WorldWideScience

Sample records for geothermal wells producing

  1. Produced Water Treatment Using Geothermal Energy from Oil and Gas Wells: An Appropriateness of Decommissioned Wells Index (ADWI) Approach

    Science.gov (United States)

    Kiaghadi, A.; Rifai, H. S.

    2016-12-01

    This study investigated the feasibility of harnessing geothermal energy from retrofitted oil and gas decommissioned wells to power desalination units and overcome the produced water treatment energy barrier. Previous studies using heat transfer models have indicated that well depth, geothermal gradient, formation heat conductivity, and produced water salt levels were the most important constraints that affect the achievable volume of treated water. Thus, the challenge of identifying which wells would be best suited for retrofit as geothermal wells was addressed by defining an Appropriateness of Decommissioned Wells Index (ADWI) using a 25 km x 25 km grid over Texas. Heat transfer modeling combined with fuzzy logic methodology were used to estimate the ADWI at each grid cell using the scale of Very Poor, Poor, Average, Good and Excellent. Values for each of the four constraints were extracted from existing databases and were used to select 20 representative values that covered the full range of the data. A heat transfer model was run for all the 160,000 possible combination scenarios and the results were regressed to estimate weighting coefficients that indicate the relative effect of well depth, geothermal gradient, heat conductivity, and produced water salt levels on the volume of treated water in Texas. The results indicated that wells located in cells with ADWI of "Average", "Good" or "Excellent" can potentially deliver 35,000, 106,000, or 240,000 L/day of treated water, respectively. Almost 98% of the cells in the Granite Wash, 97% in Eagle Ford Shale, 90% in Haynesville Shale, 79% in Permian Basin, and 78% in Barnett Shale were identified as better than "Average" locations; whereas, south of the Eagle Ford, southwestern Permian Basin, and the center of Granite Wash were "Excellent". Importantly, most of the locations with better than "Average" ADWI are within drought prone agricultural regions that would benefit from this resilient source of clean water.

  2. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  3. Isotope and chemical investigation of geothermal springs and thermal water produced by oil wells in potwat area, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Tariq, J.A; Choudhry, M.A.; Hussain, Q.M.

    2008-10-01

    Isotopes and geochemical techniques were applied to investigate the origin, subsurface history and reservoir temperatures of geothermal springs in Potwar. Two sets of water samples were collected. Surface temperatures of geothermal springs ranges from 52 to 68.3 C. Waters produced by oil wells in Potwar area were also investigated. Geothermal springs of Potwar area are Na-HCO/sub 3/ type, while the waters produced by oil wells are Na-Cl and Ca-Cl types. Source of both the categories of water is meteoric water recharged from the outcrops of the formations in the Himalayan foothills. These waters undergo very high /sup 18/O-shift (up to 18%) due to rock-water interaction at higher temperatures. High salinity of the oil field waters is due to dissolution of marine evaporites. Reservoir temperatures of thermal springs determined by the Na-K geo thermometers are in the range of 56-91 deg. C, while Na-K-Ca, Na-K-Mg, Na-K-Ca-Mg and quartz geo thermometers give higher temperatures up to 177 C. Reservoir temperature determined by /sup 18/O(SO/Sub 4/-H/sub 2/O) geo thermometer ranges from 112 to 138 deg. C. There is wide variation in reservoir temperatures (54-297 deg. C) of oil fields estimated by different chemical geo thermometers. Na-K geo thermometer seems more reliable which gives close estimates to real temperature (about 100 deg. C) determined during drilling of oil wells. (author)

  4. Potential for offshore geothermal developments using deep gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Teodoriu, C.; Falcone, G. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    The development of geothermal resources is steadily increasing as operators meet the challenge of maximising the temperature difference between production and injection wells, while minimising the wellhead temperature of the latter. At present, the minimum working wellhead temperature reported for the heat-to-electricity conversion cycles is limited to about 80 C. The cycle efficiency can be improved by reducing the injection temperature, which is the temperature at which the fluid exits the process. This paper evaluates the potential for generating electricity with a subsea geothermal plant using the difference between downhole reservoir temperature and that of the cold seawater at the mud line. The temperature in the world's oceans is relatively constant, ranging from 0 to 4 C at around 400 meters water depth. The use of these lower offshore water temperatures may help boost geothermal energy development. Deep gas resources are considered to be held within reservoirs below 4600 meters (15000 feet) and are relatively undeveloped as the risks and costs involved in drilling and producing such resources are extremely high. These deep resources have high reservoir temperatures, which offer an opportunity for geothermal exploitation if a new development concept can be formulated. In particular, the well design and reservoir development plan should consider reutilising existing well stock, including dry and plugged and abandoned wells for geothermal application once the gas field has been depleted. The major risks considered in this study include alternative uses of wells in no flow or rapid depletion situations. Reutilisation of the wells of depleted gas reservoirs will invariably lead to lower geothermal development costs compared with starting a geothermal campaign by drilling new wells. In particular, the well design and reservoir development plan should consider reutilising existing well stock, including dry and plugged and abandoned wells for geothermal

  5. Geothermal Well Site Restoration and Plug and Abandonment of Wells

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, Ben N.

    1994-08-01

    A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana-the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports and procedures, daily workover and current conditions report, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

  6. Development of geothermal-well-completion systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.B.

    1979-01-01

    Results of a three year study concerning the completion of geothermal wells, specifically cementing, are reported. The research involved some specific tasks: (1) determination of properties an adequate geothermal well cement must possess; (2) thorough evaluation of current high temperature oilwell cementing technology in a geothermal context; (3) basic research concerning the chemical and physical behavior of cements in a geothermal environment; (4) recommendation of specific cement systems suitable for use in a geothermal well.

  7. Synthesis of mordenite in geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Konoya, M [Geological Survey of Hokkaido, Japan

    1970-03-01

    A study of the possible synthesis of mordenite in geothermal wells was conducted. In 1966 as part of a series of exploratory geothermal investigations, a 500 m well was drilled which had a temperature at 250 m of 120/sup 0/C. The well has constant temperature and constant pressure and has been used to study alteration. Specimens which were placed in the well were tested for mordenite. Mordenite was synthesized when Benki clay and a 10% KOH solution were placed in a Teflon tube at 250 m (120/sup 0/C and 22.3 kg/cm/sup 2/) for three months. No mordenite was synthesized when obsidian powder was used. These results indicate the possibility of synthesis of zeolite and clay minerals in geothermal wells. Two figures and four tables are provided.

  8. Geothermal well log interpretation midterm report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1979-02-01

    Reservoir types are defined according to fluid phase and temperature, lithology, geologic province, pore geometry, and salinity and fluid chemistry. Improvements are needed in lithology and porosity definition, fracture detection, and thermal evaluation for more accurate interpretation. Further efforts are directed toward improving diagnostic techniques for relating rock characteristics and log response, developing petrophysical models for geothermal systems, and developing thermal evaluation techniques. The Geothermal Well Log Interpretation study and report has concentrated only on hydrothermal geothermal reservoirs. Other geothermal reservoirs (hot dry rock, geopressured, etc.) are not considered.

  9. Geopressured-geothermal well activities in Louisiana

    International Nuclear Information System (INIS)

    John, C.J.

    1992-10-01

    Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing

  10. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  11. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Casie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cabe, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  12. Geothermal well log interpretation state of the art. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1980-01-01

    An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

  13. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  14. Valuation of Geothermal Wells on Real Property

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2001-12-01

    The Geo-Heat Center is often contacted by individual property owners, real estate professionals and others for assistance in the evaluation of geothermal resources in real property transactions. This document is a summary of information on the methods we have suggested to approach this situation in the past. The first of these methods is employed in situations in which the geothermal resource is in use serving some application. The second approach is for situations in which there is a known well on the property but it is not currently in use. The information presented here does not address situations in which the property is underlain by suspected geothermal resources for which there is no surface manifestation or existing development. The information contained in this document is intended to address large capacity wells of the type that would be used for commercial geothermal applications.

  15. A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Erdlac, Richard J., Jr.

    2006-10-12

    Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10’s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is “mined”. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities

  16. Feasibility of Geothermal Energy Extraction from Non-Activated Petroleum Wells in Arun Field

    Science.gov (United States)

    Syarifudin, M.; Octavius, F.; Maurice, K.

    2016-09-01

    The big obstacle to develop geothermal is frequently came from the economical viewpoint which mostly contributed by the drilling cost. However, it potentially be tackled by converting the existing decommissioned petroleum well to be converted for geothermal purposes. In Arun Field, Aceh, there are 188 wells and 62% of them are inactive (2013). The major obstacle is that the outlet water temperature from this conversion setup will not as high as the temperature that come out from the conventional geothermal well, since it will only range from 60 to 180oC depending on several key parameters such as the values of ground temperature, geothermal gradient in current location, the flow inside of the tubes, and type of the tubes (the effect from these parameters are studied). It will just be considered as low to medium temperature, according to geothermal well classification. Several adjustments has to be made such as putting out pipes inside the well that have been used to lift the oil/gas and replacing them with a curly long coil tubing which act as a heat exchanger. It will convert the cold water from the surface to be indirectly heated by the hot rock at the bottom of the well in a closed loop system. In order to make power production, the binary cycle system is used so that the low to medium temperature fluid is able to generate electricity. Based on this study, producing geothermal energy for direct use and electricity generation in Arun Field is technically possible. In this study case, we conclude that 2900 kW of electricity could be generated. While for-direct utility, a lot of local industries in Northern Sumatera could get the benefits from this innovation.

  17. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  18. Development of an Improved Cement for Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    Trabits, George [Trabits Group, LLC, Wasilla, AK (United States)

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  19. Boise geothermal injection well: Final environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

  20. Boise geothermal injection well: Final environmental assessment

    International Nuclear Information System (INIS)

    1997-01-01

    The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives

  1. Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Adams, A.; Dennis, B.; Van Eeckhout, E.; Goff, F.; Lawton, R.; Trujillo, P.E.; Counce, D.; Archuleta, J. (Los Alamos National Lab., NM (USA)); Medina, V. (Instituto Nacional de Electrificacion, Guatemala City (Guatemala). Unidad de Desarollo Geotermico)

    1991-07-01

    The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions were conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.

  2. Polymer-cement geothermal-well-completion materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zeldin, A.N.; Kukacka, L.E.

    1980-07-01

    A program to develop high-temperature polymer cements was performed. Several formulations based on organic and semi-inorganic binders were evaluated on the basis of mechanical and thermal stability, and thickening time. Two optimized systems exhibited properties exceeding those required for use in geothermal wells. Both systems were selected for continued evaluation at the National Bureau of Standards and contingent upon the results, for field testing in geothermal wells.

  3. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Mike S. [Terralog Technologies USA, Inc., Calgary (Canada); Detwiler, Russell L. [Terralog Technologies USA, Inc., Calgary (Canada); Lao, Kang [Terralog Technologies USA, Inc., Calgary (Canada); Serajian, Vahid [Terralog Technologies USA, Inc., Calgary (Canada); Elkhoury, Jean [Terralog Technologies USA, Inc., Calgary (Canada); Diessl, Julia [Terralog Technologies USA, Inc., Calgary (Canada); White, Nicky [Terralog Technologies USA, Inc., Calgary (Canada)

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  4. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  5. Chemical logging of geothermal wells

    Science.gov (United States)

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  6. Data Acquisition for Low-Temperature Geothermal Well Tests and Long-Term Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1992-03-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  7. Data acquisition for low-temperature geothermal well tests and long-term monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1992-09-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  8. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  9. Development of a code of practice for deep geothermal wells

    International Nuclear Information System (INIS)

    Leaver, J.D.; Bolton, R.S.; Dench, N.D.; Fooks, L.

    1990-01-01

    Recent and on-going changes to the structure of the New Zealand geothermal industry has shifted responsibility for the development of geothermal resources from central government to private enterprise. The need for a code of practice for deep geothermal wells was identified by the Geothermal Inspectorate of the Ministry of Commerce to maintain adequate standards of health and safety and to assist with industry deregulation. This paper reports that the Code contains details of methods, procedures, formulae and design data necessary to attain those standards, and includes information which drilling engineers having experience only in the oil industry could not be expected to be familiar with

  10. Success in geothermal development

    International Nuclear Information System (INIS)

    Stefansson, V.

    1992-01-01

    Success in geothermal development can be defined as the ability to produce geothermal energy at compatible energy prices to other energy sources. Drilling comprises usually the largest cost in geothermal development, and the results of drilling is largely influencing the final price of geothermal energy. For 20 geothermal fields with operating power plants, the ratio between installed capacity and the total number of well in the field is 1.9 MWe/well. The drilling history in 30 geothermal fields are analyzed by plotting the average cumulative well outputs as function of the number of wells drilled in the field. The range of the average well output is 1-10 MWe/well with the mean value 4.2 MWe/well for the 30 geothermal fields studied. A leaning curve is defined as the number of wells drilled in each field before the average output per well reaches a fairly constant value, which is characteristic for the geothermal reservoir. The range for this learning time is 4-36 wells and the average is 13 wells. In general, the average well output in a given field is fairly constant after some 10-20 wells has been drilled in the field. The asymptotic average well output is considered to be a reservoir parameter when it is normalized to the average drilling depth. In average, this reservoir parameter can be expressed as 3.3 MWe per drilled km for the 30 geothermal fields studied. The lifetime of the resource or the depletion time of the geothermal reservoir should also be considered as a parameter influencing the success of geothermal development. Stepwise development, where the reservoir response to the utilization for the first step is used to determine the timing of the installment of the next step, is considered to be an appropriate method to minimize the risk for over investment in a geothermal field

  11. Performance and Feasibility Study of a Standing Column Well (SCW System Using a Deep Geothermal Well

    Directory of Open Access Journals (Sweden)

    Jeong-Heum Cho

    2016-02-01

    Full Text Available Deep geothermal heat pump systems have considerable energy saving potential for heating and cooling systems that use stable ground temperature and groundwater as their heat sources. However, deep geothermal systems have several limitations for real applications such as a very high installation cost and a lack of recognition as heating and cooling systems. In this study, we performed a feasibility assessment of a Standing Column Well (SCW system using a deep geothermal well, based on a real-scale experiment in Korea. The results showed that the temperature of the heat source increased up to 42.04 °C in the borehole after the heating experiment, which is about 30 °C higher than that of normal shallow geothermal wells. Furthermore, the coefficient of performance (COP of the heat pump during 3 months of operation was 5.8, but the system COP was only 3.6 due to the relatively high electric consumption of the pump. Moreover, the payback period of the system using a deep well for controlled horticulture in a glass greenhouse was calculated as 6 years compared with using a diesel boiler system.

  12. Equivalent Circulation Density Analysis of Geothermal Well by Coupling Temperature

    Directory of Open Access Journals (Sweden)

    Xiuhua Zheng

    2017-02-01

    Full Text Available The accurate control of the wellbore pressure not only prevents lost circulation/blowout and fracturing formation by managing the density of the drilling fluid, but also improves productivity by mitigating reservoir damage. Calculating the geothermal pressure of a geothermal well by constant parameters would easily bring big errors, as the changes of physical, rheological and thermal properties of drilling fluids with temperature are neglected. This paper researched the wellbore pressure coupling by calculating the temperature distribution with the existing model, fitting the rule of density of the drilling fluid with the temperature and establishing mathematical models to simulate the wellbore pressures, which are expressed as the variation of Equivalent Circulating Density (ECD under different conditions. With this method, the temperature and ECDs in the wellbore of the first medium-deep geothermal well, ZK212 Yangyi Geothermal Field in Tibet, were determined, and the sensitivity analysis was simulated by assumed parameters, i.e., the circulating time, flow rate, geothermal gradient, diameters of the wellbore, rheological models and regimes. The results indicated that the geothermal gradient and flow rate were the most influential parameters on the temperature and ECD distribution, and additives added in the drilling fluid should be added carefully as they change the properties of the drilling fluid and induce the redistribution of temperature. To ensure the safe drilling and velocity of pipes tripping into the hole, the depth and diameter of the wellbore are considered to control the surge pressure.

  13. Enhanced Geothermal Systems (EGS) well construction technology evaluation report.

    Energy Technology Data Exchange (ETDEWEB)

    Capuano, Louis, Jr. (Thermasource Inc.); Huh, Michael; Swanson, Robert (Thermasource Inc.); Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

    2008-12-01

    Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and

  14. A Special Application Coiled Tubing Applied Plug for Geothermal Well Casing Remediation

    International Nuclear Information System (INIS)

    Knudsen, S.D.; Sattler, A.R.; Staller, G.E.

    1999-01-01

    Casing deformation in wells is a common problem in many geothermal fields. Casing remediation is necessary to keep wells in production and occasionally, to even enter the well for an approved plug and abandonment procedure. The costly alternative to casing remediation is to incur the expense of drilling a new well to maintain production or drilling a well to intersect a badly damaged well below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsor research and development work at Sandia National Laboratories in an effort to reduce these remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, has developed a low cost, commercially available, bridge-plug-type packer for use in geothermal well environments. This report documents the development and testing of this tool for use in casing remediation work

  15. Recovery Act: High-Temperature Circuit Boards for use in Geothermal Well Monitoring Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, Matthew [Composite Tehcnology Development, Inc., Lafayette, CO (United States); Fabian, Paul [Composite Tehcnology Development, Inc., Lafayette, CO (United States)

    2013-05-01

    The U.S. Department of Energy is leading the development of alternative energy sources that will ensure the long-term energy independence of our nation. One of the key renewable resources currently being advanced is geothermal energy. To tap into the large potential offered by generating power from the heat of the earth, and for geothermal energy to be more widely used, it will be necessary to drill deeper wells to reach the hot, dry rock located up to 10 km beneath the earth’s surface. In this instance, water will be introduced into the well to create a geothermal reservoir. A geothermal well produced in this manner is referred to as an enhanced geothermal system (EGS). EGS reservoirs are typically at depths of 3 to 10 km, and the temperatures at these depths have become a limiting factor in the application of existing downhole technologies. These high temperatures are especially problematic for electronic systems such as downhole data-logging tools, which are used to map and characterize the fractures and high-permeability regions in underground formations. Information provided by these tools is assessed so that underground formations capable of providing geothermal energy can be identified, and the subsequent drilling operations can be accurately directed to those locations. The mapping of geothermal resources involves the design and fabrication of sensor packages, including the electronic control modules, to quantify downhole conditions (300°C temperature, high pressure, seismic activity, etc.). Because of the extreme depths at which these measurements are performed, it is most desirable to perform the sensor signal processing downhole and then transmit the information to the surface. This approach necessitates the use of high-temperature electronics that can operate in the downhole environment. Downhole signal processing in EGS wells will require the development and demonstration of circuit boards that can withstand the elevated temperatures found at these

  16. Mexican geothermal development and the future

    International Nuclear Information System (INIS)

    Serrano, J.M.E.V.

    1998-01-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth

  17. A new method of damage determination in geothermal wells from geothermal inflow with application to Los Humeros, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Moya, S. L [Centro Nacional de Investigacion y Desarrollo Tecnologico, Cuernavaca, Morelos (Mexico); Garcia-Gutierrez, A; Arellano, V [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2008-10-15

    Geothermal inflow type curves were obtained for different values of well damage (i.e., inflow performance relationships). The method was evaluated by diagnosing the damage of thirteen producing wells in the Los Humeros, Puebla, Mexico geothermal field. Permeability determinations were carried out for these wells and their productivity indices were estimated. Comparison of the diagnoses made via damage effects against the results of field pressure tests showed that the maximum difference between both approaches is on the order of 0.7 damage units. The methodology allows reservoir characterization along its productive life, since several production tests are carried out while the reservoir is producing. The data obtained from production tests are used to determine the damage effect and permeability of the rock formation. Previously the damage (skin factor) could only be determined from the analyses of transient pressure tests. [Spanish] Se presenta la obtencion de curvas-tipo de influjo geotermico para diferentes valores de dano, y se demuestra su aplicacion en los analisis de produccion de pozos geotermicos determinando el dano en trece pozos del campo geotermico de Los Humeros, Puebla, Mexico. Tambien se hicieron determinaciones de la permeabilidad en las zonas de produccion de estos pozos y de sus respectivos indices de productividad. Se compararon los resultados del valor de dano obtenido con la metodologia propuesta, con los valores de dano obtenidos a partir de pruebas de presion, encontrando que las diferencias maximas entre ambas tecnicas es del orden de 0.7 unidades de dano. La presente metodologia permite la caracterizacion del yacimiento a lo largo de su vida productiva a partir de las mediciones de las pruebas de produccion efectuadas en los pozos. La metodologia propuesta es innovadora porque anteriormente el dano solamente se podia determinar a partir de los analisis de las mediciones de la pruebas de presion.

  18. Ornithological Survey of the Proposed Geothermal Well Site No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey, Jack

    1990-08-16

    The U.S. Fish and Wildlife Service (USFWS 1983) and the State of Hawaii (DLNR 1986) have listed as endangered six forest bird species for the Island of Hawaii. Two of these birds, the O'u (Psittirostra psittacea) and the Hawaiian hawk (Buteo solitarius) may be present within the Geothermal resource sub-zone (Scott et al. 1986). Thus, their presence could impact future development within the resource area. This report presents the results of a bird survey conducted August 11 and 12, 1990 in the sub-zone in and around the proposed well site and pad for True/Mid Pacific Geothermal Well No.2.

  19. Geothermal characteristics of deep wells using geophysical logs in Pohang area, Korea

    Science.gov (United States)

    LIM, W.; Hamm, S. Y.; Lee, C.; Song, Y.; Kim, H.

    2016-12-01

    Pohang area displays a larger potential of geothermal energy with the highest heat flow of 83 mWm-2 in South Korea. A geothermal binary power plant with a generation capacity of 1.5MW using enhanced geothermal system (EGS) is under construction in Pohang area and will be completed until 2017. This study aims to reveal geothermal characteristics of four wells (BH-1 to BH-4 wells) of 2,383 m in depth in Pohang area, using geophysical logs. The geology of the study area is composed of tertiary mudstone of 200 - 359.1 m, tuff of 73 - 240 m, sandstone/mudstone of 46 - 907 m, rhyolite of 259 - 375 m, and andesitic volcanic breccia of 834 m in thicknesses from the surface, with granodiorite at bottom. By the result of the study, temperature and maximum electrical conductivity (EC) are 69.5°C at 1,502.6 m and 1,162 μS/cm at BH-2 well, 44.4°C at 912.3 m and 1,105 μS/cm at BH-3 well, and 82.5°C at 1,981.3 m and 3,412 μS/cm at BH-4 well. Thermal conductivity values at saturated state are 2.14 - 3.95 W/m-K (average 3.47 W/m-K) at BH-1 well and 2.36 - 3.61 W/m-K (average 2.85 W/m-K) at BH-4 well. ß (determining heat flow rate and up/down direction) values were estimated by using 1-D steady-state heat transfer equation and were determined as -0.77 - 0.99 with the geothermal gradients (Ks) of 42.5 - 46.3°C/km at BH-1 well, -3.15 - 3.05 with the Ks of 25.0 - 29.1°C/km at BH-2, -1.80 - 2.09 with the Ks of 20.0 - 23.0°C/km at BH-3 well, and -4.10 - 5.18 with the Ks of 30.2 - 39.0°C/km at BH-4 well. Most depths of all the wells showed upward heat transfer. Based on the geophysical logs, the main aquifer is located between 200 and 300 meters. KEY WORDS: Geothermal gradient, thermal conductivity, geophysical logs, ß value, heat transfer equation, Pohang area Acknowledgement This work was supported by grants from the Principal Research Fund of Korea Institute of the Geoscience and Mineral Resources (KIGAM 16-3411).

  20. Cementing of geothermal wells. Progress report No. 12, January-March, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    Work to implement the program plan for the development of improved high temperature cementing materials for geothermal wells is continuing. Results from initial tests in the Dynamic Brine Exposure Testing Apparatus (D-BETA) are available. Based upon initial data, the rate at which cement coupons undergo change in the D-BETA is between that of the static tests and the dynamic exposures at East Mesa. Several cementing compositions have been formulated with chemical, physical and mechanical properties to withstand the existing geothermal conditions. The pumpability of three formulations has been demonstrated and the materials have been submitted to NBS for additional evaluation. The effect of Al/sub 2/O/sub 3/, Fe/sub 2/O/sub 3/, SO/sub 3/, Na/sub 2/CO/sub 3/ and Na/sub 2/SO/sub 4/ on different binders were studied at Colorado School of Mines. The results were found to range from deleterious to beneficial. Phosphate-bonded cements have been produced at the University of Rhode Island from a glass containing 7% Na/sub 2/O, 24% CaO, 24% Al/sub 2/O/sub 3/ and 45% SiO/sub 2/. Preliminary tests indicate that the material sets in several hours and appears to have some high temperature stability. Tests performed on hydrothermal cements indicate six formulations that are pumpable as long as three hours at 316/sup 0/C. Two formulations, Al/sub 2/O/sub 3/ and ZrO/sub 2/, have been chosen for use at temperatures above 300/sup 0/C. Polymer concentrates containing cement fillers have been found to be hydrothermally stable in 300/sup 0/C brine. Recommended standards for evaluating geothermal well cements have been developed by NBS. (MHR)

  1. Geothermal energy worldwide

    International Nuclear Information System (INIS)

    Barbier, Enriko

    1997-01-01

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  2. Environmental Assessment of the Hawaii Geothermal Project Well Flow Test Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-11-01

    The Hawaii Geothermal Project, a coordinated research effort of the University of Hawaii, funded by the County and State of Hawaii, and ERDA, was initiated in 1973 in an effort to identify, generate, and use geothermal energy on the Big Island of Hawaii. A number of stages are involved in developing geothermal power resources: exploration, test drilling, production testing, field development, power plant and powerline construction, and full-scale production. Phase I of the Project, which began in the summer of 1973, involved conducting exploratory surveys, developing analytical models for interpretation of geophysical results, conducting studies on energy recovery from hot brine, and examining the legal and economic implications of developing geothermal resources in the state. Phase II of the Project, initiated in the summer of 1975, centers on drilling an exploratory research well on the Island of Hawaii, but also continues operational support for the geophysical, engineering, and socioeconomic activities delineated above. The project to date is between the test drilling and production testing phase. The purpose of this assessment is to describe the activities and potential impacts associated with extensive well flow testing to be completed during Phase II.

  3. Technical support for geopressured-geothermal well activities in Louisiana

    International Nuclear Information System (INIS)

    John, C.J.

    1994-01-01

    The US Department of Energy has operated continuous-recording, microearthquake monitoring networks at geopressured-geothermal test well sites since 1980. These microseismic networks were designed to detect microearthquakes indicative of fault activation and/or subsidence that can potentially result from the deep subsurface withdrawal and underground disposal of large volumes of brine during well testing. Seismic networks were established before the beginning of testing to obtain background levels of seismicity. Monitoring continued during testing and for some time after cessation of flow testing to assess any delayed microseismicity caused by the time dependence of stress migration within the earth. No flow testing has been done at the Hulin well since January 1990, and the Pleasant Bayou well has been shut down since September 1992. Microseismic monitoring continued at the Hulin and Pleasant Bayou sites until 31 December 1992, at which time both operations were shut down and field sites dismantled. During 1992, the networks recorded seismic signals from earthquakes, sonic booms, geophysical blasting, thunderstorms, etc. However, as in previous years, no local microseismic activity attributable to geopressured-geothermal well testing was recorded

  4. Make-up wells drilling cost in financial model for a geothermal project

    Science.gov (United States)

    Oktaviani Purwaningsih, Fitri; Husnie, Ruly; Afuar, Waldy; Abdurrahman, Gugun

    2017-12-01

    After commissioning of a power plant, geothermal reservoir will encounter pressure decline, which will affect wells productivity. Therefore, further drilling is carried out to enhance steam production. Make-up wells are production wells drilled inside an already confirmed reservoir to maintain steam production in a certain level. Based on Sanyal (2004), geothermal power cost consists of three components, those are capital cost, O&M cost and make-up drilling cost. The make-up drilling cost component is a major part of power cost which will give big influence in a whole economical value of the project. The objective of this paper it to analyse the make-up wells drilling cost component in financial model of a geothermal power project. The research will calculate make-up wells requirements, drilling costs as a function of time and how they influence the financial model and affect the power cost. The best scenario in determining make-up wells strategy in relation with the project financial model would be the result of this research.

  5. Geothermal wells: a forecast of drilling activity

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  6. T-F and S/DOE Gladys McCall No. 1 well, Cameron Parish, Louisiana. Geopressured-geothermal well report, Volume II. Well workover and production testing, February 1982-October 1985. Final report. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The T-F and S/DOE Gladys McCall No. 1 well was the fourth in a series of wells in the DOE Design Wells Program that were drilled into deep, large geopressured-geothermal brine aquifers in order to provide basic data with which to determine the technological and economic viability of producing energy from these unconventional resources. This brine production well was spudded on May 27, 1981 and drilling operations were completed on November 2, 1981 after using 160 days of rig time. The well was drilled to a total depth of 16,510 feet. The target sands lie at a depth of 14,412 to 15,860 feet in the Fleming Formation of the lower Miocene. This report covers well production testing operations and necessary well workover operations during the February 1982 to October 1985 period. The primary goals of the well testing program were: (1) to determine reservoir size, shape, volume, drive mechanisms, and other reservoir parameters, (2) to determine and demonstrate the technological and economic viability of producing energy from a geopressured-geothermal brine aquifer through long-term production testing, and (3) to determine problem areas associated with such long-term production, and to develop solutions therefor.

  7. High-temperature explosive development for geothermal well stimulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.W.; Mars, J.E.; Wang, C.

    1978-03-31

    A two-component, temperature-resistant liquid explosive called HITEX has been developed which is capable of withstanding 561/sup 0/K (550/sup 0/F) for 24 hours in a geothermal environment. The explosive is intended for the stimulation of nonproducing or marginally producing geothermal (hot dry rock, vapor-dominated or hydrothermal) reservoirs by fracturing the strata in the vicinity of a borehole. The explosive is inherently safe because it is mixed below ground downhole from two nondetonable liquid components. Development and safety tests included differential scanning calorimetry, thermal stability, minerals compatibility, drop-weight sensitivity, adiabatic compression, electrostatic discharge sensitivity, friction sensitivity, detonation arrest capability, cook-off tests, detonability at ambient and elevated pressure, detonation velocity and thin film propagation in a wedge.

  8. Investigations of Very High Enthalpy Geothermal Resources in Iceland.

    Science.gov (United States)

    Elders, W. A.; Fridleifsson, G. O.

    2012-12-01

    The Iceland Deep Drilling Project (IDDP) is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. Earlier modeling indicates that the power output of a geothermal well producing from a supercritical reservoir could potentially be an order of magnitude greater than that from a conventional hot geothermal reservoir, at the same volumetric flow rate. However, even in areas with an unusually high geothermal gradient, for normal hydrostatic pressure gradients reaching supercritical temperatures and pressures will require drilling to depths >4 km. In 2009 the IDDP attempted to drill the first deep supercritical well, IDDP-01, in the caldera of the Krafla volcano, in NE Iceland. However drilling had to be terminated at only 2.1 km depth when ~900°C rhyolite magma flowed into the well. Our studies indicate that this magma formed by partial melting of hydrothermally altered basalts within the Krafla caldera. Although this well was too shallow to reach supercritical pressures, it is highly productive, and is estimated to be capable of generating up to 36 MWe from the high-pressure, superheated steam produced from the upper contact zone of the intrusion. With a well-head temperature of ~440°C, it is at present apparently the hottest producing geothermal well in the world. A pilot plant is investigating the optimal utilization of this magmatically heated resource. A special issue of the journal Geothermics with 16 papers reporting on the IDDP-01 is in preparation. However, in order to continue the search for supercritical geothermal resources, planning is underway to drill a 4.5 km deep well at Reykjanes in SW Iceland in 2013-14. Although drilling deeper towards the heat source of this already developed high-temperature geothermal field will be more expensive, if a supercritical resource is found, this cost increase should be offset by the considerable increase in the power output and lifetime of the Reykjanes geothermal

  9. Combination of Well-Logging Temperature and Thermal Remote Sensing for Characterization of Geothermal Resources in Hokkaido, Northern Japan

    Directory of Open Access Journals (Sweden)

    Bingwei Tian

    2015-03-01

    Full Text Available Geothermal resources have become an increasingly important source of renewable energy for electrical power generation worldwide. Combined Three Dimension (3D Subsurface Temperature (SST and Land Surface Temperature (LST measurements are essential for accurate assessment of geothermal resources. In this study, subsurface and surface temperature distributions were combined using a dataset comprised of well logs and Thermal Infrared Remote sensing (TIR images from Hokkaido island, northern Japan. Using 28,476 temperature data points from 433 boreholes sites and a method of Kriging with External Drift or trend (KED, SST distribution model from depths of 100 to 1500 m was produced. Regional LST was estimated from 13 scenes of Landsat 8 images. Resultant SST ranged from around 50 °C to 300 °C at a depth of 1500 m. Most of western and part of the eastern Hokkaido are characterized by high temperature gradients, while low temperatures were found in the central region. Higher temperatures in shallower crust imply the western region and part of the eastern region have high geothermal potential. Moreover, several LST zones considered to have high geothermal potential were identified upon clarification of the underground heat distribution according to 3D SST. LST in these zones showed the anomalies, 3 to 9 °C higher than the surrounding areas. These results demonstrate that our combination of TIR and 3D temperature modeling using well logging and geostatistics is an efficient and promising approach to geothermal resource exploration.

  10. Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy

    Science.gov (United States)

    Karimi, S.; Marsh, B. D.; Hilpert, M.

    2017-12-01

    A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the

  11. Economic impact of using nonmetallic materials in low to intermediate temperature geothermal well construction

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Four appendices are included. The first covers applications of low-temperature geothermal energy including industrial processes, agricultural and related processes, district heating and cooling, and miscellaneous. The second discusses hydrogeologic factors affecting the design and construction of low-temperature geothermal wells: water quality, withdrawal rate, water depth, water temperature, basic well designs, and hydrogeologic provinces. In the third appendix, properties of metallic and nonmetallic materials are described, including: specific gravity, mechanical strength properties, resistance to physical and biological attack, thermal properties of nonmetallics, fluid flow characteristics, corrosion resistance, scaling resistance, weathering resistance of nonmetallics, and hydrolysis resistance of nonmetallics. Finally, special considerations in the design and construction of low-temperature geothermal wells using nonmetallics materials are covered. These include; drilling methods, joining methods, methods of casing and screen installation, well cementing, and well development. (MHR)

  12. Summarized report of geothermal well Gross Buchholz Gt1; Kurzprofil der Geothermiebohrung Gross Buchholz Gt1

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Frauke; Hesshaus, Annalena; Jatho, Reiner; Luppold, Friedrich-Wilhelm; Pletsch, Thomas; Tischner, Torsten [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Hunze, Sabine; Orilski, Judith; Wonik, Thomas [Leibniz-Institut fuer Angewandte Geophysik (LIAG), Hannover (Germany); Roehling, Heinz-Gerd [Landesamt fuer Bergbau, Energie und Geologie (LBEG), Hannover (Germany)

    2012-01-15

    The well Gross Buchholz Gt1 is a deep geothermal well intended to demonstrate the feasibility of deep geothermal energy mining from tight sedimentary rocks. It is the core part of the GeneSys (Generated Geothermal Energy Systems) project, aiming at developing single well concepts for direct use of geothermal energy. During the course of the project, three different single well concepts have been developed and tested at the research well Horstberg Z1 which is geologically comparable to the Gross Buchholzwell. The latter is intended to supply the heating energy for the premises of Geozentrum Hannover, an office and lab complex of some 35.000 m{sup 2} housing about 1000 employees. The geothermal target are the sandstones of the Lower Triassic Middle Buntsandstein Formation, which have a temperature of about 165 C at 3700 depth. The well has reached a final depth of 3901 m below ground level, penetrating a nearly complete succession from the Lower Cretaceous (Albian) to the Lower Triassic (Lower Buntsandstein), while Tertiary and Upper Cretaceous sediments are missing. This article summarizes technical and geographic data, stratigraphic classification, geophysical logging, cores, and sidewall cores of the well. (orig.)

  13. Melun: a new generation geothermal well

    International Nuclear Information System (INIS)

    Lemale, J.

    1995-01-01

    A ''new generation'' geothermal well has been drilled with success at Melun l'Almont (Parisian region, France). A steel tubing with 13 inch 3/8 diameter and epoxide-fiberglass internal coating has been used to prevent the corrosion-deposition problems. The exploitation will use the triplet technique for water reinjection. The flow rate is 320 m 3 /h (at 74 C) and is assumed to provide 35000 MWh/year for the district heating of 3300 apartments. Investments have reach 18.8 millions of French Francs with the financial help of the CEE and of the Ademe. (J.S.). 1 photo

  14. Human Resources in Geothermal Development

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  15. Geothermal energy

    OpenAIRE

    Manzella A.

    2017-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. Fo...

  16. METHOD OF CALCULATING THE OPTIMAL HEAT EMISSION GEOTHERMAL WELLS

    Directory of Open Access Journals (Sweden)

    A. I. Akaev

    2015-01-01

    Full Text Available This paper presents a simplified method of calculating the optimal regimes of the fountain and the pumping exploitation of geothermal wells, reducing scaling and corrosion during operation. Comparative characteristics to quantify the heat of formation for these methods of operation under the same pressure at the wellhead. The problem is solved graphic-analytical method based on a balance of pressure in the well with the heat pump. 

  17. Exploration of Ulumbu geothermal field, Flores-east nusa tenggara, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Sulasdi, Didi

    1996-01-26

    This paper describes the progress made in developing geothermal resources at Ulumbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E) Ulumbu mini geothermal power plant.

  18. Application for Underground Injection Control Permit for the PUNA Geothermal Venture Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-06-01

    Puna Geothermal Venture (PGV) plans to construct and operate the 25 MW Puna Geothermal Venture Project in the Puna District of the Island of Hawaii. The project will drill geothermal wells within a dedicated 500-acre project area, use the produced geothermal fluid to generate electricity for sale to the Hawaii Electric Light Company for use on the Island of Hawaii, and inject all the produced geothermal fluids back into the geothermal reservoir. Since the project will use injection wells, it will require an Underground Injection Control (UIC) permit from the Drinking Water Section of the State of Hawaii Department of Health. The PGV Project is consistent with the State and County of Hawaii's stated objectives of providing energy self-sufficiency and diversifying Hawaii's economic base. The project will develop a new alternate energy source as well as provide additional information about the nature of the geothermal resource.

  19. Modeling thermal stress propagation during hydraulic stimulation of geothermal wells

    Science.gov (United States)

    Jansen, Gunnar; Miller, Stephen A.

    2017-04-01

    . Combined with a analytical formulation for the injection temperatures in the open hole section of a geothermal well, the stress changes induced during the injection period of reservoir development can be studied.

  20. Prokaryotic phylogenetic diversity of Hungarian deep subsurface geothermal well waters.

    Science.gov (United States)

    Németh, Andrea; Szirányi, Barbara; Krett, Gergely; Janurik, Endre; Kosáros, Tünde; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2014-09-01

    Geothermal wells characterized by thermal waters warmer than 30°C can be found in more than 65% of the area of Hungary. The examined thermal wells located nearby Szarvas are used for heating industrial and agricultural facilities because of their relatively high hydrocarbon content. The aim of this study was to reveal the prokaryotic community structure of the water of SZR18, K87 and SZR21 geothermal wells using molecular cloning methods and Denaturing Gradient Gel Electrophoresis (DGGE). Water samples from the outflow pipes were collected in 2012 and 2013. The phylogenetic distribution of archaeal molecular clones was very similar in each sample, the most abundant groups belonged to the genera Methanosaeta, Methanothermobacter and Thermofilum. In contrast, the distribution of bacterial molecular clones was very diverse. Many of them showed the closest sequence similarities to uncultured clone sequences from similar thermal environments. From the water of the SZR18 well, phylotypes closely related to genera Fictibacillus and Alicyclobacillus (Firmicutes) were only revealed, while the bacterial diversity of the K87 well water was much higher. Here, the members of the phyla Thermodesulfobacteria, Proteobacteria, Nitrospira, Chlorobi, OP1 and OPB7 were also detected besides Firmicutes.

  1. Geothermal hydrogen - a vision? Paper

    Energy Technology Data Exchange (ETDEWEB)

    Zittel, W.; Weindorf, W.; Wurster, R.; Bussmann, W.

    2001-07-01

    With the progresses in geothermal electricity production by means of the hot-dry-rock (HDR) method electricity might be produced at cost of between 0.07 - 0.09 ECU/kWh, depending on systems sizes of between 5 - 20 MW{sub e}. The electricity can be used to produce hydrogen from electrolysis and water. This method of electricity production offers high availability with operating hour of between 7,600 - 8,000 hours per year. The 40 GWh electricity production per year from one 5 MW{sub e} geothermal plant are sufficient to produce enough hydrogen for the operation of an average fueling station with about 400 refuelings per day at cost of about 20 - 30 percent higher than today's gasoline (including taxes). In this contribution some details of the analysis are presented as well as a general discussion of geothermal hydrogen production as a future energy vector. (orig.)

  2. Gulf Coast Programmatic Environmental Assessment Geothermal Well Testing: The Frio Formation of Texas and Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    In accordance with the requirements of 10 CFR Part 711, environmental assessments are being prepared for significant activities and individual projects of the Division of Geothermal Energy (DGE) of the Energy Research and Development Administration (ERDA). This environmental assessment of geopressure well testing addresses, on a regional basis, the expected activities, affected environments, and possible impacts in a broad sense. The specific part of the program addressed by this environmental assessment is geothermal well testing by the take-over of one or more unsuccessful oil wells before the drilling rig is removed and completion of drilling into the geopressured zone. Along the Texas and Louisiana Gulf Coast (Plate 1 and Overlay) water at high temperatures and high pressures is trapped within Gulf basin sediments. The water is confined within or below essentially impermeable shale sequences and carries most or all of the overburden pressure. Such zones are referred to as geopressured strata. These fluids and sediments are heated to abnormally high temperatures (up to 260 C) and may provide potential reservoirs for economical production of geothermal energy. The obvious need in resource development is to assess the resource. Ongoing studies to define large-sand-volume reservoirs will ultimately define optimum sites for drilling special large diameter wells to perform large volume flow production tests. In the interim, existing well tests need to be made to help define and assess the resource. The project addressed by this environmental assessment is the performance of a geothermal well test in high potential geothermal areas. Well tests involve four major actions each of which may or may not be required for each of the well tests. The four major actions are: site preparation, drilling a salt-water disposal well, actual flow testing, and abandonment of the well.

  3. High-Temperature Self-Healing and Re-Adhering Geothermal Well Cement Composites

    Science.gov (United States)

    Pyatina, T.; Sugama, T.; Boodhan, Y.; Nazarov, L.

    2017-12-01

    Self-healing cementitious materials are particularly attractive for the cases where damaged areas are difficult to locate and reach. High-temperature geothermal wells with aggressive environments impose most difficult conditions on cements that must ensure durable zonal isolation under repeated thermal, chemical and mechanical stresses. The present work evaluates matrix and carbon steel (CS) - cement interface self-healing and re-adhering properties of various inorganic cementitious composites under steam, alkali carbonate or brine environments at 270-300oC applicable to geothermal wells. The composite materials included blends based on Ordinary Portland Cement (OPC) and natural zeolites and alkali or phosphate activated composites of Calcium Aluminate Cement (CAC) with fly ash, class F. Class G cement blend with crystalline silica was used as a baseline. Compressive-strength and bond-strength recoveries were examined to evaluate self-healing and re-adhering properties of the composites after repeated crush tests followed by 5-day healing periods in these environments. The optical and scanning electron microscopes, X-ray diffraction, Fourier Transform infrared, Raman spectroscopy and EDX measurements were used to identify phases participating in the strengths recoveries and cracks filling processes. Amorphous silica-rich- and small-size crystalline phases played an important role in the healing of the tested composites in all environments. Possible ways to enhance self-healing properties of cementitious composites under conditions of geothermal wells were identified.

  4. Geothermal energy in Croatia and the world until 2020

    International Nuclear Information System (INIS)

    Jelic, K.; Kevric, I.; Cubric, S.

    1996-01-01

    The use of geothermal energy in watering place, heating, the production of electric power, and for other purposes is increasing throughout the world. Over the past ten years, besides traditional production from natural thermal wells, this energy has also been produced in Croatia from geothermal wells discovered as a results of deep exploration drilling for hydrocarbons. This paper analyses the current state of geothermal energy both in the world and in Croatia, and makes projections about its immediate future. Energy potential data on the croatian part of the Panonian basin are given along with perspective locations for producing this ecologically acceptable and partially reusable energy. (author)

  5. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  6. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  7. Prospects of geothermal resource exploitation

    International Nuclear Information System (INIS)

    Bourrelier, P.H.; Cornet, F.; Fouillac, C.

    1994-01-01

    The use of geothermal energy to generate electricity has only occurred during the past 50 years by drilling wells in aquifers close to magmas and producing either dry steam or hot water. The world's production of electricity from geothermal energy is over 6000 MWe and is still growing. The direct use of geothermal energy for major urban communities has been developed recently by exploitation of aquifers in sedimentary basins under large towns. Scaling up the extraction of heat implies the exploitation of larger and better located fields requiring an appropriate method of extraction; the objective of present attempts in USA, Japan and Europe is to create heat exchangers by the circulation of water between several deep wells. Two field categories are considered: the extension of classical geothermal fields beyond the aquifer areas, and areas favoured by both a high geothermal gradient, fractures inducing a natural permeability at large scale, and good commercial prospects (such as in the Rhenan Graben). Hot dry rocks concept has gained a large interest. 1 fig., 5 tabs., 11 refs

  8. Geothermal energy prospecting in El Salvador

    International Nuclear Information System (INIS)

    Balcazar, M.; Flores, J.H.; Gonzalez, E.; Ortega, M.

    1993-01-01

    Geochronological and geological studies carried out in El Salvador C. A., located a production geothermal zone to the north of the volcanic belt, in a region named Ahuachapan-Chipilapa. Hydrothermal activity and geochemical analysis indicate the existence of active geothermal faults aligned to the directions South-North and Northwest-Southeast. Radon mapping in that region covered a total of 8.7 km 2 where plastic detectors were placed 200 m apart. Results confirmed the existence of active faults and two producing geothermal wells were located. (author)

  9. Comments on some of the drilling and completion problems in Cerro Prieto geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A, B.; Sanchez G, G.

    1981-01-01

    From 1960 to the present, 85 wells with a total drilling length exceeding 160,000 m have been constructed at Cerro Prieto, a modest figure compared to an oil field. This activity took place in five stages, each characterized by changes and modifications required by various drilling and well-completion problems. Initially, the technical procedures followed were similar to those used in the oil industry. However, several problems emerged as a result of the relatively high temperatures found in the geothermal reservoir. The various problems that have been encountered can be considered to be related to drilling fluids, cements and cementing operations, lithology, geothermal fluid characteristics, and casings and their accessories. As the importance of high temperatures and the characteristics of the geothermal reservoir fluids were better understood, the criteria were modified to optimize well-completion operations, and satisfactory results have been achieved to date.

  10. Low-temperature geothermal water in Utah: A compilation of data for thermal wells and springs through 1993

    Energy Technology Data Exchange (ETDEWEB)

    Blackett, R.E.

