WorldWideScience

Sample records for geothermal environmental overview

  1. Environmental overview of geothermal development: northern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Slemmons, D.B.; Stroh, J.M.; Whitney, R.A. (eds.)

    1980-08-01

    Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

  2. Geothermal energy, an environmental and safety mini-overview survey

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-01

    A survey is presented in order to determine the technology status, gaps, and needs for research and development programs in the environment and safety areas of this resource. The information gathered from a survey of geothermal energy development undertaken to provide background for an environment and safety overview program is summarized. A technology assessment for resource development is presented. The three specific environmental problems identified as most potentially limiting to geothermal development; hydrogen sulfide control, brine disposal, and subsidence, are discussed. Current laws, regulations, and standards applying to geothermal systems are summarized. The elements of the environment, health, and safety program considered to be intrinsically related to the development of geothermal energy systems are discussed. Interagency interfaces are touched on briefly. (MHR)

  3. Coso geothermal environmental overview study ecosystem quality

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, P.

    1981-09-01

    The Coso Known Geothermal Resource Area is located just east of the Sierra Nevada, in the broad transition zone between the Mohave and Great Basin desert ecosystems. The prospect of large-scale geothermal energy development here in the near future has led to concern for the protection of biological resources. Objectives here are the identification of ecosystem issues, evaluation of the existing data base, and recommendation of additional studies needed to resolve key issues. High-priority issues include the need for (1) site-specific data on the occurrence of plant and animal species of special concern, (2) accurate and detailed information on the nature and extent of the geothermal resource, and (3) implementation of a comprehensive plan for ecosystem protection.

  4. Environmental overview for the development of geothermal resources in the State of New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    1980-06-01

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

  5. Environmental overview of geopressured-geothermal development: Texas Gulf Coast

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, T.C.; Kreitler, C.W.

    1979-01-01

    In the summary of the recommended environmental program are: site specific studies, general studies, cost estimates for the program, socioeconomic and demographic research, potential environmental concerns, environmental research, effects of geopressure exploitation, and research plans. The socioeconomic and cultural considerations are impacts on communities. Waste disposal, geologic framework, ground subsidence, and monitoring techniques are discussed. (MHR)

  6. Environmental overview of geothermal development: the Mono-Long Valley KGRA

    Energy Technology Data Exchange (ETDEWEB)

    Strojan, C.L.; Romney, E.M. (eds.)

    1979-01-01

    Major issues and concerns relating to geothermal development were identified and assessed in seven broad areas: (1) air quality, (2) archaeology and cultural resources, (3) geology, (4) natural ecosystems, (5) noise, (6) socioeconomics, and (7) water quality. Existing data for each of these areas was identified and evaluated to determine if the data can be used to help resolve major issues. Finally, specific areas where additional data are needed to ensure that geothermal development is environmentally acceptable were recommended.

  7. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  8. INEL Geothermal Environmental Program. Final environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Thurow, T.L.; Cahn, L.S.

    1982-09-01

    An overview of environmental monitoring programs and research during development of a moderate temperature geothermal resource in the Raft River Valley is presented. One of the major objectives was to develop programs for environmental assessment and protection that could serve as an example for similar types of development. The monitoring studies were designed to establish baseline conditions (predevelopment) of the physical, biological, and human environment. Potential changes were assessed and adverse environmental impacts minimized. No major environmental impacts resulted from development of the Raft River Geothermal Research Facility. The results of the physical, biological, and human environment monitoring programs are summarized.

  9. Geothermal environmental impact

    International Nuclear Information System (INIS)

    Armannsson, H.; Kristmannsdottir, H.

    1992-01-01

    Geothermal utilization can cause surface disturbances, physical effects due to fluid withdrawal noise, thermal effects and emission of chemicals as well as affect the communities concerned socially and economically. The environmental impact can be minimized by multiple use of the energy source and the reinjection of spent fluids. The emission of greenhouse gases to the atmosphere can be substantially reduced by substituting geothermal energy for fossil fuels as an industrial energy source wherever possible

  10. Environmental Assessment Lakeview Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Treis, Tania [Southern Oregon Economic Development Department, Medford, OR (United States)

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  11. Retrospective examination of geothermal environmental assessments

    Energy Technology Data Exchange (ETDEWEB)

    Webb, J.W.; Eddlemon, G.K.; Reed, A.W.

    1984-03-01

    Since 1976, the Department of Energy (DOE) has supported a variety of programs and projects dealing with the exploration, development, and utilization of geothermal energy. This report presents an overview of the environmental impacts associated with these efforts. Impacts that were predicted in the environmental analyses prepared for the programs and projects are reviewed and summarized, along with measures that were recommended to mitigate these impacts. Also, for those projects that have gone forward, actual impacts and implemented mitigation measures are reported, based on telephone interviews with DOE and project personnel. An accident involving spills of geothermal fluids was the major environmental concern associated with geothermal development. Other important considerations included noise from drilling and production, emissions of H/sub 2/S and cooling tower drift, disposal of solid waste (e.g., from H/sub 2/S control), and the cumulative effects of geothermal development on land use and ecosystems. Mitigation measures were frequently recommended and implemented in conjunction with noise reduction; drift elimination; reduction of fugitive dust, erosion, and sedimentation; blowout prevention; and retention of wastes and spills. Monitoring to resolve uncertainties was often implemented to detect induced seismicity and subsidence, noise, drift deposition, concentrations of air and water pollutants, and effects on groundwater. The document contains an appendix, based on these findings, which outlines major environmental concerns, mitigation measures, and monitoring requirements associated with geothermal energy. Sources of information on various potential impacts are also listed.

  12. Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume II. Annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

    1979-09-01

    This volume is a partially annotated bibliography of reference materials pertaining to the seven KGRA's. The bibliography is divided into sections by program element as follows: terrestrial ecology, aquatic ecology, heritage resources, socioeconomics and demography, geology, geothermal, soils, hydrology and water quality, seismicity, and subsidence. Cross-referencing is available for those references which are applicable to specific KGRA's. (MHR)

  13. Geothermal Energy

    International Nuclear Information System (INIS)

    Haluska, Oscar P.; Tangir, Daniel; Perri, Matias S.

    2002-01-01

    A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined

  14. 1978 annual report, INEL geothermal environmental program

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Sullivan, J.F.; Stanley, N.E.

    1979-04-01

    The objective of the Raft River Geothermal Environmental Program, in its fifth year, is to characterize the beneficial and detrimental impacts resulting from the development of moderate-temperature geothermal resources in the valley. This report summarizes the monitoring and research efforts conducted as part of this program in 1978. The results of these monitoring programs will be used to determine the mitigation efforts required to reduce long-term impacts resulting from geothermal development.

  15. Sustainable Development of Geothermal Industry in China: An Overview

    Directory of Open Access Journals (Sweden)

    Xu Bang

    2016-01-01

    Full Text Available With a wide distribution, large reserves, low cost, sustainable energy use and environmental protection and other unparalleled advantages, geothermal energy resources is important for China’s energy structure adjustment, energy conservation and environment improvement. Currently, geothermal utilization in China is still in its infancy, and Sustainable Development of the geothermal industry is also having a lot of problems. In this paper, the current research on sustainable development of geothermal industry focuses on two aspects: 1. the current situation of geothermal industry development and existing problems, 2. the current situation of sustainable development of the geothermal industry. On the basis of the review, some suggestions for further study on the sustainable development of geothermal industry are put forward.

  16. Overview of geothermal activities in Tunisia

    International Nuclear Information System (INIS)

    Ben Dhia, H.

    1990-01-01

    For Tunisia, the oil crisis and the decrease in local energy resources gave impetus to geothermal energy for potential assessment, exploration and utilization. Research undertaken showed a country with real potentialities either by its important deep aquifers or by the relatively high values of geothermal gradient and heat flow. This paper reports that it is expected that these efforts of geothermal investigation will continue in the future

  17. Sustainable Development of Geothermal Industry in China: An Overview

    OpenAIRE

    Xu Bang; Li Menggang; Pi Xiyu

    2016-01-01

    With a wide distribution, large reserves, low cost, sustainable energy use and environmental protection and other unparalleled advantages, geothermal energy resources is important for China’s energy structure adjustment, energy conservation and environment improvement. Currently, geothermal utilization in China is still in its infancy, and Sustainable Development of the geothermal industry is also having a lot of problems. In this paper, the current research on sustainable development of geot...

  18. INEL Geothermal Environmental Program. 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Thurow, T.L.; Sullivan, J.F.

    1980-04-01

    The Raft River Geothermal Environmental Program is designed to assess beneficial and detrimental impacts to the ecosystem resulting from the development of moderate temperature geothermal resources in the valley. The results of this research contribute to developing an understanding of Raft River Valley ecology and provide a basis for making management decisions to reduce potential long-term detrimental impacts on the environment. The environmental monitoring and research efforts conducted during the past six years of geothermal development and planned future research are summarized.

  19. Geothermal energy - Overview of research in 2002; Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Gohran, H. L.

    2003-07-01

    This overview for the Swiss Federal Office for Energy reviews activities in the area of geothermal energy usage in Switzerland in 2002. Several main points of interest are discussed, including Deep Heat Mining, the thermal use of drainage water from alpine railway tunnels, the quality assurance aspects of geothermal installations and pilot and demonstration (P+D) activities designed to promote the use of geothermal energy. Also, the use of constructional elements such as energy piles and novel applications such as geothermally heated greenhouses and fish farms are discussed. Examples of various P+D projects that utilise bore-hole heat exchangers and piles are given. Also, examples of the thermal use of deep aquifers are quoted and projects involving the mapping of geothermal resources and the creation of quality labels are described. Prospects for future work are discussed. The report is rounded off with lists of research and development projects and P+D projects.

  20. Basic overview towards the assessment of landslide and subsidence risks along a geothermal pipeline network

    Science.gov (United States)

    Astisiasari; Van Westen, Cees; Jetten, Victor; van der Meer, Freek; Rahmawati Hizbaron, Dyah

    2017-12-01

    An operating geothermal power plant consists of installation units that work systematically in a network. The pipeline network connects various engineering structures, e.g. well pads, separator, scrubber, and power station, in the process of transferring geothermal fluids to generate electricity. Besides, a pipeline infrastructure also delivers the brine back to earth, through the injection well-pads. Despite of its important functions, a geothermal pipeline may bear a threat to its vicinity through a pipeline failure. The pipeline can be impacted by perilous events like landslides, earthquakes, and subsidence. The pipeline failure itself may relate to physical deterioration over time, e.g. due to corrosion and fatigue. The geothermal reservoirs are usually located in mountainous areas that are associated with steep slopes, complex geology, and weathered soil. Geothermal areas record a noteworthy number of disasters, especially due to landslide and subsidence. Therefore, a proper multi-risk assessment along the geothermal pipeline is required, particularly for these two types of hazard. This is also to mention that the impact on human fatality and injury is not presently discussed here. This paper aims to give a basic overview on the existing approaches for the assessment of multi-risk assessment along geothermal pipelines. It delivers basic principles on the analysis of risks and its contributing variables, in order to model the loss consequences. By considering the loss consequences, as well as the alternatives for mitigation measures, the environmental safety in geothermal working area could be enforced.

  1. Environmental impact in geothermal fields

    International Nuclear Information System (INIS)

    Birkle, P.; Torres R, V.; Gonzalez P, E.; Guevara G, M.

    1996-01-01

    Generally, water exploitation and deep steam of geothermal fields may be cause of a pollution potential on the surface, specially by the chemical composition of geothermal water which has a high concentration of minerals, salts and heavy metals. The utilization of stable isotopes as deuterium and oxygen 18 as radioactive tracers and water origin indicators allow to know the trajectories and sources of background waters as well as possible moistures between geothermal waters and meteoric waters. Some ions such as chlorides and fluorides present solubilities that allow their register as yet long distances of their source. (Author)

  2. Geothermal Technologies Program Overview - Peer Review Program

    Energy Technology Data Exchange (ETDEWEB)

    Milliken, JoAnn [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-06

    This Geothermal Technologies Program presentation was delivered on June 6, 2011 at a Program Peer Review meeting. It contains annual budget, Recovery Act, funding opportunities, upcoming program activities, and more.

  3. Geothermal overviews of the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N.; Axtell, L.H. (comps.)

    1972-01-01

    This compendium presents data on geothermal resources for all those western states with geothermal potential. Individual sections, which have been processed separately for inclusion in the EDB data base, are devoted to each of the following states: Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. A separate section is also devoted to the U.S. Bureau of Reclamation Imperial Valley Project. Maps and references are included for each section. (JGB)

  4. Environmental effects of geothermal energy exploitation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H [Japan Metals and Chemicals Co., Ltd., Japan

    1975-01-01

    The environmental effects of geothermal power generation which cause air and water pollution and destruction of natural areas are reviewed. The production of steam and hot water affect existing hot springs sources and can cause ground subsidence. Harmful gas can be released onto the atmosphere from fumarolic gas and hot springs. Hydrothermal geothermal fields occasionally contain harmful substances such as arsenic in the hot water. Serious environmental effects can result from geothermal exploitation activities such as the felling of trees for road construction, well drilling, and plant construction. Once geothermal power generation has begun, the release of H/sub 2/S into the atmosphere and the reinjection of hot water are conducted continuously and sufficient countermeasures can be taken. One problem is the effects of plant construction and operation on natural parks. It is important to reach a compromise between development and protection of natural senic areas. Two figures, two tables, and 13 references are provided.

  5. Boise geothermal injection well: Final environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

  6. Boise geothermal injection well: Final environmental assessment

    International Nuclear Information System (INIS)

    1997-01-01

    The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives

  7. Environmental taxation. An overview

    International Nuclear Information System (INIS)

    Marcus, Vincent; Duboucher, Peggy; Ben Maid, Atika; Devaux, Jeremy; Nicklaus, Doris; Calvet, Melanie; Poupard, Christophe; Pourquier, Francois-Xavier; Vicard, Augustin; Monnoyer-Smith, Laurence

    2017-01-01

    This official publication proposes a detailed overview of the situation of environmental taxation in France. It first gives a general overview by discussing some key figures, by recalling the chronology of the main environmental taxation arrangements, and by discussing lessons learned from French and foreign experiments for an efficient, acceptable and consistent taxation. The second part proposes a detailed presentation of environmental taxation by distinguishing its main themes and objectives: struggle against climate change, reduction of air pollution and water pollution, and wastes, preservations and development of resources from biodiversity (soil artificialization, sustainable management of fauna and flora), efficient use of non renewable resources and of water (water resources, energetic and mineral raw materials). For each of these themes, the report presents the environmental problematic, and the existing arrangements, and proposes some elements of international comparison. The last part proposes a list of all environmental taxes

  8. Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988

    Science.gov (United States)

    1989-02-01

    Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6 percent of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the U.S. public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99 percent of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98 percent. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future U.S. energy markets.

  9. Environmental Report Utah State Prison Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    This environmental report assesses the potential impact of developing a geothermal resource for space heating at the Utah State Prison. Wells will be drilled on prison property for production and for injection to minimize reservoir depletion and provide for convenient disposal of cooled fluid. The most significant environmental concerns are the proper handling of drilling muds during well drilling and the disposal of produced water during well testing. These problems will be handled by following currently accepted practices to reduce the potential risks.

  10. Application of environmental isotope tracing technology to geothermal geochemistry

    International Nuclear Information System (INIS)

    Shang Yingnan

    2006-01-01

    This paper reviews the recent application and development of environmental isotope tracing technology to geothermal geochemistry in the following aspects: gas isotopes (He, C) tracing of warm springs; H, O isotope tracing on the origin and cause of geothermal water, environmental isotope dating of geothermal water, and the advantage of excess parameter of deuterium (d) in geothermal research. The author also suggests that isotope method should combine with other geological methods to expand its advantage. (authors)

  11. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Environmental impacts during geothermal development: Some examples from Central America

    International Nuclear Information System (INIS)

    Goff, S.; Goff, F.

    1997-01-01

    The impacts of geothermal development projects are usually positive. However, without appropriate monitoring plans and mitigation actions firmly incorporated into the project planning process, there exists the potential for significant negative environmental impacts. The authors present five examples from Central America of environmental impacts associated with geothermal development activities. These brief case studies describe landslide hazards, waste brine disposal, hydrothermal explosions, and air quality issues. Improved Environmental Impact Assessments are needed to assist the developing nations of the region to judiciously address the environmental consequences associated with geothermal development

  13. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  14. Hawaii Energy Resource Overviews. Volume 3. Hawaiian ecosystem and its environmental determinants with particular emphasis on promising areas for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, S.M.

    1980-06-01

    A brief geobiological history of the Hawaiian Islands is presented. Climatology, physiography, and environmental degradation are discussed. Soil types and associations, land use patterns and ratings, and vegetation ecology are covered. The fauna discussed include: ancient and recent vertebrate life, land mollusca, marine fauma, and insect fauna. (MHR)

  15. Overview of Resources for Geothermal Absorption Cooling for Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gluesenkamp, Kyle R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehdizadeh Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    This report summarizes the results of a literature review in three areas: available low-temperature/coproduced geothermal resources in the United States, energy use for space conditioning in commercial buildings, and state of the art of geothermal absorption cooling.

  16. Analysis of induced seismicity in geothermal reservoirs – An overview

    Science.gov (United States)

    Zang, Arno; Oye, Volker; Jousset, Philippe; Deichmann, Nicholas; Gritto, Roland; McGarr, Arthur F.; Majer, Ernest; Bruhn, David

    2014-01-01

    In this overview we report results of analysing induced seismicity in geothermal reservoirs in various tectonic settings within the framework of the European Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs (GEISER) project. In the reconnaissance phase of a field, the subsurface fault mapping, in situ stress and the seismic network are of primary interest in order to help assess the geothermal resource. The hypocentres of the observed seismic events (seismic cloud) are dependent on the design of the installed network, the used velocity model and the applied location technique. During the stimulation phase, the attention is turned to reservoir hydraulics (e.g., fluid pressure, injection volume) and its relation to larger magnitude seismic events, their source characteristics and occurrence in space and time. A change in isotropic components of the full waveform moment tensor is observed for events close to the injection well (tensile character) as compared to events further away from the injection well (shear character). Tensile events coincide with high Gutenberg-Richter b-values and low Brune stress drop values. The stress regime in the reservoir controls the direction of the fracture growth at depth, as indicated by the extent of the seismic cloud detected. Stress magnitudes are important in multiple stimulation of wells, where little or no seismicity is observed until the previous maximum stress level is exceeded (Kaiser Effect). Prior to drilling, obtaining a 3D P-wave (Vp) and S-wave velocity (Vs) model down to reservoir depth is recommended. In the stimulation phase, we recommend to monitor and to locate seismicity with high precision (decametre) in real-time and to perform local 4D tomography for velocity ratio (Vp/Vs). During exploitation, one should use observed and model induced seismicity to forward estimate seismic hazard so that field operators are in a position to adjust well hydraulics (rate and volume of the

  17. Final environmental statement for the geothermal leasing program

    Energy Technology Data Exchange (ETDEWEB)

    1973-12-31

    This second of the four volumes of the Geothermal Leasing Program final impact statement contains the individual environmental statements for the leasing of federally owned geothermal resources for development in three specific areas: Clear Lake-Geysers; Mono Lake-Long Valley; and Imperial Valley, all in California. It also includes a summary of the written comments received and departmental responses relative to the Draft Environmental Impact Statement issued in 1971; comments and responses on the Draft Environmental Impact Statement; consultation and coordination in the development of the proposal and in the preparation of the Draft Environmental Statement; and coordination in the review of the Draft Environmental Statement.

  18. Institutional and environmental aspects of geothermal energy development

    Science.gov (United States)

    Citron, O. R.

    1977-01-01

    Until recently, the majority of work in geothermal energy development has been devoted to technical considerations of resource identification and extraction technologies. The increasing interest in exploiting the variety of geothermal resources has prompted an examination of the institutional barriers to their introduction for commercial use. A significant effort was undertaken by the Jet Propulsion Laboratory as a part of a national study to identify existing constraints to geothermal development and possible remedial actions. These aspects included legislative and legal parameters plus environmental, social, and economic considerations.

  19. Environmental impact directory system: preliminary implementation for geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Hess, F.D.; Hall, R.T.; Fullenwider, E.D.

    1976-07-01

    An Environmental Impact Directory System (EIDS) was proposed as a method for a computerized search of the widely distributed data files and models pertaining to energy-related environmental effects. To define the scope and content of the system, an example was prepared for the case of geothermal energy. The resulting sub-directory is known as GEIDs (Geothermal Environmental Impact Directory System). In preparing or reviewing an Environmental Impact Statement (EIS), the user may employ GEIDS as an extensive checklist to make sure he has taken into account all predictable impacts at any level of severity.

  20. Environmental aspects of the geothermal energy utilisation in Poland

    Science.gov (United States)

    Sowiżdżał, Anna; Tomaszewska, Barbara; Drabik, Anna

    2017-11-01

    Geothermal energy is considered as a strategic and sustainable source of renewable energy that can be effectively managed in several economic sectors. In Poland, despite the abundant potential of such resources, its share in the energy mix of renewable energy sources remains insubstantial. The utilisation of geothermal resources in Poland is related to the hydrogeothermal resources, however, numerous researches related to petrogeothermal energy resources are being performed. The utilisation of each type of energy, including geothermal, has an impact on the natural environment. In case of the effective development of geothermal energy resources, many environmental benefits are pointed out. The primary one is the extraction of clean, green energy that is characterised by the zero-emission rate of pollutants into the atmosphere, what considering the current environmental pollution in many Polish cities remains the extremely important issue. On the other hand, the utilisation of geothermal energy might influence the natural environment negatively. Beginning from the phase of drilling, which strongly interferes with the local landscape or acoustic climate, to the stage of energy exploitation. It should be noted that the efficient and sustainable use of geothermal energy resources is closely linked with the current law regulations at national and European level.

  1. Geothermal environmental projects publication list with abstracts 1975-1978

    Energy Technology Data Exchange (ETDEWEB)

    Ricker, Y.E.; Anspaugh, L.R.

    1979-05-15

    This report contains 119 abstracts of publication resulting from or closely related to geothermal environmental projects conducted by the Environmental Sciences Division at Lawrence Livermore Laboratory. Publications are listed chronologically from 1975 through 1978. The main entries are numbered sequentially, and include the full citation, an abstract, and selected keywords. This section is followed by an author index, and a keyword index.

  2. Occidental Geothermal, Inc. , Oxy Geothermal Power Plant No. 1: draft environmental impact report

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The following aspects of the proposed geothermal power plant are discussed: the project description; the environment in the vicinity of project as it exists before the project begins, from both a local and regional perspective; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the growth inducing impacts. (MHR)

  3. Williston Reservoir raising - environmental overview

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This preliminary environmental overview report was prepared by B.C. Hydro in June 1987 and revised in July 1988 as an initial assessment of a possible 1.5 m (5 ft.) raise in the Williston Reservoir maximum normal level. The enviromental overview study and the associated engineering and property studies were undertaken to provide information for a decision on whether to initiate more detailed studies. Overview studies are based mainly on available reports, mapping and field data, supplemented by limited site reconnaissance and, in this case, input from key agencies and groups. The lack of adequate mapping of areas which could be affected by reservoir raising did not permit definitive conclusion to be reached. This mapping will be done over the next year to complete the overview assessment. This document covers the impact assessment of socio-economic factors, forestry, reservoir clearing, heritage, recreation, aquatic resources, and wilflife. Further studies in each of these areas are also included. 54 refs., 11 figs., 8 tabs.

  4. Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Canon, P.

    1980-06-01

    The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

  5. Overview of emerging environmental technologies

    International Nuclear Information System (INIS)

    Olson, D.C.

    2000-01-01

    DOD is executing environmental restoration projects in accordance with compliance regulations from many federal agencies. With the passage of amendments to the Superfund law in 1986 that stated a preference for treatment instead of disposal, demand developed for alternative methods that provided more permanent and less costly solutions for dealing with contaminated materials. The Army files environmental impact statements on major programs and specific projects that are currently affecting, or have the potential to affect the environment. Personnel conducting those studies may find it helpful to learn about current environmental assessment methods and the outcomes of previous environmental studies. The Army currently spends almost 2.4% of its total budget on environmental programs. As the future budget picture continues to decline, new technologies offer the potential to provide a lower cost means of achieving the same level of environmental protection. This paper will provide an overview of environmental restoration planning and procedures, discuss information capabilities available on the Internet, provide summaries of recent technological literature and field studies; and identifies areas of informational 'gaps'. It concludes by urging closer ties between industry and the Army, as well as the need to pursue new and innovative techniques to solve old problems. (author)

  6. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  7. Geothermal energy

    International Nuclear Information System (INIS)

    Rummel, F.; Kappelmeyer, O.; Herde, O.A.

    1992-01-01

    Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP) [de

  8. Environmental impacts of open loop geothermal system on groundwater

    Science.gov (United States)

    Kwon, Koo-Sang; Park, Youngyun; Yun, Sang Woong; Lee, Jin-Yong

    2013-04-01

    Application of renewable energies such as sunlight, wind, rain, tides, waves and geothermal heat has gradually increased to reduce emission of CO2 which is supplied from combustion of fossil fuel. The geothermal energy of various renewable energies has benefit to be used to cooling and heating systems and has good energy efficiency compared with other renewable energies. However, open loop system of geothermal heat pump system has possibility that various environmental problems are induced because the system directly uses groundwater to exchange heat. This study was performed to collect data from many documents such as papers and reports and to summarize environmental impacts for application of open loop system. The environmental impacts are classified into change of hydrogeological factors such as water temperature, redox condition, EC, change of microbial species, well contamination and depletion of groundwater. The change of hydrogeological factors can induce new geological processes such as dissolution and precipitation of some minerals. For examples, increase of water temperature can change pH and Eh. These variations can change saturation index of some minerals. Therefore, dissolution and precipitation of some minerals such as quartz and carbonate species and compounds including Fe and Mn can induce a collapse and a clogging of well. The well contamination and depletion of groundwater can reduce available groundwater resources. These environmental impacts will be different in each region because hydrogeological properties and scale, operation period and kind of the system. Therefore, appropriate responses will be considered for each environmental impact. Also, sufficient study will be conducted to reduce the environmental impacts and to improve geothermal energy efficiency during the period that a open loop system is operated. This work was supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning

  9. Use of environmental radioactive isotopes in geothermal prospecting

    International Nuclear Information System (INIS)

    Balcazar, M.; Lopez M, A.; Huerta, M.; Flores R, J. H.; Pena, P.

    2010-10-01

    Oil resources decrease and environmental impact of burning fossil fuels support the use of alternative energies around the world. By far nuclear energy is the alternative which can supply huge amount of clean energy. Mexico has two nuclear units and has also explored and exploited the use of other complementary renewal energies, as wind and geothermal. Mexico is the third geothermal-energy producer in the world with an installed capacity of 960 MW and is planning the installation of 146 MW for the period 2010-2011, according to information of the Mexican Federal Electricity Board. This paper presents a study case, whose goal is to look for areas where the heat source can be located in geothermal energy fields under prospecting. The method consist in detecting a natural radioactive tracer, which is transported to the earth surface by geo-gases, generated close to the heat source, revealing areas of high permeability properties and open active fractures. Those areas are cross correlated to other resistivity, gravimetric and magnetic geophysical parameters in the geothermal filed to better define the heat source in the field. (Author)

  10. An overview of the Awibengkok geothermal system, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Stimac, James; Nordquist, Gregg; Suminar, Aquardi; Sirad-Azwar, Lutfhie [Chevron Geothermal Salak, Ltd., 11th Floor Sentral Senayan I, Jl. Asia Afrika No. 8, Jakarta 10270 (Indonesia)

    2008-06-15

    The Awibengkok (Salak) geothermal system is a liquid-dominated, fracture-controlled reservoir with benign chemistry and low-to-moderate non-condensable gas content. The geothermal system is hosted mainly by andesitic-to-rhyodacitic rocks, and floored by Miocene marine sedimentary rocks cut by igneous intrusions. The volcanic sequence is capped by an 8400-year-old phreatic explosion breccia, rhyolite fallout tuff (>8400 years and <40,000 years), rhyolite lavas, domes and related tuffs ({>=}40-120 ka), and dacite-to-rhyodate lavas and domes (185-280 ka) that were erupted across the eastern part of the field from NNE-trending vents controlled by a major fault. More regionally extensive basaltic-andesite to andesite volcanic centers are mostly between 180 and 1610 ka old. Surface and subsurface fault patterns, formation image logs and tracer studies indicate strongly anisotropic permeability aligned with the dominant N to NE fracture trend, dividing the field into a number of subcompartments that are locally connected by fractured aquifers and NW- and E-W-trending fractures. Shallow argillic alteration gives way with increasing depth and temperature to argillic-phyllic and propylitic zones, with the latter accounting for the bulk of the fluid produced from the geothermal system. The commercial Awibengkok reservoir is a moderate-to-high temperature (240-312 C) geothermal resource with high fracture permeability, moderate porosity (mean = 10.6%) and moderate-to-low matrix permeability (geometric mean = 0.026 md). The principal deep upflow zone, with fluid temperatures in the 275-312 C range, is located in the western part of the field. The ascending fluids move up along N- or NNE-trending structures that breach low-permeability tuff layers in the central and east-central parts of the field. Fluids in the central part of the reservoir are uniform in composition and temperature, representing the mixing of upflow and convective reflux. Fluids ascend and flow laterally to

  11. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.; Mahmoudi, H.; Ghaffour, NorEddine

    2010-01-01

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability

  12. Environmental assessment for geothermal loan guarantee: South Brawley geothermal exploration project

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    The foregoing analysis indicates that the proposed geothermal field experiment could result in several adverse environmental effects. Such effects would lie primarily in the areas of air quality, noise, aesthetics, land use, and water consumption. However, for the most part, mitigating measures have been, or easily could be, included in project plans to reduce these adverse effects to insignificant levels. Those aspects of the project which are not completely amenable to mitigation by any reasonable means include air quality, noise, aesthetics, land use and water use.

  13. Geothermal energy. A national proposal for geothermal resources research

    Energy Technology Data Exchange (ETDEWEB)

    Denton, J.C. (ed.)

    1972-01-01

    Discussions are given for each of the following topics: (1) importance to the Nation of geothermal resources, (2) budget recommendations, (3) overview of geothermal resources, (4) resource exploration, (5) resource assessment, (6) resource development and production, (7) utilization technology and economics, (8) environmental effects, (9) institutional considerations, and (10) summary of research needs.

  14. Strategies for compensating for higher costs of geothermal electricity with environmental benefits

    International Nuclear Information System (INIS)

    Murphy, H.; Niitsuma, Hiroaki

    1999-01-01

    After very high growth in the 1980s, geothermal electricity production has slowed in the mid- and late-1990s. While Japanese, Indonesian and Philippine geothermal growth has remained high as a consequence of supportive government policies, geothermal electricity production has been flat or reduced in much of Europe and North America. Low prices for coal and natural gas, combined with deregulation, means that in much of the world electricity from new fuel-burning electricity plants can be provided at half the cost of new geothermal electricity. Cost-cutting must be pursued, but is unlikely to close the price gap by itself. Geothermal production is widely perceived as being environmentally clean, but this is not unambiguously true, and requires reinjection to be fully realized. Strategies for monetizing the environmental advantages of geothermal, including the carbon tax, are discussed. (author)

  15. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.

    2010-08-03

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting. 2010 by the authors; licensee MDPI, Basel, Switzerland.

  16. Environmental analysis of geopressured-geothermal prospect areas, Brazoria and Kenedy Counties, Texas

    Energy Technology Data Exchange (ETDEWEB)

    White, W.A.; McGraw, M.; Gustavson, T.C.

    1978-01-01

    Preliminary environmental data, including current land use, substrate lithology, soils, natural hazards, water resources, biological assemblages, meteorological data, and regulatory considerations have been collected and analyzed for approximately 150 km/sup 2/ of land: (1) near Chocolate Bayou, Brazoria County, Texas, where a geopressured-geothermal test well was drilled in 1978, and (2) near the rural community of Armstrong, Kenedy County, Texas, where future geopressured-geothermal test well development may occur. The study was designed to establish an environmental data base and to determine, within spatial constraints set by subsurface reservoir conditions, environmentally suitable sites for geopressured-geothermal wells.

  17. Geothermal environmental studies, Heber Region, Imperial Valley, California. Environmental baseline data acquisition. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    The Electric Power Research Institute (EPRI) has been studying the feasibility of a Low Salinity Hydrothermal Demonstration Plant as part of its Geothermal Energy Program. The Heber area of the Imperial Valley was selected as one of the candidate geothermal reservoirs. Documentation of the environmental conditions presently existing in the Heber area is required for assessment of environmental impacts of future development. An environmental baseline data acquisition program to compile available data on the environment of the Heber area is reported. The program included a review of pertinent existing literature, interviews with academic, governmental and private entities, combined with field investigations and meteorological monitoring to collect primary data. Results of the data acquisition program are compiled in terms of three elements: the physical, the biological and socioeconomic settings.

  18. Russian Environmental Law - an Overview For Business.

    OpenAIRE

    Ratsiborinskaya, Daria

    2010-01-01

    markdownabstractRussia has carried out major environmental policy reforms during its transition period since the early 1990s, including with respect to global issues such as climate change, loss of biodiversity and ozone layer depletion. In view of these changes, this chapter provides a brief overview of current (and forthcoming) Russian environmental law as applicable to businesses operating in Russia. By touching upon the main difficulties that investors may face, e.g., environmental charge...

  19. Environmental considerations for geothermal energy as a source for district heating

    International Nuclear Information System (INIS)

    Rafferty, K.D.

    1996-01-01

    Geothermal energy currently provides a stable and environmentally attractive heat source for approximately 20 district heating (DH) systems in the US. The use of this resource eliminates nearly 100% of the conventional fuel consumption (and, hence, the emissions) of the loads served by these systems. As a result, geothermal DH systems can rightfully claim the title of the most fuel-efficient DH systems in operation today. The cost of producing heat from a geothermal resource (including capitalization of the production facility and cost for pumping) amounts to an average of $1.00 per million Btu (0.0034 $/kWh). The major environmental challenge for geothermal systems is proper management of the producing aquifer. Many systems are moving toward injection of the geothermal fluids to ensure long-term production

  20. Geothermal power plants principles, applications, case studies and environmental impact

    CERN Document Server

    DiPippo, Ronald

    2008-01-01

    Ron DiPippo, Professor Emeritus at the University of Massachusetts Dartmouth, is a world-regarded geothermal expert. This single resource covers all aspects of the utilization of geothermal energy for power generation from fundamental scientific and engineering principles. The thermodynamic basis for the design of geothermal power plants is at the heart of the book and readers are clearly guided on the process of designing and analysing the key types of geothermal energy conversion systems. Its practical emphasis is enhanced by the use of case studies from real plants that increase the reader'

  1. El Centro Geothermal Utility Core Field Experiment environmental-impact report and environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The City of El Centro is proposing the development of a geothermal energy utility core field experiment to demonstrate the engineering and economic feasibility of utilizing moderate temperature geothermal heat, on a pilot scale, for space cooling, space heating, and domestic hot water. The proposed facility is located on part of a 2.48 acre (1 hectare) parcel owned in fee by the City in the southeastern sector of El Centro in Imperial County, California. Geothermal fluid at an anticipated temperature of about 250/sup 0/F (121/sup 0/C) will heat a secondary fluid (water) which will be utilized directly or processed through an absorption chiller, to provide space conditioning and water heating for the El Centro Community Center, a public recreational facility located approximately one-half mile north of the proposed well site. The geothermal production well will be drilled to 8500 feet (2590m) and an injection well to 4000 feet (1220m) at the industrially designated City property. Once all relevant permits are obtained it is estimated that site preparation, facility construction, the completion and testing of both wells would be finished in approximately 26 weeks. The environmental impacts are described.

  2. Environmental science and technology: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is intended to provide an overview of the scientific and technological effort to meet the environmental goals identified in the Green Plan. The report gives a sense of the range of scientific and technological efforts that are being devoted to issues as diverse as conserving our wildlife and national parks and developing innovative technologies to clean-up polluted sites.

  3. Geothermal energy from the earth: Its potential impact as an environmentally sustainable resource

    International Nuclear Information System (INIS)

    Mock, J.E.; Tester, J.W.; Wright, P.M.

    1997-01-01

    Geothermal energy technology is reviewed in terms of its current impact and future potential as an energy source. In general, the geothermal energy resource base is large and well distributed globally. Geothermal systems have a number of positive social characteristics (they are simple, safe, and adaptable systems with modular 1--50 MW [thermal (t) or electric (e)] plants capable of providing continuous baseload, load following, or peaking capacity) and benign environmental attributes (negligible emissions of CO 2 , SO x , NO x , and particulates, and modest land and water use). Because these features are compatible with sustainable growth of global energy supplies in both developed and developing countries, geothermal energy is an attractive option to replace fossil and fissile fuels. In 1997, about 7,000 MWe of base-load generating capacity and over 15,000 MWt of heating capacity from high-grade geothermal resources are in commercial use worldwide. 114 refs., 6 figs., 4 tabs

  4. Proceedings of second geopressured geothermal energy conference, Austin, Texas, February 23--25, 1976. Volume V. Legal, institutional, and environmental

    Energy Technology Data Exchange (ETDEWEB)

    Vanston, J.H.; Elmer, D.B.; Gustavson, T.C.; Kreitler, C.W.; Letlow, K.; Lopreato, S.C.; Meriwether, M.; Ramsey, P.; Rogers, K.E.; Williamson, J.K.

    1976-01-01

    Three separate abstracts were prepared for Volume V of the Proceedings of the Conference. Sections are entitled: Legal Issues in the Development of Geopressured--Geothermal Resources of Texas and Louisiana Gulf Coast; The Development of Geothermal Energy in the Gulf Coast; Socio-economic, Demographic, and Political Considerations; and Geothermal Resources of the Texas Gulf Coast--Environmental Concerns arising from the Production and Disposal of Geothermal waters. (MCW)

  5. Environmental impact in geothermal fields; Impacto ambiental en campos geotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, P; Torres R, V; Gonzalez P, E; Guevara G, M [Instituto de Investigaciones Electricas. Departamento de Geotermia. Cuernavaca (Mexico)

    1997-12-31

    Generally, water exploitation and deep steam of geothermal fields may be cause of a pollution potential on the surface, specially by the chemical composition of geothermal water which has a high concentration of minerals, salts and heavy metals. The utilization of stable isotopes as deuterium and oxygen 18 as radioactive tracers and water origin indicators allow to know the trajectories and sources of background waters as well as possible moistures between geothermal waters and meteoric waters. Some ions such as chlorides and fluorides present solubilities that allow their register as yet long distances of their source. (Author).

  6. Geothermal power plants principles, applications, case studies and environmental impact

    CERN Document Server

    DiPippo, Ronald

    2012-01-01

    Now in its 3e, this single resource covers all aspects of the utilization of geothermal energy for power generation using fundamental scientific and engineering principles. Its practical emphasis is enhanced by the use of case studies from real plants that increase the reader's understanding of geothermal energy conversion and provide a unique compilation of hard-to-obtain data and experience. Important new chapters cover Hot Dry Rock, Enhanced Geothermal Systems, and Deep Hydrothermal Systems. New, international case studies provide practical, hands-on knowledge.

  7. Geotechnical environmental aspects of geothermal power generation at Herber, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    1976-10-01

    The feasibility of constructing a 25-50 MWe geothermal power plant using low salinity hydrothermal fluid as the energy source was assessed. Here, the geotechnical aspects of geothermal power generation and their relationship to environmental impacts in the Imperial Valley of California were investigated. Geology, geophysics, hydrogeology, seismicity and subsidence are discussed in terms of the availability of data, state-of-the-art analytical techniques, historical and technical background and interpretation of current data. Estimates of the impact of these geotechnical factors on the environment in the Imperial Valley, if geothermal development proceeds, are discussed.

  8. Environmental assessment of proposed geothermal well testing in the Tigre Lagoon Oil Field, Vermilion Parish, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    An environmental assessment is made of the proposed testing of two geopressured, geothermal aquifers in central coastal Louisiana. On the basis of an analysis of the environmental setting, subsurface characteristics, and the proposed action, potential environmental impacts are determined and evaluated together with potential conflicts with federal, state, and local programs. (LBS )

  9. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  10. Savannah River Site (SRS) environmental overview

    International Nuclear Information System (INIS)

    O'Rear, M.G.; Steele, J.L.; Kitchen, B.G.

    1990-01-01

    The environmental surveillance activities at and in the vicinity of the Savannah River Site (SRS) [formerly the Savannah River Plant (SRP)] comprise one of the most comprehensive and extensive environmental monitoring programs in the United States. This overview contains monitoring data from routine and nonroutine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs in progress, a summary of National Environmental Policy Act (NEPA) activities, and a listing of environmental permits (Appendix A) issued by regulatory agencies. This overview provides information about the impact of SRS operations on the public and the environment. The SRS occupies a large area of approximately 300 square miles along the Savannah River, principally in Aiken and Barnwell counties of South Carolina. SRS's primary function is the production of tritium, plutonium, and other special nuclear materials for national defense, for other governmental uses, and for some civilian purposes. From August 1950 to March 31, 1989, SRS was operated for the Department of Energy (DOE) by E. I. du Pont de Nemours ampersand Co. On April 1, 1989 the Westinghouse Savannah River Company assumed responsibility as the prime contractor for the Savannah River Site

  11. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-02-01

    This Final Environmental Impact Statement and Environmental Impact Report (Final EIS/EIR) has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). The Proposed Action includes the construction, operation, and decommissioning of a 48 megawatt (gross) geothermal power plant with ancillary facilities (10-12 production well pads and 3-5 injection well pads, production and injection pipelines), access roads, and a 230-kilovolt (kV) transmission line in the Modoc National Forest in Siskiyou County, California. Alternative locations for the power plant site within a reasonable distance of the middle of the wellfield were determined to be technically feasible. Three power plant site alternatives are evaluated in the Final EIS/EIR.

