Sample records for geosciences geo integrative

  1. GeoMod 2014 - Modelling in geoscience (United States)

    Leever, Karen; Oncken, Onno


    GeoMod is a biennial conference to review and discuss latest developments in analogue and numerical modelling of lithospheric and mantle deformation. GeoMod2014 took place at the GFZ German Research Centre for Geosciences in Potsdam, Germany. Its focus was on rheology and deformation at a wide range of temporal and spatial scales: from earthquakes to long-term deformation, from micro-structures to orogens and subduction systems. It also addressed volcanotectonics and the interaction between tectonics and surface processes (Elger et al., 2014). The conference was followed by a 2-day short course on "Constitutive Laws: from Observation to Implementation in Models" and a 1-day hands-on tutorial on the ASPECT numerical modelling software.

  2. Geoscience data visualization and analysis using GeoMapApp (United States)

    Ferrini, Vicki; Carbotte, Suzanne; Ryan, William; Chan, Samantha


    Increased availability of geoscience data resources has resulted in new opportunities for developing visualization and analysis tools that not only promote data integration and synthesis, but also facilitate quantitative cross-disciplinary access to data. Interdisciplinary investigations, in particular, frequently require visualizations and quantitative access to specialized data resources across disciplines, which has historically required specialist knowledge of data formats and software tools. GeoMapApp ( is a free online data visualization and analysis tool that provides direct quantitative access to a wide variety of geoscience data for a broad international interdisciplinary user community. While GeoMapApp provides access to online data resources, it can also be packaged to work offline through the deployment of a small portable hard drive. This mode of operation can be particularly useful during field programs to provide functionality and direct access to data when a network connection is not possible. Hundreds of data sets from a variety of repositories are directly accessible in GeoMapApp, without the need for the user to understand the specifics of file formats or data reduction procedures. Available data include global and regional gridded data, images, as well as tabular and vector datasets. In addition to basic visualization and data discovery functionality, users are provided with simple tools for creating customized maps and visualizations and to quantitatively interrogate data. Specialized data portals with advanced functionality are also provided for power users to further analyze data resources and access underlying component datasets. Users may import and analyze their own geospatial datasets by loading local versions of geospatial data and can access content made available through Web Feature Services (WFS) and Web Map Services (WMS). Once data are loaded in GeoMapApp, a variety options are provided to export data and/or 2D/3D

  3. From industry to academia: Benefits of integrating a professional project management standard into (geo)science research (United States)

    Cristini, Luisa


    Scientific and technological research carried out within universities and public research institutions often involves large collaborations across several countries. Despite the considerable budget (typically millions of Euros), the high expectations (high impact scientific findings, new technological developments and links with policy makers, industry and civil society) and the length of the project over several years, these international projects often rely heavily on the personal skills of the management team (project coordinator, project manager, principal investigators) without a structured, transferable framework. While this approach has become an established practice, it's not ideal and can jeopardise the success of the entire effort with consequences ranging from schedule delays, loss of templates/systems, financial charges and ultimately project failure. In this presentation I will show the advantages of integrating a globally recognised standard for professional project management, such as the PMP® by the Project Management Institute, into academic research. I will cover the project management knowledge areas (integration management, scope management, time management, cost management, quality management, human resources management, risk management, procurement management, and stakeholder management) and the processes within these throughout the phases of the project lifetime (project initiation, planning, executing, monitoring and controlling, and closure). I will show how application of standardised, transferable procedures, developed within the business & administration sector, can benefit academia and more generally scientific research.

  4. FID GEO: Digital transformation and Open Access in Germany's geoscience research community (United States)

    Hübner, Andreas; Martinson, Guntars; Bertelmann, Roland; Elger, Kirsten; Pfurr, Norbert; Schüler, Mechthild


    The 'Specialized Information Service for Solid Earth Sciences' (FID GEO) supports Germany's geoscience research community in 1) electronic publishing of i) institutional and "grey" literature not released in publishing houses and ii) pre- and postprints of research articles 2) digitising geoscience literature and maps and 3) addressing the publication of research data associated with peer-reviewed research articles (data supplements). Established in 2016, FID GEO is funded by the German Research Foundation (DFG) and is run by the Göttingen State and University Library (SUB Göttingen) and the GFZ German Research Centre for Geosciences. Here we present recent success stories and lessons learned. With regard to digitisation, FID GEO received a request from one of the most prestigious geoscience societies in Germany to digitise back-issues of its journals that are so far only available in print. Aims are to ensure long-term availability in Open Access and high visibility by DOI-referenced electronic publication via the FID GEO repository. While digitisation will be financed by FID GEO funds, major challenges are to identify the copyright holders (journals date back to 1924) and negotiate digitisation and publication rights. With respect to research data publishing, we present how we target scientists to integrate the publication of research data into their workflows and institutions to promote the topic. For the latter, we successfully take advantage of existing networks as entry points to the community, like the research network Geo.X in the Berlin-Brandenburg area, individual learned societies as well as their overarching structures DV Geo and GeoUnion. FID GEO promotes the Statement of Commitment of the Coalition for Publishing Data in the Earth and Space Sciences (COPDESS) as well as the FAIR Data Principles in presentations to the above-mentioned groups and institutions. Our aim is to eventually transfer the positive feedback from the geoscience community into

  5. Geoscience Diversity Experiential Simulations (GeoDES) Workshop Report (United States)

    Houlton, H. R.; Chen, J.; Brown, B.; Samuels, D.; Brinkworth, C.


    The geosciences have to solve increasingly complex problems relating to earth and society, as resources become limited, natural hazards and changes in climate impact larger communities, and as people interacting with Earth become more interconnected. However, the profession has dismally low representation from geoscientists who are from diverse racial, ethnic, or socioeconomic backgrounds, as well as women in leadership roles. This underrepresentation also includes individuals whose gender identity/expression is non-binary or gender-conforming, or those who have physical, cognitive, or emotional disabilities. This lack of diversity ultimately impacts our profession's ability to produce our best science and work with the communities that we strive to protect and serve as stewards of the earth. As part of the NSF GOLD solicitation, we developed a project (Geoscience Diversity Experiential Simulations) to train 30 faculty and administrators to be "champions for diversity" and combat the hostile climates in geoscience departments. We hosted a 3-day workshop in November that used virtual simulations to give participants experience in building the skills to react to situations regarding bias, discrimination, microaggressions, or bullying often cited in geoscience culture. Participants interacted with avatars on screen, who responded to participants' actions and choices, given certain scenarios. The scenarios are framed within a geoscience perspective; we integrated qualitative interview data from informants who experienced inequitable judgement, bias, discrimination, or harassment during their geoscience careers. The simulations gave learners a safe environment to practice and build self-efficacy in how to professionally and productively engage peers in difficult conversations. In addition, we obtained pre-workshop survey data about participants' understanding regarding Diversity, Equity, and Inclusion practices, as well as observation data of participants' responses

  6. Geo-Seas: delivering harmonised marine geoscience data on a European scale (United States)

    Glaves, Helen; Schaap, Dick


    A large amount of both raw and interpreted marine geoscience data is held by an array of European organisations but its discovery and re-use can be very difficult. The data is stored in a variety of different formats and a range of different nomenclatures, scales and co-ordinate systems are used at the organisational, national and international level. This lack of standardisation hinders the user's ability to locate and access these datasets or to use them in an integrated way. The Geo-Seas project, an EU funded Framework 7 initiative, has addressed these barriers to the re-use of marine geological and geophysical data through the development of an on-line data discovery and access service ( It allows the end user to identify, evaluate and download a range of standardised marine geoscience data sets from 26 federated data centres across 17 European maritime countries. The dedicated portal, which currently provides access to more than 100,000 datasets, has been developed by adopting and adapting the existing technologies, standards and methodologies developed by the SeaDataNet project for the management and delivery of oceanographic data. Through the re-use of this pre-existing architecture including the associated common standards and vocabularies a joint infrastructure for both marine geoscientific and oceanographic data has been created which supports the development of multidisciplinary ocean science. The Geo-Seas project has also brought together and incorporated the metadata services developed by previous EU-funded projects such as EUSeaSed and SEISCAN. The formats of this legacy metadata have not only been used as the basis for developing the Geo-Seas metadatabase but it has also lead to these pre-existing metadata catalogues being upgraded to current international standards. The Geo-Seas initiative has lead to a major improvement in the availability of standardised marine geoscientific data throughout Europe allowing end users better

  7. GeoSciML v3.0 - a significant upgrade of the CGI-IUGS geoscience data model (United States)

    Raymond, O.; Duclaux, G.; Boisvert, E.; Cipolloni, C.; Cox, S.; Laxton, J.; Letourneau, F.; Richard, S.; Ritchie, A.; Sen, M.; Serrano, J.-J.; Simons, B.; Vuollo, J.


    GeoSciML version 3.0 (, released in late 2011, is the latest version of the CGI-IUGS* Interoperability Working Group geoscience data interchange standard. The new version is a significant upgrade and refactoring of GeoSciML v2 which was released in 2008. GeoSciML v3 has already been adopted by several major international interoperability initiatives, including OneGeology, the EU INSPIRE program, and the US Geoscience Information Network, as their standard data exchange format for geoscience data. GeoSciML v3 makes use of recently upgraded versions of several Open Geospatial Consortium (OGC) and ISO data transfer standards, including GML v3.2, SWE Common v2.0, and Observations and Measurements v2 (ISO 19156). The GeoSciML v3 data model has been refactored from a single large application schema with many packages, into a number of smaller, but related, application schema modules with individual namespaces. This refactoring allows the use and future development of modules of GeoSciML (eg; GeologicUnit, GeologicStructure, GeologicAge, Borehole) in smaller, more manageable units. As a result of this refactoring and the integration with new OGC and ISO standards, GeoSciML v3 is not backwardly compatible with previous GeoSciML versions. The scope of GeoSciML has been extended in version 3.0 to include new models for geomorphological data (a Geomorphology application schema), and for geological specimens, geochronological interpretations, and metadata for geochemical and geochronological analyses (a LaboratoryAnalysis-Specimen application schema). In addition, there is better support for borehole data, and the PhysicalProperties model now supports a wider range of petrophysical measurements. The previously used CGI_Value data type has been superseded in favour of externally governed data types provided by OGC's SWE Common v2 and GML v3.2 data standards. The GeoSciML v3 release includes worked examples of best practice in delivering geochemical

  8. GeoSegmenter: A statistically learned Chinese word segmenter for the geoscience domain (United States)

    Huang, Lan; Du, Youfu; Chen, Gongyang


    Unlike English, the Chinese language has no space between words. Segmenting texts into words, known as the Chinese word segmentation (CWS) problem, thus becomes a fundamental issue for processing Chinese documents and the first step in many text mining applications, including information retrieval, machine translation and knowledge acquisition. However, for the geoscience subject domain, the CWS problem remains unsolved. Although a generic segmenter can be applied to process geoscience documents, they lack the domain specific knowledge and consequently their segmentation accuracy drops dramatically. This motivated us to develop a segmenter specifically for the geoscience subject domain: the GeoSegmenter. We first proposed a generic two-step framework for domain specific CWS. Following this framework, we built GeoSegmenter using conditional random fields, a principled statistical framework for sequence learning. Specifically, GeoSegmenter first identifies general terms by using a generic baseline segmenter. Then it recognises geoscience terms by learning and applying a model that can transform the initial segmentation into the goal segmentation. Empirical experimental results on geoscience documents and benchmark datasets showed that GeoSegmenter could effectively recognise both geoscience terms and general terms.

  9. Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited) (United States)

    Nebert, D. D.; Huang, Q.; Yang, C.


    The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This

  10. Leveraging Global Geo-Data and Information Technologies to Bring Authentic Research Experiences to Students in Introductory Geosciences Courses (United States)

    Ryan, J. G.


    The 2012 PCAST report identified the improvement of "gateway" science courses as critical to increasing the number of STEM graduates to levels commensurate with national needs. The urgent need to recruit/ retain more STEM graduates is particularly acute in the geosciences, where growth in employment opportunities, an aging workforce and flat graduation rates are leading to substantial unmet demand for geoscience-trained STEM graduates. The need to increase the number of Bachelors-level geoscience graduates was an identified priority at the Summit on the Future of Undergraduate Geoscience Education (, as was the necessity of focusing on 2-year colleges, where a growing number of students are being introduced to geosciences. Undergraduate research as an instructional tool can help engage and retain students, but has largely not been part of introductory geoscience courses because of the challenge of scaling such activities for large student numbers. However, burgeoning information technology resources, including publicly available earth and planetary data repositories and freely available, intuitive data visualization platforms makes structured, in-classroom investigations of geoscience questions tractable, and open-ended student inquiry possible. Examples include "MARGINS Mini-Lessons", instructional resources developed with the support of two NSF-DUE grant awards that involve investigations of marine geosciences data resources (overseen by the Integrated Earth Data Applications (IEDA) portal: and data visualization using GeoMapApp (; and the growing suite of Google-Earth based data visualization and exploration activities overseen by the Google Earth in Onsite and Distance Education project ( Sample-based investigations are also viable in introductory courses, thanks to remote instrument operations technologies that allow real student

  11. Advances and Directions for the Intelligent Systems for Geosciences Research Community: Updates and Opportunities from the NSF EarthCube IS-GEO RCN (United States)

    Pierce, S. A.


    The Earthcube Intelligent Systems for Geosciences Research Collaboration Network (IS-GEO RCN) represents an emerging community of interdisciplinary researchers aiming to create fundamental new capabilities for understanding Earth systems. Collaborative efforts across IS-GEO fields of study offer opportunities to accelerate scientific discovery and understanding. The IS-GEO community has an active membership of approximately 65 researchers and includes researchers from across the US, international members, and an early career committee. Current working groups are open to new participants and are focused on four thematic areas with regular coordination meetings and upcoming sessions at professional conferences. (1) The Sensor-based data Collection and Integration Working group looks at techniques for analyzing and integrating of information from heterogeneous sources, with a possible application for early warning systems. (2) The Geoscience Case Studies Working group is creating benchmark data sets to enable new collaborations between geoscientists and data scientists. (3) The Geo-Simulations Working group is evaluating the state of the art in practices for parametrizations, scales, and model integration. (4) The Education Working group is gathering, organizing and collecting all the materials from the different IS-GEO courses. Innovative IS-GEO applications will help researchers overcome common challenges while will redefining the frontiers of discovery across fields and disciplines. (Visit for more information or to sign up for any of the working groups.)

  12. Geo-science aims of underground exploration of the Gorleben salt mine

    International Nuclear Information System (INIS)

    Langer, M.; Venzlaff, H.


    The measures taken are explained separately, according to the technical areas geology/petrography - geophysics - engineering geology/geotechnology - geo-chemistry. The results of the underground exploration are used directly to produce documents for the planning process, securing proof and the final storage planning (specific site mine dimensions, analysis of accidents, storage strategies). After completion of underground exploration, geoscience information on the suitability of the salt mine at Gorleben will be available in connection with a storage concept agreed between the geo-technologists and the mining engineers. (orig.) [de

  13. A Pythonic Approach for Computational Geosciences and Geo-Data Processing (United States)

    Morra, G.; Yuen, D. A.; Lee, S. M.


    Computational methods and data analysis play a constantly increasing role in Earth Sciences however students and professionals need to climb a steep learning curve before reaching a sufficient level that allows them to run effective models. Furthermore the recent arrival and new powerful machine learning tools such as Torch and Tensor Flow has opened new possibilities but also created a new realm of complications related to the completely different technology employed. We present here a series of examples entirely written in Python, a language that combines the simplicity of Matlab with the power and speed of compiled languages such as C, and apply them to a wide range of geological processes such as porous media flow, multiphase fluid-dynamics, creeping flow and many-faults interaction. We also explore ways in which machine learning can be employed in combination with numerical modelling. From immediately interpreting a large number of modeling results to optimizing a set of modeling parameters to obtain a desired optimal simulation. We show that by using Python undergraduate and graduate can learn advanced numerical technologies with a minimum dedicated effort, which in turn encourages them to develop more numerical tools and quickly progress in their computational abilities. We also show how Python allows combining modeling with machine learning as pieces of LEGO, therefore simplifying the transition towards a new kind of scientific geo-modelling. The conclusion is that Python is an ideal tool to create an infrastructure for geosciences that allows users to quickly develop tools, reuse techniques and encourage collaborative efforts to interpret and integrate geo-data in profound new ways.

  14. GOLD (GEO Opportunities for Leadership in Diversity): Building capacity for broadening participation in the Geosciences (United States)

    Jones, B.; Patino, L. C.; Rom, E. L.; Adams, A.


    The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved groups, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in this area. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies to achieve success must be developed. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional change management, leadership development research, and pedagogies for professional development will not only engender fresh thinking and innovative approaches for preparing and empowering

  15. GeoMapApp Learning Activities: Enabling the democratisation of geoscience learning (United States)

    Goodwillie, A. M.; Kluge, S.


    GeoMapApp Learning Activities ( are step-by-step guided inquiry geoscience education activities that enable students to dictate the pace of learning. They can be used in the classroom or out of class, and their guided nature means that the requirement for teacher intervention is minimised which allows students to spend increased time analysing and understanding a broad range of geoscience data, content and concepts. Based upon GeoMapApp (, a free, easy-to-use map-based data exploration and visualisation tool, each activity furnishes the educator with an efficient package of downloadable documents. This includes step-by-step student instructions and answer sheet; a teacher's edition annotated worksheet containing teaching tips, additional content and suggestions for further work; quizzes for use before and after the activity to assess learning; and a multimedia tutorial. The activities can be used by anyone at any time in any place with an internet connection. In essence, GeoMapApp Learning Activities provide students with cutting-edge technology, research-quality geoscience data sets, and inquiry-based learning in a virtual lab-like environment. Examples of activities so far created are student calculation and analysis of the rate of seafloor spreading, and present-day evidence on the seafloor for huge ancient landslides around the Hawaiian islands. The activities are designed primarily for students at the community college, high school and introductory undergraduate levels, exposing students to content and concepts typically found in those settings.

  16. How FOSTER supports training Open Science in the GeoSciences (United States)

    Orth, Astrid


    FOSTER (1) is about promoting and facilitating the adoption of Open Science by the European research community, and fostering compliance with the open access policies set out in Horizon 2020 (H2020). FOSTER aims to reach out and provide training to the wide range of disciplines and countries involved in the European Research Area (ERA) by offering and supporting face-to-face as well as distance training. Different stakeholders, mainly young researchers, are trained to integrate Open Science in their daily workflow, supporting researchers to optimise their research visibility and impact. Strengthening the institutional training capacity is achieved through a train-the-trainers approach. The two-and-half-year project started in February 2014 with identifying, enriching and providing training content on all relevant topics in the area of Open Science. One of the main elements was to support two rounds of trainings, which were conducted during 2014 and 2015, organizing more than 100 training events with around 3000 participants. The presentation will explain the project objectives and results and will look into best practice training examples, among them successful training series in the GeoSciences. The FOSTER portal that now holds a collection of training resources (e.g. slides and PDFs, schedules and design of training events dedicated to different audiences, video captures of complete events) is presented. It provides easy ways to identify learning materials and to create own e-learning courses based on the materials and examples. (1) FOSTER is funded through the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 612425.

  17. EarthCube GeoLink: Semantics and Linked Data for the Geosciences (United States)

    Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Cheatham, M.; Fils, D.; Hitzler, P.; Janowicz, K.; Ji, P.; Jones, M. B.; Krisnadhi, A.; Lehnert, K. A.; Mickle, A.; Narock, T.; O'Brien, M.; Raymond, L. M.; Schildhauer, M.; Shepherd, A.; Wiebe, P. H.


    The NSF EarthCube initiative is building next-generation cyberinfrastructure to aid geoscientists in collecting, accessing, analyzing, sharing, and visualizing their data and knowledge. The EarthCube GeoLink Building Block project focuses on a specific set of software protocols and vocabularies, often characterized as the Semantic Web and "Linked Data", to publish data online in a way that is easily discoverable, accessible, and interoperable. GeoLink brings together specialists from the computer science, geoscience, and library science domains, and includes data from a network of NSF-funded repositories that support scientific studies in marine geology, marine ecosystems, biogeochemistry, and paleoclimatology. We are working collaboratively with closely-related Building Block projects including EarthCollab and CINERGI, and solicit feedback from RCN projects including Cyberinfrastructure for Paleogeosciences (C4P) and iSamples. GeoLink has developed a modular ontology that describes essential geoscience research concepts; published data from seven collections (to date) on the Web as geospatially-enabled Linked Data using this ontology; matched and mapped data between collections using shared identifiers for investigators, repositories, datasets, funding awards, platforms, research cruises, physical specimens, and gazetteer features; and aggregated the results in a shared knowledgebase that can be queried via a standard SPARQL endpoint. Client applications have been built around the knowledgebase, including a Web/map-based data browser using the Leaflet JavaScript library and a simple query service using the OpenSearch format. Future development will include extending and refining the GeoLink ontology, adding content from additional repositories, developing semi-automated algorithms to enhance metadata, and further work on client applications.

  18. GeoTrust Hub: A Platform For Sharing And Reproducing Geoscience Applications (United States)

    Malik, T.; Tarboton, D. G.; Goodall, J. L.; Choi, E.; Bhatt, A.; Peckham, S. D.; Foster, I.; Ton That, D. H.; Essawy, B.; Yuan, Z.; Dash, P. K.; Fils, G.; Gan, T.; Fadugba, O. I.; Saxena, A.; Valentic, T. A.