    1994-07-01

    The Geothermal Division of DOE initiated the Low-Temperature Geothermal Resources and Technology Transfer Program, following a special appropriation by Congress in 1991, to encourage wider use of lower-temperature geothermal resources through direct-use, geothermal heat-pump, and binary-cycle power conversion technologies. The Oregon Institute of Technology (OIT), the University of Utah Research Institute (UURI), and the Idaho Water Resources Research Institute organized the federally-funded program and enlisted the help of ten western states to carry out phase one. This first phase involves updating the inventory of thermal wells and springs with the help of the participating state agencies. The state resource teams inventory thermal wells and springs, and compile relevant information on each sources. OIT and UURI cooperatively administer the program. OIT provides overall contract management while UURI provides technical direction to the state teams. Phase one of the program focuses on replacing part of GEOTHERM by building a new database of low- and moderate-temperature geothermal systems for use on personal computers. For Utah, this involved (1) identifying sources of geothermal date, (2) designing a database structure, (3) entering the new date; (4) checking for errors, inconsistencies, and duplicate records; (5) organizing the data into reporting formats; and (6) generating a map (1:750,000 scale) of Utah showing the locations and record identification numbers of thermal wells and springs.

  11. Investigation and evaluation of geopressured-geothermal wells. Fairfax Foster Sutter No. 2 well, St. Mary Parish, Louisiana. Volume I. Completion and testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Willits, M.H.; McCoy, R.L.; Dobson, R.J.; Hartsock, J.H.

    1979-12-01

    The Fairfax Foster Sutter No. 2 well, located in the East Franklin area of St. Mary Parish, Louisiana, is the first successful test of a geopressured-geothermal aquifer under the Well-of-Opportunity program. The section tested was the MA-6 sand of lower Miocene age which has produced large quantities of gas from the adjacent but structurally separated Garden City field. In the subject well the observed temperature was 270{sup 0}F (132{sup 0}C) and the measured gradient was 0.77 psi/ft. The gross sand thickness was 270 feet, the net sand thickness 190 feet, and the tested interval 58 net feet. The temperatures and pressures encountered approached the limits of the surface-recording bottomhole pressure gauge and particularly the single-conductor cables on which the gauges were run. The objectives of the tests were all accomplished, and data were obtained which will contribute to the overall assessment of the geopressured-geothermal resource of the Upper Gulf of Mexico basin. In general, the gas solubility (22.8 scf/bbl) was as expected for the temperature, pressure, and salinity of the brine. The produced water was more saline than expected (160,000 mg/l). The high concentrations of dissolved solids, coupled with the evolution of CO{sub 2} from these waters during production, created a scaling problem in the tubular goods and surface equipment that will have to be addressed in future tests.

  12. On calculation of a steam-water flow in a geothermal well

    Science.gov (United States)

    Shulyupin, A. N.; Chermoshentseva, A. A.

    2013-08-01

    Approaches to calculation of a steam-water flow in a geothermal well are considered. For hydraulic applications, a WELL-4 model of a steam-water well is developed. Data obtained using this model are compared with experimental data and also with calculations by similar models including the well-known HOLA model. The capacity of the A-2 well in the Mutnovskoe flash-steam field (Kamchatka half-island, Russia) after planned reconstruction is predicted.

  13. Preliminary environmental analysis of a geopressured-geothermal test well in Brazoria County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    White, W.A.; McGraw, M.; Gustavson, T.C.; Meriwether, J.

    1977-11-16

    Preliminary environmental data, including current land use, substrate lithology, soils, natural hazards, water resources, biological assemblages, meteorological data, and regulatory considerations have been collected and analyzed for approximately 150 km/sup 2/ of land near Chocolate Bayou, Brazoria County, Texas, in which a geopressured-geothermal test well is to be drilled in the fall of 1977. The study was designed to establish an environmental data base and to determine, within spatial constraints set by subsurface reservoir conditions, environmentally suitable sites for the proposed well. Preliminary analyses of data revealed the eed for focusing on the following areas: potential for subsidence and fault activation, susceptibility of test well and support facilities to fresh- and salt-water flooding, possible effects of produced saline waters on biological assemblages and groundwaer resources, distribution of expansive soils, and effect of drilling and associated support activities on known archeological-cultural resources.

  14. Final report on Technical Demonstration and Economic Validation of Geothermally-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Luchini, Chris B. [Universal GeoPower LLC, Houston, TX (United States)

    2015-06-01

    The initial geothermal brine flow rate and temperature from the re-worked well were insufficient, after 2.5 days of flow testing, to justify advancing past Phase I of this project. The flow test was terminated less than 4 hours from the Phase I deadline for activity, and as such, additional flow tests of 2+ months may be undertaken in the future, without government support.

  15. Numerical modeling of flow processes inside geothermal wells: An approach for predicting production characteristics with uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O.; Santoyo, E. [Centro de Investigacion en Energia (UNAM), Privada Xochicalco s/n, Temixco, Mor. 62580 (Mexico); Sanchez-Upton, P. [Posgrado en Ingenieria (Energia), UNAM, Privada Xochicalco s/n, Temixco, Mor. 62580 (Mexico)

    2006-07-15

    One dimensional steady and transient numerical modeling for describing the heat and fluid dynamic transport inside geothermal wells has been conducted. The mass, momentum and energy governing equations were solved using a segregated numerical scheme. Discretized governing equations for the fluid flow were coupled and solved with a fully implicit step by step method. The mathematical formulation used suitable empirical correlations for estimating the convective heat transfer coefficients as well as the shear stress and the void fraction parameters. Heat conduction across the wellbore materials was solved by an implicit central difference numerical scheme using the tri-diagonal matrix algorithm (TDMA). The flow characteristics of producer geothermal wells (pressure, temperature, enthalpy, heat fluxes, etc.) at each depth node were computed. Analytical data reported in the literature were used to validate the numerical capability of the wellbore simulator developed for this study (GEOWELLS). This simulator, together with another computer code (ORKISZEWSKI), was applied for modeling the heat and fluid flow processes inside some wells drilled in Mexican geothermal fields. The simulated pressure and temperature profiles were statistically compared against stable measured field data (through the computation of the residual sum of squares and Chi-square). A good agreement between the simulated and measured profiles of pressure and temperature was consistently obtained, having the best matching results for the GEOWELLS predictions. An analysis of the sensitivity and uncertainty was finally conducted to estimate the confidence to be accorded the simulation results predicted by GEOWELLS. Matching the sensitivity to variations in some input parameters (e.g., pressure, temperature, enthalpy and void fraction) was examined. The void fraction was identified as one of the most important parameters that affect the GEOWELLS simulations for matching measured field data correctly

  16. Numerical modeling of flow processes inside geothermal wells: An approach for predicting production characteristics with uncertainties

    International Nuclear Information System (INIS)

    Garcia-Valladares, O.; Sanchez-Upton, P.; Santoyo, E.

    2006-01-01

    One dimensional steady and transient numerical modeling for describing the heat and fluid dynamic transport inside geothermal wells has been conducted. The mass, momentum and energy governing equations were solved using a segregated numerical scheme. Discretized governing equations for the fluid flow were coupled and solved with a fully implicit step by step method. The mathematical formulation used suitable empirical correlations for estimating the convective heat transfer coefficients as well as the shear stress and the void fraction parameters. Heat conduction across the wellbore materials was solved by an implicit central difference numerical scheme using the tri-diagonal matrix algorithm (TDMA). The flow characteristics of producer geothermal wells (pressure, temperature, enthalpy, heat fluxes, etc.) at each depth node were computed. Analytical data reported in the literature were used to validate the numerical capability of the wellbore simulator developed for this study (GEOWELLS). This simulator, together with another computer code (ORKISZEWSKI), was applied for modeling the heat and fluid flow processes inside some wells drilled in Mexican geothermal fields. The simulated pressure and temperature profiles were statistically compared against stable measured field data (through the computation of the residual sum of squares and Chi-square). A good agreement between the simulated and measured profiles of pressure and temperature was consistently obtained, having the best matching results for the GEOWELLS predictions. An analysis of the sensitivity and uncertainty was finally conducted to estimate the confidence to be accorded the simulation results predicted by GEOWELLS. Matching the sensitivity to variations in some input parameters (e.g., pressure, temperature, enthalpy and void fraction) was examined. The void fraction was identified as one of the most important parameters that affect the GEOWELLS simulations for matching measured field data correctly

  17. DMRC studies geothermal energy options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-01

    The Deep Mining Research Consortium (DMRC) is an industry-led research consortium that includes Vale Inco, Xstrata, Rio Tinto, Goldcorp, Agnico-Eagle, Barrick Gold, CANMET and the City of Sudbury. This article reported on the application of geothermal energy technologies to cool deep mine workings and use the heat from underground to produce energy to heat surface buildings. Researchers at the University of British Columbia's Centre for Environmental Research in Minerals, Metals and Materials have proposed the use of heat pumps and water-to-air heat exchangers at depth to chill mine workings. The heat pumps would act as refrigerators, taking heat from one area and moving it elsewhere. The purpose would be to extract heat from naturally occurring ground water and pass the chilled water through a heat exchanger to cool the air. The heated water would then be pumped to surface and used to heat surface facilities. The technology is well suited for using geothermal energy from decommissioned mines for district heating. The technology has been successfully used in Spring Hill, Nova Scotia, where geothermal energy from a decommissioned coal mine is used to heat an industrial park. A feasibility study is also underway for the city of Yellowknife in the Northwest Territories to produce up to 10 megawatts of heat from the Con Gold Mine, enough energy to heat half of Yellowknife. Geothermal energy can also be used to generate electricity, particularly in the Pacific Rim where underground temperatures are higher and closer to surface. In Sudbury Ontario, the enhanced geothermal systems technology would require two holes drilled to a depth of four kilometers. The ground between the two holes should be fractured to create an underground geothermal circuit. Geothermal energy does not produce any greenhouse gases or chemical wastes. 1 fig.

  18. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  19. Temperature logging of groundwater in bedrock wells for geothermal gradient characterization in New Hampshire, 2012

    Science.gov (United States)

    Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland

    2012-01-01

    The U.S. Geological Survey, in cooperation with the New Hampshire Geological Survey, measured the fluid temperature of groundwater in deep bedrock wells in the State of New Hampshire in order to characterize geothermal gradients in bedrock. All wells selected for the study had low water yields, which correspond to low groundwater flow from fractures. This reduced the potential for flow-induced temperature changes that would mask the natural geothermal gradient in the bedrock. All the wells included in this study were privately owned, and permission to use the wells was obtained from homeowners before logging.

  20. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  1. Development of Genetic Occurrence Models for Geothermal Prospecting

    Science.gov (United States)

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity

  2. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Henkle, William R.; Ronne, Joel

    2008-06-15

    This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

  3. Geothermal progress monitor. Report No. 16

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This issue, the 16th since 1980, illustrates the potential of the liquid-dominated geothermal resource. Achievement of this potential by publicly held companies, who are required to publish financial statements, has involved the use of high-quality resources and the best available technologies or, in some instances, their own innovative modifications of existing technologies as well as a high degree of technical and management expertise. This issue also documents some effects of the new climate of utility deregulation and competition among independent power producers on the geothermal industry. The continuing importance attached to geothermal heat pumps as a preferred space conditioning technology by a number of disparate interests is illustrated by a number of articles. Magma Power Co. reported record gains in both 1993 revenues and earnings over 1992; California Energy has acquired Magma, creating the largest geothermal energy producer in the world. Owing to stagnation in USA, it was decided to focus on international markets. After the introduction, the issue has sections on: Federal beat, industry scene, financing, technology development, direct use technology, state and local, international, technology transfer, and directory.

  4. STATIC{sub T}EMP: a useful computer code for calculating static formation temperatures in geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo, E. [Universidad Nacional Autonoma de Mexico, Centro de Investigacion en Energia, Temixco (Mexico); Garcia, A.; Santoyo, S. [Unidad Geotermia, Inst. de Investigaciones Electricas, Temixco (Mexico); Espinosa, G. [Universidad Autonoma Metropolitana, Co. Vicentina (Mexico); Hernandez, I. [ITESM, Centro de Sistemas de Manufactura, Monterrey (Mexico)

    2000-07-01

    The development and application of the computer code STATIC{sub T}EMP, a useful tool for calculating static formation temperatures from actual bottomhole temperature data logged in geothermal wells is described. STATIC{sub T}EMP is based on five analytical methods which are the most frequently used in the geothermal industry. Conductive and convective heat flow models (radial, spherical/radial and cylindrical/radial) were selected. The computer code is a useful tool that can be reliably used in situ to determine static formation temperatures before or during the completion stages of geothermal wells (drilling and cementing). Shut-in time and bottomhole temperature measurements logged during well completion activities are required as input data. Output results can include up to seven computations of the static formation temperature by each wellbore temperature data set analysed. STATIC{sub T}EMP was written in Fortran-77 Microsoft language for MS-DOS environment using structured programming techniques. It runs on most IBM compatible personal computers. The source code and its computational architecture as well as the input and output files are described in detail. Validation and application examples on the use of this computer code with wellbore temperature data (obtained from specialised literature) and with actual bottomhole temperature data (taken from completion operations of some geothermal wells) are also presented. (Author)

  5. Optimization of geothermal well trajectory in order to minimize borehole failure

    Science.gov (United States)

    Dahrabou, A.; Valley, B.; Ladner, F.; Guinot, F.; Meier, P.

    2017-12-01

    In projects based on Enhanced Geothermal System (EGS) principle, deep boreholes are drilled to low permeability rock masses. As part of the completion operations, the permeability of existing fractures in the rock mass is enhanced by injecting large volumes of water. These stimulation treatments aim at achieving enough water circulation for heat extraction at commercial rates which makes the stimulation operations critical to the project success. The accurate placement of the stimulation treatments requires well completion with effective zonal isolation, and wellbore stability is a prerequisite to all zonal isolation techniques, be it packer sealing or cement placement. In this project, a workflow allowing a fast decision-making process for selecting an optimal well trajectory for EGS projects is developed. In fact, the well is first drilled vertically then based on logging data which are costly (100 KCHF/day), the direction in which the strongly deviated borehole section will be drilled needs to be determined in order to optimize borehole stability and to intersect the highest number of fractures that are oriented favorably for stimulation. The workflow applies to crystalline rock and includes an uncertainty and risk assessment framework. An initial sensitivity study was performed to identify the most influential parameters on borehole stability. The main challenge in these analyses is that the strength and stress profiles are unknown independently. Calibration of a geomechanical model on the observed borehole failure has been performed using data from the Basel Geothermal well BS-1. In a first approximation, a purely elastic-static analytical solution in combination with a purely cohesive failure criterion were used as it provides the most consistent prediction across failure indicators. A systematic analysis of the uncertainty on all parameters was performed to assess the reliability of the optimal trajectory selection. To each drilling scenario, failure

  6. Investigation and Evaluation of Geopressured - Geothermal Wells, Final Report; Alice C. Plantation No. 2 Well, St. Mary Parish, Louisiana; Volume 1; Narrative Report

    Energy Technology Data Exchange (ETDEWEB)

    Lohse, Alan; Willits, M.H.

    1978-12-01

    Gruy Federal, Inc. (Gruy) operates under Contract No. EG-77-C-08-1528 to the Department of Energy, Division of Geothermal Energy, to evaluate potential alternate energy sources occurring within geopressured-geothermal (Geo) aquifers in Miocene, Oligocene, Tuscaloosa, Wilcox, and Frio formations along the Texas and Louisiana Gulf Coast. The project is entitled ''Investigation and Evaluation of Geopressured-Geothermal Wells''. The original period of performance was from September 26, 1977, through September 30, 1978; the contract was later extended through September 30, 1979. The first well on which testing was attempted under this contract was the Alice C. Plantation No. 2 Well, located in St. Mary Parish, Louisiana. Originally drilled by the Sun Oil Company to a total depth of 19,000 feet, this well was abandoned as a dry hole in January 1964. Gruy's reentry attempt ended with plugging and abandonment after a saltwater flow on September 17, 1978. This report is a comprehensive document detailing all events and costs relating to the Alice C. plantation well, from its initial selection as a reentry well through the plugging and abandonment operations.

  7. Deep Production Well for Geothermal Direct-Use Heating of A Large Commercial Greenhouse, Radium Springs, Rio Grande Rift, New Mexico; FINAL

    International Nuclear Information System (INIS)

    James C. Witcher

    2002-01-01

    Expansion of a large commercial geothermally-heated greenhouse is underway and requires additional geothermal fluid production. This report discusses the results of a cost-shared U.S. Department of Energy (DOE) and A.R. Masson, Inc. drilling project designed to construct a highly productive geothermal production well for expansion of the large commercial greenhouse at Radium Springs. The well should eliminate the potential for future thermal breakthrough from existing injection wells and the inducement of inflow from shallow cold water aquifers by geothermal production drawdown in the shallow reservoir. An 800 feet deep production well, Masson 36, was drilled on a US Bureau of Land Management (BLM) Geothermal Lease NM-3479 at Radium Springs adjacent to the A. R. Masson Radium Springs Farm commercial greenhouse 15 miles north of Las Cruces in Dona Ana County, New Mexico just west of Interstate 25 near the east bank of the Rio Grande. The area is in the Rio Grande rift, a tectonically-active region with high heat flow, and is one of the major geothermal provinces in the western United State

  8. Multi-purpose utilization and development of geothermal water: European overseas investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, T [Natl. Research Institute of Agricultural Engineering, Japan

    1978-01-01

    In order to investigate the agricultural utilization of geothermal waters, a fact-finding team visited France, Italy, Iceland, and Turkey. In France, it was seen that the development and utilization of geothermal waters is in accord with Japanese practices. The production and reinjection wells are drilled to a depth of 1800 m. They are spaced about 10 m apart at the surface and about 800 m apart at the bottom. This is accomplished by drilling at an angle. The hot water is produced at a rate of about 90 t/h. It is passed through a heat exchanger where it warms surface water to about 70/sup 0/C. The warmed water is then supplied for purposes of district heating, greenhouse culture, and fish farming. The used hot water is then returned to the producing stratum via the reinjection well. Iceland began the production of hot geothermal water in 1925, and, at present, 99% of the city of Reykjavik is heated geothermally. The deepest production wells at Reykjavik reach 2000 m. The water produced has a temperature of 90-103/sup 0/C, and is also used for agricultural purposes.

  9. Geophysical logging of bedrock wells for geothermal gradient characterization in New Hampshire, 2013

    Science.gov (United States)

    Degnan, James R.; Barker, Gregory; Olson, Neil; Wilder, Leland

    2014-01-01

    The U.S. Geological Survey, in cooperation with the New Hampshire Geological Survey, measured the fluid temperature of groundwater and other geophysical properties in 10 bedrock wells in the State of New Hampshire in order to characterize geothermal gradients in bedrock. The wells selected for the study were deep (five ranging from 375 to 900 feet and five deeper than 900 feet) and 6 had low water yields, which correspond to low groundwater flow from fractures. This combination of depth and low water yield reduced the potential for flow-induced temperature changes that would mask the natural geothermal gradient in the bedrock. All the wells included in this study are privately owned, and permission to use the wells was obtained from landowners before geophysical logs were acquired for this study. National Institute of Standards and Technology thermistor readings were used to adjust the factory calibrated geophysical log data. A geometric correction to the gradient measurements was also necessary due to borehole deviation from vertical.

  10. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    Science.gov (United States)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    compare over a range of parameters the net power and efficiencies of hybrid geothermal power plants that use brine or CO2 as the subsurface working fluid, that are then heated further with a secondary energy source that is unspecified here. Parameters varied include the subsurface working fluid (brine vs. CO2), geothermal reservoir depth (2.5-4.5 km), and turbine inlet temperature (200-600°C) after auxiliary heating. The hybrid power plant is numerically modeled using an iterative coupling approach of TOUGH2-ECO2N/ECO2H (Pruess, 2004) for simulation of the subsurface reservoir and Engineering Equation Solver for well bore fluid flow and surface power plant performance. We find that hybrid power plants that are CO2-based (subsurface) systems produce more net power than the sum of the power produced by individual power plants at low turbine inlet temperatures and brine based systems produce more power at high turbine inlet temperatures. Specifically, our results indicate that geothermal hybrid plants that are CO2-based are more efficient than brine-based systems when the contribution of the geothermal resource energy is higher than 48%.

  11. The geopressured-geothermal resource

    International Nuclear Information System (INIS)

    Wys, J.N.; Dorfman, M.

    1990-01-01

    This paper reports that the Geopressured-Geothermal resource has an estimated 5,700 recoverable quad of gas and 11,000 recoverable quad of thermal energy in the onshore Texas and Louisiana Gulf Coasts area alone. After 15 years the program is now beginning a transition to commercialization. The program presently has three geopressured-geothermal wells in Texas and Louisiana. The Pleasant Bayou Well has a 1 MWe hybrid power system converting some gas and the thermal energy to electricity. The Gladys McCall Well produced over 23 MM bbls brine with 23 scf per bbl over 4 1/2 years. It is now shut-in building up pressure. The deep Hulin Well has been cleaned out and short term flow tested. It is on standby awaiting funds for long-term flow testing. In January 1990 an Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource was convened at Rice University, Houston, TX. Sixty-five participants heard industry cost-shared proposals for using the hot geopressured brine. Proposals ranged from thermal enhanced oil recovery to aquaculture, conversion, and environmental clean up processes. By the September meeting at UTA-Balcones Research Center, industry approved charters will have been received, an Advisory Board will be appointed, and election of officers from industry will he held

  12. Geothermal energy and its application opportunities in Serbia

    Directory of Open Access Journals (Sweden)

    Andrić Nenad M.

    2015-01-01

    Full Text Available Geothermal energy is accumulated heat in the fluid and rock masses in the Earth 's crust. The natural decay of radioactive elements (uranium, thorium and potassium in rocks produces heat energy. The simplest use of geothermal energy for heating is by heat pump. Geothermal energy can be used for production of electricity. It uses hot water and steam from the earth to run the generator. Serbia has significant potential for geothermal energy. The total amount of accumulated heat in geothermal resources in a depth of 3 km is two times higher than the equivalent thermal energy that could be obtained by burning all types of coal from all their sites in Serbia! The total abundance of geothermal resources in Serbia is 4000 l/s. Abundance of wells in Vojvodina is 10-20 l/s, and the temperature is from 40 to 60°C. Exploitation of thermal waters in Mačva could cause heating of following cities: Bogatić, Šabac, Sremska Mitrovica and Loznica, with a total population of 150.000 people. The richest hydrogeothermal resources are in Mačva, Vranje and Jošanička Banja. Using heat pumps, geothermal water can be exploited on the entire territory of Serbia! Although large producer, Serbia is importing food, ie., fruits and vegetables. With the construction of greenhouses, which will be heated with geothermal energy, Serbia can become an exporting country.

  13. SPI Conformance Gel Applications in Geothermal Zonal Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Lyle [Clean Tech Innovations, Bartlesville, OK (United States)

    2017-08-08

    Zonal isolation in geothermal injection and producing wells is important while drilling the wells when highly fractured geothermal zones are encountered and there is a need to keep the fluids from interfering with the drilling operation. Department of Energy’s (DOE) Energy Efficiency and Renewable Energy (EERE) objectives are to advance technologies to make it more cost effective to develop, produce, and monitor geothermal reservoirs and produce geothermal energy. Thus, zonal isolation is critical to well cost, reservoir evaluation and operations. Traditional cementing off of the lost circulation or thief zones during drilling is often done to stem the drilling mud losses. This is an expensive and generally unsuccessful technique losing the potential of the remaining fracture system. Selective placement of strong SPI gels into only the offending fractures can maintain and even improve operational efficiency and resource life. The SPI gel system is a unique silicate based gel system that offers a promising solution to thief zones and conformance problems with water and CO2 floods and potentially geothermal operations. This gel system remains a low viscosity fluid until an initiator (either internal such as an additive or external such as CO2) triggers gelation. This is a clear improvement over current mechanical methods of using packers, plugs, liners and cementing technologies that often severely damage the highly fractured area that is isolated. In the SPI gels, the initiator sets up the fluid into a water-like (not a precipitate) gel and when the isolated zone needs to be reopened, the SPI gel may be removed with an alkaline solution without formation damage occurring. In addition, the SPI gel in commercial quantities is expected to be less expensive than competing mechanical systems and has unique deep placement possibilities. This project seeks to improve upon the SPI gel integrity by modifying the various components to impart temperature stability for use in

  14. The economics of Plowshare geothermal power

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, J B; Stewart, D H [Battelle-Northwest (United States)

    1970-05-15

    Geothermal energy is not a new concept. Naturally occurring hot water has been used for centuries in Iceland for heating purposes. About 20% of Klamath Falls, Oregon is today heated by hot water from geothermal wells. The generation of electricity is a relatively new use for geothermal energy which has developed over the last half century. There are plants in operation in Italy, New Zealand and the U. S.; these have a total capacity of more than 700 MWe. Geothermal generation is being explored and developed today in Japan, USSR, Mexico, Nicaragua, El Salvador, and Guatemala. Whenever a favorable combination of recent magmatic intrusion and favorable groundwater conditions occurs to create the necessary steam conditions it is usually economic to build a generating plant. With fuel essentially free the plants are usually economically competitive even in small sizes. Naturally occurring geothermal steam sites are rather limited. Witness to this statement can be found in the small number of plants (less than a dozen) in operation or under construction. On the other hand, geothermal anomalies are prevalent in every one of the world's continents. The possible coupling of Plowshare with geothermal power tp produce electricity is based on the idea to use rock crushing power of nuclear device to produce large cavity filled with broken rock from which the sensible heat can be removed. This paper is based on preliminary analysis of the concept. It is recognized that a more in-depth feasibility study is required before firm conclusions can be drawn. Also, a demonstration experiment is required to prove the concept in practical application.

  15. The economics of Plowshare geothermal power

    International Nuclear Information System (INIS)

    Burnham, J.B.; Stewart, D.H.

    1970-01-01

    Geothermal energy is not a new concept. Naturally occurring hot water has been used for centuries in Iceland for heating purposes. About 20% of Klamath Falls, Oregon is today heated by hot water from geothermal wells. The generation of electricity is a relatively new use for geothermal energy which has developed over the last half century. There are plants in operation in Italy, New Zealand and the U. S.; these have a total capacity of more than 700 MWe. Geothermal generation is being explored and developed today in Japan, USSR, Mexico, Nicaragua, El Salvador, and Guatemala. Whenever a favorable combination of recent magmatic intrusion and favorable groundwater conditions occurs to create the necessary steam conditions it is usually economic to build a generating plant. With fuel essentially free the plants are usually economically competitive even in small sizes. Naturally occurring geothermal steam sites are rather limited. Witness to this statement can be found in the small number of plants (less than a dozen) in operation or under construction. On the other hand, geothermal anomalies are prevalent in every one of the world's continents. The possible coupling of Plowshare with geothermal power tp produce electricity is based on the idea to use rock crushing power of nuclear device to produce large cavity filled with broken rock from which the sensible heat can be removed. This paper is based on preliminary analysis of the concept. It is recognized that a more in-depth feasibility study is required before firm conclusions can be drawn. Also, a demonstration experiment is required to prove the concept in practical application

  16. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  17. Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Thomas M. [ElectraTherm Inc., Reno, NV (United States); Erlach, Celeste [ElectraTherm Inc., Reno, NV (United States)

    2014-12-30

    Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

  18. Deep Unconventional Geothermal Resources: a major opportunity to harness new sources of sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, G.O.; Albertsson, A.; Stefansson, B.; Gunnlaugsson, E.; Adalsteinsson, H.

    2007-07-01

    The Iceland Deep Drilling Project (IDDP) is a long-term program to improve the efficiency and economics of geothermal energy by harnessing Deep Unconventional Geothermal Resources (DUGR). Its aim is to produce electricity from natural supercritical hydrous fluids from drillable depths. Producing supercritical fluids will require drilling wells and sampling fluids and rocks to depths of 3.5 to 5 km, and at temperatures of 450-600{sup o}C. The long-term plan is to drill and test a series of such deep boreholes in Iceland at the Krafla, the Hengill, and the Reykjanes high temperature geothermal systems. Beneath these three developed drill fields temperatures should exceed 550-650{sup o}C, and the occurrence of frequent seismic activity below 5 km, indicates that the rocks are brittle and therefore likely to be permeable. Modeling indicates that if the wellhead enthalpy is to exceed that of conventionally produced geothermal steam, the reservoir temperature must be higher than 450{sup o}C. A deep well producing 0.67 m3/sec steam ({approx}2400 m3/h) from a reservoir with a temperature significantly above 450{sup o}C could yield enough high-enthalpy steam to generate 40-50 MW of electric power. This exceeds by an order of magnitude the power typically obtained from conventional geothermal wells. (auth)

  19. Geothermal Power Generation Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [Oregon Inst. of Technology, Klamath Falls, OR (United States). Geo-Heat Center

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  20. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  1. Cost model for geothermal wells applied to the Cerro Prieto geothermal field case, BC Abstract; Modelo de costeo de pozos geotermicos aplicado para el caso del campo geotermico de Cerro Prieto, BC

    Energy Technology Data Exchange (ETDEWEB)

    Vaca Serrano, Jaime M.E [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: jaime.vaca@cfe.gob.mx

    2008-01-15

    A project for drilling geothermal wells to produce electrical energy can be defined as a sequence of plans to get steam or geothermal fluids to satisfy a previously known demand, and, under the best possible conditions, to obtain payment. This paper presents a cost model for nine wells drilled at the Cerro Prieto geothermal field in 2005 and 2006 to supply steam to the power plants operating in the field. The cost model is based on the well cost, the initial steam production, the annual decline of steam, the drilling schedule and the break-even point for each well. The model shows the cost of steam by the ton and the sale price needed to determine the discount rate and the investment return time. [Spanish] Un proyecto de perforacion de pozos geotermicos puede definirse como una secuencia o sucesion de planes para obtener vapor o fluidos geotermicos destinados a satisfacer una demanda previamente determinada, que se emplearan principalmente para generar energia electrica, bajo las mejores condiciones para obtener un pago. Este trabajo presenta un modelo de costeo para nueve pozos en el campo geotermico de Cerro Prieto, que fueron perforados entre 2005 y 2006 como parte del suministro de vapor para las plantas generadoras que operan en este campo. El modelo de costeo se basa en el costo por pozo, la produccion inicial de vapor, la declinacion anual de vapor, los intereses de las obras de perforacion y el punto de equilibrio para cada pozo. Los resultados permiten conocer el costo de la tonelada de vapor y el precio de venta para determinar la tasa de descuento y el tiempo de retorno de la inversion.

  2. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Testing Activity, Frio Formation, Texas and Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    This Environmental Assessment (EA) has been prepared to provide the environmental input into the Division of Geothermal Energy's decisions to expand the geothermal well testing activities to include sites in the Frio Formation of Texas and Louisiana. It is proposed that drilling rigs be leased before they are removed from sites in the formation where drilling for gas or oil exploration has been unsuccessful and that the rigs be used to complete the drilling into the geopressured zone for resource exploration. This EA addresses, on a regional basis, the expected activities, affected environment, and the possible impacts in a broad sense as they apply to the Gulf Coast well testing activity of the Geothermal Energy Geopressure Subprogram of the Department of Energy. Along the Texas and Louisiana Gulf Coast (Plate 1 and Overlay, Atlas) water at high temperatures and high pressures is trapped within Gulf basin sediments. The water is confined within or below essentially impermeable shale sequences and carries most or all of the overburden pressure. Such zones are referred to as geopressured strata. These fluids and sediments are heated to abnormally high temperatures (up to 260 C) and may provide potential reservoirs for economical production of geothermal energy. The obvious need in resource development is to assess the resource. Ongoing studies to define large-sand-volume reservoirs will ultimately define optimum sites for drilling special large diameter wells to perform large volume flow production tests. in the interim, existing well tests need to be made to help define and assess the resource.

  3. Geotherm: the U.S. geological survey geothermal information system

    Science.gov (United States)

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  4. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    International Nuclear Information System (INIS)

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference

  5. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.

  6. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  7. Deformation near the Casa Diablo geothermal well field and related processes Long Valley caldera, Eastern California, 1993-2000

    Science.gov (United States)

    Howle, J.F.; Langbein, J.O.; Farrar, C.D.; Wilkinson, S.K.

    2003-01-01

    Regional first-order leveling lines, which extend from Lee Vining, CA, to Tom's Place, CA, have been surveyed periodically since 1957 by the U.S. Geological Survey (USGS), the National Geodetic Survey (NGS), and Caltrans. Two of the regional survey lines, or leveling networks, intersect at the Casa Diablo geothermal well field. These leveling networks, referenced to a distant bench mark (C916) near Lee Vining, provide time-series vertical control data of land-surface deformation that began around 1980. These data are also useful for delineating localized subsidence at Casa Diablo related to reservoir pressure and temperature changes owing to geothermal development that began in 1985. A comparison of differences in bench-mark elevations for five time periods between 1983 and 1997 shows the development and expansion of a subsidence bowl at Casa Diablo. The subsidence coincides spatially with the geothermal well field and temporally with the increased production rates and the deepening of injection wells in 1991, which resulted in an increase in the rate of pressure decline. The subsidence, superimposed on a broad area of uplift, totaled about 310 mm by 1997. The USGS established orthogonal tilt arrays in 1983 to better monitor deformation across the caldera. One tilt array (DBR) was established near what would later become the Casa Diablo geothermal well field. This array responded to magmatic intrusions prior to geothermal development, tilting away from the well field. With the start of geothermal fluid extraction in 1985, tilt at the DBR array reversed direction and began tilting into the well field. In 1991, geothermal power production was increased by a factor of four, and reservoir pressures began a period of steep decline. These changes caused a temporary three-fold increase in the tilt rate. The tilt rate became stable in 1993 and was about 40% lower than that measured in 1991-1992, but still greater than the rates measured during 1985-1990. Data from the

  8. Optimization of well placement geothermal reservoirs using artificial intelligence

    Science.gov (United States)

    Akın, Serhat; Kok, Mustafa V.; Uraz, Irtek

    2010-06-01

    This research proposes a framework for determining the optimum location of an injection well using an inference method, artificial neural networks and a search algorithm to create a search space and locate the global maxima. A complex carbonate geothermal reservoir (Kizildere Geothermal field, Turkey) production history is used to evaluate the proposed framework. Neural networks are used as a tool to replicate the behavior of commercial simulators, by capturing the response of the field given a limited number of parameters such as temperature, pressure, injection location, and injection flow rate. A study on different network designs indicates that a combination of neural network and an optimization algorithm (explicit search with variable stepping) to capture local maxima can be used to locate a region or a location for optimum well placement. Results also indicate shortcomings and possible pitfalls associated with the approach. With the provided flexibility of the proposed workflow, it is possible to incorporate various parameters including injection flow rate, temperature, and location. For the field of study, optimum injection well location is found to be in the southeastern part of the field. Specific locations resulting from the workflow indicated a consistent search space, having higher values in that particular region. When studied with fixed flow rates (2500 and 4911 m 3/day), a search run through the whole field located two locations which are in the very same region resulting in consistent predictions. Further study carried out by incorporating effect of different flow rates indicates that the algorithm can be run in a particular region of interest and different flow rates may yield different locations. This analysis resulted with a new location in the same region and an optimum injection rate of 4000 m 3/day). It is observed that use of neural network, as a proxy to numerical simulator is viable for narrowing down or locating the area of interest for

  9. A proposal to investigate higher enthalpy geothermal systems in the USA

    Science.gov (United States)

    Elders, W. A.

    2013-12-01

    After more than 50 years of development only ~3,400 MWe of electric power is currently being produced from geothermal resources in the USA. That is only about 0.33% of the country's total installed electrical capacity. In spite of the large demonstrated potential of geothermal resources, only ~2,500 MWe of new geothermal electrical capacity are under development, and the growth rate of this environmentally benign energy resource is overshadowed by the rapid increase in the installed capacity of wind and solar energy. Most of the new geothermal developments in the USA involve relatively small, moderate-temperature, geothermal systems. In contrast, development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Disadvantages include that the fact that locations of suitable geothermal systems are restricted to young volcanic terrains, production of very high enthalpy fluids usually requires drilling deeper wells and may require enhanced geothermal (EGS) technology, and drilling deep into hot hostile environments is technologically challenging. However the potential for very favorable economic returns suggests that the USA should begin developing such a program. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope an investigation. An excellent example of such a collaboration is the Iceland Deep Drilling Project (IDDP) which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. This industry-government consortium planned to drill a deep well in the volcanic caldera of Krafla in NE Iceland. However drilling had to be terminated at 2.1 km depth when 900°C rhyolite magma flowed into the well. The resultant well was highly

  10. Multi-usages of the Ilan geothermal field, NE Taiwan

    Science.gov (United States)

    Lee, C. S.; Tseng, P.; Wang, S.; Chang, C.

    2017-12-01

    The tectonics of Taiwan is very dynamic. The area produces more than 30,000 earthquakes/year; the mountains uplift 4-5 cm/year; the rainfall culminates 3,000 mm/year; there are some 4,000 hot spring operators. One of the two hot geothermal areas is located in NE Taiwan - the Ilan geothermal field. In order to develop the geothermal energy for the electricity need, the Ministry of Science and Technology have provided the fund to drill two 2,500 deep wells. The results are not so encourage for the need of an Enhanced Geothermal System. However, one of the wells has a bottom temperature of 160oC and the water up loading with 60 ton/hr. This can be combined with the near-by wells drilled by the private drilling company and the Cardinal Tien Junior College of Healthcare and Management to develop the multi-usages of the geothermal energy, such as 1 MW of electricity for the college and village, the long-term healthcare and hot spring medicare, aquaculture and agriculture need etc. The universities and private drilling company cooperate together to join the development. Hope this will provide a new model for the need of a self-sufficient community. The geothermal is a clean, renewable, and no pollution energy. Taiwan is in an initial stage of using this green energy.

  11. Characteristics of low-enthalpy geothermal applications in Greece

    International Nuclear Information System (INIS)

    Andritsos, N.; Dalabakis, P.; Karydakis, G.; Kolios, N.; Fytikas, M.

    2011-01-01

    The paper offers a brief overview of the current direct geothermal uses in Greece and discusses their characteristics, with emphasis to the economical and technical problems encountered. Greece holds a prominent place in Europe regarding the existence of promising geothermal resources (both high and low-enthalpy), which can be economically exploited. Currently, no geothermal electricity is produced in Greece. The installed capacity of direct uses at the end of 2009 is estimated at about 155 MW t , exhibiting an increase of more than 100% compared to the figures reported at the World Geothermal Congress 2005. The main uses, in decreasing share, are geothermal heat pumps, swimming and balneology, greenhouse heating and soil warming. Earth-coupled and groundwater (or seawater) heat pumps have shown a drastic expansion during the past 2-3 years, mainly due to high oil prices two years ago and easing of the license requirements for drilling shallow wells. (author)

  12. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  13. Chemical stimulation techniques for geothermal wells: experiments on the three-well EGS system at Soultz-sous-Forêts, France

    OpenAIRE

    Portier, Sandrine; Vuataz, François-David; Nami, Patrick; Sanjuan, Bernard; Gérard, André

    2012-01-01

    Rock matrix stimulation is a method of enhancing well production or injection within a broad range of challenging environments, varying from naturally fractured limestones to sandstones with complex mineralogy. A common and often successful stimulation option, matrix acidizing, utilizes acids that react and remove mineral phases restricting fluid flow. Reviewed is the technology of chemical treatments available for oil, gas and geothermal wells and the key elements and results of the chemical...

  14. Review and problem definition of water/rock reactions associated with injection of spent geothermal fluids from a geothermal plant into aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.

    1986-07-01

    Among the technical problems faced by the burgeoning geothermal industry is the disposal of spent fluids from power plants. Except in unusual circumstances the normal practice, especially in the USA, is to pump these spent fluids into injection wells to prevent contamination of surface waters, and possibly in some cases, to reduce pressure drawdown in the producing aquifers. This report is a survey of experience in geothermal injection, emphasizing geochemical problems, and a discussion of approaches to their possible mitigation. The extraction of enthalpy from geothermal fluid in power plants may cause solutions to be strongly supersaturated in various dissolved components such as silica, carbonates, sulfates, and sulfides. Injection of such supersaturated solutions into disposal wells has the potential to cause scaling in the well bores and plugging of the aquifers, leading to loss of injectivity. Various aspects of the geochemistry of geothermal brines and their potential for mineral formation are discussed, drawing upon a literature survey. Experience of brine treatment and handling, and the economics of mineral extraction are also addressed in this report. Finally suggestions are made on future needs for possible experimental, field and theoretical studies to avoid or control mineral scaling.

  15. Groundwater recharge through wells in open loop geothermal system: problems and solutions - part 1

    Directory of Open Access Journals (Sweden)

    Giovanni Pietro Beretta

    2017-07-01

    Full Text Available In the two parts of this article, the problems related to the management of water wells as part of a low-enthalpy geothermal power plant by means of heat pumps (open loop system are described. In many cases, in absence of discharge in surface water and/or to ensure the conservation of the resource from a quantitative point of view, a doublet system constituted by a pumping and a recharge well is provided. The clogging phenomenon often occurs in this kind of plant, affecting wells with different functions and different thermal potential related to water withdrawal and reinjection into the ground. This phenomenon is due to the presence of air bubbles, suspended solids, bacterial growth and to the chemical-physical reactions that are described in the text. Besides acknowledging the activities for recharge wells management to avoid the fracturing of the drain and the cementation, is also suggested the procedure of in situ tests that are used to properly determine the optimal well discharge, which determines the efficiency and effectiveness of the geothermal system and its economic performance.It is finally shown a regional regulation on the water quality used in an open loop.

  16. Future directions and cycles for electricity production from geothermal resources

    International Nuclear Information System (INIS)

    Michaelides, Efstathios E.

    2016-01-01

    Graphical abstract: 25% more power may be produced using binary-flashing geothermal cycles. - Highlights: • Power from geothermal power plants is continuously available and “dispatchable.” • The next generation of geothermal will include more binary plants. • Lower temperature geothermal resources will be utilized in the future. • Dry rock resources may produce a high fraction of electricity in several countries. - Abstract: Geothermal power production is economically competitive and capable to produce a high percentage of the electric power demand in several countries. The currently operating geothermal power plants utilize water from an aquifer at relatively higher temperatures and produce power using dry steam, flashing or binary cycles. A glance at the map of the global geothermal resources proves that there is a multitude of sites, where the aquifer temperature is lower. There are also many geothermal resources where a high geothermal gradient exists in the absence of an aquifer. It becomes apparent that the next generation of geothermal power plants will utilize more of the lower-temperature aquifer resources or the dry resources. For such power plants to be economically competitive, modified or new cycles with higher efficiencies must be used. This paper presents two methods to increase the efficiency of the currently used geothermal cycles. The first uses a binary-flashing system to reduce the overall entropy production, thus, producing more electric power from the resource. The second describes a heat extraction system to be used with dry hot-rock resources.

  17. Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

  18. Gas and Isotope Geochemistry of 81 Steam Samples from Wells in The Geysers Geothermal Field, Sonoma and Lake Counties, California

    Science.gov (United States)

    Lowenstern, Jacob B.; Janik, Cathy J.; Fahlquist, Lynne; Johnson, Linda S.

    1999-01-01

    The Geysers geothermal field in northern California, with about 2000-MW electrical capacity, is the largest geothermal field in the world. Despite its importance as a resource and as an example of a vapor-dominated reservoir, very few complete geochemical analyses of the steam have been published (Allen and Day, 1927; Truesdell and others, 1987). This report presents data from 90 steam, gas, and condensate samples from wells in The Geysers geothermal field in northern California. Samples were collected between 1978 and 1991. Well attributes include sampling date, well name, location, total depth, and the wellhead temperature and pressure at which the sample was collected. Geochemical characteristics include the steam/gas ratio, composition of noncondensable gas (relative proportions of CO2, H2S, He, H2, O2, Ar, N2, CH4, and NH3), and isotopic values for deltaD and delta18O of H2O, delta13C of CO2, and delta34S of H2S. The compilation includes 81 analyses from 74 different production wells, 9 isotopic analyses of steam condensate pumped into injection wells, and 5 complete geochemical analyses on gases from surface fumaroles and bubbling pools. Most samples were collected as saturated steam and plot along the liquid-water/steam boiling curve. Steam-togas ratios are highest in the southeastern part of the geothermal field and lowest in the northwest, consistent with other studies. Wells in the Northwest Geysers are also enriched in N2/Ar, CO2 and CH4, deltaD, and delta18O. Well discharges from the Southeast Geysers are high in steam/gas and have isotopic compositions and N2/Ar ratios consistent with recharge by local meteoric waters. Samples from the Central Geysers show characteristics found in both the Southeast and Northwest Geysers. Gas and steam characteristics of well discharges from the Northwest Geysers are consistent with input of components from a high-temperature reservoir containing carbonrich gases derived from the host Franciscan rocks. Throughout the

  19. Geothermal Information Dissemination and Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Clutter, Ted J. [Geothermal Resources Council (United States)

    2005-02-18

    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and

  20. Environmental Assessment Lakeview Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Treis, Tania [Southern Oregon Economic Development Department, Medford, OR (United States)

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  1. Geothermal country update of Japan

    International Nuclear Information System (INIS)

    Higo, M.

    1990-01-01

    This paper reports on the status of geothermal energy in Japan. Topics covered include: present and planned production of electricity, present utilization of geothermal energy for direct heat, information about geothermal localities, and wells drilled for electrical utilization of geothermal resources to January 1, 1990

  2. Geothermal energy

    International Nuclear Information System (INIS)

    Le Du, H.; Bouchot, V.; Lopez, S.; Bialkowski, A.; Colnot, A.; Rigollet, C.; Sanjuan, B.; Millot, R.; Brach, M.; Asmundsson, R.; Giroud, N.

    2010-01-01

    Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)

  3. Geothermal survey handbook

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The objective of this handbook is to publicize widely the nature of geothermal surveys. It covers geothermal survey planning and measurement as well as measurement of thermal conductivity. Methods for the detection of eruptive areas, the measurement of radiative heat using snowfall, the measurement of surface temperature using infrared radiation and the measurement of thermal flow are described. The book also contains information on physical detection of geothermal reservoirs, the measurement of spring wells, thermographic measurement of surface heat, irregular layer surveying, air thermographics and aerial photography. Isotope measurement techniques are included.

  4. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  5. California: basic data for thermal springs and wells as recorded in GEOTHERM. Part A

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, J.D.

    1983-07-01

    This GEOTHERM sample file contains 1535 records for California. Three computer-generated indexes give one line summaries of each GEOTHERM record. Each index is sorted by different variables to assist in locating geothermal records describing specific sites. 7 refs. (ACR)

  6. The history and significance of the Hawaii geothermal project

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1990-01-01

    This paper reports that the Hawaii Geothermal Project, since its initiation in 1972, has not only demonstrated that there is a viable geothermal resource present on the Kilauea East Rift Zone, it has also produced a wealth of information about the characteristics of the resource and the operational requirements that must be met to generate electrical power on a long term reliable basis. The HGP-A well demonstrated that a high-temperature hydrothermal system was present on the East Rift Zone; the HGP-A Wellhead Generator Facility showed that electrical power could be generated on a long-term basis from the geothermal reservoir with an availability factor of more than 90%; and research at the facility tested several types of systems for control of hydrogen sulfide and scale deposition. The results of the Hawaii Geothermal Project have helped resolve many uncertainties about the reservoir and will provide guidance to private and regulatory interests as a commercial geothermal development comes on line in Hawaii

  7. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    Science.gov (United States)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  8. Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems

    Science.gov (United States)

    Park, Yu-Chul

    2016-04-01

    Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).