  12. Bruneau Known Geothermal Resource Area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Bruneau Known Geothermal Resource Area (KGRA) is part of the Bruneau-Grandview thermal anomaly, the largest geothermal area in the western US. This part of Owyhee County is the driest part of Idaho. The KGRA is associated with the southern boundary fault zone of the Snake River Plain. Thermal water, produced from numerous artesian wells in the region, is supplied from two major aquifers. Ecological concerns include the threatened Astragalus mulfordiae and the numerous birds of prey nesting in the Snake River canyon northwest of the KGRA. Extensive geothermal development may strain the limited health care facilities in the county. Ethnographic information suggests that there is a high probability of prehistoric cultural materials being remnant in the Hot Spring locality.

  13. ADDRESSING ENVIRONMENTAL CHALLENGES UNDER COMPREHENSIVE UTILIZATION OF GEOTHERMAL SALINE WATER RESOURCES IN THE NORTHERN DAGESTAN

    Directory of Open Access Journals (Sweden)

    A. Sh. Ramazanov

    2016-01-01

    Full Text Available Aim. The aim of the study is to develop technologies for processing geothermal brine produced with the extraction of oil as well as to solve environmental problems in the region.Methods. In order to determine the chemical composition and radioactivity of the geothermal water and solid samples, we used atomic absorption and gamma spectrometry. Evaluation of the effectiveness of the technology was made on the basis of experimental studies.Results. In the geothermal water, eight radionuclides were recognized and quantified with the activity of 87 ± 5 Bq / dm3. For the processing of this water to produce lithium carbonate and other components we propose a technological scheme, which provides a step of water purification from radio-nuclides. As a result of aeration and alkalinization, we can observe deactivation and purification of the geothermal water from mechanical impurities, iron ions, hydrogen carbonates and organic substances. Water treatment allows recovering lithium carbonate, magnesite caustic powder and salt from geothermal water. The mother liquors produced during manufacturing operations meet the requirements for the water suitable for waterflooding of oil reservoirs and can be injected for maintaining the reservoir pressure of the deposits.Conclusion. The implementation of the proposed processing technology of mineralized geothermal water produced with the extraction of oil in the Northern Dagestan will contribute to extend the life of the oil fields and improve the environmental problems. It will also allow import substitution in Russia for lithium carbonate and edible salt.

  14. Environmental monitoring for the hot dry rock geothermal energy development project. Annual report, July 1975--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Pettitt, R.A. (comp.)

    1976-09-01

    The objectives of this environmental monitoring report are to provide a brief conceptual and historical summary of the Hot Dry Rock Geothermal Project, a brief overview of the environmental monitoring responsibilities and activities of the Los Alamos Scientific Laboratory, and descriptions of the studies, problems, and results obtained from the various monitoring programs. Included are descriptions of the work that has been done in three major monitoring areas: (1) water quality, both surface and subsurface; (2) seismicity, with a discussion of the monitoring strategy of regional, local, and close-in detection networks; and (3) climatology. The purpose of these programs is to record baseline data, define potential effects from the project activities, and determine and record any impacts that may occur.

  15. Implementation Plan for the Hawaii Geothermal Project Environmental Impact Statement (DOE Review Draft:)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-09-18

    The US Department of Energy (DOE) is preparing an Environmental Impact Statement (EIS) that identifies and evaluates the environmental impacts associated with the proposed Hawaii Geothermal Project (HGP), as defined by the State of Hawaii in its 1990 proposal to Congress (DBED 1990). The location of the proposed project is shown in Figure 1.1. The EIS is being prepared pursuant to the requirements of the National Environmental Policy Act of 1969 (NEPA), as implemented by the President's Council on Environmental Quality (CEQ) regulations (40 CFR Parts 1500-1508) and the DOE NEPA Implementing Procedures (10 CFR 1021), effective May 26, 1992. The State's proposal for the four-phase HGP consists of (1) exploration and testing of the geothermal resource beneath the slopes of the active Kilauea volcano on the Island of Hawaii (Big Island), (2) demonstration of deep-water power cable technology in the Alenuihaha Channel between the Big Island and Mau, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands. DOE prepared appropriate NEPA documentation for separate federal actions related to Phase 1 and 2 research projects, which have been completed. This EIS will consider Phases 3 and 4, as well as reasonable alternatives to the HGP. Such alternatives include biomass coal, solar photovoltaic, wind energy, and construction and operation of commercial geothermal power production facilities on the Island of Hawaii (for exclusive use on the Big Island). In addition, the EIs will consider the reasonable alternatives among submarine cable technologies, geothermal extraction, production, and power generating technologies; pollution control technologies; overland and submarine power transmission routes; sites reasonably suited to

  16. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-02-01

    This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).

  17. Mountain home known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Mountain Home KGRA encompasses an area of 3853 hectares (ha) at the foot of the Mount Bennett Hills in Elmore County, Idaho. The site is associated with an arid climate and high winds that generate an acute dust problem. The KGRA lies adjacent to the northwest-southeast trending fault zone that reflects the northern boundary of the western Snake River Plain graben. Data indicate that a careful analysis of the subsidence potential is needed prior to extensive geothermal development. Surface water resources are confined to several small creeks. Lands are utilized for irrigated farmlands and rangeland for livestock. There are no apparent soil limitations to geothermal development. Sage grouse and mule deer are the major species of concern. The potential of locating significant heritage resources other than the Oregon Trail or the bathhouse debris appears to be relatively slight.

  18. Crane Creek known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Crane Creek known geothermal resource area (KGRA) is located in Washington County, in southwestern Idaho. Estimated hydrothermal resource temperatures for the region are 166/sup 0/C (Na-K-Ca) and 176/sup 0/C (quartz). The KGRA is situated along the west side of the north-south trending western Idaho Fault Zone. Historic seismicity data for the region identify earthquake activity within 50 km. The hot springs surface along the margin of a siliceous sinter terrace or in adjacent sediments. Approximately 75% of the KGRA is underlain by shallow, stony soils on steep slopes indicating topographic and drainage limitations to geothermal development. Species of concern include sage grouse, antelope, and mule deer. There is a high probability of finding significant prehistoric cultural resources within the proposed area of development.

  19. Castle Creek known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Castle Creek known geothermal resource area (KGRA) is part of the large Bruneau-Grand View thermal anomaly in southwestern Idaho. The KGRA is located in the driest area of Idaho and annual precipitation averages 230 mm. The potential of subsidence and slope failure is high in sediments of the Glenns Ferry Formation and Idaho Group found in the KGRA. A major concern is the potential impact of geothermal development on the Snake River Birds of Prey Natural Area which overlaps the KGRA. Any significant economic growth in Owyhee County may strain the ability of the limited health facilities in the county. The Idaho Archaeological survey has located 46 archaeological sites within the KGRA.

  20. Geothermal Induced Seismicity National Environmental Policy Act Review

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cook, Jeffrey J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beckers, Koenraad J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Young, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    In 2016, the U.S. Bureau of Land Management (BLM) contracted with the National Renewable Energy Laboratory (NREL) to assist the BLM in developing and building upon tools to better understand and evaluate induced seismicity caused by geothermal projects. This review of NEPA documents for four geothermal injection or EGS projects reveals the variety of approaches to analyzing and mitigating induced seismicity. With the exception of the Geysers, where induced seismicity has been observed and monitored for an extended period of time due to large volumes of water being piped in to recharge the hydrothermal reservoir, induced seismicity caused by geothermal projects is a relative new area of study. As this review highlights, determining the level of mitigation required for induced seismic events has varied based on project location, when the review took place, whether the project utilized the International Energy Agency or DOE IS protocols, and the federal agency conducting the review. While the NEPA reviews were relatively consistent for seismic monitoring and historical evaluation of seismic events near the project location, the requirements for public outreach and mitigation for induced seismic events once stimulation has begun varied considerably between the four projects. Not all of the projects were required to notify specific community groups or local government entities before beginning the project, and only one of the reviews specifically stated the project proponent would hold meetings with the public to answer questions or address concerns.

  1. Vulcan Hot Springs known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Vulcan Hot Springs known geothermal resource area (KGRA) is one of the more remote KGRAs in Idaho. The chemistry of Vulcan Hot Springs indicates a subsurface resource temperature of 147/sup 0/C, which may be high enough for power generation. An analysis of the limited data available on climate, meteorology, and air quality indicates few geothermal development concerns in these areas. The KGRA is located on the edge of the Idaho Batholith on a north-trending lineament which may be a factor in the presence of the hot springs. An occasional earthquake of magnitude 7 or greater may be expected in the region. Subsidence or elevation as a result of geothermal development in the KGRA do not appear to be of concern. Fragile granitic soils on steep slopes in the KGRA are unstable and may restrict development. The South fork of the Salmon River, the primary stream in the region, is an important salmon spawning grounds. Stolle Meadows, on the edge of the KGRA, is used as a wintering and calving area for elk, and access to the area is limited during this period. Socioeconomic and demographic surveys indicate that facilities and services will probably not be significantly impacted by development. Known heritage resources in the KGRA include two sites and the potential for additional cultural sites is significant.

  2. Basic overview towards the assessment of landslide and subsidence risks along a geothermal pipeline network

    NARCIS (Netherlands)

    Astisiasari, Astisiasari; Van Westen, C.J.; Jetten, V.; Van Der Meer, F.D.; Hizbaron, Dyah Rahmawati

    2018-01-01

    An operating geothermal power plant consists of installation units that work systematically in a network. The pipeline network connects various engineering structures, e.g. well pads, separator, scrubber, and power station, in the process of transferring geothermal fluids to generate electricity.

  3. The Hanford Environmental Dose Reconstruction Project: Overview

    International Nuclear Information System (INIS)

    Haerer, H.A.; Freshley, M.D.; Gilbert, R.O.; Morgan, L.G.; Napier, B.A.; Rhoads, R.E.; Woodruff, R.K.

    1990-01-01

    In 1988, researchers began a multiyear effort to estimate radiation doses that people could have received since 1944 at the U.S. Department of Energy's Hanford Site. The study was prompted by increasing concern about potential health effects to the public from more than 40 yr of nuclear activities. We will provide an overview of the Hanford Environmental Dose Reconstruction Project and its technical approach. The work has required development of new methods and tools for dealing with unique technical and communication challenges. Scientists are using a probabilistic, rather than the more typical deterministic, approach to generate dose distributions rather than single-point estimates. Uncertainties in input parameters are reflected in dose results. Sensitivity analyses are used to optimize project resources and define the project's scope. An independent technical steering panel directs and approves the work in a public forum. Dose estimates are based on review and analysis of historical data related to operations, effluents, and monitoring; determination of important radionuclides; and reconstruction of source terms, environmental conditions that affected transport, concentrations in environmental media, and human elements, such as population distribution, agricultural practices, food consumption patterns, and lifestyles. A companion paper in this volume, The Hanford Environmental Dose Reconstruction Project: Technical Approach, describes the computational framework for the work

  4. 76 FR 21329 - Humboldt-Toiyabe National Forest; Nevada; Environmental Impact Statement for Geothermal Leasing...

    Science.gov (United States)

    2011-04-15

    ... at 1340 Financial Blvd, Reno, NV 89502, is a cooperating agency for this NEPA analysis. Responsible... Impact Statement for Geothermal Leasing on the Humboldt-Toiyabe National Forest AGENCY: Forest Service, USDA. ACTION: Notice of Intent to prepare an environmental impact statement. SUMMARY: The Humboldt...

  5. Geothermal energy

    International Nuclear Information System (INIS)

    Le Du, H.; Bouchot, V.; Lopez, S.; Bialkowski, A.; Colnot, A.; Rigollet, C.; Sanjuan, B.; Millot, R.; Brach, M.; Asmundsson, R.; Giroud, N.

    2010-01-01

    Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)

  6. Gulf Coast Programmatic Environmental Assessment Geothermal Well Testing: The Frio Formation of Texas and Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    In accordance with the requirements of 10 CFR Part 711, environmental assessments are being prepared for significant activities and individual projects of the Division of Geothermal Energy (DGE) of the Energy Research and Development Administration (ERDA). This environmental assessment of geopressure well testing addresses, on a regional basis, the expected activities, affected environments, and possible impacts in a broad sense. The specific part of the program addressed by this environmental assessment is geothermal well testing by the take-over of one or more unsuccessful oil wells before the drilling rig is removed and completion of drilling into the geopressured zone. Along the Texas and Louisiana Gulf Coast (Plate 1 and Overlay) water at high temperatures and high pressures is trapped within Gulf basin sediments. The water is confined within or below essentially impermeable shale sequences and carries most or all of the overburden pressure. Such zones are referred to as geopressured strata. These fluids and sediments are heated to abnormally high temperatures (up to 260 C) and may provide potential reservoirs for economical production of geothermal energy. The obvious need in resource development is to assess the resource. Ongoing studies to define large-sand-volume reservoirs will ultimately define optimum sites for drilling special large diameter wells to perform large volume flow production tests. In the interim, existing well tests need to be made to help define and assess the resource. The project addressed by this environmental assessment is the performance of a geothermal well test in high potential geothermal areas. Well tests involve four major actions each of which may or may not be required for each of the well tests. The four major actions are: site preparation, drilling a salt-water disposal well, actual flow testing, and abandonment of the well.

  7. Geothermal energy utilization and technology

    CERN Document Server

    Dickson, Mary H; Fanelli, Mario

    2013-01-01

    Geothermal energy refers to the heat contained within the Earth that generates geological phenomena on a planetary scale. Today, this term is often associated with man's efforts to tap into this vast energy source. Geothermal Energy: utilization and technology is a detailed reference text, describing the various methods and technologies used to exploit the earth's heat. Beginning with an overview of geothermal energy and the state of the art, leading international experts in the field cover the main applications of geothermal energy, including: electricity generation space and district heating space cooling greenhouse heating aquaculture industrial applications The final third of the book focuses upon environmental impact and economic, financial and legal considerations, providing a comprehensive review of these topics. Each chapter is written by a different author, but to a set style, beginning with aims and objectives and ending with references, self-assessment questions and answers. Case studies are includ...

  8. Environmental Impacts of a Multi-Borehole Geothermal System: Model Sensitivity Study

    Science.gov (United States)

    Krol, M.; Daemi, N.

    2017-12-01

    Problems associated with fossil fuel consumption has increased worldwide interest in discovering and developing sustainable energy systems. One such system is geothermal heating, which uses the constant temperature of the ground to heat or cool buildings. Since geothermal heating offers low maintenance, high heating/cooling comfort, and a low carbon footprint, compared to conventional systems, there has been an increasing trend in equipping large buildings with geothermal heating. However, little is known on the potential environmental impact geothermal heating can have on the subsurface, such as the creation of subsurface thermal plumes or changes in groundwater flow dynamics. In the present study, the environmental impacts of a closed-loop, ground source heat pump (GSHP) system was examined with respect to different system parameters. To do this a three-dimensional model, developed using FEFLOW, was used to examine the thermal plumes resulting from ten years of operation of a vertical closed-loop GSHP system with multiple boreholes. A required thermal load typical of an office building located in Canada was calculated and groundwater flow and heat transport in the geological formation was simulated. Consequently, the resulting thermal plumes were studied and a sensitivity analysis was conducted to determine the effect of different parameters like groundwater flow and soil type on the development and movement of thermal plumes. Since thermal plumes can affect the efficiency of a GSHP system, this study provides insight into important system parameters.

  9. Occidental Geothermal, Inc. , Oxy geothermal power plant No. 1. Final environmental impact report

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The project-specific environmental analysis covers the following: geology, soils, water resources, biology, air quality, noise, waste management, health, safety, transportation, energy and material resources, cultural resources, socioeconomics, public services, land use, and aesthetics. Other topics covered are: the cumulative envionmental analysis; unavoidable significant adverse environmental effects; irreversible environmental changes and irretrievable commitments of energy and materials; the relationship between local short-term uses of man's environment and the maintenance and enhancement of long-term productivity; growth-inducing impacts; and alternatives to the proposed action. (MHR)

  10. Geothermal energy

    International Nuclear Information System (INIS)

    Laplaige, Ph.; Lemale, J.

    2008-01-01

    Geothermal energy is a renewable energy source which consists in exploiting the heat coming from the Earth. It covers a wide range of techniques and applications which are presented in this article: 1 - the Earth, source of heat: structure of the Earth, geodynamic model and plate tectonics, origin of heat, geothermal gradient and terrestrial heat flux; 2 - geothermal fields and resources; 3 - implementation of geothermal resources: exploration, main characteristic parameters, resource exploitation; 4 - uses of geothermal resources: power generation, thermal uses, space heating and air conditioning heat pumps, district heating, addition of heat pumps; 5 - economical aspects: power generation, heat generation for district heating; 6 - environmental aspects: conditions of implementation, impacts as substitute to fossil fuels; 7 - geothermal energy in France: resources, organisation; 8 - conclusion. (J.S.)

  11. Environmental impact of geothermal power plants in Aydın, Turkey

    Science.gov (United States)

    Yilmaz, Ersel; Ali Kaptan, Mustafa

    2017-10-01

    Geothermal energy is classified as a clean and sustainable energy source, like all industrial activities, geothermal energy power plants (GEPP) technology has also some positive and negative effects on the environment. In this paper are presented by attent not only on environmental impacts of GEPP onto Büyük Menderes River and fresh water sources, which ere used for irrigation of agricultural fields from tousands of years in basin, but also on water quality contents like heavy metals and gases emition due to drilling and electricity producing technology of GEPP's. Aydın province is located in the southwestern part of the region and its city center has around 300000 population. The high geothermal potential of this region became from geographical location, which is held on active tectonic Alpine-Himalaya Orogen belt with active volcanoes and young faults. Since 1980's to 2016 there is about 70.97% (662.75 MW) of installed capacity by according to the Mineral Research and Exploration General Directorate, there are totally 290 well licensed (540 explore licenses and 76 business licenses), and 31 geothermal powerplants purposely installed. Topic is important because of number of GEPP increased rapidly after 2012 to now a days to 36 in whole basin.

  12. The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem

    Directory of Open Access Journals (Sweden)

    William P. Inskeep

    2013-05-01

    Full Text Available The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply-rooted and poorly understood archaea, bacteria and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment or lake habitats and therefore offer a tremendous opportunity for studying the structure and function of different model microbial communities using environmental metagenomics. One of the broader goals of this study was to establish linkages among microbial distribution, metabolic potential and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1 phototrophic mats, (2 ‘filamentous streamer’ communities, and (3 archaeal-dominated sediments. The metagenomes were analyzed using a suite of complementary and integrative bioinformatic tools, including phylogenetic and functional analysis of both individual sequence reads and assemblies of predominant phylotypes. This volume identifies major environmental determinants of a large number of thermophilic microbial lineages, many of which have not been fully described in the literature nor previously cultivated to enable functional and genomic analyses. Moreover, protein family abundance comparisons and in-depth analyses of specific genes and metabolic pathways relevant to these hot-spring environments reveal hallmark signatures of metabolic capabilities that parallel the distribution of phylotypes across specific types of geochemical environments.

  13. Effective use of environmental impact assessments (EIAs) for geothermal development projects

    International Nuclear Information System (INIS)

    Goff, S.J.

    2000-01-01

    Both the developed and developing nations of the world would like to move toward a position of sustainable development while paying attention to the restoration of natural resources, improving the environment, and improving the quality of life. The impacts of geothermal development projects are generally positive. It is important, however, that the environmental issues associated with development be addressed in a systematic fashion. Drafted early in the project planning stage, a well-prepared Environmental Impact Assessment (EIA) can significantly add to the quality of the overall project. An EIA customarily ends with the decision to proceed with the project. The environmental analysis process could be more effective if regular monitoring, detailed in the EIA, continues during project implementation. Geothermal development EIAs should be analytic rather than encyclopedic, emphasizing the impacts most closely associated with energy sector development. Air quality, water resources and quality, geologic factors, and socioeconomic issues will invariably be the most important factors. The purpose of an EIA should not be to generate paperwork, but to enable superb response. The EIA should be intended to help public officials make decisions that are based on an understanding of environmental consequences and take proper actions. The EIA process has been defined in different ways throughout the world. In fact, it appears that no two countries have defined it in exactly the same way. Going hand in hand with the different approaches to the process is the wide variety of formats available. It is recommended that the world geothermal community work towards the adoption of a standard. The Latin American Energy Organization (OLADE) and the Inter-American Development Bank (IDB)(OLADE, 1993) prepared a guide that presents a comprehensive discussion of the environmental impacts and suggested mitigation alternatives associated with geothermal development projects. The OLADE guide

  14. Geothermal energy

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  15. Geothermal energy

    International Nuclear Information System (INIS)

    Vuataz, F.-D.

    2005-01-01

    This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power

  16. Geothermal and Trigeneration Systems as Innovative and EnvironmentallyFriendly Solutions for Telecommunication Plant Cooling

    Directory of Open Access Journals (Sweden)

    Paolo Trotta

    2016-12-01

    Full Text Available The paper deals with a model-based analysis of innovative cooling systems, to be deployed in telecommunication (TLC plants in consideration of their size, geographical location and typology (e.g. central Offices or data-centers. Environmentally friendly systems, such as geothermal heat pumps and trigeneration plants, were considered. The trade-off between the investment and operating costs was first analyzed, followed by a comparative evaluation of economic savings achievable via each candidate solution with respect to reference benchmarks, here represented by traditional air-water heat pump and conventional interaction with electrical grid. In this way, a preliminary macroscopic assessment of the best solutions was accomplished, according to the different scenarios (i.e. small or big TLC plant under investigation. A more detailed analysis, concerning the comparison between traditional and geothermal systems, was specifically carried out to evaluate savings as a function of the external temperature and, consequently, of geographical location.

  17. Calculations of environmental benefits from using geothermal energy must include the rebound effect

    DEFF Research Database (Denmark)

    Atlason, Reynir Smari; Unnthorsson, Runar

    2017-01-01

    and energy production patterns are simulated using data from countries with similar environmental conditions but do not use geothermal or hydropower to the same extent as Iceland. Because of the rapid shift towards renewable energy and exclusion of external energy provision, the country is considered......When considering the environmental benefits from converting to renewable energy sources, the rebound effect is often omitted. In this study, the aim is to investigate greenhouse gas emission reduction inclusive of the rebound effect. We use Iceland as a case study where alternative consumption...

  18. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Testing Activity, Frio Formation, Texas and Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    This Environmental Assessment (EA) has been prepared to provide the environmental input into the Division of Geothermal Energy's decisions to expand the geothermal well testing activities to include sites in the Frio Formation of Texas and Louisiana. It is proposed that drilling rigs be leased before they are removed from sites in the formation where drilling for gas or oil exploration has been unsuccessful and that the rigs be used to complete the drilling into the geopressured zone for resource exploration. This EA addresses, on a regional basis, the expected activities, affected environment, and the possible impacts in a broad sense as they apply to the Gulf Coast well testing activity of the Geothermal Energy Geopressure Subprogram of the Department of Energy. Along the Texas and Louisiana Gulf Coast (Plate 1 and Overlay, Atlas) water at high temperatures and high pressures is trapped within Gulf basin sediments. The water is confined within or below essentially impermeable shale sequences and carries most or all of the overburden pressure. Such zones are referred to as geopressured strata. These fluids and sediments are heated to abnormally high temperatures (up to 260 C) and may provide potential reservoirs for economical production of geothermal energy. The obvious need in resource development is to assess the resource. Ongoing studies to define large-sand-volume reservoirs will ultimately define optimum sites for drilling special large diameter wells to perform large volume flow production tests. in the interim, existing well tests need to be made to help define and assess the resource.

  19. Environmental Assessment and Finding of No Significant Impact: Kalina Geothermal Demonstration Project Steamboat Springs, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-02-22

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) to provide the DOE and other public agency decision makers with the environmental documentation required to take informed discretionary action on the proposed Kalina Geothermal Demonstration project. The EA assesses the potential environmental impacts and cumulative impacts, possible ways to minimize effects associated with partial funding of the proposed project, and discusses alternatives to DOE actions. The DOE will use this EA as a basis for their decision to provide financial assistance to Exergy, Inc. (Exergy), the project applicant. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human or physical environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  20. Energetic, exergetic, economic and environmental evaluations of geothermal district heating systems: An application

    International Nuclear Information System (INIS)

    Keçebaş, Ali

    2013-01-01

    Highlights: ► Applying exergy, economic, environment and sustainability analyses to the GDHSs. ► Assessing energy and exergy efficiencies, economic and environmental impacts. ► Calculating the energy and exergy efficiencies of 34.86% and 48.78%, respectively. ► Proposing GDHSs as the most economic heating system. ► Providing a significant contribution towards reducing the emissions of air pollution. - Abstract: This study deals with an energetic and exergetic analysis as well as economic and environmental evaluations of Afyon geothermal district heating system (AGDHS) in Afyon, Turkey. In the analysis, actual system data are used to assess the district heating system performance, energy and exergy efficiencies, specific exergy index, exergetic improvement potential and exergy losses. And, for economic and environmental evaluations, actual data are obtained from the Technical Departments. The energy and exergy flow diagrams are clearly drawn to illustrate how much destructions/losses take place in addition to the inputs and outputs. For system performance analysis and improvement, both energy and exergy efficiencies of the overall AGDHS are determined to be 34.86% and 48.78%, respectively. The efficiency improvements in heat and power systems can help achieving energy security in an environmentally acceptable way by reducing the emissions that might otherwise occur. Present application has shown that in Turkey, geothermal energy is much cheaper than the other energy sources, like fossil fuels, and makes a significant contribution towards reducing the emissions of air pollution.

  1. Tracks: A National Environmental Public Health Tracking Network Overview

    Centers for Disease Control (CDC) Podcasts

    In this podcast, Dr. Mike McGeehin, Director of CDC's Division of Environmental Hazards and Health Effects, provides an overview of the National Environmental Public Health Tracking Network. It highlights the Tracking Network's goal, how it will improve public health, its audience, and much more.

  2. Frontier models for evaluating environmental efficiency: an overview

    NARCIS (Netherlands)

    Oude Lansink, A.G.J.M.; Wall, A.

    2014-01-01

    Our aim in this paper is to provide a succinct overview of frontier-based models used to evaluate environmental efficiency, with a special emphasis on agricultural activity. We begin by providing a brief, up-to-date review of the main approaches used to measure environmental efficiency, with

  3. Improving the Environmental Sustainability of Flash Geothermal Power Plants—A Case Study

    Directory of Open Access Journals (Sweden)

    Lorenzo Bruscoli

    2015-11-01

    Full Text Available The sustainability of geothermal energy production is analyzed with reference to a production plant located in a specific area (Monte Amiata, Italy. Four solutions combining a flash power plant with an Organic Rankine Cycle in a hybrid configuration are analyzed in terms of production of electricity, exergy balance and emissions level (CO2, H2S, Hg. The different solutions correspond to increasing environmental performance, and for the most advanced case achieve near-zero emissions (complete reinjection of the natural resource, including incondensable gases. The results show that this can be achieved at the price of a progressive reduction of electrical productivity.

  4. Preliminary environmental analysis of a geopressured-geothermal test well in Brazoria County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    White, W.A.; McGraw, M.; Gustavson, T.C.; Meriwether, J.

    1977-11-16

    Preliminary environmental data, including current land use, substrate lithology, soils, natural hazards, water resources, biological assemblages, meteorological data, and regulatory considerations have been collected and analyzed for approximately 150 km/sup 2/ of land near Chocolate Bayou, Brazoria County, Texas, in which a geopressured-geothermal test well is to be drilled in the fall of 1977. The study was designed to establish an environmental data base and to determine, within spatial constraints set by subsurface reservoir conditions, environmentally suitable sites for the proposed well. Preliminary analyses of data revealed the eed for focusing on the following areas: potential for subsidence and fault activation, susceptibility of test well and support facilities to fresh- and salt-water flooding, possible effects of produced saline waters on biological assemblages and groundwaer resources, distribution of expansive soils, and effect of drilling and associated support activities on known archeological-cultural resources.

  5. Application of Environmental Isotope and Hydrogeochemical Techniques in Investigating the Geothermal Resources

    International Nuclear Information System (INIS)

    Kamarudin Samuding; Noor Akhmal Kamarudin; Mohd Shahrizal Mohamed Sharifodin; Azrul Arifin; Kamaruzaman Mohamad

    2016-01-01

    An investigation of geothermal resources at Ulu Slim has been carried out using integrated environmental isotope and hydro-geochemical techniques. Environmental isotope Oxygen-18 ("1"8O) and Deuterium ("2H) and Tritium ("3H) were used to identify the recharge zones and origin of the water, whereas the hydro-geochemical technique is used to determine the water type and the level of solutes in the geothermal waters out flowing at the surface as well as in shallow and deep groundwater system. The sampling programme includes precipitations, surface waters, hot springs, groundwater for isotopes and hydro-geochemical analyses. The plot graph of (δ"1"8O vs δ"2H) show that the stable isotope composition of hot spring is relatively depleted as compared to surface water and groundwater. This indicates that the recharge of the hot spring is likely to occur from farther and higher elevation areas of the geothermal system. Tritium content in hot spring, groundwater and surface water is ranged between 0.85 - 0.92 TU, 0.81- 1.05 TU, 1.60-2.07 TU respectively. The values of TU in hot spring and groundwater is seen similar suggests that these samples are older than the surface water. Based on the plot of Ternary Major Anion diagram (Cl-SO_4- HCO_3) and Tri-linear Piper diagram, all the water samples are identified from the type of bicarbonate (HCO_3). Nevertheless, the content of sodium (Na) in hot spring is detected relatively higher as compared to surface water. Tri-linear Piper diagram also shows that there is no mixing process between hot spring and surface water. (author)

  6. Environmental Justice: A Panoptic Overview Using Scientometrics

    Directory of Open Access Journals (Sweden)

    Jake R. Nelson

    2018-03-01

    Full Text Available Since its initial introduction in the 1970s, the field of environmental justice (EJ continues to grow, with significant contributions from the disciplines of sustainability science, geography, political science, public policy and administration, urban planning, law, and many others. Each of these disciplines approach EJ research from slightly different perspectives, but all offer unique and valuable insight to the EJ knowledge domain. Although the interdisciplinary nature of environmental justice should be viewed as a strength, it presents a challenge when attempting to both summarize and synthesize key contributions to the field, due to disciplinary bias, narrow subfield foci, or gaps in knowledge by a research team without a representative disciplinary composition. The purpose of this paper is to provide a succinct, panoptic review of key research contributions to environmental justice, while simultaneously minimizing common problems associated with traditional reviews. In particular, this paper explores the utility of co-citation network analysis, to provide insight into the most important subdomains of environmental justice research. The results suggest that while early EJ research is initially focused on environmental disamenities and a continued focus on race and inequality, the research gradually shifts to foci more concerned with environmental amenities, such as parks and greenspace. We also find that race and inequality remain an important and consist line of research over the duration of the study time period. Implications for environmental justice research and its allied subfields are discussed.

  7. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    Science.gov (United States)

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  8. Environmental issues related to biomass: An overview

    International Nuclear Information System (INIS)

    Hughes, M.; Ranney, J.W.

    1993-01-01

    With public attention increasingly focused on environmentalism and climate change, there is enormous potential for the commercial use of biomass to accelerate. Renewable feedstocks such as biomass can provide more environmentally balanced sources of energy and other non-food products than fossil fuels. Biomass utilization is in a precarious position, however, with public attention increasingly focused on both its potential and the strength of the challenges it faces. The paper is divided into five sections. Section 2 briefly addresses economic environmental issues. The extent to which externalities are accounted for in the market price of fuels plays a significant role in determining both the ultimate size of biofuel markets and the extent of the environmental benefits of feedstock cultivation and conversion processes. Sections 3 through 4 catalogue the main hazards and benefits that are likely to arise in the large scale commercialization of biomass fuel and note where the major uncertainties lay. Environmental issues arise with the cultivation of each feedstock and with each step in the process of its conversion to fuel. Feedstocks are discussed in Section 3 in terms of three main groups; wastes, energy crops, and traditional agricultural crops. In Section 4, conversion processes are also divided into three groups, on the basis of the end energy carrier; gas, liquid, and solid and electricity. Section 5 is devoted to a conclusion and summary

  9. European environmental stratifications and typologies: an overview

    NARCIS (Netherlands)

    Hazeu, G.W.; Metzger, M.J.; Mücher, C.A.; Pérez-Soba, M.; Renetzeder, C.; Andersen, E.

    2011-01-01

    A range of new spatial datasets classifying the European environment has been constructed over the last few years. These datasets share the common objective of dividing European environmental gradients into convenient units, within which objects and variables of interest have relatively homogeneous

  10. Hanford environmental dose reconstruction project - an overview

    International Nuclear Information System (INIS)

    Shipler, D.B.; Napier, B.A.; Farris, W.T.

    1996-01-01

    The Hanford Environmental Dose Reconstruction Project was initiated because of public interest in the historical releases of radioactive materials from the Hanford Site, located in southcentral Washington State. By 1986, over 38,000 pages of environmental monitoring documentation from the early years of Hanford operations had been released. Special committees reviewing the documents recommended initiation of the Hanford Environmental Dose Reconstruction Project, which began in October 1987, and is conducted by Battelle, Pacific Northwest Laboratories. The technical approach taken was to reconstruct releases of radioactive materials based on facility operating information; develop and/or adapt transport, pathway, and dose models and computer codes; reconstruct environmental, meterological, and hydrological monitoring information; reconstruct demographic, agricultural, and lifestyle characteristics; apply statistical methods to all forms of uncertainty in the information, parameters, and models; and perform scientific investigation that were technically defensible. The geographic area for the study includes ∼2 x 10 5 km 2 (75,000 mi 2 ) in eastern Washington, western Idaho, and northeastern Oregon (essentially the Mid-columbia Basin of the Pacific Northwest). Three exposure pathways were considered: the atmosphere, the Columbia River, and ground water

  11. Russian Environmental Law - an Overview For Business.

    NARCIS (Netherlands)

    D.N. Ratsiborinskaya (Daria)

    2010-01-01

    markdownabstractRussia has carried out major environmental policy reforms during its transition period since the early 1990s, including with respect to global issues such as climate change, loss of biodiversity and ozone layer depletion. In view of these changes, this chapter provides a brief

  12. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  13. Decommissioning and environmental remediation: An overview

    International Nuclear Information System (INIS)

    Chatzis, Irena

    2016-01-01

    The objective in both decommissioning and environmental remediation is to lower levels of residual radioactivity enough that the sites may be used for any purpose, without restriction. In some cases, however, this may not be practical and restrictions may be placed on future land use. Following decommissioning, for example, some sites may be reused for non-nuclear industrial activities, but not for habitation. Some former uranium mining sites may be released for reuse as nature reserves or for other leisure activities. Both decommissioning and environmental remediation are major industrial projects in which the safety of the workforce, the local public and the environment must be ensured from both radiological and conventional hazards. Hence, an appropriate legal and regulatory framework, as well as proper training for personnel both in implementation and in regulatory oversight are among the necessary preconditions to ensure safety.

  14. Decommissioning and environmental remediation: An overview

    International Nuclear Information System (INIS)

    Chatzis, Irena

    2016-01-01

    The objective in both decommissioning and environmental remediation is to lower levels of residual radioactivity enough that the sites may be used for any purpose, without restriction. In some cases, however, this may not be practical and restrictions may be placed on future land use. Following decommissioning, for example, some sites may be reused for non-nuclear industrial activities, but not for habitation. Some former uranium mining sites may be released for reuse as nature reserves or for other leisure activities. Both decommissioning and environmental remediation are major industrial projects in which the safety of the workforce, the local public and the environment must be ensured from both radiological and conventional hazards. Hence, an appropriate legal and regulatory framework, as well as proper training for personnel both in implementation and in regulatory oversight are among the necessary preconditions to ensure safety

  15. South Dakota geothermal handbook

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  16. Tracks: A National Environmental Public Health Tracking Network Overview

    Centers for Disease Control (CDC) Podcasts

    2009-08-04

    In this podcast, Dr. Mike McGeehin, Director of CDC's Division of Environmental Hazards and Health Effects, provides an overview of the National Environmental Public Health Tracking Network. It highlights the Tracking Network's goal, how it will improve public health, its audience, and much more.  Created: 8/4/2009 by Centers for Disease Control and Prevention (CDC).   Date Released: 8/4/2009.

  17. Overview of environmental materials degradation in light-water reactors

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Wu, P.

    1986-08-01

    This report provides a brief overview of analyses and conclusions reported in published literature regarding environmentally induced degradation of materials in operating light-water reactors. It is intended to provide a synopsis of subjects of concern rather than to address a licensing basis for any newly discovered problems related to reactor materials

  18. Geothermal energy: a brief assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  19. Identification of environmental issues: Hybrid wood-geothermal power plant, Wendel-Amedee KGRA, Lassen County, California: First phase report

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-14

    The development of a 55 MWe power plant in Lassen County, California, has been proposed. The proposed power plant is unique in that it will utilize goethermal heat and wood fuel to generate electrical power. This report identifies environmental issues and constraints which may impact the proposed hybrid wood-geothermal power plant. (ACR)

  20. Department of Radiation and Environmental Biology - Overview

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    2002-01-01

    Full text: The year 2001 started for us with new demanding tasks connected with participation in a new research project performed in collaboration with a excellent teams from six countries under the 5 th EU the Quality of Life Programme. The aim of the project EXPAH is to propose methods of molecular epidemiology for the risk assessment of exposure to polycyclic aromatic hydrocarbons in the air. The exploration of cause-effect relationships for carcinogenic agents will be based on the study of exogenous and endogenous influence on DNA damage in exposed population, and will determine the relationship between biomarkers of exposure, effects and susceptibility in the exposed populations. Analysis of this damage is carried out using highly specialising multidisciplinary techniques brought together by seven laboratories specialised in chemical, biochemical and biological techniques for analysing DNA damage and repair, together with access to populations exposed to environmental pollution and experience in collecting samples. In the year 2001 all the members of the department put much effort in co-organizing 12. Meeting of the Maria Sklodowska-Curie Polish Radiation Research Society. The Meeting was held in the September in Cracow and rewarded hard work of everybody with many applauding comments for the high scientific and organization level. Our parallel activities were concentrated on arrangement and preparation of the forthcoming Course on Human Monitoring for Genetic Effects proposed to us by the Alexander Hollaender Committee of the International Environmental Mutagenesis Society. The Alexander Hollaender ''HUMOGEF'' Course will concentrate on the commonly measured biomarkers (chromosome aberrations; micronuclei; DNA damage), but others (p53 protein levels; metabolic genotypes) will also be addressed. Scientists of international standing from the fields of toxicology, molecular biology, cytogenetics, mutation, and epidemiology, will present and discuss the state

  1. Department of Radiation and Environmental Biology - Overview

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    2001-01-01

    Full text: In the year 2000 we completed our study of the genotoxic influence of occupational exposure to pesticides on human cells, and their susceptibility to radiation in particular. Examining blood samples from four countries: Greece, Hungary, Poland and Spain we found that exposure to pesticides usually resulted in an increased susceptibility to the UV-C radiation, although statistical significance could only be concluded for inhabitants of Poland. In Spain, exposure to pesticides was proved to impair the lymphocyte DNA repair capability, while for the Polish group this repair capability appeared enhanced in people exposed to pesticides (see the research reports below). The possible influence of lifestyle or particular diet on the observed national differences would probably be worth analyzing. We also investigate the biological effectiveness of therapeutic beams (neutrons and X-rays). Experimental part of such study, concerning neutrons of different mean energies, is over and the results are now being processed. Our work covers hot issues of environmental and radiation biology making us research partners to many domestic and foreign scientific institutions. Our proficiency in the field is also reflected by membership in various expert boards (e.g. evaluating research applications for the Fifth EU Framework Programme for RTD and Demonstration Activities in the field 'Environment and Health', lecturing in the 2000 NATO IOS Life Science Books). We have entered the 5 th EU Programme Scheme within the EXPAH project starting January 1, 2001. (author)

  2. Department of Radiation and Environmental Biology - Overview

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    2000-01-01

    Full text:The year 1999 we devoted mainly to the activities concerning our basic research, and requirements and expectations of three research projects. The environmental project from the European Community was supporting our research in the issues of human monitoring of occupational exposure to pesticides. The two other radiobiology projects from the State Committee of Research were supporting our search on the biological efficiency and its enhancement of radio-therapeutic sources of various LET radiation. We succeeded fruitful co-operation with colleagues from Academy of Mining and Metallurgy that let us go faster with modernization of our laboratory by automation of our methods for screening cytogenetic damages. A lot of efforts were paid to modify our work by automatic reports of the coordinates of aberrant metaphases, and to make a smooth work of our new and own metaphase finder. We are sure that our new and unique research tool will not only enhance the accuracy and speed of measurements, but will also be useful for the purpose of the retrospective biological dosimetry of absorbed doses. We have applied fluorescent in situ hybridization (FISH) for cytogenetic studies of biological effects induced by neutrons. Now, we are looking forward to apply this technique in a combination with the DNA damage measures done by SCGE assay, to our research on mechanisms of the induction and repair, or interaction of the lesions induced by genotoxic agents. Understanding of the regulation of these processes could be a good goal for the new century to come. (author)

  3. Department of Radiation and Environmental Biology - Overview

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1999-01-01

    californium 252 neutrons from KAERI source. The third part of our effort concerns an application of different radiation sources for clinical cancer therapy. In cooperation with dr Jacek Capala we have done experiments on Medical Research Reactor in Brookhaven Laboratory. We have also introduced a COMET assay in their laboratory. This is an excellent feeling when both cooperating sides may benefit from co-operation. The year 1998 was also very attractive in the sense of many interesting visits to our Department. All of them we enjoyed a lot. We were honored to host Dr Diana Anderson from BIBRA International, Carshalton, UK. We are happy to see that her visits have become a tradition so much profitable for both our friendship and programs. The end of the year was equally touching as the beginning when X-ray machine had arrived, at the beginning of December, I won myself, a prize from the International Mutagenesis Society for the outstanding presentation; on the 3rd International Conference of Mutagenesis in Human Populations. I really respect both, working issue of the Conference ''Understanding Gene and Environmental Interactions for Disease Prevention'' and a prize itself (Five-year-subscription of International Journal of Environmental and Molecular Mutagenesis). Whoop! I am proud of myself and of the people in my Department!!. (author)

  4. Evaluation of the environmental sustainability of a micro CHP system fueled by low-temperature geothermal and solar energy

    International Nuclear Information System (INIS)

    Ruzzenenti, Franco; Bravi, Mirko; Tempesti, Duccio; Salvatici, Enrica; Manfrida, Giampaolo; Basosi, Riccardo

    2014-01-01

    Highlights: • Binary, ORC technology avoids CO 2 , but raises questions about environmental impact. • We proposed a micro-size system that combines geothermal energy with solar energy. • The small scale and the solar energy input edges the energy profitability. • The system’s performance is appreciable if applied to existing wells. • The feasibility of exploiting abandoned wells is preliminarily evaluated. - Abstract: In this paper we evaluate the environmental sustainability of a small combined heat and power (CHP) plant operating through an Organic Rankine Cycle (ORC). The heat sources of the system are from geothermal energy at low temperature (90–95 °C) and solar energy. The designed system uses a solar field composed only of evacuated, non-concentrating solar collectors, and work is produced by a single turbine of 50 kW. The project addresses an area of Tuscany, but it could be reproduced in areas where geothermal energy is extensively developed. Therefore, the aim is to exploit existing wells that are either unfit for high-enthalpy technology, abandoned or never fully developed. Furthermore, this project aims to aid in downsizing the geothermal technology in order to reduce the environmental impact and better tailor the production system to the local demand of combined electric and thermal energy. The environmental impact assessment was performed through a Life Cycle Analysis and an Exergy Life Cycle Analysis. According to our findings the reservoir is suitable for a long-term exploitation of the designed system, however, the sustainability and the energy return of this latter is edged by the surface of the heat exchanger and the limited running hours due to the solar plant. Therefore, in order to be comparable to other renewable resources or geothermal systems, the system needs to develop existing wells, previously abandoned

  5. Environmental geotechnics in the US region: a brief overview

    OpenAIRE

    Hoyos, LR; DeJong, JT; McCartney, JS; Puppala, AJ; Reddy, KR; Zekkos, D

    2015-01-01

    The present contribution to the Regional Editors themed issue offers a concise yet focused overview of some of the key technical and scientific issues, as well as of current trends and future challenges, related to the broad discipline of environmental geotechnics in the US region. Particular attention is devoted to current policy and societal drivers as well as future professional and research capacity requirements in critical areas such as innovative recycling and improvement of compost, co...

