977-01-01

    Uranium-232 buildup in a thorium/denatured uranium fueled pressurized water reactor, PWR(Th), was studied using a modified version of the spectrum-dependent zero dimensional depletion code, LEOPARD. The generic Combustion Engineering System 80 reactor design was selected as the reactor model for the calculations. Reactors fueled with either enriched natural uranium and self-generated recycled uranium or uranium from a thorium breeder and self-generated recycled uranium were considered. For enriched natural uranium, concentrations of 232 U varied from about 135 ppM ( 232 U/U weight basis) in the zeroth generation to about 260 ppM ( 232 U/U weight basis) at the end of the fifth generation. For the case in which thorium breeder fuel (with its relatively high 232 U concentration) was used as reactor makeup fuel, concentrations of 232 U varied from 441 ppM ( 232 U/U weight basis) at discharge from the first generation to about 512 ppM ( 232 U/U weight basis) at the end of the fifth generation. Concentrations in freshly fabricated fuel for this later case were 20 to 35% higher than the discharge concentration. These concentrations are low when compared to those of other thorium fueled reactor types (HTGR and MSBR) because of the relatively high 238 U concentration added to the fuel as a denaturant. Excellent agreement was found between calculated and existing experimental values. Nevertheless, caution is urged in the use of these values because experimental results are very limited, and the relevant nuclear data, especially for 231 Pa and 232 U, are not of high quality

  20. Oxygen isotope fractionation in uranium oxides

    International Nuclear Information System (INIS)

    Zheng Yongfei

    1995-01-01

    Thermodynamic oxygen isotope factors for uranium oxides have been calculated by means of the modified increment method. The sequence of 18 O-enrichment in the uranium oxides with respect to the common rock-forming minerals is predicted as follows: spinel 3 < illite. Two sets of self-consistent fractionation factors between the uranium oxides and water and between the uranium oxides and the other minerals have been obtained for 0∼1200 degree C. The theoretical results are applicable to the isotopic geothermometry of uranium ores when pairing with other gangue minerals in hydrothermal uranium deposits