  9. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Geothermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equipment

    International Nuclear Information System (INIS)

    Nancy Moller Weare

    2006-01-01

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  10. Bruneau Known Geothermal Resource Area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Bruneau Known Geothermal Resource Area (KGRA) is part of the Bruneau-Grandview thermal anomaly, the largest geothermal area in the western US. This part of Owyhee County is the driest part of Idaho. The KGRA is associated with the southern boundary fault zone of the Snake River Plain. Thermal water, produced from numerous artesian wells in the region, is supplied from two major aquifers. Ecological concerns include the threatened Astragalus mulfordiae and the numerous birds of prey nesting in the Snake River canyon northwest of the KGRA. Extensive geothermal development may strain the limited health care facilities in the county. Ethnographic information suggests that there is a high probability of prehistoric cultural materials being remnant in the Hot Spring locality.

  11. Optimization of Wellhead Piping Design for Production Wells at Development of Steam-Water Geothermal Fields

    Directory of Open Access Journals (Sweden)

    A.N. Shulyupin

    2017-03-01

    Full Text Available At present, the exploitation of geothermal resources develops in a fair competition with other types of energy resources. This leads to actuality of questions which associated with the more efficient use of existing wells, because cost of their drilling is a significant share of geothermal projects. In domestic practice of development of geothermal resources the steam-water wells have greatest energy potential. One way to improve the performance of these wells is a providing of smooth change of direction of motion of steam-water mixture from the vertical, in the well, to the horizontal, in steam gathering system. Typical wellhead piping of domestic steam-water wells involves the removal of the mixture through a cross bar at a right angle. Cross bar can generate considerable pressure loss that increases the operating pressure at the mouth of the well and reduces flow rate. It seems reasonable to substitute the typical cross bar by smooth pipe bend. This reduces wellhead resistance coefficient by more than on 2. Increase of curvature radius of pipe bend reduces the pressure loss to a local resistance but increases the friction pressure loss. There is an optimal curvature radius of pipe bend for minimum pressure loss in view of a local resistance and friction in the pipe bend. Calculations have shown that the optimum value for the radius of curvature is found in the range from 1.4 to 4.5 tube internal diameters. However, for technological reasons it is recommended to choose the radius of curvature from 1.4 to 2.4 diameters. Mounting of smooth pipe bend on the wellhead can provide significant economic benefits. For Mutnovka field (Kamchatka, this effect is estimated at 17.5 million rubles in year.

  12. Geothermal energy abstract sets. Special report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C. (comp.)

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  13. Proceedings 43rd Stanford Geothermal Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Stuart; Kirby, Stefan; Verplanck, Philip; Kelley, Karen

    2018-02-12

    Herein we summarize the results of an investigation dealing with the concentrations and inventories of strategic, critical and valuable materials (SCVM) in produced fluids from geothermal and hydrocarbon reservoirs (50-250° C) in Nevada and Utah. Water samples were collected from thirty-four production wells across eight geothermal fields, the Uinta Basin oil/gas province in northeast Utah, and the Covenant oil field in southwestern Utah; additional water samples were collected from six hot springs in the Sevier Thermal Belt in southwestern Utah. Most SCVM concentrations in produced waters range from <0.1 to 100 µg/kg; the main exception is lithium, which has concentrations that range from <1000 to 25,000 ug/kg. Relatively high concentrations of gallium, germanium, scandium, selenium, and tellurium are measured too. Geothermal waters contain very low concentrations of REEs, below analytical detections limits (0.01 µg/kg), but the concentrations of lanthanum, cerium, and europium range from 0.05 to 5 µg/kg in Uinta basin waters. Among the geothermal fields, the Roosevelt Hot Spring reservoir appears to have the largest inventories of germanium and lithium, and Patua appears to have the largest inventories of gallium, scandium, selenium, and tellurium. By comparison, the Uinta basin has larger inventories of gallium. The concentrations of gallium, germanium, lithium, scandium, selenium, and tellurium in produced waters appear to be partly related to reservoir temperature and concentrations of total dissolved salts. The relatively high concentration and large inventory of lithium occurring at Roosevelt Hot Springs may be related to granitic-gneissic crystalline rocks, which host the reservoir. Analyses of calcite scales from Dixie Valley indicate enrichments in cobalt, gallium, gold, palladium, selenium and tellurium, and these metals appear to be depositing at deep levels in production wells due to boiling. Comparisons with SCVM mineral deposits suggest that

  14. Hydrothermal cements for use in the completion of geothermal wells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    A research program to develop an improved cement for use in high-temperature geothermal wells was carried out. The work involved in the selection and evaluation of an aluminum hydroxide-cured cement from the SwRI family of hydrothermal cements for this use are described. The physical testing program is described; the topics discussed include placement ability, compressive and bond strengths, permeability to water, compatibility to drilling muds, corrosion properties, and thermal properties.

  15. Geothermal energy

    International Nuclear Information System (INIS)

    Lemale, J.

    2009-01-01

    The geothermal energy, listed among the new and renewable energy sources, is characterized by a huge variety of techniques and applications. This book deals with the access to underground geothermal resources and with their energy valorization as well. After a presentation of the main geological, hydrogeological and thermal exploitation aspects of this resource, the book presents the different geothermal-related industries in detail, in particular the district heating systems, the aquifer-based heat pumps, the utilizations in the agriculture, fishery and balneology sectors, and the power generation. (J.S.)

  16. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  17. Geothermal heat for Erding. 2. Energy and wellness, geothermal heating station and hot-water indoor swimming pool; Geowaerme fuer Erding 2. Energie und Wellness, Geothermieheizwerk und Thermalbad

    Energy Technology Data Exchange (ETDEWEB)

    Tenzer, H. (comp.); Bussmann, W.

    1999-07-01

    This 17:20 minute VHS-PAL video film describes the project 'Geothermal heat for Erding 2', i.e. the construction of the geothermal heating station and a modern hot-water indoor swimming pool. [German] Der vorliegende VHS-PAL-Videofilm beschreibt innerhalb von 17:20 Min. Lauflaenge das Projekt 'Geowaerme fuer Erding 2'. Gezeigt werden die Entstehungsphasen dieses Projektes bestehend aus einem Geothermieheizwerk und einem modernen Thermalbad. (AKF)

  18. Geothermal GW cogeneration system GEOCOGEN

    Energy Technology Data Exchange (ETDEWEB)

    Grob, Gustav R

    2010-09-15

    GEOCOGEN is the GW zero pollution, no risk solution to replace nuclear and fossil fuelled power plants. It can be built near the energy consumption centers, is invisible and produces electricity and heat at a fraction of the cost of any other the energy mix options. It is a break through deep well geothermal energy technology lasting forever driving also millions of electric vehicles.

  19. Conventional vs. unconventional enhanced (or engineered) geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Dzebisashvili, K.; Breede, K.; Liu, X.; Falcone, G. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Enhanced (or Engineered) Geothermal Systems (EGS) have evolved from the Hot Dry Rock (HDR) concept, implemented for the first time at Fenton Hill in 1977, and subsequently through the Stimulated Geothermal System, the Deep Heat Mining and finally the Deep Earth Geothermal. All of these systems usually imply petro-thermal processes. The term EGS has evolved to include conduction dominated, low permeability resources in sedimentary and basement formations, as well as geopressured, magma, and low-grade, unproductive hydrothermal resources. Co-produced hot water from hydrocarbon wells has also been included by some in the definition of EGS, which constitutes a considerable divergence from the original concept. Four decades on from the first EGS implementation, this paper highlights the lessons learned from 'conventional' systems and contrasts the 'unconventional' solutions that have been proposed. Examples of unconventional EGS include single-well solutions, downhole heat exchangers, engineered well profiles and using circulation fluids other than water. Perhaps some of the ideas proposed in the past, which would be considered unconventional, have remained dormant or never made it to a commercial stage for field implementation, but they may yet open doors to the future generations of EGS. (orig.)

  20. Geothermal system 'Toplets' and geothermal potential of Dojran region

    International Nuclear Information System (INIS)

    Karakashev, Deljo; Delipetrov, Marjan; Jovanov, Kosta

    2008-01-01

    The Toplets geothermal spring that expands into a wide geothermal net in the watershed of Lake Dojran along the geophysical exploration work carried out in the terrain, indicated the presence of a significant geothermal potential in the region. In the future it may become the major factor for the development of vegetable growing, the use of the medicinal properties of the mineral spas and tourism as well as the prosperity of the region. Water temperature in Lake Dojran amounts 15°C to 28°C during the year that is mach higher compared with the temperature of water lakes in neighbouring Greece. This indicates that beneath Lake Dojran there are other geothermal sources that replenish the lake with thermal water. Such manifestations of geothermal energy in the region along with other thermal phenomena speak for the presence of large reserves of geothermal energy in the Dojran depression. (Author)

  1. Geothermal system 'Toplets' and geothermal potential of Dojran region

    International Nuclear Information System (INIS)

    Karakashev, Deljo; Delipetrov, Marjan; Jovanov, Kosta

    2007-01-01

    The Toplets geothermal spring that expands into a wide geothermal net in the watershed of Lake Dojran along the geophysical exploration work carried out in the terrain, indicated the presence of a significant geothermal potential in the region. In the future it may become the major factor for the development of vegetable growing, the use of the medicinal properties of the mineral spas and tourism as well as the prosperity of the region. Water temperature in Lake Dojran amounts 15°C to 28°C during the year that is mach higher compared with the temperature of water lakes in neighbouring Greece. This indicates that beneath Lake Dojran there are other geothermal sources that replenish the lake with thermal water. Such manifestations of geothermal energy in the region along with other thermal phenomena speak for the presence of large reserves of geothermal energy in the Dojran depression. (Author)

  2. Geothermal energy in Denmark. The Committee for Geothermal Energy of the Danish Energy Agency

    International Nuclear Information System (INIS)

    1998-06-01

    The Danish Energy Agency has prepared a report on the Danish geothermal resources and their contribution to the national energy potential.Environmental and socio-economic consequences of geothermal power systems implementation are reviewed. Organizational models and financing of geothermal-seismic research are discussed, and the Committee of the Energy Agency for Geothermal Energy recommends financing of a pilot plant as well as a prompt elucidation of concession/licensing problems. (EG)

  3. Great Western Malting Company geothermal project, Pocatello, Idaho. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

    1981-12-23

    The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

  4. Geothermal Energy: Evaluation of a Resource

    Science.gov (United States)

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  5. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    Science.gov (United States)

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  6. Geothermal System Extensions

    Energy Technology Data Exchange (ETDEWEB)

    Gunnerson, Jon [Boise City Corporation, ID (United States); Pardy, James J. [Boise City Corporation, ID (United States)

    2017-09-30

    This material is based upon work supported by the Department of Energy under Award Number DE-EE0000318. The City of Boise operates and maintains the nation’s largest geothermal heating district. Today, 91 buildings are connected, providing space heating to over 5.5 million square feet, domestic water heating, laundry and pool heating, sidewalk snowmelt and other related uses. Approximately 300 million gallons of 177°F geothermal water is pumped annually to buildings and institutions located in downtown Boise. The closed loop system returns all used geothermal water back into the aquifer after heat has been removed via an Injection Well. Water injected back into the aquifer has an average temperature of 115°F. This project expanded the Boise Geothermal Heating District (Geothermal System) to bring geothermal energy to the campus of Boise State University and to the Central Addition Eco-District. In addition, this project also improved the overall system’s reliability and increased the hydraulic capacity.

  7. Investigating ultra high-enthalpy geothermal systems: a collaborative initiative to promote scientific opportunities

    Science.gov (United States)

    Elders, W. A.; Nielson, D.; Schiffman, P.; Schriener, A., Jr.

    2014-12-01

    Scientists, engineers, and policy makers gathered at a workshop in the San Bernardino Mountains of southern California in October 2013 to discuss the science and technology involved in developing high-enthalpy geothermal fields. A typical high-enthalpy geothermal well between 2000 and 3000 m deep produces a mixture of hot water and steam at 200-300 °C that can be used to generate about 5-10 MWe of electric power. The theme of the workshop was to explore the feasibility and economic potential of increasing the power output of geothermal wells by an order of magnitude by drilling deeper to reach much higher pressures and temperatures. Development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Plans for resource assessment and drilling in such higher enthalpy areas are already underway in Iceland, New Zealand, and Japan. There is considerable potential for similar developments in other countries that already have a large production of electricity from geothermal steam, such as Mexico, the Philippines, Indonesia, Italy, and the USA. However drilling deeper involves technical and economic challenges. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope of investigation. An excellent example of such collaboration is the Iceland Deep Drilling Project (IDDP), which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs, and this approach could serve as model for future developments elsewhere. A planning committee was formed to explore creating a similar initiative in the USA.

  8. A guide to geothermal energy and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Kagel, Alyssa; Bates, Diana; Gawell, Karl

    2005-04-22

    Geothermal energy, defined as heat from the Earth, is a statute-recognized renewable resource. The first U.S. geothermal power plant, opened at The Geysers in California in 1960, continues to operate successfully. The United States, as the world's largest producer of geothermal electricity, generates an average of 15 billion kilowatt hours of power per year, comparable to burning close to 25 million barrels of oil or 6 million short tons of coal per year. Geothermal has a higher capacity factor (a measure of the amount of real time during which a facility is used) than many other power sources. Unlike wind and solar resources, which are more dependent upon weather fluctuations and climate changes, geothermal resources are available 24 hours a day, 7 days a week. While the carrier medium for geothermal electricity (water) must be properly managed, the source of geothermal energy, the Earth's heat, will be available indefinitely. A geothermal resource assessment shows that nine western states together have the potential to provide over 20 percent of national electricity needs. Although geothermal power plants, concentrated in the West, provide the third largest domestic source of renewable electricity after hydropower and biomass, they currently produce less than one percent of total U.S. electricity.

  9. The USGS national geothermal resource assessment: An update

    Science.gov (United States)

    Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.

    2007-01-01

    The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.

  10. Overview of naturally permeable fractured reservoirs in the central and southern Upper Rhine Graben: Insights from geothermal wells

    OpenAIRE

    Vidal , Jeanne; Genter , Albert

    2018-01-01

    International audience; Since the 1980′s, more than 15 geothermal wells have been drilled in the Upper Rhine Graben (URG), representing more than 60 km of drill length. Although some early concepts were related to purely matrix-porosity reservoirs or Hot Dry Rock systems, most projects in the URG are currently exploiting the geothermal resources that are trapped in fracture networks at the base of the sedimentary cover and in the granitic basement. Lessons-learnt from the European EGS referen...

  11. Results of Investigations of Failures of Geothermal Direct Use Well Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Culver, G.

    1994-12-01

    Failures of 13 geothermal direct-use well pumps were investigated and information obtained about an additional 5 pumps that have been in service up to 23 years, but have not failed. Pumps with extra long lateral and variable-speed drives had the highest correlation with reduced time in service. There appears to be at least circumstantial evidence that recirculation may be a cause of reduced pump life. If recirculation is a cause of pump failures, pump specifiers will need to be more aware of minimum flow conditions as well as maximum flow conditions when specifying pumps. Over-sizing pumps and the tendency to specify pumps with high flow and low Net Positive Suction Head (NPSH) could lead to increased problems with recirculation.

  12. Geothermal energy in Croatia and the world until 2020; Geotermijska energija u svijetu i Hrvatskoj do 2020. godine

    Energy Technology Data Exchange (ETDEWEB)

    Jelic, K; Kevric, I [Rudarsko-geolosko-naftni fakultet, Zagreb (Croatia); Cubric, S [INA-Naftaplin, Zagreb (Croatia)

    1997-12-31

    The use of geothermal energy in watering place, heating, the production of electric power, and for other purposes is increasing throughout the world. Over the past ten years, besides traditional production from natural thermal wells, this energy has also been produced in Croatia from geothermal wells discovered as a results of deep exploration drilling for hydrocarbons. This paper analyses the current state of geothermal energy both in the world and in Croatia, and makes projections about its immediate future. Energy potential data on the croatian part of the Panonian basin are given along with perspective locations for producing this ecologically acceptable and partially reusable energy. (author). 5 figs., 2 tabs., 9 refs.

  13. The state of exploitation of geothermal energy and some interesting achievements in geothermal research and development in the world

    Directory of Open Access Journals (Sweden)

    Dušan Rajver

    2016-08-01

    Full Text Available The article presents the latest status of geothermal energy use worldwide and the comparison with the previous period, both in electricity generation as well as in the various categories of direct use. Electricity production takes place in 26 countries and has at the end of 2014 reached 73,700 GWh from geothermal power plants with nearly 12.8 GW of installed power. This is still only 0.31 % of the total electricity produced in the world and it will be interesting to monitor the future share of geothermal energy in doing so. In the last 5-year period the development was particularly rapid in countries where it was slower in the past and, however, with favorable geological (tectonic conditions (Iceland, Kenya, New Zealand, Turkey, etc.. Direct use of geothermal energy covers a signifiant number of countries, today there are 82, although some of them are such where it takes place almost solely by geothermal (ground-source heat pumps (GHP on shallow subsurface energy (Finland. Installed capacity in the direct use is 70,885 MWt and geothermal energy used, including the GHP, is 592,638 TJ/year (end of 2014. Within the used energy the share of GHP dominates with 55.2 %, followed by the bathing and swimming pools complexes incl. balneology by 20.2 %, space heating by 15.0 % (the majority of it is district heating, heating of greenhouses and soil with 4.9 %, etc. The second part presents some interesting technological and scientifi innovations in exploration and exploitation of geothermal energy.

  14. Coordination of geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, A.M.; Drury, M.J.

    1983-01-01

    Visits were made in 1983 to various investigators and institutions in Canada to examine developments in geothermal research. Proposals for drilling geothermal wells to provide hot water for heating at a college in Prince Edward Island were made. In Alberta, the first phase of a program examining the feasibility of mapping sedimentary geothermal reservoirs was discussed. Some sites for possible geothermal demonstration projects were identified. In British Columbia, discussions were held between BC Hydro and Energy, Mines and Resources Canada on the drilling of a research hole into the peak of a temperature anomaly in the Meager Creek Valley. The British Columbia government has offered blocks of land in the Mount Cayley volcanic complex for lease to develop geothermal resources. A list of papers of interest to the Canadian geothermal energy program is appended.

  15. Geothermal development and policy in the Philippines

    International Nuclear Information System (INIS)

    Datuin, R.; Roxas, F.

    1990-01-01

    The Philippines is the second largest geothermal energy producer in the world although its geothermal energy potential has barely been utilized. Out of an estimated total reserves of 8,000 MW, only about 11 percent or 894 MW are currently on stream for power generation. The electricity production from geothermal steam registered a growth of 8.9 percent from 1988 to 1989, one of the highest among local energy sources. During that same period, geothermal energy rated the highest capacity utilization of 67 percent compared to the average system capacity utilization of 43 percent. This paper describes both the use of geothermal energy and government policies concerning geothermal energy in the Philippines

  16. Geothermics of the Apenninic subduction

    Directory of Open Access Journals (Sweden)

    G. Zito

    1997-06-01

    Full Text Available The subduction of the Adriatic microplate is analysed from a geothermal point of view. In particular four main geodynamic units are distinguished: foreland, foredeep and slab, accretionary prism, and back-arc basin. Each of them is examined from a geothermal point of view and the related open question are discussed. The most relevant results are the determination of the undisturbed geothermal gradient in the aquifer of the foreland; the discovery of a « hot » accretionary prism; and a new model of instantaneous extension of the back-arc basins. The main conclusion is that geothermal data are consistent with a westward dipping subduction that migrated eastward producing a sequence of several episodes at the surface.

  17. Fracture mapping in geothermal fields with long-offset induction logging

    Energy Technology Data Exchange (ETDEWEB)

    Wilt, M.; Takasugi, Shinji; Uchida, Toshihiro [and others

    1997-12-31

    The mapping of producing fractures in a geothermal field is an important technical objective in field development. Locating, orienting, and assessing producing fractures can guide drilling programs and optimize the placement of production and injection wells. A long-offset multicomponent borehole induction resistivity tool capable of surviving the high temperatures encountered in geothermal wells has recently been developed in a NEDO project, {open_quotes}Deep-Seated Geothermal Reservoirs,{close_quotes} and tested in a high temperature environment. Several characteristics of this device make it ideal for detecting producing fractures. Whereas commercial induction logging devices have source-receiver separations of 1 m, this device has multiple sensors with separations up to 8 m, allowing for deeper penetration and the ability to straddle fracture-induced washout zones in boreholes. The three-component measurements also make it possible to map the strike and inclination of nearby fractures and other three-dimensional structures. This, in turn, allows for accurate projection of these structures into the space between wells. In this paper, we describe the design of the tool and show results of a performance test carried out in an oil-field steam flood. Data from vertical sensors are compared to conventional logging results and indicate the recent formation of a low-resistivity zone associated with high temperatures due to steam flood breakthrough. Horizontal field data indicate that the high-temperature zone is irregular in the vicinity of the borehole and more pronounced closest to the steam injector.

  18. Geothermics in Aquitaine

    International Nuclear Information System (INIS)

    Dane, J.P.

    1995-01-01

    The geothermal exploitation of the Aquitanian Basin (S W France) started 15 years ago and has extended today to 12 different places. Three main aquifers of different depth are exploited in Bordeaux region: the old alluvial deposits of Garonne river (20-30 m), the Middle Eocene aquifer (300-400 m), and the Cenomanian-Turonian aquifer (900-1100 m) which is the deepest and most exploited for geothermal purposes. The drinkable quality of the water and the use of single-well technique are important factors that reduce the operating costs. Geothermics remains competitive with other energy sources due to the long-term stability of geothermal energy costs. (J.S.). 2 figs., 1 tab., 5 photos

  19. Radon studies for extending Los Azufres geothermal energy field in Mexico

    International Nuclear Information System (INIS)

    Tavera, L.; Balcazar, M.; Camacho, M.E.; Chavez, A.; Perez, H.; Gomez, J.

    1999-01-01

    Los Azufres is a 98 MW producing geothermal energy field situated in the Mexican volcanic belt at the west part of the country. Recently, hydrothermal activity and geochemical analysis of geothermal fluids from the north part of the geothermal field gave indications of a possible geothermal-production area, similar to the already producing field. In order to investigate the activity of geological structures, which are considered the means of geothermal fluids transporters, radon mapping was carried out using sets of 240 LR-115 detectors in the area of interest. Radon values higher than 10 kBq m -3 were considered anomalous and indicative of geothermal anomalies

  20. Radon studies for extending Los Azufres geothermal energy field in Mexico

    CERN Document Server

    Tavera, L; Camacho, M E; Chavez, A; Pérez, H; Gómez, J

    1999-01-01

    Los Azufres is a 98 MW producing geothermal energy field situated in the Mexican volcanic belt at the west part of the country. Recently, hydrothermal activity and geochemical analysis of geothermal fluids from the north part of the geothermal field gave indications of a possible geothermal-production area, similar to the already producing field. In order to investigate the activity of geological structures, which are considered the means of geothermal fluids transporters, radon mapping was carried out using sets of 240 LR-115 detectors in the area of interest. Radon values higher than 10 kBq m sup - sup 3 were considered anomalous and indicative of geothermal anomalies.

  1. GEOTHERM programme supports geothermal energy world-wide. Geothermal energy, a chance for East African countries; GEOTHERM: BGR foerdert weltweit Nutzung geothermischer Energie. Geothermie - eine Chance fuer ostafrikanische Laender

    Energy Technology Data Exchange (ETDEWEB)

    Kraml, M.; Kessels, K.; Kalberkamp, U.; Ochmann, N.; Stadtler, C. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany)

    2007-02-15

    The high geothermal potential of East Africa, especially of the Eastern Rift, is known for a long time. Since these pioneer studies, geothermal plants have been constructed at three sites in East Africa. Nevertheless, up to now geothermal has been a success story only in Kenya. The steam power plant Olkaria I in Kenya is running reliability since 25 years. Today, the country produces more than 12% of its electricity from geothermal. Now, Eritrea, Djibouti, Uganda, Tanzania and Ethiopia which are also situated along the East African Rift, are planning similar projects. The countries need to develop new energy sources because oil prices have reached a critical level. In the past, hydro power was regarded to be a reliable source of energy, but increased droughts changed the situation. Thus, the african states are searching for alternatives to be able to stabilise their energy supply and to cover the growing energy demand. There is much hope that the success of the Kenyan geothermal power plants will be repeated in the neighbouring countries. The East African countries have joined their forces to give impetus to the use of the regional geothermal resources. On behalf of the Federal Ministry for Economic Cooperation and Development, the Federal Institute for Geosciences and Natural Resources supports the countries in realising their plans as part of the GEOTHERM Programme. Together with further donors (Iceland, France, USA, Global Environment Facility) the path will be paved for geothermal power plants in the above mentioned six East African countries. The following main steps are necessary: - Awareness raising of political decision makers about the advantages of including geothermal into the national power plans - Improvement of knowledge about potentials geothermal sites - Development of a regional equipment pool including the necessary geophysical equipment, laboratories, etc. - Training in geothermal exploration and plant maintenance, to minimise risks of site

  2. Possibilities for electricity production from geothermal energy in Slovenia in the next decade

    Directory of Open Access Journals (Sweden)

    Dušan Rajver

    2012-06-01

    Full Text Available This article is intended to raise awareness of the public, with the aim that anyone can judge reality and accuracyof records that appear in the media on the exploitation of geothermal energy. It provides a comprehensive overviewof geothermal systems, potential of hydrothermal and enhanced geothermal systems, of mechanisms and characteristicsof middle and high enthalpy geothermal resources. It also deals with a mode of their conversion into electricity.Featured are the main factors affecting the decision on effectiveness of conversion of geothermal energy intoelectricity. Given are the review of the research necessary to establish the geothermal potential and assessment oftechnological and economic possibilities of installing geothermal power plants in Slovenia. The paper also describesthe state of knowledge of middle- and high temperature geothermal resources in Slovenia with initial conditions forconstructing geothermal power plants. In addition, we present theoretical calculations of the conversion efficiencyof geothermal energy into electricity with conventional turbines and present some problems for the exploitationof geothermal energy, which are associated with additional costs and further reduce the efficiency of investment.Described are the characteristics and performance of binary geothermal power plants and foreign experience inobtaining electricity from the EGS (Enhanced Geothermal System. We also address the overlapping of the oil andgas industry with the operation of the EGS and the possibility of exploiting oil and gas wells for producing thegeothermal electricity.

  3. Geothermal pilot study final report: creating an international geothermal energy community

    Energy Technology Data Exchange (ETDEWEB)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)

    1978-06-01

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

  4. Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon

    Science.gov (United States)

    Edwards, J. H.; Faulds, J. E.

    2012-12-01

    Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks

  5. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  6. ADDRESSING ENVIRONMENTAL CHALLENGES UNDER COMPREHENSIVE UTILIZATION OF GEOTHERMAL SALINE WATER RESOURCES IN THE NORTHERN DAGESTAN

    Directory of Open Access Journals (Sweden)

    A. Sh. Ramazanov

    2016-01-01

    Full Text Available Aim. The aim of the study is to develop technologies for processing geothermal brine produced with the extraction of oil as well as to solve environmental problems in the region.Methods. In order to determine the chemical composition and radioactivity of the geothermal water and solid samples, we used atomic absorption and gamma spectrometry. Evaluation of the effectiveness of the technology was made on the basis of experimental studies.Results. In the geothermal water, eight radionuclides were recognized and quantified with the activity of 87 ± 5 Bq / dm3. For the processing of this water to produce lithium carbonate and other components we propose a technological scheme, which provides a step of water purification from radio-nuclides. As a result of aeration and alkalinization, we can observe deactivation and purification of the geothermal water from mechanical impurities, iron ions, hydrogen carbonates and organic substances. Water treatment allows recovering lithium carbonate, magnesite caustic powder and salt from geothermal water. The mother liquors produced during manufacturing operations meet the requirements for the water suitable for waterflooding of oil reservoirs and can be injected for maintaining the reservoir pressure of the deposits.Conclusion. The implementation of the proposed processing technology of mineralized geothermal water produced with the extraction of oil in the Northern Dagestan will contribute to extend the life of the oil fields and improve the environmental problems. It will also allow import substitution in Russia for lithium carbonate and edible salt.

  7. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you

  8. Idaho: basic data for thermal springs and wells as recorded in GEOTHERM, Part A

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, J.D.

    1983-07-01

    All chemical data for geothermal fluids in Idaho available as of December 1981 is maintained on GEOTHERM, computerized information system. This report presents summaries and sources of records for Idaho. 7 refs. (ACR)

  9. Self-potential monitoring around wells in Mutnovsky geothermal field, Kamchatka; Kamchatka hanto mutnovsky deno chinetsui shuhen no shizen den`i monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, N.; Tosha, T.; Ishito, K. [Geological Survey of Japan Ibaragi (Japan); Delemen, I.; Kiryukhin, A. [Institute of Volcanology Far East Branch Russia Academy of Sciences (Russia)

    1997-07-01

    Mutnovsky is a geothermal field which lies to the south of and about 80km away from Petropavlovsk, Kamchatsky, the state capital of Kamchatka. The geothermal survey has been conducted since 1978 in this field. In this study, the self-potential variation was observed by monitoring the potential difference between places near and far from a well in the same region. Then, the self-potential associated with spurting vapor from a well was analyzed using a model of the self-potential generated from the steaming current coupled with the flow of hot water in the porous medium. As results of an experiment on the spurt of stream, vapor containing 80% stream in weight was exhausted at a mass flow rate of 30kg/sec at 100degC from wells. Since the specific enthalpy of this vapor is 2225kJ/kg, the underground geothermal storage layer was estimated to be a state of liquid and vapor two-phase. 9 refs., 6 figs.

  10. Uranium disequilibrium investigation of the Las Cruces East Mesa Geothermal Field

    International Nuclear Information System (INIS)

    Gross, J.; Cochran, J.; Icerman, L.

    1985-03-01

    The concentration of dissolved uranium in 33 thermal and nonthermal groundwaters was found to vary from less than 1 part per billion to 285 parts per billion. The uranium-234 to uranium-238 alpha activity ratio of the 33 samples varied from 0.8 to 4.6. Young waters in the recharge area of the Jornada del Muerto Basin are characterized by low uranium concentrations and high activity ratios. Uranium concentrations of groundwaters increase down hydraulic gradient. Concentrations and activity ratios of dissolved uranium in Mesilla Valley groundwater exhibit wide variation and appear to be related to both short-term and long-term removal of groundwater from storage. Geothermal waters exhibit low uranium concentrations and activity ratios. The water produced from New Mexico State University geothermal wells appears to be a mixture of deep upwelling geothermal water and shallow Jornada del Muerto Basin water. The low activity ratio of water from an 800 meter geothermal well may be the result of thermally-induced isotopic equilibration. Isotopic equilibration suggests that higher temperatures may be found deeper within the reservoir

  11. Navy Geothermal Plan

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  12. Economic study of low temperature geothermal energy in Lassen and Modoc Counties, California

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The feasibility of using low cost, low temperature geothermal energy in job-producing industries to increase employment and encourage economic development was investigated. The study, encompassing all of Lassen and Modoc Counties, was to be site-specific, referencing candidate geothermal applications to known hot wells and springs as previously determined, or to new wells with specific characteristics as defined in the Scope of Work. The emphasis was to be placed on economically practical and readily achievable applications from known resources. Although both positive and negative findings were found in specific areas of investigation, it is felt that the overall long term prognosis for geothermal energy stimulus to industry in the area is excellent. The applications studied were; greenhouse heating, kiln drying, onion dehydration, feedlots, and aquaculture.

  13. Environmental Report Utah State Prison Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    This environmental report assesses the potential impact of developing a geothermal resource for space heating at the Utah State Prison. Wells will be drilled on prison property for production and for injection to minimize reservoir depletion and provide for convenient disposal of cooled fluid. The most significant environmental concerns are the proper handling of drilling muds during well drilling and the disposal of produced water during well testing. These problems will be handled by following currently accepted practices to reduce the potential risks.

  14. Geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Gasparovic, N

    1962-07-01

    Live steam, transformed steam, and steam produced by expansion flashing are outlined with respect to their use in the production of electricity. The capacity, pressure, and temperature of a steam must be determined empirically by exploratory drilling. These factors are dependent on time and on the extent of nearby drilling-activity. Particulars of geothermal-steam power-plants such as steam dryness, hot-water flashing, condensation, gas extraction, and corrosion are discussed in detail. All available data (as per 1962) concerning the costs of operation and construction of geothermal power plants are tabulated. For space-heating purposes, two basic systems are utilized. When little corrosion or precipitation is expected, an open system is used, otherwise, closed systems are necessary. The space-heating system of Reykjavik, Iceland is cited as an example. A brief description of industrial applications of geothermal energy, such as the extraction of NaCl, D/sub 2/O, or boric acid, is provided. Thirty-two references are given.

  15. Simulation studies for wells AH-4bis/AH-17 and AH-18, Ahuachapan Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Monterrosa, Manuel Ernesto

    1996-01-24

    Well AH-4bis, at the Ahuachapan Geothermal Field is planned to be drilled on the same pad as the former AH-4. A simulation study was carried out for two casing dameters 13 5/8 and 9 5/8” in order to estimate its production and to know its economic feasibility. The simulation results indcate a high probability of production in the range of 7 Mwe, equivalent to 120 kg/s total mass flow rate, 1250 kJ/kg at 6 bar-a for the new well AH-4bis. Well AH- 17 is good producer, during 1991 after ten years of production, the well was shut-in due to silica scaling problems. A wellbore simulation was carried out in order to predict the new production conditions after the work-over, mainly to estimate the water flow rate in order to reduce the silica scaling. The results indicate a very low water flow rate. The match between the simulated and measured production curves after the work-over was successful. The well AH-18 is located at the southern part of the actual bore field. CEL is planning to expand the borefield at this area and it is neccessary to estimate the possible production condtions at that zone. The results indicate a high probabilty of production at that area. The power potential is estimated at 3.5 Mwe per well at WHP 6 bar-a and the wells will not require induction.

  16. Health impacts of geothermal energy

    International Nuclear Information System (INIS)

    Layton, D.W.; Anspaugh, L.R.

    1982-01-01

    Geothermal resources are used to produce electrical energy and to supply heat for non-electric applications like residential heating and crop drying. The utilization of geothermal energy consists of the extraction of hot water or steam from an underground reservoir followed by different methods of surface processing along with the disposal of liquid, gaseous, and even solid wastes. The focus of this paper is on electric power production using geothermal resources greater than 150 0 C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of non-condensing gases such as hydrogen sulphide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. In this paper it is shown that hydrogen sulphide emissions from most geothermal power plants are apt to cause odour annoyances among members of the exposed public -some of whom can detect this gas at concentrations as low as 0.002 ppmv. A risk-assessment model is used to estimate the lifetime risk of incurring leukaemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. Also assessed is the risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic. Finally, data on the occurrence of occupational disease in the geothermal industry is briefly summarized. (author)

  17. Geothermal potential of northern Bavaria: Analysis of geothermal resources by evaluation of geophysical temperature logs in drinking water wells and deep wells; Geothermisches Potential Nordbayerns - Untersuchungen der geothermischen Verhaeltnisse durch Auswertung geophysikalischer Temperaturmessungen in Trinkwasser- und Tiefbohrungen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, W; Udluft, P [Lehr- und Forschungsbereich Hydrogeologie und Umwelt, Inst. fuer Geologie, Wuerzburg Univ. (Germany)

    1997-12-01

    The geothermal potential of northern Bavaria was investigated. Thermal water in the lower heat range may be used, e.g., for space heating, bath heating and agricultural purposes. Geophysical data were obtained from a number of drinking water wells with a depth of less than 150 m and a few deep wells of more than 150 m. The data are to serve as a decision aid for potential users of geothermal energy and reduce the exploration risk. (orig.) [Deutsch] Zielsetzung des Forschungsvorhabens ist die Bewertung des geothermischen Potentials Nordbayerns im Hinblick auf die Nutzung von Tiefenwasser zur Gewinnung von hydrothermaler Energie. Niedrigthermale Tiefenwaesser bieten sich z.B. als Energietraeger fuer Raumwaerme, Baederheizung and landwirtschaftliche Nutzung an. Die geothermischen Daten liegen in Form von geophysikalischen Temperaturmessungen aus zahlreichen Trinkwasserbohrungen mit weniger als 150 m Bohrtiefe und einigen Tiefbohrungen mit mehr als 150 m Bohrtiefe vor. Die Bewertung des geothermischen Potentials Nordbayerns soll als Planungsgrundlage fuer potentialle Erdwaermenutzer dienen und zu einer Minimierung des Explorationsrisikos beitragen. (orig.)

  18. Radon measurements at IC-09 well of Chingshui geothermal field (Taiwan): A case study

    International Nuclear Information System (INIS)

    Chen, Y.; Kuo, T.; Fan, K.; Liang, H.; Tsai, C.; Chiang, C.; Su, C.

    2011-01-01

    Radon concentration was monitored during the flow tests of well IC-09 at the Chingshui geothermal field. The radon concentration was found to increase from 54 ± 29 to 983 ± 65 Bq/m 3 as a step function of production time, or cumulative production. The observed radon behavior can be explained by a radial composite model with the carbonate scales deposited in the skin zone near the well. The radius of skin zone near well IC-09 can be estimated with radon data at about 20 m using a plug flow model. Monitoring natural radon during the well flow tests is a helpful tracer to diagnose the formation damage near the well.

  19. Microseismic monitoring of Chocolate Bayou, Texas: The Pleasant Bayou no. 2 geopressured/geothermal energy test well program

    Science.gov (United States)

    Mauk, F. J.; Kimball, B.; Davis, R. A.

    The Brazoria seismic network, instrumentation, design, and specifications are described. The data analysis procedures are presented. Seismicity is described in relation to the Pleasant Bayou production history. Seismicity originating near the chemical plant east of the geopressured/geothermal well is discussed.

  20. Mechanisms of formation damage in matrix-permeability geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Bergosh, J.L.; Wiggins, R.B.; Enniss, D.O.

    1982-04-01

    Tests were conducted to determine mechanisms of formation damage that can occur in matrix permeability geothermal wells. Two types of cores were used in the testing, actual cores from the East Mesa Well 78-30RD and cores from a fairly uniform generic sandstone formation. Three different types of tests were run. The East Mesa cores were used in the testing of the sensitivity of core to filtrate chemistry. The tests began with the cores exposed to simulated East Mesa brine and then different filtrates were introduced and the effects of the fluid contrast on core permeability were measured. The East Mesa cores were also used in the second series of tests which tested formation sandstone cores were used in the third test series which investigated the effects of different sizes of entrained particles in the fluid. Tests were run with both single-particle sizes and distributions of particle mixes. In addition to the testing, core preparation techniques for simulating fracture permeability were evaluated. Three different fracture formation mechanisms were identified and compared. Measurement techniques for measuring fracture size and permeability were also developed.

  1. Update of geothermal energy development in Greece

    International Nuclear Information System (INIS)

    Koutroupis, N.

    1992-01-01

    Following the completion of the Geothermal Reconnaissance Study in Greece and the successful drilling of seven deep geothermal wells in the Aegean islands of Milos and Nisyros, PPC started the first step towards geothermal development for electricity production as follows: A geothermal electric pilot plant of 2 MW e nominal capacity was installed on the Zephyria plain in Milos island (1985). During a nine month operation of the plant, problems connected with its long term operation were solved (hot reinjection of the high salinity brine, turbine washing etc). A feasibility study regarding exploitation of the Nisyros geothermal resources was completed and PPC connected Nisyros island electrically to Kos island via submarine cables. As consequence of the reaction against geothermal development by the people of Milos in early 1989, the power plant is still out of operation and the feasibility study planned for Milos has been postponed. For similar reasons the Nisyros drilling contract for five new geothermal deep wells has not come into force as yet. This paper summarizes the main PPC geothermal activities to date, the problems caused by the reactions of the Milos and Nisyros population and the relevant PPC countermeasures, as well as outlining the PPC development program for the near future

  2. Fiscal 1996 report on the results of the subsidy operation under the Sunshine Project on the development of a geothermal water use power plant, etc. Development of the deep geothermal resource collecting technology (development of the deep geothermal resource producing technology); 1996 nendo New Sunshine keikaku hojo jigyo seika hokokusho. Nessui riyo hatsuden plant nado kaihatsu (shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen seisan gijutsu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper reported the results of the fiscal 1996 R and D of the deep geothermal resource collecting/producing technology. In the design of the total development, characteristics of the well mouth of the deep reservoir were examined to evaluate properties of deep geothermal resource, and the necessity of the pressure design, etc. were clarified. As to PTSD logging technology, conducted were improvement of PT probe, manufacture of a sonde of which S probe was integrated with memory/battery modules, and the actual well experiment. Concerning PTC monitoring technology, an experiment was carried out on a high temperature use optical fiber GI type, and it was shown that the type was on a commercial level. Further, a prototype sampler with 300degC heat resistance was trially manufactured, and a test to confirm its work was conducted in the well in the Corn Wall area of the U.K. As to the production control technology, studied was the arrangement of the production control technology for deep geothermal resource. Moreover, an experiment was made to examine the effect of metal ions coexisting when silica in the deep fluid precipitates. 46 refs., 107 figs., 38 tabs.

  3. Classification of public lands valuable for geothermal steam and associated geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.P.; Wayland, R.G.

    1973-01-01

    The Organic Act of 1879 (43 USC 31) that established the US Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral resources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the US Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Stat. 1566). The concept of a geothermal resouces province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a resonable possiblity of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a known geothermal resources area is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

  4. Isolation and identification of a thermophilic strain producing trehalose synthase from geothermal water in China.

    Science.gov (United States)

    Zhu, Yueming; Zhang, Jun; Wei, Dongsheng; Wang, Yufan; Chen, Xiaoyun; Xing, Laijun; Li, Mingchun

    2008-08-01

    A slightly thermophilic strain, CBS-01, producing trehalose synthase (TreS), was isolated from geothermal water in this study. According to the phenotypic characteristics and phylogenetic analysis of the 16s rRNA gene sequence, it was identified as Meiothermus ruber. The trehalose synthase gene of Meiothermus ruber CBS-01 was cloned by polymerase chain reaction and sequenced. The TreS gene consisted of 2,895 nucleotides, which specified a 964-amino-acid protein. This novel TreS catalyzed reversible interconversion of maltose and trehalose.

  5. Enhancement of subsurface geologic structure model based on gravity, magnetotelluric, and well log data in Kamojang geothermal field

    Science.gov (United States)

    Yustin Kamah, Muhammad; Armando, Adilla; Larasati Rahmani, Dinda; Paramitha, Shabrina

    2017-12-01

    Geophysical methods such as gravity and magnetotelluric methods commonly used in conventional and unconventional energy exploration, notably for exploring geothermal prospect. They used to identify the subsurface geology structures which is estimated as a path of fluid flow. This study was conducted in Kamojang Geothermal Field with the aim of highlighting the volcanic lineament in West Java, precisely in Guntur-Papandayan chain where there are three geothermal systems. Kendang Fault has predominant direction NE-SW, identified by magnetotelluric techniques and gravity data processing techniques. Gravity techniques such as spectral analysis, derivative solutions, and Euler deconvolution indicate the type and geometry of anomaly. Magnetotelluric techniques such as inverse modeling and polar diagram are required to know subsurface resistivity charactersitics and major orientation. Furthermore, the result from those methods will be compared to geology information and some section of well data, which is sufficiently suitable. This research is very useful to trace out another potential development area.

  6. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    Science.gov (United States)

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by

  7. Economic Valuation of a Geothermal Production Tax Credit

    Energy Technology Data Exchange (ETDEWEB)

    Owens, B.

    2002-04-01

    The United States (U.S.) geothermal industry has a 45-year history. Early developments were centered on a geothermal resource in northern California known as The Geysers. Today, most of the geothermal power currently produced in the U.S. is generated in California and Nevada. The majority of geothermal capacity came on line during the 1980s when stable market conditions created by the Public Utility Regulatory Policies Act (PURPA) in 1978 and tax incentives worked together to create a wave of geothermal development that lasted until the early 1990s. However, by the mid-1990s, the market for new geothermal power plants began to disappear because the high power prices paid under many PURPA contracts switched to a lower price based on an avoided cost calculation that reflected the low fossil fuel-prices of the early 1990s. Today, market and non-market forces appear to be aligning once again to create an environment in which geothermal energy has the potential to play an important role in meeting the nation's energy needs. One potentially attractive incentive for the geothermal industry is the Production Tax Credit (PTC). The current PTC, which was enacted as part of the Energy Policy Act of 1992 (EPAct) (P.L. 102-486), provides an inflation-adjusted 1.5 cent per kilowatt-hour (kWh) federal tax credit for electricity produced from wind and closed-loop biomass resources. Proposed expansions would make the credit available to geothermal and solar energy projects. This report focuses on the project-level financial impacts of the proposed PTC expansion to geothermal power plants.

  8. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  9. The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-07-01

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of

  10. Proceedings of NEDO International Geothermal Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-11

    This is a proceedings of the NEDO International Geothermal Symposium held in Sendai in 1997. The worldwide geothermal energy power generation capacity exceeds 7000 MW. Geothermal energy is widely used also for heating, snow melting, greenhouse cultivation as well as electric power generation. Geothermal energy generates far less CO2 causing the global warming than fossil fuels. The geothermal energy is clean and renewable. Considering the environmental issue and energy supply/demand of the world, we have to exert further efforts for the geothermal development. In this conference, discussions were made on each country`s experiences of the geothermal development, and future prediction and strategies for geothermal utilization in the Asia/Pacific region, in particular. Further, in the technical session, conducted were the IEA study and technical presentation/discussion for technical cooperation. The proceedings includes research reports of more than 30, which are clarified into three fields: impacts of the geothermal development on the environment, technical development of the hot dry rock power generation system, and development of technology for collecting deep-seated geothermal resource

  11. Neutron activation analysis of core and drill cutting samples from geothermal well drilling

    International Nuclear Information System (INIS)

    Miller, G.E.