  6. Geothermal handbook

    Science.gov (United States)

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  7. Geothermal for kids

    International Nuclear Information System (INIS)

    Nemzer, M.; Condy, M.

    1990-01-01

    This paper reports that educating children about geothermal energy is crucial to the future growth of the geothermal industry. The Geothermal Education Office (GEO) was founded in 1989 to provide materials and support to teachers and the geothermal community in educating grades K-12 about geothermal energy. GEO's goals are to: provide easy access to or referral to appropriate sources of geothermal information; foster teacher interest; create posters, booklets, lesson plans and other educational materials; monitor and review textbooks, encyclopedias and other educational materials distributed by educational groups to ensure inclusion of appropriate, accurate information and to encourage fair treatment of alternative energy resources; contribute articles to industry, science and educational publications; and foster communication and cooperation among GEO, the geothermal industry, government agencies, and educational and environmental groups

  8. Geothermal energy abstract sets. Special report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C. (comp.)

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  9. Graphic overview system for DOE's effluent and environmental monitoring programs

    International Nuclear Information System (INIS)

    Burson, Z.G.; Elle, D.R.

    1980-03-01

    The Graphic Overview System is a compilation of photos, maps, overlays, and summary information of environmental programs and related data for each DOE site. The information consists of liquid and airborne effluent release points, on-site storage locations, monitoring locations, aerial survey results, population distributions, wind roses, and other related information. The relationships of different environmental programs are visualized through the use of colored overlays. Trends in monitoring data, effluent releases, and on-site storage data are also provided as a corollary to the graphic display of monitoring and release points. The results provide a working tool with which DOE management (headquarters and field offices) can place in proper perspective key aspects of all environmental programs and related data, and the resulting public impact of each DOE site

  10. Reflectance spectral analyses for the assessment of environmental pollution in the geothermal site of Mt. Amiata (Italy)

    Science.gov (United States)

    Manzo, Ciro; Salvini, Riccardo; Guastaldi, Enrico; Nicolardi, Valentina; Protano, Giuseppe

    2013-11-01

    We studied the environmental impact of geothermal activities in the Mt. Amiata area, using on-site spectral analyses of various ecological components. Analytical techniques were based on the study of the “red-edge”, which represents the spectral feature of the reflectance spectra defined between red and infrared wavelengths (λ) within the range 670-780 nm. Since in the study area the geothermal exploitation causes the drifting of contaminants such as Hg, Sb, S, B, As and H2S (hydrogen sulfide) from power plants, the spectral response of vegetation and lichens depends on their distance from the power stations, and also on the exposed surface, material type and other physical parameters. In the present research, the spectral radiance of targets was measured in the field using an Analytical Spectral Device (ASD) Field-Spec™FR portable radiometer. Spectral measurements were made on vegetation and lichen samples located near to and far from geothermal areas and potential pollution sources (e.g., power plants), with the aim of spatially defining their environmental impact. Observations for vegetation and lichens showed correlation with laboratory chemical analyses when these organisms were under stress conditions. The evaluation of relationships was carried out using several statistical approaches, which allowed to identify methods for identifying contamination indicators for plants and lichens in polluted areas. Results show that the adopted spectral indices are sensitive to environmental pollution and their responses spatialstatically correlated to chemical and ecophysiological analyses within a notable distance.

  11. Geothermal energy systems plan for Boise City

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This is a plan for development of a downtown Boise geothermal district space heating system incorporating legal, engineering, organizational, geological, and economic requirements. Topics covered include: resource characteristics, system design and feasibility, economic feasibility, legal overview, organizational alternatives, and conservation. Included in appendices are: property ownership patterns on the Boise Front, existing hot well data, legal briefs, environmental data, decision point communications, typical building heating system retrofit schematics, and background assumptions and data for cost summary. (MHR)

  12. Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site

    Energy Technology Data Exchange (ETDEWEB)

    Miera, F.R. Jr.; Langhorst, G.; McEllin, S.; Montoya, C.

    1984-05-01

    An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species. Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.

  13. Bibliography of documents and related materials collected for the Hawaii Geothermal Project Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, F.M.; Boston, C.R.; Burns, J.C.; Hagan, C.W. Jr.; Saulsbury, J.W.; Wolfe, A.K.

    1995-03-01

    This report has been prepared to make available and archive information developed during preparation of the Environmental Impact Statement for Phases 3 and 4 of the Hawaii Geothermal Project as defined by the state of Hawaii in its April 1989 proposal to Congress. On May 17, 1994, the USDOE published a notice in the Federal Register withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report provides a bibliography of documents, published papers, and other reference materials that were obtained or used. The report provides citations for approximately 642 documents, published papers, and other reference materials that were gathered to describe the potentially affected environment on the islands of Hawaii, Maui, and Oahu. The listing also does not include all the reference materials developed by support subcontractors and cooperating agencies who participated in the project. This listing does not include correspondence or other types of personal communications. The documents listed in this report can be obtained from original sources or libraries.

  14. Overview of naturally permeable fractured reservoirs in the central and southern Upper Rhine Graben: Insights from geothermal wells

    OpenAIRE

    Vidal , Jeanne; Genter , Albert

    2018-01-01

    International audience; Since the 1980′s, more than 15 geothermal wells have been drilled in the Upper Rhine Graben (URG), representing more than 60 km of drill length. Although some early concepts were related to purely matrix-porosity reservoirs or Hot Dry Rock systems, most projects in the URG are currently exploiting the geothermal resources that are trapped in fracture networks at the base of the sedimentary cover and in the granitic basement. Lessons-learnt from the European EGS referen...

  15. Environmental impact of production and use of geothermal energy in Ukraine

    OpenAIRE

    Лимаренко, Алексей Николаевич; Тараненко, Олеся Александровна

    2015-01-01

    General potential of geothermal resources of Ukraine and the possibilities of their use as an alternative fuel are considered in the article. The most promising regions of Ukraine for the development of geothermal energy were determined and the characteristics of the heat-transfer agent were described. Value engineering analysis of modern technologies of extraction of heat was carried out, taking into account a feasibility study. Possibilities of using depleted oil and gas fields were studied...

  16. An overview of the Environmental Monitoring Computer Automation Project

    International Nuclear Information System (INIS)

    Johnson, S.M.; Lorenz, R.

    1992-01-01

    The Savannah River Site (SRS) was bulk to produce plutonium and tritium for national defense. As a result of site operations, routine and accidental releases of radionuclides have occurred. The effects these releases have on the k>cal population and environment are of concern to the Department of Energy (DOE) and SRS personnel. Each year, approximately 40,000 environmental samples are collected. The quality of the samples, analytical methods and results obtained are important to site personnel. The Environmental Monitoring Computer Automation Project (EMCAP) was developed to better manage scheduling, log-in, tracking, analytical results, and report generation. EMCAP can be viewed as a custom Laboratory Information Management System (LIMS) with the ability to schedule samples, generate reports, and query data. The purpose of this paper is to give an overview of the SRS environmental monitoring program, describe the development of EMCAP software and hardware, discuss the different software modules, show how EMCAP improved the Environmental Monitoring Section program, and examine the future of EMCAP at SRS

  17. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...... reservoirs could soon become an important contributor to the energy generation around the world....

  18. New energy technologies 3 - Geothermal and biomass energies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Alazard-Toux, N.; His, S.; Douard, F.; Duplan, J.L.; Monot, F.; Jaudin, F.; Le Bel, L.; Labeyrie, P.

    2007-01-01

    This third tome of the new energy technologies handbook is devoted to two energy sources today in strong development: geothermal energy and biomass fuels. It gives an exhaustive overview of the exploitation of both energy sources. Geothermal energy is presented under its most common aspects. First, the heat pumps which encounter a revival of interest in the present-day context, and the use of geothermal energy in collective space heating applications. Finally, the power generation of geothermal origin for which big projects exist today. The biomass energies are presented through their three complementary aspects which are: the biofuels, in the hypothesis of a substitutes to fossil fuels, the biogas, mainly produced in agricultural-type facilities, and finally the wood-fuel which is an essential part of biomass energy. Content: Forewords; geothermal energy: 1 - geothermal energy generation, heat pumps, direct heat generation, power generation. Biomass: 2 - biofuels: share of biofuels in the energy context, present and future industries, economic and environmental status of biofuel production industries; 3 - biogas: renewable natural gas, involuntary bio-gases, man-controlled biogas generation, history of methanation, anaerobic digestion facilities or biogas units, biogas uses, stakes of renewable natural gas; 4 - energy generation from wood: overview of wood fuels, principles of wood-energy conversion, wood-fueled thermal energy generators. (J.S.)

  19. Geothermal energy worldwide

    International Nuclear Information System (INIS)

    Barbier, Enriko

    1997-01-01

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  20. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  1. Environmental summary document for the Republic Geothermal, Inc. application for a geothermal loan guaranty project: 64 MW well field and 48 MW (net) geothermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D.W.; Powers, D.J.; Leitner, P.; Crow, N.B.; Gudiksen, P.H.; Ricker, Y.E.

    1979-07-01

    A comprehensive review and analysis is provided of the environmental consequences of (1) guaranteeing a load for the completion of the 64 MW well field and the 48 MW (net) power plant or (2) denying a guaranteed load that is needed to finish the project. Mitigation measures are discussed. Alternatives and their impacts are compared and some discussion is included on unavoidable adverse impacts. (MHR)

  2. Prospects of geothermal energy

    International Nuclear Information System (INIS)

    Manzella, A.; Bianchi, A.

    2008-01-01

    Geothermal energy has great potential as a renewable energy with low environmental impact, the use of heat pumps is becoming established in Italy but the national contributions are still modest when compared to other nations. Mature technologies could double the installed geothermal power in Italy at 2020. [it

  3. Environmental assessment: Raft River geothermal project pilot plant, Cassia County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The action assessed here is the construction and operation of a 5- to 6-MW(e) (gross) geothermal pilot plant in the Raft River Valley of southern Idaho. This project was originally planned as a thermal test loop using a turbine simulator valve. The test loop facility (without the simulator valve) is now under construction. The current environmental assessment addresses the complete system including the addition of a turbine-generator and its associated switching gear in place of the simulator valve. The addition of the turbine-generator will result in a net production of 2.5 to 3.5 MW(e) with a commensurate reduction in waste heat to the cooling tower and will require the upgrading of existing transmission lines for offsite delivery of generated power. Construction of the facility will require disturbance of approximately 20 ha (50 acres) for the facility itself and approximately 22.5 ha (57 acres) for construction of drilling pads and ponds, pipelines, and roads. Existing transmission lines will be upgraded for the utility system interface. Interference with alternate land uses will be minimal. Loss of wildlife habitat will be acceptable, and US Fish and Wildlife Service recommendations for protection of raptor nesting sites, riparian vegetation, and other important habitats will be observed. During construction, noise levels may reach 100 dBA at 15 m (50 ft) from well sites, but wildlife and local residents should not be significantly affected if extended construction is not carried out within 0.5 km (0.3 miles) of residences or sensitive wildlife habitat. Water use during construction will not be large and impacts on competing uses are unlikely.

  4. An environmental overview of the Cat Arm hydroelectric development

    International Nuclear Information System (INIS)

    Barnes, J.L.

    1987-01-01

    The Cat Arm Dam hydroelectric development in Newfoundland comprises 10 dams, three tunnels, two canals and a 127 MW powerhouse. The scheme develops 127 MW from 380.5 m of head and comprises: ten dams of varying heights up to 53 m; a bathtub type overflow spillway 330 m in length; a 230 m long inverted U-shaped diversion tunnel; an 800 m long, inverted U-shaped low pressure forebay tunnel; two bog and rock cut tunnels leading to and from the forebay tunnels; a surface powerhouse containing two Pelton turbines; and a 178 km long, 230 kV transmission line. An overview is provided of the environmental assessment, project impacts, and cost of environmental protection associated with the project. Impacts were centered around fish and aquatic life in the created reservoir and downstream of the powerhouse, loss of ungulate (moose and caribou) habitat due to flooding, loss of forestry resources due to flooding, and the disturbance of land during construction. The overall cost of environmental protection was $7,977,000, only 2% of the total project cost. 17 refs., 1 tab

  5. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  6. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China

    Science.gov (United States)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2009-02-01

    The Yangyi geothermal field, located 72 km northwest to Lhasa City, capital of Tibet, has a high reservoir temperature up to at least 207.2 °C. The geothermal waters from both geothermal wells and hot springs belong to the HCO 3 (+CO 3)-Na type. Factor analysis of all the chemical constituents shows that they can be divided into two factors: F 1 factor receives the contributions of SO 42-, Cl -, SiO 2, As, B, Na +, K +, and Li +; whereas F 2 factor is explained by HCO 3-, F -, CO 32-, Ca 2+, and Sr 2+. The F 1 factor can be regarded as an indicator of the reservoir temperature distribution at Yangyi, but its variable correlation with the results of different geothermometers (Na-K, quartz and K-Mg) does not allow one to draw further inferences. Different from F 1, the F 2 factor is an indicator of a group of hydrogeochemical processes resulting from the CO 2 pressure decrease in geothermal water during its ascent from the deep underground, including transformation of HCO 3- to CO 32-, precipitation of Ca 2+ and Sr 2+, and release of F - from some fluoride-bearing minerals of reservoir rocks. The plot of enthalpy vs. chloride, prepared on the basis of Na-K equilibrium temperatures, suggests that a parent geothermal liquid (PGL) with Cl - concentration of 185 mg/L (that of sample YYT-8) and enthalpy of 1020 J/g (corresponding to a temperature of 236-237 °C, i.e., somewhat higher than that of sample YYT-6) is present in the geothermal reservoir of the Yangyi area, below both the Qialagai valley and the Bujiemu valley, although the samples less affected by mixing and cooling (YYT-6 and YYT-7) come from the second site. The discharge of geothermal waters with high contents of toxic elements such as B, As and F into the Luolang River, the only drinking water source for local residents, has caused slight pollution of the river water. Great care should therefore be taken in the geothermal water resource management at Yangyi.

  7. An overview of regulatory, environmental and social siting considerations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Jason [Tetra Tech (United States)

    2011-07-01

    There is the potential for involvement of different levels of government and many other actors in the location and, finally, the feasibility of a modern wind energy project. This paper gives an overview of the social, regulatory, and environmental considerations that can influence the location of a wind energy project. At the beginning the site has to be identified and wind resources and transmission feasibility have to be assessed. Environmental and engineering issues and public and government acceptability have to be considered. Federal, provincial, local and municipal considerations are discussed. A fatal flaw analysis also known as Critical Issues Analysis (CIA) is performed and the results are given. Constructability issues, telecommunications and aviation screening are omitted from the CIA. Different reasons for setbacks and causes of concern are mentioned and explained. Bird and bat fatalities from collision with turbines are mentioned as a concern. Studies relating to matters of heritage and cultural resources have also been conducted. Finally, issues relating to socioeconomic impact, communications infrastructure and transportation issues are discussed.

  8. Environmental Assessment of the Hawaii Geothermal Project Well Flow Test Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-11-01

    The Hawaii Geothermal Project, a coordinated research effort of the University of Hawaii, funded by the County and State of Hawaii, and ERDA, was initiated in 1973 in an effort to identify, generate, and use geothermal energy on the Big Island of Hawaii. A number of stages are involved in developing geothermal power resources: exploration, test drilling, production testing, field development, power plant and powerline construction, and full-scale production. Phase I of the Project, which began in the summer of 1973, involved conducting exploratory surveys, developing analytical models for interpretation of geophysical results, conducting studies on energy recovery from hot brine, and examining the legal and economic implications of developing geothermal resources in the state. Phase II of the Project, initiated in the summer of 1975, centers on drilling an exploratory research well on the Island of Hawaii, but also continues operational support for the geophysical, engineering, and socioeconomic activities delineated above. The project to date is between the test drilling and production testing phase. The purpose of this assessment is to describe the activities and potential impacts associated with extensive well flow testing to be completed during Phase II.

  9. Environmental analysis of geopressured-geothermal prospect areas, De Witt and Colorado counties, Texas. Final report, March 1 - August 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, T.C.; Reeder, F.S.; Badger, E.A.

    1980-02-01

    Information collected and analyzed for a preliminary environmental analysis of geopressured geothermal prospect areas in Colorado and DeWitt Counties, Texas is presented. Specific environmental concerns for each geopressured geothermal prospect area are identified and discussed. Approximately 218 km/sup 2/(85 mi/sup 2/) were studied in the vicinity of each prospect area to: (1) conduct an environmental analysis to identify more and less suited areas for geopressured test wells; and (2) provide an environmental data base for future development of geopressured geothermal energy resources. A series of maps and tables are included to illustrate environmental characteristics including: geology, water resources, soils, current land use, vegetation, wildlife, and meteorological characteristics, and additional relevant information on cultural resources, power- and pipelines, and regulatory agencies. A series of transparent overlays at the scale of the original mapping has also been produced for the purposes of identifying and ranking areas of potential conflict between geopressured geothermal development and environmental characteristics. The methodology for ranking suitability of areas within the two prospect areas is discussed in the appendix. (MHR)

  10. Environmental presence and persistence of pharmaceuticals: An overview

    Science.gov (United States)

    Glassmeyer, Susan T.; Koplin, Dana W.; Furlong, Edward T.; Focazio, M.

    2008-01-01

    likely a preexisting, personal identification with these compounds that does not occur for the wide range of other organic and inorganic contaminants whose presence in the environment has previously been described. This greater public “name recognition” makes itself known through the media to the regulatory and technical community and has prompted interest in sponsoring research that defines the composition and concentrations of PPCPs in potential sources and their fate and effects following relase into the environment. Independent of the drivers that potentially fuel the interest in studies of PPCPs, it is clear that PPCP research has grown beyond surface-water studies to examine issues such as:• Presence in other matrices, such as groundwater, landfill leachates, sediments, and biosolids.• Environmental transport and fate in surface water, groundwater, and soils amended with reclaimed water or biosolids.• PPCP source elucidation, such as wastewater treatment plant (WWTP) effluents, confined animal feeding operations (CAFOs), and aquaculture.• Removal during wastewater and drinking-water treatment.• Effects on aquatic ecosystems, terrestrial ecosystems, and human health.The chapters in this book provide an extensive examination of current environmental pharmaceutical research and are divided into three sections: “Occurrence and Analysis of Pharmaceuticals in the Environment,” “Environment Fate and Transformations of Veterinary Pharmaceuticals,” and “treatment of Pharmaceuticals in Drinking Water and Wastewater.” The purpose of this introductory overview chapter is to outline current (2004-2006) knowledge about the presence and concentration of PPCPs as described in the published literature. Previous reviews should be consulted for discussions on pre-2004 publications. Those reviews will provide the reader with a comprehensive introduction to the topic of PPCPs in the environment. This chapter describes the sources of PPCPs and other organic

  11. Geothermal Energy: Evaluation of a Resource

    Science.gov (United States)

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  12. Navy Geothermal Plan

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  13. Department of Energy--Office of Energy Efficiency and Renewable Energy Geothermal Program: Geothermal Risk Mitigation Strategies Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-02-15

    An overview of general financial issues for renewable energy investments; geothermal energy investment barriers and risks; and recommendations for incentives and instruments to be considered to stimulate investment in geothermal energy development.

  14. Overview of the nation's treasurehouse

    International Nuclear Information System (INIS)

    Perrine, R.L.; Browne, D.G.

    1984-01-01

    An overview of uranium and nuclear energy, geothermal resources, wind energy, biomass, and solar energy resources in the western states focuses on available technology and general questions about the rate and course of their development. The emphasis is on a long-term resource base for the region and the likely risks and consequences of energy development. The authors note economic, technological, and environmental problems associated with each, and project their potential contribution. 25 references

  15. Resilience and receptivity worked in tandem to sustain a geothermal mat community amidst erratic environmental conditions.

    Science.gov (United States)

    Ghosh, Wriddhiman; Roy, Chayan; Roy, Rimi; Nilawe, Pravin; Mukherjee, Ambarish; Haldar, Prabir Kumar; Chauhan, Neeraj Kumar; Bhattacharya, Sabyasachi; Agarwal, Atima; George, Ashish; Pyne, Prosenjit; Mandal, Subhrangshu; Rameez, Moidu Jameela; Bala, Goutam

    2015-07-17

    To elucidate how geothermal irregularities affect the sustainability of high-temperature microbiomes we studied the synecological dynamics of a geothermal microbial mat community (GMMC) vis-à-vis fluctuations in its environment. Spatiotemporally-discrete editions of a photosynthetic GMMC colonizing the travertine mound of a circum-neutral hot spring cluster served as the model-system. In 2010 a strong geyser atop the mound discharged mineral-rich hot water, which nourished a GMMC continuum from the proximal channels (PC) upto the slope environment (SE) along the mound's western face. In 2011 that geyser extinguished and consequently the erstwhile mats disappeared. Nevertheless, two relatively-weaker vents erupted in the southern slope and their mineral-poor outflow supported a small GMMC patch in the SE. Comparative metagenomics showed that this mat was a relic of the 2010 community, conserved via population dispersal from erstwhile PC as well as SE niches. Subsequently in 2012, as hydrothermal activity augmented in the southern slope, ecological niches widened and the physiologically-heterogeneous components of the 2011 "seed-community" split into PC and SE meta-communities, thereby reclaiming either end of the thermal gradient. Resilience of incumbent populations, and the community's receptiveness towards immigrants, were the key qualities that ensured the GMMC's sustenance amidst habitat degradation and dispersal to discrete environments.

  16. Messing with paradise: Air quality and geothermal development in Hawaii

    International Nuclear Information System (INIS)

    Campbell, A.W.

    1993-01-01

    In the last decade, scientists and the media have publicized several significant air-quality-related issues facing our nation and threatening the Earth. Our need for energy is at the heart of many environmental problems. Most of us would not dispute that global issues are vitally important. However, to many of us, who have live one day at a time, global issues are often overshadowed by those at the microcosmic (i.e., regional or local) level. This paper focuses on a continuing problem citizens experienced by the resident of Hawaii: controversial air quality and health issues linked to geothermal resource development. In Hawaii, air quality degradation and related health issues have been associated with geothermal development on the Kilauea volcano on the Big Island. This paper begins with an overview of Hawaii's ambient air quality based on data collected by the State Department of Health (DOH). A chronology of geothermal resource development in Hawaii follows. The potential atmospheric contaminants from development of the Hawaiian resource are listed, and health effects of acute and chronic exposures are identified. Public controversy about geothermal development and the efforts of local and state agencies and officials to effectively control geothermal development in concert with protection of public health and safety use discussed, in particular the recent development and promulgation of a State of Hawaii H 2 S standard. This paper concludes with some suggestions for integrating the diverse interests of government, regulators, citizens, and geothermal developers in seeking to meet the energy and economic needs of Hawaii while carefully planning geothermal development in a safe and environmentally responsible manner

  17. Geothermal spas

    International Nuclear Information System (INIS)

    Woodruff, J.L.; Takahashi, P.K.

    1990-01-01

    The spa business, part of the health and fitness industry that has sprung up in recent years, is highly successful world-wide. The most traditional type of spa is the geothermal spa, found in geothermal areas around the world. In Japan, for example, some 2,000 geothermal spas and resorts generate $6 billion annually. Hawaii has an ideal environment for geothermal spas, and several locations in the islands could supply warm mineral water for spa development. Hawaii receives about 6 million visitors annually, a high percentage of whom are familiar with the relaxing and therapeutic value of geothermal spas, virtually guaranteeing the success of this industry in Hawaii. Presently, Hawaii does not have a single geothermal spa. This paper reports that the geothermal spa business is an industry whose time has come, an industry that offers very promising investment opportunities, and one that would improve the economy while expanding the diversity of pleasurable vacation options in Hawaii

  18. Utilization of geothermal energy in the mining and processing of tungsten ore. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, M.V.; Lacy, S.B.; Lowe, G.D.; Nussbaum, A.M.; Walter, K.M.; Willens, C.A.

    1981-01-01

    The engineering, economic, and environmental feasibility of the use of low and moderate temperature geothermal heat in the mining and processing of tungsten ore is explored. The following are covered: general engineering evaluation, design of a geothermal energy system, economics, the geothermal resource, the institutional barriers assessment, environmental factors, an alternate geothermal energy source, and alternates to geothermal development. (MHR)

  19. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cross

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the GTP’s involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including GHPs.† The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  20. Overview of Environmental Impact Assessment of Oil and Gas ...

    African Journals Online (AJOL)

    The environmental impact assessment (EIA) of oil and gas projects in Nigeria ... natural, social and health components of the environment; Determination of issues ... of impact quantification through which the Environmental Management Plan ...

  1. Innovations in financing environmental and social sustainability: Literature overview

    NARCIS (Netherlands)

    Kerste, M.; Weda, J.; Rosenboom, N.

    2010-01-01

    Innovative finance instruments can help increase funding of investments aimed at environmental and social sustainability. At the request of Duisenberg school of finance, this report highlights leading literature and empirical findings on ‘innovations in financing environmental and social

  2. Sustainability and policy for the thermal use of shallow geothermal energy

    International Nuclear Information System (INIS)

    Hähnlein, Stefanie; Bayer, Peter; Ferguson, Grant; Blum, Philipp

    2013-01-01

    Shallow geothermal energy is a renewable energy resource that has become increasingly important. However, the use has environmental, technical and social consequences. Biological, chemical, and physical characteristics of groundwater and subsurface are influenced by the development of this resource. To guarantee a sustainable use it is therefore necessary to consider environmental and technical criteria, such as changes in groundwater quality and temperature. In the current study a comprehensive overview of consequences of geothermal systems in shallow aquifers is provided. We conclude that there is still a lack of knowledge on long-term environmental consequences. Due to local differences in geology and hydrogeology as well as in technical requirements, it is not recommendable to define only static regulations, such as fixed and absolute temperature thresholds. Flexible temperature limits for heating and cooling the groundwater and subsurface are therefore advisable. The limits should be oriented on previously undisturbed temperatures, and chemical, physical and biological conditions of aquifers. Based on these findings, recommendations for a sustainable policy for shallow geothermal systems are provided including a potential legal framework for a sustainable use. - Highlights: • We provide an overview of consequences of geothermal systems in shallow aquifers. • Static regulations for heating or cooling groundwater are not recommendable. • Temperature limits should be flexible and orientated on background values. • Suggestions for a sustainable policy for shallow geothermal systems are provided. • A potential legal framework for a sustainable use is presented

  3. Geothermal Energy Development annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

  4. Overview of the EPA quality system for environmental programs

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.L. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1993-12-31

    Formalized quality assurance program requirements for the U.S. Environmental Protection Agency (EPA) have been established for more than a decade. During this period, the environmental issues and concerns addressed by the EPA have changed. Many issues, such as ozone depletion and global climate warming, have become international concerns among the world environmental community. Other issues, such as hazardous waste cleanup and clean air, remain a focus of national environmental concerns. As the environmental issues of the 1980`s evolved, the traditional quality assurance (QA) program was transformed through the use of quality management principles into a Quality System to help managers meet the needs of the 1990`s and beyond.

  5. Overview of the EPA quality system for environmental programs

    International Nuclear Information System (INIS)

    Johnson, G.L.

    1993-01-01

    Formalized quality assurance program requirements for the U.S. Environmental Protection Agency (EPA) have been established for more than a decade. During this period, the environmental issues and concerns addressed by the EPA have changed. Many issues, such as ozone depletion and global climate warming, have become international concerns among the world environmental community. Other issues, such as hazardous waste cleanup and clean air, remain a focus of national environmental concerns. As the environmental issues of the 1980's evolved, the traditional quality assurance (QA) program was transformed through the use of quality management principles into a Quality System to help managers meet the needs of the 1990's and beyond

  6. Geothermal Energy: Prospects and Problems

    Science.gov (United States)

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  7. A multi-objective optimization approach for the selection of working fluids of geothermal facilities: Economic, environmental and social aspects.

    Science.gov (United States)

    Martínez-Gomez, Juan; Peña-Lamas, Javier; Martín, Mariano; Ponce-Ortega, José María

    2017-12-01

    The selection of the working fluid for Organic Rankine Cycles has traditionally been addressed from systematic heuristic methods, which perform a characterization and prior selection considering mainly one objective, thus avoiding a selection considering simultaneously the objectives related to sustainability and safety. The objective of this work is to propose a methodology for the optimal selection of the working fluid for Organic Rankine Cycles. The model is presented as a multi-objective approach, which simultaneously considers the economic, environmental and safety aspects. The economic objective function considers the profit obtained by selling the energy produced. Safety was evaluated in terms of individual risk for each of the components of the Organic Rankine Cycles and it was formulated as a function of the operating conditions and hazardous properties of each working fluid. The environmental function is based on carbon dioxide emissions, considering carbon dioxide mitigation, emission due to the use of cooling water as well emissions due material release. The methodology was applied to the case of geothermal facilities to select the optimal working fluid although it can be extended to waste heat recovery. The results show that the hydrocarbons represent better solutions, thus among a list of 24 working fluids, toluene is selected as the best fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Research on the availability and environmental aspects of geothermal electric power plants in Mexico

    International Nuclear Information System (INIS)

    Mulas, P.; Mercado, S.

    1984-01-01

    Although geothermal electric power plants will make only a modest contribution to annual power generation in Mexico until the year 2000 (at present there is a capacity of 205 MW(e) in operation and 440 MW(e) under construction), new areas are being developed and, in the plants that have been in operation for several years, criteria such as the capacity factor (>85%) and the cost per kW.h generated are favourable. The main problem lies in determining the generation capacity which should be installed at the end of the exploration period. There is an economic risk here since the generation capacity is extremely uncertain and in order to reduce this risk the well production record must be carefully studied. Considerable research is being carried out in this area to improve the physical and numerical techniques available. Research is also being conducted to improve the cementing quality of the well pipes and to try to prevent or eliminate corrosion of these pipes. Study of the problem of silica incrustation has led to the adoption of economic techniques for its prevention or removal. Possibilities for the commercial utilization of waste have been studied for brine and are about to be started for gases. Heat exchangers which could turn the heat at present being wasted to account for electricity generation are also being investigated. (author)

  9. Geothermal energy for Hawaii: a prospectus

    Energy Technology Data Exchange (ETDEWEB)

    Yen, W.W.S.; Iacofano, D.S.

    1981-01-01

    An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

  10. Overview of environmental research at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1977-01-01

    Research in the environmental sciences by the Savannah River Laboratory (SRL) has the general objective of improving our understanding of transport through ecosystems and functional processes within ecosystems. With increased understanding, the basis for environmental assessments can be improved for releases from the Savannah River Plant or from the power industry of the southeastern United States

  11. Overview of the advances in environmental chemistry of animal manure

    Science.gov (United States)

    There is an increasing environmental concern over animal manure due to the volumes produced in modern intensified animal production. However, animal manure is traditionally regarded as a valuable resource of plant nutrients. Although research on environmental impacts of animal manure and associated...

  12. Globalisation and National Environmental Policy: Update and Overview

    NARCIS (Netherlands)

    F.H. Wijen (Frank); K. Zoeteman; J. Pieters (Jan); P. Seters (Paul)

    2012-01-01

    textabstractSUMMARY After outlining recent developments and the scope, target audience, and structure of the book, we review the literature on globalisation and environmental policy, especially the impact of globalisation on the environment and changes in environmental governance in relation to

  13. Geothermal energy

    OpenAIRE

    Manzella A.

    2017-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. Fo...

  14. Executive summaries of reports leading to the construction of the Baca Geothermal Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, P.B.; Newman, K.L.; Westermeier, J.F.; Giroux, H.D.; Lowe, G.D.; Nienberg, M.W.

    1980-05-01

    Executive summaries have been written for 61 reports and compilations of data which, in part, have led to the construction of the Baca 50 MW Geothermal Demonstration Project (GDP). The reports and data include environmental research, reservoir and feasibility studies, the project proposal to DOE and the Final Environmental Impact Statement. These executive summaries are intended to give the reader a general overview of each report prior to requesting the report from the GDP Data Manager.

  15. Executive summaries of reports leading to the construction of the Baca Geothermal Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, P.B.; Newman, K.L.; Westermeier, J.F.; Giroux, H.D.; Lowe, G.D.; Nienberg, M.W.

    1980-05-01

    Executive summaries have been written for 61 reports and compilations of data which in part, have led to the construction of the Baca 50 MW Geothermal Demonstration Project (GDP). The reports and data include environmental research, reservoir and feasibility studies, the project proposal to DOE and the Final Environmental Impact Statement. These executive summaries are intended to give the reader a general overview of each report prior to requesting the report from the GDP Data Manager.

  16. Geothermal energy as a source of electricity. A worldwide survey of the design and operation of geothermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, R.

    1980-01-01

    An overview of geothermal power generation is presented. A survey of geothermal power plants is given for the following countries: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, Philippines, Turkey, USSR, and USA. A survey of countries planning geothermal power plants is included. (MHR)

  17. Imperial County geothermal development annual meeting: summary

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  18. Geothermal systems: Principles and case histories

    Science.gov (United States)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  19. Geothermal Energy Geopressure Subprogram: DOE Lafourche Crossing No. 1, Terrebonne Parish and Lafourche Parish, Louisiana: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    The proposed action will consist of drilling one geothermal fluid well for intermittent production testing of 284 days over a three year period. Two disposal wells will initially be drilled to provide disposal of lower volume fluids produced during initial testing. Two additional disposal wells will be drilled, logged, completed, tested, and operated prior to commencement of high volume fluid production. Construction of the proposed action will change the land-use of 2 ha (5 ac) for the test well and each of the injection wells from agriculture or wetlands to resource exploration. Lands will be cleared and erosion and runoff will result. During operation of the well test, the only expected impacts are from venting of gases or flaring of gases and noise. After the tests are completed, the area will be restored as much as possible to its natural condition by revegetation programs using nature species. All sources of pollutants will be collected and disposed in environmentally acceptable ways. Accidents may result from this proposed action.

  20. Geothermal power development in Hawaii. Volume I. Review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  1. Environmental assessment: geothermal energy geopressure subprogram. DOE Sweet Lake No. 1, Cameron Parish, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    The following are described: the proposed action; existing environment; probable impacts, direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, and local agencies; and alternatives. (MHR)

  2. Overview of the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Shipler, D.B.; Napier, B.A.; Ikenberry, T.A.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that specific and representative individuals and populations may have received as a result of releases of radioactive materials from historical operations at the Hanford Site. These dose estimates would account for the uncertainties of information regarding facilities operations, environmental monitoring, demography, food consumption and lifestyles, and the variability of natural phenomena. Other objectives of the HEDR Project include: supporting the Hanford Thyroid Disease Study (HTDS), declassifying Hanford-generated information and making it available to the public, performing high-quality, credible science, and conducting the project in an open, public forum. The project is briefly described

  3. Utilizing steel slag in environmental application - An overview

    Science.gov (United States)

    Lim, J. W.; Chew, L. H.; Choong, T. S. Y.; Tezara, C.; Yazdi, M. H.

    2016-06-01

    Steel slags are generated as waste material or byproduct every day from steel making industries.The potential environmental issues which are related with the slag dump or reprocessing for metal recovery are generally being focused in the research. However the chemistry and mineralogy of slag depends on metallurgical process which is able to determine whether the steel slag can be the reusable products or not. Nowadays, steel slag are well characterized by using several methods, such as X-ray Diffraction, ICP-OES, leaching test and many more. About the industrial application, it is mainly reused as aggregate for road construction, as armour stones for hydraulic engineering constructions and as fertilizers for agricultural purposes. To ensure the quality of steel slag for the end usage, several test methods are developed for evaluating the technical properties of steel slag, especially volume stability and environmental behaviour. In order to determine its environmental behaviour, leaching tests have been developed. The focus of this paper however is on those applications that directly affect environmental issues including remediation, and mitigation of activities that negatively impact the environment.

  4. An Overview of Sensor networks for Environmental Noise Monitoring

    NARCIS (Netherlands)

    Basten, T.G.H.; Wessels, P.W.

    2014-01-01

    The last decade has shown a growing number and wide variety of systems for monitoring environmental noise. This ongoing development is made possible by the availability of cheaper and smaller hardware and innovations in communication networks. The developments are fed by a growing interest in

  5. Code of accounts. Management overview volume: Environmental restoration

    International Nuclear Information System (INIS)

    Fox, M.B.; Birkholz, H.L.

    1997-10-01

    The purpose of this procedure is to provide the requirement for assigning cost collection codes and the structure of these codes for all costs incurred for the Environmental Restoration Contract. The coding structure will be used in the budgeting and control of project costs

  6. Geothermal energy, what technologies for what purposes?

    International Nuclear Information System (INIS)

    2008-01-01

    This book, fully illustrated and rich of concrete examples, takes stock of the different technologies implemented today to use the Earth's heat: geothermal heat pumps for domestic, tertiary and collective residential uses, geothermal district heating networks and geothermal power plants for power generation. This overview is completed by a description of the future perspectives offered by this renewable energy source in the World and in France in terms of energy independence and technological innovation: geo-cooling, hybrid systems, absorption heat pumps or stimulated geothermal systems. (J.S.)

  7. Geothermal energy in Denmark. The Committee for Geothermal Energy of the Danish Energy Agency

    International Nuclear Information System (INIS)

    1998-06-01

    The Danish Energy Agency has prepared a report on the Danish geothermal resources and their contribution to the national energy potential.Environmental and socio-economic consequences of geothermal power systems implementation are reviewed. Organizational models and financing of geothermal-seismic research are discussed, and the Committee of the Energy Agency for Geothermal Energy recommends financing of a pilot plant as well as a prompt elucidation of concession/licensing problems. (EG)

  8. An overview of the Multimedia Environmental Pollutant Assessment System

    International Nuclear Information System (INIS)

    Michel, K.L.

    1992-06-01

    This report describes the Multimedia Environmental Pollutant Assessment System (MEPAS) computer model designed by Pacific Northwest Laboratory for use in evaluating the health risks associated with US Department of Energy (DOE) waste sites. This report has been prepared to provide DOE Oak Ridge Field Office personnel with a simplified explanation of MEPAS and an understanding of how MEPAS is used to quantify potential risks to human health. The scope and limitations of the MEPAS model are presented, and the possible contaminant release media and transport pathways are outlined. The two main types of health indexes generated -- the hazard potential index (HPI) and the maximum individual index are described; and calculations used to obtain these indexes are presented. Guidance on interpretation of the HPI is also included. Finally, the HPI calculations for 3 contaminants in a hypothetical environmental problem are demonstrated

  9. Overview. Department of Environmental and Radiation Transport Physics. Section 6

    Energy Technology Data Exchange (ETDEWEB)

    Loskiewicz, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.

  10. Overview. Department of Environmental and Radiation Transport Physics. Section 6

    Energy Technology Data Exchange (ETDEWEB)

    Loskiewicz, J [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.

  11. Overview. Department of Radiation and Environmental Biology. Section 7

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1995-01-01

    The activities of the Department of Radiation and Environmental Biology in 1994 cover the following goals: application of fission neutrons to cancer therapy, studies on neutron efficiency to induce mutation and chromosomal damage, study on the formula for alteration of the repair process observed in case of gene mutation in TSH assay, investigation of new methods for more accurate measurements of molecular and cellular damage caused by radiation and environmental agents and studies on possible improvement in the application of different radiation sources to clinical cancer therapy. In this section of the Annual Report, the description of the mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given

  12. Overview of the Multimedia Environmental Pollutant Assessment System (MEPAS)

    International Nuclear Information System (INIS)

    Whelan, G.; Buck, J.W.; Strenge, D.L.; Droppo, J.G.; Hoopes, B.L.; Aiken, R.J.