    Recent requirements of scholarly communication emphasize the reproducibility of scientific claims. Text-based research papers are considered poor mediums to establish reproducibility. Papers must be accompanied by "research objects", aggregation of digital artifacts that together with the paper provide an authoritative record of a piece of research. We will present GeoTrust Hub (, a platform for creating, sharing, and reproducing reusable research objects. GeoTrust Hub provides tools for scientists to create `geounits'--reusable research objects. Geounits are self-contained, annotated, and versioned containers that describe and package computational experiments in an efficient and light-weight manner. Geounits can be shared on public repositories such as HydroShare and FigShare, and also using their respective APIs reproduced on provisioned clouds. The latter feature enables science applications to have a lifetime beyond sharing, wherein they can be independently verified and trust be established as they are repeatedly reused. Through research use cases from several geoscience laboratories across the United States, we will demonstrate how tools provided from GeoTrust Hub along with Hydroshare as its public repository for geounits is advancing the state of reproducible research in the geosciences. For each use case, we will address different computational reproducibility requirements. Our first use case will be an example of setup reproducibility which enables a scientist to set up and reproduce an output from a model with complex configuration and development environments. Our second use case will be an example of algorithm/data reproducibility, where in a shared data science model/dataset can be substituted with an alternate one to verify model output results, and finally an example of interactive reproducibility, in which an experiment is dependent on specific versions of data to produce the result. Toward this we will use software and data

  19. A Ten-Year Retrospective Look at the NSF/GEO Opportunities for Enhancing Diversity in the Geosciences (OEDG) Program (United States)

    Karsten, J. L.


    The Opportunities for Enhancing Diversity in the Geosciences (OEDG) program - established in 2002 by the National Science Foundation's Directorate for Geosciences (GEO) - has been a mainstay in GEO's efforts to broaden participation of traditionally underrepresented minorities in the geosciences. The primary goal of the OEDG program has been to engage a diverse population of students in learning about - and pursuing advanced degrees and careers in - the geosciences. Raising public awareness of the importance and relevance of the geosciences among diverse audiences has been a secondary goal. During the past decade, the OEDG program has supported a variety of planning grants, proof-of-concept projects, and larger full-scale implementation efforts across the U.S. These projects have contributed a rich array of culturally-tailored resources for learning about geoscience career pathways and opportunities to participate in geoscience research experiences. OEDG has also developed networking and mentoring programs tailored for diverse student audiences, as well as the educators who work with them, and has helped to build capacity in the geosciences at minority-serving institutions. Perhaps the most important legacy of the OEDG program has been the establishment of an enthusiastic and effective community of educators, administrators, students and organizations dedicated to increasing diversity in the geosciences. Evaluation data collected for individual OEDG projects has helped to improve the impact of specific projects and increase our understanding of which approaches are more successful in achieving OEDG program goals. In addition, GEO has supported a decade-long, program-wide evaluation of the OEDG portfolio through a contract to the American Institutes for Research (AIR). Synthesis of results from both the project- and program-level evaluation activities has identified evidence-based 'best practices' that are essential for achieving success in broadening participation

  20. Integrating Semantic Information in Metadata Descriptions for a Geoscience-wide Resource Inventory. (United States)

    Zaslavsky, I.; Richard, S. M.; Gupta, A.; Valentine, D.; Whitenack, T.; Ozyurt, I. B.; Grethe, J. S.; Schachne, A.


    Integrating semantic information into legacy metadata catalogs is a challenging issue and so far has been mostly done on a limited scale. We present experience of CINERGI (Community Inventory of Earthcube Resources for Geoscience Interoperability), an NSF Earthcube Building Block project, in creating a large cross-disciplinary catalog of geoscience information resources to enable cross-domain discovery. The project developed a pipeline for automatically augmenting resource metadata, in particular generating keywords that describe metadata documents harvested from multiple geoscience information repositories or contributed by geoscientists through various channels including surveys and domain resource inventories. The pipeline examines available metadata descriptions using text parsing, vocabulary management and semantic annotation and graph navigation services of GeoSciGraph. GeoSciGraph, in turn, relies on a large cross-domain ontology of geoscience terms, which bridges several independently developed ontologies or taxonomies including SWEET, ENVO, YAGO, GeoSciML, GCMD, SWO, and CHEBI. The ontology content enables automatic extraction of keywords reflecting science domains, equipment used, geospatial features, measured properties, methods, processes, etc. We specifically focus on issues of cross-domain geoscience ontology creation, resolving several types of semantic conflicts among component ontologies or vocabularies, and constructing and managing facets for improved data discovery and navigation. The ontology and keyword generation rules are iteratively improved as pipeline results are presented to data managers for selective manual curation via a CINERGI Annotator user interface. We present lessons learned from applying CINERGI metadata augmentation pipeline to a number of federal agency and academic data registries, in the context of several use cases that require data discovery and integration across multiple earth science data catalogs of varying quality

  1. Promoting research integrity in the geosciences (United States)

    Mayer, Tony


    Conducting research in a responsible manner in compliance with codes of research integrity is essential. The geosciences, as with all other areas of research endeavour, has its fair share of misconduct cases and causes celebres. As research becomes more global, more collaborative and more cross-disciplinary, the need for all concerned to work to the same high standards becomes imperative. Modern technology makes it far easier to 'cut and paste', to use Photoshop to manipulate imagery to falsify results at the same time as making research easier and more meaningful. So we need to promote the highest standards of research integrity and the responsible conduct of research. While ultimately, responsibility for misconduct rests with the individual, institutions and the academic research system have to take steps to alleviate the pressure on researchers and promote good practice through training programmes and mentoring. The role of the World Conferences on Research Integrity in promoting the importance of research integrity and statements about good practice will be presented and the need for training and mentoring programmes will be discussed

  2. Effectiveness of Geosciences Exploration Summer Program (GeoX) for increasing awareness and Broadening Participation in the Geosciences (United States)

    Garcia, S. J.; Houser, C.


    Summer research experiences are an increasingly popular means to increase awareness of and develop interest in the Geosciences and other STEM (Science, Technology, Engineering and Math) programs. Here we describe and report the preliminary results of a new one-week program at Texas A&M University to introduce first generation, women, and underrepresented high school students to opportunities and careers in the Geosciences. Short-term indicators in the form of pre- and post-program surveys of participants and their parents suggest that there is an increase in participant understanding of geosciences and interest in pursuing a degree in the geosciences. At the start of the program, the participants and their parents had relatively limited knowledge of the geosciences and very few had a friend or acquaintance employed in the geosciences. Post-survey results suggest that the students had an improved and nuanced understanding of the geosciences and the career opportunities within the field. A survey of the parents several months after the program had ended suggests that the participants had effectively communicated their newfound understanding and that the parents now recognized the geosciences as a potentially rewarding career. With the support of their parents 42% of the participants are planning to pursue an undergraduate degree in the geosciences compared to 62% of participants who were planning to pursue a geosciences degree before the program. It is concluded that future offerings of this and similar programs should also engage the parents to ensure that the geosciences are recognized as a potential academic and career path.

  3. GeoX: A New Pre-college Program to Attract Underrepresented Minorities and First Generation Students to the Geosciences (United States)

    Miller, K. C.; Garcia, S. J.; Houser, C.; GeoX Team


    An emerging challenge in science, technology, engineering and math (STEM) education is the recruitment of underrepresented groups in those areas of the workforce. This paper describes the structure and first-year results of the Geosciences Exploration Summer Program (GeoX) at Texas A&M University. Recent evidence suggest that pipeline programs should target junior and senior high school students who are beginning to seriously consider future career choices and appropriate college programs. GeoX is an overnight program that takes place during the summer at Texas A&M University. Over the course of a week, GeoX participants interact with faculty from the College of Geosciences, administrators, current students, and community leaders through participation in inquiry-based learning activities, field trips, and evening social events. The aim of this project is to foster a further interest in pursuing geosciences as an undergraduate major in college and thereby increase participation in the geosciences by underrepresented ethnic minority students. With funding from industry and private donors, high achieving rising junior and rising senior students, with strong interest in science and math, were invited to participate in the program. Students and their parents were interviewed before and after the program to determine if it was successful in introducing and enhancing awareness of the: 1) various sub-disciplines in the geosciences, 2) benefits of academia and research, 3) career opportunities in each of those fields and 4) college admission process including financial aid and scholarship opportunities. Results of the survey suggest that the students had a very narrow and stereotypical view of the geosciences that was almost identical to the views of their parents. Following the program, the students had a more expanded and positive view of the geosciences compared to the pre-program survey and compared to their parents. While it remains to be seen how many of those

  4. Using GeoMapApp As a Virtual Lab to Enrich Geoscience Education (United States)

    Goodwillie, A. M.


    Student engagement increases when they take ownership of data. GeoMapApp ( is a free, map-based data discovery and visualisation tool that enables students to manipulate and examine a wide range of geoscience data in a variety of ways. Additionally, a new Save Session function allows educators to preserve a pre-loaded state of GeoMapApp. When shared with a class, the saved file allows every student to open GeoMapApp at exactly the same starting point from which to begin their data explorations. Built-in data sets include those related to land and ocean topography, seafloor spreading and plate tectonics, polar sea ice cover and ocean temperature, geological maps, and sea-level rise. An intuitive user interface allows students to interrogate the research-grade data using simple techniques to help gain meaning from the data. For example, students can readily layer data sets for easy comparison, display tabular data sets in ways that facilitate visual pattern recognition, and shade and contour elevation data to help delineate features on land and the seafloor. Using a simple profiling tool, cross-sections can be generated instantly and saved for future use. In the attached image, high-resolution elevation data for Mount St. Helens reveals the dramatic relief of this famous volcano - the gap in the northern flank is clearly seen in both the map view and the 3-D perspective image, and the cross-section shows the steep flanks forming the crater rim. An import function allows students to quickly bring their own data sets into GeoMapApp. Once imported, all of the same analytical and visualisation functionality that applies to built-in data sets can be used on the students' own data. A number of guided-inquiry learning modules developed with GeoMapApp are available and help students grapple with fundamental concepts in earth sciences. Examples include a module in which students calculate seafloor spreading rates in different ocean basins using their

  5. An Integrative and Collaborative Approach to Creating a Diverse and Computationally Competent Geoscience Workforce (United States)

    Moore, S. L.; Kar, A.; Gomez, R.


    A partnership between Fort Valley State University (FVSU), the Jackson School of Geosciences at The University of Texas (UT) at Austin, and the Texas Advanced Computing Center (TACC) is engaging computational geoscience faculty and researchers with academically talented underrepresented minority (URM) students, training them to solve grand challenges . These next generation computational geoscientists are being trained to solve some of the world's most challenging geoscience grand challenges requiring data intensive large scale modeling and simulation on high performance computers . UT Austin's geoscience outreach program GeoFORCE, recently awarded the Presidential Award in Excellence in Science, Mathematics and Engineering Mentoring, contributes to the collaborative best practices in engaging researchers with URM students. Collaborative efforts over the past decade are providing data demonstrating that integrative pipeline programs with mentoring and paid internship opportunities, multi-year scholarships, computational training, and communication skills development are having an impact on URMs developing middle skills for geoscience careers. Since 1997, the Cooperative Developmental Energy Program at FVSU and its collaborating universities have graduated 87 engineers, 33 geoscientists, and eight health physicists. Recruited as early as high school, students enroll for three years at FVSU majoring in mathematics, chemistry or biology, and then transfer to UT Austin or other partner institutions to complete a second STEM degree, including geosciences. A partnership with the Integrative Computational Education and Research Traineeship (ICERT), a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site at TACC provides students with a 10-week summer research experience at UT Austin. Mentored by TACC researchers, students with no previous background in computational science learn to use some of the world's most powerful high performance

  6. GeoMapApp Learning Activities: A Virtual Lab Environment for Student-Centred Engagement with Geoscience Data (United States)

    Kluge, S.; Goodwillie, A. M.


    As STEM learning requirements enter the mainstream, there is benefit to providing the tools necessary for students to engage with research-quality geoscience data in a cutting-edge, easy-to-use map-based interface. Funded with an NSF GeoEd award, GeoMapApp Learning Activities ( ) are being created to help in that endeavour. GeoMapApp Learning Activities offer step-by-step instructions within a guided inquiry approach that enables students to dictate the pace of learning. Based upon GeoMapApp (, a free, easy-to-use map-based data exploration and visualisation tool, each activity furnishes the educator with an efficient package of downloadable documents. This includes step-by-step student instructions and answer sheet; an educator's annotated worksheet containing teaching tips, additional content and suggestions for further work; and, quizzes for use before and after the activity to assess learning. Examples of activities so far created involve calculation and analysis of the rate of seafloor spreading; compilation of present-day evidence for huge ancient landslides on the seafloor around the Hawaiian islands; a study of radiometrically-dated volcanic rocks to help understand the concept of hotspots; and, the optimisation of contours as a means to aid visualisation of 3-D data sets on a computer screen. The activities are designed for students at the introductory undergraduate, community college and high school levels, and present a virtual lab-like environment to expose students to content and concepts typically found in those educational settings. The activities can be used in the classroom or out of class, and their guided nature means that the requirement for teacher intervention is reduced thus allowing students to spend more time analysing and understanding geoscience data, content and concepts. Each activity is freely available through the SERC-Carleton web site.

  7. The Geosciences Division of the Council on Undergraduate Research (GeoCUR): Supporting Faculty that Mentor Undergraduate Researchers (United States)

    Fox, L. K.; Guertin, L. A.; Manley, P. L.; Fortner, S. K.


    Undergraduate research is a proven effective pedagogy that has a number of benefits including: enhancing student learning through mentoring relationships with faculty; increasing retention; increasing enrollment in graduate programs; developing critical thinking, creativity, problem solving and intellectual independence; and, developing an understanding of research methodology. Undergraduate research also has been demonstrated in preparing students for careers. In addition to developing disciplinary and technical expertise, participation in undergraduate research helps students improve communication skills (written, oral, and graphical) and time management. Early involvement in undergraduate research improves retention and, for those engaged at the 2YC level, helps students successfully transfers to 4YC. The Geosciences Division of the Council on Undergraduate Research (GeoCUR) supports faculty in their development of undergraduate research programs at all levels. GeoCUR leads workshops for new and future faculty covering all aspects of undergraduate research including incorporating research into coursework, project design, mentoring students, sustaining programs, and funding sources. GeoCUR members support new faculty by providing a range of services including: peer-review of grant proposals; advice on establishing an undergraduate research program; balancing teaching and research demands; and networking with other geoscientist. GeoCUR has also developed web resources that support faculty and departments in development of undergraduate research programs ( This presentation will describe the services provided by GeoCUR and highlight examples of programs and resources available to geoscientists in all career stages for effective undergraduate research mentoring and development.

  8. Immersive Virtual Reality Field Trips in the Geosciences: Integrating Geodetic Data in Undergraduate Geoscience Courses (United States)

    La Femina, P. C.; Klippel, A.; Zhao, J.; Walgruen, J. O.; Stubbs, C.; Jackson, K. L.; Wetzel, R.


    High-quality geodetic data and data products, including GPS-GNSS, InSAR, LiDAR, and Structure from Motion (SfM) are opening the doors to visualizing, quantifying, and modeling geologic, tectonic, geomorphic, and geodynamic processes. The integration of these data sets with other geophysical, geochemical and geologic data is providing opportunities for the development of immersive Virtual Reality (iVR) field trips in the geosciences. iVR fieldtrips increase accessibility in the geosciences, by providing experiences that allow for: 1) exploration of field locations that might not be tenable for introductory or majors courses; 2) accessibility to outcrops for students with physical disabilities; and 3) the development of online geosciences courses. We have developed a workflow for producing iVR fieldtrips and tools to make quantitative observations (e.g., distance, area, and volume) within the iVR environment. We use a combination of terrestrial LiDAR and SfM data, 360° photos and videos, and other geophysical, geochemical and geologic data to develop realistic experiences for students to be exposed to the geosciences from sedimentary geology to physical volcanology. We present two of our iVR field trips: 1) Inside the Volcano: Exploring monogenetic volcanism at Thrihnukagigar Iceland; and 2) Changes in Depositional Environment in a Sedimentary Sequence: The Reedsville and Bald Eagle Formations, Pennsylvania. The Thrihnukagigar experience provides the opportunity to investigate monogenetic volcanism through the exploration of the upper 125 m of a fissure-cinder cone eruptive system. Students start at the plate boundary scale, then zoom into a single volcano where they can view the 3D geometry from either terrestrial LiDAR or SfM point clouds, view geochemical data and petrologic thins sections of rock samples, and a presentation of data collection and analysis, results and interpretation. Our sedimentary geology experience is based on a field lab from our

  9. SeriousGeoGames - Geoscience Virtual Reality Experiences for Festival Settings (United States)

    Skinner, Christopher


    Festivals, fairs and showcases provide scientists an opportunity to engage with potentially thousands of members of the public in a short space of time. However, the festival setting provides the same members of the public many exhibits competing for their attention - for family groups, this means a successful exhibit must both attract the attention of the group, and also entertain them long enough for the scientist to communicate their message. Here, we will discuss the use of short Virtual Reality (VR) experiences by the SeriousGeoGames project in engaging the public with research in a festival-like setting. SeriousGeoGames uses bespoke, immersive VR experiences to both attract and engage the user. They merge scientific models and/or research field data with popular gaming engines, and present them in VR using the Oculus Rift headset. The experiences are designed to last around four minutes and follow a basic script, although a conversational tone is encouraged. SeriousGeoGames applications have been successfully exhibited at several festivals of different sizes and intended audiences, such as the national-level week-long Cheltenham Science Festival, and the local arts and cultural festival, Hull Freedom Festival. The Flash Flood! application was developed for the Natural Environment Research Council UK (NERC) Flooding from Intense Rainfall (FFIR) programme as a Knowledge Transfer (KT) tool. It was demonstrated at the 5-day NERC Into the blue Science Showcase as one of 38 stands highlighting the UK's cutting edge environmental science research. Over 5000 members of the public attended, and more than 1000 demonstrations of Flash Flood! were made, with 400 booklets handed out. The exhibit received positive feedback from users, and won third prize in a public vote for favourite stand - but this had little visible impact on online metrics of the SeriousGeoGames web presence. In terms of providing a 'positive experience' with science the application was successfully

  10. Cascadia GeoSciences: Community-Based Earth Science Research Focused on Geologic Hazard Assessment and Environmental Restoration. (United States)

    Williams, T. B.; Patton, J. R.; Leroy, T. H.


    Cascadia GeoSciences (CG) is a new non-profit membership governed corporation whose main objectives are to conduct and promote interdisciplinary community based earth science research. The primary focus of CG is on geologic hazard assessment and environmental restoration in the Western U.S. The primary geographic region of interest is Humboldt Bay, NW California, within the southern Cascadia subduction zone (SCSZ). This region is the on-land portion of the accretionary prism to the SCSZ, a unique and exciting setting with numerous hazards in an active, dynamic geologic environment. Humboldt Bay is also a region rich in history. Timber harvesting has been occurring in California's coastal forestlands for approximately 150 years. Timber products transported with ships and railroads from Mendocino and Humboldt Counties helped rebuild San Francisco after the 1906 earthquake. Historic land-use of this type now commonly requires the services of geologists, engineers, and biologists to restore road networks as well as provide safe fish passage. While Humboldt Bay is a focus of some of our individual research goals, we welcome regional scientists to utilize CG to support its mission while achieving their goals. An important function of CG is to provide student opportunities in field research. One of the primary charitable contributions of the organization is a student grant competition. Funds for the student grant will come from member fees and contributions, as well as a percent of all grants awarded to CG. A panel will review and select the student research proposal annually. In addition to supporting student research financially, professional members of CG will donate their time as mentors to the student researchers, promoting a student mentor program. The Humboldt Bay region is well suited to support annual student research. Thorough research like this will help unravel some of the mysteries of regional earthquake-induced land-level changes, as well as possible fault

  11. Grand Canyon as a universally accessible virtual field trip for intro Geoscience classes using geo-referenced mobile game technology (United States)

    Bursztyn, N.; Pederson, J. L.; Shelton, B.


    There is a well-documented and nationally reported trend of declining interest, poor preparedness, and lack of diversity within U.S. students pursuing geoscience and other STEM disciplines. We suggest that a primary contributing factor to this problem is that introductory geoscience courses simply fail to inspire (i.e. they are boring). Our experience leads us to believe that the hands-on, contextualized learning of field excursions are often the most impactful component of lower division geoscience classes. However, field trips are becoming increasingly more difficult to run due to logistics and liability, high-enrollments, decreasing financial and administrative support, and exclusivity of the physically disabled. Recent research suggests that virtual field trips can be used to simulate this contextualized physical learning through the use of mobile devices - technology that exists in most students' hands already. Our overarching goal is to enhance interest in introductory geoscience courses by providing the kinetic and physical learning experience of field trips through geo-referenced educational mobile games and test the hypothesis that these experiences can be effectively simulated through virtual field trips. We are doing this by developing "serious" games for mobile devices that deliver introductory geology material in a fun and interactive manner. Our new teaching strategy will enhance undergraduate student learning in the geosciences, be accessible to students of diverse backgrounds and physical abilities, and be easily incorporated into higher education programs and curricula at institutions globally. Our prototype involves students virtually navigating downstream along a scaled down Colorado River through Grand Canyon - physically moving around their campus quad, football field or other real location, using their smart phone or a tablet. As students reach the next designated location, a photo or video in Grand Canyon appears along with a geological

  12. Integrated Design for Geoscience Education with Upward Bound Students (United States)

    Cartwright, T. J.; Hogsett, M.; Ensign, T. I.; Hemler, D.