    1986-01-01

    Samples of sandstones and shales were analysed by instrumental neutron activation analysis for a total of 30 elements. Three irradiation and five counting periods were employed. Solutions and National Bureau of Standards Reference Materials were used for comparison. The samples were obtained from drill cuttings (with a few core samples) from drillings in the Salton Sea geothermal field of California. These determinations form part of a major study to establish elemental variation as a function of mineral variation as depth and temperature in the well vary. The overall goal is to examine mineral alteration and/or element migration under typical geothermal conditions. The techniques involve typical compromises between maximizing precision for individual element determinations and the amount of time and effort that can be expended, as it is desired to examine large numbers of samples. With the limitations imposed by the reactor flux available at the U.C.Irvine TRIGA reactor, the detectors available, and time factors, most precisions are acceptable for geological comparison purposes. Some additional measurements were made by delayed-neutron counting methods to compare with uranium determinations made by conventional instrumental neutron activation analysis methods. (author)

  12. Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis

    International Nuclear Information System (INIS)

    Yilmaz, Ceyhun; Kanoglu, Mehmet

    2014-01-01

    Thermodynamic energy and exergy analysis of a PEM water electrolyzer driven by geothermal power for hydrogen production is performed. For this purpose, work is produced from a geothermal resource by means of the organic Rankine cycle; the resulting work is used as a work input for an electrolysis process; and electrolysis water is preheated by the waste geothermal water. The first and second-law based performance parameters are identified for the considered system and the system performance is evaluated. The effects of geothermal water and electrolysis temperatures on the amount of hydrogen production are studied and these parameters are found to be proportional to each other. We consider a geothermal resource at 160 °C available at a rate of 100 kg/s. Under realistic operating conditions, 3810 kW power can be produced in a binary geothermal power plant. The produced power is used for the electrolysis process. The electrolysis water can be preheated to 80 °C by the geothermal water leaving the power plant and hydrogen can be produced at a rate of 0.0340 kg/s. The energy and exergy efficiencies of the binary geothermal power plant are 11.4% and 45.1%, respectively. The corresponding efficiencies for the electrolysis system are 64.0% and 61.6%, respectively, and those for the overall system are 6.7% and 23.8%, respectively. - Highlights: • Thermodynamic analysis of hydrogen production by PEM electrolysis powered by geothermal energy. • Power is used for electrolyser; used geothermal water is for preheating electrolysis water. • Effect of geothermal water and electrolysis temperatures on the amount of hydrogen production. • Hydrogen can be produced at a rate of 0.0340 kg/s for a resource at 160 °C available at 100 kg/s. • Energy and exergy efficiencies of the overall system are 6.7% and 23.8%, respectively

  13. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  14. Thermal modeling of step-out targets at the Soda Lake geothermal field, Churchill County, Nevada

    Science.gov (United States)

    Dingwall, Ryan Kenneth

    Temperature data at the Soda Lake geothermal field in the southeastern Carson Sink, Nevada, highlight an intense thermal anomaly. The geothermal field produces roughly 11 MWe from two power producing facilities which are rated to 23 MWe. The low output is attributed to the inability to locate and produce sufficient volumes of fluid at adequate temperature. Additionally, the current producing area has experienced declining production temperatures over its 40 year history. Two step-out targets adjacent to the main field have been identified that have the potential to increase production and extend the life of the field. Though shallow temperatures in the two subsidiary areas are significantly less than those found within the main anomaly, measurements in deeper wells (>1,000 m) show that temperatures viable for utilization are present. High-pass filtering of the available complete Bouguer gravity data indicates that geothermal flow is present within the shallow sediments of the two subsidiary areas. Significant faulting is observed in the seismic data in both of the subsidiary areas. These structures are highlighted in the seismic similarity attribute calculated as part of this study. One possible conceptual model for the geothermal system(s) at the step-out targets indicated upflow along these faults from depth. In order to test this hypothesis, three-dimensional computer models were constructed in order to observe the temperatures that would result from geothermal flow along the observed fault planes. Results indicate that the observed faults are viable hosts for the geothermal system(s) in the step-out areas. Subsequently, these faults are proposed as targets for future exploration focus and step-out drilling.

  15. Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac; Turchi, Craig

    2017-05-01

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalination technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.

  16. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real

  17. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  18. NEDO Forum 2000. Geothermal technology development session (new development of geothermal energy); Chinetsu gijutsu kaihatsu session. Chinetsu energy no shintenkai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The following themes were presented at this session: (1) geothermal development in the future, (2) the current status of geothermal development and utilization, (3) surveys on the promotion of geothermal development, and (4) verification and investigation on geothermal exploration technologies, development of hot water utilizing power generation plants, and international cooperation on geothermal development and utilization. In Item 2, report was made on the current status of geothermal power plants in Japan and their future development targets, long-term overview of geothermal development, measures and budgets to achieve the targets of geothermal development. In Item 3, it is reported that out of 48 areas completed of the survey (including the new promotion surveyed areas), the areas possible of steam power generation and confirmed of temperatures higher than 200 degrees C are 30 areas, and the areas possible of binary power generation (using down hole pumps) and small to medium scale power generation, confirmed of temperatures of 100 to 200 degrees C are 13 areas. In Item 4, reports were made on the reservoir bed variation exploring method, surveys on deep geothermal resources, a 10-MW demonstration plant, a system to detect well bottom information during excavation of geothermal wells, a technology to collect deep geothermal resources, and a hot-rock using power generation system. In Item 5, geothermal exploration in remote islands in the eastern part of Indonesia, and the IEA cooperation projects were reported. (NEDO)

  19. Drilling series. 4. ; Planning geothermal drilling (rotary type). Kussaku series. 4. ; Chinetsusei no kussaku keikaku (shutoshite rotary gata)

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T. (S.K. Engineering Co. Ltd., Tokyo (Japan))

    1994-01-31

    The present report explained how to plan the drilling of geothermal well, and select the easing, drilling mud water and drilling rig in order to obtain the steam and hot water. The geothermal wells can be generally classified into exploration wells, production wells and reduction wells. The exploration well is a well to survey the underground strata, geological structure, and existence of steam and hot water, while the production well is a well to produce the steam and hot water. The reduction well is a well to condense the hot water produced by the production well and steam having passed through the power-generating turbine, and return them as condensate underground. The geothermal well is characterized by its high temperature, mud leakage, corrosive matter and scale, all of which make its drilling difficult and its management troublesome for the production and reduction. To plan the drilling, the order of processing are distinct conditioning of drilling differently by type of well, collection of geological survey data, programing for the casing and selection of drilling rig. The present report also gave the stress to affect the casing and standard of steel pipes to be used for the casing. 3 figs., 4 tabs.

  20. Geothermal resource and utilization in Bulgaria

    International Nuclear Information System (INIS)

    Bojadgieva, K.; Benderev, A.

    2011-01-01

    Bulgarian territory is rich in thermal water of temperature in the range of 20 - 100 o C. The highest water temperature (98 o C) is measured in Sapareva banya geothermal reservoir. Electricity generation from geothermal water is not currently available in the country. The major direct thermal water use nowadays covers: balneology, space heating and air-conditioning, domestic hot water supply, greenhouses, swimming pools, bottling of potable water and geothermal ground source heat pumps (GSHP). The total installed capacity amounts to about 77.67 MW (excl. GSHP) and the produced energy is 1083.89 TJ/year. Two applications - balneology and geothermal ground source heat pumps show more stable development during the period of 2005 - 2010. The update information on the state-owned hydrothermal fields is based on issued permits and concessions by the state.

  1. Geothermal Gradient impact on Induced Seismicity in Raton Basin, Colorado and New Mexico

    Science.gov (United States)

    Pfeiffer, K.; Ge, S.

    2017-12-01

    Since 1999, Raton Basin, located in southeastern Colorado and northern New Mexico, is the site of wastewater injection for disposing a byproduct of coal bed methane production. During 1999-2016, 29 wastewater injection wells were active in Raton Basin. Induced seismicity began in 2001 and the largest recorded earthquake, an M5.3, occurred in August 2011. Although most injection occurs in the Dakota Formation, the majority of the seismicity has been located in the crystalline basement. Previous studies involving Raton Basin focused on high injection rates and high volume wells to determine their effect on increased pore pressure. However, the geothermal gradient has yet to be studied as a potential catalyst of seismicity. Enhanced Geothermal Systems throughout the world have experienced similar seismicity problems due to water injection. Raton's geothermal gradient, which averages 49± 12°C/km, is much higher then other areas experiencing seismicity. Thermal differences between the hot subsurface and cooler wastewater injection have the potential to affect the strength of the rock and allow for failure. Therefore, we hypothesis that wells in high geothermal gradient areas will produce more frequent earthquakes due to thermal contrast from relatively cold wastewater injection. We model the geothermal gradient in the surrounding areas of the injection sites in Raton Basin to assess potential spatial relationship between high geothermal gradient and earthquakes. Preliminary results show that the fluid pressure increase from injecting cool water is above the threshold of 0.1MPa, which has been shown to induce earthquakes. In addition, temperatures in the subsurface could decrease up to 2°C at approximately 80 m from the injection well, with a temperature effect reaching up to 100 m away from the injection well.

  2. Geothermal energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  3. Geothermic Characters Of The Most Promising Geothermal Filed For Power Generation In Republic Of Yemen

    Directory of Open Access Journals (Sweden)

    Al Kubati M.

    2017-07-01

    Full Text Available This paper presents geothermal exploration and their geothermometric characteristics in the western part of Yemen. Geologically this volcanic province totals areas approximately 45000 km2. Tectonically the study area is considered one of the most active in the Arabian Plate boundaries that affected by the opening of the Red Sea and the Gulf of Aden as well as by the African rift valley. Extensive field work had been carried out to evaluate the geothermal characteristics of this area. Water and gas samples were collected from hundreds of thermal springs and shallow domestic wells and geochemically analyzed and reported. Temperatures and PH values range from 35 to 96.3 C and from 4.5 to 8.5 respectively. Deep geothermal gradient indicates that the geothermal gradients in the western part of the province Red Sea coast are relatively high up to 182 C at the depth of 3290 m. Volcanic units are affected by hydrothermal processes and became intensively altered. By applying geothermometric methods four geothermal fields have been primarily identified they are Al-Lisi and Isbil Dhamar province Al-Qafr Ibb province Damt Dhala province and the Red Sea coast geothermal fields and three water types were recognized which are Na-HCO3-Cl-S and Ca-Na-Cl and Na HCO3.Results from Al-Lisi and Isbil geothermal area are considered the most promising field. Geothermal detail studies have been achieves and location of the first geothermal exploration well is located in Al-Lisi and Isbil field.By applyig geophisical methods Iso- Resistivity contour mapsthese maps reflected high resistivity areas and low.Clearly shows the low resistivity values incentral and Western part of the study area about 11amp937mWhile up Resistivity values to the area in the eastern 600amp937m.Also through the use ofthe different current electrode spacing AB2 700 1000 1500 and 2000m.We find the low- Resistivity areas becoming more widespread and concentrated in the center of the study area and

  4. Environmental considerations for geothermal energy as a source for district heating

    International Nuclear Information System (INIS)

    Rafferty, K.D.

    1996-01-01

    Geothermal energy currently provides a stable and environmentally attractive heat source for approximately 20 district heating (DH) systems in the US. The use of this resource eliminates nearly 100% of the conventional fuel consumption (and, hence, the emissions) of the loads served by these systems. As a result, geothermal DH systems can rightfully claim the title of the most fuel-efficient DH systems in operation today. The cost of producing heat from a geothermal resource (including capitalization of the production facility and cost for pumping) amounts to an average of $1.00 per million Btu (0.0034 $/kWh). The major environmental challenge for geothermal systems is proper management of the producing aquifer. Many systems are moving toward injection of the geothermal fluids to ensure long-term production

  5. Geothermal environmental impact

    International Nuclear Information System (INIS)

    Armannsson, H.; Kristmannsdottir, H.

    1992-01-01

    Geothermal utilization can cause surface disturbances, physical effects due to fluid withdrawal noise, thermal effects and emission of chemicals as well as affect the communities concerned socially and economically. The environmental impact can be minimized by multiple use of the energy source and the reinjection of spent fluids. The emission of greenhouse gases to the atmosphere can be substantially reduced by substituting geothermal energy for fossil fuels as an industrial energy source wherever possible

  6. Geothermal energy

    International Nuclear Information System (INIS)

    Rummel, F.; Kappelmeyer, O.; Herde, O.A.

    1992-01-01

    Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP) [de

  7. Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaweizi area in Daqing Oilfield, China

    International Nuclear Information System (INIS)

    Zhang, Yan-Jun; Li, Zheng-Wei; Guo, Liang-Liang; Gao, Ping; Jin, Xian-Peng; Xu, Tian-Fu

    2014-01-01

    In this paper, the feasibility of generating electricity from EGS (enhanced geothermal systems) by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells is investigated based on the geological data of Xujiaweizi area, located in the Daqing Oilfield, northeast China. HDR (hot dry rock) resource potential assessment is carried out by using volumetric method. Reservoir stimulation is numerically simulated based on the geological data of well YS-1 and field fracturing experience in this region. Geometric dimensions and flow conductivity of the resulting fracture are imported into the hydro-thermal model to calculate the electricity generation potential of the proposed EGS power plant. An EGS design scheme is proposed based on the simulation results. The system is also evaluated from the economic and environmental aspects. The results indicate that HDR resource in Xujiaweizi area is of great potential for development. Through the staged fracturing technology for horizontal wells, electricity generation power of the proposed EGS project can roughly meet the commercial standard. For 20 years of continuous production, power generation from the proposed EGS power plant is economic feasible. Meanwhile, significant reductions in greenhouse gas emissions can be achieved. - Highlights: • Staged fracturing technology for horizontal well is used in HDR (hot dry rock) development. • Fracturing simulations and heat production simulations are combined. • A 3 MW power plant is designed in Xujiaweizi based on the simulation results

  8. Energy and Exergy Analyses of a New Combined Cycle for Producing Electricity and Desalinated Water Using Geothermal Energy

    Directory of Open Access Journals (Sweden)

    Mehri Akbari

    2014-04-01

    Full Text Available A new combined cogeneration system for producing electrical power and pure water is proposed and analyzed from the viewpoints of thermodynamics and economics. The system uses geothermal energy as a heat source and consists of a Kalina cycle, a LiBr/H2O heat transformer and a water purification system. A parametric study is carried out in order to investigate the effects on system performance of the turbine inlet pressure and the evaporator exit temperature. For the proposed system, the first and second law efficiencies are found to be in the ranges of 16%–18.2% and 61.9%–69.1%, respectively. For a geothermal water stream with a mass flow rate of 89 kg/s and a temperature of 124 °C, the maximum production rate for pure water is found to be 0.367 kg/s.

  9. Can Geothermal Power Replace Fossil Fuels?

    Science.gov (United States)

    Klenner, R.; Gosnold, W. D.

    2009-12-01

    Development of geothermal energy in any capacity is a positive step toward a sustainable energy future. The resource is enormous and has the capacity to supply most future demand for electrical power if technology can meet some substantial challenges. Electrical power from geothermal energy has several compelling characteristics: a small footprint, low emissions, continuous availability, and sustainability. However, a common perception of geothermal energy is that it is available only in a few isolated localities and thus cannot contribute significantly to future electrical power needs. This perception neglects the stored thermal energy available everywhere in the upper 10 km of Earth’s crust. We are investigating the potential for power production in oil-producing sedimentary basins where subsurface temperatures are sufficient for intermediate geothermal resources (90 °C -150 °C) at depths greater than 3 km. Existing estimates of geothermal energy stored at depth in sedimentary formations in the U.S. have been based only on a few aquifers and have not included the greater volume of fluids in oil-bearing formations. We reevaluated the accessible geothermal resource base for the north central US and found that including geothermal fluids in oil-producing formations increased the resource estimate by a factor of eight. Preliminary analysis of other basins indicates that the current estimate of thermal energy in the U.S. (100,000 EJ) may be of the order of 400,000 EJ. This is particularly significant due to recent technological advances leading to commercialization of scalable organic Rankine cycle (ORC) engines. Until recently, ORC systems were available only on an at large scale, i.e., 10s of MW, and had efficiencies of about 10 percent. Currently there are at least five manufacturers making scalable ORC systems in the 50 kW to 1 MW range, and at least one system has an efficiency of about 17 percent and is expected to attain an efficiency in the low 20s as it

  10. PROSPECTS OF GEOTHERMAL RESOURCES DEVELOPMENT FOR EAST CISCAUCASIA

    Directory of Open Access Journals (Sweden)

    A. B. Alkhasov

    2013-01-01

    Full Text Available Abstract. Work subject. Aim. The Northern Caucasus is one of the prospective regions for development of geothermal energy.The hydrogeothermal resources of the only East Ciscaucasian Artesian basin are estimated up to 10000 MW of heat and 1000 MW of electric power. For their large-scale development it is necessary to built wells of big diameter and high flow rate involving huge capital investments. Reconstruction of idle wells for production of thermal water will allow to reduce capital investments for building of geothermal power installations. In the East Ciscaucasian Artesian basin there are a lot of promising areas with idle wells which can be converted for production of thermal water. The purpose of work is substantiation possibility of efficient development of geothermal resources of the Northern Caucasus region using idle oil and gas wells.Methods. The schematic diagram is submitted for binary geothermal power plant (GPP with use of idle gas-oil wells where the primary heat carrier in a loop of geothermal circulation system is used for heating and evaporation of the low-boiling working agent circulating in a secondary contour of steam-power unit. Calculations are carried out for selection of the optimum parameters of geothermal circulation system for obtaining the maximum useful power of GPP. The thermodynamic analysis of low-boiling working agents is made. Development of medial enthalpy thermal waters in the combined geothermal-steam-gas power installations is offered where exhaust gases of gas-turbine installation are used for evaporation and overheat of the working agent circulating in a contour of GPP. Heating of the working agent in GPP up to the temperature of evaporation is carried out by thermal water.Results. The possibility of efficient development of geothermal resources of the Northern Caucasus region by construction of binary geothermal power plants using idle oil and gas wells is substantiated. The capacities and the basic

  11. Geothermal life cycle assessment - part 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, E. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution is similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO2 captured from coal plant side. Depending on the CO2 capture rate on the coal side and the CO2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO2 consumption acts as a sequestration mechanism for the coal plant. The effects CO2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power

  12. Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac; Turchi, Craig

    2016-10-01

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalination technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.

  13. Direct uses of hot water (geothermal) in dairying

    Energy Technology Data Exchange (ETDEWEB)

    Barmettler, E.R.; Rose, W.R. Jr.

    1978-01-01

    Digital computer simulation was used to investigate the peak, steady energy utilization of a geothermal energy-supported dairy. A digital computer program was also written to assess the lifetime economics of the dairy operation. A dynamic simulation program was written to design water storage tanks under diurnal transient loading. The geothermal site specified is the artesian spring named Hobo Wells near Susanville, California. The dairy configuration studies are unique, but consist of conventional processing equipment. In the dairy, cattle waste would be used to generate methane and carbon dioxide by anaerobic digestion. Some carbon dioxide would be removed from the gas stream with a pressurized water scrubber to raise the heating value. The product gas would be combusted in a spark ignition engine connected to an electric generator. The electrical power produced would be used for operation of fans, pumps, lights and other equipment in the dairy. An absorption chiller using a geothermal water driven generator would provide milk chilling. Space heating would be done with forced air hot water unit heaters.

  14. Geothermal and heavy-oil resources in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Seni, S.J.; Walter, T.G.

    1994-01-01

    In a five-county area of South Texas, geopressured-geothermal reservoirs in the Paleocene-Eocene Wilcox Group lie below medium- to heavy-oil reservoirs in the Eocene Jackson Group. This fortuitous association suggests the use of geothermal fluids for thermally enhanced oil recovery (TEOR). Geothermal fairways are formed where thick deltaic sandstones are compartmentalized by growth faults. Wilcox geothermal reservoirs in South Texas are present at depths of 11,000 to 15,000 ft (3,350 to 4,570 m) in laterally continuous sandstones 100 to 200 ft (30 to 60 m) thick. Permeability is generally low (typically 1 md), porosity ranges from 12 to 24 percent, and temperature exceeds 250{degrees}F (121{degrees}C). Reservoirs containing medium (20{degrees} to 25{degrees} API gravity) to heavy (10{degrees} to 20{degrees} API gravity) oil are concentrated along the Texas Coastal Plain in the Jackson-Yegua Barrier/Strandplain (Mirando Trend), Cap Rock, and Piercement Salt Dome plays and in the East Texas Basin in Woodbine Fluvial/Deltaic Strandplain and Paluxy Fault Line plays. Injection of hot, moderately fresh to saline brines will improve oil recovery by lowering viscosity and decreasing residual oil saturation. Smectite clay matrix could swell and clog pore throats if injected waters have low salinity. The high temperature of injected fluids will collapse some of the interlayer clays, thus increasing porosity and permeability. Reservoir heterogeneity resulting from facies variation and diagenesis must be considered when siting production and injection wells within the heavy-oil reservoir. The ability of abandoned gas wells to produce sufficient volumes of hot water over the long term will also affect the economics of TEOR.

  15. Policy for geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, S [Public Utilities Bureau, Ministry of International Trade and Industry, Japan

    1973-01-01

    Government actions related to Japanese geothermal energy development in the past include: a mining and industrial research subsidy of 27 million yen granted to Kyushu Electric Power Co. in 1952, a mining and industrial research subsidy of 13 million yen granted to Japan Metals and Chemicals Co. in 1960, a study on steam production technology for geothermal power generation by Japan Metals and Chemicals Co. funded at 3.5 hundred million yen from the Research Development Corporation of Japan, and a study on steam production technology for large scale geothermal power generation by Japan Metals and Chemicals Co. funded at 7.6 hundred million yen by the Research Development Corporation of Japan. The following projects are planned by the Ministry of International Trade and Industry for 1973: a two-year geothermal power promotion including investigations into the utilization of hot water, new methods for geothermal reservoir detection and steam well drilling, and environmental effects, studies on hydrothermal systems, basic investigations for geothermal indicators in 30 areas, and a means to finance the construction of geothermal power plants in Kakkonda (Iwate Prefecture) and Hatchobara (Oita Prefecture).

  16. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  17. Update of Geothermics in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Negrin, Luis C.A.; Quijano Leon, Jose Luis [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2004-12-01

    Four geothermal fields are currently operating in Mexico (Cerro Prieto, Los Azufres, Los Humeros and Las Tres Virgenes), with a total installed geothermal-electric capacity of 953 megawatts (MW). This means the country is located in third place, worldwide, just behind the USA and Philippines. Thirty-six power plants of several types (condensing, back pressure and binary cycle), between 1.5 and 110 MW, operate in the fields, fed by 197 wells with a combined production of 7,700 metric tons of steam per hour (t/h). These production wells have depths between 600 and 4,400 meters. Steam comes with 8,750 t/h of brine that is injected through 19 injection wells or treated in a solar evaporation pond of 14 km2 in Cerro Prieto. During 2003, steam produced in those fields equaled 67.5 million metric tons, and the power plants generated 6,282 gigawatt-hours (GWh), which represented 3.1% of the electric energy produced in Mexico. All the power plants and the geothermal fields are operated bye the public utility, the Comision Federal de Electricidad (Comision Federal de Electricidad (CFE)). [Spanish] Actualmente se operan en Mexico cuatro campos geotermicos (Cerro Prieto, Los Azufres, Los Humeros y Las Tres Virgenes), con una capacidad geotermoelectrica total de 953 megawatts (MW). Esto coloca al pais en el tercer lugar mundial, detras de Estados Unidos y Filipinas. En esos campos operan treinta y seis unidades de tipos diversos (a condensacion, a contrapresion y de ciclo binario), entre 1.5 y 110 MW, alimentadas por 197 pozos con una produccion combinada de 7,700 toneladas de vapor por hora (t/h). Estos pozos productores tienen profundidades entre 600 y 4,400 metros. El vapor sale acompanado por 8,750 t/h de salmuera, que se inyecta en 19 pozos inyectores o se trata en una laguna de evaporacion solar de 14 km2 en Cerro Prieto. Durante 2003 el vapor producido en los campos sumo 67.5 millones de toneladas y las unidades generaron 6,282 gigawatts-hora (GWh), lo que represento el

  18. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  19. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.

    2010-08-03

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting. 2010 by the authors; licensee MDPI, Basel, Switzerland.

  20. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  1. Federal reservation of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    Silver, R.M.

    1978-01-01

    Union Oil had developed or was seeking to develop wells on the land in Sonoma County, California in order to produce geothermal steam for generating electricity. The US Attorney General brought a quiet title action pursuant to 21(b) of the Geothermal Steam Act of 1970 to determine whether geothermal resources are included in the mineral reservation under the Homestead Act. The US District Court granted Union Oil's motion to dismiss for failure to state a claim upon which relief may be granted. On appeal, the Ninth Circuit reversed and remanded. In summary, the court concluded on the basis of the legislative history of the Stock-Raising Homestead Act that sources of energy are intended to remain in the government's possession, and the purposes of the Act will be best served by including geothermal resources in the reservation of mineral interests. Noting the strictly agricultural purpose of the Act, the subsurface estate reservation was broadly interpreted, even though title passed to all rights that were not expressly reserved. The court left open on remand the question of estoppel of the government from interfering with private lessees by developing subsurface resources compensation.This is a unique and intriguing decision, as it opens wide the definition of ''mineral interest,'' construing it in the timely terms of a valuable natural resource that may be in great demand for future energy needs. The decision is being appealed to the United States Supreme Court, and it will be interesting to observe whether this liberal interpretation of mineral interests will be upheld.

  2. Temperature measurement of geothermal wells by optical fiber sensor; Hikari fiber sensor wo mochiita chinetsusei no ondo bunpu keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, N; Sakaguchi, K [Geological Survey of Japan, Tsukuba (Japan)

    1996-10-01

    Experiments of temperature measurement were conducted in high temperature and high pressure geothermal wells using optical fiber sensor. A temperature measurement system using optical fiber sensor was applied to geothermal wells. Working availability was confirmed under the condition up to the depth of 1,750 m and the temperature of 240 centigrade. Observed values agreed well with those observed by the conventional temperature logging. Durability of the optical fiber sensor was also sufficient. The maximum standard deviations of measured values were 1.3 centigrade at the depth of 1,750 m at 195 centigrade for the loop-type sensor, and 3.7 centigrade at the depth of 365 m at about 200 centigrade for the single-end sensor. Although the accuracy was inferior to the conventional measurement using a thermo couple, it was enough to be applied to usual temperature logging. Furthermore, for this system, the temperature profile in the whole well can be monitored, simultaneously. Through the experiments, the detailed successive change of temperature profile accompanied with the water injection can be clearly illustrated. 3 refs., 7 figs.

  3. Geothermal studies of seven interior salt domes

    International Nuclear Information System (INIS)

    1983-06-01

    This report defines and compares the geothermal environments of eight selected Gulf Coast salt domes. The thermal regimes in and around Gulf Coast salt domes are not well documented. The data base used for this study is an accumulation of bottom-hole temperature readings from oil and gas exploration wells and temperature logs run for the National Waste Terminal Storage (NWTS) program. The bottom-hole tempreatures were corrected in order to estimate the actual geothermal environments. Prior thermal studies and models indicate temperatures in and around salt domes are elevated above the norm by 1 0 F to 25 0 F. Using existing geothermal data and accepted theory, geothermal gradients for the selected domes and surrounding sediments were estimated. This study concludes that salt domes within a given basin have similar geothermal gradients, but that the basins differ in average geothermal gradients. This relationship is probably controlled by deep basement structural trends. No evidence of residual heat of emplacement was found associated with any of the selected domes

  4. Heat transfer problems for the production of hydrogen from geothermal energy

    International Nuclear Information System (INIS)

    Sigurvinsson, J.; Mansilla, C.; Arnason, B.; Bontemps, A.; Marechal, A.; Sigfusson, T.I.; Werkoff, F.

    2006-01-01

    Electrolysis at low temperature is currently used to produce Hydrogen. From a thermodynamic point of view, it is possible to improve the performance of electrolysis while functioning at high temperature (high temperature electrolysis: HTE). That makes it possible to reduce energy consumption but requires a part of the energy necessary for the dissociation of water to be in the form of thermal energy. A collaboration between France and Iceland aims at studying and then validating the possibilities of producing hydrogen with HTE coupled with a geothermal source. The influence of the exit temperature on the cost of energy consumption of the drilling well is detailed. To vaporize the water to the electrolyser, it should be possible to use the same technology currently used in the Icelandic geothermal context for producing electricity by using a steam turbine cycle. For heating the steam up to the temperature needed at the entrance of the electrolyser three kinds of heat exchangers could be used, according to specific temperature intervals

  5. Numerical simulation of electricity generation potential from fractured granite reservoir through vertical wells at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yu-chao; Zhan, Jie-min; Wu, Neng-you; Luo, Ying-ying; Cai, Wen-hao

    2016-01-01

    Yangbajing geothermal field is the first high-temperature hydrothermal convective geothermal system in China. Research and development of the deep fractured granite reservoir is of great importance for capacity expanding and sustaining of the ground power plant. The geological exploration found that there is a fractured granite heat reservoir at depth of 950–1350 m in well ZK4001 in the north of the geothermal field, with an average temperature of 248 °C and a pressure of 8.01–11.57 MPa. In this work, electricity generation potential and its dependent factors from this fractured granite reservoir by water circulating through vertical wells are numerically investigated. The results indicate that the vertical well system attains an electric power of 16.8–14.7 MW, a reservoir impedance of 0.29–0.46 MPa/(kg/s) and an energy efficiency of about 29.6–12.8 during an exploiting period of 50 years under reference conditions, showing good heat production performance. The main parameters affecting the electric power are water production rate and injection temperature. The main parameters affecting reservoir impedance are reservoir permeability, injection temperature and water production rate. The main parameters affecting the energy efficiency are reservoir permeability, injection temperature and water production rate. Higher reservoir permeability or more reasonable injection temperature or water production rate within certain ranges will be favorable for improving the electricity generation performance. - Highlights: • We established a numerical model of vertical well heat mining system. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 16.8–14.7 MW with an efficiency of about 29.6–12.8. • Electric power mainly depends on water production rate and injection temperature. • Higher permeability within a certain range is favorable for electricity generation.

  6. Geothermal resources: Frio Formation, Upper Texas Gulf Coast. Geological circular 76-3

    Energy Technology Data Exchange (ETDEWEB)

    Bebout, D.G.; Loucks, R.G.; Bosch, S.C.; Dorfman, M.H.

    1976-01-01

    Major sand trends were identified in the Frio Formation, Upper Texas Gulf Coast as part of the evaluation of its potential for producing geothermal energy. Electrical logs from 465 wells spaced 5 to 10 miles apart were used in the study. Maps illustrating total net sand and total sand percentage of the Frio Formation are included. It was found that subsurface fluid temperatures of greater than 250/sup 0/F occur in the Frio sand bodies up to 100 ft thick downdip of the high-sand trends. LA broad band in Brazoria and Galveston Counties was delineated as having geothermal potential. (JGB)

  7. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  8. INTEGRATED EXPLORATION OF GEOTHERMAL RESOURCES

    Directory of Open Access Journals (Sweden)

    A. B. Alkhasov

    2016-01-01

    Full Text Available The aim. The aim is to develop the energy efficient technologies to explore hydro geothermal resources of different energy potential.Methods. Evaluation of the effectiveness of the proposed technologies has been carried out with the use of physical and mathematical, thermodynamic and optimization methods of calculation and the physical and chemical experimental research.Results. We propose the technology of integrated exploration of low-grade geothermal resources with the application of heat and water resource potential on various purposes. We also argue for the possibility of effective exploration of geothermal resources by building a binary geothermal power plant using idle oil and gas wells. We prove the prospect of geothermal steam and gas technologies enabling highly efficient use of thermal water of low energy potential (80 - 100 ° C degrees to generate electricity; the prospects of complex processing of high-temperature geothermal brine of Tarumovsky field. Thermal energy is utilized in a binary geothermal power plant in the supercritical Rankine cycle operating with a low-boiling agent. The low temperature spent brine from the geothermal power plant with is supplied to the chemical plant, where the main chemical components are extracted - lithium carbonate, magnesium burning, calcium carbonate and sodium chloride. Next, the waste water is used for various water management objectives. Electricity generated in the binary geothermal power plant is used for the extraction of chemical components.Conclusions. Implementation of the proposed technologies will facilitate the most efficient development of hydro geothermal resources of the North Caucasus region. Integrated exploration of the Tarumovsky field resources will fully meet Russian demand for lithium carbonate and sodium chloride.

  9. Isotope study in geothermal fields in Java Island

    International Nuclear Information System (INIS)

    Wandowo, Z.A.

    1995-01-01

    Study in two geothermal fields, Dieng and Kamojang, in Java island by utilizing isotope technique has been carried out. Isotopic data of wells, springs and other geothermal manifestations providing informations on the recharge area of precipitation contributed to geothermal resources, flow paths and origin of geothermal fluids. The data of oxygen shift has also provided information on the characteristic the fields. (author). 8 refs, 5 figs, 3 tabs

  10. Deep Geothermal Energy Production in Germany

    Directory of Open Access Journals (Sweden)

    Thorsten Agemar

    2014-07-01

    Full Text Available Germany uses its low enthalpy hydrothermal resources predominantly for balneological applications, space and district heating, but also for power production. The German Federal government supports the development of geothermal energy in terms of project funding, market incentives and credit offers, as well as a feed-in tariff for geothermal electricity. Although new projects for district heating take on average six years, geothermal energy utilisation is growing rapidly, especially in southern Germany. From 2003 to 2013, the annual production of geothermal district heating stations increased from 60 GWh to 530 GWh. In the same time, the annual power production increased from 0 GWh to 36 GWh. Currently, almost 200 geothermal facilities are in operation or under construction in Germany. A feasibility study including detailed geological site assessment is still essential when planning a new geothermal facility. As part of this assessment, a lot of geological data, hydraulic data, and subsurface temperatures can be retrieved from the geothermal information system GeotIS, which can be accessed online [1].

  11. Western Sicily (Italy), a key area for understanding geothermal system within carbonate reservoirs

    Science.gov (United States)

    Montanari, D.; Bertini, G.; Botteghi, S.; Catalano, R.; Contino, A.; Doveri, M.; Gennaro, C.; Gianelli, G.; Gola, G.; Manzella, A.; Minissale, A.; Montegrossi, G.; Monteleone, S.; Trumpy, E.

    2012-12-01

    Oil exploration in western Sicily started in the late 1950s when several exploration wells were drilled, and continued with the acquisition of many seismic reflection profiles and the drilling of new wells in the1980s. The geological interpretation of these data mainly provided new insights for the definition of geometric relationships between tectonic units and structural reconstruction at depth. Although it has not produced completely satisfactory results for oil industry, this hydrocarbon exploration provided a great amount of data, resulting very suitable for geothermal resource assessment. From a geothermal point of view western Sicily is, indeed, a very promising area, with the manifestation at surface of several thermal springs, localized areas of high heat flux and thick carbonates units uninterruptedly developing from surface up top great depths. These available data were often collected with the modalities and purposes typical of oil exploration, not always the finest for geothermal exploration as in the case of temperature measurements. The multidisciplinary and integrated review of these data, specifically corrected for geothermal purposes, and the integration with new data acquired in particular key areas such as the Mazara Del Vallo site in the southern part of western Sicily, allowed us to better understand this medium-enthalpy geothermal system, to reconstruct the modalities and peculiarities of fluids circulation, and to evaluate the geothermal potentialities of western Sicily. We suggest that western Sicily can be taken as a reference for the understanding of geothermal systems developed at a regional scale within carbonate rocks. This study was performed within the framework of the VIGOR project (http://www.vigor-geotermia.it).

  12. Geothermal today: 1999 Geothermal Energy Program highlights (Clean energy for the 21st century booklet)

    Energy Technology Data Exchange (ETDEWEB)

    Green, B.; Waggoner, T.

    2000-05-10

    The purpose of this publication is to educate and inform readers about research activities being carried out by the federal Geothermal Energy Program, and its achievements and future goals. This publication should help raise the visibility and awareness of geothermal energy contributions and potential, especially as part of the nation's clean energy technologies portfolio. The message of the publication is that program resources are being well spent and the results are real and tangible. A secondary message is that geothermal energy is a viable generation option with environmental, economic, and other benefits.

  13. Energy source completion for geothermal district heating systems

    International Nuclear Information System (INIS)

    Popovski, Kiril

    2000-01-01

    Geothermal district heating systems differs from the others mainly in the part of energy source completion and its connection to the heat distribution systems rather known problem. Even rather known problematic in the countries where geothermal energy is in wide application, new appearances of mistakes are always present due to the fact that necessary literature is difficult to be found. Essentials of the geothermal well completion and connection of geothermal source to the district heating distribution system are summarized in the paper and several examples of geothermal projects in flow are presented. (Author)

  14. The possibilities of utilisation of heat from Tattapani Geothermal field, India

    Energy Technology Data Exchange (ETDEWEB)

    Sarolkar, P.B. [Geological Survey of India, Hyderabad (India); Pitale, U.L. [Geological Survey of India, Nagpur (India)

    1996-12-31

    The Tattapani Geothermal field produces + 1800 1pm thermal water of 100{degrees}C from five production wells. The hot water production can sustain electricity production of 300 kWe by using a binary cycle power plant. The heat energy of effluent water from power plant can be utilized for direct heat utilization on horticulture, aquaculture, cold storage, silviculture etc; to augment the economics of the power plant be spot can be developed as a centre for tourist attraction by constructing botanical park, greenhouse, geyser show and crocodile farm. The direct heat utilization shemes can be planned in cascading order to achieve maximum utility of thermal water. Additional deep drilling is essential for optimum commercial utilization of the Geothermal energy. The direct heat utilisation shemes along with binary cycle power plant may help in development of the geothermal energy and boosting the economy of this region.

  15. Measurement results of BHTV logging at the geothermal well. 1; Chinetsusei ni okeru BHTV kenso no sokutei kekka. 1

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S. [Geophysical Surveying and Consulting Co. Ltd., Tokyo (Japan); Nakanishi, S.; Shimizu, I. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1997-05-27

    In association with excavation of the No. 135 steam producing well in the Onikubi geothermal power plant in Miyagi Prefecture, shapes of production zones and drilling-induced fracture (DIF) were acquired from the borehole televiewer (BHTV) data. The BHTV logging shoots sound waves onto well walls of wells filled with fluid and detects the reflection waves to investigate the state of the well walls. Vertical fracture with opening lengths from 2 to 3 m were found at depths of about 1232 m and 1312 m. Water run-off has occurred at a depth of about 1312 m during the excavation, to which these vertical fractures might have contributed possibly. In depths of about 1232 m and 1312 m, fractures inclining toward north-east direction and south-west direction are predominant. Some fractures in the depth of about 1333 m incline toward east-south-east direction and west-north-west direction. Fracture inclination azimuth in all of the present logging sections is predominantly in north-east direction and south-west direction. When the DIF is considered to show the maximum compression azimuth, the earth`s crust stress azimuth is generally in east-west direction, which crosses slightly obliquely with the running direction of the predominant fracture in this well. 1 ref., 7 figs.

  16. Geothermal Energy

    International Nuclear Information System (INIS)

    Haluska, Oscar P.; Tangir, Daniel; Perri, Matias S.

    2002-01-01

    A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined

  17. Geothermal Progress Monitor. Report No. 15

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    Two themes dominate this issue of the Geothermal Progress Monitor, the 15th since its inception in 1980. The first of these is the significance of the government/industry partnership role in geothermal development. This joint effort is reflected in the continued, measured growth in the use of geothermal energy, for both power generation and direct use applications, in this country and abroad, as well as in the development of new, innovative technologies to ensure a bright future for the resource. The second theme is the growing popularity of geothermal heat pumps (GHPs) among utilities, their customers, and federal agencies, all with disparate interests in the technology.

  18. Chemical composition of deep hydrothermal fluids in the Ribeira Grande geothermal field (São Miguel, Azores)

    Science.gov (United States)

    Carvalho, M. R.; Forjaz, V. H.; Almeida, C.

    2006-08-01

    The Ribeira Grande geothermal field is a water-dominated geothermal system, located within Água de Pau/Fogo Volcano in the central part of the São Miguel Island. This geothermal system is exploited for energy production by wells sustaining two power plants. The wells produce from a formation of pillow lavas divided into different aquifers, with a fairly isothermal zone from 800 to 1300 m in depth, where reservoir temperature reaches 230 to 245 °C. Below the depth of 1300 m there is a slight temperature reversal. The fluid produced has excess enthalpy and, separated at atmospheric pressure, is characterized by mineralization of sodium-chloride type up to 6-7 g/l, the concentration of dissolved silica varies between 450 and 650 mg/l and the pH ranges between 8 and 8.6. The gas phase is dominantly CO 2, at a concentration of 98% of NCG. The composition of the deep geothermal fluid was obtained by computer simulation, using the WATCH program, and was compared with the composition of the bottom-hole samples. The approximations, in this simulation, were considered the single- and multi-step steam separation. The reference temperatures were based on: (i) the measured temperature in wells; (ii) the Na/K geothermometric temperature and (iii) the enthalpy-saturation temperature. According to both the measured and geothermometric temperatures, the deep fluid of the wells has two phases with a steam fraction up to 0.34, at higher well discharges. The measured enthalpy is always greater than the calculated enthalpy. The calcite equilibrium indicates scaling, since the fluid is flashing, around 2.28 mg/l CaCO 3 at the maximum discharge. The geothermal wells exploit three different aquifers, the lower of which is liquid and slightly colder than the upper ones. The intermediate is a two-phase aquifer with a steam fraction up to 0.081. The upper aquifer is probably of steam phase. The main differences between the aquifers are the temperature and boiling; both enthalpy and

  19. Impact of enhanced geothermal systems on US energy supply in the twenty-first century.

    Science.gov (United States)

    Tester, Jefferson W; Anderson, Brian J; Batchelor, Anthony S; Blackwell, David D; DiPippo, Ronald; Drake, Elisabeth M; Garnish, John; Livesay, Bill; Moore, Michal C; Nichols, Kenneth; Petty, Susan; Toksoz, M Nafi; Veatch, Ralph W; Baria, Roy; Augustine, Chad; Murphy, Enda; Negraru, Petru; Richards, Maria

    2007-04-15

    Recent national focus on the value of increasing US supplies of indigenous renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well distributed nationally. A panel was assembled in September 2005 to evaluate the technical and economic feasibility of geothermal becoming a major supplier of primary energy for US base-load generation capacity by 2050. Primary energy produced from both conventional hydrothermal and enhanced (or engineered) geothermal systems (EGS) was considered on a national scale. This paper summarizes the work of the panel which appears in complete form in a 2006 MIT report, 'The future of geothermal energy' parts 1 and 2. In the analysis, a comprehensive national assessment of US geothermal resources, evaluation of drilling and reservoir technologies and economic modelling was carried out. The methodologies employed to estimate geologic heat flow for a range of geothermal resources were utilized to provide detailed quantitative projections of the EGS resource base for the USA. Thirty years of field testing worldwide was evaluated to identify the remaining technology needs with respect to drilling and completing wells, stimulating EGS reservoirs and converting geothermal heat to electricity in surface power and energy recovery systems. Economic modelling was used to develop long-term projections of EGS in the USA for supplying electricity and thermal energy. Sensitivities to capital costs for drilling, stimulation and power plant construction, and financial factors, learning curve estimates, and uncertainties and risks were considered.

  20. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    Science.gov (United States)

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  1. Japanese geothermics

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    At the end of the seventies, the NEDO (New Energy and Industrial Technology Development Organisation) and the Central Research Institute of Electric Power Industry have started two independent projects of deep geothermics research in Honshu island (Japan). The two sites are 50 km apart of each other and the boreholes have been drilled up to 2300 and 1100 m of depth, respectively, in hot-dry moderately fractured volcanic rocks. These sites are characterized by high geothermal gradients with a rock temperature reaching 250 C at the bottom of the wells. Hydraulic circulation tests are still in progress to evaluate the profitability of these sites. (J.S.). 1 fig., 1 photo

  2. What is geothermal steam worth?

    International Nuclear Information System (INIS)

    Thorhallsson, S.; Ragnarsson, A.

    1992-01-01

    Geothermal steam is obtained from high-temperature boreholes, either directly from the reservoir or by flashing. The value of geothermal steam is similar to that of steam produced in boilers and lies in its ability to do work in heat engines such as turbines and to supply heat for a wide range of uses. In isolated cases the steam can be used as a source of chemicals, for example the production of carbon dioxide. Once the saturated steam has been separated from the water, it can be transported without further treatment to the end user. There are several constraints on its use set by the temperature of the reservoir and the chemical composition of the reservoir fluid. These constraints are described (temperature of steam, scaling in water phase, gas content of steam, well output) as are the methods that have been adopted to utilize this source of energy successfully. Steam can only be transported over relatively short distances (a few km) and thus has to be used close to the source. Examples are given of the pressure drop and sizing of steam mains for pipelines. The path of the steam from the reservoir to the end user is traced and typical cost figures given for each part of the system. The production cost of geothermal steam is estimated and its sensitivity to site-specific conditions discussed. Optimum energy recovery and efficiency is important as is optimizing costs. The paper will treat the steam supply system as a whole, from the reservoir to the end user, and give examples of how the site-specific conditions and system design have an influence on what geothermal steam is worth from the technical and economic points of view

  3. Uses of geothermal energy in Jordan for heating greenhouses; project proposal

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.; Masarwah, Rober; Elkarmi, Fawwaz

    1993-08-01

    A proposal for the exploration of geothermal energy in Jordan for heating greenhouses. The report gives some background information on geothermal anomalies in Jordan, and outlines some on-going uses of geothermal energy in various parts of Jordan. The proposal is modelled on the 2664 square meter Filclair Super 9 Multispan greenhouse from France. The overall cost of the project involves three variables, the cost of the borehole, the cost of the greenhouse, and the cost of engineering services. The total cost ranges between three to four million dollars depending on the quantity and quality of information to be collected from the borehole. The advantages of geothermal heating compared with oil heating are emphasized. The project will enable geothermal heating and horticultural production to be monitored throughout the year, will produce data enabling rational and reliable water resources management, and will produce environmentally clean and efficient energy. (A.M.H.). 1 tab. 1 map

  4. Simulation of the flow phenomena in geothermal wells: developments and applications; Simulacion de los fenomenos de flujo en pozos geotermicos: desarrollos y aplicaciones

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Gutierrez, Alfonso [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1994-07-01

    In this paper the numerical simulators and the specialized computer programs that have been developed in the Departamento de Geotermia of the Instituto de Investigaciones Electricas (IIE) for the study of mass transport phenomena, momentum and heat in geothermal wells, are delineated. The developments can be assembled in 5 types: a) Fluid circulation during geothermal well construction; b) Production; c) Construction; d) Return to the thermal equilibrium; e) Thermodynamic and fluid transport properties, cements, and rocks. The applications realized include, besides the normal flow phenomena that occur in geothermal wells, the study of special problems that have been found in several wells of the geothermal fields in the country. These developments constitute a tool of great utility for the reservoir engineer`s daily work and for the understanding of the specific phenomena of infrequent occurrence. [Espanol] En este trabajo se describen los simuladores numericos y programas de computo especializados que se han desarrollado en el Departamento de Geotermia del Instituto de Investigaciones Electricas (IIE), para estudiar los fenomenos de transporte de masa, momentum y calor en pozos geotermicos. Los desarrollos pueden agruparse en 5 tipos: a) circulacion de fluidos durante la construccion de pozos, b) produccion, c) inyeccion, d) retorno a equilibrio termico, e) propiedades termodinamicas y de transporte de los fluidos, cementos y rocas. Las aplicaciones realizadas incluyen, ademas de los fenomenos normales de flujo que ocurren en pozos geotermicos, el estudio de problemas especiales que se han encontrado en diversos pozos de los campos geotermicos del pais. Estos desarrollos constituyen una herramienta de gran utilidad para el trabajo diario del ingeniero de yacimientos y para el entendimiento de fenomenos especificos de ocurrencia poco frecuente.

  5. Geothermal direct use engineering and design guidebook

    International Nuclear Information System (INIS)

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States

  6. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lunis, B.C. (eds.)

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  7. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  8. Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite

    Directory of Open Access Journals (Sweden)

    Muljani Srie

    2016-01-01

    Full Text Available Potassium silicate fertilizer grade were successfully produced by direct fusion of silica (SiO2 and potasium (KOH and K2CO3 in furnaces at temperatures up to melting point of mixture. The geothermal sludge (98% SiO2 and the pyrophyllite (95% SiO2 were used as silica sources. The purposes of the study was to synthesise potassium silicate fertilizer grade having solids concentrations in the range of 31-37% K2O, and silica in the range of 48-54% SiO2. The weight ratio of silicon dioxide/potasium solid being 1:1 to 5:1. Silica from geothermal sludge is amorphous, whereas pyrophylite is crystalline phase. The results showed that the amount of raw materials needed to get the appropriate molar ratio of potassium silicate fertilizer grade are different, as well as the fusion temperature of the furnace. Potassium silicate prepared from potassium hydroxide and geothermal sludge produced a low molar ratio (2.5: 1 to 3: 1. The potassium required quite small (4:1 in weight ratio, and on a fusion temperature of about 900 °C. Meanwhile, the potassium silicate prepared from pyrophyllite produced a high molar ratio (1.4 - 9.4 and on a fusion temperature of about 1350 °C, so that potassium needed large enough to meet the required molar ratio for the fertilizer grade. The product potassium silicate solid is amorphous with a little trace of crystalline.