    1992-01-01

    The Multimedia Environmental Pollutant Assessment System (MEPAS) is a physics-based risk computation code that integrates source-term, transport, and exposure models. Developed by Pacific Northwest Laboratory for screening and ranking of environmental problems, MEPAS is designed for site-specific assessments using readily available information to estimate potential health impacts. Risk values are computed for chemical and radioactive carcinogens; while hazard quotients, based on reference doses, are computed for noncarcinogens. This system has wide applicability to a range of environmental problems using air, groundwater, surface-water, overland, and exposure models. Whenever available and appropriate, EPA guidance and models were used to facilitate compatibility and acceptance. Although based on relatively standard transport and exposure computation approaches, the unique feature of MEPAS is that these approaches are integrated into a single system. The use of a single system provides a consistent basis for evaluating health impacts for a large number of problems and sites. Implemented on a desktop computer, a user-friendly shell allows the user to define the problem, input the required data, and execute the appropriate models. The MEPAS guidance documents include sources of information. MEPAS can be used for both screening and assessment applications for the remedial investigation/risk assessment/feasibility study and environment restoration processes

  13. Geophysical considerations of geothermics

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M

    1967-01-01

    The development and utilization of geothermal energy is described from the standpoint of geophysics. The internal temperature of the Earth and the history and composition of magmas are described. Methods of exploration such as gravity, magnetic, thermal and electrical surveys are discussed, as are geochemical and infrared photogrammetric techniques. Examples are provided of how these techniques have been used in Italy and at the Matsukawa geothermal field in Japan. Drilling considerations such as muds, casings and cementing materials are discussed. Solutions are proposed for problems of environmental pollution and plant expansion.

  14. 16 CFR 1021.4 - Overview of environmental review process for CPSC actions.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Overview of environmental review process for CPSC actions. 1021.4 Section 1021.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL... detailed fashion. (See § 1021.10(a), below.) It contains sufficient information to form a basis for...

  15. Multicriteria decision analysis: Overview and implications for environmental decision making

    Science.gov (United States)

    Hermans, Caroline M.; Erickson, Jon D.; Erickson, Jon D.; Messner, Frank; Ring, Irene

    2007-01-01

    Environmental decision making involving multiple stakeholders can benefit from the use of a formal process to structure stakeholder interactions, leading to more successful outcomes than traditional discursive decision processes. There are many tools available to handle complex decision making. Here we illustrate the use of a multicriteria decision analysis (MCDA) outranking tool (PROMETHEE) to facilitate decision making at the watershed scale, involving multiple stakeholders, multiple criteria, and multiple objectives. We compare various MCDA methods and their theoretical underpinnings, examining methods that most realistically model complex decision problems in ways that are understandable and transparent to stakeholders.

  16. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  17. Geothermal energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  18. Research status of geothermal resources in China

    Science.gov (United States)

    Zhang, Lincheng; Li, Guang

    2017-08-01

    As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.

  19. Development of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  20. Overview of the environmental concerns of coal transportation

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, K.; Dauzvardis, P.; Fradkin, L.; Surles, T.

    1980-02-01

    More than 30 environmental concerns were analyzed for the transportation of coal by rail, roads (trucks), high voltage transmission lines (that is, from mine-mouth generating plants to distribution networks), coal slurry pipelines, and barges. The following criteria were used to identify these problems: (1) real physical environmetal impacts for which control technologies must be developed, or regulation made effective where control technologies presently exist; (2) the level of impact is uncertain, although the potential impact may be moderate to high; (3) the concerns identified by the first two criteria are specific to or exacerbated by coal transportation. Generic transportation problems are not included. The significant environmental problems identified as a result of this study are: (1) rail transport - community traffic disruption and human health, safety, and habitat destruction; (2) coal haul roads - road degradation, traffic congestion and safety, air quality, and noise; (3) high voltage transmission lines - changed land use without local benefits, biological health and safety effects, and disruption of world weather patterns; (4) slurry pipelines - water availability, water quality, and possible spills from non-water slurry pipelines; and (5) barge transport - impacts common to all barge traffic. (DMC)

  1. Overview of Gas Research Institute environmental research programs

    International Nuclear Information System (INIS)

    Evans, J.M.

    1991-01-01

    The Gas Research Institute (GRI) is a private not-for-profit membership organization of natural gas pipelines, distribution companies and natural gas producers. GRI's purpose is to plan, to manage and to develop financing for a gas-related research and development (R and D) program on behalf of its members and their customers. GRI does not do any research itself. GRI's R and D program is designed to provide advanced technologies for natural gas supply, transport, storage, distribution and end-use applications in all markets. In addition, basic research is conducted for GRI in these areas to build a foundation for future technology breakthroughs. Work in the Environment and Safety Research Department includes sections interested in: supply related research, air quality research, end use equipment safety research, gas operations safety research, and gas operations environmental research. The Natural Gas Supply Program has research ongoing in such areas as: restoration of pipeline right-of-ways; cleaning up town gas manufacturing sites; the development of methanogenic bacteria for soil and groundwater cleanup; development of biological fluidized carbon units for rapid destruction of carbonaceous compounds; research on liquid redox sulfur recovery for sulfur removal from natural gas; research on produced water and production wastes generated by the natural gas industry; environmental effects of coalbed methane production; and subsurface effects of natural gas operations. The western coalbed methane and ground water programs are described

  2. Geothermal energy

    International Nuclear Information System (INIS)

    Lemale, J.

    2009-01-01

    The geothermal energy, listed among the new and renewable energy sources, is characterized by a huge variety of techniques and applications. This book deals with the access to underground geothermal resources and with their energy valorization as well. After a presentation of the main geological, hydrogeological and thermal exploitation aspects of this resource, the book presents the different geothermal-related industries in detail, in particular the district heating systems, the aquifer-based heat pumps, the utilizations in the agriculture, fishery and balneology sectors, and the power generation. (J.S.)

  3. Overview of safety and environmental issues for inertial fusion energy

    International Nuclear Information System (INIS)

    Piet, S.J.; Brereton, S.J.; Tanaka, S.

    1996-01-01

    This paper summarizes safety and environmental issues of Inertial Fusion Energy (IFE): inventories, effluents, maintenance, accident safety, waste management, and recycling. The fusion confinement approach among inertial and magnetic options affects how the fusion reaction is maintained and which materials surround the reaction chamber. The target fill technology has a major impact on the target factory tritium inventory. IFE fusion reaction chambers usually employ some means to protect the first structural wall from fusion pulses. This protective fluid or granular bed also moderates and absorbs most neutrons before they reach the first structural wall. Although the protective fluid activates, most candidate fluids have low activation hazard. Hands-on maintenance seems practical for the driver, target factory, and secondary coolant systems; remote maintenance is likely required for the reaction chamber, primary coolant, and vacuum exhaust cleanup systems. The driver and fuel target facility are well separated from the main reaction chamber

  4. Department of Environmental and Radiation Transport Physics - Overview

    International Nuclear Information System (INIS)

    Woznicka, U.

    2001-01-01

    Full text: We deal with environmental physics and the radiation transport physics, both theoretically and experimentally. Some results find their way to practical applications. Our environmental physics research encompasses hydrogeological problems as well as measurements of trace elements in the atmosphere and in the water. Theoretical (analytical and numerical) and experimental issues of the radiation transport and radiation fields are our main field of research. The interest in radiation transport phenomena is stimulated by their importance for the environmental physics, industrial and nuclear facilities and methods of geophysical. Environmental isotopes and noble gases are used in the investigation of water-bearing geological formations in order to determine the origin and age of groundwater. The papers listed below and three ''Reports on research'' present recent achievements in this field. The gas chromatography methods are used for monitoring the anthropogenic trace gases (SF 6 and freons), which participate in the Earth green-house effect. A very high detection level of SF 6 in water, 0.0028 fg/cm 3 H 2 0, has been reached as required for hydrogeological purposes. A preliminary verification of the SF 6 tracer method for dating young groundwaters by the tritium method has been carried out. We carried on the work on a method of radon measurement in soil in connection with geological conditions. The national seminar ''Radon in Environment'' organized at the INP aroused an interest of Polish scientific centres in that field. The seminar gathered 60 participants who presented 24 oral reports and 8 posters. Within the scope of the radiation transport physics we studied thermal neutron transport in finite hydrogenous media. Advantages and limitations of a Monte Carlo code (MCNP) in thermal neutron transport simulations have been examined by both the analytical solution and the experiment on the INP pulsed neutron generator. An interesting contribution to the

  5. Preliminary environmental assessment of selected geopressured - geothermal prospect areas: Louisiana Gulf Coast Region. Volume II. Environmental baseline data

    Energy Technology Data Exchange (ETDEWEB)

    Newchurch, E.J.; Bachman, A.L.; Bryan, C.F.; Harrison, D.P.; Muller, R.A.; Newman, J.P. Jr.; Smith, C.G. Jr.; Bailey, J.I. Jr.; Kelly, G.G.; Reibert, K.C.

    1978-10-15

    A separate section is presented for each of the six prospect areas studied. Each section includes a compilation and discussion of environmental baseline data derived from existing sources. The data are arranged as follows: geology and geohydrology, air quality, water resources and flood hazards, ecological systems, and land use. When data specific to the prospect were not available, regional data are reported. (MHR)

  6. Geostationary Operational Environmental Satellites (GOES): R series hyperspectral environmental suite (HES) overview

    Science.gov (United States)

    Martin, Gene; Criscione, Joseph C.; Cauffman, Sandra A.; Davis, Martin A.

    2004-11-01

    The Hyperspectral Environmental Suite (HES) instrument is currently under development by the NASA GOES-R Project team within the framework of the GOES Program to fulfill the future needs and requirements of the National Environmental Satellite, Data, and Information Service (NESDIS) Office. As part of the GOES-R instrument complement, HES will provide measurements of the traditional temperature and water vapor vertical profiles with higher accuracy and vertical resolution than obtained through current sounder technologies. HES will provide measurements of the properties of the shelf and coastal waters and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). The HES team is forging the future of remote environmental monitoring with the development of an operational instrument with high temporal, spatial and spectral-resolution and broad hemispheric coverage. The HES development vision includes threshold and goal requirements that encompass potential system solutions. The HES team has defined tasks for the instrument(s) that include a threshold functional complement of Disk Sounding (DS), Severe Weather/Mesoscale Sounding (SW/M), and Shelf and Coastal Waters imaging (CW) and a goal functional complement of Open Ocean (OO) imaging, and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). To achieve the best-value procurement, the GOES-R Project has base-lined a two-phase procurement approach to the HES design and development; a Formulation/study phase and an instrument Implementation phase. During Formulation, currently slated for the FY04-05 timeframe, the developing team(s) will perform Systems Requirements Analysis and evaluation, System Trade and Requirements Baseline Studies, Risk Assessment and Mitigation Strategy and complete a Preliminary Conceptual Design of the HES instrument. The results of the formulation phase will be leveraged to achieve an effective and efficient system solution during

  7. Environmental Barrier Coatings for Ceramic Matrix Composites - An Overview

    Science.gov (United States)

    Lee, Kang; Zhu, Dongming; Wiesner, Valerie Lynn; van Roode, Mark; Kashyap, Tania; Zhu, Dongming; Wiesner, Valerie

    2016-01-01

    Ceramic Matrix Composites (CMCs) are increasingly being considered as structural materials for advanced power generation equipment. Broadly speaking the two classes of materials are oxide-based CMCs and non-oxide based CMCs. The non-oxide CMCs are primarily silicon-based. Under conditions prevalent in the gas turbine hot section the water vapor formed in the combustion of gaseous or liquid hydrocarbons reacts with the surface-SiO2 to form volatile products. Progressive surface recession of the SiC-SiC CMC component, strength loss as a result of wall thinning and chemical changes in the component occur, which leads to the loss of structural integrity and mechanical strength and becomes life limiting to the equipment in service. The solutions pursued to improve the life of SiC-SiC CMCs include the incorporation of an external barrier coating to provide surface protection to the CMC substrate. The coating system has become known as an Environmental Barrier Coating (EBC). The relevant early coatings work was focused on coatings for corrosion protection of silicon-based monolithic ceramics operating under severely corrosive conditions. The development of EBCs for gas turbine hot section components was built on the early work for silicon-based monolithics. The first generation EBC is a three-layer coating, which in its simplest configuration consists of a silicon (Si) base coat applied on top of the CMC, a barium-strontium-aluminosilicate (BSAS) surface coat resistant to water vapor attack, and a mullite-based intermediate coating layer between the Si base coat and BSAS top coat. This system can be represented as Si-Mullite-BSAS. While this baseline EBC presented a significant improvement over the uncoated SiC-SiC CMC, for the very long durations of 3-4 years or more expected for industrial operation further improvements in coating durability are desirable. Also, for very demanding applications with higher component temperatures but shorter service lives more rugged EBCs

  8. Environmental Radon Gas and Degenerative Conditions An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Groves-Kirkby, C.J. [Medical Physics Department, Northampton General Hospital, Northampton NN1 5BD (United Kingdom)]|[School of Health, University of Northampton, Northampton NN2 7AL (United Kingdom); Denman, A.R. [Medical Physics Department, Northampton General Hospital, Northampton NN1 5BD (United Kingdom); Woolridge, A.C. [School of Health, University of Northampton, Northampton NN2 7AL (United Kingdom)]|[School of Applied Sciences, University of Northampton, Northampton NN2 7AL (United Kingdom); Phillips, P.S. [School of Applied Sciences, University of Northampton, Northampton NN2 7AL (United Kingdom); Phillips, C. [School of Health, University of Northampton, Northampton NN2 7AL (United Kingdom)

    2006-07-01

    Radon, a naturally occurring radioactive gas, has variable distribution in the environment as a decay product of uranium occurring in a wide range of rocks, soils and building materials. Although radon dissipates rapidly in outdoor air, it concentrates in the built environment, and inhalation of {sup 222}Rn and its progeny {sup 218}Po and {sup 214}Po is believed to provide the majority of the radioactive dose to the respiratory system. While the connection between radon and lung cancer has long been recognised and investigated, recent studies have highlighted potential links between radon and other conditions, among them Multiple Sclerosis, Alzheimer and Parkinson Diseases, and Paget Disease of Bone. A strong case exists for clarifying the relationship between radon and these other conditions, not least since radon remediation to reduce lung cancer may conceivably have additional benefits hitherto unrecognized. The present status of the postulated links between environmental radon gas and degenerative conditions is reviewed, and recommendations for further research into levering current anti-radon campaigns are made. (authors)

  9. Environmental Radon Gas and Degenerative Conditions An Overview

    International Nuclear Information System (INIS)

    Groves-Kirkby, C.J.; Denman, A.R.; Woolridge, A.C.; Phillips, P.S.; Phillips, C.

    2006-01-01

    Radon, a naturally occurring radioactive gas, has variable distribution in the environment as a decay product of uranium occurring in a wide range of rocks, soils and building materials. Although radon dissipates rapidly in outdoor air, it concentrates in the built environment, and inhalation of 222 Rn and its progeny 218 Po and 214 Po is believed to provide the majority of the radioactive dose to the respiratory system. While the connection between radon and lung cancer has long been recognised and investigated, recent studies have highlighted potential links between radon and other conditions, among them Multiple Sclerosis, Alzheimer and Parkinson Diseases, and Paget Disease of Bone. A strong case exists for clarifying the relationship between radon and these other conditions, not least since radon remediation to reduce lung cancer may conceivably have additional benefits hitherto unrecognized. The present status of the postulated links between environmental radon gas and degenerative conditions is reviewed, and recommendations for further research into levering current anti-radon campaigns are made. (authors)

  10. Environmental Barrier Coatings for Ceramic Matrix Composites - An Overview

    Science.gov (United States)

    Lee, Kang; van Roode, Mark; Kashyap, Tania; Zhu, Dongming; Wiesner, Valerie

    2017-01-01

    SiC/SiC Ceramic Matrix Composites (CMCs) are increasingly being considered as structural materials for advanced power generation equipment because of their light weight, higher temperature capability, and oxidation resistance. Limitations of SiC/SiC CMCs include surface recession and component cracking and associated chemical changes in the CMC. The solutions pursued to improve the life of SiC/SiC CMCs include the incorporation of coating systems that provide surface protection, which has become known as an Environmental Barrier Coating (EBC). The development of EBCs for the protection of gas turbine hot section CMC components was a continuation of coating development work for corrosion protection of silicon-based monolithics. Work on EBC development for SiC/SiC CMCs has been ongoing at several national laboratories and the original gas turbine equipment manufacturers. The work includes extensive laboratory, rig and engine testing, including testing of EBC coated SiC/SiC CMCs in actual field applications. Another EBC degradation issue which is especially critical for CMC components used in aircraft engines is the degradation from glassy deposits of calcium-magnesium-aluminosilicate (CMAS) with other minor oxides. This paper addresses the need for and properties of external coatings on SiC/SiC CMCs to extend their useful life in service and the retention of their properties.

  11. An overview of environmental pollution and monitoring techniques

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    1997-01-01

    Environmental pollution has become a world-wide concern as it is likely to affect the ecological system and human health. The indiscriminate release of harmful chemicals and toxic heavy metals in the environment by industrial, agricultural and other activities of man may adversely affect the quality of our air, water and food resources. These toxic chemicals may find their way to living organisms and human body through food chain and may induce various metabolic disorders. It is, therefore, necessary to assess the quality of environment by measuring the concentration of pollutants in air, water, soil and food materials and to establish base-line level. Since the pollutants are present in extremely small amounts, sensitive and accurate analytical techniques have to be employed to obtain reliable data. Studies on the measurement of essential and toxic inorganic elements in various food items and other materials have been carried out at PINSTECH with a view to assess the safety of diet and to establish baseline values. These values will he helpful, in future, to monitor the degree of pollution and to suggest possible remedial and control measures. The estimation of some of the inorganic pollutants and the techniques used in our laboratories and briefly discussed. (author)

  12. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  13. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  14. Geothermal studies in China

    International Nuclear Information System (INIS)

    Wang Ji-Yang; Chen Mo-Xiang; Wang Ji-An; Deng Xiao; Wang Jun; Shen Hsien-Chieh; Hsiung Liang-Ping; Yan Shu-Zhen; Fan Zhi-Cheng; Liu Xiu-Wen

    1981-01-01

    Geothermal studies have been conducted in China continuosly since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research of geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; (3) geothermal studies in mines. (orig./ME)

  15. Department of Environmental and Radiation Transport Physics - Overview

    International Nuclear Information System (INIS)

    Woznicka, U.

    2002-01-01

    The scientific activity of the Department in 2001 can be summarised as follows. In the Environmental Physics Laboratory gas chromatography methods are being developed mainly for atmospheric investigations and hydrological applications. A method for measuring the SF 6 contents in water for determining the age of young groundwaters is well advanced. Reconnaissance measurements performed in two aquifers yielded a reasonable agreement with the ages obtained from the tritium method. A proper determination of trace gases dissolved in water requires the measurement of the so-called ''excess air'' resulting from the excessive dissolution of air bubbles at the groundwater table. For this purpose, a new method of analysing the concentrations of argon and neon in water was developed. The separation of argon from oxygen in gas samples, extracted from water, carried out with the help of the catalyst of NiO type. Neon is determined with the aid of a pulse discharge helium detector (type PI-2D, VALCO Ltd) doped with neon. The initial results are promising. Atmospheric investigations were continued by measurements of the concentrations of F-11, F-12, F-113, CHCl 3 , CHCCl 3 , CCl 4 , and SF 6 in the Cracow area. Incidentally, high concentrations of SF 6 are observed. The air flow trajectories available in the BADC Trajectory Service (http://cirrus.badc.rl.ac.uk/trajectory/) were used in an attempt to identify the emission source of these high SF 6 concentrations. So far only the north-west direction was identified. Hydrogeological investigations of the origin and ages of different interesting groundwater systems by environmental isotope methods were also continued, and the origin of chemically unique mineral water in Krynica Spa has been identified as related to dehydration of clay minerals in burial diagenesis. The Natural Radioactivity Laboratory has been involved in interdisciplinary projects on the measurements of radon concentration in soil gas in areas of different

  16. Environmental and Economic Benefit Analysis of an Integrated Heating System with Geothermal Energy—A Case Study in Xi’an China

    Directory of Open Access Journals (Sweden)

    Qingyou Yan

    2017-12-01

    Full Text Available Due to the increase in environmental problems and air pollution during the heating period, it is important to promote clean heating in cold regions, thereby meeting the heating demand in a green manner. In order to allocate resources more effectively and facilitate the consumption of renewable energy, this paper designs an integrated heating system that incorporates geothermal energy into the framework of an integrated energy system of electricity, heating, and gas. An analysis of the environmental and economic benefits indicates that the system reduces pollutant emissions and decreases the cost of urban heating. Using an example of central heating of residential buildings in Xi’an, the paper conducts a scenario analysis based on the gas peak-shaving ratio and the ratio of geothermal heating loads to basic heating loads. The results demonstrate that the environmental and economic benefits of the integrated heating system are higher compared to central heating using coal-fired boilers. In addition, this paper conducts a sensitivity analysis of the heat source to the price factors and the load ratios. The results show that the operating costs of the integrated heating system are most sensitive to the natural gas price and the gas peak-shaving ratio. Therefore, an optimum natural gas peak-shaving ratio can be determined.

  17. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  18. Assessment of Environmental Stresses for Enhanced Microalgal Biofuel Production – An Overview

    International Nuclear Information System (INIS)

    Cheng, Dan; He, Qingfang

    2014-01-01

    Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates) tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  19. Assessment of environmental stresses for enhanced microalgal biofuel production-an overview

    Directory of Open Access Journals (Sweden)

    Dan eCheng

    2014-07-01

    Full Text Available Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  20. Estimating the environmental costs of electricity: an overview and review of the issues

    International Nuclear Information System (INIS)

    Freeman, A.M. III

    1996-01-01

    This paper provides an overview of the issues associated with environmental costing and the specific questions raised by the effort to measure the environmental costs of electricity. It focuses on three sets of issues. The first set is several conceptual issues in the valuation of environmental impacts in general. These issues are not unique to valuing the environmental impacts of electricity generation. However each of these issues has been highlighted in one way or another by the studies being discussed here. The second set of issues are specific to the design of studies of environmental effects of generating electricity. These issues are the selection of externalities for inclusion in the analysis, and whether and to what extent to include so called upstream and downstream impacts. The third set of issues involves policy implications of the results of the work that has been done to date. Factors considered include health effects of air emissions, damage to ecosystems, damage by CO 2 . 31 refs

  1. Assessment of Environmental Stresses for Enhanced Microalgal Biofuel Production – An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Dan, E-mail: dxcheng@ualr.edu; He, Qingfang, E-mail: dxcheng@ualr.edu [Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR (United States)

    2014-07-07

    Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates) tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  2. Department of Environmental and Radiation Transport Physics - Overview

    International Nuclear Information System (INIS)

    Loskiewicz, J.

    2000-01-01

    Full text: The scope of scientific work of the Department is best characterized as Physics of the Earth. Our studies comprise the physics of the atmosphere, problems of groundwater systems, of outflows of gases (radon and thoron) from tectonic faults and caverns. We are studying the heterogeneity of rock formations and also working on problems of the nuclear geophysics. In the greater part of this research methods of nuclear physics are employed - neutrons as probing particles or radioactive and stable isotopes in tracer technologies. Concentrations of F-11, F-113 and CHCl 3 , CHCCl 3 , CCl 4 , F-12 and SF 6 in Cracow atmosphere were measured by gas chromatography (GS). The five-point interpolation-procedure for calculations of week weight-averaged concentrations of the above-mentioned gases was developed. At the Kasprowy Wierch Station (Tatra Mts.) the measurement of greenhouse effect gases (CH 4 , CO 2 and SF 6 ) has been continued. A method for measuring the SF 6 concentration in water as a hydrologic tracer was developed for determining the ages of young groundwater systems. Similar enrichment is being developed for such potential tracers as freon F-11 and F-12. Studies were continued on models for the interpretation of tracer data and transit time calculations in groundwater systems. Environmental tracer study of the Oligocene aquifer in the Mazovian basin has been completed. It has appeared that in the Late Glacial the recharge of groundwater systems in the Mazovian basin was, to a high degree, from paleolakes. Moderate concentrations of 4 He excess showed that the glacial waters cannot be older than those recharged at the end stages of the Last Glacial. The heterogeneity of a rock medium as: variable density, occurrence of concretions of high neutron absorbers etc. have been studied. The influence of the granulation change on the neutron absorption has been examined. A study of effective neutron parameters of an heterogeneous material containing highly

  3. Insights into the biological source and environmental gradients shaping the distribution of H-shaped glycerol dialkyl glycerol tetraethers in Yellowstone National Park geothermal springs

    Science.gov (United States)

    Jia, C.; Xie, W.; Wang, J.; Boyd, E. S.; Zhang, C.

    2013-12-01

    Archaea are ubiquitous in natural environments. The unique tetraether lipids in archaeal membranes enable the maintenance of ion permeability across broad environmental gradients. H-shaped isoprenoid glycerol dialkyl glycerol tetraethers (H-GDGTs), in which the two biphytanyl carbon skeletons are covalently bound by a carbon-carbon bond, have been recently identified in both marine and geothermal environments. Here we report the core H-GDGTs (C-H-GDGTs) and polar H-GDGTs (P-H-GDGTs) associated with sediments sampled from geothermal springs in Yellowstone National Park and investigate their abundance in relation to environmental gradients. The abundance of C- and P-H-GDGTs exhibit strong and negative correlation with pH (P = 0.007), suggesting that H-shaped GDGTs help to maintain cell membrane fluidity in acidic environments. Reanalysis of archaeal 16S rRNA gene pyrotags published previously from (Boyd E. Hamilton T. L., Wang J., He L., Zhang C. L. 2013. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity. Frontiers in Terrestrial Microbiology. 4: doi: 10.3389/fmicb.2013.00062) indicates that these H-GDGTs are associated with environments dominanted by Thermoplasmatales, which are thermoacidiphiles. Two equations were established to define the relationships between the abundance of H-GDGTs, the abundance of archaeal taxa based on 16S rRNA gene phylogenetic affiliations, and pH. Both equations have high predictive capacity in predicting the distribution of archaeal lipids in the geothermal system. These observations provide new insight into the biological source of H-GDGTs and suggest a prominent role for these lipids in the diversification of archaea into or out of acidic high temperature environments.

  4. Draft environmental impact report. California Department of Water Resources, Bottle Rock geothermal power plant, Lake County, CA

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The California Department of Water Resources (DWR) proposes to construct the Bottle Rock power plant, a 55 MW geothermal power plant, at The Geysers Known Geothermal Resource Area (KGRA). The plant is projected to begin operation in April of 1983, and will be located in Lake County near the Sonoma County line on approximately 7.2 acres of the Francisco leasehold. The steam to operate the power plant, approximately 1,000,000 pounds/h, will be provided by McCulloch Geothermal Corporation. The power plant's appearance and operation will be basically the same as the units in operation or under construction in the KGRA. The power plant and related facilities will consist of a 55 MW turbine generator, a 1.1 mile (1.81 km) long transmission line, a condensing system, cooling tower, electrical switchyard, gas storage facility, cistern, and an atmospheric emission control system. DWR plans to abate hydrogen sulfide (H/sub 2/S) emissions through the use of the Stretford Process which scrubs the H/sub 2/S from the condenser vent gas stream and catalytically oxides the gas to elemental sulfur. If the Stretford Process does not meet emission limitations, a secondary H/sub 2/S abatement system using hydrogen peroxide/iron catalyst is proposed. The Bottle Rock project and other existing and future geothermal projects in the KGRA may result in cumulative impacts to soils, biological resources, water quality, geothermal steam resources, air quality, public health, land use, recreation, cultural resources, and aesthetics.

  5. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  6. Policy for geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, S [Public Utilities Bureau, Ministry of International Trade and Industry, Japan

    1973-01-01

    Government actions related to Japanese geothermal energy development in the past include: a mining and industrial research subsidy of 27 million yen granted to Kyushu Electric Power Co. in 1952, a mining and industrial research subsidy of 13 million yen granted to Japan Metals and Chemicals Co. in 1960, a study on steam production technology for geothermal power generation by Japan Metals and Chemicals Co. funded at 3.5 hundred million yen from the Research Development Corporation of Japan, and a study on steam production technology for large scale geothermal power generation by Japan Metals and Chemicals Co. funded at 7.6 hundred million yen by the Research Development Corporation of Japan. The following projects are planned by the Ministry of International Trade and Industry for 1973: a two-year geothermal power promotion including investigations into the utilization of hot water, new methods for geothermal reservoir detection and steam well drilling, and environmental effects, studies on hydrothermal systems, basic investigations for geothermal indicators in 30 areas, and a means to finance the construction of geothermal power plants in Kakkonda (Iwate Prefecture) and Hatchobara (Oita Prefecture).

  7. Overview

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This section describes the activities and accomplishments of the DOE research and development program offices. The Office of Energy Research (ER) manages fundamental science and basic energy research programs in several areas: high-energy physics; nuclear physics; the physical, biological, and mathematical sciences; magnetic fusion energy; and environmental and health effects. ER also supports many scientific user facilities that are used by universities and private-sector researchers and manages the DOE Small Business Innovation Research (SBIR) program and the R ampersand D Laboratory Technology Transfer Program. Brief descriptions of technology transfer accomplishments in each of these areas are given

  8. Japanese geothermics

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    At the end of the seventies, the NEDO (New Energy and Industrial Technology Development Organisation) and the Central Research Institute of Electric Power Industry have started two independent projects of deep geothermics research in Honshu island (Japan). The two sites are 50 km apart of each other and the boreholes have been drilled up to 2300 and 1100 m of depth, respectively, in hot-dry moderately fractured volcanic rocks. These sites are characterized by high geothermal gradients with a rock temperature reaching 250 C at the bottom of the wells. Hydraulic circulation tests are still in progress to evaluate the profitability of these sites. (J.S.). 1 fig., 1 photo

  9. Federal Interagency Geothermal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Prencipe, Loretta [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Todaro, Richard M. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Cuyler, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eide, Elizabeth [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-01

    This collaborative document describes the roles and responsibilities of key Federal agencies in the development of geothermal technologies including the U.S. Department of Energy (DOE); the U.S. Department of Agriculture (USDA), including the U.S. Forest Service; the U.S. Department of Interior (DOI), including the United States Geological Survey (USGS) and Bureau of Land Management (BLM); the Environmental Protection Agency (EPA); and the Department of Defense (DOD).

  10. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs

  11. Proceedings of NEDO International Geothermal Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-11

    This is a proceedings of the NEDO International Geothermal Symposium held in Sendai in 1997. The worldwide geothermal energy power generation capacity exceeds 7000 MW. Geothermal energy is widely used also for heating, snow melting, greenhouse cultivation as well as electric power generation. Geothermal energy generates far less CO2 causing the global warming than fossil fuels. The geothermal energy is clean and renewable. Considering the environmental issue and energy supply/demand of the world, we have to exert further efforts for the geothermal development. In this conference, discussions were made on each country`s experiences of the geothermal development, and future prediction and strategies for geothermal utilization in the Asia/Pacific region, in particular. Further, in the technical session, conducted were the IEA study and technical presentation/discussion for technical cooperation. The proceedings includes research reports of more than 30, which are clarified into three fields: impacts of the geothermal development on the environment, technical development of the hot dry rock power generation system, and development of technology for collecting deep-seated geothermal resource

  12. The Oregon Geothermal Planning Conference

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development

  13. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  14. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  15. Geothermal Energy Potential in Western United States

    Science.gov (United States)

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  16. Geothermal progress monitor. Progress report No. 4

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The following are included: geothermal power plants proposed and on-line; direct heat applications proposed and operational; trends in drilling activities; exploration; leases; outreach and technical assistance; feasibility studies and application demonstrations; geothermal loan guaranty program; research and development activities; legal, institutional, and regulatory activities; environmental activities; reports and publications; and a directory. (MHR)

  17. Puna Geothermal Venture Hydrologic Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-04-01

    This document provides the basis for the Hydrologic Monitoring Program (HMP) for the Puna Geothermal Venture. The HMP is complementary to two additional environmental compliance monitoring programs also being submitted by Puma Geothermal Venture (PGV) for their proposed activities at the site. The other two programs are the Meteorology and Air Quality Monitoring Program (MAQMP) and the Noise Monitoring Program (NMP), being submitted concurrently.

  18. Alaska: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  19. Washington: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-01-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  20. Geothermal tomorrow 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  1. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  2. NEDO Forum 2000. Geothermal technology development session (new development of geothermal energy); Chinetsu gijutsu kaihatsu session. Chinetsu energy no shintenkai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The following themes were presented at this session: (1) geothermal development in the future, (2) the current status of geothermal development and utilization, (3) surveys on the promotion of geothermal development, and (4) verification and investigation on geothermal exploration technologies, development of hot water utilizing power generation plants, and international cooperation on geothermal development and utilization. In Item 2, report was made on the current status of geothermal power plants in Japan and their future development targets, long-term overview of geothermal development, measures and budgets to achieve the targets of geothermal development. In Item 3, it is reported that out of 48 areas completed of the survey (including the new promotion surveyed areas), the areas possible of steam power generation and confirmed of temperatures higher than 200 degrees C are 30 areas, and the areas possible of binary power generation (using down hole pumps) and small to medium scale power generation, confirmed of temperatures of 100 to 200 degrees C are 13 areas. In Item 4, reports were made on the reservoir bed variation exploring method, surveys on deep geothermal resources, a 10-MW demonstration plant, a system to detect well bottom information during excavation of geothermal wells, a technology to collect deep geothermal resources, and a hot-rock using power generation system. In Item 5, geothermal exploration in remote islands in the eastern part of Indonesia, and the IEA cooperation projects were reported. (NEDO)

  3. Geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Gasparovic, N

    1962-07-01

    Live steam, transformed steam, and steam produced by expansion flashing are outlined with respect to their use in the production of electricity. The capacity, pressure, and temperature of a steam must be determined empirically by exploratory drilling. These factors are dependent on time and on the extent of nearby drilling-activity. Particulars of geothermal-steam power-plants such as steam dryness, hot-water flashing, condensation, gas extraction, and corrosion are discussed in detail. All available data (as per 1962) concerning the costs of operation and construction of geothermal power plants are tabulated. For space-heating purposes, two basic systems are utilized. When little corrosion or precipitation is expected, an open system is used, otherwise, closed systems are necessary. The space-heating system of Reykjavik, Iceland is cited as an example. A brief description of industrial applications of geothermal energy, such as the extraction of NaCl, D/sub 2/O, or boric acid, is provided. Thirty-two references are given.

  4. Overview criteria for the environmental, safety and health evaluation of remedial action project planning

    International Nuclear Information System (INIS)

    Stenner, R.D.; Denham, D.H.

    1984-10-01

    Overview criteria (i.e., subject areas requiring review) for evaluating remedial action project plans with respect to environmental, safety and health issues were developed as part of a Department of Energy, Office of Operational Safety, technical support project. Nineteen elements were identified as criteria that should be addressed during the planning process of a remedial action (decontamination and decommissioning) project. The scope was interpreted broadly enough to include such environmental, safety and health issues as public image, legal obligation and quality assurance, as well as more obvious concerns such as those involving the direct protection of public and worker health. The nineteen elements are discussed along with suggested ways to use a data management software system to organize and report results

  5. Environmental isotope applications in hydrology: an overview of the IAEA's activities, experiences, and prospects

    International Nuclear Information System (INIS)

    Yurtsever, Y.; Araguas, L.A.

    1993-01-01

    Development and applications of isotope methodologies in hydrology have been an integral part of the program component of the IAEA over the last three decades, within the framework of its overall activities related to peaceful nuclear applications. The use of environmental isotopes as a means of tracing water movement in the hydrology including surface and ground water is much of the Agency's work in this field. This paper provides an overview of the temporal and spatial variations of the above cited isotopes in precipitation based on the long-term data collected from the global network, and reviews the concepts and formulations of environmental isotope applications to specific problems in hydrology and hydrogeology. (Author)

  6. Levers and proposals for actions for a better taking of geothermal in the RT2012 into account - Report/Synthesis

    International Nuclear Information System (INIS)

    Percebois, Jean-Marc

    2013-01-01

    This report discusses the challenges of energy imports and energy-oriented renovation of buildings, identifies negative externalities which are not taken in the RT2012 regulation into account, outlines the potential associated with new dwellings, and proposes simple solutions to integrate renewable energies in new dwellings and to reverse the decline of geothermal energy (this sector is now in a critical situation). The authors propose to consider geothermal energy in the same way as heat networks and wood in the RT2012 regulation. They identify the conditions for the development of geothermal energy and of other renewable energies. After an overview of the situation (economic challenge, environmental context, energy-oriented renovation of the existing stock, impact of the regulatory calculation of the construction market), the authors notably present the calculation of a specific index, and describe how to take the production of renewable energies into account in various calculations

  7. Geothermal Money Book [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve

  8. ENERGY STAR Certified Geothermal Heat Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of...

  9. Geothermal in transition

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1991-01-01

    This article examines the current market for geothermal projects in the US and overseas. The topics of the article include future capacity needs, upgrading the Coso Geothermal project, the productivity of the Geysers area of Northern California, the future of geothermal, and new projects at Soda Lake, Carson Basin, Unalaska Island, and the Puna Geothermal Venture in Hilo, Hawaii

  10. Environmental framework for the development of the Los Humeros, Puebla geothermal field; Contexto ambiental del desarrollo del campo geotermico de Los Humeros, Puebla

    Energy Technology Data Exchange (ETDEWEB)

    Pastrana Melchor, Eugenio J.; Fernandez Solorzano, Maria Elena; Mendoza Rangel, Ernesto; Hernandez Ayala, Cuauhtemoc [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2005-06-01

    The construction, operation and maintenance of the Los Humeros, Puebla, geothermal field were undertaken in accordance with Mexican environmental regulations. The resolutions on environmental impacts, license for atmospheric pollution prevention, concession title for exploitation and use of national waters, permission for wastewater discharging services, company registration for producing dangerous wastes and fulfillment of all conditions noted in the documents show the applicable environmental laws for the project have been followed. [Spanish] La construccion, operacion y mantenimiento del campo geotermoelectrico Los Humeros, Puebla, se ha llevado a cabo dentro del marco juridico ambiental vigente en Mexico. Las resoluciones en materia de impacto ambiental, la licencia en materia de prevencion de la contaminacion de la atmosfera, el titulo de concesion para explorar, usar o aprovechar aguas nacionales, el permiso para descargar aguas residuales domesticas, el registro como empresa generadora de residuos peligrosos, y el cumplimiento de las disposiciones y condicionantes establecidos en cada uno de estos documentos, evidencian la observancia de la legislacion ambiental aplicable al proyecto.

  11. Uncertainty analysis of geothermal energy economics

    Science.gov (United States)

    Sener, Adil Caner

    This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be

  12. How to Get Data from NOAA Environmental Satellites: An Overview of Operations, Products, Access and Archive

    Science.gov (United States)

    Donoho, N.; Graumann, A.; McNamara, D. P.

    2015-12-01

    In this presentation we will highlight access and availability of NOAA satellite data for near real time (NRT) and retrospective product users. The presentation includes an overview of the current fleet of NOAA satellites and methods of data distribution and access to hundreds of imagery and products offered by the Environmental Satellite Processing Center (ESPC) and the Comprehensive Large Array-data Stewardship System (CLASS). In particular, emphasis on the various levels of services for current and past observations will be presented. The National Environmental Satellite, Data, and Information Service (NESDIS) is dedicated to providing timely access to global environmental data from satellites and other sources. In special cases, users are authorized direct access to NESDIS data distribution systems for environmental satellite data and products. Other means of access include publicly available distribution services such as the Global Telecommunication System (GTS), NOAA satellite direct broadcast services and various NOAA websites and ftp servers, including CLASS. CLASS is NOAA's information technology system designed to support long-term, secure preservation and standards-based access to environmental data collections and information. The National Centers for Environmental Information (NCEI) is responsible for the ingest, quality control, stewardship, archival and access to data and science information. This work will also show the latest technology improvements, enterprise approach and future plans for distribution of exponentially increasing data volumes from future NOAA missions. A primer on access to NOAA operational satellite products and services is available at http://www.ospo.noaa.gov/Organization/About/access.html. Access to post-operational satellite data and assorted products is available at http://www.class.noaa.gov

  13. Resources and geothermal heat in the Netherlands. Annual report 2011. An overview of exploration and exploitation activities and of underground gas storage; Delfstoffen en Aardwarmte in Nederland. Jaarverslag 2011. Een overzicht van opsporings- en winningsactiviteiten en van ondergrondse gasopslag

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    Traditionally, this annual report publishes the activities and results of the exploration and extraction of hydrocarbons in the Netherlands. Starting this year the report will be expanded with the exploration and extraction activities of rock salt and geothermal heat and the underground storage of resources (natural gas, nitrogen, CO2 and water). The first part of the annual report addresses the developments in the year 2011. This part also includes a prognosis for the extraction of natural gas for the next 25 years. Next, a number of tables illustrate developments in the field of licenses and exploration activities (seismic research and drilling) in 2011. The chapter on hydrocarbons is concluded with an overview of the extracted volumes of natural gas, condensate and petroleum and the gas flows in storage facilities. There are new chapters on exploration and extraction of rock salt and geothermal heat. Another new chapter addresses storage of resources. The second part of the annual report illustrates the situation per 1 January 2012 and the developments over the last decades in a number of overviews. The annexes, finally, include general maps of the situation as of 1 January 2012 [Dutch] Het Jaarverslag rapporteert over de activiteiten en resultaten van de opsporing en winning van koolwaterstoffen, steenzout en aardwarmte in Nederland. Daarnaast komt de ondergrondse opslag van stoffen (aardgas, stikstof, CO2 en water) aan de orde. Daarmee worden alle opsporings-, winnings- en opslagactiviteiten in Nederland en het Nederlandse deel van het Continentaal plat, vallend onder het regime van de Mijnbouwwet, gezamenlijk gerapporteerd. Het eerste deel van het jaarverslag gaat in op de ontwikkelingen in het jaar 2011. Zoals in voorgaande jaren richt dit deel zich op de opsporing, winning en de ondergrondse opslag van koolwaterstoffen. Dit betreft een overzicht van de veranderingen in de aardgas- en aardolievoorraden gedurende 2011 en de daaruit volgende situatie per 1

  14. Geopressured-geothermal energy development: government incentives and institutional structures

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, D.O.; Prestwood, D.C.L.; Roberts, K.; Vanston, J.H. Jr.

    1979-01-01

    The following subjects are included: a geothermal resource overview, the evolution of the current Texas geopressured-geothermal institutional structure, project evaluation with uncertainty and the structure of incentives, the natural gas industry, the electric utility industry, potential governmental participants in resource development, industrial users of thermal energy, current government incentives bearing on geopressured-geothermal development, six profiles for utilization of the geopressured-geothermal resources in the mid-term, and probable impacts of new government incentives on mid-term resource utilization profiles. (MHR)

  15. Geothermal energy in Italy - its importance, potential and projects

    International Nuclear Information System (INIS)

    Berger, W.