    Capturing the interest of our students is imperative to expand the conduit of future Earth scientists in the United States. According to the Rising Above the Gathering Storm report (2005), we must increase America's talent pool by improving K-12 mathematics and science education. Geoscience education is uniquely suited to accomplish this goal, as we have become acutely aware of our sensitivity to the destructive forces of nature. The educational community must take advantage of this heightened awareness to educate our students and ensure the next generation rebuilds the scientific and technological base on which our society rests. In response to these concerns, the National Science Foundation advocates initiatives in Geoscience Education such as IDGE (Integrated Design for Geoscience Education), which is an inquiry-based geoscience program for Upward Bound (UB) students at Marshall University in Huntington, West Virginia. The UB program targets low-income under-represented students for a summer academic-enrichment program. IDGE builds on the mission of UB by encouraging underprivileged students to investigate science and scientific careers. During the two year project, high school students participated in an Environmental Inquiry course utilizing GLOBE program materials and on-line learning modules developed by geoscience specialists in land cover, soils, hydrology, phenology, and meteorology. Students continued to an advanced course which required IDGE students to collaborate with GLOBE students from Costa Rica. The culmination of this project was an educational expedition in Costa Rica to complete ecological field studies, providing first-hand knowledge of the international responsibility we have as scientists and citizens of our planet. IDGE was designed to continuously serve educators and students. By coordinating initiatives with GLOBE headquarters and the GLOBE country community, IDGE's efforts have yielded multiple ways in which to optimize positive

  13. Facilitating Geoscience Education in Higher-Education Institutes Worldwide With GeoBrain -- An Online Learning and Research Environment for Classroom Innovations (United States)

    Deng, M.; di, L.


    Higher education in geosciences has imminent goals to prepare students with modern geoscience knowledge and skills to meet the increased demand on trained professionals for working on the big challenges faced by geoscience disciplines, such as the global environmental change, world energy supplies, sustainable development, etc. In order to reach the goal, the geoscience education in post-secondary institutes worldwide has to attract and retain enough students and to train students with knowledge and skills needed by the society. The classroom innovations that can encourage and support student investigations and research activities are key motivation mechanisms that help to reach the goal. This presentation describes the use of GeoBrain, an innovative geospatial knowledge system, as a powerful educating tool for motivating and facilitating innovative undergraduate and graduate teaching and research in geosciences. Developed in a NASA funded project, the GeoBrain system has adopted and implemented the latest Web services and knowledge management technologies for providing innovative methods in publishing, accessing, visualizing, and analyzing geospatial data and in building/sharing geoscience knowledge. It provides a data-rich online learning and research environment enabled by wealthy data and information available at NASA Earth Observing System (EOS) Data and Information System (EOSDIS). Students, faculty members, and researchers from institutes worldwide can easily access, analyze, and model with the huge amount of NASA EOS data just like they possess such vast resources locally at their desktops. The online environment provided by GeoBrain has brought significant positive changes to geosciences education in higher-education institutes because of its new concepts and technologies, motivation mechanisms, free exploration resources, and advanced geo- processing capabilities. With the system, the used-to-be very challenging or even impossible teaching tasks has

  14. Integrated Geo Hazard Management System in Cloud Computing Technology (United States)

    Hanifah, M. I. M.; Omar, R. C.; Khalid, N. H. N.; Ismail, A.; Mustapha, I. S.; Baharuddin, I. N. Z.; Roslan, R.; Zalam, W. M. Z.


    Geo hazard can result in reducing of environmental health and huge economic losses especially in mountainous area. In order to mitigate geo-hazard effectively, cloud computer technology are introduce for managing geo hazard database. Cloud computing technology and it services capable to provide stakeholder's with geo hazards information in near to real time for an effective environmental management and decision-making. UNITEN Integrated Geo Hazard Management System consist of the network management and operation to monitor geo-hazard disaster especially landslide in our study area at Kelantan River Basin and boundary between Hulu Kelantan and Hulu Terengganu. The system will provide easily manage flexible measuring system with data management operates autonomously and can be controlled by commands to collects and controls remotely by using “cloud” system computing. This paper aims to document the above relationship by identifying the special features and needs associated with effective geohazard database management using “cloud system”. This system later will use as part of the development activities and result in minimizing the frequency of the geo-hazard and risk at that research area.

  15. The role of male violence against women in female under-representation in (geo)sciences (United States)

    Vincent, Aude


    Many women face male violence, simply because they are women. Street harassment, sexual harassment at the workplace, sexual assaults and rapes in public or private spaces, domestic violence, are rampant issues. About 1 on 5 women in Europe experiences at least once in her lifetime rape or physical violence, most of the time from a partner or former partner. In average, each year in France, 120 women are killed by their partner. Women scientists are women. There is no reason to suppose that they are less victims of male violence than other women. The different forms of violence they can encounter have effects on women, on physical, behavioral, and psychological levels. Those effects can obviously affect women in their professional life as well as in their intimate or social life: - they might want to avoid the perpetrator of the violence they were victim of; - their self-esteem might be crushed by the disparagement suffered from a violent partner; - a violent partner might threaten to get even more violent if they continue their studies or their career; - the psychological effects of a rape might leave them unable to continue their life as before. Because of such impacts on their lives, some women can't carry on their work and career as they could have, or they might even quit them, or never finish their Master or their PhD. The fact that gender stereotyping from an early ages leads more men than women to scientific careers is now quite acknowledge. We should also think about how much of the under-representation of women in geosciences, and sciences in general, is due to the impact of male violence on women lives.

  16. GeoMapApp Learning Activities: Grab-and-go inquiry-based geoscience activities that bring cutting-edge technology to the classroom (United States)

    Goodwillie, A. M.; Kluge, S.


    NSF-funded GeoMapApp Learning Activities ( provide self-contained learning opportunities that are centred around the principles of guided inquiry. The activities allow students to interact with and analyse research-quality geoscience data to explore and enhance student understanding of underlying geoscience content and concepts. Each activity offers ready-to-use step-by-step student instructions and answer sheets that can be downloaded from the web page. Also provided are annotated teacher versions of the worksheets that include teaching tips, additional content and suggestions for further work. Downloadable pre- and post- quizzes tied to each activity help educators gauge the learning progression of their students. Short multimedia tutorials and details on content alignment with state and national teaching standards round out the package of material that comprises each "grab-and-go" activity. GeoMapApp Learning Activities expose students to content and concepts typically found at the community college, high school and introductory undergraduate levels. The activities are based upon GeoMapApp (, a free, easy-to-use map-based data exploration and visualisation tool that allows students to access a wide range of geoscience data sets in a virtual lab-like environment. Activities that have so far been created under this project include student exploration of seafloor spreading rates, a study of mass wasting as revealed through geomorphological evidence, and an analysis of plate motion and hotspot traces. The step-by-step instructions and guided inquiry approach lead students through each activity, thus reducing the need for teacher intervention whilst also boosting the time that students can spend on productive exploration and learning. The activities can be used, for example, in a classroom lab with the educator present and as self-paced assignments in an out-of-class setting. GeoMapApp Learning Activities

  17. Geoscience information integration and visualization research of Shandong Province, China based on ArcGIS engine (United States)

    Xu, Mingzhu; Gao, Zhiqiang; Ning, Jicai


    To improve the access efficiency of geoscience data, efficient data model and storage solutions should be used. Geoscience data is usually classified by format or coordinate system in existing storage solutions. When data is large, it is not conducive to search the geographic features. In this study, a geographical information integration system of Shandong province, China was developed based on the technology of ArcGIS Engine, .NET, and SQL Server. It uses Geodatabase spatial data model and ArcSDE to organize and store spatial and attribute data and establishes geoscience database of Shangdong. Seven function modules were designed: map browse, database and subject management, layer control, map query, spatial analysis and map symbolization. The system's characteristics of can be browsed and managed by geoscience subjects make the system convenient for geographic researchers and decision-making departments to use the data.

  18. Geo-Sandbox: An Interactive Geoscience Training Tool with Analytics to Better Understand Student Problem Solving Approaches (United States)

    Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.


    The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.

  19. InTeGrate: Transforming the Teaching of Geoscience and Sustainability (United States)

    Blockstein, D.; Manduca, C. A.; Bralower, T. J.; Castendyk, D.; Egger, A. E.; Gosselin, D. C.; Iverson, E. A.; Matson, P. A.; MacGregor, J.; Mcconnell, D. A.; Mogk, D. W.; Nevle, R. J.; Oches, E. A.; Steer, D. N.; Wiese, K.


    InTeGrate is an NSF-funded community project to improve geoscience literacy and build a workforce that can apply geoscience principles to address societal issues. Three workshops offered this year by InTeGrate and its partner, On the Cutting Edge, addressed strategies for bringing together geoscience and sustainability within geoscience courses and programs, in interdisciplinary courses and programs, and in courses and programs in other disciplines or schools including arts and humanities, health science, and business. Participants in all workshops described the power of teaching geoscience in the context of sustainability and the utility of this approach in engaging students with geoscience, including student populations not traditionally represented in the sciences. Faculty involved in both courses and programs seek to teach important skills including the ability to think about systems and to make connections between local observations and challenges and global phenomena and issues. Better articulation of these skills, including learning outcomes and assessments, as well as documenting the relationship between these skills and employment opportunities were identified as important areas for further work. To support widespread integration of geoscience and sustainability concepts, these workshops initiated collections describing current teaching activities, courses, and programs. InTeGrate will continue to build these collections in collaboration with On the Cutting Edge and Building Strong Geoscience Departments, and through open contributions by individual faculty and programs. In addition, InTeGrate began developing new teaching modules and courses. Materials for use in introductory geoscience and environmental science/studies courses, distance learning courses, and courses for education majors are being developed and tested by teams of faculty drawn from at least three institutions, including several members from two-year colleges. An assessment team is

  20. An Integrated Model for Improving Undergraduate Geoscience Workforce Readiness (United States)

    Keane, C. M.; Houlton, H. R.


    Within STEM fields, employers are reporting a widening gap in the workforce readiness of new graduates. As departments continue to be squeezed with new requirements, chasing the latest technologies and scientific developments and constrained budgets, formal undergraduate programs struggle to fully prepare students for the workforce. One major mechanisms to address gaps within formal education is in life-long learning. Most technical and professional fields have life-long learning requirements, but it is not common in the geosciences, as licensing requirements remain limited. By introducing the concept of career self-management and life-long learning into the formal education experience of students, we can build voluntary engagement and shift some of the preparation burden from existing degree programs. The Geoscience Online Learning Initiative (GOLI) seeks to extend professional life-long learning into the formal education realm. By utilizing proven, effective means to capture expert knowledge, the GOLI program constructs courses in the OpenEdX platform, where the content authors and society staff continuously refine the material into effective one- to two-hour long asynchronous modules. The topical focus of these courses are outside of the usual scope of the academic curriculum, but are aligned with applied technical or professional issues. These courses are provided as open education resources, but also qualify for CEUs as the ongoing professional microcredential in the profession. This way, interested faculty can utilize these resources as focused modules in their own course offerings or students can engage in the courses independently and upon passing the assessments and paying of a nominal fee, be awarded CEUs which count towards their professional qualifications. Establishing a continuum of learning over one's career is a critical cultural change needed for students to succeed and be resilient through the duration of a career. We will examine how this

  1. Real-Time Integration of Geo-data in ORM

    NARCIS (Netherlands)

    Balsters, Herman; Klaver, Chris; Huitema, George B.; Meersman, R; Dillon, T; Herrero, P


    Geographic information (geo-data; i.e., data with a spatial component.) is being used for civil, political, and commercial applications. Modeling geo-data can be involved due to its often very complex structure, hence placing high demands on the modeling language employed. Many geo-applications

  2. Report on GeoData 2011 Workshop - Data Life Cycle, Integration and Citation (United States)

    Signell, R.; Fox, P.


    The U.S. GeoData 2011 was inspired by a joint NSF-USGS identification of the need to hear from the broader 'geo' community on a variety of data related matters. While increasing attention needed to be paid to full life cycle of data, in the process of preparing and scoping the workshop two other hot issues were identified: integration and citation, giving the workshop three subject areas to delve into as well as to explore connections among them. Invited participants were drawn from all 'Geo' disciplines, and beyond, from information, computer and library science, from academia, agency and commercial organizations, and from student to senior faculty/ administrators. The workshop diversity provided a rich exchange of ideas, experiences and challenges for GeoData. Many key findings and recommendations have been extracted from the detail breakout discussions and syntheses during and after the workshop. Topical categories included: metadata, standards, standards-based tools, culture, collaboration and workforce. Key points that cut across all three-subject areas were: - A shift is needed within agencies to provide longer-term funding support, for communities to come together, remain coherent and to enable data stewardship, integration and citation within their communities and across to other communities (to the extent possible). - Agencies like USGS, NASA and NOAA must also play a key role in sustaining geoscience cyberinfrastructure by moving research advances into operations. - Community-wide standards and practices should build from demonstrated successes, be widely disseminated, and tools need to be developed to support them. - Education is critical to broader adoption. Marketing studies need to be conducted to provide the business case for full stewardship, integration and citation, and incentives are needed to encourage everyone to participate in making data integratable, citable, etc. While technology gaps are still evident across the three topic areas, there is

  3. Assembly and integration of geo-scientific knowledge and arguments

    International Nuclear Information System (INIS)

    Gierszewki, P.; Gautschi, A.; Nguyen, T.S.; Laaksohaju, M.; Rohlig, K.J.; Peake, T.; Peltier, R.; Pitkanen, P.; Skagius Elert, K.; Sykes, J.F.


    The purpose of this working group was to consider the assembly and integration of geo-scientific knowledge and arguments. In an introductory presentation, K. Skagius Elert presented 'Assessment of Uncertainty and Confidence in Site Descriptive Models Experience from the On-going Site Investigation Programme in Sweden'. The detailed description of concepts and procedures established at SKB for the development of a Site Descriptive Model (SDM) provided a starting point for the discussion of the working group. The SDM components and the procedures to achieve them were used as 'references' for the discussion of comparable elements in other national programmes. The observations have been placed into two broad themes: 1. How to manage the integration? 2. How to handle uncertainties? No specific prescription was identified for either of these questions; rather a range of suggestions were noted based on experience. The appropriate solution will depend on the organisation, the site, the state of the programme, and other factors. A final observation from the working group was on the handling of evolution of the site with time. This topic incorporates aspects of both site integration and uncertainty management. Specifically, the integrated site description model (SDM) noted above represents a description of the site as it presently exists. This description takes into account the site history, but does not describe its evolution. The latter involves a number of uncertainties. This time evolution of the site can be described through Scenarios. The definition of scenarios, similar to the definition of the SDM, is an integrated and multidisciplinary process in order to ensure a self-consistent description. It will involve use of common assumptions. Since it involves the future and the associated uncertainties, it can be useful to draw on expert panels to help define the key assumptions and outlines for scenarios. (authors)

  4. Digital image integration technique of multi-geoscience information dominated by aerial radiometric measurements

    International Nuclear Information System (INIS)

    Liu Dechang; Sun Maorong; Zhu Deling; Zhang Jingbo; He Jianguo; Dong Xiuzhen


    The geologic metallogenetic environment of uranium at Lian Shan Guan region has been studied by using digital image integration technique of multi-geoscience information with aerial radiometric measurements. It includes the classification of uranium-bearing rock, recognizing patterns of ore-forming and geologic mapping in ore field. Some new tectonic structure was found in this region that gives significant information for further exploring of uranium ore. After multi-parameters screening of aerial radiometric data, patterns recognizing and multi-geoscience information integration analysis, four prospective metallogenetic zones were predicted, and the predication was proved by further geologic survey. Three of the four zones are very encouraging, where ore-forming structures, hydrothermal deposits, wall-rock alteration, primary and secondary uranium ore and rich uranium mineralization are discovered. The department of geologic exploring has decided that these zones will enjoy priority in the examination for further prospecting of uranium ores

  5. Through the Lens of TEK - Building GeoScience Pathways for American Indian/Alaska Native Students (United States)

    Thomas, W. J.; van Cooten, S.; Wrege, B.; Wildcat, D.


    Native American or American Indian/Alaska Native (AI/AN) students come from diverse communities with indigenous knowledges, perspectives and worldviews. These communities and the students they send into our nation's education systems have cultural connectivity to oral histories, documents, and artwork that details climate cycles and weather events prior to colonization through eras of forced relocation and assimilation. Today, these students are the trailblazers as tribal governments exercise their ownership rights to natural resources and the welfare of their citizens as sovereign nations. In universities, especially tribal colleges, our nation's indigenous students are bridge builders. Through the lens of Traditional Ecological Knowledge (TEK), these students have a unique yet overlooked perspective to merge mainstream research with indigenous knowledge systems to develop practical sustainable solutions for local, regional and international resource management issues. The panel will discuss barriers, such as underdeveloped geophysical science curricula at tribal colleges, that limit the pool of indigenous geoscience graduates and examine possible strategies such as entry point opportunities and partnerships, mentoring, and community relevant research experiences, to eliminate barriers that limit the influx of TEK in resiliency planning.

  6. Social Technologies to Jump Start Geoscience Careers (United States)

    Keane, Christopher; Martinez, Cynthia; Gonzales, Leila


    Collaborative and social technologies have been increasingly used to facilitate distributed data collection and observation in science. However, "Web 2.0" and basic social media are seeing limited coordinated use in building student and early-career geoscientists knowledge and understanding of the profession and career for which they have undertaken. The current generation of geology students and early career professionals are used to ready access to myriad of information and interaction opportunities, but they remain largely unaware about the geoscience profession, what the full scope of their opportunities are, and how to reach across institutional and subdisciplinary boundaries to build their own professional network. The American Geological Institute Workforce Program has tracked and supported the human resources of the geosciences since 1952. With the looming retirement of Baby Boomers, increasing demand for quality geoscientists, and a continued modest supply of students entering the geosciences, AGI is working to strengthen the human resource pipeline in the geosciences globally. One aspect of this effort is the GeoConnection Network, which is an integrated set of social networking, media sharing and communication Web 2.0 applications designed to engage students in thinking about careers in the geosciences and enabling them to build their own personal professional network. Developed by the American Geological Institute (AGI), GeoConnection links practicing and prospective geoscientists in an informal setting to share information about the geoscience profession, including student and career opportunities, current events, and future trends in the geosciences. The network includes a Facebook fan page, YouTube Channel, Twitter account and GeoSpectrum blog, with the goal of helping science organizations and departments recruit future talent to the geoscience workforce. On the social-networking platform, Facebook, the GeoConnection page is a forum for students and

  7. Integrating geoscience and Native American experiences through a multi-state geoscience field trip for high school students (United States)

    Kelso, P. R.; Brown, L. M.; Spencer, M.; Sabatine, S.; Goetz, E. R.


    Lake Superior State University (LSSU) developed the GRANITE (Geological Reasoning And Natives Investigating The Earth) to engage high school students in the geosciences. The GRANITE program's target audience is Native American high school students and other populations underrepresented in the geosciences. Through the GRANITE program students undertake a variety of field and laboratory geosciences activities that culminates in a two week summer geoscience field experience during which they travel from Michigan to Wyoming. The sites students visit were selected because of their interesting and diverse geologic features and because in many cases they have special significance to Native American communities. Examples of the processes and localities studied by GRANITE students include igneous processes at Bear Butte, SD (Mato Paha) and Devil's Tower, WY (Mato Tipila); sedimentary processes in the Badlands, SD (Mako Sica) and Black Hills, SD (Paha Sapa); karst processes at Wind Cave, SD (Wasun Niye) and Vore Buffalo Jump; structural processes at Van Hise rock, WI and Dillon normal fault Badlands, SD; hydrologic and laucustrine processes along the Great Lakes and at the Fond du Lac Reservation, MN; fluvial processes along the Mississippi and Missouri rivers; geologic resources at the Homestake Mine, SD and Champion Mine, MI; and metamorphic processes at Pipestone, MN and Baraboo, WI. Through the GRANITE experience students develop an understanding of how geoscience is an important part of their lives, their communities and the world around them. The GRANITE program also promotes each student's growth and confidence to attend college and stresses the importance of taking challenging math and science courses in high school. Geoscience career opportunities are discussed at specific geologic localities and through general discussions. GRANITE students learn geosciences concepts and their application to Native communities and society in general through activities and

  8. Big Data, Small Data: Accessing and Manipulating Geoscience Data Ranging From Repositories to Student-Collected Data Sets Using GeoMapApp (United States)

    Goodwillie, A. M.