  9. Environmental impact in geothermal fields

    International Nuclear Information System (INIS)

    Birkle, P.; Torres R, V.; Gonzalez P, E.; Guevara G, M.

    1996-01-01

    Generally, water exploitation and deep steam of geothermal fields may be cause of a pollution potential on the surface, specially by the chemical composition of geothermal water which has a high concentration of minerals, salts and heavy metals. The utilization of stable isotopes as deuterium and oxygen 18 as radioactive tracers and water origin indicators allow to know the trajectories and sources of background waters as well as possible moistures between geothermal waters and meteoric waters. Some ions such as chlorides and fluorides present solubilities that allow their register as yet long distances of their source. (Author)

  10. Materials selection guidelines for geothermal energy utilization systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  11. Alaska: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  12. Washington: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-01-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  13. First geothermal pilot power plant in Hungary

    Directory of Open Access Journals (Sweden)

    Tóth Anikó

    2007-01-01

    Full Text Available The Hungarian petroleum industry has always participated in the utilization of favourable geothermal conditions in the country. Most of the Hungarian geothermal wells were drilled by the MOL Ltd. as CH prospect holes. Accordingly, the field of geothermics belonged to the petroleum engineering, although marginally. It was therefore a surprise to hear of the decision of MOL Ltd. to build a geothermal power plant of about 2-5 MW. The tender was published in 2004.The site selected for the geothermal project is near the western border of an Hungarian oilfield, close to the Slovenian border. The location of the planned geothermal power plant was chosen after an analysis of suitable wells owned by the MOL Rt. The decision was made on the bases of different reservoir data. The existence of a reservoir of the necessary size, temperature, permeability, productivity and the water chemistry data was proved. The wells provide an enough information to understand the character of the reservoir and will be the production wells used by the planned power plant.The depth of the wells is about 2930 - 3200 m. The Triassic formation is reached at around 2851 m. The production and the reinjection wells are planned. The primary objective of the evaluation is to further learn the nature of the geothermal system. First a one-day discharge test is carried out. If this short-term test is successful, a six-months long-term discharge test will follow. The first period of the test is a transient phenomenon. Within the well test, the wellhead pressure, the flow rate, the outflowing water temperature, the dynamic fluid level, and the chemical components will be measured. The heat transfer around the bore-hole is influenced by the flow rate and the time. For the right appreciation of the measured data, it is very important to analyse the heat transfer processes around the bore-hole. The obtained data from the experiments must be also fitted into the framework of a mathematical

  14. Klamath Falls geothermal field, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  15. Assessing geothermal energy potential in upstate New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, D.S. [SUNY, Buffalo, NY (United States)

    1996-08-01

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  16. Geothermal engineering fundamentals and applications

    CERN Document Server

    Watson, Arnold

    2013-01-01

    This book explains the engineering required to bring geothermal resources into use. The book covers specifically engineering aspects that are unique to geothermal engineering, such as measurements in wells and their interpretation, transport of near-boiling water through long pipelines, turbines driven by fluids other than steam, and project economics. The explanations are reinforced by drawing comparisons with other energy industries.

  17. Applicability of `GREATEM' system in mapping geothermal regions in volcanic areas

    Science.gov (United States)

    Verma, S. K.; Mogi, T.; Abd Allah, S.

    2010-12-01

    The ‘GREATEM’ helicopter borne TEM system employs a long grounded cable as transmitter while a light weight receiver coil is flown below a helicopter. This arrangement greatly simplifies the flying logistics and speed of the survey. Also there is very little reduction in the anomaly amplitude when the survey altitude is increased. This is a great advantage particularly in volcanic regions usually having rough topography, as the ‘GREATEM’ survey can be done with helicopter flying at a safe height. Many volcanic areas have anomalous geothermal regions containing hydrothermal fluids. Eruption of volcanoes may cause changes in the thermal character and spatial distribution of these regions. Mapping of these regions is important as they may be associated with hazards. Sometimes, if the temperature is high and volume of the geothermal region is large, they can provide a good source of geothermal energy. Applicability of ‘GREATEM’ system in mapping geothermal regions in volcanic areas is studied by numerical modeling. We have considered a 3D conductor at a shallow depth (50 t0 100m), representing the anomalous geothermal region with dimensions of 500m X 500m X 500m. Different types of geological host environment are considered by varying their resistivities from 10 Ohm.m to 2000 Ohm.m. The ‘GREATEM’ response is analyzed as ‘Percentage Difference (PD)’ over the response produced by the host environment. It is found that the “GREATEM’ system can delineate the geothermal region well. Many geothermal regions are associated with a deeper (> 1 km) reservoir of much larger dimensions. In this situation also it is found that the ‘GREATEM’ system can pick up the response of the shallower geothermal region against the background response of different types of geological host environment containing the deeper reservoir (Figure 1).

  18. Geothermal energy

    International Nuclear Information System (INIS)

    Laplaige, Ph.; Lemale, J.

    2008-01-01

    Geothermal energy is a renewable energy source which consists in exploiting the heat coming from the Earth. It covers a wide range of techniques and applications which are presented in this article: 1 - the Earth, source of heat: structure of the Earth, geodynamic model and plate tectonics, origin of heat, geothermal gradient and terrestrial heat flux; 2 - geothermal fields and resources; 3 - implementation of geothermal resources: exploration, main characteristic parameters, resource exploitation; 4 - uses of geothermal resources: power generation, thermal uses, space heating and air conditioning heat pumps, district heating, addition of heat pumps; 5 - economical aspects: power generation, heat generation for district heating; 6 - environmental aspects: conditions of implementation, impacts as substitute to fossil fuels; 7 - geothermal energy in France: resources, organisation; 8 - conclusion. (J.S.)

  19. Industrial application of geothermal energy in Southeast Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

    1980-02-01

    Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

  20. FY 1974 Report on results of Sunshine Project. Feasibility study on techniques for measurement of conditions within geothermal wells; 1974 nendo chinetsu koseinai sokutei gijutsu ni kansuru feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report covers the principles and methods of various bed-detecting techniques and their application, to begin with, current status of these techniques, results of feasibility studies on system data processing, well mouth analyzing systems, how to develop techniques for detecting geothermal beds, bed-detecting systems and environment-simulating devices, and finally conclusions, for the subject research and development project. The detecting techniques used for the geothermal area include those based on electrical properties, temperature, pressure and flow rate, analysis of core and fluids collected by analyzing systems at the well mouths, and detection of H{sub 2}S gas. Evaluation of geothermal reservoirs needs the data of absolute temperature of the geothermal sources, quantities of vapors spouting out of the wells, depth of boiling planes and pressure; and other basic data, e.g., void volumes of broad sense, quantitative evaluation results of cracks, shapes of naked well walls, expansion of reservoirs relative to bed, and effective bed thickness, which are determined by bed-detecting techniques for physical properties. It is necessary to develop the bed-detection systems adequately covering bed-detection items, detection of production beds for geothermal measurement, other bed-detection systems, and heat-resistant wire line cables and other cables serviceable at high temperature, as the essential items for obtaining the above data. (NEDO)

  1. Geophysical well logging operations and log analysis in Geothermal Well Desert Peak No. B-23-1

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, D.K.; Fertl, W.H.

    1980-03-01

    Geothermal Well Desert Peak No. B-23-1 was logged by Dresser Atlas during April/May 1979 to a total depth of 2939 m (9642 ft). A temperature of 209/sup 0/C (408/sup 0/F) was observed on the maximum thermometer run with one of the logging tools. Borehole tools rated to a maximum temperature of 204.4/sup 0/C (400/sup 0/F) were utilized for logging except for the Densilog tool, which was from the other set of borehole instruments, rated to a still higher temperature, i.e., 260/sup 0/C (500/sup 0/F). The quality of the logs recorded and the environmental effects on the log response have been considered. The log response in the unusual lithologies of igneous and metamorphic formations encountered in this well could be correlated with the drill cutting data. An empirical, statistical log interpretation approach has made it possible to obtain meaningful information on the rocks penetrated. Various crossplots/histograms of the corrected log data have been generated on the computer. These are found to provide good resolution between the lithological units in the rock sequence. The crossplotting techniques and the statistical approach were combined with the drill cutting descriptions in order to arrive at the lithological characteristics. The results of log analysis and recommendations for logging of future wells have been included.

  2. Geothermal spas

    International Nuclear Information System (INIS)

    Woodruff, J.L.; Takahashi, P.K.

    1990-01-01

    The spa business, part of the health and fitness industry that has sprung up in recent years, is highly successful world-wide. The most traditional type of spa is the geothermal spa, found in geothermal areas around the world. In Japan, for example, some 2,000 geothermal spas and resorts generate $6 billion annually. Hawaii has an ideal environment for geothermal spas, and several locations in the islands could supply warm mineral water for spa development. Hawaii receives about 6 million visitors annually, a high percentage of whom are familiar with the relaxing and therapeutic value of geothermal spas, virtually guaranteeing the success of this industry in Hawaii. Presently, Hawaii does not have a single geothermal spa. This paper reports that the geothermal spa business is an industry whose time has come, an industry that offers very promising investment opportunities, and one that would improve the economy while expanding the diversity of pleasurable vacation options in Hawaii

  3. Geothermal energy in Switzerland - outline lecture; Uebersichtsvortrag Geothermie Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, M [Bundesamt fuer Energiewirtschaft, Bern (Switzerland); Gorhan, H L [Elektrowatt Engineering AG, Zuerich (Switzerland)

    1997-12-01

    CO{sub 2}- emission in Switzerland need to be reduced over the next 50 years. In 1990, a first step towards improvement was taken by the Swiss Feseral Office of Energy by establishing the ``Energy 2000`` action plan. Apart from practical recommendations for general energy saving measures, this programme provides also clear objectives in respect to increased and more effecient utilization of indigenious and renewable energy resources. Geothermal energy is one of these resources. In addition to the amount of geothermal heat delivered in 1990, it is planned to produce a further 170 GWh of geothermal energy by the year 2000. This correesponnds to about 6% of a total of 3000 GWh which, it is envisaged, will be produced by all alternative heat resources together by the year 2000. Today, most geothermal energy is provided by shallow borehole heat exchangers. However, intensive development of wide ranging and innovative geothermal techniques is taking place at present. These R and D activities, as well as projects at present being realised, receive significant support from the Swiss Federal Office of Energy. (orig.) [Deutsch] In den kommenden 50 Jahren soll und muss CO{sub 2}-Emission in der Sweiz betraechtlich reduziert werden. Einen ersten Schritt dazu bildet das. im Jahre 1990 vom bundesamtes fuer Energiewirtschaft erarbeitete, Programm ``Energie 2000``. Nebst konkreten Vorschlaegen zum allgemeinen Energiesparen wurden in diesem programm auch Zielsetzungen fuer eine vermehrte, innovative und efficiente Nutzung von einheimischen und erneuerbaren Energieressourcen formuliert. Dazu zaelt auch die Geometrie. Zusaetzlich zur bereits im Jahre 1990 produzierten Waerme soll die Geometrie im Jahr 2000 ca. 170 GWh an Waermeenergie lifern. Das entspricht ca.6% der fuer das Jahr 2000 geplanten Gesamtalternativ- Energieproduktion von 3000 GWh. Bei der geothermischen Energieproduktion satmmt bis heute der groesste Anteil von untiefen Erdwaermesonden. Die Anwendung neuer und

  4. Vegetation and geothermal development in the vicinity of the Takinogami geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, T

    1973-07-01

    After site studies for a new geothermal power plant at the Takinogami geothermal field, the Japan Natural Conservation Association recommended against locating the plant near the office and dormitory complexes at Matsukurasawa junction. An alternate site located about 1 km upstream on the Takinogami River was proposed. It was recommended that a buffer zone be established between the construction road and the local forest. This zone would be planted with Uwamizu cherry, Azuki pear, Tani deutia, Tamu brushwood, Clathracea, Rowan, Kobano ash and Yama (Japanese lacquer tree). A road embankment would be constructed of terraced masonry which would be landscaped with Tani deutia, Kuma raspberry, giant knotweed and mugwort. Previous development of geothermal wells in the area resulted in severe effects on the local flora. Consequently, further development was not recommended.

  5. Geothermal gradients in Iraqi Kurdistan deduced from bottom hole temperatures

    Directory of Open Access Journals (Sweden)

    Rzger A. Abdula

    2017-09-01

    Full Text Available Bottom hole temperature (BHT data from 12 oil wells in Iraqi Kurdistan were used to obtain the thermal trend of Iraqi Kurdistan. Due to differences in thermal conductivity of rocks and groundwater movement, variations in geothermal gradients were observed. The highest geothermal gradient (29.2 °C/km was found for well Taq Taq-8 in the Low Folded Zone (central part of the area. The lowest geothermal gradients (14.9 °C/km were observed for well Bekhme-1 in the High Folded Zone (northern and northeastern parts of the area. The average regional geothermal gradient for Iraqi Kurdistan is 21 °C/km.

  6. Exploitation of geothermal energy as a priority of sustainable energetic development in Serbia

    International Nuclear Information System (INIS)

    Golusin, Mirjana; Bagaric, Ivan; Ivanovic, Olja Munitlak; Vranjes, Sanja

    2010-01-01

    of fossil fuels what is proportional to the 10% of the today's heating system. The total amount of heat accumulated at geothermal deposit sites in Serbia, up to 3 km of depth, is two times greater than the total amount of heat that may be generated by burring all available coal reserves in Serbia. Price of electrical energy produced from geothermal springs is estimated to be between 9.2 US cents/kWh and 11.5 US cents/kWh. In order to support exploitation of geothermal energy (as well as all other renewable sources of energy) the decision that all the producers of energy from renewable sources get a status of privileged producers were made. (author)

  7. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  8. Fairbanks Geothermal Energy Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Karl, Bernie [CHSR,LLC Owner

    2013-05-31

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  9. Geothermal energy

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  10. Numerical study on the effect of non-condensable gases on the bi-phasic flow in geothermal wells; Estudio numerico del efecto de gases incondensables sobre el flujo bifasico en pozos geotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo Gutierrez, Edgar; Garcia Gutierrez, Alfonso; Santoyo Gutierrez, Socrates; Morales Rosas, Jose Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1993-09-01

    The objective of this paper is to describe a numerical study to determine the flow characteristics that predominate in geothermal wells and that produces a significant amount of non-condensable gases. It is known that these gases affect the thermodynamic conditions that dominate the fluid transport in the well or inclusively within the proper producing reservoir, therefore, it is extremely important to evaluate this effect. For this purpose the numerical model Geopozo V2.0 was developed. This model considers the carbon dioxide (CO{sub 2}) as the representative gas of the non-condensable gases present in the geothermal fluid. Due to this consideration, Geopozo V2.0 includes a methodology or the estimation of the thermodynamic and transport properties of geothermal fluids, considering these as a mix of two components: H{sub 2}O (vapor and liquid) and CO{sub 2}, under conditions of monophasic and biphasic flow. The application of Geopozo V2.0 for a typical case of flow in geothermal wells with high CO{sub 2} content revealed that the presence of this gas affects significantly the location of the flashing point inside the well and consequently, the amount of steam produced. This is of importance or the design and selection of the surface and generation equipment, aspect that to this date has been ignored (Suwana, 1991). [Espanol] El objetivo de este trabajo es describir un estudio numerico para determinar las caracteristicas del flujo que predominan en pozos geotermicos y que producen una cantidad significante de gases incondensables. Se tiene conocimiento de que estos gases afectan las condiciones termodinamicas que dominan el transporte de fluidos en el pozo o incluso dentro del mismo yacimiento geotermico productor, por lo que es de suma importancia evaluar dicho efecto. Para ello fue desarrollado el modelo numerico Geopozo V2.0. Este modelo considera al dioxido de carbono (CO{sub 2}) como el gas representativo de los incondensables presentes en el fluido geotermico

  11. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong

    2008-01-01

    Full Text Available The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive the geothermal system. There is evidence that geothermal fluid deeply circulated within the fracture zone and was heated by a deeply located body of hot rock. The geothermal reservoir of the Chingshui geothermal field might be related to the fracture zone of the Chingshuihsi fault. It is bounded by the C-fault in the north and Xiaonanao fault in the south. Based on information obtained from geophysical interpretations and well logs, a 3-D geothermal conceptual model is constructed in this study. Further, the geothermal reservoir is confined to an area that is 260 m in width, N21°W, 1.5 km in length, and has an 80° dip toward the NE. Ahigh-temperature zone is found in the SE region of the reservoir, which is about 500 m in length; this zone is located near the intersection of the Chingshuihsi and Xiaonanao faults. An area on the NE side of the high-temperature zone has been recommended for the drilling of production wells for future geothermal development.

  12. Analysing the geothermal state of the ICDP COSC-1 well bore, Central Sweden

    Science.gov (United States)

    Löwe, R.; Pascal, C.; Renner, J.

    2017-12-01

    In 2014 the first well of the ICDP project "Collisional Orogeny in the Scandinavian Caledonides (COSC)" was drilled to 2495.8 m (MD) near Åre in Central Sweden. The well penetrates the Seve Nappe complex, a result of subduction/exhumation processes during the collision of Baltica and Laurentia 400 Ma. To gain detailed understanding of the geothermal state of fossil mountain belts and cratonic areas, it is necessary to study present-day heat transfer in the Earth's crust in appropriate deep wells. Heat transfer in the crust is governed by heat conduction and hydrothermal convection. The primary aims of our study are to determine which heat transfer mechanisms dominate in the study area around COSC-1 and how much heat flows to the surface. Permeability was determined for selected samples for various confining pressures using an oscillatory pore pressure method. The determined values range from 5.8 10-19 to 1.3 10-22 m2 and an empirical permeability-pressure trend was derived. Our results imply that convection plays a negligible role for heat transfer in the study area. A modified "Ångström" device was used to determine thermal diffusivity (α) from transient (oscillatory) temperature signals. It was tested on selected COSC-1 cores in an inter-laboratory round robin involving five international research organisations. Determination of specific heat capacity, density, and α for the 105 core samples, allowed us to calculate thermal conductivity (λ). In addition, we conducted measurements to assess the anisotropy of λ and α and their temperature dependencies. For the first 2000 m λ amounts to 2.8±0.4 W/(m.K) on average and increases to 4.1±1 W/(m.K) in the lowermost section of the well. Average heat generation, as derived from spectral gamma ray logs, is as low as 0.8 µW/m3. Three temperature logs were measured about one week, one month, and one year after drilling, with the latest log measured close to thermal equilibrium below 1500 m depth. Based on the logs

  13. Geothermal Progress Monitor report No. 11

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This issue of the Geothermal Progress Monitor (GPM) is the 11th since the inception of the publication in 1980. It continues to synthesize information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this energy technology. In addition, the GPM is a mechanism for transferring current information on geothermal technology development to the private sector, and, over time, provides a historical record for those interested in the development pathway of the resource. In sum, the Department of Energy makes the GPM available to the many diverse interests that make up the geothermal community for the multiple uses it may serve. This issue of the GPM points up very clearly how closely knit many of those diverse interests have become. It might well be called an international issue'' since many of its pages are devoted to news of geothermal development abroad, to the efforts of the US industry to participate in overseas development, to the support given those efforts by federal and state agencies, and to the formation of the International Geothermal Association (IGA). All of these events indicate that the geothermal community has become truly international in character, an occurrence that can only enhance the future of geothermal energy as a major source of energy supply worldwide. 15 figs.

  14. The Pawsey Supercomputer geothermal cooling project

    Science.gov (United States)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  15. Geothermal country report of Hungary

    International Nuclear Information System (INIS)

    Ottlik, P.

    1990-01-01

    There is a slow but steady increase in the number of geothermal wells in Hungary. The rate of increase is 3-5 new wells/year. In the last years technical development and the raising of efficiency came to the front in utilization of geothermal energy. Technical development is supported by the state. This paper reports that the main directions were: developing a pump suitable for Hungarian conditions, working out the model of sandy and karstic aquifers for simulation and prediction, and developing new chemicals and methods for treating thermal water

  16. Can high temperature steam electrolysis function with geothermal heat?

    International Nuclear Information System (INIS)

    Sigurvinsson, J.; Mansilla, C.; Werkoff, F.; Lovera, P.

    2007-01-01

    It is possible to improve the performance of electrolysis processes by operating at a high temperature. This leads to a reduction in electricity consumption but requires a part of the energy necessary for the dissociation of water to be in the form of thermal energy. Iceland produces low cost electricity and very low cost geothermal heat. However, the temperature of geothermal heat is considerably lower than the temperature required at the electrolyser's inlet, making heat exchangers necessary to recuperate part of the heat contained in the gases at the electrolyser's outlet. A techno-economic optimisation model devoted to a high-temperature electrolysis (HTE) process which includes electrolysers as well as a high temperature heat exchanger network was created. Concerning the heat exchangers, the unit costs used in the model are based on industrial data. For the electrolyser cells, the unit cost scaling law and the physical sub-model we used were formulated using analogies with solid oxide fuel cells. The method was implemented in a software tool, which performs the optimisation using genetic algorithms. The first application of the method is done by taking into account the prices of electricity and geothermal heat in the Icelandic context. It appears that even with a geothermal temperature as low as 230 degrees C, the HTE could compete with alkaline electrolysis. (authors)

  17. Testing geopressured geothermal reservoirs in existing wells: Detailed completion prognosis for geopressured-geothermal well of opportunity, prospect #7

    Energy Technology Data Exchange (ETDEWEB)

    Godchaux, Frank A.

    1981-06-01

    This book is a detailed prognosis covering the acquisition, completion, drilling, testing and abandonment of the Frank A. Godchaux, III, Well No. 1 under the Wells of Opportunity Program. The well is located approximately 12 miles southeast of the city of Abbeville, Louisiana. Eaton Operating Company proposes to test a section of the Planulina sand at a depth ranging from 15,584 to 15,692 feet. The reservoir pressure is estimated to be 14,480 psi and the temperature of the formation water is expected to be 298 F. The water salinity is calculated to be 75,000 ppm. The well is expected to produce 20,000 barrels of water per day with a gas content of 44 standard cubic feet pre barrel. The well was acquired from C and K Petroleu, Inc. on March 20, 1981. C and K abandoned the well at a total depth of 16,000 feet. The well has a 7-5/8 inches liner set at 13,387 feet. Eaton proposes to set 5-1/2 inch casing at 16,000 feet and produce the well through the casing using a 2-3/8 inch tubing string for wireline protection and for pressure control. A 4,600 foot saltwater disposal well will be drilled on the site and testing will be conducted similar to previous Eaton tests. The total estimated cost to perform the work is $2,959,000. An optional test from 14,905 to 15,006 feet may be performed after the original test and will require a workover with a rig on location to perform the plugback. The surface production equipment utilized on previous Eaton WOO tests will be utilized on this test. This equipment has worked satisfactorily and all parties involved in the testing are familiar with its operation. The Institute of Gas Technology and Mr. Don Clark will handle the sampling and testing and reservoir evaluation, respectively, as on the previous Eaton tests.

  18. Federal Geothermal Research Program Update Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently

  19. Federal Geothermal Research Program Update - Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  20. Geothermal hydrology of Valles Caldera and the southwestern Jemez Mountains, New Mexico

    Science.gov (United States)

    Trainer, Frank W.; Rogers, Robert J.; Sorey, M.L.

    2000-01-01

    defined. The upper vapor-dominated zone in the Sulphur Creek subsystem is separated from the liquid-dominated zone by about 800 feet of sealed caldera-fill rock. Acid springs occur at the top of the vapor zone in the Sulphur Springs area. Some more highly permeable zones within the geothermal reservoir are interconnected, but the lack of interference effects among some wells during production tests suggests effective hydraulic separation along some subsystem boundaries. Chemical and thermal evidence suggests that the Sulphur Springs subsystem may be isolated from the Redondo Creek subsystem and each may have its own zone of upflow and lateral outflow. The area of the entire geothermal reservoir is estimated to be about 12 to 15 square miles; its western limit generally is thought to be at the ring-fracture zone of the caldera. The top of the reservoir is generally considered to be the bottom of a small- permeability 'caprock' that is about 2,000 to 3,000 feet below land surface. Estimated thicknesses to the bottom of the reservoir range from 2,000 to 6,000 feet. Reservoir temperatures measured in exploration wells range from 225 degrees Celsius just below the caprock to about 330 degrees Celsius in deeper drill holes. Pressures measured in exploration wells in the Redondo Creek area ranged from 450 to 1,850 pounds per square inch. Steam-producing zones have been encountered above the liquid- dominated zones in wells, but the extent of steam zones is not well defined. The reservoir contains a near-neutral, chloride-type water containing about 7,000 milligrams per liter dissolved solids. No thermal springs in the caldera have geochemical characteristics similar to those of the geothermal reservoir fluids sampled in wells. Oxygen-18 and deuterium isotope concentrations of geothermal reservoir fluid indicate a meteoric origin. The moat valleys in

  1. Market Analysis of Geothermal Energy for California and Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-10-01

    This is one of the earlier market analyses for geothermal electric power and direct heat. The market for geothermal power was found to be large enough to absorb anticipated developments in California. For direct use, geothermal resources and urban markets in CA and HI are not well collocated.

  2. Geothermal power development in Hawaii. Volume I. Review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  3. Geothermal energy production with supercritical fluids

    Science.gov (United States)

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  4. Sandia's Geothermal Advanced Drill Rig Instrumentation Assists Critical Oil and Gas Drilling Operation

    International Nuclear Information System (INIS)

    Staller, George E.; Whitlow, Gary

    1999-01-01

    On November 23, 1998, an 18,000-foot-deep wild-cat natural gas well being drilled near Bakersfield, CA blew out and caught fire. All attempts to kill this well failed, and the well continues to flow under limited control, producing large volumes of natural gas, salt water, and some oil. The oil and some of the water is being separated and trucked off site, and the remaining gas and water is being burned at the well head. A relief well is being drilled approximately one-quarter mile away in an attempt to intercept the first well. If the relief well is successful, it will be used to cement in and kill the first well. Epoch Wellsite Services, Inc., the mud-logging company for the initial well and the relief well, requested Sandia's rolling float meter (RFM) for these critical drilling operations. The RFM is being used to measure the mud outflow rate and detect kicks while drilling the relief well, which will undoubtedly encounter reservoir conditions similar to those responsible for the blow out. Based on its prior experience with the RFM, Epoch believes that it is the only instrument capable of providing the level of accuracy and response to mudflow needed to quickly detect kicks and minimize the risk of a blowout on this second critical well. In response to the urgent request from industry, Sandia and Epoch technicians installed the RFM on the relief well return line, and completed its initial calibration. The data from the RFM is displayed in real-time for the driller, the companyman, and the toolpusher via Epochs RIGWATCH Drilling Instmmentation System. The RFM has already detected several small kicks while drilling toward the annulus of the blown out well. A conventional paddle meter is located downstream of the RFM to provide redundancy and the opportunity to compare the two meters in an actual drilling operation, The relief well is nearing 14,000 feet deep, targeting an intercept of the first well near 17,600 feet. The relief well is expected to be completed in

  5. Geothermal investigations in Slovenia

    Directory of Open Access Journals (Sweden)

    Danilo Ravnik

    1991-12-01

    Full Text Available The paper presents the methodology and the results of geothermal investigations, based on seventy-two boreholes in the territory of the Republic of Slovenia.The data of fundamental geothermal quantities: formation temperature, thermal conductivity, and radiogenic heat production of rocks as well as surface heat flow density are stored in a computerized data base. Their synthesis is given in the map of formation temperatures at 1000 m depth and in the map of surface heat flow density. In both maps the thermal difference between the Pannonian basin in theeastern and the Dinarides in the western part of Slovenia is clearly expressed.However, in the boundary area between these two tectonic units, for a distance of about 100 km in SW-NE direction, elevated horizontal gradients of formation temperature as well as heat flow density are evident. A small positive thermal anomaly in the Ljubljana depression is conspicuous.The low-temperature geothermal resources in Slovenia such as thermalsprings and thermal water from boreholes, are estimated to have a flow rate of 1120 kg/s, corresponding to the ideal total heat production of 144 MWt. In the geothermally promising areas amounting to 3200 km2 the rate of accessible resource base (ARB down to the depth of 3 km has been assessed to about 8.5 x lO 20» J.

  6. Effective geothermal heat

    International Nuclear Information System (INIS)

    Abelsen, Atle

    2006-01-01

    Scandinavia's currently largest geothermal heating project: the New Ahus hospital, is briefly presented. 300-400 wells on a field outside the hospital are constructed to store energy for both heating and cooling purposes

  7. Swiss geothermal energy update 1985 - 1990

    International Nuclear Information System (INIS)

    Rybach, L.; Hauber, L.

    1990-01-01

    Since 1985, geothermal R and D has evolved steadily in Switzerland. REgional low-enthalphy exploration and resource assessment are largely complete; emphasis is now on drilling and development. Vertical earth-heat exchangers (small-scale, decentralized, heat pump-coupled heating facilities) increase rapidly in number; the governmental system of risk coverage for geothermal drilling, established in 1987, gives rise to several drilling projects. Of these, a single well and a doublet have been successfully completed so far. Numerical modeling of coupled thermohydraulic processes in fracture-dominate Hot Dry Rock systems including rock-mechanics aspects, is in progress. In this paper some further efforts such as contributions to general geothermics, exploration and resource assessment activities in Switzerland, and financing of geothermal development abroad by Swiss banks are described

  8. Pahoa geothermal industrial park. Engineering and economic analysis for direct applications of geothermal energy in an industrial park at Pahoa, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, J.W.

    1980-12-01

    This engineering and economic study evaluated the potential for developing a geothermal industrial park in the Puna District near Pahoa on the Island of Hawaii. Direct heat industrial applications were analyzed from a marketing, engineering, economic, environmental, and sociological standpoint to determine the most viable industries for the park. An extensive literature search produced 31 existing processes currently using geothermal heat. An additional list was compiled indicating industrial processes that require heat that could be provided by geothermal energy. From this information, 17 possible processes were selected for consideration. Careful scrutiny and analysis of these 17 processes revealed three that justified detailed economic workups. The three processes chosen for detailed analysis were: an ethanol plant using bagasse and wood as feedstock; a cattle feed mill using sugar cane leaf trash as feedstock; and a papaya processing facility providing both fresh and processed fruit. In addition, a research facility to assess and develop other processes was treated as a concept. Consideration was given to the impediments to development, the engineering process requirements and the governmental support for each process. The study describes the geothermal well site chosen, the pipeline to transmit the hydrothermal fluid, and the infrastructure required for the industrial park. A conceptual development plan for the ethanol plant, the feedmill and the papaya processing facility was prepared. The study concluded that a direct heat industrial park in Pahoa, Hawaii, involves considerable risks.

  9. Geothermal and environment

    International Nuclear Information System (INIS)

    1993-01-01

    The production of geothermal-electric energy, presents relatively few contamination problems. The two bigger problems associated to the geothermal production are the disposition of waste fluids and the discharges to the atmosphere of non-condensable gases as CO 2 , H 2 O and NH 3 . For both problems the procedures and production technologies exist, like it is the integral use of brines and gases cleaning systems. Other problems consist on the local impact to forest areas for the effect of the vapor discharge, the contamination for noise, the contamination of aquifer shallow and the contamination related with the construction and termination of wells

  10. The low-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Low-energy geothermal resources are characterized by temperatures ranging from 30 to 100 C. The principal worldwide applications are: towns and greenhouses heating, spa bathing, agriculture products drying, etc.. Sources depth ranges from 1500 to 2500 m in porous and permeable formations (sandstones, sands, conglomerates, limestones..) carrying aquifers. The worldwide installed power was of about 11500 MWth in 1990, with an annual production of about 36000 GWh (about 1% of worldwide energy consumption). The annual production rate is estimated to 10% and would represent a 30000 and 80000 MWth power in 2000 and 2010, respectively. In France, low-energy geothermal resources are encountered principally in Mesozoic sediments of the Parisian and Aquitanian basins. French geothermics has developed during the last 30 years and principally between 1980 and 1985 after the second petroleum crack. After 1985, the decay of fossil fuel costs and the development of corrosion problems in the geothermal wells have led to the abandonment of the less productive fields and to the study of technical solutions to solve the corrosion problems. (J.S.). 1 fig., 5 photos

  11. Geothermal-resource verification for Air Force bases

    Energy Technology Data Exchange (ETDEWEB)

    Grant, P.R. Jr.

    1981-06-01

    This report summarizes the various types of geothermal energy reviews some legal uncertainties of the resource and then describes a methodology to evaluate geothermal resources for applications to US Air Force bases. Estimates suggest that exploration costs will be $50,000 to $300,000, which, if favorable, would lead to drilling a $500,000 exploration well. Successful identification and development of a geothermal resource could provide all base, fixed system needs with an inexpensive, renewable energy source.

  12. New possibilities and perspectives of building hotwater line from geothermal wells heat exchanger to TEKO Košice

    Directory of Open Access Journals (Sweden)

    Marína Sidorová

    2006-04-01

    Full Text Available Thank to favourable geological conditions, Slovakia is a country abundant in the occurrence of low-enthalpy sources. The government of the state sponsors new renewable of the sources ecological energy,including the geothermal energy. Geothermal water is utilized for recreation (swimming pools, spas, agriculture (heating of greenhouses, fishing and heating of houses. The effectivity of utilisation is about 30 % due to its seasonal use. That is why the annual house-heating and the hot water supply from geothermal sources are supported. Recently, the company Slovgeoterm has initiated heating of greenhouses in Podhajska and hospital and 1231 flats in the town Galanta. Nowadays, a research for the biggest geothermal project in the Middle Europe – construction in Košice basin has started.

  13. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    Science.gov (United States)

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  14. Geothermal Money Book [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve

  15. Ground Source Geothermal District Heating and Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, James William [Ball State Univ., Muncie, IN (United States)

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  16. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  17. Honey Lake Geothermal Project, Lassen County, California

    Science.gov (United States)

    1984-11-01

    The drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel is reported. The project is located within the Wendel-Amedee Known Geothermal Resource Area.

  18. Chemical conditions of the Japanese neutral geothermal reservoirs

    International Nuclear Information System (INIS)

    Chiba, H.

    1991-01-01

    The aqueous speciation were calculated for fluids of seven Japanese geothermal systems. The aqueous composition as well as CO 2 partial pressure of fluid in neutral pH geothermal reservoir are controlled by silicate, calcite and anhydrite minerals. The chemical composition of neutral pH geothermal reservoir can be predictable if two parameters (e.g. temperature and one of the cation activities) are provided. (author)

  19. Utilization of oil wells for electricity generation: Performance and economics

    International Nuclear Information System (INIS)

    Kharseh, Mohamad; Al-Khawaja, Mohammed; Hassani, Ferri

    2015-01-01

    There is a general agreement that the climate change, which is the most important challenge facing humanity, is anthropogenic and attributed to fossil fuel consumption. Therefore, deploying more renewable energy resources is an urgent issue to be addressed. Geothermal refers to existing heat energy in deep rock and sedimentary basins. Traditionally, geothermal energy has been exploited in places with plentiful hot water at relatively shallow depth. Unfortunately, the high exploration and drilling costs of boreholes is the main barrier to the commerciality of geothermal worldwide. In oil producing countries, such problems can be overcome by utilizing oil or gas wells. The current study presents thermodynamic and economic analyses of a binary geothermal power generation system for commercial electricity generation. Two different source temperatures (100 and 120 °C) and constant sink temperature (29 °C) were considered. The optimal working fluid and optimal design that improve the performance of the plant are determined. For the current costs in Qatar, the economical analysis of 5 MW geothermal plant shows that the levelized cost of electricity for the plant varies from 5.6 to 5.2 ¢/kW. Whereas, the payback period of such plants lies between 5.8 and 4.8 years. - Highlights: • Utilizing oil well makes geothermal plant competitive with other resources. • R32 seems to be the best working fluid. • The levelized cost of electricity for geothermal plant is less than 5.6 ¢/kWh. • The payback time of geothermal plant is less than 6 years.

  20. FY 1998 report on the verification survey of geothermal exploration technology, etc. 2/2. Survey of deep geothermal resource; 1998 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. 2/2. Shinbu chinetsu shigen chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    For the purpose of commercializing deep geothermal resource, a deep exploration well of 4000m class was drilled in the existing geothermal development area to survey the situation of deep geothermal resource existence and the availability. Concretely, the deep geothermal exploration well was drilled for study in the Kakkonda area, Shizukuishi town, Iwate prefecture, to clarify the situation of deep geothermal resource existence and the whole image of geothermal system. Consideration was made of the deep geothermal exploration method, systematization of deep high temperature drilling technology, and availability of deep geothermal resource. The results of the survey were summed up as follows: 1) general remarks; 2) deep exploration well drilling work; 3) details of the study. This report contained 3). In 3), the items were as follows: heightening of accuracy of the deep geothermal resource exploration method, making of a geothermal model in the Kakkonda area, study of deep drilling technology, study of deep fluid utilization technology, and making of a guide for deep geothermal resource exploration/development in the Kakkonda area. As to the technology of high temperature deep geothermal well drilling, studies were made of the borehole cooling method, mud water cooling method, survey of deterioration of casing with age, etc. (NEDO)

  1. Three-Dimensional Geothermal Fairway Mapping: Examples From the Western Great Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Siler, Drew L. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology; Faulds, James E. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology

    2013-09-29

    Elevated permeability along fault systems provides pathways for circulation of geothermal fluids. Accurate location of such fluid flow pathways in the subsurface is crucial to future geothermal development in order to both accurately assess resource potential and mitigate drilling costs by increasing drilling success rates. Employing a variety of surface and subsurface data sets, we present detailed 3D geologic analyses of two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, Nevada. 3D modeling provides the framework for quantitative structural analyses. We combine 3D slip and dilation tendency analysis along fault zones and calculations of fault intersection density in the two geothermal systems with the locations of lithologies capable of supporting dense, interconnected fracture networks. The collocation of these permeability promoting characteristics with elevated heat represent geothermal ‘fairways’, areas with ideal conditions for geothermal fluid flow. Location of geothermal fairways at high resolution in 3D space can help to mitigate the costs of geothermal exploration by providing discrete drilling targets and data-based evaluations of reservoir potential.

  2. Geohydrology of the Cerro Prieto geothermal aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez R, J.; de la Pena L, A.

    1981-01-01

    The most recent information on the Cerro Prieto geothermal aquifer is summarized, with special emphasis on the initial production zone where the wells completed in the Alpha aquifer are located. These wells produce steam for power plant units 1 and 2. Brief comments also are made on the Beta aquifer, which underlies the Alpha aquifer in the Cerro Prieto I area and which extends to the east to what is known as the Cerro Prieto II and Cerro Prieto III areas. The location of the area studied is shown. The Alpha and Beta aquifers differ in their mineralogy and cementing mineral composition, temperatures, and piezometric levels. The difference in piezometric levels indicates that there is no local communication between the two aquifers. This situation has been verified by a well interference test, using well E-1 as a producer in the Beta aquifer and well M-46 as the observation well in the Alpha aquifer. No interference between them was observed. Information on the geology, geohydrology, and geochemistry of Cerro Prieto is presented.

  3. Geothermal Cogeneration: Iceland's Nesjavellir Power Plant

    Science.gov (United States)

    Rosen, Edward M.

    2008-01-01

    Energy use in Iceland (population 283,000) is higher per capita than in any other country in the world. Some 53.2% of the energy is geothermal, which supplies electricity as well as heated water to swimming pools, fish farms, snow melting, greenhouses, and space heating. The Nesjavellir Power Plant is a major geothermal facility, supplying both…

  4. Subsurface temperatures and geothermal gradients on the north slope of Alaska

    Science.gov (United States)

    Collett, T.S.; Bird, K.J.; Magoon, L.B.

    1993-01-01

    On the North Slope of Alaska, geothermal gradient data are available from high-resolution, equilibrated well-bore surveys and from estimates based on well-log identification of the base of ice-bearing permafrost. A total of 46 North Slope wells, considered to be in or near thermal equilibrium, have been surveyed with high-resolution temperatures devices and geothermal gradients can be interpreted directly from these recorded temperature profiles. To augment the limited North Slope temperature data base, a new method of evaluating local geothermal gradients has been developed. In this method, a series of well-log picks for the base of the ice-bearing permafrost from 102 wells have been used, along with regional temperature constants derived from the high-resolution stabilized well-bore temperature surveys, to project geothermal gradients. Geothermal gradients calculated from the high-resolution temperature surveys generally agree with those projected from known ice-bearing permafrost depths over most of the North Slope. Values in the ice-bearing permafrost range from ??? 1.5??C 100 m in the Prudhoe Bay area to ??? 4.5??C 100 m in the east-central portion of the National Petroleum Reserve in Alaska. Geothermal gradients below the ice-bearing permafrost sequence range from ??? 1.6??C 100 m to ??? 5.2??C 100 m. ?? 1993.

  5. Geothermal Energy Utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L (Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR); Sifford, Alex (Sifford Energy Services, Neskowin, OR); Bloomquist, R. Gordon (Washington State University Energy Program, Olympia, WA)

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  6. Geothermal energy utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L.; Sifford, Alex; Bloomquist, R. Gordon

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  7. Design of a novel geothermal heating and cooling system: Energy and economic analysis

    International Nuclear Information System (INIS)

    Angrisani, G.; Diglio, G.; Sasso, M.; Calise, F.; Dentice d’Accadia, M.

    2016-01-01

    Highlights: • A desiccant-based air handling unit is coupled with a geothermal source. • A TRNSYS model is developed to simulate both winter and summer period. • Sensitivity analysis is carried out in order to evaluate the effects of the design parameters. • Pay back period about 1.2 years and Primary Energy Savings higher than 90% were founded. • Economic and energetic performance increase with to the use of Domestic Hot Water. - Abstract: A dynamic simulation study in TRNSYS environment has been carried out to evaluate energy and economic performance of a novel heating and cooling system based on the coupling between a low or medium-enthalpy geothermal source and an Air Handling Unit, including a Desiccant Wheel. During summer season, a Downhole Heat Exchanger supplies heat to regenerate the desiccant material, while a certain amount of geothermal fluid is continuously extracted by the well in order to maintain high operating temperatures. Simultaneously, the extracted geothermal fluid drives an absorption chiller, producing chilled water to the cooling coil of the Air Handling Unit. Conversely, during the winter season, geothermal energy is used to cover a certain amount of the space heating demand. In both summer and winter operation modes, a geothermal energy is also used to supply Domestic Hot Water. A case study was analyzed, in which an existing low-enthalpy geothermal well (96 °C), located in Ischia (an island close to Naples, Southern Italy), is used to drive the geothermal system. Results showed that the performance of the proposed system is significantly affected by the utilization factor of Domestic Hot Water. In fact, considering a range of variation of such parameter between 5% and 100%, Primary Energy Saving increase from 77% to 95% and Pay-Back Period decreases from 14 years to 1.2 years, respectively. The simulations proved the technical and economic viability of the proposed system. In fact, a comparison with similar systems available

  8. Geothermic and thermal drilling in Saint-Paul-les-Dax - SPDX 1

    Energy Technology Data Exchange (ETDEWEB)

    Godard, J.M.; Tronel, F.; Penicault, J.P.; Pouchan, P.

    1994-12-31

    In 1990, the municipality of Saint Paul les Dax (Landes), located in a thermal area, has decided to promote a geothermal-balneotherapy continued project. Geological studies and seismic exploration from oil and gas allowed to decide to drill a deep well on the northern flank of Dax diapir. The drilling operation (October - December 1993) has given the following result : final depth 1665 m, thermal reservoir dated Danian-Paleocene producing water at 66 degree celsius. The potential flowrate estimated at 150 m{sup 3}/h is going to be used to met the heating requirements of public buildings, greenhouses, collective equipment and new thermal centers. The geothermal use of the water will give annual energy saving of 5 900 MWh. (Authors). 2 figs.

  9. An Economic Evaluation of Binary Cycle Geothermal Electricity Production

    National Research Council Canada - National Science Library

    Fitzgerald, Crissie

    2003-01-01

    .... Variables such as well flow rate, geothermal gradient and electricity prices were varied to study their influence on the economic payback period for binary cycle geothermal electricity production...

  10. Geothermal for kids

    International Nuclear Information System (INIS)

    Nemzer, M.; Condy, M.

    1990-01-01

    This paper reports that educating children about geothermal energy is crucial to the future growth of the geothermal industry. The Geothermal Education Office (GEO) was founded in 1989 to provide materials and support to teachers and the geothermal community in educating grades K-12 about geothermal energy. GEO's goals are to: provide easy access to or referral to appropriate sources of geothermal information; foster teacher interest; create posters, booklets, lesson plans and other educational materials; monitor and review textbooks, encyclopedias and other educational materials distributed by educational groups to ensure inclusion of appropriate, accurate information and to encourage fair treatment of alternative energy resources; contribute articles to industry, science and educational publications; and foster communication and cooperation among GEO, the geothermal industry, government agencies, and educational and environmental groups

  11. Geothermal studies in China

    International Nuclear Information System (INIS)

    Wang Ji-Yang; Chen Mo-Xiang; Wang Ji-An; Deng Xiao; Wang Jun; Shen Hsien-Chieh; Hsiung Liang-Ping; Yan Shu-Zhen; Fan Zhi-Cheng; Liu Xiu-Wen

    1981-01-01

    Geothermal studies have been conducted in China continuosly since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research of geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; (3) geothermal studies in mines. (orig./ME)

  12. Geothermal Exploration of Newberry Volcano, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Waibel, Albert F. [Columbia Geoscience, Pasco, WA (United States); Frone, Zachary S. [Southern Methodist Univ., Dallas, TX (United States); Blackwell, David D. [Southern Methodist Univ., Dallas, TX (United States)

    2014-12-01

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  13. Utilization of geothermal energy in the USSR

    International Nuclear Information System (INIS)

    Kononov, V.I.; Dvorov, I.M.

    1990-01-01

    This paper reports that at present geothermal energy is utilized in the USSR mostly for district heating, and for industrial and agricultural purposes. The populations of 7 towns have district heating that is supplied by thermal waters. The population supplied totals about 125,000 people. The total area of greenhouses is 850,000 m 2 . Electric energy generated at geothermal power stations still remains negligible with the installed capacity of the single Pauzhetka station (Kamchatka) being 11 MW. another station at Mutnovka is currently under construction and is expected to be producing 50 MW by 1992 and 200 MW by 1998. The proven geothermal resources in the USSR provide hope for a significant increase in the utilization of the earth's deep heat in the near future

  14. The Silting-Up Prevention in the Geothermal Absorbent Openings of Geothermal Energy Plant Pyrzyce

    Directory of Open Access Journals (Sweden)

    Noga Bogdan

    2014-06-01

    Full Text Available The paper presents precipitation results from cold thermal water deposits that are the main cause of clogging in absorbent geothermal wells and borehole areas. As a result of physical and chemical analysis, laboratory tests and observation of the operation of a geothermal installation, a new method was developed to prevent the precipitation of sludge from cooled thermal water. The method being a modification of soft acidising was tentatively named as a super soft acidising method

  15. Thirteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W. (Stanford Geothermal Program)

    1988-01-21

    PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones

  16. Geochemistry of sericite and chlorite in well 14-2 Roosevelt Hot Springs geothermal system and in mineralized hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, J.M.