    2005-01-01

    This article discusses the perspectives for the use of geothermal energy in Italy. Starting with an overview of the principles of the use of geothermal energy in general, the article goes on to review Italy's geothermal resources and their relevance to energy supply. Figures are given on the political situation in Italy concerning energy and the rapidly increasing demands made on electricity supply. Political support for renewable energy in Italy is looked at and models for financing projects are examined. Examples of geothermal energy projects are given and the perspectives for further developments in this industry are looked at

  16. Geothermal Modesty

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    This publication of the Areva Group, a world nuclear industry leader, provides information on the energy in many domains. This issue deals with the uses for radioactivity, the future of the green electricity, the energy policy of Rhone-alps region, the end of the nuclear in Belgium, the nuclear propulsion to explore the solar system, the involvement of the Unites States in the hydrogen development, the gas exportation of China. A special part is devoted to the possibility of the geothermal energy. (A.L.B.)

  17. DMRC studies geothermal energy options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-01

    The Deep Mining Research Consortium (DMRC) is an industry-led research consortium that includes Vale Inco, Xstrata, Rio Tinto, Goldcorp, Agnico-Eagle, Barrick Gold, CANMET and the City of Sudbury. This article reported on the application of geothermal energy technologies to cool deep mine workings and use the heat from underground to produce energy to heat surface buildings. Researchers at the University of British Columbia's Centre for Environmental Research in Minerals, Metals and Materials have proposed the use of heat pumps and water-to-air heat exchangers at depth to chill mine workings. The heat pumps would act as refrigerators, taking heat from one area and moving it elsewhere. The purpose would be to extract heat from naturally occurring ground water and pass the chilled water through a heat exchanger to cool the air. The heated water would then be pumped to surface and used to heat surface facilities. The technology is well suited for using geothermal energy from decommissioned mines for district heating. The technology has been successfully used in Spring Hill, Nova Scotia, where geothermal energy from a decommissioned coal mine is used to heat an industrial park. A feasibility study is also underway for the city of Yellowknife in the Northwest Territories to produce up to 10 megawatts of heat from the Con Gold Mine, enough energy to heat half of Yellowknife. Geothermal energy can also be used to generate electricity, particularly in the Pacific Rim where underground temperatures are higher and closer to surface. In Sudbury Ontario, the enhanced geothermal systems technology would require two holes drilled to a depth of four kilometers. The ground between the two holes should be fractured to create an underground geothermal circuit. Geothermal energy does not produce any greenhouse gases or chemical wastes. 1 fig.

  18. Geothermal heating saves energy

    International Nuclear Information System (INIS)

    Romsaas, Tor

    2003-01-01

    The article reviews briefly a pioneer project for a construction area of 200000 m''2 with residences, business complexes, a hotel and conference centre and a commercial college in Oslo. The energy conservation potential is estimated to be about 60-70 % compared to direct heating with oil, gas or electricity as sources. There will also be substantial reduction in environmentally damaging emissions. The proposed energy central combines geothermal energy sources with heat pump technology, utilises water as energy carrier and uses terrestrial wells for energy storage. A cost approximation is presented

  19. Occupational, Environmental, and Lifestyle Factors and their Contribution to Preterm Birth - An Overview.

    Science.gov (United States)

    Kumar, Sunil; Sharma, Surendra; Thaker, Riddhi

    2017-01-01

    Preterm birth (PTB) is a significant public health concern and a leading cause of infant mortality and morbidity worldwide and often contributes to various health complications later in life. More than 60% of PTBs occur in Africa and south Asia. This overview discusses the available information on occupational, environmental, and lifestyle factors and their contribution to PTB and proposes new etiological explanations that underlie this devastating pregnancy complication. Several factors such as emotional, stress, social, racial, maternal anxiety, multiple pregnancies, infections during pregnancy, diabetes and high blood pressure, and in-vitro fertilization pregnancy have been shown to be associated with PTB. Data are emerging that occupational, environmental exposure and lifestyle factors might also be associated in part with PTB, however, they are at best limited and inconclusive. Nevertheless, data on heavy metals such as lead, air pollutants and particulate matters, bisphenol A, phthalate compounds, and environmental tobacco smoke (ETS) are promising and point to higher incidence of PTB associated with exposure to them. Thus, these observations can be used to advise pregnant women or women of reproductive age to avoid such exposures and adopt positive lifestyle to protect pregnancy and normal fetal development. There is a need to conduct well-planned epidemiological studies that include all the pathology causing factors that may contribute to adverse pregnancy outcomes, including PTB.

  20. Occupational, Environmental, and Lifestyle Factors and their Contribution to Preterm Birth – An Overview

    Science.gov (United States)

    Kumar, Sunil; Sharma, Surendra; Thaker, Riddhi

    2017-01-01

    Preterm birth (PTB) is a significant public health concern and a leading cause of infant mortality and morbidity worldwide and often contributes to various health complications later in life. More than 60% of PTBs occur in Africa and south Asia. This overview discusses the available information on occupational, environmental, and lifestyle factors and their contribution to PTB and proposes new etiological explanations that underlie this devastating pregnancy complication. Several factors such as emotional, stress, social, racial, maternal anxiety, multiple pregnancies, infections during pregnancy, diabetes and high blood pressure, and in-vitro fertilization pregnancy have been shown to be associated with PTB. Data are emerging that occupational, environmental exposure and lifestyle factors might also be associated in part with PTB, however, they are at best limited and inconclusive. Nevertheless, data on heavy metals such as lead, air pollutants and particulate matters, bisphenol A, phthalate compounds, and environmental tobacco smoke (ETS) are promising and point to higher incidence of PTB associated with exposure to them. Thus, these observations can be used to advise pregnant women or women of reproductive age to avoid such exposures and adopt positive lifestyle to protect pregnancy and normal fetal development. There is a need to conduct well-planned epidemiological studies that include all the pathology causing factors that may contribute to adverse pregnancy outcomes, including PTB. PMID:29391742

  1. Overview of the NASA Environmentally Responsible Aviation Project's Propulsion Technology Portfolio

    Science.gov (United States)

    Suder, Kenneth L.

    2012-01-01

    The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Nitrous Oxides emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and the status and results to date will be presented.

  2. NASA Environmental Control and Life Support Technology Development and Maturation for Exploration: 2015 to 2016 Overview

    Science.gov (United States)

    Schneider, Walter F.; Gatens, Robyn L.; Anderson, Molly S.; Broyan, James L.; MaCatangay, Ariel V.; Shull, Sarah A.; Perry, Jay L.; Toomarian, Nikzad

    2016-01-01

    Over the last year, the National Aeronautics and Space Administration (NASA) has continued to refine the understanding and prioritization of technology gaps that must be closed in order to achieve Evolvable Mars Campaign objectives and near term objectives in the cislunar proving ground. These efforts are reflected in updates to the technical area roadmaps released by NASA in 2015 and have guided technology development and maturation tasks that have been sponsored by various programs. This paper provides an overview of the refined Environmental Control and Life Support (ECLS) strategic planning, as well as a synopsis of key technology and maturation project tasks that occurred in 2014 and early 2015 to support the strategic needs. Plans for the remainder of 2015 and subsequent years are also described.

  3. Geothermal energy in France. Market study for 2011

    International Nuclear Information System (INIS)

    2012-01-01

    After having recalled the French national objectives for 2020 related to the share of renewable energies in final energy consumption, and given a brief overview of geothermal production in Europe, this report proposes a rather detailed overview of the geothermal market and production in France: evolution of the geothermal production stock, assessment of tonnes equivalent of oil and CO 2 emissions, users, turnover, jobs. It addresses the three main geothermal sectors: high energy (boiling geothermal, the Soultz-sous-Forets power station), direct use of heat, and very low energy (heat demand in France, results and regional distribution, market structure, analysis of the price of an installation). The last part addresses the legal and financial framework: status of French law, quality issue, levers for development (purchase tariff, geologic risk, thermal regulation 2012, energy saving certificates, tax credits, and subsidies)

  4. State policies for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Sacarto, D.M.

    1976-01-01

    The most prominent geothermal resources in the USA occur in fifteen Gulf and Western states including Alaska and Hawaii. In each state, authority and guidelines have been established for administration of geothermal leasing and for regulation of development. Important matters addressed by these policies include resource definition, leasing provisions, development regulations, water appropriation, and environmental standards. Some other policies that need attention include taxation, securities regulations, and utility regulations. It is concluded that conditions needed for the geothermal industry to pursue large-scale development are consumer (utility) confidence in the resource; equitable tax treatment; prompt exploration of extensive land areas; long and secure tenure for productive properties; prompt facility siting and development; and competitive access to various consumers. With these conditions, the industry should be competitive with other energy sectors and win its share of investment capital. This publication reviews for the states various technical, economic, and institutional aspects of geothermal development. The report summarizes research results from numerous specialists and outlines present state and Federal policies. The report concludes generally that if public policies are made favorable to their development, geothermal resources offer an important energy resource that could supply all new electric capacity for the fifteen states for the next two decades. This energy--100,000 MW--could be generated at prices competitive with electricity from fossil and nuclear power plants. An extensive bibliography is included. (MCW)

  5. Fiscal 1999 survey report. Survey of environmental effect pertaining to survey for geothermal development and promotion (Hakusuigoe area); 1999 nendo chinetsu kaihatsu sokushin chosa no uchi kankyo eikyo chosa (Hakusuigoe chiiki) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This survey of environmental effect was intended to grasp actual state concerning some environmental factors that should agree with survey/development and also to assess its effect on the surrounding environment, particularly as a part of the 'stage C' in the 'survey for geothermal development and promotion', which was implemented by the Government for the purpose of guiding geothermal development by enterprises. This report compiles the plan details of the environmental effect survey to be conducted in the Hakusuigoe district, and presents proposals. The survey area is in the north of Makizono-cho, Aira-gun, in Kagoshima prefecture and situated about 3 km west of Onaminoike in Karakunidake, one of the peaks in the Kirishima mountain range. The Ogiri geothermal power plant is in the west of the site, a tourist spot Ebino Heights about 4 km northeast, and the Kirishima hot-spring about 4 km southeast. The location is in the national park, with a part designated as No. 2 and 3 class special areas. The environmental effect survey was divided broadly into such categories as fauna/flora, hot-spring water alteration and inland water, landscape, noise/vibration/subsoil, and air/water, and was further subdivided in accordance with the actual operations. (NEDO)

  6. Influence diagram of physiological and environmental factors affecting heart rate variability: an extended literature overview

    Directory of Open Access Journals (Sweden)

    Julien Fatisson

    2016-09-01

    Full Text Available Heart rate variability (HRV corresponds to the adaptation of the heart to any stimulus. In fact, among the pathologies affecting HRV the most, there are the cardiovascular diseases and depressive disorders, which are associated with high medical cost in Western societies. Consequently, HRV is now widely used as an index of health.In order to better understand how this adaptation takes place, it is necessary to examine which factors directly influence HRV, whether they have a physiological or environmental origin. The primary objective of this research is therefore to conduct a literature review in order to get a comprehensive overview of the subject.The system of these factors affecting HRV can be divided into the following five categories: physiological and pathological factors, environmental factors, lifestyle factors, non-modifiable factors and effects. The direct interrelationships between these factors and HRV can be regrouped into an influence diagram. This diagram can therefore serve as a basis to improve daily clinical practice as well as help design even more precise research protocols.

  7. Assessing geothermal energy potential in upstate New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, D.S. [SUNY, Buffalo, NY (United States)

    1996-08-01

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  8. Guidebook to Geothermal Finance

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  9. The Bonneville Power Administration's geothermal program

    International Nuclear Information System (INIS)

    Darr, G.D.

    1990-01-01

    Despite being a power source with many desirable characteristics, geothermal has not been developed in the Pacific Northwest because of high costs, high risks, and the lack of a market for power. The region will require new power sources in the 1990s, and will need to know to what extent it can rely on geothermal. The Bonneville Power Administration has developed a geothermal RD and D program which includes a proposal to award power contracts to three pilot projects in the Northwest. Public outreach efforts, environmental base line studies, and economic and land use impact studies will also be undertaken. In this paper two projects already under way are discussed

  10. Computational modeling of shallow geothermal systems

    CERN Document Server

    Al-Khoury, Rafid

    2011-01-01

    A Step-by-step Guide to Developing Innovative Computational Tools for Shallow Geothermal Systems Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. Shallow geothermal systems are increasingly utilized for heating and cooling of buildings and greenhouses. However, their utilization is inconsistent with the enormous amount of energy available underneath the surface of the earth. Projects of this nature are not getting the public support they deserve because of the uncertainties associated with

  11. Development of geothermal energy in the Gulf Coast: socio-economic, demographic, and political considerations

    Energy Technology Data Exchange (ETDEWEB)

    Letlow, K.; Lopreato, S.C.; Meriwether, M.; Ramsey, P.; Williamson, J.K.; Vanston, J.H.; Elmer, D.B.; Gustavson, T.C.; Kreitler, C.W.; Letlow, K.; Lopreato, S.C.; Meriwether, M.; Ramsey, P.; Rogers, K.E.; Williamson, J.K.

    1976-01-01

    The institutional aspect of the study attempts to identify possible effects of geothermal research, development, and utilization on the area and its inhabitants in three chapters. Chapters I and II address key socio-economic and demographic variables. The initial chapter provides an overview of the area where the resource is located. Major data are presented that can be used to establish a baseline description of the region for comparison over time and to delineate crucial area for future study with regard to geothermal development. The chapter highlights some of the variables that reflect the cultural nature of the Gulf Coast, its social characteristics, labor force, and service in an attempt to delineate possible problems with and barriers to the development of geothermal energy in the region. The following chapter focuses on the local impacts of geothermal wells and power-generating facilities using data on such variables as size and nature of construction and operating crews. Data are summarized for the areas studied. A flow chart is utilized to describe research that is needed in order to exploit the resource as quickly and effectively as possible. Areas of interface among various parts of the research that will include exchange of data between the social-cultural group and the institutional, legal, environmental, and resource utilization groups are identified. (MCW)

  12. Final environmental impact report. Part I. Pacific Gas and Electric Company Geysers Unit 16, Geothermal Power Plant, Lake County, California

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The environmental analysis includes the following: geology, soils, hydrology, water quality, vegetation, wildlife, air resources, health and safety, noise, waste management, cultural resources, land use, aesthetics, socioeconomics, public services, transportation, and energy and material resources. Also included are: the project description, a summary of environmental consequences, and alternatives to the proposed action. (MHR)

  13. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  14. Geothermal energy geopressure subprogram

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

  15. Geothermal Technologies Program: Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  16. Proceedings of the second NATO-CCMS information meeting on dry hot rock geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, J.J. (comp.)

    1977-11-01

    A summary is presented of the second and last NATO-CCMS (North Atlantic Treaty Organization--Committee on Challenges of Modern Society) Geothermal Pilot Study Information Meeting on Dry Hot Rock Geothermal Energy. Only summaries of the formal presentations are included. Overviews of the Energy Research and Development Administration (ERDA) and the U.S. Geological Survey (USGS) geothermal projects are included with emphasis on the Los Alamos Scientific Laboratory (LASL) Hot Dry Rock Geothermal Energy Development Project. Reports of developments in nine foreign countries and on geothermal projects in US universities are also presented.

  17. The social and environmental impacts of biofuels in Asia: An overview

    International Nuclear Information System (INIS)

    Phalan, Ben

    2009-01-01

    The purpose of this paper is to provide a broad overview of the social and environmental costs and benefits of biofuels in Asia. The major factors that will determine the impacts of biofuels are: (1) their contribution to land-use change, (2) the feedstocks used, and (3) issues of technology and scale. Biofuels offer economic benefits, and in the right circumstances can reduce emissions and make a small contribution to energy security. Feedstocks that involve the conversion of agricultural land will affect food security and cause indirect land-use change, while those that replace forests, wetlands or natural grasslands will increase emissions and damage biodiversity. Biofuels from cellulose, algae or waste will avoid some of these problems, but come with their own set of uncertainties and risks. In order to ensure net societal benefits of biofuel production, governments, researchers, and companies will need to work together to carry out comprehensive assessments, map suitable and unsuitable areas, and define and apply standards relevant to the different circumstances of each country. The greatest benefits may come from feedstocks produced on a modest scale as co-products of smart technologies developed for phytoremediation, waste disposal and emissions reduction.

  18. The social and environmental impacts of biofuels in Asia: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Phalan, Ben [Conservation Science Group, University of Cambridge, Cambridge CB2 3EJ (United Kingdom)

    2009-11-15

    The purpose of this paper is to provide a broad overview of the social and environmental costs and benefits of biofuels in Asia. The major factors that will determine the impacts of biofuels are: (1) their contribution to land-use change, (2) the feedstocks used, and (3) issues of technology and scale. Biofuels offer economic benefits, and in the right circumstances can reduce emissions and make a small contribution to energy security. Feedstocks that involve the conversion of agricultural land will affect food security and cause indirect land-use change, while those that replace forests, wetlands or natural grasslands will increase emissions and damage biodiversity. Biofuels from cellulose, algae or waste will avoid some of these problems, but come with their own set of uncertainties and risks. In order to ensure net societal benefits of biofuel production, governments, researchers, and companies will need to work together to carry out comprehensive assessments, map suitable and unsuitable areas, and define and apply standards relevant to the different circumstances of each country. The greatest benefits may come from feedstocks produced on a modest scale as co-products of smart technologies developed for phytoremediation, waste disposal and emissions reduction. (author)

  19. Exporting licensing regulations affecting US geothermal firms

    Energy Technology Data Exchange (ETDEWEB)

    1988-08-01

    This document presents a brief introduction and overview of the Department of Commerce's Export Administration Regulations which might affect potential US geothermal goods exporters. It is intended to make US geothermal firms officials aware of the existence of such regulations and to provide them with references, contacts and phone numbers where they can obtain specific and detailed information and assistance. It must be stressed however, that the ultimate responsibility for complying with the above mentioned regulations lies with the exporter who must consult the complete version of the regulations.

  20. Geothermal Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.

    1998-01-03

    Man has utilized the natural heat of the earth for centuries. Worldwide direct use of geothermal currently amounts to about 7,000 MWt, as compared to 1,500 MWe, now being used for the generation of electricity. Since the early 1970s, dwindling domestic reservoirs of oil and gas, continued price escalation of oil on the world market and environmental concerns associated with coal and nuclear energy have created a growing interest in the use of geothermal energy in the United States. The Department of Energy goals for hydrothermal resources utilization in the United States, expressed in barrels of oil equivalent, is 50 to 90 million bbl/yr by 1985 and 350 to 900 million bbl/yr by the year 2000. This relatively clean and highly versatile resource is now being used in a multitude of diverse applications (e.g., space heating and cooling, vegetable dehydration, agriculture, aquaculture, light manufacturing), and other applications requiring a reliable and economic source of heat.

  1. Geothermal energy. Pt. 1

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    As most of the alternative power sources, geothermal energy started being considered as a tentative one during the early 1970s. At that time the world's demand for energy was mostly fed by means of petroleum, coal, gas and other primary materials. The low prices of these raw materials at that time and the lack of general consciousness on the environmental contamination problems caused by the combustion processes did not forecast any significant changes for the coming years. However, as from 1973, a constant raise in prices, specially for liquid fuels, started to take place. A few years later, in the early 1980s, a growing interest for nature and for the delicate equilibrium of the ecological and for systems started to awaken. These facts led several countries to re-evaluate their power resources and to reconsider those showing less negative incidence upon the environment. Among such alternatives, geothermal energy introduces certain features that make it highly advisable for developing countries, in addition to the fact that the mean heat reservoirs are located within this group of nations [es

  2. Geothermal Energy in Ecuador

    International Nuclear Information System (INIS)

    Aguilera, Eduardo; Villalba, Fabio

    1999-11-01

    Energy represents an essential element for economy, and for any sustainable development strategy, assuming it is a basic input for all production activities. It is a fundamental contra int for country's competitivity and also a main component of population's standard of life. The Agenda 21 and the General Agreement on Climatic Changes emphasize that the development and sustainable use of energy should promote economy, but taking care of the environment. Under these basic concepts, for the particular case of energy, the sustain ability of development requires the adoption of a strategy which guarantee an energy supply in terms of quality, opportunity, continuity and afford ability and, in addition, without production of negative environmental impacts. Geothermal energy is a serious energetic option for sustainable development, since presents technical and economic advantages for production of electricity at medium and large scale. Furthermore, geothermal energy allows a wide spectrum of direct applications of heat in profitable projects of high social impact as green houses, drying of seeds and wood products, fish farming, recreation and others. All of them can help the increase of communal production activities in rural areas affected by poverty

  3. Geothermal fields of China

    Science.gov (United States)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  4. World geothermal congress

    International Nuclear Information System (INIS)

    Povarov, O.A.; Tomarov, G.V.

    2001-01-01

    The World geothermal congress took place in the period from 28 May up to 10 June 2000 in Japan. About 2000 men from 43 countries, including specialists in the area of developing geothermal fields, creating and operating geothermal electrical and thermal plants and various systems for the earth heat application, participated in the work of the Congress. It was noted at the Congress, that development of the geothermal power engineering in the world is characterized by the large-scale application of geothermal resources for the electrical energy generation [ru

  5. Hawaii geothermal project

    Science.gov (United States)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  6. Geothermal energy in Jordan

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1993-11-01

    The potential of geothermal energy utilization in Jordan was discussed. The report gave a summary of the location of geothermal anomalies in Jordan, and of ongoing projects that utilize geothermal energy for greenhouse heating, fish farming, refrigeration by absorption, and water desalination of deep aquifers. The problems facing the utilization of geothermal energy in Jordan were identified to be financial (i.e. insufficient allocation of local funding, and difficulty in getting foreign financing), and inadequate expertise in the field of geothermal energy applications. The report gave a historical account of geothermal energy utilization activities in Jordan, including cooperation activities with international organizations and foreign countries. A total of 19 reports already prepared in the areas of geochemical and hydrological studies were identified. The report concluded that the utilization of geothermal energy offers some interesting economic possibilities. (A.M.H.). 4 refs. 1 map

  7. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, E; Fanelli, M

    1977-01-01

    The non-electric applications of geothermal energy, with the exception of balneology, date back to the nineteenth century and have been given a new impetus by the recent oil crisis. In general, water or water-steam mixtures at temperatures between 20 and 180/sup 0/C are used for these applications. The search for geothermal fluids draws on techniques from hydrogeology, geochemistry and geophysics, the same techniques as applied to the search for cold waters, together with some specific methods connected with the underground thermal conditions. Geothermal energy is used in agriculture, aquaculture, district heating and cooling and various industrial applications. The power associated with these uses throughout the world at present can be estimated at 6200 MW and future prospects are by now promising and of definite economic interest. The environmental impact from geothermal energy is lower than that caused by conventional energy sources. Reinjection of used fluids back into the underground may, however, solve pollution problems.

  8. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, E; Fanelli, M

    1977-01-01

    The non-electric applications of geothermal energy, with the exception of balneology, date back to the nineteenth century and have been given a new impetus by the recent oil crisis. In general, water or water--steam mixtures at temperatures between 20 and 180/sup 0/C are used for these applications. The search for geothermal fluids draws on techniques from hydrogeology, geochemistry and geophysics, the same techniques as applied to the search for cold waters, together with some specific methods connected with the underground thermal conditions. Geothermal energy is used in agriculture, aquaculture, district heating and cooling, and various industrial applications. The power associated with these uses throughout the world at present can be estimated at 6200 MW and future prospects are by now promising and of definite economic interest. The environmental impact from geothermal energy is lower than that caused by conventional energy sources. Reinjection of used fluids back into the underground may, however, solve pollution problems.

  9. Geothermal direct use engineering and design guidebook

    International Nuclear Information System (INIS)

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States

  10. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lunis, B.C. (eds.)

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  11. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  12. Characteristics of low-enthalpy geothermal applications in Greece

    International Nuclear Information System (INIS)

    Andritsos, N.; Dalabakis, P.; Karydakis, G.; Kolios, N.; Fytikas, M.

    2011-01-01

    The paper offers a brief overview of the current direct geothermal uses in Greece and discusses their characteristics, with emphasis to the economical and technical problems encountered. Greece holds a prominent place in Europe regarding the existence of promising geothermal resources (both high and low-enthalpy), which can be economically exploited. Currently, no geothermal electricity is produced in Greece. The installed capacity of direct uses at the end of 2009 is estimated at about 155 MW t , exhibiting an increase of more than 100% compared to the figures reported at the World Geothermal Congress 2005. The main uses, in decreasing share, are geothermal heat pumps, swimming and balneology, greenhouse heating and soil warming. Earth-coupled and groundwater (or seawater) heat pumps have shown a drastic expansion during the past 2-3 years, mainly due to high oil prices two years ago and easing of the license requirements for drilling shallow wells. (author)

  13. Geothermal today: 1999 Geothermal Energy Program highlights (Clean energy for the 21st century booklet)

    Energy Technology Data Exchange (ETDEWEB)

    Green, B.; Waggoner, T.

    2000-05-10

    The purpose of this publication is to educate and inform readers about research activities being carried out by the federal Geothermal Energy Program, and its achievements and future goals. This publication should help raise the visibility and awareness of geothermal energy contributions and potential, especially as part of the nation's clean energy technologies portfolio. The message of the publication is that program resources are being well spent and the results are real and tangible. A secondary message is that geothermal energy is a viable generation option with environmental, economic, and other benefits.

  14. Computational methods for planning and evaluating geothermal energy projects

    International Nuclear Information System (INIS)

    Goumas, M.G.; Lygerou, V.A.; Papayannakis, L.E.

    1999-01-01

    In planning, designing and evaluating a geothermal energy project, a number of technical, economic, social and environmental parameters should be considered. The use of computational methods provides a rigorous analysis improving the decision-making process. This article demonstrates the application of decision-making methods developed in operational research for the optimum exploitation of geothermal resources. Two characteristic problems are considered: (1) the economic evaluation of a geothermal energy project under uncertain conditions using a stochastic analysis approach and (2) the evaluation of alternative exploitation schemes for optimum development of a low enthalpy geothermal field using a multicriteria decision-making procedure. (Author)

  15. Overview of environmental surveillance and compliance at Los Alamos during 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    After introductory remarks about the National Lab, the report discusses background radiation, human-produced radiation, radionuclide migration, doses, and health physics risk; the environmental programs at LANL including environmental protection, restoration, waste management, quality assurance, environmental oversight, environmental safety and training; environmental monitoring of external penetrating radiation, surface waters, sediments, soils, foodstuffs, and associated biota; and environmental compliance with existing regulations.

  16. Overview of environmental surveillance and compliance at Los Alamos during 1996

    International Nuclear Information System (INIS)

    1997-09-01

    After introductory remarks about the National Lab, the report discusses background radiation, human-produced radiation, radionuclide migration, doses, and health physics risk; the environmental programs at LANL including environmental protection, restoration, waste management, quality assurance, environmental oversight, environmental safety and training; environmental monitoring of external penetrating radiation, surface waters, sediments, soils, foodstuffs, and associated biota; and environmental compliance with existing regulations

  17. Geothermal energy in Wyoming: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    James, R.W.

    1979-04-01

    An overview of geothermal energy and its current and potential uses in Wyoming is presented. Chapters on each region are concluded with a summary of thermal springs in the region. The uniqueness of Yellowstone is discussed from both an institutional point of view and a natural one. The institutional situation at the federal and state level is discussed as it applies to geothermal development in Wyoming. (MHR)

  18. Geothermal energy in Idaho: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.V.

    1979-07-01

    A summary of known information about the nature of the resource, its potential for development, and the infrastructure of government which will guide future development is presented. Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are included. Leasing and development status, institutional parameters, and a legal overview of geothermal resources in Idaho are given. (MHR)

  19. Geothermal Program Review XIV: proceedings. Keeping Geothermal Energy Competitive in Foreign and Domestic Markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The U.S. Department of Energy`s Office of Geothermal Technologies conducted its annual Program Review XIV in Berkeley, April 8-10, 1996. The geothermal community came together for an in-depth review of the federally-sponsored geothermal research and development program. This year`s theme focused on ``Keeping Geothermal Energy Competitive in Foreign and Domestic Markets.`` This annual conference is designed to promote technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal developers; equipment and service suppliers; representatives from local, state, and federal agencies; and others with an interest in geothermal energy. Program Review XIV consisted of eight sessions chaired by industry representatives. Introductory and overview remarks were presented during every session followed by detailed reports on specific DOE-funded research projects. The progress of R&D projects over the past year and plans for future activities were discussed. The government-industry partnership continues to strengthen -- its success, achievements over the past twenty years, and its future direction were highlighted throughout the conference. The comments received from the conference evaluation forms are published in this year`s proceedings. Individual papers have been processed for inclusion in the Energy Science and Technology Database.

  20. Technologies for the exploration of highly mineralized geothermal resources

    Science.gov (United States)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2017-09-01

    The prospects of the integrated processing of the high-parameter geothermal resources of the East Ciscaucasia of artesian basin (ECAB) with the conversion of their heat energy into electric energy at a binary geoPP and the subsequent extraction of solved chemical compounds from thermal waters are evaluated. The most promising areas for the exploration such resources are overviewed. The integrated exploration of hightemperature hydrogeothermal brines is a new trend in geothermal power engineering, which can make it possible to significantly increase the production volume of hydrogeothermal resources and develop the geothermal field at a higher level with the realization of the energy-efficient advanced technologies. The large-scale exploration of brines can solve the regional problems of energy supply and import substitution and fulfill the need of Russia in food and technical salt and rare elements. The necessity of the primary integrated exploration of the oil-field highly mineralized brines of the South Sukhokumskii group of gas-oil wells of Northern Dagestan was shown in view of the exacerbated environmental problems. Currently, the oil-field brines with the radioactive background exceeding the allowable levels are discharged at disposal fields. The technological solutions for their deactivation and integrated exploration are proposed. The realization of the proposed technological solutions provides 300 t of lithium carbonate, 1650 t of caustic magnesite powder, 27300 t of chemically precipitated chalk, 116100 t of food salt, and up to 1.4 mln m3 of desalinated water from oil-field brines yearly. Desalinated water at the output of a geotechnological complex can be used for different economic needs, which is important for the arid North Caucasus region, where the fresh water deficiency is acute, especially in its plain part within the ECAB.

  1. Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.

    1998-11-30

    The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.

  2. Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines

    International Nuclear Information System (INIS)

    Vimmerstedt, L.

    1998-01-01

    The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market

  3. GEOTHERMAL GREENHOUSING IN TURKEY

    Directory of Open Access Journals (Sweden)

    Sedat Karaman

    2016-07-01

    Full Text Available Use of renewable energy resources should be brought forward to reduce heating costs of greenhouses and to minimize the use of ever-depleting fossil fuels. Geothermal energy not only provides the heat required throughout plant growth, but also allow a year-long production. Geothermal resources with several other benefits therefore play significant role in agricultural activities. With regard to geothermal potential and implementation, Turkey has the 7th place in the world and the 1st place in Europe. Majority of country geothermal resources is used in greenhouse heating. The size of geothermal greenhouses increased 5 folds during the last decade and reached to 2500 decare. In this study, current status of geothermal greenhousing of Turkey was presented; problems and possible solutions were discussed.

  4. Coordination of geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, A.M.; Drury, M.J.

    1983-01-01

    Visits were made in 1983 to various investigators and institutions in Canada to examine developments in geothermal research. Proposals for drilling geothermal wells to provide hot water for heating at a college in Prince Edward Island were made. In Alberta, the first phase of a program examining the feasibility of mapping sedimentary geothermal reservoirs was discussed. Some sites for possible geothermal demonstration projects were identified. In British Columbia, discussions were held between BC Hydro and Energy, Mines and Resources Canada on the drilling of a research hole into the peak of a temperature anomaly in the Meager Creek Valley. The British Columbia government has offered blocks of land in the Mount Cayley volcanic complex for lease to develop geothermal resources. A list of papers of interest to the Canadian geothermal energy program is appended.

  5. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  6. Success in geothermal development

    International Nuclear Information System (INIS)

    Stefansson, V.

    1992-01-01

    Success in geothermal development can be defined as the ability to produce geothermal energy at compatible energy prices to other energy sources. Drilling comprises usually the largest cost in geothermal development, and the results of drilling is largely influencing the final price of geothermal energy. For 20 geothermal fields with operating power plants, the ratio between installed capacity and the total number of well in the field is 1.9 MWe/well. The drilling history in 30 geothermal fields are analyzed by plotting the average cumulative well outputs as function of the number of wells drilled in the field. The range of the average well output is 1-10 MWe/well with the mean value 4.2 MWe/well for the 30 geothermal fields studied. A leaning curve is defined as the number of wells drilled in each field before the average output per well reaches a fairly constant value, which is characteristic for the geothermal reservoir. The range for this learning time is 4-36 wells and the average is 13 wells. In general, the average well output in a given field is fairly constant after some 10-20 wells has been drilled in the field. The asymptotic average well output is considered to be a reservoir parameter when it is normalized to the average drilling depth. In average, this reservoir parameter can be expressed as 3.3 MWe per drilled km for the 30 geothermal fields studied. The lifetime of the resource or the depletion time of the geothermal reservoir should also be considered as a parameter influencing the success of geothermal development. Stepwise development, where the reservoir response to the utilization for the first step is used to determine the timing of the installment of the next step, is considered to be an appropriate method to minimize the risk for over investment in a geothermal field

  7. Work for the International Energy Agency's Geothermal Implementing Agreement (GIA) in 2006; Arbeiten fuer das IEA Geothermal Implementing Agreement (GIA) 2006 - Jahresbericht 2006

    Energy Technology Data Exchange (ETDEWEB)

    Rybach, L.; Megel, T.

    2006-12-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) discusses work done in 2006 within the framework of the International Energy Agency's Geothermal Implementing Agreement (GIA). Information exchange with representatives of countries where geothermal energy is used is discussed as are the contributions made in this area by Swiss representatives. In particular, comprehensive appendices to the report present the Swiss Country Report, a basic paper on geothermal sustainability, comments on the environmental impact of geothermal energy development and risks posed by fluid injection in enhanced geothermal systems.

  8. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  9. Geothermal Progress Monitor, report No. 13

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to substantial diversification'' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation tha the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  10. 17th Symposium of NEDO projects. Geothermal subcommittee; Chinetsu bunkakai. Dai 17 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Described herein are the reports presented to the geothermal subcommittee. The NEDO's Geothermal Research Department is developing the technologies for accurately predicting the reservoir changes in the future by the geothermal development promotion investigations for distributed conditions of geothermal resources and related environmental impacts, and also by clarifying the hydrogic characteristics of the fracture systems which form the reservoirs. The department is also implementing the projects for investigating/ researching possibilities of resources distribution conditions and utilization for eventual commercialization of the deep underground geothermal resources, and also investigating utilization of small- to medium-sized geothermal binary power generation systems for effective utilization of unutilized geothermal energy. The geothermal technology development group is developing the technologies for the binary cycle power generation plants which effectively utilize unutilized medium- to high-temperature geothermal water for power generation, and also the technologies for collecting conditions at the bottom of a geothermal well being excavated in real time to improve efficiency and precision of the excavation. The other technologies being developed include those for excavation and production essential for development of power generation systems using high-temperature rocks and deep underground geothermal resources, the former being expected to contribute to expanded utilization of geothermal resources and the latter to increased geothermal power generation capacity. (NEDO)

  11. 17th Symposium of NEDO projects. Geothermal subcommittee; Chinetsu bunkakai. Dai 17 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Described herein are the reports presented to the geothermal subcommittee. The NEDO's Geothermal Research Department is developing the technologies for accurately predicting the reservoir changes in the future by the geothermal development promotion investigations for distributed conditions of geothermal resources and related environmental impacts, and also by clarifying the hydrogic characteristics of the fracture systems which form the reservoirs. The department is also implementing the projects for investigating/ researching possibilities of resources distribution conditions and utilization for eventual commercialization of the deep underground geothermal resources, and also investigating utilization of small- to medium-sized geothermal binary power generation systems for effective utilization of unutilized geothermal energy. The geothermal technology development group is developing the technologies for the binary cycle power generation plants which effectively utilize unutilized medium- to high-temperature geothermal water for power generation, and also the technologies for collecting conditions at the bottom of a geothermal well being excavated in real time to improve efficiency and precision of the excavation. The other technologies being developed include those for excavation and production essential for development of power generation systems using high-temperature rocks and deep underground geothermal resources, the former being expected to contribute to expanded utilization of geothermal resources and the latter to increased geothermal power generation capacity. (NEDO)

  12. Geothermal Program Review XVII: proceedings. Building on 25 years of Geothermal Partnership with Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    The US Department of Energy's Office (DOE) of Geothermal Technologies conducted its annual Program Review XVII in Berkeley, California, on May 18--20, 1999. The theme this year was "Building on 25 Years of Geothermal Partnership with Industry". In 1974, Congress enacted Public Law 93-410 which sanctioned the Geothermal Energy Coordination and Management Project, the Federal Government's initial partnering with the US geothermal industry. The annual program review provides a forum to foster this federal partnership with the US geothermal industry through the presentation of DOE-funded research papers from leaders in the field, speakers who are prominent in the industry, topical panel discussions and workshops, planning sessions, and the opportunity to exchange ideas. Speakers and researchers from both industry and DOE presented an annual update on research in progress, discussed changes in the environment and deregulated energy market, and exchanged ideas to refine the DOE Strategic Plan for research and development of geothermal resources in the new century. A panel discussion on Climate Change and environmental issues and regulations provided insight into the opportunities and challenges that geothermal project developers encounter. This year, a pilot peer review process was integrated with the program review. A team of geothermal industry experts were asked to evaluate the research in progress that was presented. The evaluation was based on the Government Performance and Results Act (GPRA) criteria and the goals and objectives of the Geothermal Program as set forth in the Strategic Plan. Despite the short timeframe and cursory guidance provided to both the principle investigators and the peer reviewers, the pilot process was successful. Based on post review comments by both presenters and reviewers, the process will be refined for next year's program review.

  13. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  14. FY 1998 geothermal development promotion survey. Report on the environmental effect survey (animals/plants, No. B-7 Kuwanosawa area); 1998 nendo chinetsu kaihatsu sokushin chosa. Kankyo eikyo chosa hokokusho (doshokubutsu, No.B-7 Kuwanosawa chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey was conducted to estimate effects of drilling of geothermal exploration well on the environment, aiming at grasping the present state of environmental elements before the survey/development. As a result of the literature survey, the following distribution were confirmed in the fauna: 5 orders 10 families 19 species in the mammalia, 10 orders 25 families 73 species in the aves, 1 order 3 families 6 species in the reptilia, 2 orders 6 families 9 species in the amphibia, and 17 orders 179 families 719 species in the insecta. In the flora, a distribution of 132 families 670 species was confirmed. The results of studying the above indicated that in the fauna, there were 10 species such as antelope as valuable animal in the area surveyed and that it is necessary to pay much attention to the environmental preservation of the habitat for those animals in the well drilling associated with geothermal survey. In the flora, the 13 valuable animals selected as animal having a fear of extinction in the 'plant-version red list' were confirmed in the area surveyed and the periphery. Further, as to the plant colony, there are no important colonies in terms of preservation. In well drilling, important things are efforts exerted to restore to the original state of the area altered, prevention of the washed-away of mud water, etc., and efforts exerted to preserve the environment of vegetation. (NEDO)

  15. The geopressured-geothermal resource

    International Nuclear Information System (INIS)

    Wys, J.N.; Dorfman, M.

    1990-01-01

    This paper reports that the Geopressured-Geothermal resource has an estimated 5,700 recoverable quad of gas and 11,000 recoverable quad of thermal energy in the onshore Texas and Louisiana Gulf Coasts area alone. After 15 years the program is now beginning a transition to commercialization. The program presently has three geopressured-geothermal wells in Texas and Louisiana. The Pleasant Bayou Well has a 1 MWe hybrid power system converting some gas and the thermal energy to electricity. The Gladys McCall Well produced over 23 MM bbls brine with 23 scf per bbl over 4 1/2 years. It is now shut-in building up pressure. The deep Hulin Well has been cleaned out and short term flow tested. It is on standby awaiting funds for long-term flow testing. In January 1990 an Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource was convened at Rice University, Houston, TX. Sixty-five participants heard industry cost-shared proposals for using the hot geopressured brine. Proposals ranged from thermal enhanced oil recovery to aquaculture, conversion, and environmental clean up processes. By the September meeting at UTA-Balcones Research Center, industry approved charters will have been received, an Advisory Board will be appointed, and election of officers from industry will he held

  16. Geothermal Financing Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  17. Geothermal energy for greenhouses

    Science.gov (United States)

    Jacky Friedman

    2009-01-01

    Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...

  18. Geothermal energy in Alaska: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Markle, D.R.

    1979-04-01

    The various factors affecting geothermal resource development are summarized for Alaska including: resource data base, geological description, reservoir characteristics, environmental character, base and development status, institutional factors, economics, population and market, and development potential. (MHR)

  19. Geothermal energy in Idaho: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    The various factors affecting geothermal resource development are summarized for Idaho, including: resource data base, geological description, reservoir characteristics, environmental character, lease and development status, institutional factors, legal aspects, population and market, and development. (MHR)

  20. Comprehensive Summary and Analysis of Oral and Written Scoping Comments on the Hawaii Geothermal Project EIS (DOE Review Draft)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-09-18

    This report contains summaries of the oral and written comments received during the scoping process for the Hawaii Geothermal Project (HGP) Environmental Impact Statement (EIS). Oral comments were presented during public scoping meetings; written comments were solicited at the public scoping meetings and in the ''Advance Notice of Intent'' and ''Notice of Intent'' (published in the ''Federal Register'') to prepare the HGP EIS. This comprehensive summary of scoping inputs provides an overview of the issues that have been suggested for inclusion in the HGP EIS.