    We often demand information and data to be accessible over the web at no cost, and no longer do we expect to spend time labouriously compiling data from myriad sources with frustratingly-different formats. Instead, we increasingly expect convenience and consolidation. Recent advances in web-enabled technologies and cyberinfrastructure are answering those calls by providing data tools and resources that can transform undergraduate education. By freeing up valuable classroom time, students can focus upon gaining deeper insights and understanding from real-world data. GeoMapApp ( is a map-based data discovery and visualisation tool developed at Lamont-Doherty Earth Observatory. GeoMapApp promotes U-Learning by working across all major computer platforms and functioning anywhere with internet connectivity, by lowering socio-economic barriers (it is free), by seamlessly integrating thousands of built-in research-grade data sets under intuitive menus, and by being adaptable to a range of learning environments - from lab sessions, group projects, and homework assignments to in-class pop-ups. GeoMapApp caters to casual and specialist users alike. Contours, artificial illumination, 3-D displays, data point manipulations, cross-sectional profiles, and other display techniques help students better grasp the content and geospatial context of data. Layering capabilities allow easy data set comparisons. The core functionality also applies to imported data sets: Student-collected data can thus be imported and analysed using the same techniques. A new Save Session function allows educators to preserve a pre-loaded state of GeoMapApp. When shared with a class, the saved file allows every student to open GeoMapApp at exactly the same starting point from which to begin their data explorations. Examples of built-in data sets include seafloor crustal age, earthquake locations and focal mechanisms, analytical geochemistry, ocean water physical properties, US and

  9. Towards a Conceptual Design of a Cross-Domain Integrative Information System for the Geosciences (United States)

    Zaslavsky, I.; Richard, S. M.; Valentine, D. W.; Malik, T.; Gupta, A.


    As geoscientists increasingly focus on studying processes that span multiple research domains, there is an increased need for cross-domain interoperability solutions that can scale to the entire geosciences, bridging information and knowledge systems, models, software tools, as well as connecting researchers and organization. Creating a community-driven cyberinfrastructure (CI) to address the grand challenges of integrative Earth science research and education is the focus of EarthCube, a new research initiative of the U.S. National Science Foundation. We are approaching EarthCube design as a complex socio-technical system of systems, in which communication between various domain subsystems, people and organizations enables more comprehensive, data-intensive research designs and knowledge sharing. In particular, we focus on integrating 'traditional' layered CI components - including information sources, catalogs, vocabularies, services, analysis and modeling tools - with CI components supporting scholarly communication, self-organization and social networking (e.g. research profiles, Q&A systems, annotations), in a manner that follows and enhances existing patterns of data, information and knowledge exchange within and across geoscience domains. We describe an initial architecture design focused on enabling the CI to (a) provide an environment for scientifically sound information and software discovery and reuse; (b) evolve by factoring in the impact of maturing movements like linked data, 'big data', and social collaborations, as well as experience from work on large information systems in other domains; (c) handle the ever increasing volume, complexity and diversity of geoscience information; (d) incorporate new information and analytical requirements, tools, and techniques, and emerging types of earth observations and models; (e) accommodate different ideas and approaches to research and data stewardship; (f) be responsive to the existing and anticipated needs

  10. An Integrated Strategy for Promoting Geoscience Education and Research in Developing Countries through International Cooperation (United States)

    Aswathanarayana, U.


    Geoscience education and research in Developing countries should aim at achieving food, water and environmental security, and disaster preparedness, based on the synergetic application of earth (including atmospheric and oceanic realms), space and information sciences through economically-viable, ecologically- sustainable and people-participatory management of natural resources. The proposed strategy involves the integration of the following three principal elements: (i) What needs to be taught: Geoscience needs to be taught as earth system science incorporating geophysical, geochemical and geobiological approaches, with focus (say, 80 % of time) on surficial processes (e.g. dynamics of water, wind and waves, surface and groundwater, soil moisture, geomorphology, landuse, crops), and surficial materials (e.g. soils, water, industrial minerals, sediments, biota). Subjects such as the origin, structure and evolution of the earth, and deep-seated processes (e.g. dynamics of the crust-mantle interaction, plate tectonics) could be taught by way of background knowledge (say, 20 % of the time), (ii) How jobs are to be created: Jobs are to be created by merging geoscience knowledge with economic instruments (say, micro enterprises), and management structures at different levels (Policy level, Technology Transfer level and Implementation level), customized to the local biophysical and socioeconomic situations, and (iii) International cooperation: Web-based instruction (e.g. education portals, virtual laboratories) through South - South and North - South cooperation, customized to the local biophysical and socioeconomic situations, with the help of (say) UNDP, UNESCO, World Bank, etc.

  11. Creating an Integrated Community-Wide Effort to Enhance Diversity in the Geosciences (United States)

    Manduca, C. A.; Weingroff, M.


    Supporting the development and sustenance of a diverse geoscience workforce and improving Earth system education for the full diversity of students are important goals for our community. There are numerous established programs and many new efforts beginning. However, these efforts can become more powerful if dissemination of opportunities, effective practices, and web-based resources enable synergies to develop throughout our community. The Digital Library for Earth System Education (DLESE; has developed a working group and a website to support these goals. The DLESE Diversity Working Group provides an open, virtual community for those interested in enhancing diversity in the geosciences. The working group has focused its initial effort on 1) creating a geoscience community engaged in supporting increased diversity that builds on and is integrated with work taking place in other venues; 2) developing a web resource designed to engage and support members of underrepresented groups in learning about the Earth; and 3) assisting in enhancing DLESE collections and services to better support learning experiences of students from underrepresented groups. You are invited to join the working group and participate in these efforts. The DLESE diversity website provides a mechanism for sharing information and resources. Serving as a community database, the website provides a structure in which community members can post announcements of opportunities, information on programs, and links to resources and services. Information currently available on the site includes links to professional society activities; mentoring opportunities; grant, fellowship, employment, and internship opportunities for students and educators; information on teaching students from underrepresented groups; and professional development opportunities of high interest to members of underrepresented groups. These tools provide a starting point for developing a community wide effort to enhance

  12. Systems, Society, Sustainability and the Geosciences: A Workshop to Create New Curricular Materials to Integrate Geosciences into the Teaching of Sustainability (United States)

    Gosselin, D. C.; Manduca, C. A.; Oches, E. A.; MacGregor, J.; Kirk, K. B.


    Sustainability is emerging as a central theme for teaching about the environment, whether it be from the perspective of science, economics, or society. The Systems, Society, Sustainability and the Geosciences workshop provided 48 undergraduate faculty from 46 institutions a forum to discuss the challenges and possibilities for integrating geoscience concepts with a range of other disciplines to teach about the fundamentals of sustainability. Participants from community college to doctorate-granting universities had expertise that included geosciences, agriculture, biological sciences, business, chemistry, economics, ethnic studies, engineering, environmental studies, environmental education, geography, history, industrial technology, landscape design, philosophy, physics, and political science. The workshop modeled a range of teaching strategies that encouraged participants to network and collaborate, share successful strategies and materials for teaching sustainability, and identify opportunities for the development of new curricular materials that will have a major impact on the integration of geosciences into the teaching of sustainability. The workshop design provided participants an opportunity to reflect upon their teaching, learning, and curriculum. Throughout the workshop, participants recorded their individual and collective ideas in a common online workspace to which all had access. A preliminary synthesis of this information indicates that the concept of sustainability is a strong organizing principle for modern, liberal education requiring systems thinking, synthesis and contributions from all disciplines. Sustainability is inherently interdisciplinary and provides a framework for educational collaboration between and among geoscientists, natural/physical scientists, social scientists, humanists, engineers, etc.. This interdisciplinary framework is intellectually exciting and productive for educating students at all levels of higher education

  13. An integrated risk sensing system for geo-structural safety

    Institute of Scientific and Technical Information of China (English)

    H.W. Huang; D.M. Zhang; B.M. Ayyub


    Over the last decades, geo-structures are experiencing a rapid development in China. The potential risks inherent in the huge amount of construction and asset operation projects in China were well managed in the major project, i.e. the project of Shanghai Yangtze tunnel in 2002. Since then, risk assessment of geo-structures has been gradually developed from a qualitative manner to a quantitative manner. However, the current practices of risk management have been paid considerable attention to the assessment, but little on risk control. As a result, the responses to risks occurrences after a comprehensive assessment are basically too late. In this paper, a smart system for risk sensing incorporating the wireless sensor network (WSN) on-site visualization techniques and the resilience-based repair strategy was proposed. The merit of this system is the real-time monitoring for geo-structural performance and dynamic pre-warning for safety of on-site workers. The sectional convergence, joint opening, and seepage of segmental lining of shield tunnel were monitored by the micro-electro-mechanical systems (MEMS) based sensors. The light emitting diode (LED) coupling with the above WSN system was used to indicate different risk levels on site. By sensing the risks and telling the risks in real time, the geo-risks could be controlled and the safety of geo-structures could be assured to a certain degree. Finally, a resilience-based analysis model was proposed for designing the repair strategy by using the measured data from the WSN system. The application and efficiency of this system have been validated by two cases including Shanghai metro tunnel and underwater road tunnel.

  14. Alaska Center for Unmanned Aircraft Systems Integration (ACUASI): Operational Support and Geoscience Research (United States)

    Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.


    Unmanned Aircraft Systems (UAS) have enormous potential for use in geoscience research and supporting operational needs from natural hazard assessment to the mitigation of critical infrastructure failure. They provide a new tool for universities, local, state, federal, and military organizations to collect new measurements not readily available from other sensors. We will present on the UAS capabilities and research of the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI, Our UAS range from the Responder with its dual visible/infrared payload that can provide simultaneous data to our new SeaHunter UAS with 90 lb. payload and multiple hour flight time. ACUASI, as a designated US Federal Aviation Administration (FAA) test center, works closely with the FAA on integrating UAS into the national airspace. ACUASI covers all aspects of working with UAS from pilot training, airspace navigation, flight operations, and remote sensing analysis to payload design and integration engineers and policy experts. ACUASI's recent missions range from supporting the mapping of sea ice cover for safe passage of Alaskans across the hazardous winter ice to demonstrating how UAS can be used to provide support during oil spill response. Additionally, we will present on how ACUASI has worked with local authorities in Alaska to integrate UAS into search and rescue operations and with NASA and the FAA on their UAS Transport Management (UTM) project to fly UAS within the manned airspace. ACUASI is also working on developing new capabilities to sample volcanic plumes and clouds, map forest fire impacts and burn areas, and develop a new citizen network for monitoring snow extent and depth during Northern Hemisphere winters. We will demonstrate how UAS can be integrated in operational support systems and at the same time be used in geoscience research projects to provide high precision, accurate, and reliable observations.

  15. Design and Applications of a GeoSemantic Framework for Integration of Data and Model Resources in Hydrologic Systems (United States)

    Elag, M.; Kumar, P.


    Hydrologists today have to integrate resources such as data and models, which originate and reside in multiple autonomous and heterogeneous repositories over the Web. Several resource management systems have emerged within geoscience communities for sharing long-tail data, which are collected by individual or small research groups, and long-tail models, which are developed by scientists or small modeling communities. While these systems have increased the availability of resources within geoscience domains, deficiencies remain due to the heterogeneity in the methods, which are used to describe, encode, and publish information about resources over the Web. This heterogeneity limits our ability to access the right information in the right context so that it can be efficiently retrieved and understood without the Hydrologist's mediation. A primary challenge of the Web today is the lack of the semantic interoperability among the massive number of resources, which already exist and are continually being generated at rapid rates. To address this challenge, we have developed a decentralized GeoSemantic (GS) framework, which provides three sets of micro-web services to support (i) semantic annotation of resources, (ii) semantic alignment between the metadata of two resources, and (iii) semantic mediation among Standard Names. Here we present the design of the framework and demonstrate its application for semantic integration between data and models used in the IML-CZO. First we show how the IML-CZO data are annotated using the Semantic Annotation Services. Then we illustrate how the Resource Alignment Services and Knowledge Integration Services are used to create a semantic workflow among TopoFlow model, which is a spatially-distributed hydrologic model and the annotated data. Results of this work are (i) a demonstration of how the GS framework advances the integration of heterogeneous data and models of water-related disciplines by seamless handling of their semantic

  16. Integrated GNSS attitude determination and positioning for direct geo-referencing

    NARCIS (Netherlands)

    Nadarajah, N.; Paffenholz, J.A.; Teunissen, P.J.G.


    Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS

  17. Web Approach for Ontology-Based Classification, Integration, and Interdisciplinary Usage of Geoscience Metadata

    Directory of Open Access Journals (Sweden)

    B Ritschel


    Full Text Available The Semantic Web is a W3C approach that integrates the different sources of semantics within documents and services using ontology-based techniques. The main objective of this approach in the geoscience domain is the improvement of understanding, integration, and usage of Earth and space science related web content in terms of data, information, and knowledge for machines and people. The modeling and representation of semantic attributes and relations within and among documents can be realized by human readable concept maps and machine readable OWL documents. The objectives for the usage of the Semantic Web approach in the GFZ data center ISDC project are the design of an extended classification of metadata documents for product types related to instruments, platforms, and projects as well as the integration of different types of metadata related to data product providers, users, and data centers. Sources of content and semantics for the description of Earth and space science product types and related classes are standardized metadata documents (e.g., DIF documents, publications, grey literature, and Web pages. Other sources are information provided by users, such as tagging data and social navigation information. The integration of controlled vocabularies as well as folksonomies plays an important role in the design of well formed ontologies.

  18. Principles of data integration and interoperability in the GEO Biodiversity Observation Network (United States)

    Saarenmaa, Hannu; Ó Tuama, Éamonn


    The goal of the Global Earth Observation System of Systems (GEOSS) is to link existing information systems into a global and flexible network to address nine areas of critical importance to society. One of these "societal benefit areas" is biodiversity and it will be supported by a GEOSS sub-system known as the GEO Biodiversity Observation Network (GEO BON). In planning the GEO BON, it was soon recognised that there are already a multitude of existing networks and initiatives in place worldwide. What has been lacking is a coordinated framework that allows for information sharing and exchange between the networks. Traversing across the various scales of biodiversity, in particular from the individual and species levels to the ecosystems level has long been a challenge. Furthermore, some of the major regions of the world have already taken steps to coordinate their efforts, but links between the regions have not been a priority until now. Linking biodiversity data to that of the other GEO societal benefit areas, in particular ecosystems, climate, and agriculture to produce useful information for the UN Conventions and other policy-making bodies is another need that calls for integration of information. Integration and interoperability are therefore a major theme of GEO BON, and a "system of systems" is very much needed. There are several approaches to integration that need to be considered. Data integration requires harmonising concepts, agreeing on vocabularies, and building ontologies. Semantic mediation of data using these building blocks is still not easy to achieve. Agreements on, or mappings between, the metadata standards that will be used across the networks is a major requirement that will need to be addressed early on. With interoperable metadata, service integration will be possible through registry of registries systems such as GBIF's forthcoming GBDRS and the GEO Clearinghouse. Chaining various services that build intermediate products using workflow

  19. An infrastructure for the integration of geoscience instruments and sensors on the Grid (United States)

    Pugliese, R.; Prica, M.; Kourousias, G.; Del Linz, A.; Curri, A.


    The Grid, as a computing paradigm, has long been in the attention of both academia and industry[1]. The distributed and expandable nature of its general architecture result to scalability and more efficient utilisation of the computing infrastructures. The scientific community, including that of geosciences, often handles problems with very high requirements in data processing, transferring, and storing[2,3]. This has raised the interest on Grid technologies but these are often viewed solely as an access gateway to HPC. Suitable Grid infrastructures could provide the geoscience community with additional benefits like those of sharing, remote access and control of scientific systems. These systems can be scientific instruments, sensors, robots, cameras and any other device used in geosciences. The solution for practical, general, and feasible Grid-enabling of such devices requires non-intrusive extensions on core parts of the current Grid architecture. We propose an extended version of an architecture[4] that can serve as the solution to the problem. The solution we propose is called Grid Instrument Element (IE) [5]. It is an addition to the existing core Grid parts; the Computing Element (CE) and the Storage Element (SE) that serve the purposes that their name suggests. The IE that we will be referring to, and the related technologies have been developed in the EU project on the Deployment of Remote Instrumentation Infrastructure (DORII1). In DORII, partners of various scientific communities including those of Earthquake, Environmental science, and Experimental science, have adopted the technology of the Instrument Element in order to integrate to the Grid their devices. The Oceanographic and coastal observation and modelling Mediterranean Ocean Observing Network (OGS2), a DORII partner, is in the process of deploying the above mentioned Grid technologies on two types of observational modules: Argo profiling floats and a novel Autonomous Underwater Vehicle (AUV

  20. EarthConnections: Integrating Community Science and Geoscience Education Pathways for More Resilient Communities. (United States)

    Manduca, C. A.


    To develop a diverse geoscience workforce, the EarthConnections collective impact alliance is developing regionally focused, Earth education pathways. These pathways support and guide students from engagement in relevant, Earth-related science at an early age through the many steps and transitions to geoscience-related careers. Rooted in existing regional activities, pathways are developed using a process that engages regional stakeholders and community members with EarthConnections partners. Together they connect, sequence, and create multiple learning opportunities that link geoscience education and community service to address one or more local geoscience issues. Three initial pilots are demonstrating different starting points and strategies for creating pathways that serve community needs while supporting geoscience education. The San Bernardino pilot is leveraging existing academic relationships and programs; the Atlanta pilot is building into existing community activities; and the Oklahoma Tribal Nations pilot is co-constructing a pathway focus and approach. The project is using pathway mapping and a collective impact framework to support and monitor progress. The goal is to develop processes and activities that can help other communities develop similar community-based geoscience pathways. By intertwining Earth education with local community service we aspire to increase the resilience of communities in the face of environmental hazards and limited Earth resources.

  1. InTeGrate's model for developing innovative, adaptable, interdisciplinary curricular materials that reach beyond the geosciences (United States)

    Egger, A. E.; Baldassari, C.; Bruckner, M. Z.; Iverson, E. A.; Manduca, C. A.; Mcconnell, D. A.; Steer, D. N.


    InTeGrate is NSF's STEP Center in the geosciences. A major goal of the project is to develop curricula that will increase the geoscience literacy of all students such that they are better positioned to make sustainable decisions in their lives and as part of the broader society. This population includes the large majority of students that do not major in the geosciences, those historically under-represented in the geosciences, and future K-12 teachers. To achieve this goal, we established a model for the development of curricular materials that draws on the distributed expertise of the undergraduate teaching community. Our model seeks proposals from across the higher education community for courses and modules that meet InTeGrate's overarching goals. From these proposals, we select teams of 3-5 instructors from three or more different institutions (and institution types) and pair them with assessment and web experts. Their communication and development process is supported by a robust, web-based content management system (CMS). Over two years, this team develops materials that explicitly address a geoscience-related societal challenge, build interdisciplinary problem-solving skills, make use of real geoscience data, and incorporate geoscientific and systems thinking. Materials are reviewed with the InTeGrate design rubric and then tested by the authors in their own courses, where student learning is assessed. Results are reviewed by the authors and our assessment team to guide revisions. Several student audiences are targeted: students in general education and introductory geoscience courses, pre-service K-12 teachers, students in other science and engineering majors, as well as those in the humanities and social sciences. Curriculum development team members from beyond the geosciences are critical to producing materials that can be adopted for all of these audiences, and we have been successful in engaging faculty from biology, economics, engineering, sociology

  2. Description of the U.S. Geological Survey Geo Data Portal data integration framework (United States)

    Blodgett, David L.; Booth, Nathaniel L.; Kunicki, Thomas C.; Walker, Jordan I.; Lucido, Jessica M.


    The U.S. Geological Survey has developed an open-standard data integration framework for working efficiently and effectively with large collections of climate and other geoscience data. A web interface accesses catalog datasets to find data services. Data resources can then be rendered for mapping and dataset metadata are derived directly from these web services. Algorithm configuration and information needed to retrieve data for processing are passed to a server where all large-volume data access and manipulation takes place. The data integration strategy described here was implemented by leveraging existing free and open source software. Details of the software used are omitted; rather, emphasis is placed on how open-standard web services and data encodings can be used in an architecture that integrates common geographic and atmospheric data.

  3. Broadening Pathways to Geosciences with an Integrated Program at The University of Michigan (United States)

    Dick, G.; Munson, J.


    Low participation of under-represented minorities (URM) in the geosciences is an acute issue at the University of Michigan (U-M), where the number of undergraduate URM students majoring in the Department of Earth and Environmental Sciences (EES) is typically 5% of total majors. The goal of our project is to substantially increase the number and success rate of underrepresented minorities majoring in EES at U-M. We are pursuing this goal with five primary objectives: (i) inspire and recruit high schools seniors to pursue geoscience at U-M, especially through hands-on experiences including field trips; (ii) establish infrastructure to support students interested in geosciences through the critical juncture between high school and college; (iii) increase the number of URM students transferring from community college; (iv) develop student interest in geosciences through research and field experiences; (v) expose students to career opportunities in the geosciences. To accomplish these objectives we are leveraging existing programs, including Earth Camp, Foundations for Undergraduate Teaching: Uniting Research and Education (FUTURE), M-Sci, and college academic advisors. Throughout our interactions with students from high-school through college, we expose them to career opportunities in the geosciences, including private industry, academia, and government agencies. Evaluation of the program revealed three main conclusions: (i) the program increased student interest in pursuing an earth science degree; (ii) participating students showed a marked increase in awareness about the various opportunities that are available with an earth science degree including pathways to graduate school and earth science careers; (iii) field trips were the most effective route for achieving outcomes (i) and (ii).