    1980-06-01

    Chemical compositions of chlorite and sericite from one production well in the Roosevelt geothermal system have been determined by electron probe methods and compared with compositions of chlorite and sericite from porphyry copper deposits. Modern system sericite and chlorite occur over a depth interval of 2 km and a temperature interval of 250/sup 0/C.

  17. Analysis of Low-Temperature Utilization of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford

  18. Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben

    Science.gov (United States)

    Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément

    2015-04-01

    Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben Vidal J.1, Whitechurch H.1, Genter A.2, Schmittbuhl J.1, Baujard C.2 1 EOST, Université de Strasbourg 2 ES-Géothermie, Strasbourg The thermal regime of the Upper Rhine Graben (URG) is characterized by a series of geothermal anomalies on its French part near Soultz-sous-Forêts, Rittershoffen and in the surrounding area of Strasbourg. Sedimentary formations of these areas host oil field widely exploited in the past which exhibit exceptionally high temperature gradients. Thus, geothermal anomalies are superimposed to the oil fields which are interpreted as natural brine advection occurring inside a nearly vertical multi-scale fracture system cross-cutting both deep-seated Triassic sediments and Paleozoic crystalline basement. The sediments-basement interface is therefore very challenging for geothermal industry because most of the geothermal resource is trapped there within natural fractures. Several deep geothermal projects exploit local geothermal energy to use the heat or produce electricity and thus target permeable fractured rocks at this interface. In 1980, a geothermal exploration well was drilled close to Strasbourg down to the Permian sediments at 3220 m depth. Bottom hole temperature was estimated to 148°C but the natural flow rate was too low for an economic profitability (geothermal site by drilling five boreholes, three of which extend to 5 km depth. They identified a temperature of 200° C at 5 km depth in the granitic basement but with a variable flow rate. Hydraulic and chemical stimulation operations were applied in order to increase the initial low permeability by reactivating and dissolving sealed fractures in basement. The productivity was considerably improved and allows geothermal exploitation at 165° C and 20 L/s. Recent studies revealed the occurrences of permeable fractures in the limestones of Muschelkalk and the sandstones of Buntsandstein also. For

  19. Geothermal gradients map of Hokkaido; Hokkaido no chion kobaizu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Akita, F.; Matsunami, T.; Wakahama, H. [Hokkaido Geological Survey, Sapporo (Japan)

    1997-06-15

    This paper outlines the newly prepared geothermal gradient map (GGM) of Hokkaido which is important for survey on geothermal and hot spring resources. The temperature data of 687 wells were compiled by data collection and field survey. The geothermal gradient was calculated from the ratio of the temperature difference between the bottom (deepest well log) and the ground surface (10degC) to a bottom depth. GGM was prepared using data of 85 wells which show real geothermal temperatures through conductive temperature profiles, or SBHT (static bottom hole temperature) calculation is possible. Geological profiles were classified into three types based on base rocks. The thermal structure of GGM was clearly divided into a high geothermal gradient over 10degC/100m, and a low one within 3degC/100m. The former showed active volcano and high geothermal areas, while the latter showed a volcanic front arc area. This underground temperature structure relates to the formation process of volcanos and the origin of magma, and is also similar to the trend of a crust thermal flow rate. The geothermal gradient increases with a decrease in Curie point depth. 26 refs., 10 figs., 2 tabs.

  20. Environmental impact of geothermal power plants in Aydın, Turkey

    Science.gov (United States)

    Yilmaz, Ersel; Ali Kaptan, Mustafa

    2017-10-01

    Geothermal energy is classified as a clean and sustainable energy source, like all industrial activities, geothermal energy power plants (GEPP) technology has also some positive and negative effects on the environment. In this paper are presented by attent not only on environmental impacts of GEPP onto Büyük Menderes River and fresh water sources, which ere used for irrigation of agricultural fields from tousands of years in basin, but also on water quality contents like heavy metals and gases emition due to drilling and electricity producing technology of GEPP's. Aydın province is located in the southwestern part of the region and its city center has around 300000 population. The high geothermal potential of this region became from geographical location, which is held on active tectonic Alpine-Himalaya Orogen belt with active volcanoes and young faults. Since 1980's to 2016 there is about 70.97% (662.75 MW) of installed capacity by according to the Mineral Research and Exploration General Directorate, there are totally 290 well licensed (540 explore licenses and 76 business licenses), and 31 geothermal powerplants purposely installed. Topic is important because of number of GEPP increased rapidly after 2012 to now a days to 36 in whole basin.

  1. First research coordination meeting for the coordinated research programme on the use of isotope techniques in investigating acidic fluids in geothermal exploitation. Report

    International Nuclear Information System (INIS)

    Gerardo-Abaya, J.

    1998-02-01

    Geothermal exploration and development for electrical and non-electrical applications is taking place in more than 36 countries worldwide. Although the technology has fully emerged, there are still hindrances to the full exploitation of the available heat. Most of the high temperature geothermal areas are situated in volcanic environments that produce acidic fluids which are corrosive for wells, as well as pipelines. Incidental drilling in those areas, for lack of better data, cause high economic losses ar a cost of about US D 2 million per well. In addition, a potential natural resource for electricity remains untapped. In realization of the problems associated with with geothermal exploitation and the potential role that isotope techniques could provide for a greater understanding of the complex behavior of geothermal systems, particularly those affected by acidic fluids, the Coordinated Research Programme (CRP) on the Use of Isotope Techniques in Problems Associated with Geothermal Exploitation is implemented in 1997-2000. An understanding of the phenomena will assist the scientific community involved in geothermal development. The information generated from the scientific investigations will be an input to management of the resource as well as to decision-making for monitoring and development of geothermal areas. The First Research Coordination Meeting for this CRP was held on 21-23 October 1997 in the IAEA Headquarters, Vienna, Austria. The results of the current investigations relating to acid fluids in the various geothermal systems were presented by the participants. The report provides the hydrological concept on which research on acid fluids is based. The report includes also the summaries of the researches under the CRP as well as the agreed actions for follow-up work

  2. Modeling research in low-medium temperature geothermal field, Tianjin

    Institute of Scientific and Technical Information of China (English)

    WANG; Kun(王坤); LI; Chunhua(李春华)

    2002-01-01

    The geothermal reservoir in Tianjin can be divided into two parts: the upper one is the porous medium reservoir in the Tertiary system; the lower one includes the basement reservoir in Lower Paleozoic and Middle-Upper Proterozoic. Hot springs are exposed in the northern mountain and confined geothermal water is imbedded in the southern plain. The geothermal reservoir is incised by several fractures. In recent years, TDS of the geothermal water have gone up along with the production rate increasing, along the eastern fracture zone (Cangdong Fracture and West Baitangkou Fracture). This means that the northern fracture system is the main seepage channel of the deep circulation geothermal water, and the reservoir has good connection in a certain area and definite direction. The isotopic research about hydrogen and carbon chronology indicates that the main recharge period of geothermal water is the Holocene Epoch, the pluvial and chilly period of 20 kaBP. The karst conduits in weathered carbonate rocks of the Proterozoic and Lower Paleozoic and the northeast regional fracture system are the main feeding channels of Tianjin geothermal water. Since the Holocene epoch, the geothermal water stayed at a sealed warm period. The tracer test in WR45 doublet system shows that the tracer test is a very effective measure for understanding the reservoir's transport nature and predicting the cooling time and transport velocity during the reinjection. 3-D numerical simulation shows that if the reinjection well keeps a suitable distance from the production well, reinjection will be a highly effective measure to extract more thermal energy from the rock matrix. The cooling of the production well will not be a problem.

  3. Geothermal Exploration Case Studies on OpenEI (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Young, K.; Bennett, M.; Atkins, D.

    2014-03-01

    The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developers central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  4. Geothermal gradients in Iraqi Kurdistan deduced from bottom hole temperatures

    OpenAIRE

    Abdula, Rzger A.

    2016-01-01

    Bottom hole temperature (BHT) data from 12 oil wells in Iraqi Kurdistan were used to obtain the thermal trend of Iraqi Kurdistan. Due to differences in thermal conductivity of rocks and groundwater movement, variations in geothermal gradients were observed. The highest geothermal gradient (29.2 °C/km) was found for well Taq Taq-8 in the Low Folded Zone (central part of the area). The lowest geothermal gradients (14.9 °C/km) were observed for well Bekhme-1 in the High Folded Zone (northern and...

  5. 3D characterization of a Great Basin geothermal system: Astor Pass, NV

    Science.gov (United States)

    Siler, D. L.; Mayhew, B.; Faulds, J. E.

    2012-12-01

    The Great Basin exhibits both anomalously high heat flow (~75±5 mWm-2) and active faulting and extension resulting in robust geothermal activity. There are ~430 known geothermal systems in the Great Basin, with evidence suggesting that undiscovered blind geothermal systems may actually represent the majority of geothermal activity. These systems employ discrete fault intersection/interaction areas as conduits for geothermal circulation. Recent studies show that steeply dipping normal faults with step-overs, fault intersections, accommodation zones, horse-tailing fault terminations and transtensional pull-aparts are the most prominent structural controls of Great Basin geothermal systems. These fault geometries produce sub-vertical zones of high fault and fracture density that act as fluid flow conduits. Structurally controlled fluid flow conduits are further enhanced when critically stressed with respect to the ambient stress conditions. The Astor Pass blind geothermal system, northwestern Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Along this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range. As such, the Astor Pass area lies in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and more northerly striking normal faults. The Astor Pass tufa tower implies the presence of a blind geothermal system. Previous studies suggest that deposition of the Astor Pass tufa was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal fault. Subsequent drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming the presence of a blind geothermal system at Astor Pass. Expanding upon previous work and employing additional detailed geologic mapping, interpretation of 2D seismic reflection data and analysis of well cuttings, a 3

  6. Interstratified Illite/Montmorillonite in Kamojang Geothermal Field, Indonesia

    Directory of Open Access Journals (Sweden)

    D. F. Yudiantoro

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i4.167Kamojang geothermal field located in West Java Province, falls under the Pangkalan Subregency, Bandung Regency. The researched area is a geothermal field located in the Quaternary volcanic caldera system of about 0.452 to 1.2 Ma. The volcanic activity generated hydrothermal fluids, interacting with rocks producing mineral alteration. The minerals formed in the areas of research are interstratified illite/montmorillonite (I/M. Analyses to identify interstratified I/M have been performed by X-ray diffraction using ethylene glycol, while the determination of the type and percentage of interstratified I/M was based on the calculation method of Watanabe. The methodology was applied on core and cutting samples from Wells KMJ-8, 9, 11, 13, 16, 23, 49, 51, and 54. The result of analysis of the samples shows that the type of clay is interstratified illite/montmorillonite and the minerals are formed at temperatures ranging from 180 to 220° C. The type of interstratified I/M in the studied area is S = 0 and S = 1. The percentage of illite type S = 0 is between 20 - 35% illite, whereas type S = 1 has about 45 - 72% illite. Along with the increasing depth, the percentage of illite is getting greater. This is consistent with the vertical distribution of temperature which increases according to the depth. This correlation results in an interpretation that the upflow zone of the geothermal reservoir is located in the centre of the Kamojang geothermal field.

  7. Geothermal Injection Monitoring in Klamath Falls, OR

    Energy Technology Data Exchange (ETDEWEB)

    Culver, G

    1990-01-01

    Klamath Falls has nearly a 150-year history of geothermal utilization. The geothermal aquifer has been the subject of many studies and is probably the most tested direct use reservoir in the world. This provides good background data for increased monitoring needed as new injection wells are drilled. Prior to July 1990, few injection wells existed. A city ordinance requires injection after July 1990. The city and major injectors have initiated a monitoring system.

  8. Geothermal Progress Monitor. Report No. 18

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The near-term challenges of the US geothermal industry and its long-range potential are dominant themes in this issue of the US Department of Energy (DOE) Geothermal Progress Monitor which summarizes calendar-year 1996 events in geothermal development. Competition is seen as an antidote to current problems and a cornerstone of the future. Thus, industry's cost-cutting strategies needed to increase the competitiveness of geothermal energy in world markets are examined. For example, a major challenge facing the US industry today is that the sales contracts of independent producers have reached, or soon will, the critical stage when the prices utilities must pay them drop precipitously, aptly called the cliff. However, Thomas R. Mason, President and CEO of CalEnergy told the DOE 1996 Geothermal Program Review XIV audience that while some of his company's plants have ''gone over the cliff, the world is not coming to an end.'' With the imposition of severe cost-cutting strategies, he said, ''these plants remain profitable... although they have to be run with fewer people and less availability.'' The Technology Development section of the newsletter discusses enhancements to TOUGH2, the general purpose fluid and heat flow simulator and the analysis of drill cores from The Geysers, but the emphasis is on advanced drilling technologies.

  9. Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, David D. [SMU Geothermal Laboratory; Chickering Pace, Cathy [SMU Geothermal Laboratory; Richards, Maria C. [SMU Geothermal Laboratory

    2014-06-24

    The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geology at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and

  10. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  11. Geothermal in transition

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1991-01-01

    This article examines the current market for geothermal projects in the US and overseas. The topics of the article include future capacity needs, upgrading the Coso Geothermal project, the productivity of the Geysers area of Northern California, the future of geothermal, and new projects at Soda Lake, Carson Basin, Unalaska Island, and the Puna Geothermal Venture in Hilo, Hawaii

  12. New energy technologies 3 - Geothermal and biomass energies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Alazard-Toux, N.; His, S.; Douard, F.; Duplan, J.L.; Monot, F.; Jaudin, F.; Le Bel, L.; Labeyrie, P.

    2007-01-01

    This third tome of the new energy technologies handbook is devoted to two energy sources today in strong development: geothermal energy and biomass fuels. It gives an exhaustive overview of the exploitation of both energy sources. Geothermal energy is presented under its most common aspects. First, the heat pumps which encounter a revival of interest in the present-day context, and the use of geothermal energy in collective space heating applications. Finally, the power generation of geothermal origin for which big projects exist today. The biomass energies are presented through their three complementary aspects which are: the biofuels, in the hypothesis of a substitutes to fossil fuels, the biogas, mainly produced in agricultural-type facilities, and finally the wood-fuel which is an essential part of biomass energy. Content: Forewords; geothermal energy: 1 - geothermal energy generation, heat pumps, direct heat generation, power generation. Biomass: 2 - biofuels: share of biofuels in the energy context, present and future industries, economic and environmental status of biofuel production industries; 3 - biogas: renewable natural gas, involuntary bio-gases, man-controlled biogas generation, history of methanation, anaerobic digestion facilities or biogas units, biogas uses, stakes of renewable natural gas; 4 - energy generation from wood: overview of wood fuels, principles of wood-energy conversion, wood-fueled thermal energy generators. (J.S.)

  13. FY 1998 report on the verification survey of geothermal exploration technology, etc. 1/2. Survey of deep geothermal resource; 1998 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. 1/2. Shinbu chinetsu shigen chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    For the purpose of commercializing deep geothermal resource, a deep exploration well of 4000m class was drilled in the existing geothermal development area to survey the situation of deep geothermal resource existence and the availability. Concretely, the deep geothermal exploration well was drilled for study in the Kakkonda area, Shizukuishi town, Iwate prefecture, to clarify the situation of deep geothermal resource existence and the whole image of geothermal system. Consideration was made of the deep geothermal exploration method, systematization of deep high temperature drilling technology, and availability of deep geothermal resource. The results of the survey were summed up as follows: 1) general remarks; 2) deep exploration well drilling work; 3) details of the study. 1) and 2) were included in this report, and 3) in the next report. In 1), the items were as follows: the study plan/gist of study execution, the details and results of the deep geothermal resource survey, the outline of the deep exploration well drilling work, and the outline of the results of the FY 1998 study. In 2), the drilling work plan/the actual results of the drilling work were summed up. As to the results of the study, summarized were the acquisition of survey data on deep exploration well, heightening of accuracy of the deep geothermal resource exploration method, etc. (NEDO)

  14. Geothermal tomorrow 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  15. World geothermal congress

    International Nuclear Information System (INIS)

    Povarov, O.A.; Tomarov, G.V.

    2001-01-01

    The World geothermal congress took place in the period from 28 May up to 10 June 2000 in Japan. About 2000 men from 43 countries, including specialists in the area of developing geothermal fields, creating and operating geothermal electrical and thermal plants and various systems for the earth heat application, participated in the work of the Congress. It was noted at the Congress, that development of the geothermal power engineering in the world is characterized by the large-scale application of geothermal resources for the electrical energy generation [ru

  16. Is the Philippine geothermal resource sustainable?

    International Nuclear Information System (INIS)

    Lalo, J.; Raymundo, E.

    2005-01-01

    This paper aims to illustrate the scenario in the Geothermal Energy Development Projects in the Philippines, to make the Filipino population aware that there is an existing cleaner technology available that is being utilized in Europe; for the Philippine geothermal energy project operators to adapt a cleaner production technology that has no harmful emission, hence, no pollution technology; to help end the conflict between stake holders and geothermal players through the introduction of cleaner production technology intervention. While it is a fact that the Philippines' Geothermal resource is second to U.S. or around the globe, the unwise utilization of geothermal energy may lead to depletion, hence, becomes non-renewable. It should be understood that the geothermal energy is a renewable resource only if the development process is sustainable. There is a need to educate the Filipino populace regarding a cleaner production technology as well as our government and political leaders. This cleaner production technology is a solution to the stake holders. It is of great importance to inform the Filipino people that there is an existing cleaner new technology from Europe and U.S. that is not pollutive in nature and is essentially sustainable development scheme since underground reservoirs are not depleted in the process. (author)

  17. Challenges in Implementing a Multi-Partnership Geothermal Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Gosnold, Will; Mann, Michael [Universit of North Dakota; Salehfar, Hossein

    2017-03-02

    The UND-CLR binary geothermal power plant project is a piggyback operation on a secondary-recovery water-flood project in the Cedar Hills oil field in the Williston Basin. Two open-hole horizontal wells at 2,300 m and 2,400 m depths with lateral lengths of 1,290 m and 860 m produce water at a combined flow of 51 l s -1 from the Lodgepole formation (Miss.) for injection into the Red River formation (Ordovician). The hydrostatic head for the Lodgepole is at ground surface and the pumps, which are set at 650 m depth, have run continuously since 2009. Water temperature at the wellhead is 103 °C and CLR passes the water through two large air-cooled heat exchangers prior to injection. In all aspects, the CLR water flood project is ideal for demonstration of electrical power production from a low-temperature geothermal resource. However, implementation of the project from concept to power production was analogous to breaking trail in deep snow in an old growth forest. There were many hidden bumps, detours, and in some instances immoveable barriers. Problems with investors, cost share, contracts with CLR, resistance from local industry, cost of installation, delays by the ORC supplier, and the North Dakota climate all caused delays and setbacks. Determination and problem solving by the UND team eventually overcame most setbacks, and in April 2016, the site began generating power. Figure 1: Schematic of the water supply well at the UND CLR binary geothermal power plant REFERENCES Williams, Snyder, and Gosnold, 2016, Low Temperature Projects Evaluation and Lesson Learned, GRC Transactions, Vol. 40, 203-210 Gosnold, LeFever, Klenner, Mann, Salehfar, and Johnson, 2010, Geothermal Power from Coproduced Fluids in the Williston Basin, GRC Transactions, Vol. 34, 557-560

  18. The Use of Geothermal Waters in Podhale in Terms of Tourism and Industrial Applications

    Directory of Open Access Journals (Sweden)

    Piotr Michał Bugajski

    2017-11-01

    Full Text Available In recent years, there has been observed an increased interest of various industrial and economy branches in geothermal waters. In Poland, one of the more famous geothermal systems is the Podhale Basin, which forms an important reservoir of geothermal waters with relatively low mineralization and high temperatures. More and more often geothermal water is used not only for balneological or recreational purposes, but also as a heat source for heating. New areas of application of geothermal waters are also appearing, eg. use of cooled geothermal water as a raw material to produce fresh water. Another example of the application of geothermal waters is the cosmetic industry. For instance, a cream based on geothermal water from Podhale was introduced to the cosmetics market in 2013. This paper presents the possibilities of using the geothermal waters of Podhale, with particular emphasis on geothermal waters from Banska PGP-1, Banska IG-1 and Banska PGP-3 boreholes.

  19. On geothermal resources of India. Geotectonic aspects and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, M L [National Geophysical Research Inst., Hyderabad (India)

    1988-11-10

    Research programs launched for exploration and development of the geothermal energy in India, since the 1973-1974 oil embargo, have led to the identification of many potential areas for geothermal resources. Resources comprise high/intermediate/low temperature hydrothermal convection and hot water aquifer systems, geopressured geothermal system and conduction-dominated regimes. Location and properties of these geothermal systems are controlled by the geodynamic and tectonic characteristics of the Indian continental lithosphere Main sectors for the utilization of India's proved and identified geothermal resources are the power generation, space heating, green house cultivation, aquaculture, poultry, sheep breeding, mineral processing, mushroom raising, processing of farm and forest produce, refrigeration, tourism, health-resorts and mineral water bottling. The R and D efforts have given some encouraging results. Geothermal resources of India, although primarily are of medium to low grade, could supplement, to a great extent, direct heat energy needs and may also provide electricity to some of the remote hilly areas. Development of geothermal energy sources in India is likely to get some more attention, with the setting up of separate departments and agencies, by various Provincial Governments, for R and D backing toward the alternate sources of energy.

  20. Federal Geothermal Research Program Update, FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  1. Geothermal energy resources of the USSR and their utilization

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, W

    1961-01-01

    In the Soviet Union, the areas with the highest geothermal gradient are found in the region of Kamchatka, in the Kuriles, and in western Turkmenia. Test drilling in Kamchatka has produced hot water at a temperature of 200/sup 0/C from a depth of 100-300 m. If a pressure of 300-400 kPa is maintained, the wells can bring the fluids to the surface as a two-phase mixture of steam and hot water. In 1961, plans were being made for the construction of a 12 MW power plant and several greenhouses. Other heat sources were being developed to heat the city of Petropavlovsk. In the northern Cauacasus, hot water is encountered only at depths greater than about 2.5 km, but the quantity available is sufficient to provide the heating needs of several major cities. In the Republic of Daghestan, test drilling has revealed hot water sources which are pressurized to 1.6 MPa, and which produce at a rate of 100 m/sup 3//h. Enormous geothermal energy resources are located in artesian reservoirs beneath western Siberia, over an extent of 3 million km/sup 2/.

  2. Present situation and future of utilization of geothermal energy in China

    International Nuclear Information System (INIS)

    Huang, Z.; Zhi, W.F.

    1998-01-01

    From the 1970s, the Chinese government increased investment in the development of geothermal resources and other new energy, and some experimental geothermal power stations have been built successfully. In the late 1980s, the exploration of high temperature geothermal resources was increased. Geothermal fluid with temperatures over 200 C was measured in several boreholes. In ZK4002 well, Yangbajing, the temperature is even as high as 329.8 C. By the year 2010, several geothermal power plants with high temperatures and great capacity will be built, so that great advances will be made in the development of geothermal energy in China

  3. A lignite-geothermal hybrid power and hydrogen production plant for green cities and sustainable buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kilkis, B. [Baskent University, Ankara (Turkey). Dept. of Mechanical Engineering

    2011-02-15

    Turkey is rich in both geothermal energy and lignite reserves, which in many cases, are co-located. This condition makes it feasible to utilize both lignite and geothermal energy in a hybrid form for combined power heat, and cold generation, which may lead to optimally energy and exergy efficient, environmentally benign, and economically sound applications. This paper presents a novel concept of hybrid lignite-geothermal plant for a district energy system and hydrogen production facility in Aydin with special emphasis on high performance, green buildings and green districts. In this concept, lignite is first introduced to a partially fluidized-bed gasifier and then to a fluidized-bed gas cleaning unit, which produces synthetic gas and finally hydrogen. The by-products, namely char and ash are used in a fluidized-bed combustor to produce power. Waste heat from all these steps are utilized in a district heating system along with heat received from geothermal production wells after power is generated there. H{sub 2}S gas obtained from the separator system is coupled with hydrogen production process at the lignite plant. Absorption cooling systems and thermal storage tanks complement the hybrid system for the tri-generation district energy system. On the demand side, the new, green OSTIM OSB administration building in Ankara is exemplified for greener, low-exergy buildings that will compound the environmental benefits.

  4. Exergetic and exergoeconomic analysis of a novel hybrid solar–geothermal polygeneration system producing energy and water

    International Nuclear Information System (INIS)

    Calise, Francesco; D’Accadia, Massimo Dentice; Macaluso, Adriano; Piacentino, Antonio; Vanoli, Laura

    2016-01-01

    Highlights: • Exergetic and exergoeconomic analysis of hybrid renewable system is presented. • The system provides electric, thermal and cooling energy and desalinated water. • Exergy efficiency varies between 40–50% in the winter and 16–20% in the summer. • Electricity and fresh water costs vary between 15–17 and 57–60 c€/kW h_e_x. • Chilled and hot water costs vary between 18.6–18.9 and 1.6–1.7 c€/kW h_e_x. - Abstract: A dynamic simulation model of a novel solar–geothermal polygeneration system and the related exergetic and exergoeconomic analyses are presented in this paper. The plant is designed in order to supply electrical, thermal and cooling energy and fresh water for a small community, connected to a district heating and cooling network. The hybrid system is equipped with an Organic Rankine Cycle fueled by medium-enthalpy geothermal energy and by a Parabolic Trough Collector solar field. Geothermal brine is also used for space heating and cooling purposes. Finally, geothermal fluid supplies heat to a Multi-Effect Distillation unit, producing also desalinized water from seawater. Dynamic simulations were performed in order to design the system. The overall simulation model, implemented in TRNSYS environment, includes detailed algorithms for the simulation of system components. Detailed control strategies were included in the model in order to properly manage the system. An exergetic and exergoeconomic analysis is also implemented. The exergetic analysis allows to identify all the aspects that affect the global exergy efficiency, in order to suggest possible system enhancements. The accounting of exergoeconomic costs aims at establishing a monetary value to all material and energy flows, then providing a reasonable basis for price allocation. The analysis is applied to integral values of energy and a comparison of results between summer and winter season is performed. Results are analyzed on different time bases presenting

  5. Nevada low-temperaure geothermal resource assessment: 1994. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garside, L.J.

    1994-12-31

    Data compilation for the low-temperature program is being done by State Teams in two western states. Final products of the study include: a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate- temperature springs and wells in Nevada; a 1:1,000,000-scale map displaying these geothermal localities, and a bibliography of references on Nevada geothermal resources.

  6. Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yu-Chao; Zhan, Jie-Min; Wu, Neng-You; Luo, Ying-Ying; Cai, Wen-Hao

    2016-01-01

    Deep geological exploration indicates that there is a high-temperature fractured granite reservoir at depth of 950 ~ 1350 m in well ZK4001 in the north of Yangbajing geothermal field, with an average temperature of 248 °C and a pressure within 8.01 ~ 11.57 MPa; in this well there mainly produces liquid and steam two-phase flow. In this work we numerically investigated the electricity generation potential from the fractured granite reservoir through a single vertical well, analyzed the process and mechanism of the two-phase flow, and evaluated main factors affecting the heat production and electricity generation. The results show that under the reference conditions the system attains a pump power of 0.02 ~ 0.16 MW, an electrical power of 2.71 ~ 2.69 MW, and an energy efficiency of 68.06 ~ 16.34, showing favorable electricity generation performance. During the production period, the bottomhole production pressure gradually decreases, and this makes the pump power increasing and the energy efficiency decreasing. When the bottomhole pressure is lower than the saturated vapor pressure, the liquid water begins to evaporate and the bottomhole wellbore begins to produce the mixture of liquid and steam. Main factors affecting the performance are reservoir porosity, permeability and fluid production rate. Higher reservoir porosity or higher permeability or lower fluid production rate will increase the bottomehole pressure, decrease the pump power and improve the energy efficiency. - Highlights: • We established a numerical model of a single vertical well heat mining system. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 2.71 ~ 2.69 MW with an efficiency of about 68.06 ~ 16.34. • Electric power mainly depends on the reservoir porosity and water production rate. • Higher permeability within a certain range is favorable for electricity generation.

  7. Companion Study Guide to Short Course on Geothermal Corrosion and Mitigation in Low Temperature Geothermal Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, II, P F

    1985-04-24

    The economic utilization of geothermal resources with temperatures less than 220 degrees Fahrenheit for purposes other than electric power generation (direct utilization) requires creation of systems with long plant life and minimum operation and maintenance costs. Development of such systems requires careful corrosion engineering if the most cost effective material selections and design choices are to be made. This study guide presents guidelines for materials selection for low-temperature geothermal systems (120 - 200 degrees Fahrenheit), as well as guidance in materials design of heat pump systems for very-lowtemperature geothermal resources (less than 120 degrees Fahrenheit). This guideline is divided into five sections and an Appendix.

  8. The impact of injection on seismicity at The Geysers, California Geothermal Field

    OpenAIRE

    Majer, Ernest L.; Peterson, John E.

    2007-01-01

    Water injection into geothermal systems has often become a required strategy to extend and sustain production of geothermal resources. To reduce a trend of declining pressures and increasing non-condensable gas concentrations in steam produced from The Geysers, operators have been injecting steam condensate, local rain and stream waters, and most recently treated wastewater piped to the field from neighboring communities. If geothermal energy is to provide a significant increase in energy in ...

  9. The Impact of Injection on Seismicity at The Geyses, California Geothermal Field

    OpenAIRE

    Majer, Ernest L.; Peterson, John E.

    2008-01-01

    Water injection into geothermal systems has often become a required strategy to extended and sustain production of geothermal resources. To reduce a trend of declining pressures and increasing non-condensable gas concentrations in steam produced from The Geysers, operators have been injecting steam condensate, local rain and stream waters, and most recently treated wastewater piped to the field from neighboring communities. If geothermal energy is to provide a significant increase in ene...

  10. Hawaii geothermal project

    Science.gov (United States)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  11. Geothermal heat from solid rock - increased energy extraction through hydraulic pressurizing of drill wells

    International Nuclear Information System (INIS)

    Ramstad, Randi Kalskin; Hilmo, Bernt Olav; Skarphagen, Helge

    2005-01-01

    New equipment for hydraulic pressurizing, a double collar of the type FrakPak - AIP 410-550, is developed by the Broennteknologi AS. The equipment is tested in the laboratory and in the field at Lade in Trondheim. By the construction of two pilot plants for geothermal heat at Bryn and on the previous grounds of the energy company in Asker and Baerum (EAB) extensive studies connected to hydraulic pressurizing are carried out both with water and sand injection. The geothermal heat plants at Bryn and AEB were supposed to be based on pumped ground water from rock wells where increased effect was obtained through pumping up, returning and circulating the water. The aim of the study was to test and develop the methods for hydraulic pressurizing both with water and sand injection, document the effect of the various types of pressurizing as well as mapping the hydro- and rock geological conditions for this type of geothermal heat plants. In addition to stimulating 10 drill holes with hydraulic pressurizing with water and sand injection, the studies have carried out test pumping, water sampling, geophysical logging, measurements of alterations in the terrain, current and rock strain measurements and geothermal response tests. Furthermore an efficacy test and a theoretical model of the energy potential of the plants are carried out. The results from the pilot plant at Bryn show that the drill hole capacities are significantly increased both through hydraulic pressurizing with water and sand injection. There seems to be a greater need for sand as ''prepping agent'' or distance maker in cracks with high pressure resistance than in cracks with lower resistance. The grain size of the sand should be adapted to the resistance pressure and injection of coarser sand is recommended in cracks with lower resistance pressure. The rock strength and strain conditions determine the successes of hydraulic pressurizing at the reopening of existing or opening of new faults. Test pumping was

  12. Radioactivity and deep geothermal energy; Radioaktivitaet und tiefe Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Janczik, Sebastian; Kaltschmitt, Martin [Technische Univ. Hamburg-Harburg (Germany). Inst. fuer Umwelttechnik und Energiewirtschaft; Merkel, Broder [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Geologie

    2012-02-15

    Due to recent developments in energy politics renewable energies get more and more importance in Germany. This is especially true for geothermal energy representing a promising option for the environmentally sound and secure generation of heat and electricity. But there are a lot of very emotional discussions due to radioactive residues and wastes produced by a geothermal plant. Thus this paper compares radioactivity resulting from geothermal energy with radioactivity coming from other natural sources. In doing so it becomes obvious that naturally radioactive sources exist in all parts of the ecosphere (i.e. air, water, soil). The paper shows also that the specific activities of radioactive elements from geothermal energy in form of residues and waste emerge from radioactive decay of nuclides and that their radiation is not higher than the radiation of other naturally occurring radioactive elements. (orig.)

  13. Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration

    Science.gov (United States)

    Grasso, K.; Cladouhos, T. T.; Garrison, G.

    2013-12-01

    Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater

  14. Prospects of increasing the power of a two-circuit geothermal power plant

    International Nuclear Information System (INIS)

    Alkhasov, A.B.

    2001-01-01

    The results of analysis of the thermodynamical cycle of the geothermal NPPs secondary circuit with various versions of the geothermal circulation system are presented. It is shown, that the technological scheme with horizontal well is the optimal one. The conclusion is made that by further assimilation of thermal power with application of the experience, accumulated by petroleum specialist, it is necessary to built up geothermal circulation systems with horizontal wells. This will sharply increase the indices of the geothermal branch, its efficiency and competivity as compared to the traditional power engineering [ru

  15. Fiscal 1995 verification survey of geothermal exploration technology. Report on a deep geothermal resource survey; 1995 nendo chinetsu tansa gijutsu nado kensho chosa. Shinbu chinetsu shigen hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    For the purpose of reducing the risk of deep geothermal resource development, the paper investigated three factors for the formation of geothermal resource in the deep underground, that is, heat supply from heat source, supply of geothermal fluids, and the developmental status of fracture systems forming reservoir structures. The survey further clarified the status of existence of deep geothermal resource and the whole image of the geothermal system including shallow geothermal energy in order to research/study usability of deep geothermal resource. In the deep geothermal resource survey, drilling/examination were made of a deep geothermal exploration well (`WD-1,` target depth: approximately 3,000-4,000m) in the already developed area, with the aim of making rationalized promotion of the geothermal development. And the status of existence of deep geothermal resource and the whole image of the geothermal system were clarified to investigate/study usability of the geothermal system. In fiscal 1995, `WD-1` in the Kakkonda area reached a depth of 3,729m. By this, surveys were made to grasp the whole image of the shallow-deep geothermal system and to obtain basic data for researching usability of deep geothermal resource. 22 refs., 531 figs., 136 tabs.

  16. Geothermal energy

    International Nuclear Information System (INIS)

    Vuataz, F.-D.

    2005-01-01

    This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power

  17. Guidebook to Geothermal Finance

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  18. FY 1993 report on the survey of geothermal development promotion. Survey of geothermal water (No.36 - Amemasu-dake area); 1993 nendo chinetsu kaihatsu sokushin chosa. Nessui no chosa hokokusho (No.36 Amemasu dake chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    As a part of the survey of geothermal development promotion in FY 1993, survey of geothermal fluid was made using a precise structure drilling well N5-AM-5 as exploration well in the Amemasu-dake area, Hokkaido. The induced jetting of geothermal fluid was carried out by the Swabbing method in the total number of times of 185 in 11 days at 10-20 times/day, but did not result in the jetting of geothermal water. The sampling of geothermal water was conducted by guiding the geothermal water that overflowed the guide pipe to the tank. The temperature of geothermal water indicated approximately 20 degrees C in the 1st time and 40-60 degrees C in and after the 2nd time every day. The electric conductivity of geothermal water was 2.033 mS/cm, chlorine ion concentration was 420-500 ppm, and pH value was 7.17-7.72. As a result of the survey, it was presumed that the geothermal water of this well originated in the meteoric water around the area and formed slightly supported by emitted volcanic matters. As to the geochemical temperature, the silica temperature indicated about 120 degrees C and the alkali ratio temperature did about 180 degrees C. It was considered that there possibly existed geothermal reservoirs of approximately 180 degrees C in alkali ratio temperature around the well. (NEDO)

  19. Water use in the development and operation of geothermal power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q. (Energy Systems); ( EVS)

    2010-09-17

    , reservoir characteristics, and local climate have various effects on elements such as drilling rate, the number of production wells, and production flow rates. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, plant operations is where the vast majority of water consumption occurs. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or non-geothermal aquifer that is not returned to that resource. For the EGS scenarios, plant operations consume between 0.29 and 0.72 gal/kWh. The binary plant experiences similar operational consumption, at 0.27 gal/kWh. Far less water, just 0.01 gal/kWh, is consumed during operations of the flash plant because geofluid is used for cooling and is not replaced. While the makeup water requirements are far less for a hydrothermal flash plant, the long-term sustainability of the reservoir is less certain due to estimated evaporative losses of 14.5-33% of produced geofluid at operating flash plants. For the hydrothermal flash scenario, the average loss of geofluid due to evaporation, drift, and blowdown is 2.7 gal/kWh. The construction stage requires considerably less water: 0.001 gal/kWh for both the binary and flash plant scenarios and 0.01 gal/kWh for the EGS scenarios. The additional water requirements for the EGS scenarios are caused by a combination of factors, including lower flow rates per well, which increases the total number of wells needed per plant, the assumed well depths, and the hydraulic stimulation required to engineer the reservoir. Water quality results are presented in Chapter 5. The chemical composition of geofluid has important implications for plant operations and the potential environmental impacts of geothermal energy production. An extensive dataset containing more than 53,000 geothermal geochemical data points was compiled and analyzed for general trends and statistics for typical geofluids. Geofluid composition was found to vary

  20. Effective Geothermal Utilisation close to the surface by the TT-Geothermal Radial Drilling (GRD-Method

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Bayer

    2007-01-01

    Full Text Available In the late 1970-Years, Tracto-Technik developped a very effective radial-shaped percussion system for a geothermal heating, the ECOtherm-System, which was very well accepted by customers. Nowadays, a radial-shaped drilling system, operating some decameters below the surface, was developped by Tracto-Technik, which offers the chance of a very effective drilling for the use of geothermal energy. The main advantage of this development is the reduction of drilling costs by new constructions and new handling possibilities. Drilling processes like the rod connecting or the drill-hole enlargement were solved in other ways as usual, by very time-shortening and effective ways, which are presented in the paper. The new TT-Geothermal radial drilling methods need only a very small but highly effective drilling unit, which reduces the operational drilling cost in a enormous way. All operational drilling steps are reduced to less than a half time as usual. By these GRD-methods, the use of surface-close geothermal energy is simplified and less expansive.

  1. Microbiological monitoring in geothermal plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Vetter, A.; Vieth, A.; Seibt, A.; Wolfgramm, M.; Würdemann, H.

    2009-12-01

    In times of increasing relevance of alternative energy resources the utilization of geothermal energy and subsurface energy storage gains importance and arouses increasing interest of scientists. The research project “AquiScreen” investigates the operational reliability of geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. Microbiological analyses based on fluid and solid phases of geothermal systems are conducted to evaluate the impact of microbial populations on these systems. The presentation focuses on first results obtained from microbiological monitoring of geothermal plants located in two different regions of Germany: the North German Basin and the Molasse Basin in the southern part characterized by different salinities and temperatures. Fluid and filter samples taken during regular plant operation were investigated using genetic fingerprinting based on PCR-amplified 16S rRNA genes to characterize the microbial biocenosis of the geothermal aquifer. Sequencing of dominant bands of the fingerprints and the subsequent comparison to 16S rRNA genes from public databases enables a correlation to metabolic classes and provides information about the biochemical processes in the deep biosphere. The genetic profiles revealed significant differences in microbiological community structures of geothermal aquifers investigated. Phylogenetic analyses indicate broad metabolical diversity adapted to the specific conditions in the aquifers. Additionally a high amount of so far uncultivated microorganisms was detected indicating very specific indigenous biocenosis. However, in all geothermal plants bacteria were detected despite of fluid temperatures from 45° to 120°C. The identified microorganisms are closely related to thermophilic and hyperthermophilic species detectable in hot wells and hot springs, like Thermus scotoductus and Thermodesulfovibrio yellowstonii, respectively. Halophilic species were detected in

  2. Hydraulic modelling of the geothermal wells at Kreuzlingen and Konstanz; Hydraulische Modellierung der Geothermiebohrungen Kreuzlingen und Konstanz

    Energy Technology Data Exchange (ETDEWEB)

    Megel, T [Inst. fuer Geophysik, Gruppe fuer Geothermik und Radiometrie, ETH Hoenggerberg, Zuerich (Switzerland); Wyss, R [Ingenieurgelogie, ETH Hoenggerberg, Zuerich (Switzerland); Greber, E; Leu, W [Geoform, Geologische Beratungen und Studien AG, Winterthur (Switzerland)

    1997-12-01

    Aussuming an aquifer of minimum 30 km extension, modelling and interpretation of the hydraulic situation at the geothermal wells Konstanz and Kreuzlingen have shown, that there is neither a significant hydraulic nor a thermal interrelation between the two wells (assumed production rate: Konstanz 6.6 l/s, Kreuzlingen 3 l/s). Every hydraulic behaviour of supposed fracture zones between the two wells reduces the interrelated influence. (orig.) [Deutsch] Modellierungen und Interpretationen haben gezeigt, dass unter der Annahme eines mindestens 30 km ausgedehnten Aquifers die Geothermiebohrungen Konstanz und Kreuzlingen auch laengerfristig (30 Jahre) sich gegenseitig weder hydraulisch noch thermisch nennenswert beeinflussen (Konstanz 6.6 l/s, Kreuzlingen 3 l/s). Die Existenz von hydraulisch signifikanten Bruchzonen zwischen den beiden Bohrungen wuerde die gegenseitige Beeinflussung vermindern. (orig.)

  3. The use of geothermal energy at a chieftan's farm in medieval Iceland

    Directory of Open Access Journals (Sweden)

    Gudrun Sveinbjarnardottir

    2003-10-01

    Full Text Available Archaeological investigations at the farm site of Reykholt, in the Reykholtsdalur valley in western Iceland (Fig. 1 , have produced evidence of sophisticated use of geothermal energy in the medieval period that is unmatched by comparable finds elsewhere in this geothermally and volcanically active country.

  4. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Stephen [Executive Office of the State of Arizona (Arizona Geological Survey); Patten, Kim [Executive Office of the State of Arizona (Arizona Geological Survey); Love, Diane [Executive Office of the State of Arizona (Arizona Geological Survey); Coleman, Celia [Executive Office of the State of Arizona (Arizona Geological Survey); Chen, Genhan [Executive Office of the State of Arizona (Arizona Geological Survey)

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to

  5. Implementing Geothermal Plants in the Copenhagen District Heating System

    DEFF Research Database (Denmark)

    Jensen, Louise Overvad; Hallgreen, Christine Erikstrup; Larsen, Esben

    2003-01-01

    of geothermal energy in Denmark as well as the Danish potential, which, in former investigations, has been found to be around 100.000 PJ annually, and the economical potential is less, about 15 PJ/year. Since a considerable amount of the Danish power supply is tied to weather and the demand for heating......The possibility of implementing geothermal heating in the Copenhagen district-heating system is assessed. This is done by building up general knowledge on the geological factors that influence the development of useable geothermal resources, factors concerning the exploration and utilization......, an increasing demand for flexibility has been raised. Implementing geothermal heating would improve the flexibility in the Eastern Danish power system. Based on this information, as well as, on the hourly values of the expected production and consumption in 2010 and 2020, a model of the Copenhagen power...

  6. Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Elzie Lynn [Surprise Valley Electrification Corp., Alturas, CA (United States)

    2016-01-12

    Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges a small rural electric cooperative encountered and managed to develop a geothermal generating plant.

  7. Experimental geothermal well at Bad Schinznach. First results; Geothermiebohrung Bad Schinznach. Erste Resultate

    Energy Technology Data Exchange (ETDEWEB)

    Haering, M O [Haering Geo-Project, Steinmaur (Switzerland)

    1997-12-01

    The spa of Bad Schinznach (Canton Argovia, Switzerland) endeavours to cover its heating requirements with geothermal energy. A recently drilled well to a depth of 890 meters encountered the regional acquifer of thermal water (Oberer Muschelkalk, Triassic) in three levels. Preliminary results indicate a productive aquifer in the uppermost level with a wellhead temperature of 42 C. An additional exploitation of the bottomhole formation temperature of 63 C is envisaged. (orig.) [Deutsch] Das Bad Schinznach (Kanton Aargau, Schweiz) moechte im Rahmen der wirtschaftlichen Moeglichkeiten seinen Waermebedarf mit der Nutzung des Thermalwassers aus dem Oberen Muschelkalk (Trias) decken. Eine neulich abgeteufte Bohrung bis auf 890 Meter Tiefe hat die Formation auf drei Niveaus angetroffen. Erste Resultate deuten auf ein nutzbares Vorkommen im obersten Horizont mit einer Austrittstemperatur von 42 C. Eine zusaetzliche Nutzung der hohen Formationstemperatur von 63 C auf Endtiefe wird erwogen. (orig.)

  8. Geothermal Resources in China Les ressources géothermiques de la Chine

    OpenAIRE

    An K. S.; Huang S. Y.

    2006-01-01

    The present paper deals mainly with the distribution features, briefly describes the geology in the three geothermal fields of different types in Beijing, Yangbajing of Xizang (Tibet), and Dengwu of Guangdong, and finally gives on account of the development and utilization of geothermal resources. Up to now, more, than 2,500 geothermal water points (including hot springs, hot-water wells, and hot water in mines) have been found. Four major geothermal zones and three basic types of geothermal ...

  9. High radiogenic heat-producing Caenozoic granites: implications for the origin of Quman geothermal field in Taxkorgan, northwestern China

    Science.gov (United States)

    Shuai, W.; Shihua, Q.

    2017-12-01

    As a new found geothermal field, Quman geothermal field (Taxkorgan, China) holds a wellhead temperature of 144 ° and a shallow buried depth of heat reservoir. The heat source of the geothermal field is thought to be the heat flow from the upper mantle, which is disputable with the average Pamir Moho depth of 70 km. The new geochemical data of Taxkorgan alkaline complex, which is located to the west of the geothermal field and is exposed for 60 km along the western side of the Taxkorgan Valley, shed a light on the origin of Quman geothermal field. Together with the lithological association, the geochemical results present that Taxkorgan alkaline complex are mainly composed of alkaline syenites and subalkaline granitoids. Based on the contents of Th, U and K of 25 rock samples, the average radioactive heat generation of the complex (9.08 μW/m3) is 2 times of the standard of high heat production granites (HHPGs) (5 μW/m3), and 4 times of the average upper continental crust (UCC) heat production (2.7 μW/m3). According to U-Pd dating of zircon in aegirine-augite syenite, the crystallization age of the complex is 11 Ma. The complex has incompatible element abundances higher than generally observed for the continental crust, therefore a mantle source should be considered. The results of apatite fission track ange and track length of the complex indicate a low uplift rate (0.11 mm/a) in 3 5 Ma and a high uplift rate (2 3 mm/a) since ca. 2Ma, which indicates a low exposed age of the complex. Therefore, combined with previous studies, we propose that radioactive heat production of the complex and afterheat of magma cooling are the heat source of Quman geothermal field. With a shallow buried heat source, the geothermal field is potential for EGS development.