  1. Renewability of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, Michael; Yeh, Angus [Department of Engineering Science, University of Auckland, Auckland (New Zealand); Mannington, Warren [Contact Energy Limited, Taupo (New Zealand)

    2010-12-15

    In almost all geothermal projects worldwide, the rate of extraction of heat energy exceeds the pre-exploitation rate of heat flow from depth. For example, current production of geothermal heat from the Wairakei-Tauhara system exceeds the natural recharge of heat by a factor of 4.75. Thus, the current rate of heat extraction from Wairakei-Tauhara is not sustainable on a continuous basis, and the same statement applies to most other geothermal projects. Nevertheless, geothermal energy resources are renewable in the long-term because they would fully recover to their pre-exploitation state after an extended shut-down period. The present paper considers the general issue of the renewability of geothermal resources and uses computer modeling to investigate the renewability of the Wairakei-Tauhara system. In particular, modeling is used to simulate the recovery of Wairakei-Tauhara after it is shut down in 2053 after a hundred years of production. (author)

  2. Geothermal country update of Japan

    International Nuclear Information System (INIS)

    Higo, M.

    1990-01-01

    This paper reports on the status of geothermal energy in Japan. Topics covered include: present and planned production of electricity, present utilization of geothermal energy for direct heat, information about geothermal localities, and wells drilled for electrical utilization of geothermal resources to January 1, 1990

  3. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  4. Southwest regional geothermal operations research program. Summary report. First project year, June 1977--August 1978

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, R.T.; Davidson, R.

    1978-12-01

    A summary report is given of the information, data, and results presented by New Mexico Energy Institute and the five State Teams in their separate draft reports. The objective is to develop scenarios for the development of each identified geothermal resource area in Arizona, Colorado, Nevada, New Mexico and Utah. Included are an overview; an economic analysis; institutitional procedures, contraints, and incentives; location of geothermal resources in the southwest; geothermal development postulations, state by state; and recommended actions for promoting and accelerating geothermal development. (MHR)

  5. Background report to the OECD Environmental Outlook to 2030. Overviews, details, and methodology of model-based analysis

    International Nuclear Information System (INIS)

    Bakkes, J.A.; Bagnoli, P.; Chateau, J.; Corfee-Morlot, J.; Kim, Y.G.

    2008-01-01

    This background report provides overviews and details of the model-based analyses for the Outlook. The global analyses have been conducted for 24 regions. They cover: climate change; urban air pollution and related health impacts; nutrient loading to the aquatic environment by agriculture and by trends in sanitation and sewerage; terrestrial biodiversity. A baseline scenario has been developed, as well as three policy packages. Most of the model-based analyses for the Environmental Outlook include a retrospect to 1970 and a look forward up to 2050. This enables an assessment of the cost of policy inaction and of the delaying of such action. This background report compares the impacts of the baseline for the various regions of the world. It also assesses the impact of uncertainties in the modelling for the key messages of the Environmental Outlook

  6. Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

    1984-08-01

    Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

  7. Direct use applications of geothermal resources at Desert Hot Springs, California. Final report, May 23, 1977--July 31, 1978. Volume II: appendixes

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, C.C.

    1978-07-01

    The following appendixes are included: Desert Hot Springs (DHS) Geothermal Project Advisory Board, Geothermal Citizens Advisory Committee, community needs assessment, geothermal resource characterization, a detailed discussion of the geothermal applications considered for DHS, space/water heating, agricultural operations, detailed analysis of a geothermal aquaculture facility, detailed discussion of proposed energy cascading systems for DHS, regulatory requirements, environmental impact assessment, resource management plan, and geothermal resources property rights and powers of cities to regulate indigenous geothermal resources and to finance construction of facilities for utilization of such resources. (MHR)

  8. Advanced biochemical processes for geothermal brines FY 1998 annual operating plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

  9. THE FUTURE OF GEOTHERMAL ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  10. Overview of the biomedical and environmental programs at the Oak Ridge National Laboratory. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B. (comps.)

    1981-07-01

    Separate abstracts were prepared for each of the 6 chapters presented by the six divisions involved in the Biomedical and Environmental Sciences Program at Oak Ridge National Laboratory. The introduction is not covered by an abstract and deals with the environmental, health and safety considerations of energy technology decisions, the major initiatives now being taken by these 6 divisions, and recent major accomplishments in the biomedical and environmental science program. (KRM)

  11. Overview of the biomedical and environmental programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    Separate abstracts were prepared for each of the 6 chapters presented by the six divisions involved in the Biomedical and Environmental Sciences Program at Oak Ridge National Laboratory. The introduction is not covered by an abstract and deals with the environmental, health and safety considerations of energy technology decisions, the major initiatives now being taken by these 6 divisions, and recent major accomplishments in the biomedical and environmental science program

  12. Overview: Applicability of U.S. environmental control technologies for Korea

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S.W. [DOE Pittsburgh Energy Technology Center, PA (United States)

    1994-12-31

    A review of the applicability of US environmental control technologies for Korea is presented in outline form. The following topics are discussed: PETC coal research activities, environmental costs, environmental challenges, Clean Air Act requirements, additional regulations for air toxics, clean coal technologies (CCT) approach, CCT help meet environmental challenges, utility options, research goals for advanced power systems, PETC Programs, the NO{sub x} SO process, flue gas cleanup program, air toxics emissions, and retrofit NO{sub x} control for coal-burning boilers.

  13. Geopressured geothermal bibliography. Volume 1 (citation extracts)

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01

    This bibliography was compiled by the Center for Energy Studies at The University of Texas at Austin to serve as a tool for researchers in the field of geopressured geothermal energy resources. The bibliography represents citations of papers on geopressured geothermal energy resources over the past eighteen years. Topics covered in the bibliography range from the technical aspects of geopressured geothermal reservoirs to social, environmental, and legal aspects of tapping those reservoirs for their energy resources. The bibliography currently contains more than 750 entries. For quick reference to a given topic, the citations are indexed into five divisions: author, category, conference title, descriptor, and sponsor. These indexes are arranged alphabetically and cross-referenced by page number.

  14. Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

  15. Environmental assessment of the area surrounding Dam Rio Verde - Parana/Brazil. An overview of environmental geomorphology.

    Science.gov (United States)

    Garcia, Claudia Moreira; Carrijo, Beatriz Rodrigues; Sessegolo, Gisele; Passos, Everton

    2012-04-01

    This paper presents a brief essay on the situation in which the environment of the dam of the Rio Verde Basin-Parana, from the vision of environmental geomorphology. The area is located between the cities of Campo Magro and Campo Largo, Paraná plateau in the first part of theAlto Iguaçu basin. This study aims to raise the concepts relating to environmental geomorphology, to identify the anthropogenic impacts caused in the reservoir areas, identify the environmental compartments found around the dam and characterize the geologic and physiographic region. It was found that the area has intense anthropogenic influence, as urban growth is present in areas and wavy and rough terrain, subject to mass movements and floods. Besides these aspects, the use of land for agriculture contributes to fragility of the area.

  16. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  17. Geothermal survey handbook

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The objective of this handbook is to publicize widely the nature of geothermal surveys. It covers geothermal survey planning and measurement as well as measurement of thermal conductivity. Methods for the detection of eruptive areas, the measurement of radiative heat using snowfall, the measurement of surface temperature using infrared radiation and the measurement of thermal flow are described. The book also contains information on physical detection of geothermal reservoirs, the measurement of spring wells, thermographic measurement of surface heat, irregular layer surveying, air thermographics and aerial photography. Isotope measurement techniques are included.

  18. Worldwide installed geothermal power

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    Worldwide electric energy production data are easy to compile, according to the informations given by individual countries. On the contrary, thermal applications of geothermics are difficult to quantify due to the variety of applications and the number of countries concerned. Exhaustive informations sometimes cannot be obtained from huge countries (China, Russia..) because of data centralization problems or not exploitable data transmission. Therefore, installed power data for geothermal heat production are given for 26 countries over the 57 that have answered the International Geothermal Association questionnaire. (J.S.). 1 fig., 2 tabs., 1 photo

  19. Geothermal electricity generation

    International Nuclear Information System (INIS)

    Eliasson, E.T.

    1991-01-01

    Geothermal conversion, as discussed here, is the conversion of the heat bound within the topmost three kilometres of the upper crust of the earth into useful energy, principally electricity. The characteristics of a geothermal reservoir and its individual technical features are highly site-specific. Applications therefore must be designed to match the specific geothermal reservoir. An estimate of the electric energy potential world-wide made by the Electric Power Research Institute (United States) in 1978 and based on sustaining a continuous 30-year operation is given in the box at the right for comparison purposes only. 8 refs, 5 figs

  20. FY 2000 report on the investigation of environmental effects in the geothermal development promotion survey. Tertiary. No.B-7 Kuwanosawa area; 2000 nendo chinetsu kaihatsu sokushin chosa. Kankyo eikyo chosa hokokusho - No. B-7 Kuwanosawa chiiki (Dai 3 ji)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    In the Kuwanosawa area, Yuzawa city, Akita prefecture, survey was conducted to grasp effects of drilling for structural boring in the geothermal survey on the peripheral environment. In the survey of animals, there were 5 orders/10 families/19 species of mammals and 10 orders/25 families/73 species of birds. Three kinds of precious animals were confirmed. There were 132 families/6,670 species in the flora. Three kinds of precious plants and three kinds of precious floras were confirmed. During the survey, drilling for structural boring was conducted. At three spas for survey, there were recognized some survey items of which there were great fluctuations. However, those are seasonal valuations or valuations related to the situation of the inside of hot springs. It is not recognized that the fluctuations were caused by the drilling work and pumping-up of geothermal water. The noise made during the well drilling was reduced around the well as theoretical values indicated. At a spot 200m away from the well, the noise was reduced from the environmental standard, and accordingly, it seems that there are few effects on the peripheral environment. The vibration was reduced around the well more than theoretical values indicated. That was below the control level at a spot 25m away from the well, and it seems that there are few effects on the peripheral environment. (NEDO)

  1. An overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    Science.gov (United States)

    Smith, T.H.; Chew, E.W.; Hedahl, T.G.; Mann, L.J.; Pointer, T.F.; Wiersma, G.B.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the U.S. Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological Environmental Sciences Laboratory (RESL), and the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG&G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities radiation is integrated with the overall INEL Site surveillance program. Air, warer, soil, biota, and environmental radiation are monitored or sampled routinely at INEL. Results to date indicate very small or no impacts from INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL.

  2. Overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Smith, T.H.; Hedahl, T.G.; Wiersma, G.B.; Chew, E.W.; Mann, L.J.; Pointer, T.F.

    1986-02-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the US Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological and Environmental Sciences Laboratory (RESL), the US Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG and G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities is integrated with the overall INEL Site surveillance program. Air, water, soil, biota, and environmental radiation are monitored or sampled routinely at the INEL. Results to date indicate very small or no impacts from the INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL. 7 refs., 6 figs., 2 tabs

  3. Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hillesheim, M.; Mosey, G.

    2013-11-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power system at the site.

  4. Geothermal Energy: Current abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  5. Effective geothermal heat

    International Nuclear Information System (INIS)

    Abelsen, Atle

    2006-01-01

    Scandinavia's currently largest geothermal heating project: the New Ahus hospital, is briefly presented. 300-400 wells on a field outside the hospital are constructed to store energy for both heating and cooling purposes

  6. NGDC Geothermal Data Bases

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Geothermics is the study of heat generated in Earth's interior and its manifestation at the surface. The National Geophysical Data Center (NGDC) has a variety of...

  7. Geothermics in Aquitaine

    International Nuclear Information System (INIS)

    Dane, J.P.

    1995-01-01

    The geothermal exploitation of the Aquitanian Basin (S W France) started 15 years ago and has extended today to 12 different places. Three main aquifers of different depth are exploited in Bordeaux region: the old alluvial deposits of Garonne river (20-30 m), the Middle Eocene aquifer (300-400 m), and the Cenomanian-Turonian aquifer (900-1100 m) which is the deepest and most exploited for geothermal purposes. The drinkable quality of the water and the use of single-well technique are important factors that reduce the operating costs. Geothermics remains competitive with other energy sources due to the long-term stability of geothermal energy costs. (J.S.). 2 figs., 1 tab., 5 photos

  8. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    Science.gov (United States)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features

  9. Geothermal life cycle assessment - part 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, E. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution is similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO2 captured from coal plant side. Depending on the CO2 capture rate on the coal side and the CO2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO2 consumption acts as a sequestration mechanism for the coal plant. The effects CO2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power

  10. An overview of environmental indicators ; state of the art and perspectives

    NARCIS (Netherlands)

    Bakkes JA; Born GJ van den; Helder JC; Swart RJ; Hope CW; Parker JDE; Rijksinstituut voor; University of Cambridge; ISC; MTV; Cambridge Universiteit Engeland

    1994-01-01

    Work on indicators is critically reviewed, focusing on a number of key issues ; air and water pollution ; natural resources and biodiversity ; climate change ; ozone depletion ; public health; demography ; production ; consumption ; and technology ; waste ; and costs of environmental protection

  11. LMFBR conceptual design study: an overview of environmental and safety concerns

    International Nuclear Information System (INIS)

    Brenchley, D.L.

    1981-06-01

    The US Department of Energy (DOE) initiated the Liquid Metal Fast Breeder (LMFBR) Conceptual Design Study (CDS) with the objective of maintaining a viable breeder option. The project is scheduled to be completed in FY-1981 but decisions regarding plant construction will be delayed until at least 1985. This report provides a review of the potential environmental and safety engineering concerns for the CDS and recommends specific action for the Environmental and Safety Engineering Division of DOE

  12. LMFBR conceptual design study: an overview of environmental and safety concerns

    Energy Technology Data Exchange (ETDEWEB)

    Brenchley, D.L.

    1981-06-01

    The US Department of Energy (DOE) initiated the Liquid Metal Fast Breeder (LMFBR) Conceptual Design Study (CDS) with the objective of maintaining a viable breeder option. The project is scheduled to be completed in FY-1981 but decisions regarding plant construction will be delayed until at least 1985. This report provides a review of the potential environmental and safety engineering concerns for the CDS and recommends specific action for the Environmental and Safety Engineering Division of DOE.

  13. Geothermal studies in China

    Science.gov (United States)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then

  14. Renewable Energy Essentials: Geothermal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Geothermal energy is energy available as heat contained in or discharged from the earth's crust that can be used for generating electricity and providing direct heat for numerous applications such as: space and district heating; water heating; aquaculture; horticulture; and industrial processes. In addition, the use of energy extracted from the constant temperatures of the earth at shallow depth by means of ground source heat pumps (GSHP) is also generally referred to as geothermal energy.

  15. A complementary geothermal application

    International Nuclear Information System (INIS)

    Bedard, R.

    1998-01-01

    A geothermal project for air conditioning and heating at four health centres in Quebec was presented. The four health centres are: le centre Dominique-Tremblay, le centre Cardinal-Villeneuve, le centre Louis-Hebert, et le centre Francois-Charon. The investment made to install the geothermal heating and cooling system, the cost of operating the system, and energy savings resulting from the investment were discussed

  16. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 7: Nonreplenishable natural resources: Minerals, fossil fuels and geothermal energy sources

    Science.gov (United States)

    Lietzke, K. R.

    1974-01-01

    The application of remotely-sensed information to the mineral, fossil fuel, and geothermal energy extraction industry is investigated. Public and private cost savings are documented in geologic mapping activities. Benefits and capabilities accruing to the ERS system are assessed. It is shown that remote sensing aids in resource extraction, as well as the monitoring of several dynamic phenomena, including disturbed lands, reclamation, erosion, glaciation, and volcanic and seismic activity.

  17. Geothermal System Extensions

    Energy Technology Data Exchange (ETDEWEB)

    Gunnerson, Jon [Boise City Corporation, ID (United States); Pardy, James J. [Boise City Corporation, ID (United States)

    2017-09-30

    This material is based upon work supported by the Department of Energy under Award Number DE-EE0000318. The City of Boise operates and maintains the nation’s largest geothermal heating district. Today, 91 buildings are connected, providing space heating to over 5.5 million square feet, domestic water heating, laundry and pool heating, sidewalk snowmelt and other related uses. Approximately 300 million gallons of 177°F geothermal water is pumped annually to buildings and institutions located in downtown Boise. The closed loop system returns all used geothermal water back into the aquifer after heat has been removed via an Injection Well. Water injected back into the aquifer has an average temperature of 115°F. This project expanded the Boise Geothermal Heating District (Geothermal System) to bring geothermal energy to the campus of Boise State University and to the Central Addition Eco-District. In addition, this project also improved the overall system’s reliability and increased the hydraulic capacity.

  18. The FASSET Framework for assessment of environmental impact of ionising radiation in European ecosystems-an overview

    International Nuclear Information System (INIS)

    Larsson, C-M

    2004-01-01

    The FASSET project was launched in November 2000 under the EC 5th Framework Programme to develop a framework for the assessment of environmental impact of ionising radiation in European ecosystems. It involved 15 organisations in seven European countries and delivered its final report in spring 2004. The project set out to organise radioecological and radiobiological data into a logical structure that would facilitate the assessment of likely effects on non-human biota resulting from known or postulated depositions of radionuclides in the environment. The project included an overview of 20 pathway-based environmental assessment systems targeted at radioactive substances, or at hazardous substances in general. The resulting framework includes the following fundamental elements: source characterisation; description of seven major European ecosystems; selection of a number of reference organisms on the basis of prior ecosystem and exposure analysis; environmental transfer analysis; dosimetric considerations; effects analysis; and general guidance on interpretation including consideration of uncertainties. The project has used existing information supplemented with development in some areas, e.g. Monte Carlo calculations to derive dose conversion coefficients, model development, and the building of an effects database (FRED, the FASSET Radiation Effects Database). On the basis of experience from FASSET and other recent programmes, it can be concluded that (i) there is substantial agreement in terms of conceptual approaches between different frameworks currently in use or proposed, (ii) differences in technical approaches can be largely attributed to differences in ecosystems of concern or in national regulatory requirements, (iii) sufficient knowledge is available to scientifically justify assessments following the Framework structure, but (iv) significant data gaps exist for environmental transfer of key nuclides as well as for effects data for key wildlife groups at

  19. WNA's worldwide overview on front-end nuclear fuel cycle growth and health, safety and environmental issues.

    Science.gov (United States)

    Saint-Pierre, Sylvain; Kidd, Steve

    2011-01-01

    This paper presents the WNA's worldwide nuclear industry overview on the anticipated growth of the front-end nuclear fuel cycle from uranium mining to conversion and enrichment, and on the related key health, safety, and environmental (HSE) issues and challenges. It also puts an emphasis on uranium mining in new producing countries with insufficiently developed regulatory regimes that pose greater HSE concerns. It introduces the new WNA policy on uranium mining: Sustaining Global Best Practices in Uranium Mining and Processing-Principles for Managing Radiation, Health and Safety and the Environment, which is an outgrowth of an International Atomic Energy Agency (IAEA) cooperation project that closely involved industry and governmental experts in uranium mining from around the world. Copyright © 2010 Health Physics Society

  20. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  1. Geothermal district heating in Turkey: The Gonen case study

    International Nuclear Information System (INIS)

    Oktay, Zuhal; Aslan, Asiye

    2007-01-01

    The status of geothermal district heating in Turkey and its future prospects are reviewed. A description is given of the Gonen project in Balikesir province, the first system to begin citywide operation in the country. The geology and geothermal resources of the area, the history of the project's development, the problems encountered, its economic aspects and environmental contributions are all discussed. The results of this and other such systems installed in Turkey have confirmed that, in this country, heating an entire city based on geothermal energy is a significantly cleaner, cheaper option than using fossil fuels or other renewable energy resources. (author)

  2. Overview of environmental control aspects for the gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Nolan, A.M.

    1981-05-01

    Environmental control aspects relating to release of radionuclides have been analyzed for the Gas-Cooled Fast Reactor (GCFR). Information on environmental control systems was obtained for the most recent GCFR designs, and was used to evaluate the adequacy of these systems. The GCFR has been designed by the General Atomic Company as an alternative to other fast breeder reactor designs, such as the Liquid Metal Fast Breeder Reactor (LMFBR). The GCFR design includes mixed oxide fuel and helium coolant. The environmental impact of expected radionuclide releases from normal operation of the GCFR was evaluated using estimated collective dose equivalent commitments resulting from 1 year of plant operation. The results were compared to equivalent estimates for the Light Water Reactor (LWR) and High-Temperature Gas-Cooled Reactor (HTGR). A discussion of uncertainties in system performances, tritium production rates, and radiation quality factors for tritium is included

  3. Copper-based nanomaterials for environmental decontamination - An overview on technical and toxicological aspects.

    Science.gov (United States)

    Khalaj, Mohammadreza; Kamali, Mohammadreza; Khodaparast, Zahra; Jahanshahi, Akram

    2018-02-01

    Synthesis of the various types of engineered nanomaterials has gained a huge attention in recent years for various applications. Copper based nanomaterials are a branch of this category seem to be able to provide an efficient and cost-effective way for the treatment of the persistent effluents. The present work aimed to study the various parameters may involve in the overall performance of the copper based nanomaterials for environmental clean-up purposes. To this end, the related characteristics of copper based nanomaterials and their effects on the nanomaterials reactivity and the environmental and operating parameters have been critically reviewed. Toxicological study of the copper based nanomaterials has been also considered as a factor with high importance for the selection of a typical nanomaterial with optimum performance and minimum environmental and health subsequent effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. 'Outside the box thinking': An overview of an environmental qualification test from a test lab perspective

    International Nuclear Information System (INIS)

    Mitton, T.

    2004-01-01

    Most people in the nuclear Environmental Qualification (EQ) business know that the basis for qualification ultimately lies with an equipment's successful operation during and after exposure to a simulated harsh environment. As opposed to focusing specifically on the test results of an Environmental Qualification test program, this paper/presentation will offer a more detailed look at the mechanical, electrical and thermodynamic requirements as well as the project difficulties and solutions of one such project - particularly an extensive, large-scale, non-typical project. (author)

  5. Energy recovery from municipal solid waste, an environmental and safety mini-overview survey

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.L.

    1976-06-01

    The environmental and safety aspects of processing municipal solid wastes to recover energy and materials are reviewed in some detail. The state of the art in energy recovery, energy potential for the near and long-term, and constraints to commercialization are discussed. Under the environmental and safety aspects the state of the art, need for research and development, and need for coordination among federal agencies and private industry are considered. Eleven principal types of refuse-to-energy processes are described and a projected energy balance is derived for each process. (JSR)

  6. Geothermal heat - The second stream for geothermal sectors; Electricity production: industries are facing the geological unexpected events; Heat networks: a new boom in France

    International Nuclear Information System (INIS)

    Minster, Jean-Francois; Appert, Olivier; Moisant, Francois; Salha, Bernard; Tardieu, Bernard; Florette, Marc; Basilico, Laurent

    2013-01-01

    A first article proposes an overview of recent development in the field of geothermal power (individual heat pumps, urban heating networks, electricity production in volcanic context, and possibility of non conventional fields). These developments are notably interesting in a context of an evolving energy mix. Some benefits of geothermal power are outlined: a reliable and predictable production, and a low footprint. An installation of deep geothermal power in Alsace is presented. By evoking the construction of three high-energy geothermal power stations by GDF Suez in Sumatra, a second article outlines the high costs associated with exploration drilling which can face geological difficulties. It indicates and comments the distribution of costs among exploration, confirmation, authorizations, drilling, steam collection, electric plant, and connection to the grid. The third and last article comments the development of heat networks in France, and more particularly in the Parisian Basin which has the highest concentration of low-energy geothermal exploitations

  7. An overview of international institutional mechanisms for environmental management with reference to Arctic pollution

    International Nuclear Information System (INIS)

    Perkins, Patricia E.

    1994-01-01

    Evidence is mounting of the environmental impact in the Far North of economic and industrial activity elsewhere in the world. While the sources of pollutants found in the Arctic are many and widespread, it is up to just a few countries - notably Canada, the former Soviet Union, Finland, Norway and Greenland - to assess the damage and deal with the impacts. This paper discusses the issue of Arctic pollution in the context of trends in world economic growth, globalization of economic activity, international trade and related institutional arrangements (such as trade and environmental agreements). The importance of tracing the sources of particular contaminants is stressed; this is a first step towards internalization of environmental costs of production, and is also politically a key in efforts to control emissions. Trade and investment agreements commonly discuss rules for cross-border flows of goods, services, personnel and investment capital, as well as matters specific to particular economic sectors. Cross-border flows of pollutants and other 'bads' also merit detailed sectoral attention. This linkage would make explicit the connections between production and pollution (making possible the 'polluter pays' approach), and also widen the scope for redistribution of economic resources to equilibrate the situation (via trade and investment measures, among others) if flows of goods are related directly to flows of 'bads'. The paper examines the outlook for addressing Arctic pollution via international environmental agreements (along the lines of the Basel Convention, the Montreal Protocol, CITES, etc.), existing and future trade agreements (such as GATT), or new institutional approaches

  8. An Overview of the State of Environmental Assessment Education at Canadian Universities

    Science.gov (United States)

    Stelmack, Colleen M.; Sinclair, John A.; Fitzpatrick, Patricia

    2005-01-01

    Purpose--Environmental assessment (EA) is a proactive planning tool designed to consider the ecological, cultural, socio-political and economic impacts of potential projects, making it a major tool for achieving sustainable development. Meaningful EA requires a bridging of the natural sciences with the social sciences to broaden understanding of…

  9. Industry participation in DOE-sponsored geopressured geothermal resource development. Final report, 1 September 1977-30 April 1979

    Energy Technology Data Exchange (ETDEWEB)

    Coffer, H.F.

    1979-01-01

    A series of DOE/Industry forums were carried out to keep industry advised of the DOE program to develop the geopressured geothermal resources of the Gulf Coast. A total of eighteen meetings were held with registered attendance of 621 representing a good cross section of industry, state, and federal agencies. An Overview Group and four working subgroups - site selection, drilling and testing, environmental/laboratory research, and legal institutional were established to subdivide the DOE programs into areas of interest and expertise. During the contract period three overview, four site selection, three drilling and testing, five environmental/laboratory research and three legal/institutional meetings have been conducted. Interest in and attendance at the meetings continue to grow reflecting increased industry contact with the DOE Geopressured Geothermal Resource Development Program. Two other studies were carried out for DOE under this contract; a Salt Water Disposal Study and an Industry Survey to evaluate the DOE Resource Development Program. The Salt Water Disposal Study reviewed subsurface salt water disposal experience on the Texas and Louisiana Gulf Coast. This preliminary study concluded that subsurface brine disposal should be possible in the areas of interest with adequate evaluation of the geology of each area and a well designed and constructed surface and subsurface facility. The industry survey indicated general satisfaction with the technical design of the resource evaluation program but felt the program should be moving faster.

  10. Geothermal energy prospects for the next 50 years

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    Three facets of geothermal energy--resource base, electric power potential, and potential nonelectric uses--are considered, using information derived from three sources: (1) analytic computations based on gross geologic and geophysical features of the earth's crust, (2) the literature, and (3) a worldwide questionnaire. Discussion is presented under the following section headings: geothermal resources; electric energy conversion; nonelectric uses; recent international developments; environmental considerations, and bibliography. (JGB)

  11. Technology, market and policy aspects of geothermal energy in Europe

    Science.gov (United States)

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    The Strategic Energy Technology Plan (SET-Plan) is the technology pillar of the EU's energy and climate policy. The goal of the SET-Plan is to achieve EU worldwide leadership in the production of energy technological solutions capable of delivering EU 2020 and 2050 targets for a low carbon economy. The Joint Research Centre (JRC) runs and manages the SET-Plan Information System (SETIS) to support the SET-Plan. Under SETIS, the JRC publishes a number of regularly updated key references on the state of low carbon technology, research and innovation in Europe. Within the framework of the SET-Plan, the geothermal sector is placed into context with other power and heat generation technologies. The talk will give an introduction to some of JRC's geothermal research activities. Amongst others, the JRC Geothermal status report will be presented. This report aims to contribute to the general knowledge about the geothermal sector, its technology, economics and policies, with a focus on innovation, research, development and deployment activities as well as policy support schemes within the European Union. The speech will present the main findings of the report, providing an overview of the activities and progress made by the geothermal energy sector, the status of its sub-technologies and current developments. In addition, the speech will discuss the economic, market and policy aspects of geothermal energy for power production, direct use and ground source heat pumps in Europe and beyond.

  12. Utilising geothermal energy in Victoria

    International Nuclear Information System (INIS)

    Driscoll, Jim

    2006-01-01

    Geothermal energy is generated from the radioactive decay of naturally occurring isotopes and about 20% is generated from primordial heat associated with the formation of the earth. Geothermal project reduce energy and water cost and reduces greenhouse gas emissions

  13. An Overview of Public Domain Tools for Measuring the Sustainability of Environmental Remediation - 12060

    Energy Technology Data Exchange (ETDEWEB)

    Claypool, John E.; Rogers, Scott [AECOM, Denver, Colorado, 80202 (United States)

    2012-07-01

    The application of sustainability principles to the investigation and remediation of contaminated sites is an area of rapid development within the environmental profession, with new business practices, tools, and performance standards for identifying, evaluating, and managing the 'collateral' impacts of cleanup projects to the environment, economy and society coming from many organizations. Guidelines, frameworks, and standards of practice for 'green and sustainable remediation' (GSR) have been released and are under development by the Sustainable Remediation Forum (SURF), the American Society for Testing Materials (ASTM), the Interstate Technology Roundtable Commission (ITRC) and other organizations in the U.S. and internationally. In response to Executive Orders from the President, Federal government agencies have developed policies, procedures and guidelines for evaluating and reporting the sustainability of their environmental restoration projects. Private sector companies in the petroleum, utility, manufacturing, defense, and other sectors are developing their own corporate GSR programs to improve day-to-day management of contaminated sites and to support external reporting as part of their corporate social responsibility (CSR) efforts. The explosion of mandates, policy, procedures and guidance raises the question of how to determine whether a remediation technology or cleanup approach is green and/or sustainable. The environmental profession has responded to this question by designing, developing and deploying a wide array of tools, calculators, and databases that enable regulatory agencies, site managers and environmental professionals to calculate the collateral impacts of their remediation projects in the environmental, social, and economic domains. Many of these tools are proprietary ones developed by environmental engineering/consulting firms for use in their consulting engagements and/or tailored specifically to meet the needs of

  14. Collaborative-Large scale Engineering Assessment Networks for Environmental Research: The Overview

    Science.gov (United States)

    Moo-Young, H.

    2004-05-01

    A networked infrastructure for engineering solutions and policy alternatives is necessary to assess, manage, and protect complex, anthropogenic ally stressed environmental resources effectively. Reductionist and discrete disciplinary methodologies are no longer adequate to evaluate and model complex environmental systems and anthropogenic stresses. While the reductonist approach provides important information regarding individual mechanisms, it cannot provide complete information about how multiple processes are related. Therefore, it is not possible to make accurate predictions about system responses to engineering interventions and the effectiveness of policy options. For example, experts cannot agree on best management strategies for contaminated sediments in riverine and estuarine systems. This is due, in part to the fact that existing models do not accurately capture integrated system dynamics. In addition, infrastructure is not available for investigators to exchange and archive data, to collaborate on new investigative methods, and to synthesize these results to develop engineering solutions and policy alternatives. Our vision for the future is to create a network comprising field facilities and a collaboration of engineers, scientists, policy makers, and community groups. This will allow integration across disciplines, across different temporal and spatial scales, surface and subsurface geographies, and air sheds and watersheds. Benefits include fast response to changes in system health, real-time decision making, and continuous data collection that can be used to anticipate future problems, and to develop sound engineering solutions and management decisions. CLEANER encompasses four general aspects: 1) A Network of environmental field facilities instrumented for the acquisition and analysis of environmental data; 2) A Virtual Repository of Data and information technology for engineering modeling, analysis and visualization of data, i.e. an environmental

  15. Geographical Overview of the Three Gorges Dam and Reservoir, China - Geologic Hazards and Environmental Impacts

    Science.gov (United States)

    Highland, Lynn M.

    2008-01-01

    The Three Gorges Dam and Reservoir on the Yangtze River, China, has been an ambitious and controversial project. The dam, the largest in the world as of 2008, will provide hydropower, help to manage flood conditions, and increase the navigability of the Yangtze River. However, this massive project has displaced human and animal populations and altered the stability of the banks of the Yangtze, and it may intensify the seismic hazard of the area. It has also hindered archeological investigations in the reservoir and dam area. This report, originally in the form of a Microsoft PowerPoint presentation, gives a short history and overview of the dam construction and subsequent consequences, especially geologic hazards already noted or possible in the future. The report provides photographs, diagrams, and references for the reader's further research - a necessity, because this great undertaking is dynamic, and both its problems and successes continue to evolve. The challenges and consequences of Three Gorges Dam will be closely watched and documented as lessons learned and applied to future projects in China and elsewhere.

  16. Significant Problems in Geothermal Development in California, Final Report on Four Workshops, December 1978 - March 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-07-15

    From November 1978 through March 1979 the California Geothermal Resources Board held four workshops on the following aspects of geothermal development in California: County Planning for Geothermal Development; Federal Leasing and Environmental Review Procedures; Transmission Corridor Planning; and Direct Heat Utilization. One of the objectives of the workshops was to increase the number of people aware of geothermal resources and their uses. This report is divided into two parts. Part 1 provides summaries of all the key information discussed in the workshops. For those people who were not able to attend, this part of the report provides you with a capsule version of the workshop sessions. Part 2 focuses on the key issues raised at the workshops which need to be acted upon to expedite geothermal resource development that is acceptable to local government and environmentally prudent. For the purpose of continuity, similar Geothermal Resources Task Force recommendations are identified.

  17. Environmental factors and unhealthy lifestyle influence oxidative stress in humans--an overview.

    Science.gov (United States)

    Aseervatham, G Smilin Bell; Sivasudha, T; Jeyadevi, R; Arul Ananth, D

    2013-07-01

    Oxygen is the most essential molecule for life; since it is a strong oxidizing agent, it can aggravate the damage within the cell by a series of oxidative events including the generation of free radicals. Antioxidative agents are the only defense mechanism to neutralize these free radicals. Free radicals are not only generated internally in our body system but also trough external sources like environmental pollution, toxic metals, cigarette smoke, pesticides, etc., which add damage to our body system. Inhaling these toxic chemicals in the environment has become unavoidable in modern civilization. Antioxidants of plant origin with free radical scavenging properties could have great importance as therapeutic agents in several diseases caused by environmental pollution. This review summarizes the generation of reactive oxygen species and damage to cells by exposure to external factors, unhealthy lifestyle, and role of herbal plants in scavenging these reactive oxygen species.

  18. Depictions of global environmental change in science fiction : an overview of educational applications

    Energy Technology Data Exchange (ETDEWEB)

    Kadonaga, L. [Victoria Univ., BC (Canada). Dept. of Geography

    2000-06-01

    This paper examined how the use of science fiction books and movies can be used as a tool to educate the public. Narratives encourage interest in global environmental changes and can help demystify how science works. Although most science fiction depictions of global environmental change are outdated and oversimplified, the genre can encourage discussion of ecological and social impacts. Writers of science fiction consider both natural systems and human societies, anticipating the work of impacts researchers. It was argued that while both science fiction writers and global change researchers require knowledge and creativity to construct realistic extrapolations, a well-written science fiction book is likely to reach a larger audience. Science fiction books emphasize that climate projections are intended as warnings. If properly handled, they can improve public awareness of issues such as global warming and climatic change. It was suggested that collaboration between researchers and science fiction writers could produce some interesting work. 48 refs.

  19. Overview on Environmental Comprehensive Management System Established in Imitation of Biome

    Institute of Scientific and Technical Information of China (English)

    李如燕; 孙可伟

    2004-01-01

    Environmental comprehensive management system, called "the bionic community", can be established in imitation of biome, which can transform the wastes generated in a certain field into the raw materials of other field. The establishment of the bionic community includes two aspects, i.e. , the matching technique and the management system. The main matching technique is the preparation of composite materials made of various wastes.This new kind of material can be divided into four types: polymer matrix, silicate matrix, metal matrix and carbon matrix (or ceramic matrix). The environmental comprehensive management system is formed by organizing a transtrades joint-management business entity with the products of composite material made of wastes at the core.

  20. Environmental degradation, population displacement and global security: An overview of the issues

    International Nuclear Information System (INIS)

    1992-12-01

    An initial investigation is presented on the interrelationship between environmental degradation and population displacements, in the broader context of how this linkage affects human security. Emphasis is placed on both the causes and effects of population movements, with specific examples drawn from Southeast Asia. Types of migrants, the importance of environmental degradation with respect to other contributing factors, and the effects on origin and destination regions are considered. A key issue is the multi-causality of population displacements and the importance of improving understanding of the issues in order to develop appropriate policies. It is clear from the study that the discussion of environment as a cause or contributing factor to population displacement has, to date, been speculative, and the information provided largely anecdotal. 58 refs., 1 fig., 3 tabs

  1. An Overview of Pesticide Monitoring at Environmental Samples Using Carbon Nanotubes-Based Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Ademar Wong

    2017-03-01

    Full Text Available Carbon nanotubes have received enormous attention in the development of electrochemical sensors by promoting electron transfer reactions, decreasing the work overpotential within great surface areas. The growing concerns about environmental health emphasized the necessity of continuous monitoring of pollutants. Pesticides have been successfully used to control agricultural and public health pests; however, intense use can cause a number of damages for biodiversity and human health. In this sense, carbon nanotubes-based electrochemical sensors have been proposed for pesticide monitoring combining different electrode modification strategies and electroanalytical techniques. In this paper, we provide a review of the recent advances in the use of carbon nanotubes for the construction of electrochemical sensors dedicated to the environmental monitoring of pesticides. Future directions, perspectives, and challenges are also commented.

  2. Program director`s overview report for the Office of Health & Environmental Research

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, D. [ed.

    1994-02-01

    LBL performs basic and applied research and develops technologies in support of the Office of Health and Environmental Research`s mission to explore and mitigate the long-term health and environmental consequences of energy use and to advance solutions to major medical challenges. The ability of the Laboratory to engage in this mission depends upon the strength of its core competencies. In addition, there are several key capabilities that are cross-cutting, or underlie, many of the core competencies. Attention is focused on the following: Facilities and resources; research management practices; research in progress; program accomplishments and research highlights; program orientation; work for non-OHER organizations DOE; critical issues; and resource orientation.

  3. Children's exposure to environmental pollutants and biomarkers of genetic damage. I. Overview and critical issues

    DEFF Research Database (Denmark)

    Neri, Monica; Bonassi, Stefano; Knudsen, Lisbeth E

    2005-01-01

    In the last decade, molecular epidemiological studies have provided new perspectives on studying environmental risks in pediatric populations, based on the growing understanding that children may be more susceptible to toxicants than adults. Protecting children's health is a social priority...... of the information provided, and the need to warrant controlled access to sensitive information. The use of incentives such as gifts and payment to ensure the participation of school-aged children is specifically discussed. Examples of field studies that are focused on the effects of pesticides, air pollution...... biomarker results into intervention strategies and for integrating them with environmental monitoring and health data, (iv) optimal ways to obtain consent and provide information to children and/or their parents participating in the studies and (v) techniques for the effective communication with policy...

  4. Overview of EPA's environmental standards for the land disposal of LLW and NARM waste - 1988

    International Nuclear Information System (INIS)

    Gruhlke, J.M.; Galpin, F.L.; Holcomb, W.F.

    1988-01-01

    The Environmental Protection Agency program to develop proposed generally applicable environmental standards for land disposal of low-level radioactive waste (LLW) and certain naturally occurring and accelerator-produced radioactive wastes has been completed. The elements of the proposed standards include the following: (a) exposure limits for predisposal management and storage operations, (b) criteria for other regulatory agencies to follow in specifying wastes that are below regulatory concern; (c) postdisposal exposure limits, (d) groundwater protection requirements, and (e) qualitative implementation requirements. In addition to covering those radioactive wastes subject to the Atomic Energy Act, the Agency also intends to propose a standard to require the disposal of high concentration, naturally occurring and accelerator-produced radioactive materials wastes exceeding 2 nCi/g, excluding a few consumer items, in regulated LLW disposal facilities

  5. Submarine geothermal resources

    Science.gov (United States)

    Williams, D.L.

    1976-01-01

    Approximately 20% of the earth's heat loss (or 2 ?? 1012 cal/s) is released through 1% of the earth's surface area and takes the form of hydrothermal discharge from young (Pleistocene or younger) rocks adjacent to active seafloor-spreading centers and submarine volcanic areas. This amount is roughly equivalent to man's present gross energy consumption rate. A sub-seafloor geothermal reservoir, to be exploitable under future economic conditions, will have to be hot, porous, permeable, large, shallow, and near an energy-deficient, populated land mass. Furthermore, the energy must be recoverable using technology achievable at a competitive cost and numerous environmental, legal and institutional problems will have to be overcome. The highest-temperature reservoirs should be found adjacent to the zones of the seafloor extension or volcanism that are subject to high sedimentation rates. The relatively impermeable sediments reduce hydrothermal-discharge flow rates, forcing the heat to be either conducted away or released by high-temperature fluids, both of which lead to reservoir temperatures that can exceed 300??C. There is evidence that the oceanic crust is quite permeable and porous and that it was amenable to deep (3-5 km) penetration by seawater at least some time in the early stages of its evolution. Most of the heat escapes far from land, but there are notable exceptions. For example, in parts of the Gulf of California, thermal gradients in the bottom sediments exceed 1??C/m. In the coastal areas of the Gulf of California, where electricity and fresh water are at a premium, this potential resource lies in shallow water (characteristics of these systems before they can be considered a viable resource. Until several of the most promising areas are carefully defined and drilled, the problem will remain unresolved. ?? 1976.