  4. Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities (United States)

    Sagl, Günther; Resch, Bernd; Blaschke, Thomas


    In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today’s technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different

  5. Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities. (United States)

    Sagl, Günther; Resch, Bernd; Blaschke, Thomas


    In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today's technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different

  6. Using Web 2.0 technologies to recruit the next generation of talent to the geoscience workforce (United States)

    Martinez, C. M.; Keane, C. M.


    The GeoConnection Network is an integrated set of social networking, media sharing and communication Web 2.0 applications designed to engage students in thinking about careers in the geosciences. Developed by the American Geological Institute (AGI), GeoConnection links practicing and prospective geoscientists in an informal setting to share information about the geoscience profession, including student and career opportunities, current events, and future trends in the geosciences. The network includes a Facebook fan page, YouTube Channel, Twitter account and GeoSpectrum blog, with the goal of helping science organizations and departments recruit future talent to the geoscience workforce. On the social-networking platform, Facebook, the GeoConnection page is a forum for students and early career geoscientists to tune in what's going on in the geoscience community, to meet geoscience professionals, and to find innovative career ideas. Early analysis of the page’s participants indicates that the network is reaching its intended audience, with more than two thirds of “fans” participating in the page falling in the 18-34 age range. Twenty-seven percent of these are college-aged, or 18-24 years old. An additional 20% of the page’s fans are over age 45, providing students with access to seasoned geoscientists working in a variety of professions. GeoConnection’s YouTube Channel includes video resources for students on educational pathways and career choices. Videos on the channel have received more than 60,000 views collectively. AGI is currently evaluating its use of the GeoConnection Network and Web 2.0-based student engagement strategies through direct surveys to students and university departments, in order to improve its offerings and to maximize its use of resources. The challenge for the GeoConnection Network in its quest to attract the best and brightest new talent to the geosciences is staying current within the ever-changing landscape of online

  7. Using GeoMapApp in the Classroom (United States)

    Goodwillie, A. M.


    The GeoMapApp tool has been updated with enhanced functionality that is useful in the classroom. Hosted as a service of the IEDA Facility at Columbia University, GeoMapApp ( is a free resource that integrates a wide range of research-grade geoscience data in one intuitive map-based interface. It includes earthquake and volcano data, geological maps, plate tectonic data sets, and a high-resolution topography/bathymetry base map. Users can also import and analyse their own data files. Layering and transparency capabilities allow users to compare multiple data sets at once. The GeoMapApp interface presents data in its proper geospatial context, helping students more easily gain insight and understanding from the data. Simple tools for data manipulation allow students to analyse the data in different ways such as generating profiles and producing visualisations for reports. The new Save Session capability is designed to assist in the classroom: The educator saves a pre-loaded state of GeoMapApp. When shared with the class, the saved session file allows students to open GeoMapApp with exactly the same data sets loaded and the same display parameters chosen thus freeing up valuable time in which students can explore the data. In this presentation, activities related to plate tectonics will be highlighted. One activity helps students investigate plate boundaries by exploring earthquake and volcano locations. Another requires students to calculate the rate of seafloor spreading using crustal age data in various ocean basins. A third uses the GeoMapApp layering technique to explore the influence of geological forces in shaping the landscape. Educators report that using GeoMapApp in the classroom lowers the barriers to data accessibility for students; fosters an increased sense of data "ownership" - GeoMapApp presents the same data in the same tool used by researchers; allows engagement with authentic geoscience data; promotes STEM skills and

  8. ICT Integration in Mathematics Initial Teacher Training and Its Impact on Visualization: The Case of GeoGebra (United States)

    Dockendorff, Monika; Solar, Horacio


    This case study investigates the impact of the integration of information and communications technology (ICT) in mathematics visualization skills and initial teacher education programmes. It reports on the influence GeoGebra dynamic software use has on promoting mathematical learning at secondary school and on its impact on teachers' conceptions…

  9. Advancing Earth System Science Literacy and Preparing the Future Geoscience Workforce Through Strategic Investments at the National Science Foundation (Invited) (United States)

    Karsten, J. L.; Patino, L. C.; Rom, E. L.; Weiler, C. S.


    The National Science Foundation (NSF) is an independent federal agency created 60 years ago by the U.S. Congress "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…" NSF is the primary funding agency in the U.S. to support basic, frontier research across all fields in science, engineering, and education, except for medical sciences. With a FY 2011 budget request of more than $955 million, the NSF Directorate for Geosciences (GEO) is the principle source of federal funding for university-based fundamental research in the geosciences and preparation of the next generation of geoscientists. Since its inception, GEO has supported the education and training of a diverse and talented pool of future scientists, engineers, and technicians in the Earth, Ocean, Atmospheric and Geospatial Sciences sub-fields, through support of graduate research assistants, post-doctoral fellows, and undergraduate research experiences. In the late 1990’s and early 2000’s, GEO initiated several programs that expanded these investments to also support improvements in pre-college and undergraduate geoscience education through a variety of mechanisms (e.g., professional development support for K-12 teachers, development of innovative undergraduate curricula, and scientist-mentored research experiences for elementary and secondary students). In addition to GEO’s Geoscience Education (GeoEd), Opportunities for Enhancing Diversity in the Geosciences (OEDG), Global Learning and Observations to Benefit the Environment (GLOBE), and Geoscience Teacher Training (GEO-Teach) programs, GEO participates in a number of cross-Foundation programs, including the Research Experiences for Undergraduates (REU), Integrative Graduate Education and Research Traineeship (IGERT), Ethics Education in Science and Engineering (EESE), NSF Graduate STEM Fellows in K-12 Education (GK-12), and Partnerships for International Research and Education

  10. GeoDeepDive: Towards a Machine Reading-Ready Digital Library and Information Integration Resource (United States)

    Husson, J. M.; Peters, S. E.; Livny, M.; Ross, I.


    Recent developments in machine reading and learning approaches to text and data mining hold considerable promise for accelerating the pace and quality of literature-based data synthesis, but these advances have outpaced even basic levels of access to the published literature. For many geoscience domains, particularly those based on physical samples and field-based descriptions, this limitation is significant. Here we describe a general infrastructure to support published literature-based machine reading and learning approaches to information integration and knowledge base creation. This infrastructure supports rate-controlled automated fetching of original documents, along with full bibliographic citation metadata, from remote servers, the secure storage of original documents, and the utilization of considerable high-throughput computing resources for the pre-processing of these documents by optical character recognition, natural language parsing, and other document annotation and parsing software tools. New tools and versions of existing tools can be automatically deployed against original documents when they are made available. The products of these tools (text/XML files) are managed by MongoDB and are available for use in data extraction applications. Basic search and discovery functionality is provided by ElasticSearch, which is used to identify documents of potential relevance to a given data extraction task. Relevant files derived from the original documents are then combined into basic starting points for application building; these starting points are kept up-to-date as new relevant documents are incorporated into the digital library. Currently, our digital library stores contains more than 360K documents supplied by Elsevier and the USGS and we are actively seeking additional content providers. By focusing on building a dependable infrastructure to support the retrieval, storage, and pre-processing of published content, we are establishing a foundation for

  11. The Geoscience Internet of Things (United States)

    Lehnert, K.; Klump, J.


    Internet of Things is a term that refers to "uniquely identifiable objects (things) and their virtual representations in an Internet-like structure" (Wikipedia). We here use the term to describe new and innovative ways to integrate physical samples in the Earth Sciences into the emerging digital infrastructures that are developed to support research and education in the Geosciences. Many Earth Science data are acquired on solid earth samples through observations and experiments conducted in the field or in the lab. The application and long-term utility of sample-based data for science is critically dependent on (a) the availability of information (metadata) about the samples such as geographical location where the sample was collected, time of sampling, sampling method, etc. (b) links between the different data types available for individual samples that are dispersed in the literature and in digital data repositories, and (c) access to the samples themselves. Neither of these requirements could be achieved in the past due to incomplete documentation of samples in publications, use of ambiguous sample names, and the lack of a central catalog that allows researchers to find a sample's archiving location. New internet-based capabilities have been developed over the past few years for the registration and unique identification of samples that make it possible to overcome these problems. Services for the registration and unique identification of samples are provided by the System for Earth Sample Registration SESAR ( SESAR developed the International Geo Sample Number, or IGSN, as a unique identifier for samples and specimens collected from our natural environment. Since December 2011, the IGSN is governed by an international organization, the IGSN eV (, which endorses and promotes an internationally unified approach for registration and discovery of physical specimens in the Geoscience community and is establishing a new modular and

  12. GEOS. User Tutorials

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Pengchen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Settgast, Randolph R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johnson, Scott M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walsh, Stuart D.C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morris, Joseph P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryerson, Frederick J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    GEOS is a massively parallel, multi-physics simulation application utilizing high performance computing (HPC) to address subsurface reservoir stimulation activities with the goal of optimizing current operations and evaluating innovative stimulation methods. GEOS enables coupling of di erent solvers associated with the various physical processes occurring during reservoir stimulation in unique and sophisticated ways, adapted to various geologic settings, materials and stimulation methods. Developed at the Lawrence Livermore National Laboratory (LLNL) as a part of a Laboratory-Directed Research and Development (LDRD) Strategic Initiative (SI) project, GEOS represents the culmination of a multi-year ongoing code development and improvement e ort that has leveraged existing code capabilities and sta expertise to design new computational geosciences software.

  13. Integrating sentiment analysis and term associations with geo-temporal visualizations on customer feedback streams (United States)

    Hao, Ming; Rohrdantz, Christian; Janetzko, Halldór; Keim, Daniel; Dayal, Umeshwar; Haug, Lars-Erik; Hsu, Mei-Chun


    Twitter currently receives over 190 million tweets (small text-based Web posts) and manufacturing companies receive over 10 thousand web product surveys a day, in which people share their thoughts regarding a wide range of products and their features. A large number of tweets and customer surveys include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for determining customer sentiments. To explore high-volume customer feedback streams, we integrate three time series-based visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel idea of term associations that identify attributes, verbs, and adjectives frequently occurring together; and (3) new pixel cell-based sentiment calendars, geo-temporal map visualizations and self-organizing maps to identify co-occurring and influential opinions. We have combined these techniques into a well-fitted solution for an effective analysis of large customer feedback streams such as for movie reviews (e.g., Kung-Fu Panda) or web surveys (buyers).

  14. Geo-Parcel Based Crop Identification by Integrating High Spatial-Temporal Resolution Imagery from Multi-Source Satellite Data

    Directory of Open Access Journals (Sweden)

    Yingpin Yang


    Full Text Available Geo-parcel based crop identification plays an important role in precision agriculture. It meets the needs of refined farmland management. This study presents an improved identification procedure for geo-parcel based crop identification by combining fine-resolution images and multi-source medium-resolution images. GF-2 images with fine spatial resolution of 0.8 m provided agricultural farming plot boundaries, and GF-1 (16 m and Landsat 8 OLI data were used to transform the geo-parcel based enhanced vegetation index (EVI time-series. In this study, we propose a piecewise EVI time-series smoothing method to fit irregular time profiles, especially for crop rotation situations. Global EVI time-series were divided into several temporal segments, from which phenological metrics could be derived. This method was applied to Lixian, where crop rotation was the common practice of growing different types of crops, in the same plot, in sequenced seasons. After collection of phenological features and multi-temporal spectral information, Random Forest (RF was performed to classify crop types, and the overall accuracy was 93.27%. Moreover, an analysis of feature significance showed that phenological features were of greater importance for distinguishing agricultural land cover compared to temporal spectral information. The identification results indicated that the integration of high spatial-temporal resolution imagery is promising for geo-parcel based crop identification and that the newly proposed smoothing method is effective.

  15. ICT integration in mathematics initial teacher training and its impact on visualization: the case of GeoGebra (United States)

    Dockendorff, Monika; Solar, Horacio


    This case study investigates the impact of the integration of information and communications technology (ICT) in mathematics visualization skills and initial teacher education programmes. It reports on the influence GeoGebra dynamic software use has on promoting mathematical learning at secondary school and on its impact on teachers' conceptions about teaching and learning mathematics. This paper describes how GeoGebra-based dynamic applets - designed and used in an exploratory manner - promote mathematical processes such as conjectures. It also refers to the changes prospective teachers experience regarding the relevance visual dynamic representations acquire in teaching mathematics. This study observes a shift in school routines when incorporating technology into the mathematics classroom. Visualization appears as a basic competence associated to key mathematical processes. Implications of an early integration of ICT in mathematics initial teacher training and its impact on developing technological pedagogical content knowledge (TPCK) are drawn.

  16. A Concept Lattice for Semantic Integration of Geo-Ontologies Based on Weight of Inclusion Degree Importance and Information Entropy

    Directory of Open Access Journals (Sweden)

    Jia Xiao


    Full Text Available Constructing a merged concept lattice with formal concept analysis (FCA is an important research direction in the field of integrating multi-source geo-ontologies. Extracting essential geographical properties and reducing the concept lattice are two key points of previous research. A formal integration method is proposed to address the challenges in these two areas. We first extract essential properties from multi-source geo-ontologies and use FCA to build a merged formal context. Second, the combined importance weight of each single attribute of the formal context is calculated by introducing the inclusion degree importance from rough set theory and information entropy; then a weighted formal context is built from the merged formal context. Third, a combined weighted concept lattice is established from the weighted formal context with FCA and the importance weight value of every concept is defined as the sum of weight of attributes belonging to the concept’s intent. Finally, semantic granularity of concept is defined by its importance weight; we, then gradually reduce the weighted concept lattice by setting up diminishing threshold of semantic granularity. Additionally, all of those reduced lattices are organized into a regular hierarchy structure based on the threshold of semantic granularity. A workflow is designed to demonstrate this procedure. A case study is conducted to show feasibility and validity of this method and the procedure to integrate multi-source geo-ontologies.

  17. Integrating Global Open Geo-Information for Major Disaster Assessment: A Case Study of the Myanmar Flood

    Directory of Open Access Journals (Sweden)

    Suju Li


    Full Text Available Major disasters typically impact large areas, cause considerable damages, and result in significant human and economic losses. The timely and accurate estimation of impacts and damages is essential to better understand disaster conditions and to support emergency response operations. Geo-information drawn from various sources at multi spatial-temporal scales can be used for disaster assessments through a synthesis of hazard, exposure, and post disaster information based on pertinent approaches. Along with the increased availability of open sourced data and cooperation initiatives, more global scale geo-information, including global land cover datasets, has been produced and can be integrated with other information for disaster dynamic damage assessment (e.g., impact estimation immediately after a disaster occurs, physical damage assessment during the emergency response stage, and comprehensive assessment following an emergency response. Residential areas and arable lands affected by the flood disaster occurring from July to August 2015 in Myanmar were assessed based on satellite images, GlobeLand30 data, and other global open sourced information as a study case. The results show that integrating global open geo-information could serve as a practical and efficient means of assessing damage resulting from major disasters worldwide, especially at the early emergency response stage.

  18. Description and testing of the Geo Data Portal: Data integration framework and Web processing services for environmental science collaboration (United States)

    Blodgett, David L.; Booth, Nathaniel L.; Kunicki, Thomas C.; Walker, Jordan I.; Viger, Roland J.


    Interest in sharing interdisciplinary environmental modeling results and related data is increasing among scientists. The U.S. Geological Survey Geo Data Portal project enables data sharing by assembling open-standard Web services into an integrated data retrieval and analysis Web application design methodology that streamlines time-consuming and resource-intensive data management tasks. Data-serving Web services allow Web-based processing services to access Internet-available data sources. The Web processing services developed for the project create commonly needed derivatives of data in numerous formats. Coordinate reference system manipulation and spatial statistics calculation components implemented for the Web processing services were confirmed using ArcGIS 9.3.1, a geographic information science software package. Outcomes of the Geo Data Portal project support the rapid development of user interfaces for accessing and manipulating environmental data.

  19. Human health impacts for renewable energy scenarios from the EnerGEO Platform of Integrated Assessment (PIA)

    International Nuclear Information System (INIS)

    Lefevre, Mireille; Gschwind, Benoit; Blanc, Isabelle; Ranchin, Thierry; Cofala, Janusz; Fuss, Sabine


    This article reports impact results from running the EnerGEO Platform of Integrated Assessment (PIA) related to human health for different scenarios in Europe. The scenarios were prepared within the EnerGEO project. The idea of this European project is to determine how low carbon scenarios, and in particular scenarios with a high share of renewable energy, affect concentrations of air pollutants and as a consequence affect human health. PM 2.5 concentrations were estimated with the IIASA Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model on a time horizon up to the year 2050 for different scenarios. We analyse here the estimation of the Loss of Life Expectancy due to PM 2.5 concentrations for the Baseline scenario taken as a reference and the Maximum renewable power scenario. (orig.)

  20. AMIDST: Attracting Minorities to Geosciences Through Involved Digital Story Telling (United States)

    Prakash, A.; Ohler, J.; Cooper, C.; McDermott, M.; Heinrich, J.; Johnson, R.; Leeper, L.; Polk, N.; Wimer, T.


    Attracting Minorities to Geosciences Through Involved Digital Story Telling (AMIDST) is a project funded by the Geoscience Directorate of the National Science Foundation through their program entitled Opportunities for Enhancing Diversity in Geosciences. This project centers around the idea of integrating place-based geoscience education with culturally sensitive digital story telling, to engage and attract Alaska’s native and rural children from grades 3 through 5 to geosciences. In Spring 2008 we brought together a team 2 native elders, a group of scientists and technicians, an evaluator, 2 teachers and their 24 third grade students from Fairbanks (interior Alaska) to create computer-based digital stories around the geoscience themes of permafrost, and forest fires. These two to four minutes digital narratives consisted of a series of images accompanied by music and a voice-over narration by the children. In Fall 2008 we worked with a similar group from Nome (coastal town in western Alaska). The geoscience themes were climate change, and gold in Alaska. This time the students used the same kind of “green screen” editing so prevalent in science fiction movies. Students enacted and recorded their stories in front of a green screen and in post-production replaced the green background with photos, drawings and scientific illustrations related to their stories. Evaluation involved pre and post project tests for all participants, mid-term individual interviews and exit-interviews of selected participants. Project final assessment results from an independent education evaluator showed that both students and teachers improved their geo science content knowledge about permafrost, forest fires, gold mining, and sea ice changes. Teachers and students went through a very steep learning curve and gained experience and new understanding in digital storytelling in the context of geologic phenomena of local interest. Children took pride in being creators, directors and

  1. Writing fiction about geoscience (United States)

    Andrews, S.


    Employment in geology provides excellent preparation for writing mystery novels that teach geoscience. While doing pure research at the USGS under the mentorship of Edwin D. McKee, I learned that the rigors of the scientific method could be applied not only to scientific inquiry but to any search for what is true, including the art of storytelling (the oldest and still most potent form of communication), which in turn supports science. Geoscience constructs narratives of what has happened or what might happen; hence, to communicate my findings, I must present a story. Having developed my writing skills while preparing colleague-reviewed papers (which required that I learn to set my ego aside and survive brutal critiques), the many rounds of edits required to push a novel through a publishing house were a snap. My geoscience training for becoming a novelist continued through private industry, consultancy, and academia. Employment as a petroleum geologist added the pragmatism of bottom-line economics and working to deadlines to my skill set, and nothing could have prepared me for surviving publishers' rejections and mixed reviews better than having to pitch drilling projects to jaded oil patch managers, especially just before lunchtime, when I was all that stood between them and their first martinis of the day. Environmental consulting was an education in ignorant human tricks and the politics of resource consumption gone astray. When teaching at the college level and guest lecturing at primary and secondary schools, my students taught me that nothing was going to stick unless I related the story of geoscience to their lives. When choosing a story form for my novels, I found the mystery apropos because geoscientists are detectives. Like police detectives, we work with fragmentary and often hidden evidence using deductive logic, though our corpses tend to be much, much older or not dead yet. Throughout my career, I learned that negative stereotypes about scientists

  2. GeoPro: Technology to Enable Scientific Modeling

    International Nuclear Information System (INIS)

    C. Juan


    Development of the ground-water flow model for the Death Valley Regional Groundwater Flow System (DVRFS) required integration of numerous supporting hydrogeologic investigations. The results from recharge, discharge, hydraulic properties, water level, pumping, model boundaries, and geologic studies were integrated to develop the required conceptual and 3-D framework models, and the flow model itself. To support the complex modeling process and the needs of the multidisciplinary DVRFS team, a hardware and software system called GeoPro (Geoscience Knowledge Integration Protocol) was developed. A primary function of GeoPro is to manage the large volume of disparate data compiled for the 100,000-square-kilometer area of southern Nevada and California. The data are primarily from previous investigations and regional flow models developed for the Nevada Test Site and Yucca Mountain projects. GeoPro utilizes relational database technology (Microsoft SQL Server(trademark)) to store and manage these tabular point data, groundwater flow model ASCII data, 3-D hydrogeologic framework data, 2-D and 2.5-D GIS data, and text documents. Data management consists of versioning, tracking, and reporting data changes as multiple users access the centralized database. GeoPro also supports the modeling process by automating the routine data transformations required to integrate project software. This automation is also crucial to streamlining pre- and post-processing of model data during model calibration. Another function of GeoPro is to facilitate the dissemination and use of the model data and results through web-based documents by linking and allowing access to the underlying database and analysis tools. The intent is to convey to end-users the complex flow model product in a manner that is simple, flexible, and relevant to their needs. GeoPro is evolving from a prototype system to a production-level product. Currently the DVRFS pre- and post-processing modeling tools are being re

  3. Globalization and regionalisation: Determinants of the transformation and the process of the integration of the geo-space

    Directory of Open Access Journals (Sweden)

    Todorović Marina J.