  10. Environmental effects of geothermal energy exploitation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H [Japan Metals and Chemicals Co., Ltd., Japan

    1975-01-01

    The environmental effects of geothermal power generation which cause air and water pollution and destruction of natural areas are reviewed. The production of steam and hot water affect existing hot springs sources and can cause ground subsidence. Harmful gas can be released onto the atmosphere from fumarolic gas and hot springs. Hydrothermal geothermal fields occasionally contain harmful substances such as arsenic in the hot water. Serious environmental effects can result from geothermal exploitation activities such as the felling of trees for road construction, well drilling, and plant construction. Once geothermal power generation has begun, the release of H/sub 2/S into the atmosphere and the reinjection of hot water are conducted continuously and sufficient countermeasures can be taken. One problem is the effects of plant construction and operation on natural parks. It is important to reach a compromise between development and protection of natural senic areas. Two figures, two tables, and 13 references are provided.

  11. Geothermal resources of the northern gulf of Mexico basin

    Science.gov (United States)

    Jones, P.H.

    1970-01-01

    Published geothermal gradient maps for the northern Gulf of Mexico basin indicate little or no potential for the development of geothermal resources. Results of deep drilling, from 4000 to 7000 meters or more, during the past decade however, define very sharp increases in geothermal gradient which are associated with the occurrence of abnormally high interstitial fluid pressure (geopressure). Bounded by regional growth faults along the landward margin of the Gulf Basin, the geopressured zone extends some 1300 km from the Rio Grande (at the boundary between the United States and Mexico) to the mouth of the Mississippi river. Gulfward, it extends to an unknown distance across the Continental Shelf. Within geopressured deposits, geothermal gradients range upwards to 100 ??C/km, being greatest within and immediately below the depth interval in which the maximum pressure gradient change occurs. The 120 ??C isogeotherm ranges from about 2500 to 5000 m below sea level, and conforms in a general way with depth of occurrence of the top of the geopressured zone. Measured geostatic ratios range upward to 0.97; the maximum observed temperature is 273 ??C, at a depth of 5859 m. Dehydration of montmorillonite, which comprises 60 to 80 percent of clay deposited in the northern Gulf Basin during the Neogene, occurs at depths where temperature exceeds about 80 ??C, and is generally complete at depths where temperature exceeds 120 ??C. This process converts intracrystalline and bound water to free pore water, the volume produced being roughly equivalent to half the volume of montmorillonite so altered. Produced water is fresh, and has low viscosity and density. Sand-bed aquifers of deltaic, longshore, or marine origin form excellent avenues for drainage of geopressured deposits by wells, each of which may yield 10,000 m3 or more of superheated water per day from reservoirs having pressures up to 1000 bars at depths greater than 5000 m. ?? 1971.

  12. Development of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  13. Corrosion in geothermal plants; Korrosion in geothermischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Milles, Uwe [BINE Informationsdienst, FIZ Karlsruhe - Buero Bonn (Germany)

    2012-12-15

    Geothermal energy can contribute much more than before to the energy supply in Germany. Further-developed technologies being specially adjusted to geothermal energy and its mostly very salty waters are needed for this. Thereby, the mostly reasonable priced avoidance of corrosion at pipes, pumps and heat exchangers is an objective. Among other things, the geothermal research laboratory Gross Schoenebeck (Federal Republic of Germany) fundamentally investigates corrosion processes, the composition of deep waters as well as material properties in order to develop location-independent recommendations.

  14. Linkages from DOE’s Geothermal R&D to Commercial Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ruegg, Rosalie [TIA Consulting Inc., Emerald Isle, NC (United States); Thomas, Patrick [1790 Analytics, LLC, Haddonfield, NJ (United States)

    2011-02-01

    This study provides an evaluation of the Geothermal Technologies Program (GTP) of the U.S. Department of Energy (DOE). Specifically, for the period 1976 to 2008, it investigates the linkages between GTP's outputs and their downstream use by others to produce power from geothermal energy. The results are relevant for assessing DOE's past and future roles in the development and advancement of the nation's geothermal resources. In addition, the study investigates other applications of the GTP's outputs beyond power generation.

  15. Geophysical Analysis of Major Geothermal Anomalies in Romania

    Science.gov (United States)

    Panea, Ionelia; Mocanu, Victor

    2017-11-01

    The Romanian segment of the Eastern Pannonian Basin and the Moesian Platform are known for their geothermal and hydrocarbon-bearing structures. We used seismic, gravity, and geothermal data to analyze the geothermal behavior in the Oradea and Timisoara areas, from the Romanian segment of Eastern Pannonian Basin, and the Craiova-Bals-Optasi area, from the Moesian Platform. We processed 22 seismic reflection data sets recorded in the Oradea and Timisoara areas to obtain P-wave velocity distributions and time seismic sections. The P-wave velocity distributions correlate well with the structural trends observed along the seismic lines. We observed a good correlation between the high areas of crystalline basement seen on the time seismic sections and the high heat flow and gravity-anomaly values. For the Craiova-Bals-Optasi area, we computed a three-dimensional (3D) temperature model using calculated and measured temperature and geothermal gradient values in wells with an irregular distribution on the territory. The high temperatures from the Craiova-Bals-Optasi area correlate very well with the uplifted basement blocks seen on the time seismic sections and high gravity-anomaly values.

  16. District space heating potential of low temperature hydrothermal geothermal resources in the southwestern United States. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, P.K.; Rao, C.R.

    1978-10-01

    A computer simulation model (GIRORA-Nonelectric) is developed to study the economics of district space heating using geothermal energy. GIRORA-Nonelectric is a discounted cashflow investment model which evaluates the financial return on investment for space heating. This model consists of two major submodels: the exploration for and development of a geothermal anomaly by a geothermal producer, and the purchase of geothermal fluid by a district heating unit. The primary output of the model is a calculated rate of return on investment earned by the geothermal producer. The results of the sensitivity analysis of the model subject to changes in physical and economic parameters are given in this report. Using the results of the economic analysis and technological screening criteria, all the low temperature geothermal sites in Southwestern United States are examined for economic viability for space heating application. The methodology adopted and the results are given.

  17. Preliminary analysis of dry-steam geothermal power plant by employing exergy assessment: Case study in Kamojang geothermal power plant, Indonesia

    Directory of Open Access Journals (Sweden)

    Bayu Rudiyanto

    2017-09-01

    Full Text Available The objectives of this study are to perform the exergy analysis and ambient temperature optimization of the Kamojang geothermal power plant by employing Engineering Equation Solver (EES. The geothermal capacity is 55 MW and the field is vapor-dominated reservoir with temperature 245 °C. In the initial state temperature, pressure and mass flow data are collected from the plant operation. The study results show that system has overall efficiency of 35.86% which means that only 111,138.92 kW electrical power can be extracted from 309,000 kW thermal power being produced by 10 production wells of Kamojang. This low efficiency is due to irreversibility associated with different processes and components in the system. The largest irreversibility occurs in condenser due to which 53% of total energy is disposed into the environment. Ambient temperature at Kamojang varies from 17 to 20 °C. The effect of this variation in temperature is also investigated and it is observed that higher temperature does not have any significant impact on system efficiency.

  18. A reservoir engineering assessment of the San Jacinto-Tizate Geothermal Field, Nicaragua

    Energy Technology Data Exchange (ETDEWEB)

    Ostapenko, S.; Spektor, S.; Davila, H.; Porras, E.; Perez, M.

    1996-01-24

    More than twenty yews have passed since geothermal research and drilling took place at the geothermal fields in Nicaragua- Tbe well horn Momotombo Geothermal Field (70 We) has been generating electricity since 1983, and now a new geothermal field is under exploration. the San Jacinto-Tizate. Two reservoirs hydraulic connected were found. The shallow reservoir (270°C) at the depth of 550 - 1200 meters, and the deep one at > 1600 meters. Both of theme are water dominated reservoirs, although a two phase condition exist in the upper part of the shallow one. Different transient tests and a multi-well interference test have been carried out, very high transmissivity value were estimated around the well SJ-4 and average values for the others. A preliminar conceptual model of the geothermal system is given in this paper, as the result of the geology, geophysics, hydrology studies, drilling and reservoir evaluation.

  19. The Geothermal Probabilistic Cost Model with an Application to a Geothermal Reservoir at Heber, California

    Science.gov (United States)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.

    1981-01-01

    A financial accounting model that incorporates physical and institutional uncertainties was developed for geothermal projects. Among the uncertainties it can handle are well depth, flow rate, fluid temperature, and permit and construction times. The outputs of the model are cumulative probability distributions of financial measures such as capital cost, levelized cost, and profit. These outputs are well suited for use in an investment decision incorporating risk. The model has the powerful feature that conditional probability distribution can be used to account for correlations among any of the input variables. The model has been applied to a geothermal reservoir at Heber, California, for a 45-MW binary electric plant. Under the assumptions made, the reservoir appears to be economically viable.

  20. The geothermal potentials for electric development in Maluku Province

    Directory of Open Access Journals (Sweden)

    Vijaya Isnaniawardhani

    2018-03-01

    Full Text Available The characteristic of small to medium size islands is the limited amount of natural resources for electric generation. Presently the needs of energy in Maluku Province are supplied by the diesel generation units. The electricity distributes through an isolated grid system of each island. There are 10 separate systems in Maluku Province, namely Ambon, Namlea, Tual, Saumlaki, Mako, Piru, Bula, Masohi, Dobo and Langgur. From the geothermal point of view, this condition is suitable because the nature of the generation is small to medium and the locations are dispersed. The geological condition of Maluku Province is conducive for the formation of geothermal resources. The advanced utilization of geothermal energy in Maluku Province is in Tulehu located about 8 kilometers NE of Ambon. It is expected that 60 MW electric will be produced at the first stage in 2019. A total of 100 MW resources were estimated. Other places of geothermal potentials are Lauke and Tawen both located in Ambon Island with the potentials of 25 MW respectively. In Oma Haruku, Saparua and Nusa Laut the geothermal potentials were estimated to be 25 MW each. The total amount of geothermal energy in Maluku Province is thus, 225 MW which will contribute significantly to the needs of projected 184 MW in the year 2025.

  1. The relation between well spacing and Net Present Value in fluvial Hot Sedimentary Aquifer geothermal doublets : a West Netherlands Basin case study

    NARCIS (Netherlands)

    Willems, C.J.L.; Goense, T.; Maghami Nick, Hamidreza M.; Bruhn, D.F.

    2016-01-01

    This paper analyzes the relation between well spacing and Net Present Value of a Hot Sedimentary Aquifer geothermal doublet. First, a sensitivity analysis is carried out to evaluate the effect of uncertainty of geological and production parameters on the Net present Value. Second a finite-element

  2. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter Eugene [Energy and Geoscience Institute at the University of Utah

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team

  3. National Geothermal Data System: Interactive Assessment of Geothermal Energy Potential in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Stephen [Executive Office of the State of Arizona (Arizona Geological Survey); Clark, Ryan; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan; Matti, Jordan; Pape, Estelle; Musil, Leah

    2012-01-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. An initial set of thirty geoscience data content models is in use or under development to define a standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature descriptions data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from other NGDS participating institutions, or “nodes” (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive

  4. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  5. Geothermal Alteration of Basaltic Core from the Snake River Plain, Idaho

    OpenAIRE

    Sant, Christopher Joseph

    2012-01-01

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquife...

  6. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  7. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    Science.gov (United States)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal

  8. Technology and economics of near-surface geothermal resources exploitation

    Directory of Open Access Journals (Sweden)

    Э. И. Богуславский

    2017-04-01

    Full Text Available The paper presents economic justification for applicability of near-surface geothermal installations in Luga region, based on results of techno-economic calculations as well as integrated technical and economic comparison of different prediction scenarios of heat supply, both conventional and using geothermal heat pumps (GHP. Construction costs of a near-surface geothermal system can exceed the costs of central heating by 50-100 %. However, operation and maintenance (O&M costs of heat production for geothermal systems are 50-70 % lower than for conventional sources of heating. Currently this technology is very important, it is applied in various countries (USA, Germany, Japan, China etc., and depending on the region both near-surface and deep boreholes are being used. World practice of near-surface geothermal systems application is reviewed in the paper.

  9. Geothermal heating a handbook of engineering economics

    CERN Document Server

    Harrison, R; Smarason, O B

    2013-01-01

    To date all books on geothermics have emphasized its use for generating electricity, with applications of lower grade resources for direct heating meriting only a brief chapter. This book brings together research from a range of scientific journals and 'grey' literature to produce the first comprehensive text on geothermal heating. Economics form an important part of the book. It provides a step by step analysis of the various ways in which thermal waters can be used to provide space heating and of the advantages and disadvantages of different approaches. The final section of the book provides

  10. Geothermal energy in Jordan

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1993-11-01

    The potential of geothermal energy utilization in Jordan was discussed. The report gave a summary of the location of geothermal anomalies in Jordan, and of ongoing projects that utilize geothermal energy for greenhouse heating, fish farming, refrigeration by absorption, and water desalination of deep aquifers. The problems facing the utilization of geothermal energy in Jordan were identified to be financial (i.e. insufficient allocation of local funding, and difficulty in getting foreign financing), and inadequate expertise in the field of geothermal energy applications. The report gave a historical account of geothermal energy utilization activities in Jordan, including cooperation activities with international organizations and foreign countries. A total of 19 reports already prepared in the areas of geochemical and hydrological studies were identified. The report concluded that the utilization of geothermal energy offers some interesting economic possibilities. (A.M.H.). 4 refs. 1 map

  11. Federal Geothermal Research Program Update Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  12. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also

  13. Geothermal potential of the Meuse/Haute-Marne site

    International Nuclear Information System (INIS)

    2015-01-01

    This report aims to analyze the geothermal potential of the Meuse/Haute-Marne site selected for the Cigeo project, primarily based on data available in the literature and particularly on those recently Acquired by Andra near this site. It also analyzes the report made on the same topic by Geowatt AG at The request of the CLIS of Bure. For the Meuse/Haute-Marne area relevant to Cigeo, the present report concludes to the existence of A low-energy geothermal resource in the lower Triassic. For the Permian and the basement, a medium To high-energy geothermal resource is conceivable, but its occurrence is hypothetical. Beneath the site, exploiting the Triassic would depend on the possibility of re-injecting the produced Brine. National and international experiences show the difficulty to carry out such a reinjection in Silty-clayey formations. The profitability of such exploitation in the Triassic, the Permian or in the basement is questionable. Indeed, the Meuse/Haute-Marne area neither shows an exceptional nature nor a specific interest Compared to other formations or zones for which either the geothermal potential is better Demonstrated, such as for instance the Dogger formation in the central part of the Paris basin with Easier exploitation conditions, or where the geothermal gradients are higher. (authors)

  14. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  15. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  16. Induced seismicity associated with enhanced geothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the

  17. Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-A: Resource description, program history, wells tested, university and company based research, site restoration

    Energy Technology Data Exchange (ETDEWEB)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal resource description; Resource origin and sediment type; Gulf Coast resource extent; Resource estimates; Project history; Authorizing legislation; Program objectives; Perceived constraints; Program activities and structure; Well testing; Program management; Program cost summary; Funding history; Resource characterization; Wells of opportunity; Edna Delcambre No. 1 well; Edna Delcambre well recompletion; Fairfax Foster Sutter No. 2 well; Beulah Simon No. 2 well; P.E. Girouard No. 1 well; Prairie Canal No. 1 well; Crown Zellerbach No. 2 well; Alice C. Plantation No. 2 well; Tenneco Fee N No. 1 well; Pauline Kraft No. 1 well; Saldana well No. 2; G.M. Koelemay well No. 1; Willis Hulin No. 1 well; Investigations of other wells of opportunity; Clovis A. Kennedy No. 1 well; Watkins-Miller No. 1 well; Lucien J. Richard et al No. 1 well; and the C and K-Frank A. Godchaux, III, well No. 1.

  18. Use of environmental radioactive isotopes in geothermal prospecting

    International Nuclear Information System (INIS)

    Balcazar, M.; Lopez M, A.; Huerta, M.; Flores R, J. H.; Pena, P.

    2010-10-01

    Oil resources decrease and environmental impact of burning fossil fuels support the use of alternative energies around the world. By far nuclear energy is the alternative which can supply huge amount of clean energy. Mexico has two nuclear units and has also explored and exploited the use of other complementary renewal energies, as wind and geothermal. Mexico is the third geothermal-energy producer in the world with an installed capacity of 960 MW and is planning the installation of 146 MW for the period 2010-2011, according to information of the Mexican Federal Electricity Board. This paper presents a study case, whose goal is to look for areas where the heat source can be located in geothermal energy fields under prospecting. The method consist in detecting a natural radioactive tracer, which is transported to the earth surface by geo-gases, generated close to the heat source, revealing areas of high permeability properties and open active fractures. Those areas are cross correlated to other resistivity, gravimetric and magnetic geophysical parameters in the geothermal filed to better define the heat source in the field. (Author)

  19. Federal Geothermal Research Program Update Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  20. Sustainability analysis of the Ahuachapan geothermal field: management and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Monterrosa, Manuel; Montalvo Lopez, Francisco E. [LaGeo S.A. de C.V., Reservoir Engineering, 15 Av. Sur, Colonia Utila, Santa Tecla, La Libertad (El Salvador)

    2010-12-15

    The Ahuachapan geothermal field (AGF) is located in north western El Salvador. To date, 53 wells (20 producers and 8 injectors) have been drilled in the Ahuachapan geothermal field and the adjacent Chipilapa area. Over the past 33 years, 550 Mtonnes have been extracted from the reservoir, and the reservoir pressure has declined by more than 15 bars. By 1985, the large pressure drawdown due to over-exploitation of the resource reduced the power generation capacity to only 45 MW{sub e}. Several activities were carried out in the period 1997-2005 as part of ''stabilization'' and ''optimization'' projects to increase the electric energy generation to 85 MW{sub e}, with a total mass extraction of 850 kg/s. LaGeo is assessing the sustainability of geothermal reservoir utilization. Preliminary results indicate the planned power production and mass extraction (95 MW, 900 kg/s) cannot be sustained for more than 50 years using current power plant technology. To sustain the exploitation for at least 100 years, the following changes should be implemented: (1) improve the gathering system using large-diameter steam pipelines, (2) expand the exploitation area to the southeast and southwest, and (3) reduce the inlet pressure of the turbines to less than 4 bars. (author)

  1. Recovery act. Characterizing structural controls of EGS-candidate and conventional geothermal reservoirs in the Great Basin. Developing successful exploration strategies in extended terranes

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James [Univ. of Nevada, Reno, NV (United States)

    2015-06-25

    We conducted a comprehensive analysis of the structural controls of geothermal systems within the Great Basin and adjacent regions. Our main objectives were to: 1) Produce a catalogue of favorable structural environments and models for geothermal systems. 2) Improve site-specific targeting of geothermal resources through detailed studies of representative sites, which included innovative techniques of slip tendency analysis of faults and 3D modeling. 3) Compare and contrast the structural controls and models in different tectonic settings. 4) Synthesize data and develop methodologies for enhancement of exploration strategies for conventional and EGS systems, reduction in the risk of drilling non-productive wells, and selecting the best EGS sites.

  2. Geothermal fields of China

    Science.gov (United States)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  3. Geothermal systems: Principles and case histories

    Science.gov (United States)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  4. Evaluation of state taxes and tax incentives and their impact on the development of geothermal energy in western states

    Energy Technology Data Exchange (ETDEWEB)

    Bronder, L.D.; Meyer, R.T.

    1981-01-01

    The economic impact of existing and prospective state taxes and tax incentives on direct thermal applications of geothermal energy are evaluated. Study area is twelve western states which have existing and potential geothermal activities. Economic models representing the geothermal producer and business enterprise phases of four industrial/commercial uses of geothermal energy are synthesized and then placed in the existing tax structures of each state for evaluation. The four enterprises are a commercial greenhouse (low temperature process heat), apartment complex (low temperature space heat), food processor (moderate temperature process heat), and small scale energy system (electrical and direct thermal energy for a small industrial park). The effects of the state taxations on net profits and tax revenues are determined. Tax incentives to accelerate geothermal development are also examined. The magnitudes of total state and local tax collections vary considerably from state to state, which implies that geothermal producers and energy-using businesses may be selective in expanding or locating their geothermal operations.

  5. Greece, Milos Island Geothermal Project

    International Nuclear Information System (INIS)

    Delliou, E.E.

    1990-01-01

    On Milos island (Aegean Sea) a high enthalpy, water dominated geothermal field of high salinity exists. At 1985, a 2MW geothermoelectric pilot plant was installed on the island. This plant has been provided by Mitsubishi Heavy Industries of Japan under a contract with Public Power Corporation of Greece. Due to high salinity of the geothermal fluid, unforeseen problems (scaling mainly) arisen in both steam and brine cycles. As a consequence, the operation (trial mainly) of the power plant have been interrupted several times for long periods, in order to identify the arisen, each time, problems and find the most appropriate technical solution. The above fact, as well as, some unfortunate coincidences described in this paper, led Milos people to react against geothermal development in their island. The sequence of the events, technical and non-technical, their approach and the relevant conclusions are reported in this presentation

  6. Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-B: Resource description, program history, wells tested, university and company based research, site restoration

    Energy Technology Data Exchange (ETDEWEB)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Design well program; LaFourche Crossing; MG-T/DOE Amoco Fee No. 1 (Sweet Lake); Environmental monitoring at Sweet Lake; Air quality; Water quality; Microseismic monitoring; Subsidence; Dow/DOE L.R. Sweezy No. 1 well; Reservoir testing; Environmental monitoring at Parcperdue; Air monitoring; Water runoff; Groundwater; Microseismic events; Subsidence; Environmental consideration at site; Gladys McCall No. 1 well; Test results of Gladys McCall; Hydrocarbons in production gas and brine; Environmental monitoring at the Gladys McCall site; Pleasant Bayou No. 2 well; Pleasant Bayou hybrid power system; Environmental monitoring at Pleasant Bayou; and Plug abandonment and well site restoration of three geopressured-geothermal test sites. 197 figs., 64 tabs.

  7. Geothermal Grows Up

    Science.gov (United States)

    Johnson, William C.; Kraemer, Steven; Ormond, Paul

    2011-01-01

    Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…

  8. Geothermal training at the International Institute of Geothermal Research in Pisa, Italy

    International Nuclear Information System (INIS)

    Dickson, M.H.; Fanelli, M.

    1990-01-01

    Between 1985 and 1990 the International School of Geothermics of Pisa has held 5 long-term courses, attended by 93 trainees. This paper reports that since 1970, when it began its activity, the Italian geothermal training center has prepared a total of 293 goethermists from 64 countries. Under its present structure the International School of Geothermics organizes short courses and seminars, along with the long-term courses directed mainly at geothermal exploration

  9. GEOTHERMAL GREENHOUSING IN TURKEY

    Directory of Open Access Journals (Sweden)

    Sedat Karaman

    2016-07-01

    Full Text Available Use of renewable energy resources should be brought forward to reduce heating costs of greenhouses and to minimize the use of ever-depleting fossil fuels. Geothermal energy not only provides the heat required throughout plant growth, but also allow a year-long production. Geothermal resources with several other benefits therefore play significant role in agricultural activities. With regard to geothermal potential and implementation, Turkey has the 7th place in the world and the 1st place in Europe. Majority of country geothermal resources is used in greenhouse heating. The size of geothermal greenhouses increased 5 folds during the last decade and reached to 2500 decare. In this study, current status of geothermal greenhousing of Turkey was presented; problems and possible solutions were discussed.

  10. Energy conversion processes for the use of geothermal heat

    Energy Technology Data Exchange (ETDEWEB)

    Minder, R. [Minder Energy Consulting, Oberlunkhofen (Switzerland); Koedel, J.; Schaedle, K.-H.; Ramsel, K. [Gruneko AG, Basel (Switzerland); Girardin, L.; Marechal, F. [Swiss Federal Institute of Technology (EPFL), Laboratory for industrial energy systems (LENI), Lausanne (Switzerland)

    2007-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on energy conversion processes that can be used when geothermal heat is to be used. The study deals with both theoretical and practical aspects of the conversion of geothermal heat to electricity. The report is divided into several parts and covers general study, practical experience, planning and operation of geothermal power plants as well as methodology for the optimal integration of energy conversion systems in geothermal power plants. In the first part, the specific properties and characteristics of geothermal resources are discussed. Also, a general survey of conversion processes is presented with special emphasis on thermo-electric conversion. The second part deals with practical aspects related to planning, construction and operation of geothermal power plant. Technical basics, such as relevant site-specific conditions, drilling techniques, thermal water or brine quality and materials requirements. Further, planning procedures are discussed. Also, operation and maintenance aspects are examined and some basic information on costs is presented. The third part of the report presents the methodology and results for the optimal valorisation of the thermodynamic potential of deep geothermal systems.

  11. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...... reservoirs could soon become an important contributor to the energy generation around the world....

  12. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Horne, Roland N.; Li, Kewen; Alaskar, Mohammed; Ames, Morgan; Co, Carla; Juliusson, Egill; Magnusdottir, Lilja

    2012-06-30

    This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

  13. Deep geothermal energy: the Soultz-sous-Forets experience

    International Nuclear Information System (INIS)

    Genter, A.; Guenot, N.; Graff, J.J.

    2010-01-01

    This paper presents the mining exploitation project of the geothermal heat at Soultz-sous-Forets, located 50 km NE of Strasbourg (Bas Rhin, France). A geothermal power plant, inaugurated mid-2008, will commercialize its own power generation soon. This power plant is owned by a consortium of French-German industrialists through the European economical interest group for the mining exploitation of heat. The paper presents the geological characteristics of the hot dry rock geothermal reservoir, the deep geothermal wells, the hydraulic stimulation of the reservoir rock, the surface equipments of the power plants and the production pumps, the activities of the site in 2008 and 2009 and the perspectives of development of this energy source in France in the light of the Soultz-sous-Forets site experience. (J.S.)

  14. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mines, Greg [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhu, Guangdong [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  15. Geothermal progress monitor: Report No. 17

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    DOE is particularly concerned with reducing the costs of geothermal power generation, especially with the abundant moderate to low-temperature resources in the US. This concern is reflected in DOE`s support of a number of energy conversion projects. Projects which focus on the costs and performance of binary cycle technology include a commercial demonstration of supersaturated turbine expansions, which earlier studies have indicated could increase the power produced per pound of fluid. Other binary cycle projects include evaluations of the performance of various working fluid mixtures and the development and testing of advanced heat rejection systems which are desperately needed in water-short geothermal areas. DOE is also investigating the applicability of flash steam technology to low-temperature resources, as an economic alternative to binary cycle systems. A low-cost, low-pressure steam turbine, selected for a grant, will be constructed to utilize fluid discharged from a flash steam plant in Nevada. Another project addresses the efficiency of high-temperature flash plants with a demonstration of the performance of the Biphase turbine which may increase the power output of such installations with no increase in fluid flow. Perhaps the most noteworthy feature of this issue of the GPM, the 17th since its inception in 1980, is the high degree of industry participation in federally-sponsored geothermal research and development. This report describes geothermal development activities.

  16. Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field; FINAL

    International Nuclear Information System (INIS)

    Steven Enedy

    2001-01-01

    A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant

  17. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    East, J.

    1982-04-01

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  18. Modelling geothermal conditions in part of the Szczecin Trough - the Chociwel area

    Science.gov (United States)

    Miecznik, Maciej; Sowiżdżał, Anna; Tomaszewska, Barbara; Pająk, Leszek

    2015-09-01

    The Chociwel region is part of the Szczecin Trough and constitutes the northeastern segment of the extended Szczecin-Gorzów Synclinorium. Lower Jurassic reservoirs of high permeability of up to 1145 mD can discharge geothermal waters with a rate exceeding 250 m3/h and temperatures reach over 90°C in the lowermost part of the reservoirs. These conditions provide an opportunity to generate electricity from heat accumulated in geothermal waters using binary ORC (Organic Rankine Cycle) systems. A numerical model of the natural state and exploitation conditions was created for the Chociwel area with the use of TOUGH2 geothermal simulator (i.e., integral finite-difference method). An analysis of geological and hydrogeothermal data indicates that the best conditions are found to the southeast of the town of Chociwel, where the bottom part of the reservoir reaches 3 km below ground. This would require drilling two new wells, namely one production and one injection. Simulated production with a flow rate of 275 m3/h, a temperature of 89°C at the wellhead, 30°C injection temperature and wells being 1.2 km separated from each other leads to a small temperature drop and moderate requirements for pumping power over a 50 years' time span. The ORC binary system can produce at maximum 592.5 kW gross power with the R227ea found as the most suitable working fluid. Geothermal brine leaving the ORC system with a temperature c. 53°C can be used for other purposes, namely mushroom growing, balneology, swimming pools, soil warming, de-icing, fish farming and for heat pumps.

  19. Geothermal Progress Monitor, report No. 13

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to substantial diversification'' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation tha the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  20. Spatial data analysis for exploration of regional scale geothermal resources

    Science.gov (United States)

    Moghaddam, Majid Kiavarz; Noorollahi, Younes; Samadzadegan, Farhad; Sharifi, Mohammad Ali; Itoi, Ryuichi

    2013-10-01

    Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100 °C/km and heat flow over 100 mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.

  1. Transported Low-Temperature Geothermal Energy for Thermal End Uses Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhiyao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gluesenkamp, Kyle R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehdizadeh Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Jan-Mou [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    The use of geothermal energy is an emerging area for improving the nation’s energy resiliency. Conventionally, geothermal energy applications have focused on power generation using high temperature hydrothermal resources or enhanced geothermal systems. However, many low temperature (below 150°C/300°F) geothermal resources are also available but have not been fully utilized. For example, it is estimated that 25 billion barrels of geothermal fluid (mostly water and some dissolved solids) at 176°F to 302°F (80°C to 150°C) is coproduced annually at oil and gas wells in the United States (DOE 2015). The heat contained in coproduced geothermal fluid (also referred as “coproduced water”) is typically wasted because the fluid is reinjected back into the ground without extracting the heat.

  2. A new assessment of combined geothermal electric generation and desalination in western Saudi Arabia: targeted hot spot development

    KAUST Repository

    Missimer, Thomas M.; Mai, Martin; Ghaffour, NorEddine

    2014-01-01

    High heat flow associated with the tectonic spreading of the Red Sea make western Saudi Arabia a region with high potential for geothermal energy development. The hydraulic properties of the Precambrian-age rocks occurring in this region are not conducive to direct production of hot water for heat exchange, which will necessitate use of the hot dry rock (HDR) heat harvesting method. This would require the construction of coupled deep wells; one for water injection and the other for steam recovery. There are some technological challenges in the design, construction, and operation of HDR geothermal energy systems. Careful geotechnical evaluation of the heat reservoir must be conducted to ascertain the geothermal gradient at the chosen site to allow pre-design modeling of the system for assessment of operational heat flow maintenance. Also, naturally occurring fractures or faults must be carefully evaluated to make an assessment of the potential for induced seismicity. It is anticipated that the flow heat exchange capacity of the system will require enhancement by the use of horizontal drilling and hydraulic fracturing in the injection well with the production well drilled into the fracture zone to maximum water recovery efficiency and reduce operating pressure. The heated water must be maintained under pressure and flashed to steam at surface to produce to the most effective energy recovery. Most past evaluations of geothermal energy development in this region have been focused on the potential for solely electricity generation, but direct use of produced steam could be coupled with thermally driven desalination technologies such as multi-effect distillation, adsorption desalination, and/or membrane distillation to provide a continuous source of heat to allow very efficient operation of the plants. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  3. A new assessment of combined geothermal electric generation and desalination in western Saudi Arabia: targeted hot spot development

    KAUST Repository

    Missimer, Thomas M.

    2014-07-17

    High heat flow associated with the tectonic spreading of the Red Sea make western Saudi Arabia a region with high potential for geothermal energy development. The hydraulic properties of the Precambrian-age rocks occurring in this region are not conducive to direct production of hot water for heat exchange, which will necessitate use of the hot dry rock (HDR) heat harvesting method. This would require the construction of coupled deep wells; one for water injection and the other for steam recovery. There are some technological challenges in the design, construction, and operation of HDR geothermal energy systems. Careful geotechnical evaluation of the heat reservoir must be conducted to ascertain the geothermal gradient at the chosen site to allow pre-design modeling of the system for assessment of operational heat flow maintenance. Also, naturally occurring fractures or faults must be carefully evaluated to make an assessment of the potential for induced seismicity. It is anticipated that the flow heat exchange capacity of the system will require enhancement by the use of horizontal drilling and hydraulic fracturing in the injection well with the production well drilled into the fracture zone to maximum water recovery efficiency and reduce operating pressure. The heated water must be maintained under pressure and flashed to steam at surface to produce to the most effective energy recovery. Most past evaluations of geothermal energy development in this region have been focused on the potential for solely electricity generation, but direct use of produced steam could be coupled with thermally driven desalination technologies such as multi-effect distillation, adsorption desalination, and/or membrane distillation to provide a continuous source of heat to allow very efficient operation of the plants. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  4. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    Energy Technology Data Exchange (ETDEWEB)

    Nancy Moller Weare

    2006-07-25

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  5. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.; Mahmoudi, H.; Ghaffour, NorEddine

    2010-01-01

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability

  6. Low enthalpy geothermal for oil sands (LEGO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Geothermal energy is generated by the slow decay of radioactive materials within the Earth. Geothermal energy resources include the water from hot springs used for heating; the withdrawal of high temperature steam from deep wells; and the use of stable ground or water temperatures near the Earth's surface to heat or cool buildings or in industrial processes. Heat pumps are used to transfer heat or water from the ground into buildings in winter. This paper discussed low enthalpy geothermal options for oil sands processes in order to reduce the use of natural gas and emissions from greenhouse gases (GHGs). The study was also conducted to aid in the development of a portfolio of renewable energy options for the oil and gas sector. The study estimated the costs and benefits of operating a shallow geothermal borehole cluster for meeting a portion of process heat demands for the Nexen's Albian mine. The costs and benefits of operating thermo-chillers integrated with a shallow geothermal borehole cluster for waste heat mitigation were also evaluated. The study showed that geothermal designs can be used to meet a portion of oil sands process heat and cooling demands. Mining operators may reduce carbon emissions and energy costs for process heat demands by installing closed loop borehole heat exchangers. Geothermal heat storage capacity can also be used to increase the efficiency of thermal chillers. It was concluded that pilot plant studies would contribute to a better understanding of the technology. tabs., figs.

  7. Mountain Home Geothermal Project: geothermal energy applications in an integrated livestock meat and feed production facility at Mountain Home, Idaho. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Longyear, A.B.; Brink, W.R.; Fisher, L.A.; Matherson, R.H.; Neilson, J.A.; Sanyal, S.K.

    1979-02-01

    The Mountain Home Geothermal Project is an engineering and economic study of a vertically integrated livestock meat and feed production facility utilizing direct geothermal energy from the KGRA (Known Geothermal Resource Area) southeast of Mountain Home, Idaho. A system of feed production, swine raising, slaughter, potato processing and waste management was selected for study based upon market trends, regional practices, available technology, use of commercial hardware, resource characteristics, thermal cascade and mass flow considerations, and input from the Advisory Board. The complex covers 160 acres; utilizes 115 million Btu per hour (34 megawatts-thermal) of geothermal heat between 300/sup 0/F and 70/sup 0/F; has an installed capital of $35.5 million;produces 150,000 hogs per year, 28 million lbs. of processed potatoes per year, and on the order of 1000 continuous horsepower from methane. The total effluent is 200 gallons per minute (gpm) of irrigation water and 7300 tons per year of saleable high grade fertilizer. The entire facility utilizes 1000 gpm of 350/sup 0/F geothermal water. The economic analysis indicates that the complex should have a payout of owner-invested capital of just over three years. Total debt at 11% per year interest would be paid out in 12 (twelve) years.

  8. Environmental analysis of geopressured-geothermal prospect areas, Brazoria and Kenedy Counties, Texas

    Energy Technology Data Exchange (ETDEWEB)

    White, W.A.; McGraw, M.; Gustavson, T.C.

    1978-01-01

    Preliminary environmental data, including current land use, substrate lithology, soils, natural hazards, water resources, biological assemblages, meteorological data, and regulatory considerations have been collected and analyzed for approximately 150 km/sup 2/ of land: (1) near Chocolate Bayou, Brazoria County, Texas, where a geopressured-geothermal test well was drilled in 1978, and (2) near the rural community of Armstrong, Kenedy County, Texas, where future geopressured-geothermal test well development may occur. The study was designed to establish an environmental data base and to determine, within spatial constraints set by subsurface reservoir conditions, environmentally suitable sites for geopressured-geothermal wells.

  9. The use of petrology in Philippine geothermal system

    International Nuclear Information System (INIS)

    Reyes, A.G.

    1992-01-01

    Petrology is used in the various stages of exploration, development and exploitation of a geothermal area, often in conjunction with other fields of study. It is an effective operations tool for predicting syn- and post-drilling conditions in a well, for field and well maintenance, and to a small extent for monitoring fluids passing through the pipelines and steam turbines. Petrological data and interpretations are important in assessing an exploration area, and in formulating and developing strategy of a geothermal field. (auth.). 11 figs

  10. Technical and economic evaluation of selected compact drill rigs for drilling 10,000 foot geothermal production wells

    Energy Technology Data Exchange (ETDEWEB)

    Huttrer, G.W. [Geothermal Management Company, Inc., Frisco, CO (United States)

    1997-11-01

    This report summarizes the investigation and evaluation of several {open_quotes}compact{close_quotes} drill rigs which could be used for drilling geothermal production wells. Use of these smaller rigs would save money by reducing mobilization costs, fuel consumption, crew sizes, and environmental impact. Advantages and disadvantages of currently-manufactured rigs are identified, and desirable characteristics for the {open_quotes}ideal{close_quotes} compact rig are defined. The report includes a detailed cost estimate of a specific rig, and an evaluation of the cost/benefit ratio of using this rig. Industry contacts for further information are given.

  11. Geothermal FIT Design: International Experience and U.S. Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Rickerson, W.; Gifford, J.; Grace, R.; Cory, K.

    2012-08-01

    Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date, a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).

  12. Technical-economic aspects of the utilization of geothermal waters

    International Nuclear Information System (INIS)

    Barbier, E.

    1989-01-01

    A brief description is given of the physico-chemical parameters characterized a hot water geothermal reservoir and of its exploitation by means of single or coupled (doublet) wells. The technical aspects of geothermal heat to the users is then discussed, beginning with corrosion of materials caused by seven main agents: oxygen, hydrogen sulphide, carbon dioxide, ammonia, hydrogen, sulphates and chlorides. A brief mention is made of scaling due to calcium carbonate, silica and calcium sulphates. The basic components of a geothermal plant for non-electric uses are then discussed: production pumps, surface pipelines, heat exchangers, heat pumps and reinjection pumps. The advantages and disadvantages of the different equipment and materials used in the geothermal sector are also presented. A list is also given of the criteria used in the energy and economic balance of a geothermal operation. (author). 24 refs, 13 figs, 2 tabs

  13. Analysis of ecological effects of geopressured-geothermal resource development. Geopressured-geothermal technical paper No. 4

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    The activities involved in geopressured-geothermal resource production are identified and their ecological impacts are discussed. The analysis separates those activites that are unique to geopressured-geothermal development from those that also occur in oil and gas and other resource developments. Of the unique activities, those with the greatest potential for serious ecological effect are: (1) accidental brine discharge as a result of a blowout during well drilling; (2) subsidence; (3) fault activation and enhanced seismicity; and (4) subsurface contamination of water, hydrocarbon, and mineral reservoirs. Available methods to predict and control these effects are discussed.

  14. "Assistance to States on Geothermal Energy"

    Energy Technology Data Exchange (ETDEWEB)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the

  15. Prospects of development of highly mineralized high-temperature resources of the Tarumovskoye geothermal field

    Science.gov (United States)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2016-06-01

    The promising nature of integrated processing of high-temperature geothermal brines of the Tarumovskoye geothermal field is shown. Thermal energy of a geothermal brine can be converted to the electric power at a binary geothermal power plant (GPP) based on low-boiling working substance. The thermodynamic Rankine cycles are considered which are implemented in the GPP secondary loop at different evaporation temperatures of the working substance―isobutane. Among them, the most efficient cycle from the standpoint of attaining a maximum power is the supercritical one which is close to the so-called triangular cycle with an evaporation pressure of p e = 5.0 MPa. The used low-temperature brine is supplied from the GPP to a chemical plant, where main chemical components (lithium carbonate, burnt magnesia, calcium carbonate, and sodium chloride) are extracted from it according to the developed technology of comprehensive utilization of geothermal brines of chloride-sodium type. The waste water is delivered to the geotechnological complex and other consumers. For producing valuable inorganic materials, the electric power generated at the GPP is used. Owing to this, the total self-sufficiency of production and independence from external conditions is achieved. The advantages of the proposed geotechnological complex are the full utilization of the heat potential and the extraction of main chemical components of multiparameter geothermal resources. In this case, there is no need for reverse pumping, which eliminates the significant capital costs for building injection wells and a pumping station and the operating costs for their service. A characteristic of the modern state of the field and estimated figures of the integrated processing of high-temperature brines of well no. 6 are given, from which it follows that the proposed technology has a high efficiency. The comprehensive development of the field resources will make it possible to improve the economic structure of the

  16. Performance of deep geothermal energy systems

    Science.gov (United States)

    Manikonda, Nikhil

    Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.

  17. Building a regulatory framework for geothermal energy development in the NWT

    Energy Technology Data Exchange (ETDEWEB)

    Holroyd, Peggy; Dagg, Jennifer [Pembina Institute (Canada)

    2011-03-15

    There is a high potential in Canada's Northwest Territories (NWT) for using geothermal energy, the thermal energy generated and stored in the Earth, and this could help the NWT meet their greenhouse gas emissions reduction targets. The Pembina Institute was engaged by the government of the NWT to perform a jurisdictional analysis of geothermal energy legislation and policy around the world; this report presents its findings. The jurisdictional review was carried out in 9 countries and interviews were conducted with various geothermal energy experts. Following this research, the Pembina Institute made recommendations to the NWT government on the development of a geothermal energy regulatory framework which would cover the need to define geothermal energy legislation and resource ownership as well as a plan and vision for geothermal energy use. This report highlighted that with an effective government policy in place, the use of geothermal energy in the NWT could provide the territories with a stable and secure energy supply.

  18. Building a regulatory framework for geothermal energy development in the NWT

    Energy Technology Data Exchange (ETDEWEB)

    Holroyd, Peggy; Dagg, Jennifer [Pembina Institute (Canada)

    2011-03-15

    There is a high potential in Canada's Northwest Territories (NWT) for using geothermal energy, the thermal energy generated and stored in the Earth, and this could help the NWT meet their greenhouse gas emissions reduction targets. The Pembina Institute was engaged by the government of the NWT to perform a jurisdictional analysis of geothermal energy legislation and policy around the world; this report presents its findings. The jurisdictional review was carried out in 9 countries and interviews were conducted with various geothermal energy experts. Following this research, the Pembina Institute made recommendations to the NWT government on the development of a geothermal energy regulatory framework which would cover the need to define geothermal energy legislation and resource ownership as well as a plan and vision for geothermal energy use. This report highlighted that with an effective government policy in place, the use of geothermal energy in the NWT could provide the territories with a stable and secure energy supply.

  19. Resistivity imaging of Aluto-Langano geothermal field using 3-D magnetotelluric inversion

    Science.gov (United States)

    Cherkose, Biruk Abera; Mizunaga, Hideki

    2018-03-01

    Magnetotelluric (MT) method is a widely used geophysical method in geothermal exploration. It is used to image subsurface resistivity structures from shallow depths up to several kilometers of depth. Resistivity imaging using MT method in high-enthalpy geothermal systems is an effective tool to identify conductive clay layers that cover the geothermal systems and to detect a potential reservoir. A resistivity model is vital for deciding the location of pilot and production sites at the early stages of a geothermal project. In this study, a 3-D resistivity model of Aluto-Langano geothermal field was constructed to map structures related to a geothermal resource. The inversion program, ModEM was used to recover the 3-D resistivity model of the study area. The 3-D inversion result revealed the three main resistivity structures: a high-resistivity surface layer related to unaltered volcanic rocks at shallow depth, underlain by a conductive zone associated with the presence of conductive clay minerals, predominantly smectite. Beneath the conductive layer, the resistivity increases gradually to higher values related to the formation of high-temperature alteration minerals such as chlorite and epidote. The resistivity model recovered from 3-D inversion in Aluto-Langano corresponds very well to the conceptual model for high-enthalpy volcanic geothermal systems. The conductive clay cap is overlying the resistive propylitic upflow zone as confirmed by the geothermal wells in the area.

  20. Deformation at Krafla and Bjarnarflag geothermal areas, Northern Volcanic Zone of Iceland, 1993-2015

    Science.gov (United States)

    Drouin, Vincent; Sigmundsson, Freysteinn; Verhagen, Sandra; Ófeigsson, Benedikt G.; Spaans, Karsten; Hreinsdóttir, Sigrún

    2017-09-01

    The Krafla volcanic system has geothermal areas within the Krafla caldera and at Bjarnarflag in the Krafla fissure swarm, 9-km south of the Krafla caldera. Arrays of boreholes extract geothermal fluids for power plants in both areas. We collected and analyzed InSAR, GPS, and leveling data spanning 1993-2015 in order to investigate crustal deformation in these areas. The volcanic zone hosting the geothermal areas is also subject to large scale regional deformation processes, including plate spreading and deflation of the Krafla volcanic system. These deformation processes have to be taken into account in order to isolate the geothermal deformation signal. Plate spreading produces the largest horizontal displacements, but the regional deformation pattern also suggests readjustment of the Krafla system at depth after the 1975-1984 Krafla rifting episode. Observed deformation can be fit by an inflation source at about 20 km depth north of Krafla and a deflation source at similar depth directly below the Krafla caldera. Deflation signal along the fissure swarm can be reproduced by a 1-km wide sill at 4 km depth closing by 2-4 cm per year. These sources are considered to approximate the combined effects of vertical deformation associated with plate spreading and post-rifting response. Local deformation at the geothermal areas is well resolved in addition to these signals. InSAR shows that deformation at Bjarnarflag is elongated along the direction of the Krafla fissure swarm (∼ 4 km by ∼ 2 km) while it is circular at Krafla (∼ 5 km diameter). Rates of deflation at Krafla and Bjarnarflag geothermal areas have been relatively steady. Average volume decrease of about 6.6 × 105 m3/yr for Krafla and 3.9 × 105 m3/yr for Bjanarflag are found at sources located at ∼ 1.5 km depth, when interpreted by a spherical point source of pressure. This volume change represents about 8 × 10-3 m3/ton of the mass of geothermal fluid extracted per year, indicating important renewal

  1. Analysis of Geothermal Pathway in the Metamorphic Area, Northeastern Taiwan

    Science.gov (United States)

    Wang, C.; Wu, M. Y.; Song, S. R.; Lo, W.

    2016-12-01

    A quantitative measure by play fairway analysis in geothermal energy development is an important tool that can present the probability map of potential resources through the uncertainty studies in geology for early phase decision making purpose in the related industries. While source, pathway, and fluid are the three main geologic factors in traditional geothermal systems, identifying the heat paths is critical to reduce drilling cost. Taiwan is in East Asia and the western edge of Pacific Ocean, locating on the convergent boundary of Eurasian Plate and Philippine Sea Plate with many earthquake activities. This study chooses a metamorphic area in the western corner of Yi-Lan plain in northeastern Taiwan with high geothermal potential and several existing exploration sites. Having high subsurface temperature gradient from the mountain belts, and plenty hydrologic systems through thousands of millimeters annual precipitation that would bring up heats closer to the surface, current geothermal conceptual model indicates the importance of pathway distribution which affects the possible concentration of extractable heat location. The study conducts surface lineation analysis using analytic hierarchy process to determine weights among various fracture types for their roles in geothermal pathways, based on the information of remote sensing data, published geologic maps and field work measurements, to produce regional fracture distribution probability map. The results display how the spatial distribution of pathways through various fractures could affect geothermal systems, identify the geothermal plays using statistical data analysis, and compare against the existing drilling data.