  6. Accelerating Geothermal Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  7. IEA-SHC Task 27: Environmental performance assessment of glazing and windows - context, overview, main concerns

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, J.L. [Centre Scientifique et Technique du Batiment, Sustainable Development Dept., Saint-Martin D' Heres (France); Krogh, H. [Danish Building and Urban Research, Energy and Indoor Climate Div., Hoersholm (Denmark); Tarantini, Mario [The Italian National Agency for New Technology, Energy and the Environment, Bologna (Italy)

    2006-07-01

    While all industrial sectors are integrating the environment concern into their culture and strategy, actors of the construction field seem to be torn between motivation and suspicion in front of this new topic. In most countries, the economic situation of the passed years for building was not suitable for investing in new long-term approaches, and the strong particularities of the building world appear as many complicating elements for introducing new concepts easily. But now the awareness for a sustainable development of all human activities is also growing in our sector, and it is time to take benefit of some favourable habits like the use of multi-criteria analysis: beyond performances, suitability for use, and durability, environmental quality criteria will just widen the actual scope of the technical assessment of building products. The first question is a double one : Who will use environmental criteria related to the building products, and for which purpose? Because actors in the field are many, we will have several distinct answers, which may call for different tools. In other industrial sectors, two approaches have been experimented: the Life Cycle Analysis (LCA) and the environmental labelling. Between LCA and green labels, several relevant tools are in development for the building products, each of them adapted to specific users and objectives, and most often of limited use in other contexts. A short review of the studies already performed on the environmental quality of glazing and windows revealed quite a small amount of available matter, and justifies the work undertaken within the programme of IEA/SHCP/Task 27, which will be presented in the third part of this paper. (au)

  8. Emerging various environmental threats to brain and overview of surveillance system with zebrafish model

    Directory of Open Access Journals (Sweden)

    Rafael Vargas

    Full Text Available Pathologies related to neurotoxicity represent an important percentage of the diseases that determine the global burden of diseases. Neurotoxicity may be related to the increasing levels of potentially neurotoxic agents that pollute the environment, which generates concern, since agents that affect children may increase the incidence of neurodevelopmental disorders, affecting the quality of life of future citizens. Many environmental contaminants have been detected, and many of them derive from several human activities, including the mining, agriculture, manufacturing, pharmaceutical, beverage and food industries. These problems are more acute in third world countries, where environmental regulations are lax or non-existent. An additional major emerging problem is drug contamination. Periodic monitoring should be performed to identify potential neurotoxic substances using biological tests capable of identifying the risk. In this sense the fish embryo test (FET, which is performed on zebrafish embryos, is a useful, reliable and economical alternative that can be implemented in developing countries. Keywords: Neurotoxicity, Global burden disease, Environmental contaminants, Zebrafish embryo test

  9. ORNL long-range environmental and waste management plan: Program overview and summary

    International Nuclear Information System (INIS)

    Bates, L.D.; Berry, J.B.; Butterworth, G.E.

    1988-04-01

    The primary purpose of this report is to provide a thorough and systematic planning document to reflect the continuing process of site assessment, strategy development, and planning for the current and long-term control of environmental issues, waste management practices, and remedial action requirements. The docuemnt also provides an estimate of the resources required to implement the current plan. This document is not intended to be a budget document: it is, however, intended to provide guidance to both Martin Marietta Energy Systems, Inc., and the US Department of Energy (DOE) Management as to the near order of magnitude of the resources (primarily funding requirements) and the time frame required to execute the strategy in the present revision of the plan. The near-term (one to three years) part of the plan is a realistic assessment of the current program and ongoing capital projects and reflects the efforts preceived to be necessary to comply with all current state and federal regulations and DOE orders. It also should be in general agreement with current budget (funding) requests and obligations for these immediate years. Beyond the immediate time frame, the document reflects the strategy and the project and funding estimates as a snapshot at the time of publication. Annual revision will reflect the continuing evoltuion and development of environmental and waste management processes, characterizations, remedial actions, regulations, an strategies for the establishment and conduct of a comprehensive environmental and waste management program. 15 figs., 10 tabs

  10. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  11. France in the front line for geothermal energy

    International Nuclear Information System (INIS)

    Richard, Aude; Talpin, Juliette

    2016-01-01

    A set of articles illustrates that France is among the European leaders in heat networks fed by deep aquifers in sedimentary basins, and will soon possess new types of plants to valorise this hot water. A first article describes the operation principle and the distinction between the different geothermal energy levels (very low, low and medium, high). The still slow but actual development of geothermal energy is commented. It notably concerns local communities and industries, but not yet individuals. A brief focus is proposed on the case of the Aquitaine basin and of Bordeaux, and on the use of geothermal energy to cool the wine. The case of Ferney-Voltaire is then discussed: a whole district will be supplied with probe-based tempered water loops. The interest of the ADEME in geo-cooling is evoked. An article comments the development of a new model of deep geothermal energy developed by France and Germany: a dozen of plants are planned to be built by 2020, and the Ecogi plant in Rittershoffen is a showcase of a first application of fractured rock geothermal technology (the operation is described). A map indicates locations of geothermal search permits which have been awarded for 16 sites in France. An overview is given of various initiatives in Ile-de-France. The case of Geothermie Bouillante plant in Guadeloupe is evoked: it has been purchased by an American group and will multiply its electricity production by a factor 4 by 2025. The two last articles respectively address the need to boost the very low geothermal energy sector, and the use of geothermal energy in cities near Paris (Grigny and Viry-Chatillon) which aim at supplying energy at lower prices, and thus struggle against energy poverty

  12. A snapshot of geothermal energy potential and utilization in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2009-01-01

    Turkey is one of the countries with significant potential in geothermal energy. It is estimated that if Turkey utilizes all of her geothermal potential, she can meet 14% of her total energy need (heat and electricity) from geothermal sources. Therefore, today geothermal energy is an attractive option in Turkey to replace fossil fuels. Besides, increase in negative effects of fossil fuels on the environment has forced many countries, including Turkey, to use renewable energy sources. Also, Turkey is an energy importing country; more than two-thirds of her energy requirement is supplied by imports. In this context, geothermal energy appears to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Since geothermal energy will be used more and more in the future, its current potential, usage, and assessment in Turkey is the focus of the present study. The paper not only presents a review of the potential and utilization of the geothermal energy in Turkey but also provides some guidelines for policy makers. (author)

  13. Data Acquisition for Low-Temperature Geothermal Well Tests and Long-Term Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1992-03-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  14. Estimate of Hot Dry Rock Geothermal Resource in Daqing Oilfield, Northeast China

    OpenAIRE

    Guangzheng Jiang; Yi Wang; Yizuo Shi; Chao Zhang; Xiaoyin Tang; Shengbiao Hu

    2016-01-01

    Development and utilization of deep geothermal resources, especially a hot dry rock (HDR) geothermal resource, is beneficial for both economic and environmental consideration in oilfields. This study used data from multiple sources to assess the geothermal energy resource in the Daqing Oilfield. The temperature logs in boreholes (both shallow water wells and deep boreholes) and the drilling stem test temperature were used to create isothermal maps in depths. Upon the temperature field and the...

  15. Data acquisition for low-temperature geothermal well tests and long-term monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1992-09-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  16. Geothermal Loan Guaranty Program and its impact on geothermal exploration and development

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, L.H.

    1978-05-01

    The study showed that the Geothermal Loan Guaranty Program has had only a negligible effect on geothermal development and the response to the program was far less than expected. The streamlining of environmental regulations and leasing policies, and the granting of intangible drilling cost write-offs and depletion allowances to operators would have had a greater impact on geothermal energy development. The loan guaranty program did not promote the undertaking of any new projects that would not have been undertaken without it. The program only accelerated the pace for some development which might have commenced in the future. Included in the study are recommendations for improving the operation of the program thereby increasing its attractiveness to potential applicants.

  17. Environmental ethics: an overview, assessing the place of bioscientists in society, supplemented with selected Australian perspectives.

    Science.gov (United States)

    Buckeridge, John

    2014-01-01

    Ethics deals with moral behavior in a professional context; ideally, it leads to a set of governing principles through which the appropriateness of any activity may be determined or assessed. Environmental ethics specifically deals with how humans interact with the biosphere. It is clear, however, that, as a species, we are failing in our duty of environmental stewardship. The encroachment of human activity into the natural environment is inexorable, and almost always deleterious. Any response to mitigate loss of taxa or ecosystems will have economic implications, and these are often considerable. In finding effective solutions, a process soon becomes political. In light of this we must reflect upon the leadership role that biologists have, especially our impact on policy development that pertains to natural resource management. Although our track record is no worse than any other professional group, biologists by way of training usually have a greater understanding of natural processes and must be prepared to articulate these publically. We have an ethical mandate to question decisions, policies and legislation that impact negatively upon biological systems: a mandate guided through logic, grounded in empirical science, and hopefully coupled with a deep understanding of the true value of both the living world and the physical world which sustains it. This paper uses Australian examples to demonstrate the frequent clashes between economics and biology, in anticipation that we should strive to achieve the underlying principles of sustainability, environmental stewardship and resource management in both daily decision-making and in long-term planning. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  18. An Overview of Corporate Social and Environmental Reporting (CSER in Developing Countries

    Directory of Open Access Journals (Sweden)

    Mohammad Badrul Haider

    2010-06-01

    Full Text Available This article is intended to complement the literature reviews on corporate social and environmental reporting (CSER with special focus on the developing countries. It focuses on the factors influencing CSER and their theoretical interpretations. It is found that a wide variety of factors related with the socio-economic and political context in which the corporation exist influence the corporate decision to engage in CSER. While a number of overlapping theories can be used, it is recommended to use the political economy theory for its international implications. This article provides a foundation for future research and development in the area of CSER.

  19. National Geothermal Data System: Interactive Assessment of Geothermal Energy Potential in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Stephen [Executive Office of the State of Arizona (Arizona Geological Survey); Clark, Ryan; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan; Matti, Jordan; Pape, Estelle; Musil, Leah

    2012-01-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. An initial set of thirty geoscience data content models is in use or under development to define a standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature descriptions data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from other NGDS participating institutions, or “nodes” (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive

  20. The use of Geothermal Energy Resources in the Tourism Industry of Vojvodina (Northern Serbia

    Directory of Open Access Journals (Sweden)

    Nemanja Tomić

    2013-01-01

    Full Text Available Exploitation of geothermal energy in Vojvodina is still at an unjustly low level taking into account the abundance of resource locations, some of which are ranked among the most affluent in Europe. Moreover, development of geothermal exploitation started in Serbia at about the same time as in other countries whose geothermal energy facilities are now at the highest technological level and which are leaders in this field. The largest use of geothermal energy in Vojvodina is present in the non-energetic area, especially in spas and sports–recreational centers. Other, seasonal consumers of geothermal energy are from the field of industry and agricultural production where the energy is used for heating of cattle and poultry farms, greenhouses and other facilities. However these consumers use only a small portion of available geothermal resources. The main users are those from the tourism industry. The goal of this paper is to give an overview and an analysis of the use of geothermal energy resources, mainly geothermal waters, in the tourism industry of Vojvodina. It shows how these resources are used and also for what are they used by the tourism industry. The paper covers only geothermal resources that are currently being used by the tourism industry. The potential for future usage in this area is also briefly discussed

  1. An overview of background environmental radiological surveillance around Kudankulam nuclear power project site

    International Nuclear Information System (INIS)

    Rajan, M.P.; Vijayakumar, B.; George, Thomas; Rajan, P.S.; Rana, B.K.; Kumar, M.; Hegde, A.G.; Chougaonkar, M.P.

    2005-01-01

    A modern Environmental Survey Laboratory (ESL) equipped with state-of-art nuclear counting, chemical and ecological equipment's has been set up at Kudankulam at the very beginning of construction activities to carry out pre operational and baseline radioactivity measurements. Construction activities for the two VVER type 1000 MWe reactors at the site are progressing ahead of schedule and the first unit is slated to be critical in the year 2007. This paper presents the results of environmental radiological surveillance carried out for the last one year in Kudankulam environs. General radiation background in the area varies in the range of 0.1 - 0.7 μGy/h and elevated levels as high as 20 μGy/h are noticed in beach areas. The major contribution to the background radiation in high background areas comes from 232 Th and its daughter products. The concentrations of 40 K are of normal order and comparable to other NPP sites and normal background areas. The concentrations of fallout nuclides are very low and are at global fallout levels. (author)

  2. Overview of a comprehensive environmental monitoring and surveillance program: The role of fish and wildlife

    International Nuclear Information System (INIS)

    Gray, R.H.

    1988-05-01

    Concern about the effects of potential releases from nuclear and non-nuclear activities on the US Department of Energy's Hanford Site in southeastern Washington has evolved over four decades into a comprehensive environmental monitoring and surveillance program. The program includes field sampling, and chemical and physical analyses of air, surface and ground water, fish and wildlife, soil, foodstuffs, and natural vegetation. In addition to monitoring radioactivity in fish and wildlife, population numbers of key species are determined, usually during the breeding season. Data from monitoring efforts are used to assess the environmental impacts of Hanford operations and calculate the overall radiological dose to humans onsite, at the Site perimeter, or residing in nearby communities. Chinook salmon spawning in the Columbia River at Hanford has increased in recent years with a concomitant increase in winter nesting activity of bald eagles (Haliaeetus leucocephalus). An elk (Cervus elaphus) herd, established by immigration in 1972, is also increasing. Nesting Canada goose (Branta canadensis) and great blue heron (Ardea herodias), and various other animals, e.g., mule deer (Odocoileus hemionus) and coyotes (Canis latrans) are common. Measured exposure to penetrating radiation and calculated radiation doses to the public are well below applicable regulatory limits

  3. An overview of the ERICA Integrated Approach to the assessment and management of environmental risks from ionising contaminants

    International Nuclear Information System (INIS)

    Larsson, Carl-Magnus

    2008-01-01

    The ERICA project (environmental risks from ionising contaminants: assessment and management, EC contract no. FI6R-CT-2004-508847) concluded with the publication of two main outputs: the ERICA Integrated Approach to the assessment and management of environmental risks from ionising radiation, of which also introduces the user to the second main output, the ERICA Tool, which is a software programme with supporting databases, that together with its associated help will guide users through the assessment process. More than 60 European scientists contributed to the ERICA Integrated Approach. In addition, a large number of experts, policy makers, and decision-makers in different areas have contributed views on the ERICA Integrated Approach and its associated Tool from the user's perspective, through participation in the End-Users Group set up under the ERICA project. Databases on transfer, dose conversion coefficients and radiation effects on biota have been developed specifically for the purpose of the Integrated Approach, and incorporated into, or interacting with, the Tool. Species sensitivity distributions of biological effects data have been performed and did not reveal, for chronic exposure, any statistical grounds for separation between terrestrial, marine and freshwater ecosystems in terms of species sensitivity to radiation; on the basis of such analysis a universal screening dose rate criterion of 10 μGy h -1 incremental dose rate is suggested for exiting the assessment procedure while being confident that environmental risks are negligible. This criterion is used for the two first tiers (conservative assessment with limited data requirement and various possibilities of incorporating user-defined parameter values, including the screening dose rate criterion) of the assessment methodology. Exposure situations of concern are carried through a third tier, making use of all relevant databases and with a number of issues and options listed to support and guide

  4. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Patten, Kim [Arizona Geological Survey

    2013-05-01

    data are insufficient for promoting geothermal exploration. Authors of this paper are Arlene Anderson, US DOE Geothermal Technologies Office, David Blackwell, Southern Methodist University (SMU), Cathy Chickering (SMU), Toni Boyd, Oregon Institute of Technology’s GeoHeat Center, Roland Horne, Stanford University, Matthew MacKenzie, Uberity, Joe Moore, University of Utah, Duane Nickull, Uberity, Stephen Richard, Arizona Geological Survey, and Lisa Shevenell, University of Nevada, Reno. “NGDS User Centered Design: Meeting the Needs of the Geothermal Community,” discusses the user- centered design approach taken in the development of a user interface solution for the NGDS. The development process is research based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user interface for the widest and greatest utility. Authors of this paper are Harold Blackman, Boise State University, Suzanne Boyd, Anthro-Tech, Kim Patten, Arizona Geological Survey, and Sam Zheng, Siemens Corporate Research. “Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Node on the National Geothermal Data System,” describes the motivation behind the development of the Geothermal Data Repository (GDR) and its role in the NGDS. This includes the benefits of using the GDR to share geothermal data of all types and DOE’s data submission process. Authors of this paper are Jon Weers, National Renewable Energy Laboratory and Arlene Anderson, US DOE Geothermal Technologies Office. Finally, “Developing the NGDS Adoption of CKAN for Domestic & International Data Deployment,” provides an overview of the “Node-In-A-Box” software package designed to provide data consumers with a highly functional interface to access the system, and to ease the burden on data providers who wish to publish data in the system. It is important to note that this software package constitutes a reference implementation and that the NGDS architecture

  5. ORNL Long-Range Environmental and Waste Management Plan: Program overview and summary

    International Nuclear Information System (INIS)

    Bates, L.D.; Berry, J.B.; Butterworth, G.E.

    1987-12-01

    The primary purpose is to provide a thorough and systematic planning document to reflect the continuing process of site assessment, strategy development, and planning for the current and long-term control of environmental issues, waste management practices, and remedial action requirments. The document also provides an estimate of the resources required to implenent the current plan. As with any document of this nature, the near-term (one to three years) part of the plan is a realistic assessment of the current program and ongoing capital projects and relects the efforts preceived to be necesary to comply with all current state and federal regulations and DOE orders. It also should be in general agreement with current budget (funding) requests and obligations for these immediate years. Beyond the immediate time frame, the document reflects the strategy and the project and funding estimates as a snapshot at the time of publication. 15 figs., 10 tabs

  6. An overview of environmental degradation of materials in nuclear power plant piping systems

    International Nuclear Information System (INIS)

    Shack, W.J.

    1988-01-01

    Several types of environmental degradation of piping in light water reactor (LWR) power systems have already had significant economic impact on the industry. These include intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel piping, erosion-corrosion of carbon steel piping in secondary systems, and a variety of types of fatigue failures. In addition, other problems have been identified that must be addressed in considering extended lifetimes for nuclear plants. These include the embrittlement of cast stainless steels after extended thermal aging at reactor operating temperatures and the effect of reactor environments on the design margin inherent in the ASME Section III fatigue design curves especially for carbon steel piping. These problems are being addressed by wide-ranging research programs in this country and abroad. The purpose of this review is to highlight some of the accomplishments of these programs and to note some of the remaining unanswered questions

  7. Overview of environmental assessment for China nuclear power industry and coal-fired power industry

    International Nuclear Information System (INIS)

    Zhang Shaodong; Pan Ziqiang; Zhang Yongxing

    1994-01-01

    A quantitative environmental assessment method and the corresponding computer code are introduced. By the consideration of all fuel cycle steps, it given that the public health risk of China nuclear power industry is 5.2 x 10 -1 man/(GW·a) the public health risk is 2.5 man/(GW·a), and the total health risk is 3.0 man/(GW·a). After the health risk calculation for coal mining, transport, burning up and ash disposal, it gives that the public health risk of China coal-fired power industry is 3.6 man/(GW·a), the occupational health risk is 50 man/(GW·a), and the total is 54 man/(GW·). Accordingly, the conclusion that China nuclear power industry is one with high safety and cleanness is derived at the end

  8. An overview of safety and environmental considerations in the selection of materials for fusion facilities

    International Nuclear Information System (INIS)

    Petti, D.A.; Piet, S.J.; Seki, Y.

    1996-01-01

    Safety and environmental considerations can play a large role in the selection of fusion materials. In this paper, we review the attributes of different structural, plasma facing, and breeding materials from a safety perspective and discuss some generic waste management issues as they relate to fusion materials in general. Specific safety concerns exist for each material that must be dealt with in fusion facility design. Low activation materials offer inherent safety benefits compared with conventional materials, but more work is needed before these materials have the requisite certified databases. In the interim, the international thermonuclear experimental reactor (ITER) has selected more conventional materials and is showing that the safety concerns with these materials can be addressed by proper attention to design. In the area of waste management disposal criteria differ by country. However, the criteria are all very strict making disposal of fusion components difficult. As a result, recycling has gained increasing attention. (orig.)

  9. An overview of environmental degradation of materials in nuclear power plant piping systems

    International Nuclear Information System (INIS)

    Shack, W.J.

    1987-08-01

    Piping in light water reactor (LWR) power systems is affected by several types of environmental degradation: intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel piping in boiling water reactors (BWRs) has required research, inspection, and mitigation programs that will ultimately cost several billion dollars; erosion-corrosion of carbon steel piping has been observed frequently in the secondary systems of both BWRs and pressurized water reactors (PWRs); the effect of the BWR environment can greatly diminish the design margin inherent in the ASME Section III fatigue design curves for carbon steel piping; and cast stainless steels are subject to embrittlement after extended thermal aging at reactor operating temperatures. These problems are being addressed by wide-ranging research programs in this country and abroad. The purpose of this review is to highlight some of the accomplishments of these programs and to note some of the remaining unanswered questions

  10. Overview of environmental and waste management aspects of the monazite cycle

    International Nuclear Information System (INIS)

    Paschoa, A.S.

    1993-01-01

    Monazite bearing sands have been used commercially for the purpose of enhancing the brightness of gas mantles for illumination, even before the discovery of the radioactive phenomenon. Monazite sands were first known to exist in Brazil at Cumuruxatiba beach, Bahia, since 1883. Today, monazite bearing sands are used as raw material for the extraction of a number of rare earth elements used in modern industrial applications. After mining and preliminary physical treatment, monazite undergoes chemical processing to extract trisodium phosphates and rare earth chlorides. Most radioactive wastes of the monazite cycle are produced during chemical processing. The environmental problems created by the wastes vary from place to place and will be critically reviewed. 11 refs., 1 tab., 3 figs

  11. Victorian first for geothermal

    International Nuclear Information System (INIS)

    Wallace, Paula

    2014-01-01

    AGL Limited (AGL) will assist Maroondah Sports Club to save hundreds of thousands of dollars on its energy bills over the next decade by commencing work to install Victoria's first GeoAir geothermal cooling and heating system. Utilising the earth's constant temperature, the new GeoAir geothermal system provides a renewable source of energy that will save the club up to $12,000 in the first year and up to $150,000 over the next 10 years

  12. Geothermal and environment

    International Nuclear Information System (INIS)

    1993-01-01

    The production of geothermal-electric energy, presents relatively few contamination problems. The two bigger problems associated to the geothermal production are the disposition of waste fluids and the discharges to the atmosphere of non-condensable gases as CO 2 , H 2 O and NH 3 . For both problems the procedures and production technologies exist, like it is the integral use of brines and gases cleaning systems. Other problems consist on the local impact to forest areas for the effect of the vapor discharge, the contamination for noise, the contamination of aquifer shallow and the contamination related with the construction and termination of wells

  13. Land, Cryosphere, and Nighttime Environmental Products from Suomi NPP VIIRS: Overview and Status

    Science.gov (United States)

    Roman, Miguel O.; Justice, Chris; Csiszar, Ivan

    2014-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-orbiting Partnership (S-NPP: http://npp.gsfc.nasa.gov/). VIIRS was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer (AVHRR) and provide observation continuity with NASA's Earth Observing System's (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA and NOAA funded scientists have been working to evaluate the instrument performance and derived products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the former National Polar-orbiting Environmental Satellite System (NPOESS). The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs and providing MODIS data product continuity. This paper will present to-date findings of the NASA Science Team's evaluation of the VIIRS Land and Cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization (http://viirsland.gsfc.nasa.gov/index.html). The paper will also discuss new capabilities being developed at NASA's Land Product Evaluation and Test Element (http://landweb.nascom.nasa.gov/NPP_QA/); including downstream data and products derived from the VIIRS Day/Night Band (DNB).

  14. Overview of environmental radiological monitoring program of Institute of Radiation Protection And Dosimetry - IRD

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Sarah Barreto Oliveira de Christo; Peres, Sueli da Silva, E-mail: suelip@ird.gov.br, E-mail: sarah.barreto1@gmail.com [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radioproteção

    2017-07-01

    As a branch of the Brazilian Nuclear Energy Commission (CNEN), the Institute of Radiation Protection and Dosimetry (IRD) performs extensive activities in the fields of radiation protection, metrology, and dosimetry, as well as specific education, onto a wide operational scope that includes the technical support to national regulatory authorities in the licensing process for nationwide nuclear and radioactive facilities. IRD has several laboratories where are performed radiometric and radiochemical analyses and others radioactivity evaluation procedures in different types of samples obtained in the inspection activities, production of radioactivity metrological standards and reference material by National Laboratory of Metrology of Ionizing Radiation (LMNRI), besides others research activities. In this laboratories can be used sealed or unsealed radioactive sources and radiation-producing devices and are classified with radioactive installations in accordance to national regulations. This way, radioactive liquid effluents can be eventually produced and released into the environment in the course of such activities and an effluent monitoring program to control and reduce the releases to environment is carried out. Additionally, IRD maintains the Radioactive Waste Management Program and Environmental Radiological Monitoring Program (ERMP) in accordance to national regulations requirements. The primary focus of ERMP comprises the validation of the dose prognostics for the public members due to effluents discharge and the provision of consistent projections of the radiation levels at the monitoring sites. In this study, a long term ERMP data survey is discussed, spanning the last thirteen years of activities. On the basis of such discussions and prognostics, it could be observed that the radiological environmental radiological impact due to operation of IRD installations is negligible. (author)

  15. Overview of environmental radiological monitoring program of Institute of Radiation Protection And Dosimetry - IRD

    International Nuclear Information System (INIS)

    Gomes, Sarah Barreto Oliveira de Christo; Peres, Sueli da Silva

    2017-01-01

    As a branch of the Brazilian Nuclear Energy Commission (CNEN), the Institute of Radiation Protection and Dosimetry (IRD) performs extensive activities in the fields of radiation protection, metrology, and dosimetry, as well as specific education, onto a wide operational scope that includes the technical support to national regulatory authorities in the licensing process for nationwide nuclear and radioactive facilities. IRD has several laboratories where are performed radiometric and radiochemical analyses and others radioactivity evaluation procedures in different types of samples obtained in the inspection activities, production of radioactivity metrological standards and reference material by National Laboratory of Metrology of Ionizing Radiation (LMNRI), besides others research activities. In this laboratories can be used sealed or unsealed radioactive sources and radiation-producing devices and are classified with radioactive installations in accordance to national regulations. This way, radioactive liquid effluents can be eventually produced and released into the environment in the course of such activities and an effluent monitoring program to control and reduce the releases to environment is carried out. Additionally, IRD maintains the Radioactive Waste Management Program and Environmental Radiological Monitoring Program (ERMP) in accordance to national regulations requirements. The primary focus of ERMP comprises the validation of the dose prognostics for the public members due to effluents discharge and the provision of consistent projections of the radiation levels at the monitoring sites. In this study, a long term ERMP data survey is discussed, spanning the last thirteen years of activities. On the basis of such discussions and prognostics, it could be observed that the radiological environmental radiological impact due to operation of IRD installations is negligible. (author)

  16. Twentieth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-01-26

    PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

  17. Human Resources in Geothermal Development

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  18. Space station environmental control and life support systems test bed program - an overview

    Science.gov (United States)

    Behrend, Albert F.

    As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space

  19. Radioactivity and deep geothermal energy; Radioaktivitaet und tiefe Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Janczik, Sebastian; Kaltschmitt, Martin [Technische Univ. Hamburg-Harburg (Germany). Inst. fuer Umwelttechnik und Energiewirtschaft; Merkel, Broder [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Geologie

    2012-02-15

    Due to recent developments in energy politics renewable energies get more and more importance in Germany. This is especially true for geothermal energy representing a promising option for the environmentally sound and secure generation of heat and electricity. But there are a lot of very emotional discussions due to radioactive residues and wastes produced by a geothermal plant. Thus this paper compares radioactivity resulting from geothermal energy with radioactivity coming from other natural sources. In doing so it becomes obvious that naturally radioactive sources exist in all parts of the ecosphere (i.e. air, water, soil). The paper shows also that the specific activities of radioactive elements from geothermal energy in form of residues and waste emerge from radioactive decay of nuclides and that their radiation is not higher than the radiation of other naturally occurring radioactive elements. (orig.)

  20. Rodigo Uno (Italy) geothermal thermal energy for crop drying

    International Nuclear Information System (INIS)

    Facchini, U.; Sordelli, C.; Magnoni, S.; Cantadori, M.

    1992-01-01

    This paper outlines the chief design and performance features of a forage drying installation which makes use of locally available geothermal energy. The heat exchange is accomplished through a water-air exchanger directly fed by 59 degrees C geothermal springs. Two 80,000 cubic meter/hour ventilators, making use of this energy (58 to 38 degrees C heat exchange), raise the drying air temperature by 16 degrees C, while providing an overall drying capacity of 43,200 kg/day. The balance of available 38 degrees C geothermal energy is being employed by a local aquaculture farm. The paper comments on the economic and environmental benefits being derived from this direct utilization of geothermal energy

  1. Geothermal energy in Washington: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.

    1979-04-01

    This is an attempt to identify the factors which have affected and will continue to affect geothermal assessment and development in the state. The eight potential sites chosen for detailed analysis include: Indian Heaven KGRA, Mount St. Helens KGRA, Kennedy Hot Springs KGRA, Mount Adams PGRA (Potential Geothermal Resource Area), Mount Rainier PGRA, Mount Baker PGRA, Olympic-Sol Duc Hot Springs, and Yakima. The following information is included for each site: site data, site location and physical description, geological/geophysical description, reservoir characteristics, land ownership and leasing, geothermal development status, institutional characteristics, environmental factors, transportation and utilities, and population. A number of serious impediments to geothermal development were identified which can be solved only by legislative action at the state or federal level and/or changes in attitudes by regulatory agencies. (MHR)

  2. Environmental monitoring in the vicinity of the Mol-Dessel site (Belgium): a historic overview

    International Nuclear Information System (INIS)

    Hardeman, F.; Loos, M.; Rojas-Palma, C.

    2004-01-01

    The nuclear site of Mol-Dessel (Belgium) dates from the fifties, and a large diversity of activities have taken place from then on till today. The site comprises a nuclear research centre SCK CEN, operating research reactors (one of them in dismantling), hot laboratories, laboratories for plutonium research, experimental fields etc. But there are also industrial facilities related to waste handling and treatment (Belgoprocess) or nuclear fuel fabrication (FBFC Int'l and Belgonucleaire). In the past, there has also been a reprocessing plant operated by the OECD, shut down in 1974, and laboratories for isotope production, that moved to the novel site of IRE at Fleurus between 1970 and 1974. Recently, a survey has been performed of the environmental monitoring results from the beginning on till end of 2000 in the framework of the selection of a candidate site for a repository for low level waste. The paper intends to present some of the monitoring results and lessons learnt from it. These lessons relate to several aspects. At first: the responsibilities for monitoring and data management (in a site with various operators). Also historical changes have had an impact on the monitoring programme. Furthermore, technological evolutions introduce some difficulties in establishing a coherent data set. Furthermore, the influence of non-site related events, such as fall-out from nuclear weapons testing or the Chernobyl accident, but also the presence of a coal fired station, is apparent. (authors)

  3. 20 years of speleothem paleoluminescence records of environmental changes: an overview

    Directory of Open Access Journals (Sweden)

    Shopov Yavor Y.

    2004-12-01

    Full Text Available This paper discusses advance of the research on Speleothem paleoluminescence Records of Environmental Changes after it have been first introduced by the author 20 years ago.It is demonstrated that most of the progress in this field was made in result of the operation of the International Program “Luminescence of Cave Minerals” of the commission on Physical Chemistry and Hydrogeology of Karst of UIS of UNESCO.Potential, resolution and limitations of high resolution luminescence speleothem proxy records of Paleotemperature, Solar Insolation, Solar Luminosity, Glaciations, Sea Level advances, Past Precipitation, Plants Populations, Paleosoils, Past Karst Denudation, Chemical Pollution, Geomagnetic field and Cosmic Rays Flux variations, Cosmogenic Isotopes production and Supernova Eruptions in the Past, Advances of Hydrothermal Waters, and Tectonic Uplift are discussed.It is demonstrated that speleothems allow extremely high resolution (higher than in any other paleoclimatic terrestrial archives and long duration of records. Some speleothems can be used as natural climatic stations for obtaining of quantitative proxy records of Quaternary climates with annual resolution.

  4. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    Science.gov (United States)

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around EUR 70 million funding to 3 geothermal projects in Hungary, Croatia and France. The Croatian geothermal project will enter into operation during 2017 the Hungarian in 2018, and the French in 2020. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of scaling up technologies and operating them at commercial scale. The knowledge sharing of the NER 300

  5. FY 1998 geothermal development promotion survey. Report on the environmental effect survey (No. A-4 Kunbetsu-dake area); 1998 nendo chinetsu kaihatsu sokushin chosa. Kankyo eikyo chosa hokokusho (No.A-4 Kunbetsudake chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-30

    Of the FY 1998 geothermal development promotion survey, the primary environmental effect survey in the Kunbetsu-dake area was conducted, and the results were arranged. In the well drilling survey, etc., the survey was made aiming at extracting areas to be preserved from an environmental aspect. The results of the survey were summarized as follows: As to the mammalia, 12 families 46 species were confirmed in the area surveyed and the periphery by literature survey. Out of them, the noticeable species which are considered important from an academic viewpoint are 10 families 19 species. As to the aves, 55 families 340 species were confirmed, of which 29 families 79 species are noticeable species. About the amphibia/reptilia, 3 families 3 species in the amphibia and 4 families 6 species in the reptilia were confirmed by literature and hearing survey. The noticeable species is 1 family 1 species in the amphilia. Concerning the terrestrial insecta, 135 families 873 species were confirmed, and the noticeable species is 11 families 20 species. As to the flora, 115 families 1055 species were confirmed, and the noticeable species is 46 families 126 species. Relating to the living vegetation, the one higher than 9 in nature reserves shows a substantial rate, and the periphery of Kaibetsu-dake is designated as the specified flora colony. (NEDO)

  6. Geothermal industry assessment

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  7. Geothermal Greenhouse Information Package

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K. [P.E.; Boyd, T. [ed.

    1997-01-01

    This package of information is intended to provide a foundation of background information for developers of geothermal greenhouses. The material is divided into seven sections covering such issues as crop culture and prices, operating costs for greenhouses, heating system design, vendors and a list of other sources of information.

  8. Geothermal energy. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Brief descriptions of geothermal projects funded through the Department of Energy during FY 1978 are presented. Each summary gives the project title, contractor name, contract number, funding level, dates, location, and name of the principal investigator, together with project highlights, which provide informaion such as objectives, strategies, and a brief project description. (MHR)

  9. Geothermal investigations in Slovenia

    Directory of Open Access Journals (Sweden)

    Danilo Ravnik

    1991-12-01

    Full Text Available The paper presents the methodology and the results of geothermal investigations, based on seventy-two boreholes in the territory of the Republic of Slovenia.The data of fundamental geothermal quantities: formation temperature, thermal conductivity, and radiogenic heat production of rocks as well as surface heat flow density are stored in a computerized data base. Their synthesis is given in the map of formation temperatures at 1000 m depth and in the map of surface heat flow density. In both maps the thermal difference between the Pannonian basin in theeastern and the Dinarides in the western part of Slovenia is clearly expressed.However, in the boundary area between these two tectonic units, for a distance of about 100 km in SW-NE direction, elevated horizontal gradients of formation temperature as well as heat flow density are evident. A small positive thermal anomaly in the Ljubljana depression is conspicuous.The low-temperature geothermal resources in Slovenia such as thermalsprings and thermal water from boreholes, are estimated to have a flow rate of 1120 kg/s, corresponding to the ideal total heat production of 144 MWt. In the geothermally promising areas amounting to 3200 km2 the rate of accessible resource base (ARB down to the depth of 3 km has been assessed to about 8.5 x lO 20» J.

  10. Very low energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Very low energy geothermics correspond to temperatures below 30 C and has been developed to cover heating and cooling needs of recent individual houses or tertiary industries using heat pumps and low depth aquifers (<100 m). Geothermal heat pumps industry has made great strides in European Northern countries, China, Japan and the United States of America. Geothermal heat pumps are less energy consuming than air heat pumps and require less cooling fluid and maintenance. The Aquapac procedure has been developed in France in 1983 by the AFME (French Energy Control Agency), EdF and the BRGM (Geologic and Mining Research Office) to encourage the use of geothermal heat pump for domestic and sanitary water heating and to make a survey of low-depth aquifers in the whole french territory. The decay of energy costs that started in 1986 has led to a loss of interest for the Aquapac procedure, even in the tertiary industries for which the air-conditioning demand is growing up. (J.S.). 1 tab

  11. Geothermal Grows Up

    Science.gov (United States)

    Johnson, William C.; Kraemer, Steven; Ormond, Paul

    2011-01-01

    Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…

  12. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  13. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling.

    Science.gov (United States)

    Hahladakis, John N; Velis, Costas A; Weber, Roland; Iacovidou, Eleni; Purnell, Phil

    2018-02-15

    Over the last 60 years plastics production has increased manifold, owing to their inexpensive, multipurpose, durable and lightweight nature. These characteristics have raised the demand for plastic materials that will continue to grow over the coming years. However, with increased plastic materials production, comes increased plastic material wastage creating a number of challenges, as well as opportunities to the waste management industry. The present overview highlights the waste management and pollution challenges, emphasising on the various chemical substances (known as "additives") contained in all plastic products for enhancing polymer properties and prolonging their life. Despite how useful these additives are in the functionality of polymer products, their potential to contaminate soil, air, water and food is widely documented in literature and described herein. These additives can potentially migrate and undesirably lead to human exposure via e.g. food contact materials, such as packaging. They can, also, be released from plastics during the various recycling and recovery processes and from the products produced from recyclates. Thus, sound recycling has to be performed in such a way as to ensure that emission of substances of high concern and contamination of recycled products is avoided, ensuring environmental and human health protection, at all times. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. An overview on exploration and environmental impact of unconventional gas sources and treatment options for produced water.

    Science.gov (United States)

    Silva, Tânia L S; Morales-Torres, Sergio; Castro-Silva, Sérgio; Figueiredo, José L; Silva, Adrián M T

    2017-09-15

    Rising global energy demands associated to unbalanced allocation of water resources highlight the importance of water management solutions for the gas industry. Advanced drilling, completion and stimulation techniques for gas extraction, allow more economical access to unconventional gas reserves. This stimulated a shale gas revolution, besides tight gas and coalbed methane, also causing escalating water handling challenges in order to avoid a major impact on the environment. Hydraulic fracturing allied to horizontal drilling is gaining higher relevance in the exploration of unconventional gas reserves, but a large amount of wastewater (known as "produced water") is generated. Its variable chemical composition and flow rates, together with more severe regulations and public concern, have promoted the development of solutions for the treatment and reuse of such produced water. This work intends to provide an overview on the exploration and subsequent environmental implications of unconventional gas sources, as well as the technologies for treatment of produced water, describing the main results and drawbacks, together with some cost estimates. In particular, the growing volumes of produced water from shale gas plays are creating an interesting market opportunity for water technology and service providers. Membrane-based technologies (membrane distillation, forward osmosis, membrane bioreactors and pervaporation) and advanced oxidation processes (ozonation, Fenton, photocatalysis) are claimed to be adequate treatment solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Geothermal energy in Yugoslavia, potentials and applications

    International Nuclear Information System (INIS)

    Boreli, F.; Paradjanin, Lj.; Stankovic, Srb.

    2002-01-01

    This paper promotes the use of Geothermal energy (GTE) in Serbia, and argues that while GTE is both a viable and environmentally friendly energy source, as demonstrated elsewhere in the world, there is also a multitude of opportunities in this region, and the local knowledge and capabilities required for implementing the GTE plants. First, a general introduction to GTE in is given. The basis of GTE is the thermal energy accumulated in fluids and rocks masses in the Earth's Crust. The main GTE advantage compared to the traditional energy sources like thermo-electric plants is the absence of environmental deterioration, however GTE also has advantages compared to other NARES, as the GT sources are permanently available and independent of weather conditions. Worldwide energy potential of GTE is huge, as the reduction of Earth Crust temperature for just 0.1 deg. C would give enough Energy to produce Electrical Energy, at the present dissipation level, for the next 15,000 years. An overview of the regions in Yugoslavia which have a high GTE potential is given. There are two distinct regions with higher GTE values in Serbia: the first is a part of the South Panonian basin including Vojvodina, with Macva and Yu-part along Danube and Morava rivers. This is a sedimental part of the Tercier's Panonic Sea 'Parathetis', with partial depression and Backa subsupression, and is well investigated due to oil and gas holeboring. The second region includes Central and Southern part of Serbia, south from the Panonia basin, with pretercier's and tercier's magmatic volcanic intrusions, which produce a very high and stable thermal flux. This Region is rich in GT-warm water springs with stable yields, and includes 217 locations with 970 natural springs with temperature above 20 deg. C. These compare very favorably with international locations where GTE is exploited. GTE can be used for Electric Energy production using corresponding heat pump systems, for house heating and warm water

  16. Overview of the Ozone Water-Land Environmental Transition Study: Summary of Observations and Initial Results

    Science.gov (United States)

    Berkoff, T.; Sullivan, J.; Pippin, M. R.; Gronoff, G.; Knepp, T. N.; Twigg, L.; Schroeder, J.; Carrion, W.; Farris, B.; Kowalewski, M. G.; Nino, L.; Gargulinski, E.; Rodio, L.; Sanchez, P.; Desorae Davis, A. A.; Janz, S. J.; Judd, L.; Pusede, S.; Wolfe, G. M.; Stauffer, R. M.; Munyan, J.; Flynn, J.; Moore, B.; Dreessen, J.; Salkovitz, D.; Stumpf, K.; King, B.; Hanisco, T. F.; Brandt, J.; Blake, D. R.; Abuhassan, N.; Cede, A.; Tzortziou, M.; Demoz, B.; Tsay, S. C.; Swap, R.; Holben, B. N.; Szykman, J.; McGee, T. J.; Neilan, J.; Allen, D.