    Full Text Available The two processes that, basically since the emergence of the classic civilizations, determine major changes in the basic spatial structures in the world are, de facto, of antipode basic characteristics (globalization and regionalisation, but it is often the case that there are elements with traits of complementarily. They have crucial effect on development and integration of geo-spaces and many research results indicate that, depending of the stage of the development, both processes were present in the geo-space in various forms in almost all the phases of its development and that they have contributed to establishment of all the new spatial-structural relations. The subject of this analyses is, among other issues, a brief genesis of these two processes, including identification of their main starters and effects. Besides from that, there is a special attention paid to the role of the traffic as their basic element and one of the important initiators and its role in those parts of the European continent that are not yet included by these processes of crucial changes of the geo-space as the whole.

  4. Integrated Geoscience Studies in the Greater Yellowstone Area - Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem (United States)

    Morgan, Lisa A.


    Yellowstone National Park, rimmed by a crescent of older mountainous terrain, has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of volcanism, tectonism, and later glaciation. Its spectacular hydrothermal systems cap this landscape. From 1997 through 2003, the United States Geological Survey Mineral Resources Program conducted a multidisciplinary project of Yellowstone National Park entitled Integrated Geoscience Studies of the Greater Yellowstone Area, building on a 130-year foundation of extensive field studies (including the Hayden survey of 1871, the Hague surveys of the 1880s through 1896, the studies of Iddings, Allen, and Day during the 1920s, and NASA-supported studies starting in the 1970s - now summarized in USGS Professional Paper 729 A through G) in this geologically dynamic terrain. The project applied a broad range of scientific disciplines and state-of-the-art technologies targeted to improve stewardship of the unique natural resources of Yellowstone and enable the National Park Service to effectively manage resources, protect park visitors from geologic hazards, and better educate the public on geologic processes and resources. This project combined a variety of data sets in characterizing the surficial and subsurface chemistry, mineralogy, geology, geophysics, and hydrothermal systems in various parts of the park. The sixteen chapters presented herein in USGS Professional Paper 1717, Integrated Geoscience Studies in the Greater Yellowstone Area - Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem, can be divided into four major topical areas: (1) geologic studies, (2) Yellowstone Lake studies, (3) geochemical studies, and (4) geophysical studies. The geologic studies include a paper by Ken Pierce and others on the influence of the Yellowstone hotspot on landscape formation, the ecological effects of the hotspot, and the human experience and human geography of the greater

  5. Agent Based Modeling Applications for Geosciences (United States)

    Stein, J. S.


    Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in

  6. Supporting international development through the integration of relevant 'soft-skills' into geoscience education (United States)

    Gill, Joel C.


    Geologists have an important role to play in international development, improving disaster risk reduction and access to clean water, sanitation, infrastructure, and natural resources. That geologists can contribute to international development is well established. Less so, however, is an understanding of the 'soft' skills required to do this effectively. The fight against global poverty requires an integrated and interdisciplinary approach, demanding a host of skills other than technical geology. Factors such as cultural understanding, cross disciplinary communication, diplomacy, community mobilisation and participation are all aspects that, if lacking, may result in a project failing to have maximum impact. Whilst project success may be highly dependent on these skills and aspects of knowledge, opportunities to develop them throughout a geologist's education are not common. Through a discussion of two case studies (based on water and hazards work), this study seeks to demonstrate the value of an integrated approach and the skills that geologists should invest in at an early stage of their career. It proceeds to examine a range of practical ways by which geology students can develop these skills during and after their education. A number of these opportunities are currently being utilised by Geology for Global Development (GfGD), a not-for-profit organisation working in the UK to support young geoscientists to make a long-term and effective contribution to international development.

  7. Probe into geo-information science and information science in nuclear and geography science in China

    International Nuclear Information System (INIS)

    Tang Bin


    In the past ten years a new science-Geo-Information Science, a branch of Geoscience, developed very fast, which has been valued and paid much attention to. Based on information science, the author analyzes the flow of material, energy, people and information and their relations, presents the place of Geo-Information Science in Geo-science and its content from Geo-Informatics, Geo-Information technology and the application of itself. Finally, the author discusses the main content and problem existed in Geo-Information Science involved in Nuclear and Geography Science

  8. WMO's activities in gender mainstreaming in geosciences, with a special focus on integrated flood management (United States)

    Manaenkova, Elena; Caponi, Claudio; Alexieva, Assia; Poissonnier, Maud; Tripathi, Ramesh


    Statistics show that women represent a minority in science, technology, engineering and mathematics (STEM). They are significantly underrepresented in governance, management and international negotiations. They further comprise only a third of the global workforce at National Meteorological and Hydrological Services and only one out of five senior managers is a woman. This paper presents historical trends and statistics on the participation of women and men in all structures and activities of the World Meteorological Organization (WMO). It explores the root causes of women's underrepresentation in the meteorological, hydrological and climatological profession as well as analyzes its adverse effects in terms of the scarcity of role models for young female professionals and the lack of gender considerations in the provision of weather, hydrological and climate services. The paper presents WMO's approach to addressing these issues through the adoption of a WMO Gender Equality Policy, a comprehensive Gender Action Plan, targeted leadership training, a series of awareness raising campaigns, and specific recommendations on how to make weather, hydrological and climate services more gender-sensitive. As a specific example, the Associated Programme on Flood Management (APFM) of WMO and the Global Water Partnership (GWP) is in the process of developing a training manual for gender mainstreaming in integrated flood management. This generic, instructive, at the same time informative training manual and facilitator's guide will strive to fill gaps in practical knowledge, decision-making and further provide assistance in gender sensitive approaches for both local policy makers and communities affected by floods. The format and contents of the manual are particularly focused on every phase of the flood management cycle, incorporating gender based needs, strategies and actions/approaches. The facilitator or training instructor is encouraged to adapt the materials with local case

  9. Geo-risk in Central Africa: integrating multi-hazards and vulnerability to support risk management (United States)

    Kervyn, Francois; Nicolas, d'Oreye; Haventith, Hans-Balder; Kervyn, Matthieu; Caroline, Michellier; Trefon, Theodore; Wolff, Eleonore


    In some places, geo-hazards are a major concern for population, the assets, and the economy. This is especially the case in the East African Rift (EAR), where high volcanic and tectonic activities are sometimes coupled with geopolitical issues and dense population as in the Kivu rift area. That area is one of the most densely populated regions of Central Africa and is affected by decades of political instability and subsequent humanitarian crisis. In that region, geo-hazards are poorly assessed despite the numerous recent and historical events. Moreover, the relief of the rift also corresponds in this area to the main political boundaries, which complicates the coordination and the management of geo-hazards monitoring networks and related mitigation measures. Based on the experience acquired through several projects focused on hazard assessment and reinforcement of local monitoring capacity, the GeoRisCA project is addressing the assessment of the global risk related to the major geohazards that affect the region. Taking into account the identified factors, GeoRisCA's objective is to assess the risk from multi geohazards in a region which is subject to many (possibly combined) disasters every year and which could undergo a large impact disaster in the coming years. At regional scale, the high seismicity and the volcanic activity are the most important concerns. Possible eruptions of lethal gas in certain area around Goma, and the large number of reported and likely future mass movements as well as site-specific seismic amplification effects increase the danger at local scale. As both human lives and specific ecosystems are under threat, comprehensive methodologies are required to reliably assess multi geohazards over both short and long terms and to clearly outline and map related risk. These tools are needed by local and regional authorities as well as local and international stakeholders in management and mitigation processes. Developed methodologies in Geo

  10. A Geoscience Workforce Model for Non-Geoscience and Non-Traditional STEM Students (United States)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.


    The Summit on the Future of Geoscience Undergraduate Education has recently identified key professional skills, competencies, and conceptual understanding necessary in the development of undergraduate geoscience students (American Geosciences Institute, 2015). Through a comprehensive study involving a diverse range of the geoscience academic and employer community, the following professional scientist skills were rated highly important: 1) critical thinking/problem solving skills; 2) effective communication; 3) ability to access and integrate information; 4) strong quantitative skills; and 5) ability to work in interdisciplinary/cross cultural teams. Based on the findings of the study above, the New York City College of Technology (City Tech) has created a one-year intensive training program that focusses on the development of technical and non-technical geoscience skills for non-geoscience, non-traditional STEM students. Although City Tech does not offer geoscience degrees, the primary goal of the program is to create an unconventional pathway for under-represented minority STEM students to enter, participate, and compete in the geoscience workforce. The selected cohort of STEM students engage in year-round activities that include a geoscience course, enrichment training workshops, networking sessions, leadership development, research experiences, and summer internships at federal, local, and private geoscience facilities. These carefully designed programmatic elements provide both the geoscience knowledge and the non-technical professional skills that are essential for the geoscience workforce. Moreover, by executing this alternate, robust geoscience workforce model that attracts and prepares underrepresented minorities for geoscience careers, this unique pathway opens another corridor that helps to ameliorate the dire plight of the geoscience workforce shortage. This project is supported by NSF IUSE GEOPATH Grant # 1540721.

  11. Practical Examples of an Integrated Field Study Program at Mt. Fuji: Geosciences and the Arts (United States)

    Ito, T.; Kamikuri, S. I.; Otsuji, H.; Kataguchi, N.; Maruyama, H.; Hashiura, H.


    Mt. Fuji is a symbol of existence for the Japanese and it also has been a religiously revered subject. In addition, as represented by the ukiyo-e of Hokusai and Hiroshige, it is a subject of paintings, as well as of various types of literary expression such as waka, haiku and novels. Historically, there was a time when Mt. Fuji was used as a symbol of the integration of the country; and it has long reflected the culture, life and thoughts of the Japanese. On another level, from the Earth scientific point of view, Mt. Fuji is one of the most active volcanoes in Japan. Teacher training colleges in Japan have created educational programs for all subjects taught at school. However, as there is no effective linkage among these subjects, students may have different opinions on them according to their curriculum. In this study, we adopted a multifaceted learning approach toward that most symbolic icon of our country. In FY2014 and FY2016, a course created by the College of Education at Ibaraki University, called "Fieldwork on Geology," was conducted at and around Mt. Fuji. In addition to conducting fieldwork from the viewpoint of earth science, it also had abundant artistic content. Academics in the fields of earth science, art and pedagogy worked closely together from the planning stage and participated in a field study with 25 university students. Specifically, we focused on how the experience of sketching a landscape affects field observations by broadening the viewpoint and deepening the understanding of students. To ascertain the bidirectional educational effects between earth sciences and art, students were asked: 1) to express an image of Mt. Fuji, and 2) to appreciate paintings of Mt. Fuji and express the information they garnered from the paintings, before and after the fieldwork. These two exercises are considered as providing insights into how the students' understanding had changed. In addition, reports and impressions submitted by the students were used as

  12. OneGeology- A Global Geoscience Data Platform (United States)

    Harrison, M.; Komac, M.; Duffy, T.; Robida, F.; Allison, M. L.


    OneGeology (1G) is an initiative of Geological Survey Organisations (GSOs) around the globe that dates back to 2007. Since then, OneGeology has been a leader in developing geological online map data using GeoSciML- an international interoperability standard for the exchange of geological data. Increased use of this new standard allows geological data to be shared and integrated across the planet among organisations. One of the goals of OneGeology is an exchange of know-how with the developing world, shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making it more transparent, its operation more sustainable and its membership more open where in addition to GSOs, other types of organisations that create and use geoscience data can join and contribute. The next stage of the OneGeology initiative is focused on increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource about the rocks beneath our feet. Authoritative geoscience information will help to mitigate natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale with the aim of 1G to increase awareness of the geosciences and their relevance among professionals and general public- to be part of the solution. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscience data and the OneGeology Portal ( is the place to find them.

  13. EuroGeoSurveys (United States)

    Demicheli, L.; Ludden, J. N.; Robida, F.


    In order to create safe, healthy and wealthy places to live in, it is vital that we understand our planet. At national level the collection of information on the state of the solid Earth and its processes is normally mandated to Geological Surveys. In fact, a Geological Survey is the national institution responsible for the geological inventory, monitoring, knowledge and research for the security, health and prosperity of the society. And EuroGeoSurveys (EGS) is the organisation representing the Geological Surveys from 33 countries around Europe. With one member for each country of the European Union and beyond, including the Russian Federation and Ukraine, the EGS network covers the whole continent. EGS'principal purpose is to provide geoscientific knowledge that underpins European policies and regulations for the benefit of society. Naturally, in our day-to-day activities, we contribute to the merging of economic, environmental and social agendas. Engaging a joint workforce of several thousands of geoscientists, also involving regional geological surveys in Germany, Italy and Spain, we strive to be the first body to be contacted when there is an international need for European geodata, or'geo-help'. For this reason we work on a daily basis with the EU institutions, and are considered the natural source of information on Earth science issues and relevant downstream applications in Europe. Our General Secretariat is based in the European Quarter of Brussels close to the European Commission, the EU Council, the European Parliament, and the political seat of NATO. Our operational strategy is based on the cooperation between national institutions, which enables to synergistically integrate both information and activities of our member organisations. This has allowed us to make significant progress over the years, permitting geology to become a topic deserving great attention on the European agenda. In order to enable a quick but high quality response to requests for

  14. Building an International Geosciences Network (i-GEON) for cyberinfrastructure-based Research and Education (United States)

    Seber, D.; Baru, C.


    The Geosciences Network (GEON) project is a collaboration among multiple institutions to develop a cyberinfrastructure (CI) platform in support of integrative geoscience research activities. Taking advantage of the state-of-the-art information technology resources GEON researchers are building a cyberinfrastructure designed to enable data sharing, resource discovery, semantic data integration, high-end computations and 4D visualization in an easy-to-use web-based environment. The cyberinfrastructure in GEON is required to support an inherently distributed system, since the scientists, who are users as well as providers of resources, are themselves distributed. International collaborations are a natural extension of GEON; the geoscience research requires strong international collaborations. The goals of the i-GEON activities are to collaborate with international partners and jointly build a cyberinfrastructure for the geosciences to enable collaborative work environments. International partners can participate in GEON efforts, establish GEON nodes at their universities, institutes, or agencies and also contribute data and tools to the network. Via jointly run cyberinfrastructure workshops, the GEON team also introduces students, scientists, and research professionals to the concepts of IT-based geoscience research and education. Currently, joint activities are underway with the Chinese Academy of Sciences in China, the GEO Grid project at AIST in Japan, and the University of Hyderabad in India (where the activity is funded by the Indo-US Science and Technology Forum). Several other potential international partnerships are under consideration. iGEON is open to all international partners who are interested in working towards the goal of data sharing, managing and integration via IT-based platforms. Information about GEON and its international activities can be found at

  15. Geoscience Digital Data Resource and Repository Service (United States)

    Mayernik, M. S.; Schuster, D.; Hou, C. Y.


    The open availability and wide accessibility of digital data sets is becoming the norm for geoscience research. The National Science Foundation (NSF) instituted a data management planning requirement in 2011, and many scientific publishers, including the American Geophysical Union and the American Meteorological Society, have recently implemented data archiving and citation policies. Many disciplinary data facilities exist around the community to provide a high level of technical support and expertise for archiving data of particular kinds, or for particular projects. However, a significant number of geoscience research projects do not have the same level of data facility support due to a combination of several factors, including the research project's size, funding limitations, or topic scope that does not have a clear facility match. These projects typically manage data on an ad hoc basis without limited long-term management and preservation procedures. The NSF is supporting a workshop to be held in Summer of 2018 to develop requirements and expectations for a Geoscience Digital Data Resource and Repository Service (GeoDaRRS). The vision for the prospective GeoDaRRS is to complement existing NSF-funded data facilities by providing: 1) data management planning support resources for the general community, and 2) repository services for researchers who have data that do not fit in any existing repository. Functionally, the GeoDaRRS would support NSF-funded researchers in meeting data archiving requirements set by the NSF and publishers for geosciences, thereby ensuring the availability of digital data for use and reuse in scientific research going forward. This presentation will engage the AGU community in discussion about the needs for a new digital data repository service, specifically to inform the forthcoming GeoDaRRS workshop.

  16. GeoMedStat: an integrated spatial surveillance system to track air pollution and associated healthcare events

    Directory of Open Access Journals (Sweden)

    Fazlay S. Faruque


    Full Text Available Air pollutants, such as particulate matter with a diameter ≤2.5 microns (PM2.5 and ozone (O3, are known to exacerbate asthma and other respiratory diseases. An integrated surveillance system that tracks such air pollutants and associated disease incidence can assist in risk assessment, healthcare preparedness and public awareness. However, the implementation of such an integrated environmental health surveillance system is a challenge due to the disparate sources of many types of data and the implementation becomes even more complicated for a spatial and real-time system due to lack of standardised technological components and data incompatibility. In addition, accessing and utilising health data that are considered as Protected Health Information (PHI require maintaining stringent protocols, which have to be supported by the system. This paper aims to illustrate the development of a spatial surveillance system (GeoMedStat that is capable of tracking daily environmental pollutants along with both daily and historical patient encounter data. It utilises satellite data and the groundmonitor data from the US National Aeronautics and Space Administration (NASA and the US Environemental Protection Agenecy (EPA, rspectively as inputs estimating air pollutants and is linked to hospital information systems for accessing chief complaints and disease classification codes. The components, developmental methods, functionality of GeoMedStat and its use as a real-time environmental health surveillance system for asthma and other respiratory syndromes in connection with with PM2.5 and ozone are described. It is expected that the framework presented will serve as an example to others developing real-time spatial surveillance systems for pollutants and hospital visits.

  17. Design and study of geosciences data share platform :platform framework, data interoperability, share approach (United States)

    Lu, H.; Yi, D.


    The Deep Exploration is one of the important approaches to the Geoscience research. Since 1980s we had started it and achieved a lot of data. Researchers usually integrate both data of space exploration and deep exploration to study geological structures and represent the Earth’s subsurface, and analyze and explain on the base of integrated data. Due to the different exploration approach it results the heterogeneity of data, and therefore the data achievement is always of the import issue to make the researchers confused. The problem of data share and interaction has to be solved during the development of the SinoProbe research project. Through the research of domestic and overseas well-known exploration project and geosciences data platform, the subject explores the solution of data share and interaction. Based on SOA we present the deep exploration data share framework which comprises three level: data level is used for the solution of data store and the integration of the heterogeneous data; medial level provides the data service of geophysics, geochemistry, etc. by the means of Web service, and carry out kinds of application combination by the use of GIS middleware and Eclipse RCP; interaction level provides professional and non-professional customer the access to different accuracy data. The framework adopts GeoSciML data interaction approach. GeoSciML is a geosciences information markup language, as an application of the OpenGIS Consortium’s (OGC) Geography Markup Language (GML). It transfers heterogeneous data into one earth frame and implements inter-operation. We dissertate in this article the solution how to integrate the heterogeneous data and share the data in the project of SinoProbe.

  18. GEO portal (United States)

    US Agency for International Development — The USAID GeoPortal is a new application that groups web-based capabilities for on-demand discovery of and access to geospatial content, services, expertise, and...

  19. Making the Case for GeoSTEM Education (United States)

    Moore, John


    -related resources that monitor our planet and protect the life and property of our citizens. The integration of a Geoscience and Remote Sensing Laboratory into an existing Earth Science program or a new Earth Systems Science course allows students to acquire the necessary rigorous laboratory skills as required by colleges or universities, while developing and becoming proficient in technological skills using industry standard analysis tools. With the accessibility of real-time or near real time data, students in a GeoSTEM driven course can engage in inquiry-based laboratory experiences focusing on real life applications, both local and global. Developing pathways between geoscientists, researchers, teachers, and students, will create an exchange of information, data, observations, and measurements that will lead to authentic science investigations through the monitoring of weather, water quality, sea surface temperature, coral reefs, marine wildlife, earthquakes, tsunamis, wildfires, air quality, land cover, and much more. Satellite, remote sensing, and geospatial technologies can introduce students and society to data that can inform policy makers and society both now and in the future.

  20. The EnerGEO Platform of Integrated Assessment (PIA). Environmental assessment of scenarios as a web service

    International Nuclear Information System (INIS)

    Blanc, Isabelle; Gschwind, Benoit; Lefevre, Mireille


    With the International Energy Agency estimating that global energy demand will increase between 40 and 50 percent by 2030 (compared to 2003), scientists and policymakers are concerned about the sustainability of the current energy system and what environmental pressures might result from the development of future energy systems. EnerGEO is an ongoing FP7 Project (2009-2013) which assesses the current and future impact of energy use on the environment by linking environmental observation systems with the processes involved in exploiting energy resources. The idea of this European project is to determine how low carbon scenarios, and in particular scenarios with a high share of renewable electricity, affect emissions of air pollutants and greenhouse gases (GHG) and contribute to mitigation of negative energy system impacts on human health and ecosystems. A Platform of Integrated Assessment (PIA) has been elaborated to provide impact results for a selection of scenarios via a set of models (large-scale energy models, Life Cycle Assessment models,..). This PIA is currently available through a web service. The concept of the PIA is detailed and to illustrate its interest, a set of results is given with the use of the simulation mode of the European version of GAINS for a selection of scenarios. (orig.)