  2. Progress and challenges associated with digitizing and serving up Hawaii's geothermal data

    Science.gov (United States)

    Thomas, D. M.; Lautze, N. C.; Abdullah, M.

    2012-12-01

    This presentation will report on the status of our effort to digitize and serve up Hawaii's geothermal information, an undertaking that commenced in 2011 and will continue through at least 2013. This work is part of national project that is funded by the Department of Energy and managed by the Arizona State Geology Survey (AZGS). The data submitted to AZGS is being entered into the National Geothermal Data System (see http://www.stategeothermaldata.org/overview). We are also planning to host the information locally. Main facets of this project are to: - digitize and generate metadata for non-published geothermal documents relevant to the State of Hawaii - digitize ~100 years of paper records relevant to well permitting and water resources development and serve up information on the ~4500 water wells in the state - digitize, organize, and serve up information on research and geothermal exploratory drilling conducted from the 1980s to the present. - work with AZGS and OneGeology to contribute a geologic map for Hawaii that integrates geologic and geothermal resource data. By December 2012, we anticipate that the majority of the digitization will be complete, the geologic map will be approved, and that over 1000 documents will be hosted online through the University of Hawaii's library system (in the "Geothermal Collection" within the "Scholar Space" repository, see http://scholarspace.manoa.hawaii.edu/handle/10125/21320). Developing a 'user-friendly' web interface for the water well and drilling data will be a main task in the coming year. Challenges we have faced and anticipate include: 1) ensuring that no personally identifiable information (e.g. SSN, private telephone numbers, bank or credit account) is contained in the geothermal documents and well files; 2) Homeland Security regulations regarding release of information on critical infrastructure related to municipal water supply systems; 3) maintenance of the well database as future well data are developed with

  3. Design and optimization of geothermal power generation, heating, and cooling

    Science.gov (United States)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the

  4. Cost modelling of electricity producing hot dry rock (HDR) geothermal systems in the UK

    International Nuclear Information System (INIS)

    Doherty, P.S.

    1992-03-01

    A detailed and comprehensive cost model for Hot Dry Rock (HDR) electricity producing systems has been developed in this study. The model takes account of the major aspects of the HDR system, parameterized in terms of the main physical and cost parameters of the resource and the utilization system. A doublet configuration is assumed, and the conceptual HDR system which is defined in the study is based upon the UK Department of Energy (DEn) HDR geothermal R and D programme. The model has been used to calculate the costs of HDR electricity for a UK defined base case which represents a consensus view of what might be achieved in Cornwall in the long term. At 14.2 p/kWh (1988 costs) this cost appears to be unacceptably high. A wide-ranging sensitivity study has also been carried out on the main resource, geometrical, and operational parameters of the HDR system centred around the UK base case. The sensitivity study shows the most important parameters to be thermal gradient and depth. (Author)

  5. Federal Geothermal Research Program Update Fiscal Year 2000; ANNUAL

    International Nuclear Information System (INIS)

    Renner, J.L.

    2001-01-01

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research

  6. Evaluation of the environmental sustainability of a micro CHP system fueled by low-temperature geothermal and solar energy

    International Nuclear Information System (INIS)

    Ruzzenenti, Franco; Bravi, Mirko; Tempesti, Duccio; Salvatici, Enrica; Manfrida, Giampaolo; Basosi, Riccardo

    2014-01-01

    Highlights: • Binary, ORC technology avoids CO 2 , but raises questions about environmental impact. • We proposed a micro-size system that combines geothermal energy with solar energy. • The small scale and the solar energy input edges the energy profitability. • The system’s performance is appreciable if applied to existing wells. • The feasibility of exploiting abandoned wells is preliminarily evaluated. - Abstract: In this paper we evaluate the environmental sustainability of a small combined heat and power (CHP) plant operating through an Organic Rankine Cycle (ORC). The heat sources of the system are from geothermal energy at low temperature (90–95 °C) and solar energy. The designed system uses a solar field composed only of evacuated, non-concentrating solar collectors, and work is produced by a single turbine of 50 kW. The project addresses an area of Tuscany, but it could be reproduced in areas where geothermal energy is extensively developed. Therefore, the aim is to exploit existing wells that are either unfit for high-enthalpy technology, abandoned or never fully developed. Furthermore, this project aims to aid in downsizing the geothermal technology in order to reduce the environmental impact and better tailor the production system to the local demand of combined electric and thermal energy. The environmental impact assessment was performed through a Life Cycle Analysis and an Exergy Life Cycle Analysis. According to our findings the reservoir is suitable for a long-term exploitation of the designed system, however, the sustainability and the energy return of this latter is edged by the surface of the heat exchanger and the limited running hours due to the solar plant. Therefore, in order to be comparable to other renewable resources or geothermal systems, the system needs to develop existing wells, previously abandoned

  7. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

    2011-07-01

    The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel

  8. Optimal Management of Geothermal Heat Extraction

    Science.gov (United States)

    Patel, I. H.; Bielicki, J. M.; Buscheck, T. A.

    2015-12-01

    Geothermal energy technologies use the constant heat flux from the subsurface in order to produce heat or electricity for societal use. As such, a geothermal energy system is not inherently variable, like systems based on wind and solar resources, and an operator can conceivably control the rate at which heat is extracted and used directly, or converted into a commodity that is used. Although geothermal heat is a renewable resource, this heat can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal (Rybach, 2003). For heat extraction used for commodities that are sold on the market, sustainability entails balancing the rate at which the reservoir renews with the rate at which heat is extracted and converted into profit, on a net present value basis. We present a model that couples natural resource economic approaches for managing renewable resources with simulations of geothermal reservoir performance in order to develop an optimal heat mining strategy that balances economic gain with the performance and renewability of the reservoir. Similar optimal control approaches have been extensively studied for renewable natural resource management of fisheries and forests (Bonfil, 2005; Gordon, 1954; Weitzman, 2003). Those models determine an optimal path of extraction of fish or timber, by balancing the regeneration of stocks of fish or timber that are not harvested with the profit from the sale of the fish or timber that is harvested. Our model balances the regeneration of reservoir temperature with the net proceeds from extracting heat and converting it to electricity that is sold to consumers. We used the Non-isothermal Unconfined-confined Flow and Transport (NUFT) model (Hao, Sun, & Nitao, 2011) to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are incorporated into the natural resource economics model to determine production strategies that

  9. Geothermal studies in China

    Science.gov (United States)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then

  10. Present status of exploration and development of the geothermal resources of Guatemala

    International Nuclear Information System (INIS)

    Caicedo, A.; Palma, J.

    1990-01-01

    This paper reports on the study of geothermal exploration and geothermal development in the nation of Guatemala that is being led by the Instituto Nacionai de electrificacion (INDE) through the Unidad de Desarrollo Geotermico (UDG), for the purpose of developing the geothermal resources in order to generate electricity. Since 1972, it has accomplished geoscientific studies with regional surveys in 13 areas located in the volcanic region in the southern part of the country. Also, prefeasibility studies have been carried out in geothermal areas such as Moyuta and Tecuamburro in the southeast of the country; Amatitlan in the central region and San Marcos in the west. Moreover, in the geothermal field of Zunil I, which is located in the western Department of Quetzaltenango, the feasibility study has been completed, and the first geothermo-electric plant of 15 MW is being schedule for June of 1993. By then, the feasibility study for the second power plant in the more promising area of Zunil II located on the outskirts of Zunil I or Amatitlan. Also, in the area of Zunil I a farm-produce dehydration plant has been built through a technical cooperation agreement between INDE and Los Alamos National Laboratory, LANL. It has the purpose of showing the use of direct-heat through produced steam from the slim hole Z-11

  11. Exploitation and Utilization of Oilfield Geothermal Resources in China

    Directory of Open Access Journals (Sweden)

    Shejiao Wang

    2016-09-01

    Full Text Available Geothermal energy is a clean, green renewable resource, which can be utilized for power generation, heating, cooling, and could effectively replace oil, gas, and coal. In recent years, oil companies have put more efforts into exploiting and utilizing geothermal energy with advanced technologies for heat-tracing oil gathering and transportation, central heating, etc., which has not only reduced resource waste, but also improved large-scale and industrial resource utilization levels, and has achieved remarkable economic and social benefits. Based on the analysis of oilfield geothermal energy development status, resource potential, and exploitation and utilization modes, the advantages and disadvantages of harnessing oilfield geothermal resource have been discussed. Oilfield geothermal energy exploitation and utilization have advantages in resources, technical personnel, technology, and a large number of abandoned wells that could be reconstructed and utilized. Due to the high heat demand in oilfields, geothermal energy exploitation and utilization can effectively replace oil, gas, coal, and other fossil fuels, and has bright prospects. The key factors limiting oilfield geothermal energy exploitation and utilization are also pointed out in this paper, including immature technologies, lack of overall planning, lack of standards in resource assessment, and economic assessment, lack of incentive policies, etc.

  12. FY 1990 report on the survey of geothermal development promotion. Survey of geothermal water (No.34 - Kaminoyu/Santai area); 1990 nendo chinetsu kaihatsu sokushin chosa. Nessui no chosa hokokusho (No.34 Kaminoyu Santai chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-01

    For the contribution to elucidation of the structure of geothermal reservoir in the Kaminoyu/Santai area in the southwest part of Hokkaido, jetting test/sampling of geothermal fluid/analysis of properties were carried out in Structural Drilling Well N2-KS-2. The induced jetting of N2-KS-2 was conducted by the air lift method in consideration of the well temperature, state of lost circulation while drilling and results of the water pouring test. As a result, the mean jetting amount of geothermal water was 202.4L/min. The total pumping amount was 559kL, which is equal to approximately 119 times as much as the volume of well. The maximum temperature was 95.9 degrees C, resulting in no steam jetting. The pH of geothermal water was 7.41-8.44, electric conductivity was 9,620-10,450 {mu}s/cm, and the Cl ion concentration was 2,204-2,545 mg/L, which are almost stable. Properties of geothermal water is classified into an alkalescent CL-SO{sub 4} type. As a result of the study, the geothermal reservoir of N2-KS-2 is basically formed by a mechanism of a mixture of the surface water and the deep geothermal water that is similar in isotope to the geothermal water of Nigorikawa production well, which indicated a tight relation in the origin with the group of Kaminoyu hot spring. (NEDO)

  13. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  14. Geothermal source potential and utilization for alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Austin, J.C.

    1981-11-01

    A study was conducted to assess the technical and economic feasibility of using a potential geothermal source to drive a fuel grade alcohol plant. Test data from the well at the site indicated that the water temperature at approximately 8500 feet should approach 275/sup 0/F. However, no flow data was available, and so the volume of hot water that can be expected from a well at this site is unknown. Using the available data, numerous fuel alcohol production processes and various heat utilization schemes were investigated to determine the most cost effective system for using the geothermal resource. The study found the direct application of hot water for alcohol production based on atmospheric processes using low pressure steam to be most cost effective. The geothermal flow rates were determined for various sizes of alcohol production facility using 275/sup 0/F water, 235/sup 0/F maximum processing temperature, 31,000 and 53,000 Btu per gallon energy requirements, and appropriate process approach temperatures. It was determined that a 3 million gpy alcohol plant is the largest facility that can practically be powered by the flow from one large geothermal well. An order-of-magnitude cost estimate was prepared, operating costs were calculated, the economic feasibility of the propsed project was examined, and a sensitivity analysis was performed.

  15. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    Science.gov (United States)

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  16. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas R. [Univ. of Idaho, Idaho Falls, ID (United States); Worthing, Wade [Univ. of Idaho, Idaho Falls, ID (United States); Cannon, Cody [Univ. of Idaho, Idaho Falls, ID (United States); Palmer, Carl [Univ. of Idaho, Idaho Falls, ID (United States); Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis L [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Mattson, Earl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Dobson, Patric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cache Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84° C. Traditional geothermometry models estimated reservoir temperatures of approximately 125° C in the 1970’s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104° C (217° F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227° C (440° F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may need

  17. Geothermal Direct Heat Applications Program Summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-25

    Because of the undefined risk in the development and use of geothermal energy as a thermal energy source, the Department of Energy Division of Geothermal Energy solicited competitive proposals for field experiments in the direct use of geothermal energy. Twenty-two proposals were selected for cost-shared funding with one additional project co-funded by the State of New Mexico. As expected, the critical parameter was developing a viable resource. So far, of the twenty resources drilled, fourteen have proved to be useful resources. These are: Boise, Idaho; Elko heating Company in Nevada; Pagosa Springs, Colorado; Philip School, Philip, South Dakota; St. Mary's Hospital, Pierre, South Dakota; Utah Roses near Salt Lake City; Utah State Prison, Utah; Warm Springs State Hospital, Montana; T-H-S Hospital, Marlin, Texas; Aquafarms International in the Cochella Valley, California; Klamath County YMCA and Klamath Falls in Oregon; Susanville, California and Monroe, utah. Monroe's 164 F and 600 gpm peak flow was inadequate for the planned project, but is expected to be used in a private development. Three wells encountered a resource insufficient for an economical project. These were Madison County at Rexburg, Idaho; Ore-Ida Foods at Ontario, Oregon and Holly Sugar at Brawley, California. Three projects have yet to confirm their resource. The Navarro College well in Corsicana, Texas is being tested; the Reno, Moana, Nevada well is being drilled and the El Centro, California well is scheduled to be drilled in January 1982. The agribusiness project at Kelly Hot Springs was terminated because a significant archeological find was encountered at the proposed site. The Diamond Ring Ranch in South Dakota, and the additional project, Carrie Tingley Hospital in Truth or Consequences, New Mexico both used existing wells. The projects that encountered viable resources have proceeded to design, construct, and in the most advanced projects, to operate geothermal systems for

  18. Lithium Isotopes in Geothermal Fluids from Iceland

    Science.gov (United States)

    Millot, R.; Asmundsson, R.; Sanjuan, B.

    2008-12-01

    /rock interaction. The waters collected from deep geothermal wells and thermal springs in Iceland shows that Li concentration range from 23 to 5830 μg/L, whereas δ7Li values are comprised between +3.4 and +7.5‰. These results will be discussed in light of B and Sr isotopic data currently being obtained to provide a "multi-isotope tracer" characterization of geothermal waters from Iceland.

  19. Electricity from geothermal steam

    Energy Technology Data Exchange (ETDEWEB)

    Wheatcroft, E L.E.

    1959-01-01

    The development of the power station at Wairakei geothermal field is described. Wairakei is located at the center of New Zealand's volcanic belt, which lies within a major graben which is still undergoing some degree of downfaulting. A considerable number of wells, some exceeding 610 m, have been drilled. Steam and hot water are produced from both deep and shallow wells, which produce at gauge pressures of 1.5 MPa and 0.6 MPa, respectively. The turbines are fed by low, intermediate, and high pressure mains. The intermediate pressure turbine bank was installed as a replacement for a heavy water production facility which had originally been planned for the development. Stage 1 includes a 69 MW plant, and stage 2 will bring the capacity to 150 MW. A third stage, which would bring the output up to 250 MW had been proposed. The second stage involves the installation of more high pressure steam turbines, while the third stage would be powered primarily by hot water flashing. Generation is at 11 kV fed to a two-section 500 MVA board. Each section of the board feeds through a 40 MVA transformer to a pair of 220 V transmission lines which splice into the North Island grid. Other transformers feed 400 V auxiliaries and provide local supply.

  20. Handbook of Best Practices for Geothermal Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Finger, John Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-02-01

    This Handbook is a description of the complex process that comprises drilling a geothermal well. The focus of the detailed Chapters covering various aspects of the process (casing design, cementing, logging and instrumentation, etc) is on techniques and hardware that have proven successful in geothermal reservoirs around the world. The Handbook will eventually be linked to the GIA web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or proven.

  1. Design of a Geothermal Downhole Magnetic Flowmeter

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, Dave A.; Normann, Randy A.

    2015-06-15

    This paper covers the development of a 300°C geothermal solid-state magnetic flowmeter (or magmeter) to support in situ monitoring of future EGS (enhanced geothermal system) production wells. Existing flowmeters are simple mechanical spinner sensors. These mechanical sensors fail within as little as 10 hrs, while a solid-state magmeter has the potential for months/years of operation. The design and testing of a magnetic flow sensor for use with existing high-temperature electronics is presented.

  2. South Dakota geothermal handbook

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  3. Expanding Geothermal Resource Utilization through Directed Research, Education, and Public Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Wendy [Univ. of Nevada, Reno, NV (United States)

    2015-06-29

    The Great Basin Center for Geothermal Energy (GBCGE or the Center) was established at the University of Nevada, Reno (UNR) in May 2000 to promote research and utilization of geothermal resources. The Center received funding through this grant to promote increased geothermal development in the Great Basin, with most of the funding used for peerreviewed research. Funding to the Center and work under the contract were initiated in March 2002, with supplemental funding in subsequent years. The Center monitored the research projects that were competitively awarded in a series of proposal calls between 2002 and 2007. Peer-reviewed research promoted identification and utilization of geothermal resources in Nevada. Projects used geology, geochemistry, geophysics, remote sensing, and the synthesis of multi-disciplinary information to produce new models of geothermal systems in the Western U.S. and worldwide. Funds were also used to support graduate student research and training. Part of the grant was used to support public outreach activities, including webpages, online maps and data resources, and informational workshops for stakeholders.

  4. Economic study of low temperature geothermal energy in Lassen and Modoc counties, California

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-04-01

    The purpose of this study was to investigate the feasibility of using low cost, low temperature geothermal energy in job-producing industries to increase employment and encourage economic development. The study, encompassing all of Lassen and modoc Counties, was to be site-specific, referencing candidate geothermal applications to known hot wells and springs as previously determined, or to new wells with specific characteristics as defined in the Scope of Work. The emphasis was to be placed on economically practical and readily achievable applications from known resources, thus complimenting the recently completed ERDA-Susanville Study where a designated community was used as a ''laboratory'' in which land-use planning, institutional aspects, geological assessments, technical modeling and socioeconomic impacts were all examined in overview. During the course of the study, monthly progress reports were prepared and reviewed with the Commission so that emphasis on particular features of study could be changed as necessary to reflect updated findings and to redirect efforts into additional areas of potential promise as they became apparent. In this manner, a degree of flexibility was maintained which allowed a more comprehensive study than would have been otherwise possible. Although the report generates both positive and negative findings in specific areas of investigation, it is felt that the overall long term prognosis for geothermal energy stimulus to industry in the area is excellent.

  5. California Geothermal Forum: A Path to Increasing Geothermal Development in California

    Energy Technology Data Exchange (ETDEWEB)

    Young, Katherine R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The genesis of this report was a 2016 forum in Sacramento, California, titled 'California Geothermal Forum: A Path to Increasing Geothermal Development in California.' The forum was held at the California Energy Commission's (CEC) headquarters in Sacramento, California with the primary goal being to advance the dialogues for the U.S. Department of Energy's Geothermal Technologies Office (GTO) and CEC technical research and development (R&D) focuses for future consideration. The forum convened a diverse group of stakeholders from government, industry, and research to lay out pathways for new geothermal development in California while remaining consistent with critical Federal and State conservation planning efforts, particularly at the Salton Sea.

  6. Geothermal power station in Guadeloupe: at Bouillante of course; Centrale geothermique de Guadeloupe: a Bouillante, evidemment

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-02-01

    The chairman managing director of EDF and the president of BRGM (both ruling companies of the society Geothermie Bouillante) have inaugurated a 4 MW electric power station providing Guadeloupe with 4 % electricity of geothermal extraction. Geothermal energy is hazardous from the economic point of view but, on the other hand, the related natural and industrial aspects are interesting. At Bouillante, rain and sea waters are percolating through a 300 m deep fractured zone where they are heated thanks to the 15 km far Soufriere volcano. The station was put into service in 1986 and is operating since 1996. 1560 tuns per hour of a mixture of 80 % water and 20 % vapor is extracted from the well. A 6 bar vapor phase is separated from it while the remaining 160 celsius degrees hot liquid water passes through an expansion device to produce a low pressure vapor phase. Both vapor fluxes are driving a condensation turbine which is running an alternator. The main producers of geothermal electricity are the USA (2700 MW), the Philippines (900 MW), Mexico (700 MW) and Italy in Europe (550 MW). France does not play a significant role concerning the production of this type of energy but may play a role at the experimental level. (N.T.)

  7. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies

    International Nuclear Information System (INIS)

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs

  8. Fiscal 1992 report on geothermal development promotion survey (Development of geothermal reservoir assessment technique); 1989 nendo chinetsu kaihatsu sokushin chosa (Chinetsu choryusou hyoka shuho kaihatsu hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Efforts were exerted in fiscal 1984-1992 to develop techniques for appropriately assessing a geothermal reservoir for its productivity for duly predicting the optimum scale of power generation to be provided thereby. In the development of simulators, geothermal reservoir simulators (SING-1, -2, -3) and a geothermal well 2-phase flow simulator (WENG) were developed. As for the treatment of fractures in a reservoir and of substances soluble in the hot water, the methods for dealing with them were improved and augmented. In a model field study in a Hokkaido forest, reservoir pressure continuous observation and monitoring, temperature logging and pressure logging for existing wells, and geothermal fluid chemical analysis were performed for reservoir analysis, in which both natural state simulation and history mapping excellently reproduced the temperature and pressure distributions. The temperature and pressure distributions in a natural state simulation, out of the results of an analysis of the Oguni district model field, Kumamoto Prefecture, agreed not only with those in the natural state but also with the pressure transition data in the observation well. (NEDO)

  9. Modelling geothermal conditions in part of the Szczecin Trough – the Chociwel area

    Directory of Open Access Journals (Sweden)

    Miecznik Maciej

    2015-09-01

    Full Text Available The Chociwel region is part of the Szczecin Trough and constitutes the northeastern segment of the extended Szczecin-Gorzów Synclinorium. Lower Jurassic reservoirs of high permeability of up to 1145 mD can discharge geothermal waters with a rate exceeding 250 m3/h and temperatures reach over 90°C in the lowermost part of the reservoirs. These conditions provide an opportunity to generate electricity from heat accumulated in geothermal waters using binary ORC (Organic Rankine Cycle systems. A numerical model of the natural state and exploitation conditions was created for the Chociwel area with the use of TOUGH2 geothermal simulator (i.e., integral finite-difference method. An analysis of geological and hydrogeothermal data indicates that the best conditions are found to the southeast of the town of Chociwel, where the bottom part of the reservoir reaches 3 km below ground. This would require drilling two new wells, namely one production and one injection. Simulated production with a flow rate of 275 m3/h, a temperature of 89°C at the wellhead, 30°C injection temperature and wells being 1.2 km separated from each other leads to a small temperature drop and moderate requirements for pumping power over a 50 years’ time span. The ORC binary system can produce at maximum 592.5 kW gross power with the R227ea found as the most suitable working fluid. Geothermal brine leaving the ORC system with a temperature c. 53°C can be used for other purposes, namely mushroom growing, balneology, swimming pools, soil warming, de-icing, fish farming and for heat pumps.

  10. Quantifying the undiscovered geothermal resources of the United States

    Science.gov (United States)

    Williams, Colin F.; Reed, Marshall J.; DeAngelo, Jacob; Galanis, S. Peter

    2009-01-01

    In 2008, the U.S. Geological Survey (USGS) released summary results of an assessment of the electric power production potential from the moderate- and high-temperature geothermal resources of the United States (Williams et al., 2008a; USGS Fact Sheet 2008-3082; http://pubs.usgs.gov/fs/2008/3082). In the assessment, the estimated mean power production potential from undiscovered geothermal resources is 30,033 Megawatts-electric (MWe), more than three times the estimated mean potential from identified geothermal systems: 9057 MWe. The presence of significant undiscovered geothermal resources has major implications for future exploration and development activities by both the government and private industry. Previous reports summarize the results of techniques applied by the USGS and others to map the spatial distribution of undiscovered resources. This paper describes the approach applied in developing estimates of the magnitude of the undiscovered geothermal resource, as well as the manner in which that resource is likely to be distributed among geothermal systems of varying volume and temperature. A number of key issues constrain the overall estimate. One is the degree to which characteristics of the undiscovered resources correspond to those observed among identified geothermal systems. Another is the evaluation of exploration history, including both the spatial distribution of geothermal exploration activities relative to the postulated spatial distribution of undiscovered resources and the probability of successful discoveries from the application of standard geothermal exploration techniques. Also significant are the physical, chemical, and geological constraints on the formation and longevity of geothermal systems. Important observations from this study include the following. (1) Some of the largest identified geothermal systems, such as The Geysers vapor-dominated system in northern California and the diverse geothermal manifestations found in Yellowstone

  11. Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Queen, John H. [Hi-Geophysical, Inc., Ponca, OK (United States)

    2016-05-09

    Executive Summary The overall objective of this work was the development of surface and borehole seismic methodologies using both compressional and shear waves for characterizing faults and fractures in Enhanced Geothermal Systems. We used both surface seismic and vertical seismic profile (VSP) methods. We adapted these methods to the unique conditions encountered in Enhanced Geothermal Systems (EGS) creation. These conditions include geological environments with volcanic cover, highly altered rocks, severe structure, extreme near surface velocity contrasts and lack of distinct velocity contrasts at depth. One of the objectives was the development of methods for identifying more appropriate seismic acquisition parameters for overcoming problems associated with these geological factors. Because temperatures up to 300º C are often encountered in these systems, another objective was the testing of VSP borehole tools capable of operating at depths in excess of 1,000 m and at temperatures in excess of 200º C. A final objective was the development of new processing and interpretation techniques based on scattering and time-frequency analysis, as well as the application of modern seismic migration imaging algorithms to seismic data acquired over geothermal areas. The use of surface seismic reflection data at Brady's Hot Springs was found useful in building a geological model, but only when combined with other extensive geological and geophysical data. The use of fine source and geophone spacing was critical in producing useful images. The surface seismic reflection data gave no information about the internal structure (extent, thickness and filling) of faults and fractures, and modeling suggests that they are unlikely to do so. Time-frequency analysis was applied to these data, but was not found to be significantly useful in their interpretation. Modeling does indicate that VSP and other seismic methods with sensors located at depth in wells will be the most

  12. Geothermal development plan: Maricopa county

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  13. Geothermal handbook

    Science.gov (United States)

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  14. Geothermal heating, diapycnal mixing and the abyssal circulation

    Directory of Open Access Journals (Sweden)

    J. Emile-Geay

    2009-06-01

    near-surface temperature gradients onto the bottom, thereby altering the density structure that supports a geothermal circulation. For strong vertical mixing rates, geothermal heating enhances the AABW cell by about 15% (2.5 Sv and heats up the last 2000 m by ~0.15°C, reaching a maximum of by 0.3°C in the deep North Pacific. Prescribing a realistic spatial distribution of the heat flux acts to enhance this temperature rise at mid-depth and reduce it at great depth, producing a more modest increase in overturning than in the uniform case. In all cases, however, poleward heat transport increases by ~10% in the Southern Ocean. The three approaches converge to the conclusion that geothermal heating is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies.

  15. Potential for Geothermal Energy in Myanmar

    International Nuclear Information System (INIS)

    Khin Soe Moe

    2010-12-01

    Geothermal energy is energy obtained by tapping the heat of the earth itself from kilometers deep into the earth's crust in some places of world. It is power extracted from heat stored in the earth. It is a renewable energy source because the heat is continuously produced inside the earth. Geothermal energy originates from the heat retained within the Earth's core since the orginal formation of the planet, from radioactive decay of minerals, and from solar energy absorbed at the surface. Most high temperature geothermal heat is harvested in regions close to tectonic plate boundaries where volcanic activity rises up to the surface of the Earth. It is one of the best renewable sources of energy and is capable of maintaining its temperature. The heating cost is very low. It uses less electricity and 75 per cent more efficient than the oil furnace and 48 per cent more efficient than the gas furnace. The energy is not only used for heating a place but also for cooling down the site. It generates uniform energy and creates no sound pollution. Maintenance cost is very cheap. The life of the underground piping is more than 50 year.

  16. Exergetic performance analysis of a Dora II geothermal power plant in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ganjehsarabi, Hadi; Gungor, Ali [Department of Mechanical Engineering, Faculty of Engineering, Ege University (Turkey); Dincer, Ibrahim [Faculty of Engineering and Applied Science, University of Ontario (Canada)

    2011-07-01

    In the energy sector there is an urgent need to produce energy from renewable energy sources due to the rising demand, the depletion of fossil fuels and their effects on the environment. Geothermal power is a well-established energy resource and the aim of this research was to examine the energetic performance of a geothermal power plant. The studied power plant, Dora II, has a 9.5 MW power output and is situated in Aydin, Turkey. An evaluation of the plant's performance was carried out using an exergy analysis method on each of the plant's components. Results showed that the highest exergy destruction occurs in brine re-injection while the preheater had the best exergy efficiency; the plant had an overall exergetic efficiency of 29.6%. This study highlighted the components where significant exergy destructions take place so actions could be taken to improve the overall efficiency.

  17. Preliminary geothermal study of Mt. Etna

    Energy Technology Data Exchange (ETDEWEB)

    Mongelli, F; Morelli, C

    1964-01-01

    The geothermal status of Italy's Mt. Etna region was studied via borehole thermometry at eight experimental sites. The mathematical principles and other criteria used in borehole site and well depth selection are discussed. The soil temperature is regulated by external temperature variations to a certain depth. The minimum drilling distance which would provide accurate temperature determinations was calculated to be 30 m. The geothermal gradient was determined by the application of a Fourier series to three measurements made at different depths using resistance thermometers. The results are presented in tables and the gradients are plotted on graphs. Geothermal gradient determinations were corrected for topographic effects. Two major groups of gradients were discovered, those having linear gradients were interpreted as being due to the effect of meteoric waters. Other possible disturbances are those caused by surface temperature effects and the influence of nearby bodies of water.

  18. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  19. Isotopic geothermometers in geothermal areas. A comparative experimental study in Larderella, Italy

    International Nuclear Information System (INIS)

    Nuti, S.; Panichi, C.

    1979-06-01

    The stable isotope composition of some geothermal fluid components has been determined in view of evaluating the temperature at depth in Italian geothermal fields (Larderello, Mt. Amiata, Travale). The isotopic systems used are: 13 C(CO 2 -CH 4 ), 18 O(CO 2 -H 2 O), D(H 2 -CH 4 ) and D(H 2 O-H 2 ), for which the isotopic equilibrium variation with temperature are known either experimentally or theoretically. The 18 O(CO 2 -H 2 O) geothermometer gives temperatures similar to those observed at the well-head, and provides therefore useful information on the physical state of water (steam or evaporating liquid water) at the well bottom. On the contrary, all other geothermometers produce too high temperatures which can be explained by incomplete equilibration or lack of equilibrium between components and, perhaps in some cases, by the insufficient knowledge of the fractionation factors. The comparison between the different isotopic geothermometers, along with some chemical and physico-chemical evidence, suggests that the reaction already proposed, i.e. CO 2 +4H 2 =CH 4 +2H 2 O, is unable to explain the isotopic composition observed. On the contrary, the water dissociation reaction (H 2 O=H 2 +1/2O 2 ) and the synthesis reaction of methane (C+2H 2 =CH 4 ) and carbon dioxide (C+O 2 =CO 2 ) seem able to provide an appropriate explanation of the isotopic behaviour of the geothermal field fluid components

  20. Hydrogen and oxygen isotope ratios of geothermal waters in the southern hachimantai area

    International Nuclear Information System (INIS)

    Matsubaya, Osamu; Etchu, Hiroshi; Takenaka, Teruo; Yoshida, Yutaka.

    1985-01-01

    Geothermal waters from the Matsukawa and Kakkonda Geothermal Plants, wells at Amihari-Motoyu, and Nyuto and Tazawako areas were isotopically studied. The geothermal waters from Mutsukawa, Kakkonda and Amihari-Motoyu have hydrogen isotope ratios similar to the local meteoric waters, while have higher oxygen isotope ratios than the local meteoric waters. This relationship of hydrogen and oxygen isotope ratios, that is called ''oxygen shift'', means that these geothermal waters are meteoric waters undergone the oxygen isotope exchange with rocks at high temperature of underground. The exygen shifts are 2 -- 3 per mil in Matsukawa and Kakkonda, and 7 per mil in Amihari-Motoyu. This difference may be important to understand the processe of water-rock interaction in this area. The geothermal waters at Nyuto and Tazawako areas also show 2 -- 3 per mil oxygen shift. The steam from the Tazawako-cho well and the hot spring water form the Tsurunoyu are estimated to be vapor and liquid phases separated form a single geothermal water of NaCl type, though the hot water from the Tsurunoyu is diluted with shallow meteoric water. (author)

  1. Low-temperature geothermal resources of Washington

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, J.E. [Washington State Dept. of Natural Resources, Olympia, WA (United States). Div. of Geology and Earth Resources; Bloomquist, R.G. [Washington State Energy Office, Olympia, WA (United States)

    1994-06-01

    This report presents information on the location, physical characteristics, and water chemistry of low-temperature geothermal resources in Washington. The database includes 941 thermal (>20C or 68F) wells, 34 thermal springs, lakes, and fumaroles, and 238 chemical analyses. Most thermal springs occur in the Cascade Range, and many are associated with stratovolcanoes. In contrast, 97 percent of thermal wells are located in the Columbia Basin of southeastern Washington. Some 83.5 percent are located in Adams, Benton, Franklin, Grant, Walla Walla, and Yakima Counties. Yakima County, with 259 thermal wells, has the most. Thermal wells do not seem to owe their origin to local sources of heat, such as cooling magma in the Earth`s upper crust, but to moderate to deep circulation of ground water in extensive aquifers of the Columbia River Basalt Group and interflow sedimentary deposits, under the influence of a moderately elevated (41C/km) average geothermal gradient.

  2. Geothermal direct-heat study: Imperial County, California

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    Potential applications of geothermal energy which would be compatible with the agricultural activities in the county were identified and a plan to attract potential users to the area was developed. The intent of the first effort was to identify general classifications of industries which could utilize geothermal heat in production processes. Two levels of analyses were utilized for this effort. Initially, activities relying on previously developed engineering and industrial concepts were investigated to determine capital costs, employment, and potential energy savings. Second, innovative concepts not yet fully developed were investigated to determine their potential applicability to the agricultural base of the county. These investigations indicated that the major potential applications of geothermal heat would involve industries related to food processing or other direct agriculture-related uses of raw materials produced or imported to the county. An implementation plan which can be utilized by the county to market direct heat applications was developed. A socioeconomics analysis examined the potential effects on the county from development of direct heat projects. The county's planning and permitting requirements for dirct heat projects were also examined.

  3. Geothermal materials development at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E. [Brookhaven National Lab., Upton, NY (United States)

    1997-12-31

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R&D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O&M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R&D, most of which is performed as cost-shared efforts with U.S. geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  4. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  5. A preliminary assessment of a medium-enthalpy geothermal resource in Nagu (Tibet) people's republic of China

    Energy Technology Data Exchange (ETDEWEB)

    Battistelli, A.; Rivera, R.J.; D' Amore, F.; Wu, F.; Rossi, R.; Luzi, .

    1991-01-01

    The Nagqu geothermal field is a single-phase, liquid-dominated system at reservoir conditions, having a high gas content. This field is located at an elevation of about 4,500 m (asl), in the vicinity of the City of Nagqu, which is one of the most important cities of Tibet.The reservoir rock is made of a highly fractured, low-permeability sedimentary sequence. During the implementation of the study described in this paper, fluid production was mainly obtained from two out of four possible productive wells. The main fault systems are located in a NE-SW and E-W directions, which seem to control fluid movement at depth. The geothermal field is restricted to a small area where hydrothermal manifestations are located. Reservoir temperature is 114 C, gas content is in the range of 0.5 to 0.6% by mass, being mainly CO{sub 2}. Reservoir transmissivity in the area of the wells is very high. Reservoir response to changes in flow rate in any of the producing wells could be detected almost immediately in the observation wells, which were distant between 300 to 900 m, depending on the production-observation well arrangement. Calcium carbonate scaling was present in all producing wells. This deposition was controlled by the CO{sub 2} partial pressure. Description of well testing results is provided, as well as the thermodynamics and geochemistry of reservoir fluids.

  6. Hydraulic fracturing in granite under geothermal conditions

    Science.gov (United States)

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  7. National and global exploitation of deep geothermal energy. 2013 status report

    International Nuclear Information System (INIS)

    Janczik, Sebastian; Kaltschmitt, Martin

    2013-01-01

    A number of plants for the utilisation of deep geothermal energy have been completed in Germany and other parts of the world in the course of the past year. In Germany four cogeneration plants with an total electrical capacity of 12 MW were in operation in 2012, producing a total of around 25 GWh of electrical energy and 0.32 PJ of thermal energy in that year. Furthermore, Germany's national fleet of geothermal heating plants had an overall thermal output capacity of 200 MW and a thermal yield of 1.2 PJ (330 GWh) in 2012. This amounts to savings of 107,000 tons of CO 2 equivalent. Total electricity and heat production from geothermal energy worldwide showed continued growth through 2012. The total electrical capacity installed rose by almost 3% to 11.3 GW. Between them the world's geothermal power plants in existence at the end of 2012 had fed around 72 TWh of electrical energy into the grids in the course of the year. In addition these plants totalled an installed thermal capacity of approximately 15.4 GW, producing some 217 PJ (60 TWh) of heat. Many other activities towards making greater use of thermal energy from the deep underground were observed both in Germany and around the globe in 2012. In view of these developments it appears probable that the production of heat and/or electricity from geothermal energy will continue to grow in the years to come and that this option will gain significance in the realms of economic and environmental policy at both the national and international level.

  8. Geothermal energy: a brief assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  9. Geothermal energy. A national proposal for geothermal resources research

    Energy Technology Data Exchange (ETDEWEB)

    Denton, J.C. (ed.)

    1972-01-01

    Discussions are given for each of the following topics: (1) importance to the Nation of geothermal resources, (2) budget recommendations, (3) overview of geothermal resources, (4) resource exploration, (5) resource assessment, (6) resource development and production, (7) utilization technology and economics, (8) environmental effects, (9) institutional considerations, and (10) summary of research needs.

  10. Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas

    Energy Technology Data Exchange (ETDEWEB)

    Foley, D.; Dorscher, M.

    1982-11-01

    Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

  11. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    Science.gov (United States)

    Romaguera, Mireia; Vaughan, R. Greg; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F.D.

    2018-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of LST, the LSTgt. We hypothesize that in geothermal areas the LSM time series will underestimate the LST as compared to the remote sensing data, since the former does not account for the geothermal component in its model.In order to extract LSTgt, two approaches of different nature (physical based and data mining) were developed and tested in an area of about 560 × 560 km2 centered at the Kenyan Rift. Pre-dawn data in the study area during the first 45 days of 2012 were analyzed.The results show consistent spatial and temporal LSTgt patterns between the two approaches, and systematic differences of about 2 K. A geothermal area map from surface studies was used to assess LSTgt inside and outside the geothermal boundaries. Spatial means were found to be higher inside the geothermal limits, as well as the relative frequency of occurrence of high LSTgt. Results further show that areas with strong topography can result in anomalously high LSTgt values (false positives), which suggests the need for a slope and aspect correction in the inputs to achieve realistic results in those areas. The uncertainty analysis indicates that large uncertainties of the input parameters may limit detection of LSTgt anomalies. To validate the approaches, higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data over the Olkaria geothermal field were used. An established method to estimate radiant geothermal flux was applied providing values between 9 and 24 W/m2 in the geothermal area, which coincides with the LSTgt flux rates obtained with the proposed approaches.The proposed approaches are a first step in estimating LSTgt

  12. Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

  13. Systems and methods for multi-fluid geothermal energy systems

    Science.gov (United States)

    Buscheck, Thomas A.

    2017-09-19

    A method for extracting geothermal energy from a geothermal reservoir formation. A production well is used to extract brine from the reservoir formation. At least one of nitrogen (N.sub.2) and carbon dioxide (CO.sub.2) may be used to form a supplemental working fluid which may be injected into a supplemental working fluid injection well. The supplemental working fluid may be used to augment a pressure of the reservoir formation, to thus drive a flow of the brine out from the reservoir formation.

  14. Utilization of geothermal heat in tropical fruit-drying process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

  15. Broadband Magnetotelluric Investigations of Crustal Resistivity Structure in North-Eastern Alberta: Implications for Engineered Geothermal Systems

    Science.gov (United States)

    Liddell, M. V.; Unsworth, M. J.; Nieuwenhuis, G.

    2013-12-01

    Greenhouse gas emissions from hydrocarbon consumption produce profound changes in the global climate, and the implementation of alternative energy sources is needed. The oilsands industry in Alberta (Canada) is a major producer of greenhouse gases as natural gas is burnt to produce the heat required to extract and process bitumen. Geothermal energy could be utilized to provide this necessary heat and has the potential to reduce both financial costs and environmental impacts of the oilsands industry. In order to determine the geothermal potential the details of the reservoir must be understood. Conventional hydrothermal reservoirs have been detected using geophysical techniques such as magnetotellurics (MT) which measures the electrical conductivity of the Earth. However, in Northern Alberta the geothermal gradient is relatively low, and heat must be extracted from deep inside the basement rocks using Engineered Geothermal Systems (EGS) and therefore an alternative exploration technique is required. MT can be useful in this context as it can detect fracture zones and regions of elevated porosity. MT data were recorded near Fort McMurray with the goal of determining the geothermal potential by understanding the crustal resistivity structure beneath the Athabasca Oilsands. The MT data are being used to locate targets of significance for geothermal exploration such as regions of low resistivity in the basement rocks which can relate to in situ fluids or fracture zones which can facilitate efficient heat extraction or het transport. A total of 93 stations were collected ~500m apart on two profiles stretching 30 and 20km respectively. Signals were recorded using Phoenix Geophysics V5-2000 systems over frequency bands from 1000 to 0.001 Hz, corresponding to depths of penetration approximately 50m to 50km. Groom-Bailey tensor decomposition and phase tensor analysis shows a well defined geoelectric strike direction that varied along the profile from N60°E to N45

  16. Sustainable geothermal utilization - Case histories; definitions; research issues and modelling

    International Nuclear Information System (INIS)

    Axelsson, Gudni

    2010-01-01

    Sustainable development by definition meets the needs of the present without compromising the ability of future generations to meet their own needs. The Earth's enormous geothermal resources have the potential to contribute significantly to sustainable energy use worldwide as well as to help mitigate climate change. Experience from the use of numerous geothermal systems worldwide lasting several decades demonstrates that by maintaining production below a certain limit the systems reach a balance between net energy discharge and recharge that may be maintained for a long time (100-300 years). Modelling studies indicate that the effect of heavy utilization is often reversible on a time-scale comparable to the period of utilization. Thus, geothermal resources can be used in a sustainable manner either through (1) constant production below the sustainable limit, (2) step-wise increase in production, (3) intermittent excessive production with breaks, and (4) reduced production after a shorter period of heavy production. The long production histories that are available for low-temperature as well as high-temperature geothermal systems distributed throughout the world, provide the most valuable data available for studying sustainable management of geothermal resources, and reservoir modelling is the most powerful tool available for this purpose. The paper presents sustainability modelling studies for the Hamar and Nesjavellir geothermal systems in Iceland, the Beijing Urban system in China and the Olkaria system in Kenya as examples. Several relevant research issues have also been identified, such as the relevance of system boundary conditions during long-term utilization, how far reaching interference from utilization is, how effectively geothermal systems recover after heavy utilization and the reliability of long-term (more than 100 years) model predictions. (author)

  17. Geothermal energy in the world energy scenario

    International Nuclear Information System (INIS)

    Barbier, E.

    1989-01-01

    This paper reports on the world energy consumption between 1960 and 1984 from primary energy sources (coal, natural gas, oil, hydropower, nuclear energy) and the same in percentages from 1925. This highlights the diminishing role of coal and the increased consumption of gas and oil. The latter has stabilized around 42% of the total after the drop in demand resulting from the oil crisis of 1973. The world energy consumption has then been divided into industrialized and developing countries. It appears that the latter, with a population equal to 68% of the total world population, consumed 23% of the world energy in 1982. Furthermore, the consumption figures show that the demand for domestic energy is much smaller in developing countries, and it is well-known that domestic energy consumed is one of the parameters used to assess standard of living. The total installed electric capacity throughout the world is then reported, divided between developed and developing countries, showing that the latter consumed 11% of all the electricity generated in the world in 1981. The world installed electric power of geothermal origin at the end of 1985 is shown, along with estimates for 1990. Geothermal energy represents 0.2% of the world electric power. This is obviously a small figure and indicates that geothermal energy plays a minor role on the world energy scene. However, if we distinguish between industrialized and developing countries, we can observe that, with their currently limited electrical consumption but good geothermal prospects, the developing countries could achieve quite a significant contribution to their total electric energy from that of geothermal origin, increasing at the moment from 3 to 19%. Finally, a comparison is made between electricity generating costs of different sources, showing that geothermal energy is competitive. A table illustrates the world evolution in installed geothermal capacity from 1950 to 1985. The non-electric uses of geothermal energy

  18. IN SITU GEOTHERMAL ENERGY TECHNOLOGY: AN APPROACH FOR BUILDING CLEANER AND GREENER ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Md. Faruque Hossain

    2016-01-01

    Full Text Available Geothermal energy is abundant everywhere in the world. It certainly would be a great benefit for human being once it is produced by a sophisticated technology. Consequently, it would be the biggest console for earth considering environmental sustainability. Unfortunately, the current status of commercial production of geothermal energy primarily from hydrothermal, geopressured, hot dry rock, and magma are limited to a few countries due to technological difficulties and production cost. This paper describes a simple technology where an in situ geothermal plant assisted by a heat pump would act as a high-temperature production (>150°C to provide excellent capacity of energy generation. The issue related to costs is interestingly cheaper on production, comparing to other technologies, such as solar, hydro, wind, and traditional geothermal technology as described in this article. Therefore, it is suggested that heat pump assisted in situ geothermal energy sources has a great potentiality to be a prime energy source in near future. Since the technology has a number of positive characteristics (simple, safe, and provides continuous baseload, load following, or peaking capacity and benign environmental attributes (zero emissions of CO2, SOx, and NOx, it certainly would be an interesting technology in both developed, and developing countries as an attractive option to produce clean energy to confirm a better environment.

  19. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    West, H.B.; Delanoy, G.A.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States). Hawaii Inst. of Geophysics); Gerlach, D.C. (Lawrence Livermore National Lab., CA (United States)); Chen, B.; Takahashi, P.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States) Evans (Charles) and Associates, Redwood City, CA (United States))

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  20. Geothermal development in the U.S.A. and future directions

    International Nuclear Information System (INIS)

    Wright, P.M.

    1998-01-01

    The geothermal industry presently has an operating generation capacity of about 2,300 megawatts and generates about 17 billion kilowatt-hours per year in the United States. Although the domestic market is stagnant due to restructuring of the electricity industry and to the very low competing price of natural gas, the industry is doing well by developing geothermal fields and power plants in the Philippines and Indonesia. The industry strongly supports the Department of Energy research program to develop new and improved technology and help lower the costs of geothermal power generation