    2017-12-01

    The monitoring of ozone (O3) in the troposphere is of pronounced interest due to its known toxicity and health hazard as a photo-chemically generated pollutant. One of the major difficulties for the air quality modeling, forecasting and satellite communities is the validation of O3 levels in sharp transition regions, as well as near-surface vertical gradients. Land-water gradients of O3 near coastal regions can be large due to differences in surface deposition, boundary layer height, and cloud coverage. Observations in horizontal and vertical directions over the Chesapeake Bay are needed to better understand O3 formation and redistribution within regional recirculation patterns. The O3 Water-Land Environmental Transition Study (OWLETS) was a field campaign conducted in the summer 2017 in the VA Tidewater region to better characterize O3 across the coastal boundary. To obtain over-water measurements, the NASA Langley Ozone Lidar as well as supplemental measurements from other sensors (e.g. Pandora, AERONET) were deployed on the Chesapeake Bay Bridge Tunnel (CBBT) 7-8 miles offshore. These observations were complimented by NASA Goddard's Tropospheric Ozone Lidar along with ground-based measurements over-land at the NASA Langley Research Center (LaRC) in Hampton, VA. On measurement days, time-synchronized data were collected, including launches of ozonesondes from CBBT and LaRC sites that provided additional O3, wind, and temperature vertical distribution differences between land and water. These measurements were complimented with: in-situ O3 sensors on two mobile cars, a micro-pulse lidar at Hampton University, an in-situ O3 sensor on a small UAV-drone, and Virginia DEQ air-quality sites. Two aircraft and a research vessel also contributed to OWLETS at various points during the campaign: the NASA UC-12B with the GeoTASO passive remote sensor, the NASA C-23 with an in-situ chemistry analysis suite, and a SERC research vessel with both remote and in-situ sensors. This

  17. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies

    International Nuclear Information System (INIS)

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs

  18. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  19. Soil as natural heat resource for very shallow geothermal application: laboratory and test site updates from ITER Project

    Science.gov (United States)

    Di Sipio, Eloisa; Bertermann, David

    2017-04-01

    Nowadays renewable energy resources for heating/cooling residential and tertiary buildings and agricultural greenhouses are becoming increasingly important. In this framework, a possible, natural and valid alternative for thermal energy supply is represented by soils. In fact, since 1980 soils have been studied and used also as heat reservoir in geothermal applications, acting as a heat source (in winter) or sink (in summer) coupled mainly with heat pumps. Therefore, the knowledge of soil thermal properties and of heat and mass transfer in the soils plays an important role in modeling the performance, reliability and environmental impact in the short and long term of engineering applications. However, the soil thermal behavior varies with soil physical characteristics such as soil texture and water content. The available data are often scattered and incomplete for geothermal applications, especially very shallow geothermal systems (up to 10 m depths), so it is worthy of interest a better comprehension of how the different soil typologies (i.e. sand, loamy sand...) affect and are affected by the heat transfer exchange with very shallow geothermal installations (i.e. horizontal collector systems and special forms). Taking into consideration these premises, the ITER Project (Improving Thermal Efficiency of horizontal ground heat exchangers, http://iter-geo.eu/), funded by European Union, is here presented. An overview of physical-thermal properties variations under different moisture and load conditions for different mixtures of natural material is shown, based on laboratory and field test data. The test site, located in Eltersdorf, near Erlangen (Germany), consists of 5 trenches, filled in each with a different material, where 5 helix have been installed in an horizontal way instead of the traditional vertical option.

  20. Exergy analysis for a proposed binary geothermal power plant in Nisyros Island, Greece

    DEFF Research Database (Denmark)

    Koroneos, Christopher; Polyzakis, A.; Xydis, George

    2017-01-01

    and a measure of the quality of the different forms of energy in relation to given environmental conditions. In this paper, data from an experimental geothermal drill in the Greek Island of Nisyros, located in the south of the Aegean Sea, have been used in order to estimate the maximum available work...... resulted supporting technical feasibility of the proposed geothermal plant....

  1. Geothermal application feasibility study for the New Mexico State University campus. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Gunaji, N.N.; Thode, E.F.; Chaturvedi, L.; Walvekar, A.; LaFrance, L.; Swanberg, C.A.; Jiracek, G.R.

    1978-12-01

    The following are covered: a geothermal prospect conceptual study for NMSU campus, geothermal resources on and near NMSU land, present campus heating and cooling system, conceptual design and preliminary cost estimates - alternative systems, economic analysis, and legal and environmental considerations. (MHR)

  2. Fluid-rock geochemical interaction for modelling calibration in geothermal exploration in Indonesia

    Science.gov (United States)

    Deon, Fiorenza; Barnhoorn, Auke; Lievens, Caroline; Ryannugroho, Riskiray; Imaro, Tulus; Bruhn, David; van der Meer, Freek; Hutami, Rizki; Sibarani, Besteba; Sule, Rachmat; Saptadij, Nenny; Hecker, Christoph; Appelt, Oona; Wilke, Franziska

    2017-04-01

    Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research. This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an overview on geochemical data-rock properties from important geothermal fields in Indonesia. The research carried out in the field and in the laboratory is performed in the framework of the GEOCAP cooperation (Geothermal Capacity Building program Indonesia- the Netherlands). The application of petrology and geochemistry accounts to a better understanding of areas where operating power plants exist but also helps in the initial exploration stage of green areas. Because of their relevance and geological setting geothermal fields in Java, Sulawesi and the sedimentary basin of central Sumatra have been chosen as focus areas of this study. Operators, universities and governmental agencies will benefit from this approach as it will be applied also to new green-field terrains. By comparing the characteristic of the fluids, the alteration petrology and the rock geochemistry we also aim to contribute to compile an overview of the geochemistry of the important geothermal fields in Indonesia. At the same time the rock petrology and fluid geochemistry will be used as input data to model the reservoir fluid composition along with T-P parameters with the geochemical workbench PHREEQC. The field and laboratory data are mandatory for both the implementation and validation of the model results.

  3. Health impacts of geothermal energy

    International Nuclear Information System (INIS)

    Layton, D.W.; Anspaugh, L.R.

    1982-01-01

    Geothermal resources are used to produce electrical energy and to supply heat for non-electric applications like residential heating and crop drying. The utilization of geothermal energy consists of the extraction of hot water or steam from an underground reservoir followed by different methods of surface processing along with the disposal of liquid, gaseous, and even solid wastes. The focus of this paper is on electric power production using geothermal resources greater than 150 0 C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of non-condensing gases such as hydrogen sulphide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. In this paper it is shown that hydrogen sulphide emissions from most geothermal power plants are apt to cause odour annoyances among members of the exposed public -some of whom can detect this gas at concentrations as low as 0.002 ppmv. A risk-assessment model is used to estimate the lifetime risk of incurring leukaemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. Also assessed is the risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic. Finally, data on the occurrence of occupational disease in the geothermal industry is briefly summarized. (author)

  4. Assets of geothermal energy for buildings: heating, cooling and domestic hot water

    International Nuclear Information System (INIS)

    2016-01-01

    This publication first proposes a brief overview on the status, context and perspectives of geothermal energy in France by evoking the great number of heat pumps installed during the last decades and the choice made by public and private clients for this source of heating and cooling. While indicating how geothermal energy intervenes during a building project, this publication outlines that this energy is discrete and renewable, and that its technology is proven. Some examples are then evoked: use of geothermal energy for a public building in Saint-Malo, for estate projects near Paris, for a shopping centre in Roissy, and for office buildings

  5. Significance of mercury in environmental health - an overview; Bedeutung von Quecksilber in der Umweltmedizin - eine Uebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Schweinsberg, F. [Chemisches Labor, Institut fuer Allgemeine Hygiene und Umwelthygiene, Tuebingen (Germany)

    2002-07-01

    In addition to occupational exposure to mercury, dental amalgam fillings and fish consumption are the most important sources of mercury body burden in environmental medicine. The principle signs of chronic diseases of the nervous system caused by inorganic mercury are tremor, ataxia, impaired vision and emotional agitation. In the kidneys, tubular necrosis may develop. In patients with severe kidney dysfunction, no amalgam fillings should by inserted. In rare cases, amalgam fillings may cause allergic reactions of the delayed type IV sensitivity and oral lichenoid reactions. Subclinical effects caused by amalgam fillings and their impact on human health is still a topic of controversial discussion. In scientific terms it is not possible to demonstrate a correlation between unspecific symptoms and exposure of mercury released by amalgam fillings. Chronic toxicology of the nervous system caused by organic mercury is characterized by paresthesia, ataxia, dysarthria, constriction of the visual field and hearing impairment. Possible adverse effects on the fetus as a result of the uptake of organic mercury in fish consumption during pregnancy must be critically assessed. The evaluation of adverse health effects brought about by exposure to mercury is assessed in Germany by the definition of human biological monitoring (HBM) values. In long-term exposure to inorganic mercury above the HMB-II value of mercury in urine of 25 {mu}g/L, adverse health effects can arise. The corresponding HMB-II value in blood brought about by organic mercury is 15 {mu}g/L, which is approximately equal to a mercury content of 5 {mu}g/kg in hair. (orig.) [German] Neben dem Arbeitsplatz sind heute im Umweltbereich Amalgamfuellungen und Fischkonsum die wichtigsten Expositionsquellen mit Quecksilber. Leitsymptome einer chronischen Erkrankung des Nervensystems durch anorganisches Quecksilber sind Tremor, Koordinationsstoerungen von Bewegungsablaeufen, Sehstoerungen und Ueberregbarkeit. In den Nieren

  6. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Stephen [Executive Office of the State of Arizona (Arizona Geological Survey); Patten, Kim [Executive Office of the State of Arizona (Arizona Geological Survey); Love, Diane [Executive Office of the State of Arizona (Arizona Geological Survey); Coleman, Celia [Executive Office of the State of Arizona (Arizona Geological Survey); Chen, Genhan [Executive Office of the State of Arizona (Arizona Geological Survey)

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to

  7. Overview of stakeholders issues and activities: report of the U.S. Environmental Protection Agency

    International Nuclear Information System (INIS)

    Forinash, Betsy

    2004-01-01

    Over the past year, the U.S. Environmental Protection Agency (US EPA) has implemented a new, more interactive stakeholder program in preparation for conducting a comprehensive technical update of the Waste Isolation Pilot Plant (WIPP) after its first five years of operation. As the national repository for long-lived transuranic radioactive waste from U.S. defense activities and site clean-up, the facility continues to be of great interest both locally and nationally. We have worked actively with stakeholders since Congress established EPA as the regulator at WIPP in 1992. Early on, we visited with local communities near WIPP to understand their concerns and information needs. In response, we established toll-free telephone information lines and developed numerous public documents. During the technical review and regulatory decision regarding WIPP's safety, we provided numerous public hearings and solicited written comments on important topics. Ultimately, we issued the WIPP certification decision (1998), finding WIPP in compliance with EPA's radioactive waste disposal regulations and allowing it to open (1999). During 'lessons learned' assessments afterwards, we found that stakeholders appreciated some aspects of our program but were frustrated with the lack of two-way dialogue and were interested in getting clearer information on technical issues. We are using the 'lessons learned' in formulating our stakeholder activities for WIPP's first re-certification review, begun in March 2004. The re-certification review is intended to confirm that the WIPP continues to comply with EPA's regulations, taking into account the changes and new information gained over its first five years of operation. Key aspects of the stakeholder program are summarized below: - Define the goals for public information and participation. Our goal is to gain public acceptance, not necessarily full agreement, of our actions. We want to foster in the public

  8. Generalized Pan-European Geological Database for Shallow Geothermal Installations

    Directory of Open Access Journals (Sweden)

    Johannes Müller

    2018-01-01

    Full Text Available The relatively high installation costs for different types of shallow geothermal energy systems are obstacles that have lowered the impact of geothermal solutions in the renewable energy market. In order to reduce planning costs and obtain a lithological overview of geothermal potentials and drilling conditions, a pan-European geological overview map was created using freely accessible JRC (Joint Research Centre data and ArcGIS software. JRC data were interpreted and merged together in order to collect information about the expenditure of installing geothermal systems in specific geological set-ups, and thereby select the most economic drilling technique. Within the four-year project of the European Union’s Horizon 2020 Research and Innovation Program, which is known as “Cheap-GSHPs” (the Cheap and efficient application of reliable Ground Source Heat exchangers and Pumps, the most diffused lithologies and corresponding drilling costs were analyzed to provide a 1 km × 1 km raster with the required underground information. The final outline map should be valid throughout Europe, and should respect the INSPIRE (INfrastructure for SPatial InfoRmation in Europe guidelines.

  9. Geothermal district heating applications in Turkey: a case study of Izmir-Balcova

    Energy Technology Data Exchange (ETDEWEB)

    Hepbasli, A. [Ege Univ., Dept. of Mechanical Engineering, Izmir (Turkey); Canakci, C. [Izmir-Balcova Geothermal Energy Inc., Izmir (Turkey)

    2003-05-01

    Turkey is located on the Mediterranean sector of the Alpine-Himalayan Tectonic Belt and is among the first seven countries in abundance of geothermal resources around the world. However, the share of its potential used is only about 2%. This means that considerable studies on geothermal energy could be conducted in order to increase the energy supply and to reduce atmospheric pollution in Turkey. The main objective in doing the present study is twofold, namely: (a) to overview the status and future aspects of geothermal district heating applications in Turkey and (b) to present the Izmir-Balcova geothermal district heating system, which is one example of the high temperature district heating applications in Turkey. The first geothermal heating application was applied in 1981 to the Izmir-Balcova thermal facilities, where the downhole heat exchanger was also used for the first time. Besides this, the first city based geothermal district heating system has been operated in Balikesir-Gonen since 1987. Recently, the total installed capacity has reached 820 MW{sub t} for direct use. An annual average growth of 23% of the residences connected to geothermal district heating systems has been achieved since 1983 in the country, representing a decrease of 5% in the last three years. Present applications have shown that in Turkey, geothermal energy is much cheaper than the other energy sources, like fossil fuels, and can make a significant contribution towards reducing the emission of greenhouse gases. (Author)

  10. Third workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P. (eds.)

    1977-12-15

    Workshop under the Stanford Geothermal Program was supported by a grant from DOE through a subcontract with the Lawrence Berkeley Laboratory of the University of California. A second significant event was the first conference under the ERDA (DOE)-ENEL cooperative program where many of the results of well testing in both nations were discussed. The Proceedings of that conference should be an important contribution to the literature. These Proceedings of the Third Workshop should also make an important contribution to the literature on geothermal reservoir engineering. Much of the data presented at the Workshop were given for the first time, and full technical papers on these subjects will appear in the professional journals. The results of these studies will assist markedly in developing the research programs to be supported by the Federal agencies, and in reducing the costs of research for individual developers and utilities. It is expected that future workshops of the Stanford Geothermal Program will be as successful as this third one. Planning and execution of the Workshop... [see file; ljd, 10/3/2005] The Program Committee recommended two novel sessions for the Third Workshop, both of which were included in the program. The first was the three overviews given at the Workshop by George Pinder (Princeton) on the Academic aspect, James Bresee (DOE-DGE) on the Government aspect, and Charles Morris (Phillips Petroleum) on the Industry aspect. These constituted the invited slate of presentations from the several sectors of the geothermal community. The Program Committee acknowledges their contributions with gratitude. Recognition of the importance of reservoir assurance in opting for geothermal resources as an alternate energy source for electric energy generation resulted in a Panel Session on Various Definitions of Geothermal Reservoirs. Special acknowledgments are offered to Jack Howard and Werner Schwarz (LBL) and to Jack Howard as moderator; to the panelists: James Leigh

  11. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    Wellstein, J.

    2008-01-01

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  12. Geothermal energy utilization in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Svalova, V. [Institute of Environmental Geoscience, RAS, Moscow (Russian Federation)

    2011-07-01

    Geothermal energy use is the way to clean, sustainable energy development for the world. Russia has rich high and low temperature geothermal resources and is making progress using them - mostly with low-temperature geothermal resources and heat pumps This is optimal for many regions of Russia -in the European part, in the Urals and others. Electricity is generated by some geothermal power plants (GeoPP) only in the Kamchatka Peninsula and Kuril Islands There are two possible ways of using geothermal resources, depending on the properties of thermal waters heat/power and mineral extraction. The mineral-extraction direction is basic for geothermal waters, which contain valuable components in industrial quantities The most significant deposits of thermal waters represent the brines containing from 35 up to 400 and more g/l of salts. These are the minerals of many chemical dements. (author)

  13. Geothermal development plan: Maricopa county

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  14. Chemical logging of geothermal wells

    Science.gov (United States)

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  15. Direct application of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  16. The geothermal KWh cost

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Numerous factors can influence the cost of geothermal electricity production: the size and power of production units, the conversion technology used (Rankine cycle or water steam), the resource quality (dry vapor or water-vapor mixing), the resource depth, the drilling activity in the country and the work people costs. In the United States of America the geothermal kWh cost ranges from 2.5 to 8.5 US cents, while in Italy and Nicaragua it ranges from 3 and 10 cents and from 5.7 to 6 cents, respectively. Results of a comparative study of the kWh production cost from different energy sources is also summarized. (J.S.). 1 tab

  17. FY 1990 report on the survey of geothermal development promotion. Survey of environmental effects before jetting (No.34 - Kaminoyu/Santai area); 1990 nendo chinetsu kaihatsu sokushin chosa. No.34 Kaminoyu Santai chiiki - Funki zen kankyo eikyo chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    For the evaluation of effects of geothermal development on the peripheral environment in the Kaminoyu/Santai area in the southwest part of Hokkaido, survey of the present situation of the environment was made. As a result of the survey, as to the climate of this area, the mean temperature, precipitation, etc. were almost the same as those of the nearest meteorological office of Hakodate, and the wind velocity was lower. Concerning the air, the mean concentration of H{sub 2}S was 0.8-3.6 ppb, SO2 was less than the detectable limiting value, Hg was 0.018-0.12 {mu}g/m{sup 3}N in average, and suspended particulate was 0.014-0.028 mg/m{sup 3}. Each of them satisfied the environmental criteria and the control level. The water quality satisfied the AA type criteria at every point of the river surveyed. The noise/vibration at the time of well drilling were 47-50dB at 10m measuring point and less than the lower limit of measuring at measuring points farther than 50m measuring point/100m measuring point. Every hot spring was drilled and spontaneously welling, and variations in spring temperature/welling amount were comparatively small. Micro earthquakes of 495 were observed in 47 days in total. Besides, survey was made of animals, plants, soils, scenery, etc. (NEDO)

  18. Fiscal 1998 survey for geothermal energy development promotion. Environmental impact survey report (No. B-7 Kuwanosawa region); 1998 nendo chinetsu kaihatsu sokushin chosa. Kankyo eikyo chosa hokokusho (No.B-7 Kuwanosawa chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This survey aims to learn the current states of environmental factors required for the comprehension of the impacts on surroundings of a structural boring for geothermal energy exploration. The target site is an approximately 10km{sup 2}-large area located among the mountains 20km south-south-east of Yuzawa City, Akita Prefecture. It is found that numerous animals and vegetables inhabit the Kuwanosawa region and its vicinity. They are 19 species of mammals in 10 families under 5 orders; 73 species of birds in 25 families under 10 orders; 6 species of reptiles in 13 families; 9 species of amphibians in 6 families under 2 orders; and 719 species of insects in 179 families under 17 orders. Valuable animals include flying squirrels, mandarin ducks, black salamanders, and small Gifu butterflies. There are 670 species of vegetables in 132 families. Valuable vegetables are Iinuma bulblets, wild rhubarb roots, and Amur adonises. Floras found in existence are a natural flora in the beech class area, compensatory flora in the beech class area, afforested area, and a flora in the crop land. No remarkable fluctuation was observed in the Takamatsu spa throughout the survey period. Fluctuations were observed in all the survey items at the Doroyu-Okuyama inn. (NEDO)

  19. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [ed.; Maddi, Phillip [ed.

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall, the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.

  20. Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA

    Directory of Open Access Journals (Sweden)

    L. A. T. Machado

    2018-05-01

    Full Text Available This study provides an overview of precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin near Manaus during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. This study takes advantage of the numerous measurement platforms and instrument systems operating during both campaigns to sample cloud structure and environmental conditions during 2014 and 2015; the rainfall variability among seasons, aerosol loading, land surface type, and topography has been carefully characterized using these data. Differences between the wet and dry seasons were examined from a variety of perspectives. The rainfall rates distribution, total amount of rainfall, and raindrop size distribution (the mass-weighted mean diameter were quantified over both seasons. The dry season generally exhibited higher rainfall rates than the wet season and included more intense rainfall periods. However, the cumulative rainfall during the wet season was 4 times greater than that during the total dry season rainfall, as shown in the total rainfall accumulation data. The typical size and life cycle of Amazon cloud clusters (observed by satellite and rain cells (observed by radar were examined, as were differences in these systems between the seasons. Moreover, monthly mean thermodynamic and dynamic variables were analysed using radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to atmospheric aerosol loading was discussed with regard to mass-weighted mean diameter and rain rate. This topic was evaluated only during the wet season due to the insignificant statistics of rainfall events for different aerosol loading ranges and the low frequency of precipitation events during the dry season. The impacts of aerosols on cloud droplet diameter varied based on droplet size. For the wet season, we observed no dependence between land surface type and rain rate. However

  1. Geothermal training at Auckland

    International Nuclear Information System (INIS)

    Hochstein, M.P.

    1990-01-01

    A total of 297 candidates from developing countries have attended the annual Geothermal Diploma Course at the University of Auckland between 1979 and 1989. Additional training in the form of post-graduate studies and short-term specialized courses has been given to 69 candidates from these countries between 1989 and 1989. In this paper performance indicators for the training are discussed, namely: demand, job retention rate, regional intake in relation to demand, and publication record of fellows

  2. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  3. Geothermal Power Generation Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [Oregon Inst. of Technology, Klamath Falls, OR (United States). Geo-Heat Center

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  4. Geotherm: the U.S. geological survey geothermal information system

    Science.gov (United States)

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  5. Crossing the Barriers: An Analysis of Land Access Barriers to Geothermal Development and Potential Improvement Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Young, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    Developers have identified many non-technical barriers to geothermal power development, including access to land. Activities required for accessing land, such as environmental review and private and public leasing can take a considerable amount of time and can delay or prevent project development. This paper discusses the impacts to available geothermal resources and deployment caused by land access challenges, including tribal and cultural resources, environmentally sensitive areas, biological resources, land ownership, federal and state lease queues, and proximity to military installations. In this analysis, we identified challenges that have the potential to prevent development of identified and undiscovered hydrothermal geothermal resources. We found that an estimated 400 MW of identified geothermal resource potential and 4,000 MW of undiscovered geothermal resource potential were either unallowed for development or contained one or more significant barriers that could prevent development at the site. Potential improvement scenarios that could be employed to overcome these barriers include (1) providing continuous funding to the U.S. Forest Service (USFS) for processing geothermal leases and permit applications and (2) the creation of advanced environmental mitigation measures. The model results forecast that continuous funding to the USFS could result in deployment of an additional 80 MW of geothermal capacity by 2030 and 124 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The creation of advanced environmental mitigation measures coupled with continuous funding to the USFS could result in deployment of an additional 97 MW of geothermal capacity by 2030 and 152 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The small impact on potential deployment in these improvement scenarios suggests that these 4,400 MW have other barriers to development in addition to land access. In other words, simply

  6. Deep geothermal resources in Quebec and in Colombia: an area that may develop based on French experience on geothermal power plants

    International Nuclear Information System (INIS)

    Blessent, D.; Raymond, J.; Dezayes, C.

    2016-01-01

    Because of an increasing demand in electricity and a necessity of reducing greenhouse gas emissions, several countries envisage the development of the renewable energies. The geothermal energy is a particularly interesting alternative because it allows a production of electricity which is not influenced by weather conditions and it requires relatively restricted surface areas compared, for example, to the area required by a hydroelectric power plant. The literature review presented here summarizes the main characteristics of the geothermal potential in Quebec, in sedimentary basins, and in Colombia, in the area of the Nevado del Ruiz volcanic complex. Currently, in these two regions, the hydro-electric power dominates the electricity production, but there is a similar interest to the development of geothermal power plants. The French sites of Soultz-sous-Forets in Alsace and Boiling in Guadeloupe are respectively presented as an example of exploitation of geothermal improved systems (Enhanced Geothermal System; EGS) and geothermal resources in volcanic regions. The first site constitutes a model for the future development of the deep geothermal exploitation in Quebec, whereas the second is an example for Colombia. A description of environmental impacts related to the exploitation of deep geothermal resources is presented at the end of this paper. (authors)

  7. Geothermal Energy: Tapping the Potential

    Science.gov (United States)

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  8. The Future of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kubik, Michelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  9. Geothermal engineering fundamentals and applications

    CERN Document Server

    Watson, Arnold

    2013-01-01

    This book explains the engineering required to bring geothermal resources into use. The book covers specifically engineering aspects that are unique to geothermal engineering, such as measurements in wells and their interpretation, transport of near-boiling water through long pipelines, turbines driven by fluids other than steam, and project economics. The explanations are reinforced by drawing comparisons with other energy industries.

  10. Multipurpose Use of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.; Lund, John W. (eds.)

    1974-10-09

    The conference was organized to review the non-electric, multipurpose uses of geothermal energy in Hungary, Iceland, New Zealand, United States and the USSR. The international viewpoint was presented to provide an interchange of information from countries where non-electric use of geothermal energy has reached practical importance.

  11. Application And Implication Of Nanomaterials In The Environment: An Overview Of Current Research At The Environmental Protection Agency (Romania)

    Science.gov (United States)

    The purpose of this presentation is to teach a course on analytical techniques, quality assurance, environmental research protocols, and basic soil environmental chemistry at the Environmental Health Center and Babes Bolyai University in Cluj, Romania. FOR FURTHER INFORMATI...

  12. Gulf Coast geopressured-geothermal program summary report compilation. Volume 4: Bibliography (annotated only for all major reports)

    Energy Technology Data Exchange (ETDEWEB)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    This bibliography contains US Department of Energy sponsored Geopressured-Geothermal reports published after 1984. Reports published prior to 1984 are documented in the Geopressured Geothermal bibliography Volumes 1, 2, and 3 that the Center for Energy Studies at the University of Texas at Austin compiled in May 1985. It represents reports, papers and articles covering topics from the scientific and technical aspects of geopressured geothermal reservoirs to the social, environmental, and legal considerations of exploiting those reservoirs for their energy resources.

  13. A combined energetic and economic approach for the sustainable design of geothermal plants

    International Nuclear Information System (INIS)

    Franco, Alessandro; Vaccaro, Maurizio

    2014-01-01

    Highlights: • Exploitation of medium to low temperature geothermal sources: ORC power plants. • Integrated energetic and economic approach for the analysis of geothermal power plants. • A brief overview of the cost items of geothermal power plants. • Analysis of specific cost of geothermal power plants based on the method proposed. • Analysis of sustainability of geothermal energy systems based on resource durability. - Abstract: The perspectives of future development of geothermal power plants, mainly of small size for the exploitation of medium–low temperature reservoirs, are discussed and analyzed in the present paper. Even if there is a general interest in new power plants and investments in this sector are recognized, the new installations are reduced; the apparent advantage of null cost of the energy source is negatively balanced by the high drilling and installation costs. A key element for the design of a geothermal plant for medium temperature geothermal source is the definition of the power of the plant (size): this is important in order to define not only the economic plan but also the durability of the reservoir. Considering that it is not possible that the development of geothermal industry could be driven only by an economic perspective, the authors propose a method for joining energetic and economic approaches. The result of the combined energetic and economic analysis is interesting particularly in case of Organic Rankine Cycle (ORC) power plants in order to define a suitable and optimal size and to maximize the resource durability. The method is illustrated with reference to some particular case studies, showing that the sustainability of small size geothermal plants will be approached only if the research for more economic solutions will be combined with efforts in direction of efficiency increase

  14. Geothermal and hydropower production in Iceland

    International Nuclear Information System (INIS)

    Rosa, D.J.

    1993-01-01

    This paper analyzes the impact of current and future development of geothermal and hydropower production on the economy of Iceland. Natural conditions in Iceland favor the increased utilization and development of both of these abundant power sources. The mean surface run-off in Iceland is about 50 l/s/km 2 (liters per second per square kilometer), with a large part of the country consisting of a plateau more than 400 meters above sea level. More than half of the country is above 500 meters above sea level. ne technically harnessable hydropower potential is estimated at 64 TWh/year (terawatthours per year), of which 30 TWh/year is considered economically and environmentally harnessable. In addition, Iceland has abundant geothermal energy sources. A quarter of the entire country is a volcanic area. Keeping in mind that geothermal resources are not strictly renewable, it is estimated that the potential power production from this source is 20 TWh/year. Present utilization of these two resources totals only 4.2 TWh/year, or only about 8% of Iceland's aggregate potential. There are many issues facing Iceland today as it considers development opportunities utilizing both of these abundant power supplies. This paper will first consider the technical aspects of both hydropower and geothermal power production in Iceland. Then, the economic consequences of alternative utilization of these energy sources will be evaluated. The first alternative to be considered will be the direct export of power by HVDC submarine cable to other countries, such as Scotland or the United Kingdom. Iceland could, as a second alterative, concentrate its efforts on bringing in energy intensive industries into the country

  15. Geothermal Field Investigations of Turkey

    Science.gov (United States)

    Sayın, N.; Özer, N.

    2017-12-01

    Geothermal energy is a type of energy that are found in the accessible depth of the crust, in the reservoirs by way of the permeable rocks, specially in heated fluid. Geothermal system is made of 3 main components; heat source, reservoir, and fluid bearing heat. Geothermal system mechanism is comprise of fluid transmission. Convection current (heat transmission) is caused by heating and causes the fluid in the system to expand. Heated fluid with low density show tendency to rise in system. Geothermal system occurs with variable geophysics and geochemical properties. Geophysical methods can determine structural properties of shallow and deep reservoirs with temperature, mineralization, gas amount, fluid movement, faulting, and sudden change in lithostratigraphic strata. This study revealed possible reservoir structures and showed examples of geophysics and gas measuring results in Turkey which is wealthy in regard to Geothermal sources.

  16. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you

  17. Assessment of geothermal development in the Imperial Valley of California. Volume 1. Environment, health, and socioeconomics

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D. (ed.)

    1980-07-01

    Utilization of the Imperial Valley's geothermal resources to support energy production could be hindered if environmental impacts prove to be unacceptable or if geothermal operations are incompatible with agriculture. To address these concerns, an integrated environmental and socioeconomic assessment of energy production in the valley was prepared. The most important impacts examined in the assessment involved air quality changes resulting from emissions of hydrogen sulfide, and increases in the salinity of the Salton Sea resulting from the use of agricultural waste waters for power plant cooling. The socioeconomics consequences of future geothermal development will generally be beneficial. (MHR)

  18. First phase report on identification of environmental issues hybrid wood-geothermal power plant. Wendel-Amedee KGRA, Lassen County, California

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-14

    The following disciplines are covered: air resources; land use, vegetation, and wildlife, geotechnical environment; surface water, ground water, and waste disposal; cultural resources; health, industrial hygiene and noise; and socio-economics. The following are presented for each discipline: general comments; regulations, ordinances, statutes, and guidelines; bibliography with abstracts; and sensitive environmental issues. (MHR)

  19. Status of geothermal energy in Ethiopia

    International Nuclear Information System (INIS)

    Endeshaw, A.; Belaineh, M.

    1990-01-01

    This paper reports that there are several identified geothermal localities in Ethiopia. Ten geothermal localities have been studied with regional assessments, while three localities have had pre-feasibility studies. In one area, the Aluto-Langano geothermal field, the feasibility studies have been completed. However, the geothermal resources have not been utilized yet except in the traditional baths

  20. INTEGRATED EXPLORATION OF GEOTHERMAL RESOURCES

    Directory of Open Access Journals (Sweden)

    A. B. Alkhasov

    2016-01-01

    Full Text Available The aim. The aim is to develop the energy efficient technologies to explore hydro geothermal resources of different energy potential.Methods. Evaluation of the effectiveness of the proposed technologies has been carried out with the use of physical and mathematical, thermodynamic and optimization methods of calculation and the physical and chemical experimental research.Results. We propose the technology of integrated exploration of low-grade geothermal resources with the application of heat and water resource potential on various purposes. We also argue for the possibility of effective exploration of geothermal resources by building a binary geothermal power plant using idle oil and gas wells. We prove the prospect of geothermal steam and gas technologies enabling highly efficient use of thermal water of low energy potential (80 - 100 ° C degrees to generate electricity; the prospects of complex processing of high-temperature geothermal brine of Tarumovsky field. Thermal energy is utilized in a binary geothermal power plant in the supercritical Rankine cycle operating with a low-boiling agent. The low temperature spent brine from the geothermal power plant with is supplied to the chemical plant, where the main chemical components are extracted - lithium carbonate, magnesium burning, calcium carbonate and sodium chloride. Next, the waste water is used for various water management objectives. Electricity generated in the binary geothermal power plant is used for the extraction of chemical components.Conclusions. Implementation of the proposed technologies will facilitate the most efficient development of hydro geothermal resources of the North Caucasus region. Integrated exploration of the Tarumovsky field resources will fully meet Russian demand for lithium carbonate and sodium chloride.

  1. Hydrogeochemistry of high-temperature geothermal systems in China: A review

    International Nuclear Information System (INIS)

    Guo, Qinghai

    2012-01-01

    As an important part of the Mediterranean-Himalayas geothermal belt, southern Tibet and western Yunnan are the regions of China where high-temperature hydrothermal systems are intensively distributed, of which Rehai, Yangbajing and Yangyi have been investigated systematically during the past several decades. Although much work has been undertaken at Rehai, Yangbajing and Yangyi to study the regional geology, hydrogeology, geothermal geology and geophysics, the emphasis of this review is on hydrogeochemical studies carried out in these geothermal fields. Understanding the geochemistry of geothermal fluids and their environmental impact is critical for sustainable exploitation of high-temperature hydrothermal resources in China. For comparison, the hydrogeochemistry of several similar high-temperature hydrothermal systems in other parts of the world are also included in this review. It has been confirmed by studies on Cl − and stable isotope geochemistry that magma degassing makes an important contribution to the geothermal fluids from Rehai, Yangbajing and Yangyi, though meteoric water is still the major source of recharge for these hydrothermal systems. However, the mechanisms of magma heat sources appear to be quite different in the three systems, as recorded by the 3 He/ 4 He ratios of escaping geothermal gases. A mantle-derived magma intrusion to shallow crust is present below Rehai, although the intruding magma has been heavily hybridized by crustal material. By contrast, the heat sources below Yangbajing and Yangyi are inferred to be remelted continental crust. Besides original sources, the geochemistry of characteristic constituents in the geothermal fluids have also been affected by temperature-dependent fluid–rock interactions, boiling and redox condition changes occurring in the upper part of hydrothermal systems, and mixing with cold near-surface waters. The geothermal fluids from Rehai, Yangbajing and Yangyi contain very high concentrations of some

  2. Geopressured geothermal bibliography. Volume I. Citation extracts. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Sepehrnoori, K.; Carter, F.; Schneider, R.; Street, S.; McGill, K.

    1983-05-01

    This annoted bibliography contains 1131 citations. It represents reports, papers, and articles appearing over the past eighteen years covering topics from the scientific and technical aspects of geopressured geothermal reservoirs to the social, environmental, and legal considerations of exploiting those reservoirs for their energy resources. Six indexes include: author, conference title, descriptor, journal title, report number, and sponsor. (MHR)

  3. Balancing energy and the environment: the case of geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Ellickson, P.L.; Brewer, S.

    1978-06-01

    The results of part of a Rand study on the federal role in resolving environmental issues arising out of the implementation of energy projects are reported. The projects discussed are two geothermal programs in California: the steam resource development at The Geysers (Lake and Sonoma counties) in northern California, and the wet brine development in the Imperial Valley in southern California.

  4. Geothermal energy. Pt.2

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Geothermal energy has certain features that make it highly recommendable as a source of power production. It is noted by its high load factor; it may be used as a basic or peak source; its versatility and high availability among others. In spite of these advantages, geothermal energy has not attained a significant development up to now. There are several reasons for this to happen, while the main one is that it requires an important initial investment. Assessing if an area is potentially profitable for the obtention of a given type of energy implies performing a complex set of analyses and prospective work, but it is not so significant as that associated with petroleum. The strategy for the exploration of geothermal resources is based on the execution of consecutive stages ranging from a surveillance at a regional scale to a project feasibility study, with growing investments and using more and more complex techniques. Many Latin American countries are located in areas considered as promisory concerning the development of this type of exploitation. Another factor supporting this view is a special demographic feature, showing a very irregular distribution of the population, with extense isolated areas with a minimun number of inhabitants that does not justify the extension of the electric power network. There are plants operating in four countries producing, as a whole, 881 MW. In Argentina the activities are aimed to intensifying the knowledge about the availability of this resource within the local territory and to estimating the feasibility of its usage in areas where exploration is more advanced [es

  5. Investigations of Very High Enthalpy Geothermal Resources in Iceland.

    Science.gov (United States)

    Elders, W. A.; Fridleifsson, G. O.

    2012-12-01

    reservoir, without increasing its environmental foot print. If these efforts are successful, in future such very high enthalpy geothermal systems worldwide could become significant energy resources, where ever suitable young volcanic rocks occur, such as in the western USA, Hawaii, and Alaska.

  6. Geothermal Information Dissemination and Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Clutter, Ted J. [Geothermal Resources Council (United States)

    2005-02-18

    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and

  7. Geothermal heat pump performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  8. Geothermal Heat Pump Performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  9. The state of the Canadian geothermal heat pump industry 2010 : industry survey and market analysis

    International Nuclear Information System (INIS)

    2010-11-01

    This report provided an overview of the state of the Canadian geothermal heat pump industry for 2010. In 2003, the Canadian GeoExchange Coalition (CGC) embarked on a market transformation initiative that continues to shape Canada's geothermal heat pump markets. The market for ground source heat pumps has grown by more than 60 percent annually in 2006, 2007, and 2008. The large increases in oil prices has created a price effect strong enough to trigger fuel switching for many consumers. Growth in the industry has also coincided with grant and financial assistance programs deployed by provincial governments, utilities, and the federal government. The ecoENERGY retrofitting program initiated in 2007 encouraged the use of geothermal heat pumps in the residential retrofit market. Tax rebate and load programs, as well as direct grants from provincial governments have increased demand in the new-built market. Canada's geothermal heat pump markets are growing much faster than United States geothermal markets. Closed horizontal loop systems accounted for 49.4 percent of residential installations. The CGC has trained over 2968 installers as well as many designers and inspectors for geothermal heat pumps. Colleges and public institutions are now creating training programs related to geothermal energy use. The total economic activity of the geoexchange industry in 2009 was estimated at in excess of $500 million. 29 tabs., 63 figs.

  10. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  11. Geothermal Energy and its Prospects in Lithuania

    International Nuclear Information System (INIS)

    Radeckas, B.

    1995-01-01

    Data on the geothermal resources in lithuania and on their prospective usage are presented. The analysis covers water horizons of the geothermal anomaly in West Lithuania and their hydrogeology. The energy of the 3 km thick geothermal source was evaluated. Technical and economical possibilities of using geothermal energy in West Lithuania are described. Some aspects of the investment and of the project of a geothermal power plant in Klaipeda are considered. (author). 6 refs., 6 tabs., 2 figs

  12. Outline of geothermal activity in Czechoslovakia

    International Nuclear Information System (INIS)

    Franko, O.; Bodis, D.; Dendek, M.; Remsik, A.

    1990-01-01

    This paper reports that in respect of different geothermal conditions in the Bohemian Massif (unfavorable) and in the West Carpathians (favorable), the development and utilization of geothermal energy are concentrated in Slovakia. THe utilization of geothermal energy for the heating of buildings in spas commenced in 1958. Thermal energy of geothermal waters was used for direct heating through heat exchangers, and in one case by a heat pump. Concentrated continuous development and utilization of geothermal energy started in 1971

  13. Potential of geothermal systems in Picardy

    OpenAIRE

    Dourlat, Estelle

    2017-01-01

    Geothermal systems are not only about electrical plants or urban heating networks, but also concerned with geothermal energy assisted with a heat pump. In the former region of Picardy (North of France), 97% of the territory is suitable for very low temperature geothermal power. The French Agency for the Environment and Energy Management and the Picardy Region decided in 2016 to finance a facilitator to encourage geothermal use. To carry out this aim, it is important to consider the geothermal...

  14. Direct utilization of geothermal energy: a layman's guide. Geothermal Resources Council special report No. 8

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N.; Lund, J.W. (eds.)

    1979-01-01

    The following subjects are covered: nature and distribution of geothermal energy; exploration, confirmation, and evaluation of the resource; reservoir development and management; utilization; economics of direct-use development; financing direct-use projects; and legal, institutional, and environmental aspects. (MHR)

  15. Uses of geothermal energy in Jordan for heating greenhouses; project proposal

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.; Masarwah, Rober; Elkarmi, Fawwaz

    1993-08-01

    A proposal for the exploration of geothermal energy in Jordan for heating greenhouses. The report gives some background information on geothermal anomalies in Jordan, and outlines some on-going uses of geothermal energy in various parts of Jordan. The proposal is modelled on the 2664 square meter Filclair Super 9 Multispan greenhouse from France. The overall cost of the project involves three variables, the cost of the borehole, the cost of the greenhouse, and the cost of engineering services. The total cost ranges between three to four million dollars depending on the quantity and quality of information to be collected from the borehole. The advantages of geothermal heating compared with oil heating are emphasized. The project will enable geothermal heating and horticultural production to be monitored throughout the year, will produce data enabling rational and reliable water resources management, and will produce environmentally clean and efficient energy. (A.M.H.). 1 tab. 1 map

  16. Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

    1983-05-01

    The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

  17. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  18. Tracing Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Adams; Greg Nash

    2004-03-01

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  19. Sixth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P. (eds.)

    1980-12-18

    INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of

  20. Possibilities for the efficient utilisation of spent geothermal waters.

    Science.gov (United States)

    Tomaszewska, Barbara; Szczepański, Andrzej

    2014-10-01

    Waters located at greater depths usually exhibit high mineral content, which necessitates the use of closed systems, i.e. re-injecting them into the formation after recovering the heat. This significantly reduces investment efficiency owing to the need to drill absorption wells and to perform anti-corrosion and anti-clogging procedures. In this paper, possibilities for the efficient utilisation of cooled geothermal waters are considered, particularly with respect to open or mixed geothermal water installations. Where cooled water desalination technologies are used, this allows the water to be demineralised and used to meet local needs (as drinking water and for leisure purposes). The retentate left as a by-product of the process contains valuable ingredients that can be used for balneological and/or leisure purposes. Thus, the technology for desalinating spent geothermal waters with high mineral content allows improved water management on a local scale and makes it possible to minimise the environmental threat resulting from the need to dump these waters into waterways or surface water bodies and/or inject them into the formation. The paper is concerned with Polish geothermal system and provides information about the parameters of Polish geothermal waters.