  1. Raspberry Pi in-situ network monitoring system of groundwater flow and temperature integrated with OpenGeoSys (United States)

    Park, Chan-Hee; Lee, Cholwoo


    Raspberry Pi series is a low cost, smaller than credit-card sized computers that various operating systems such as linux and recently even Windows 10 are ported to run on. Thanks to massive production and rapid technology development, the price of various sensors that can be attached to Raspberry Pi has been dropping at an increasing speed. Therefore, the device can be an economic choice as a small portable computer to monitor temporal hydrogeological data in fields. In this study, we present a Raspberry Pi system that measures a flow rate, and temperature of groundwater at sites, stores them into mysql database, and produces interactive figures and tables such as google charts online or bokeh offline for further monitoring and analysis. Since all the data are to be monitored on internet, any computers or mobile devices can be good monitoring tools at convenience. The measured data are further integrated with OpenGeoSys, one of the hydrogeological models that is also ported to the Raspberry Pi series. This leads onsite hydrogeological modeling fed by temporal sensor data to meet various needs.

  2. Promoting the Geosciences for Minority Students in the Urban Coastal Environment of New York City (United States)

    Liou-Mark, J.; Blake, R.


    The 'Creating and Sustaining Diversity in the Geo-Sciences among Students and Teachers in the Urban Coastal Environment of New York City' project was awarded to New York City College of Technology (City Tech) by the National Science Foundation to promote the geosciences for students in middle and high schools and for undergraduates, especially for those who are underrepresented minorities in STEM. For the undergraduate students at City Tech, this project: 1) created and introduced geoscience knowledge and opportunities to its diverse undergraduate student population where geoscience is not currently taught at City Tech; and 2) created geoscience articulation agreements. For the middle and high schools, this project: 1) provided inquiry-oriented geoscience experiences (pedagogical and research) for students; 2) provided standards-based professional development (pedagogical and research) in Earth Science for teachers; 3) developed teachers' inquiry-oriented instructional techniques through the GLOBE program; 4) increased teacher content knowledge and confidence in the geosciences; 5) engaged and intrigued students in the application of geoscience activities in a virtual environment; 6) provided students and teachers exposure in the geosciences through trip visitations and seminars; and 7) created community-based geoscience outreach activities. Results from this program have shown significant increases in the students (grades 6-16) understanding, participation, appreciation, and awareness of the geosciences. Geoscience modules have been created and new geosciences courses have been offered. Additionally, students and teachers were engaged in state-of-the-art geoscience research projects, and they were involved in many geoscience events and initiatives. In summary, the activities combined geoscience research experiences with a robust learning community that have produced holistic and engaging stimuli for the scientific and academic growth and development of grades 6

  3. The community-driven BiG CZ software system for integration and analysis of bio- and geoscience data in the critical zone (United States)

    Aufdenkampe, A. K.; Mayorga, E.; Horsburgh, J. S.; Lehnert, K. A.; Zaslavsky, I.; Valentine, D. W., Jr.; Richard, S. M.; Cheetham, R.; Meyer, F.; Henry, C.; Berg-Cross, G.; Packman, A. I.; Aronson, E. L.


    Here we present the prototypes of a new scientific software system designed around the new Observations Data Model version 2.0 (ODM2, to substantially enhance integration of biological and Geological (BiG) data for Critical Zone (CZ) science. The CZ science community takes as its charge the effort to integrate theory, models and data from the multitude of disciplines collectively studying processes on the Earth's surface. The central scientific challenge of the CZ science community is to develop a "grand unifying theory" of the critical zone through a theory-model-data fusion approach, for which the key missing need is a cyberinfrastructure for seamless 4D visual exploration of the integrated knowledge (data, model outputs and interpolations) from all the bio and geoscience disciplines relevant to critical zone structure and function, similar to today's ability to easily explore historical satellite imagery and photographs of the earth's surface using Google Earth. This project takes the first "BiG" steps toward answering that need. The overall goal of this project is to co-develop with the CZ science and broader community, including natural resource managers and stakeholders, a web-based integration and visualization environment for joint analysis of cross-scale bio and geoscience processes in the critical zone (BiG CZ), spanning experimental and observational designs. We will: (1) Engage the CZ and broader community to co-develop and deploy the BiG CZ software stack; (2) Develop the BiG CZ Portal web application for intuitive, high-performance map-based discovery, visualization, access and publication of data by scientists, resource managers, educators and the general public; (3) Develop the BiG CZ Toolbox to enable cyber-savvy CZ scientists to access BiG CZ Application Programming Interfaces (APIs); and (4) Develop the BiG CZ Central software stack to bridge data systems developed for multiple critical zone domains into a single

  4. Integrating anthropogenic hazard data to facilitate research related to the exploitation of geo-resources (United States)

    Kwiatek, Grzegorz; Blanke, Aglaja; Olszewska, Dorota; Orlecka-Sikora, Beata; Lasocki, Stanisław; Kozlovskaya, Elena; Nevalainen, Jouni; Schmittbuhl, Jean; Grasso, Jean-Robert; Schaming, Marc; Bigarre, Pascal; Kinscher, Jannes-Lennart; Saccorotti, Gilberto; Garcia, Alexander; Cassidy, Nigel; Toon, Sam; Mutke, Grzegorz; Sterzel, Mariusz; Szepieniec, Tomasz


    The Thematic Core Service "Anthropogenic Hazards" (TCS AH) integrates data and provides various data services in a form of complete e-research infrastructure for advanced analysis and geophysical modelling of anthropogenic hazard due to georesources exploitation. TCS AH is based on the prototype built in the framework of the IS-EPOS project POIG.02.03.00-14-090/13-00 ( The TCS AH is currently being further developed within EPOS Implementation phase (H2020-INFRADEV-1-2015-1, INFRADEV-3-2015). The TCS AH aims to have a measurable impact on innovative research and development by providing a comprehensive, wide-scale and high quality research infrastructure available to the scientific community, industrial partners and public. One of the main deliverable of TCS AH is the access to numerous induced seismicity datasets called "episodes". The episode is defined as a comprehensive set of data describing the geophysical process induced or triggered by technological activity, which under certain circumstances can become hazardous for people, infrastructure and the environment. The episode is a time-correlated, standardized collection of geophysical, technological and other relevant geodata forming complete documentation of seismogenic process. In addition to the 6 episodes already implemented during previous phase of integration, and 3 episodes integrated within SHEER project, at least 18 new episodes related to conventional hydrocarbon extraction, reservoir treatment, underground mining and geothermal energy production are currently being integrated into the TCS AH. The heterogeneous multi-disciplinary data from different episodes are subjected to an extensive quality control (QC) procedure composed of five steps and involving the collaborative work of data providers, quality control team, IT team, that is being supervised by the quality control manager with the aid of Redmine platform. The first three steps of QC are performed at local data center

  5. Geoscience Education Research: A Brief History, Context and Opportunities (United States)

    Mogk, D. W.; Manduca, C. A.; Kastens, K. A.


    DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding (NRC, 2011). In the geosciences, content knowledge derives from all the "spheres, the complex interactions of components of the Earth system, applications of first principles from allied sciences, an understanding of "deep time", and approaches that emphasize the interpretive and historical nature of geoscience. Insights gained from the theory and practice of the cognitive and learning sciences that demonstrate how people learn, as well as research on learning from other STEM disciplines, have helped inform the development of geoscience curricular initiatives. The Earth Science Curriculum Project (1963) was strongly influenced by Piaget and emphasized hands-on, experiential learning. Recognizing that education research was thriving in related STEM disciplines a NSF report (NSF 97-171) recommended "... that GEO and EHR both support research in geoscience education, helping geoscientists to work with colleagues in fields such as educational and cognitive psychology, in order to facilitate development of a new generation of geoscience educators." An NSF sponsored workshop, Bringing Research on Learning to the Geosciences (2002) brought together geoscience educators and cognitive scientists to explore areas of mutual interest, and identified a research agenda that included study of spatial learning, temporal learning, learning about complex systems, use of visualizations in geoscience learning, characterization of expert learning, and learning environments. Subsequent events have focused on building new communities of scholars, such as the On the Cutting Edge faculty professional development workshops, extensive collections of online resources, and networks of scholars that have addressed teaching

  6. Geosciences Information Network (GIN): A modular, distributed, interoperable data network for the geosciences (United States)

    Allison, M.; Gundersen, L. C.; Richard, S. M.; Dickinson, T. L.


    A coalition of the state geological surveys (AASG), the U.S. Geological Survey (USGS), and partners will receive NSF funding over 3 years under the INTEROP solicitation to start building the Geoscience Information Network ( a distributed, interoperable data network. The GIN project will develop standardized services to link existing and in-progress components using a few standards and protocols, and work with data providers to implement these services. The key components of this network are 1) catalog system(s) for data discovery; 2) service definitions for interfaces for searching catalogs and accessing resources; 3) shared interchange formats to encode information for transmission (e.g. various XML markup languages); 4) data providers that publish information using standardized services defined by the network; and 5) client applications adapted to use information resources provided by the network. The GIN will integrate and use catalog resources that currently exist or are in development. We are working with the USGS National Geologic Map Database's existing map catalog, with the USGS National Geological and Geophysical Data Preservation Program, which is developing a metadata catalog (National Digital Catalog) for geoscience information resource discovery, and with the GEON catalog. Existing interchange formats will be used, such as GeoSciML, ChemML, and Open Geospatial Consortium sensor, observation and measurement MLs. Client application development will be fostered by collaboration with industry and academic partners. The GIN project will focus on the remaining aspects of the system -- service definitions and assistance to data providers to implement the services and bring content online - and on system integration of the modules. Initial formal collaborators include the OneGeology-Europe consortium of 27 nations that is building a comparable network under the EU INSPIRE initiative, GEON, Earthchem, and GIS software company ESRI

  7. Personalized, Shareable Geoscience Dataspaces For Simplifying Data Management and Improving Reproducibility (United States)

    Malik, T.; Foster, I.; Goodall, J. L.; Peckham, S. D.; Baker, J. B. H.; Gurnis, M.


    Research activities are iterative, collaborative, and now data- and compute-intensive. Such research activities mean that even the many researchers who work in small laboratories must often create, acquire, manage, and manipulate much diverse data and keep track of complex software. They face difficult data and software management challenges, and data sharing and reproducibility are neglected. There is signficant federal investment in powerful cyberinfrastructure, in part to lesson the burden associated with modern data- and compute-intensive research. Similarly, geoscience communities are establishing research repositories to facilitate data preservation. Yet we observe a large fraction of the geoscience community continues to struggle with data and software management. The reason, studies suggest, is not lack of awareness but rather that tools do not adequately support time-consuming data life cycle activities. Through NSF/EarthCube-funded GeoDataspace project, we are building personalized, shareable dataspaces that help scientists connect their individual or research group efforts with the community at large. The dataspaces provide a light-weight multiplatform research data management system with tools for recording research activities in what we call geounits, so that a geoscientist can at any time snapshot and preserve, both for their own use and to share with the community, all data and code required to understand and reproduce a study. A software-as-a-service (SaaS) deployment model enhances usability of core components, and integration with widely used software systems. In this talk we will present the open-source GeoDataspace project and demonstrate how it is enabling reproducibility across geoscience domains of hydrology, space science, and modeling toolkits.

  8. Geo Uruguay

    International Nuclear Information System (INIS)


    This book is based on the Geo Uruguay project which consists on the analysis and diagnosis of the environmental impact in the human welfare. The main topics covered in the different chapters are: human welfare, geographical aspects, climate change, transport and energy, changes in land use, coastal features, biodiversity, industrial urbanization, waste and territorial ordering, energy offers like oil, wood, natural gas, coal and electricity

  9. Abiding by codes of ethics and codes of conduct imposed on members of learned and professional geoscience institutions and - a tiresome formality or a win-win for scientific and professional integrity and protection of the public? (United States)

    Allington, Ruth; Fernandez, Isabel


    In 2012, the International Union of Geological Sciences (IUGS) formed the Task Group on Global Geoscience Professionalism ("TG-GGP") to bring together the expanding network of organizations around the world whose primary purpose is self-regulation of geoscience practice. An important part of TG-GGP's mission is to foster a shared understanding of aspects of professionalism relevant to individual scientists and applied practitioners working in one or more sectors of the wider geoscience profession (e.g. research, teaching, industry, geoscience communication and government service). These may be summarised as competence, ethical practice, and professional, technical and scientific accountability. Legal regimes for the oversight of registered or licensed professionals differ around the world and in many jurisdictions there is no registration or licensure with the force of law. However, principles of peer-based self-regulation universally apply. This makes professional geoscience organisations ideal settings within which geoscientists can debate and agree what society should expect of us in the range of roles we fulfil. They can provide the structures needed to best determine what expectations, in the public interest, are appropriate for us collectively to impose on each other. They can also provide the structures for the development of associated procedures necessary to identify and discipline those who do not live up to the expected standards of behaviour established by consensus between peers. Codes of Ethics (sometimes referred to as Codes of Conduct), to which all members of all major professional and/or scientific geoscience organizations are bound (whether or not they are registered or hold professional qualifications awarded by those organisations), incorporate such traditional tenets as: safeguarding the health and safety of the public, scientific integrity, and fairness. Codes also increasingly include obligations concerning welfare of the environment and

  10. Geosciences projects FY 1985 listing

    Energy Technology Data Exchange (ETDEWEB)


    This report, which updates the previous working group publication issued in February 1982, contains independent sections: (A) Summary Outline of DOE Geoscience and Related Studies, and (B) Crosscut of DOE Geoscience and Geoscience Related Studies. The FY 1985 funding levels for geoscience and related activities in each of the 11 programs within DOE are presented. The 11 programs fall under six DOE organizations: Energy Research Conservation and Renewable Energy; Fossil Energy; Defense Programs; Environmental, Safety, and Health; and Civilian radioactive Waste. From time to time, there is particular need for special interprogrammatic coordination within certain topical areas. section B of the report is intended to fill this need for a topical categorization of the Department's geoscience and related activities. These topical areas in Solid Earth Geosciences, Atmospheric Geosciences, Ocean Geosciences, Space and Solar/Terrestrial Geosciences, and Hydrological Geosciences are presented in this report.

  11. Collaborative Visualization and Analysis of Multi-dimensional, Time-dependent and Distributed Data in the Geosciences Using the Unidata Integrated Data Viewer (United States)

    Meertens, C. M.; Murray, D.; McWhirter, J.


    Over the last five years, UNIDATA has developed an extensible and flexible software framework for analyzing and visualizing geoscience data and models. The Integrated Data Viewer (IDV), initially developed for visualization and analysis of atmospheric data, has broad interdisciplinary application across the geosciences including atmospheric, ocean, and most recently, earth sciences. As part of the NSF-funded GEON Information Technology Research project, UNAVCO has enhanced the IDV to display earthquakes, GPS velocity vectors, and plate boundary strain rates. These and other geophysical parameters can be viewed simultaneously with three-dimensional seismic tomography and mantle geodynamic model results. Disparate data sets of different formats, variables, geographical projections and scales can automatically be displayed in a common projection. The IDV is efficient and fully interactive allowing the user to create and vary 2D and 3D displays with contour plots, vertical and horizontal cross-sections, plan views, 3D isosurfaces, vector plots and streamlines, as well as point data symbols or numeric values. Data probes (values and graphs) can be used to explore the details of the data and models. The IDV is a freely available Java application using Java3D and VisAD and runs on most computers. UNIDATA provides easy-to-follow instructions for download, installation and operation of the IDV. The IDV primarily uses netCDF, a self-describing binary file format, to store multi-dimensional data, related metadata, and source information. The IDV is designed to work with OPeNDAP-equipped data servers that provide real-time observations and numerical models from distributed locations. Users can capture and share screens and animations, or exchange XML "bundles" that contain the state of the visualization and embedded links to remote data files. A real-time collaborative feature allows groups of users to remotely link IDV sessions via the Internet and simultaneously view and

  12. Opportunities at Geoscience in Veracruz (United States)

    Welsh-Rodríguez, C.


    The State of Veracruz is located in the central part of the Gulf of Mexico. It has enormous natural, economic and cultural wealth, is the third most populous state in Mexico, with nearly 33 % of the nation's water resources. It has an enormous quantity of natural resources, including oil, and is strategically located in Mexico. On one hand, mountains to the east are a natural border on the other lies the Gulf of Mexico. Between these two barriers are located tropical forests, mountain forests, jungles, wetlands, reefs, etc., and the land is one of the richest in biodiversity within the Americas. Veracruz, because of its geographical characteristics, presents an opportunity for research and collaboration in the geosciences. The region has experienced frequent episodes of torrential rainfalls, which have caused floods resulting in large amounts of property damage to agriculture, housing, infrastructure and, in extreme situations, loss of human life. In 2004 Veracruz University initiated a bachelor degree in Geography, which will prepare professionals to use their knowledge of geosciences to understand and promote integrated assessment of the prevailing problems in the State. Along with the geography program, the Earth Science Center offers other research programs in seismology, vulcanology, climatology, sustainable development and global change. Because of these characteristics, Veracruz is an optimal environment for active research in the geosciences, as well as for sharing the results of this research with educators, students, and all learners. We look forward to facilitating these efforts in the coming years.

  13. Using Ensemble Short-Term Initialized Coupled NASA GEOS5 Climate Model Integrations to Study Convective Bias Growth (United States)

    Cohen, Charlie; Robertson, Franklin; Molod, Andrea


    The representation of convective processes, particularly deep convection in the tropics, remains a persistent problem in climate models. In fact structural biases in the distribution of tropical rainfall in the CMIP5 models is hardly different than that of the CMIP3 versions. Given that regional climate change at higher latitudes is sensitive to the configuration of tropical forcing, this persistent bias is a major issue for the credibility of climate change projections. In this study we use model output from integrations of the NASA Global Earth Observing System Five (GEOS5) climate modeling system to study the evolution of biases in the location and intensity of convective processes. We take advantage of a series of hindcast experiments done in support of the US North American Multi-Model Ensemble (NMME) initiative. For these experiments a nine-month forecast using a coupled model configuration is made approximately every five days over the past 30 years. Each forecast is started with an updated analysis of the ocean, atmosphere and land states. For a given calendar month we have approximately 180 forecasts with daily means of various quantities. These forecasts can be averaged to essentially remove "weather scales" and highlight systematic errors as they evolve. Our primary question is to ask how the spatial structure of daily mean precipitation over the tropics evolves from the initial state and what physical processes are involved. Errors in parameterized convection, various water and energy fluxes and the divergent circulation are found to set up on fast time scales (order five days) compared to errors in the ocean, although SST changes can be non-negligible over that time. For the month of June the difference between forecast day five versus day zero precipitation looks quite similar to the difference between the June precipitation climatology and that from the Global Precipitation Climatology Project (GPCP). We focus much of our analysis on the influence of

  14. Proceedings of the thirty fifth annual convention, seminar and exhibition on exploration geophysics: integration of geosciences and societal development - souvenir

    International Nuclear Information System (INIS)


    The workshop covers through the stages of a typical explorations work flow starting with an overview of the data considerations required. It provides an opportunity to learn tools and technology for integration and interpretation of earth science data set which will help in meeting the challenges related to exploration of natural resources. Papers relevant to INIS are indexed separately. (author)

  15. OneGeology - Access to geoscience for all (United States)

    Komac, Marko; Lee, Kathryn; Robida, Francois


    OneGeology is an initiative of Geological Survey Organisations (GSO) around the globe that dates back to Brighton, UK in 2007. Since then OneGeology has been a leader in developing geological online map data using a new international standard - a geological exchange language known as 'GeoSciML'. Increased use of this new language allows geological data to be shared and integrated across the planet with other organisations. One of very important goals of OneGeology was a transfer of valuable know-how to the developing world, hence shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making its structure more official, its operability more flexible and its membership more open where in addition to GSO also to other type of organisations that manage geoscientific data can join and contribute. The next stage of the OneGeology initiative will hence be focused into increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource on the rocks beneath our feet. Authoritative information on hazards and minerals will help to prevent natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale. With this new stage also renewed OneGeology objectives were defined and these are 1) to be the provider of geoscience data globally, 2) to ensure exchange of know-how and skills so all can participate, and 3) to use the global profile of 1G to increase awareness of the geosciences and their relevance among professional and general public. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscientific data and OneGeology Portal ( is the place to find them.

  16. Geophysical Data Sets in GeoMapApp (United States)

    Goodwillie, A. M.


    GeoMapApp (, a free map-based data tool developed at Lamont-Doherty Earth Observatory, provides access to hundreds of integrated geoscience data sets that are useful for geophysical studies. Examples include earthquake and volcano catalogues, gravity and magnetics data, seismic velocity tomographic models, geological maps, geochemical analytical data, lithospheric plate boundary information, geodetic velocities, and high-resolution bathymetry and land elevations. Users can also import and analyse their own data files. Data analytical functions provide contouring, shading, profiling, layering and transparency, allowing multiple data sets to be seamlessly compared. A new digitization and field planning portal allow stations and waypoints to be generated. Sessions can be saved and shared with colleagues and students. In this eLightning presentation we will demonstrate some of GeoMapApp's capabilities with a focus upon subduction zones and tectonics. In the attached screen shot of the Cascadia margin, the contoured depth to the top of the subducting Juan de Fuca slab is overlain on a shear wave velocity depth slice. Geochemical data coloured on Al2O3 and scaled on MgO content is shown as circles. The stack of data profiles was generated along the white line.

  17. Prediction of Exploration Target Areas for GEM Deposits in Mogok Stone Tract, Northern Myanmar by Integrating Remote Sensing and Geoscience Data (United States)

    Oo, Tin Ko


    The Mogok Stone Tract area has long been known for world famous finest ruby since 1597. The Mogok area lies in northern Myanmar and is located at about 205.99km northeast from Mandalay, the second largest city of Myanmar. The Mogok Group of metasedimentary rocks is divided into four units: (1) Wabyudaung Marble, (2) Ayenyeinchantha Calc-silicate, (3) Gwebin Quartzite, and (4) Kabe Gneiss. Igneous rocks in the Mogok area are classified into two units: (1) Kabaing Granite and (2) Pingutaung Leucogranite. The Mogok area has a complex structure involving several folds and faults. Using marbles and calc-silicates as marker horizons, a series of anticline and syncline can be identified such as Mogok syncline, Ongaing anticline, Bawpadan syncline, and Kyatpyin anticline. All the foldings show a low-angle plunge to the south. The main precious stones of the Mogok area are ruby and sapphire; and the other important semi-precious stones are spinel, topaz, peridot, garnet, apatite, beryl, tourmaline (rubellite), quartz, diopside, fluorite, and enstatite. Geological and remote sensing data are processed to extract the indicative features of gem mineralized areas: lithology, structure, and hydrothermal alteration. Density slice version of Landsat ETM band ratios 5/7 is used to map clay alterations. Filtering Landsat ETM band 5 by using edge detection filter is applied for lineament mapping. Spatial integration of various geoscience and remote sensing data sets such as geological maps, Landsat ETM images, and the location map of gem mines show the distribution of alteration zones associated with the gem mineralization in the study area. Geographic Information System (GIS) model has been designed and implemented by ARCVIEW software package based on the overlay of lithologic, lineament, and alteration vector maps. This process has resulted in delineation of most promising areas of probable gem mineralized zones as on the output map.

  18. International Convergence on Geoscience Cyberinfrastructure (United States)

    Allison, M. L.; Atkinson, R.; Arctur, D. K.; Cox, S.; Jackson, I.; Nativi, S.; Wyborn, L. A.


    There is growing international consensus on addressing the challenges to cyber(e)-infrastructure for the geosciences. These challenges include: Creating common standards and protocols; Engaging the vast number of distributed data resources; Establishing practices for recognition of and respect for intellectual property; Developing simple data and resource discovery and access systems; Building mechanisms to encourage development of web service tools and workflows for data analysis; Brokering the diverse disciplinary service buses; Creating sustainable business models for maintenance and evolution of information resources; Integrating the data management life-cycle into the practice of science. Efforts around the world are converging towards de facto creation of an integrated global digital data network for the geosciences based on common standards and protocols for data discovery and access, and a shared vision of distributed, web-based, open source interoperable data access and integration. Commonalities include use of Open Geospatial Consortium (OGC) and ISO specifications and standardized data interchange mechanisms. For multidisciplinarity, mediation, adaptation, and profiling services have been successfully introduced to leverage the geosciences standards which are commonly used by the different geoscience communities -introducing a brokering approach which extends the basic SOA archetype. Principal challenges are less technical than cultural, social, and organizational. Before we can make data interoperable, we must make people interoperable. These challenges are being met by increased coordination of development activities (technical, organizational, social) among leaders and practitioners in national and international efforts across the geosciences to foster commonalities across disparate networks. In doing so, we will 1) leverage and share resources, and developments, 2) facilitate and enhance emerging technical and structural advances, 3) promote

  19. Building a Community for Art and Geoscience (United States)

    Eriksson, S. C.; Ellins, K. K.


    Several new avenues are in place for building and supporting a community of people interested in the art and geoscience connections. Although sessions advocating for art in teaching geoscience have been scattered through geoscience professional meetings for several decades, there is now a sustained presence of artists and geoscientists with their research and projects at the annual meeting of the American Geophysical Union. In 2011, 13 abstracts were submitted and, in 2013, 20 talks and posters were presented at the annual meeting. Participants have requested more ways to connect with each other as well as advocate for this movement of art and science to others. Several words can describe new initiatives to do this: Social, Collaborative, Connected, Informed, Networked, and Included. Social activities of informal dinners, lunches, and happy hour for interested people in the past year have provided opportunity for presenters at AGU to spend time getting to know one another. This has resulted in at least two new collaborative projects. The nascent Bella Roca and more established Geology in Art websites and their associated blogs at and, respectively are dedicated to highlighting the work of artists inspired by the geosciences, connecting people and informing the community of exhibits and opportunities for collaboration. Bella Roca with its social media of Facebook (Bella Roca) and Twitter (@BellRocaGeo), is a direct outgrowth of the recent 2012 and 2013 AGU sessions and, hopefully, can be grown and sustained for this community. Articles in professional journals will also help inform the broader geoscience community of the benefit of engaging with artists and designers for both improved science knowledge and communication. Organizations such as Leonardo, the International Society for the Arts, Sciences and Technology, the Art Science Gallery in Austin, Texas also promote networking among artists and scientists with

  20. Teaching Marine Geoscience at Sea: Integrated Ocean Drilling Program's School of Rock Explores Cascadia Subduction Zone - Cores, Logs, and ACORKs (United States)

    Reagan, M.; Collins, J.; Ludwig, K. A.; Slough, S.; Delaney, M. L.; Hovan, S. A.; Expedition 328 Scientists


    For twelve days this past September, seventeen formal and informal educators from the US, UK, and France joined six instructors and a small science party on the scientific drillship JOIDES Resolution for the Integrated Ocean Drilling Program (IODP)’s Cascadia ACORK Expedition. The educators were part of the annual “School of Rock (SOR)” education program. SOR is coordinated by the U.S. Implementing Organization (USIO) of IODP and is designed to engage participants in seagoing Earth systems research and education workshops onboard the JOIDES Resolution and on shore at the Gulf Coast Core Repository in Texas. The scientific objective of the Cascadia ACORK expedition was to install a new permanent hydrologic observatory at ODP Site 889 to provide long-term monitoring of the pressure at the frontal part of the Cascadia accretionary prism. This year’s SOR workshop focused on how cores, logs, and ACORKs shed light on the hydrology and geology of the Cascadia subduction zone in the Northeast Pacific. In addition to observing the deployment of the ACORK, the SOR participants conducted daily hands-on analyses of archived sediment and hard-rock cores with scientists and technicians who specialize in IODP research using the lab facilities on the ship. Throughout the expedition, participants engaged in different activities and lessons designed to explore the deep biosphere, methane hydrates, paleoceanography, sedimentology, biostratigraphy, seafloor spreading, and drilling technology. The workshop also provided participants with “C3” time; time to communicate their experience using the successful website and other tools, make connections to their prior knowledge and expertise, and to be creative in developing and planning new education and outreach activities based on their new knowledge and research. As part of participating in the expedition, participants committed to further developing and testing their education and outreach products after

  1. GeoBrain for Facilitating Earth Science Education in Higher-Education Institutes--Experience and Lessons-learned (United States)

    Deng, M.; di, L.


    Data integration and analysis are the foundation for the scientific investigation in Earth science. In the past several decades, huge amounts of Earth science data have been collected mainly through remote sensing. Those data have become the treasure for Earth science research. Training students how to discover and use the huge volume of Earth science data in research become one of the most important trainings for making a student a qualified scientist. Being developed by a NASA funded project, the GeoBrain system has adopted and implemented the latest Web services and knowledge management technologies for providing innovative methods in publishing, accessing, visualizing, and analyzing geospatial data and in building/sharing geoscience knowledge. It provides a data-rich online learning and research environment enabled by wealthy data and information available at NASA Earth Observing System (EOS) Data and Information System (EOSDIS). Students, faculty members, and researchers from institutes worldwide can easily access, analyze, and model with the huge amount of NASA EOS data just like they possess such vast resources locally at their desktops. Although still in development, the GeoBrain system has been operational since 2005. A number of education materials have been developed for facilitating the use of GeoBrain as a powerful education tool for Earth science education at both undergraduate and graduate levels. Thousands of online higher-education users worldwide have used GeoBrain services. A number of faculty members in multiple universities have been funded as GeoBrain education partners to explore the use of GeoBrain in the classroom teaching and student research. By summarizing and analyzing the feedbacks from the online users and the education partners, this presentation presents the user experiences on using GeoBrain in Earth science teaching and research. The feedbacks on classroom use of GeoBrain have demonstrated that GeoBrain is very useful for

  2. Geoscience and the 21st Century Workforce (United States)

    Manduca, C. A.; Bralower, T. J.; Blockstein, D.; Keane, C. M.; Kirk, K. B.; Schejbal, D.; Wilson, C. E.


    Geoscience knowledge and skills play new roles in the workforce as our society addresses the challenges of living safely and sustainably on Earth. As a result, we expect a wider range of future career opportunities for students with education in the geosciences and related fields. A workshop offered by the InTeGrate STEP Center on 'Geoscience and the 21st Century Workforce' brought together representatives from 24 programs with a substantial geoscience component, representatives from different employment sectors, and workforce scholars to explore the intersections between geoscience education and employment. As has been reported elsewhere, employment in energy, environmental and extractive sectors for geoscientists with core geology, quantitative and communication skills is expected to be robust over the next decade as demand for resources grow and a significant part of the current workforce retires. Relatively little is known about employment opportunities in emerging areas such as green energy or sustainability consulting. Employers at the workshop from all sectors are seeking the combination of strong technical, quantitative, communication, time management, and critical thinking skills. The specific technical skills are highly specific to the employer and employment needs. Thus there is not a single answer to the question 'What skills make a student employable?'. Employers at this workshop emphasized the value of data analysis, quantitative, and problem solving skills over broad awareness of policy issues. Employers value the ability to articulate an appropriate, effective, creative solution to problems. Employers are also very interested in enthusiasm and drive. Participants felt that the learning outcomes that their programs have in place were in line with the needs expressed by employers. Preparing students for the workforce requires attention to professional skills, as well as to the skills needed to identify career pathways and land a job. This critical

  3. Evaluation of Integration Degree of the ASG-EUPOS Polish Reference Networks With Ukrainian GeoTerrace Network Stations in the Border Area (United States)

    Siejka, Zbigniew


    GNSS systems are currently the basic tools for determination of the highest precision station coordinates (e.g. basic control network stations or stations used in the networks for geodynamic studies) as well as for land, maritime and air navigation. All of these tasks are carried out using active, large scale, satellite geodetic networks which are complex, intelligent teleinformatic systems offering post processing services along with corrections delivered in real-time for kinematic measurements. Many countries in the world, also in Europe, have built their own multifunctional networks and enhance them with their own GNSS augmentation systems. Nowadays however, in the era of international integration, there is a necessity to consider collective actions in order to build a unified system, covering e.g. the whole Europe or at least some of its regions. Such actions have already been undertaken in many regions of the world. In Europe such an example is the development for EUPOS which consists of active national networks built in central eastern European countries. So far experience and research show, that the critical areas for connecting these networks are border areas, in which the positioning accuracy decreases (Krzeszowski and Bosy, 2011). This study attempts to evaluate the border area compatibility of Polish ASG-EUPOS (European Position Determination System) reference stations and Ukrainian GeoTerrace system reference stations in the context of their future incorporation into the EUPOS. The two networks analyzed in work feature similar hardware parameters. In the ASG-EUPOS reference stations network, during the analyzed period, 2 stations (WLDW and CHEL) used only one system (GPS), while, in the GeoTerrace network, all the stations were equipped with both GPS and GLONASS receivers. The ASG EUPOS reference station network (95.6%) has its average completeness greater by about 6% when compared to the GeoTerrace network (89.8%).

  4. Geoscience on television

    NARCIS (Netherlands)

    Hut, Rolf; Land-Zandstra, Anne M.; Smeets, Ionica; Stoof, Cathelijne R.


    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be

  5. GeoSciGraph: An Ontological Framework for EarthCube Semantic Infrastructure (United States)

    Gupta, A.; Schachne, A.; Condit, C.; Valentine, D.; Richard, S.; Zaslavsky, I.


    The CINERGI (Community Inventory of EarthCube Resources for Geosciences Interoperability) project compiles an inventory of a wide variety of earth science resources including documents, catalogs, vocabularies, data models, data services, process models, information repositories, domain-specific ontologies etc. developed by research groups and data practitioners. We have developed a multidisciplinary semantic framework called GeoSciGraph semantic ingration of earth science resources. An integrated ontology is constructed with Basic Formal Ontology (BFO) as its upper ontology and currently ingests multiple component ontologies including the SWEET ontology, GeoSciML's lithology ontology, Tematres controlled vocabulary server, GeoNames, GCMD vocabularies on equipment, platforms and institutions, software ontology, CUAHSI hydrology vocabulary, the environmental ontology (ENVO) and several more. These ontologies are connected through bridging axioms; GeoSciGraph identifies lexically close terms and creates equivalence class or subclass relationships between them after human verification. GeoSciGraph allows a community to create community-specific customizations of the integrated ontology. GeoSciGraph uses the Neo4J,a graph database that can hold several billion concepts and relationships. GeoSciGraph provides a number of REST services that can be called by other software modules like the CINERGI information augmentation pipeline. 1) Vocabulary services are used to find exact and approximate terms, term categories (community-provided clusters of terms e.g., measurement-related terms or environmental material related terms), synonyms, term definitions and annotations. 2) Lexical services are used for text parsing to find entities, which can then be included into the ontology by a domain expert. 3) Graph services provide the ability to perform traversal centric operations e.g., finding paths and neighborhoods which can be used to perform ontological operations like

  6. Developing a Geoscience Literacy Exam: Pushing Geoscience Literacy Assessment to New Levels (United States)

    Iverson, E. A.; Steer, D. N.; Manduca, C. A.


    InTeGrate is a community effort aimed at improving geoscience literacy and building a workforce that can use geoscience to solve societal issues. As part of this work we have developed a geoscience literacy assessment instrument to measure students' higher order thinking. This assessment is an important part of the development of curricula designed to increase geoscience literacy for all undergraduate students. To this end, we developed the Geoscience Literacy Exam (GLE) as one of the tools to quantify the effectiveness of these materials on students' understandings of geoscience literacy. The InTeGrate project is a 5-year, NSF-funded STEP Center grant in its first year of funding. Details concerning the project are found at The GLE instrument addresses content and concepts in the Earth, Climate, and Ocean Science literacy documents. The testing schema is organized into three levels of increasing complexity. Level 1 questions are single answer, understanding- or application-level multiple choice questions. For example, selecting which type of energy transfer is most responsible for the movement of tectonic plates. They are designed such that most introductory level students should be able to correctly answer after taking an introductory geoscience course. Level 2 questions are more advanced multiple answer/matching questions, at the understanding- through analysis-level. Students might be asked to determine the types of earth-atmosphere interactions that could result in changes to global temperatures in the event of a major volcanic eruption. Because the answers are more complicated, some introductory students and most advanced students should be able to respond correctly. Level 3 questions are analyzing- to evaluating-level short essays, such as describe the ways in which the atmosphere sustains life on Earth. These questions are designed such that introductory students could probably formulate a rudimentary response

  7. GOLD: Building capacity for broadening participation in the Geosciences (United States)

    Adams, Amanda; Patino, Lina; Jones, Michael B.; Rom, Elizabeth


    The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved minorities, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in broadening participation in STEM and the geosciences. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies that empower people who wish to have an impact, and make them effective as leaders in that capacity for sustained periods of time, must be cultivated through professional development. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional

  8. Encoding of Geological knowledge in the GeoPiemonte Map Data Base (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Barale, Luca; Irace, Andrea; Mulazzano, Elia


    In modern digital geological maps and geo-database, namely those devoted to interactive WebGIS services, there is the need to make explicit the geological assumptions in the process of the design and compilation of the Map Geodatabase. The Geodatabase of the Piemonte Geological Map, which consists of several thousands of Geologic Units and Geologic Structures, was designed in a way suitable for linking the knowledge of the geological domain at hand to more general levels of knowledge, represented in existing Earth Sciences ontologies and in a domain ontology (OntoGeonous), specifically designed for the project, though with a wide applicability in mind. The Geologic Units and Geologic Structures of the GeoPiemonte Map have been spatially correlated through the whole region, referring to a non-formal hierarchical scheme, which gives the parental relations between several orders of Geologic Units, putting them in relations with some main Geologic Events. The scheme reports the subdivisions we did on the Alps-Apennines orogenic belt (which constitutes the Piemonte geological framework) on which the architecture of the GeoDB relied. This contribution describes how the two different knowledge levels (specific domain vs. general knowledge) are assimilated within the GeoPiemonte informative system, providing relations between the contents of the geodatabase and the encoded concepts of the reference ontologies. Initiatives such as GeoScience Markup Language (GeoSciML 4.01, 2016 (1) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0, 2013) (2), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG), provided us the authoritative standard geological source for knowledge encoding. Consistency and interoperability of geological data were thus sought, by classifying geologic features in an ontology-driven Data Model, while objects were described using GeoSciML controlled

  9. Geoscience in Developing Countries of South Asia and International Cooperation (United States)

    Gupta, K.


    Earth Science community in developing countries of South Asia is actively engaged in interdisciplinary investigations of the Earth and its envelopes through geological, geophysical and geochemical processes, for these processes are interconnected. Interdisciplinary interaction will continue to grow since problems pertaining to the solid earth, with its core-mantle-crust, and fluid envelops can be solved only with contributions from different Science disciplines. The expanding population and revolution in data handling-and-computing have now become a necessity to tackle the geoscientific problems with modern techniques and methodologies to meet these new challenges. As a future strategy, geo-data generation and handling need to be speedier and easier and hence demands a well- knit coordiantion and understanding amongst Governments, Industries and Academic organizations. Such coordination will prove valuable for better understanding of the Earth's processes, especially mitigating natural hazards with more accurate and speedy prdictions, besides sustaining Earth's resources. South Asian geoscience must, therefore, seek new directions by way of strategies, policies, and actions to move forward in this century. Environmental and resource problems affecting the world population have become international issues, since global environmental changes demand international cooperation and planning. The Earth is continually modified by the interplay of internal and external processes. Hence we need to apply modern geophysical techniques and interpret the results with the help of available geological, geochronological and gechemical informations It is through such integrated approach that we could greatly refine our understanding of the deep structure and evolution of the Indian shield. However, the inputs into multi-disciplinary studies necessary to know the crustal structure and tectonics in the adjoining regions (Nepal, Bangladesh, Myanmar, Sri Lanka etc.) still remain

  10. Improving Undergraduate STEM Education: Pathways into Geoscience (IUSE: GEOPATHS) - A National Science Foundation Initiative (United States)

    Jones, B.; Patino, L. C.


    Preparation of the future professional geoscience workforce includes increasing numbers as well as providing adequate education, exposure and training for undergraduates once they enter geoscience pathways. It is important to consider potential career trajectories for geoscience students, as these inform the types of education and skill-learning required. Recent reports have highlighted that critical thinking and problem-solving skills, spatial and temporal abilities, strong quantitative skills, and the ability to work in teams are among the priorities for many geoscience work environments. The increasing focus of geoscience work on societal issues (e.g., climate change impacts) opens the door to engaging a diverse population of students. In light of this, one challenge is to find effective strategies for "opening the world of possibilities" in the geosciences for these students and supporting them at the critical junctures where they might choose an alternative pathway to geosciences or otherwise leave altogether. To address these and related matters, The National Science Foundation's (NSF) Directorate for Geosciences (GEO) has supported two rounds of the IUSE: GEOPATHS Program, to create and support innovative and inclusive projects to build the future geoscience workforce. This program is one component in NSF's Improving Undergraduate STEM Education (IUSE) initiative, which is a comprehensive, Foundation-wide effort to accelerate the quality and effectiveness of the education of undergraduates in all of the STEM fields. The two tracks of IUSE: GEOPATHS (EXTRA and IMPACT) seek to broaden and strengthen connections and activities that will engage and retain undergraduate students in geoscience education and career pathways, and help prepare them for a variety of careers. The long-term goal of this program is to dramatically increase the number and diversity of students earning undergraduate degrees or enrolling in graduate programs in geoscience fields, as well as

  11. Geoscientific (GEO) database of the Andra Meuse / Haute-Marne research center

    International Nuclear Information System (INIS)

    Tabani, P.; Hemet, P.; Hermand, G.; Delay, J.; Auriere, C.


    Document available in extended abstract form only. The GEO database (geo-scientific database of the Meuse/Haute-Marne Center) is a tool developed by Andra, with a view to group in a secured computer form all data related to the acquisition of in situ and laboratory measurements made on solid and fluid samples. This database has three main functions: - Acquisition and management of data and computer files related to geological, geomechanical, hydrogeological and geochemical measurements on solid and fluid samples and in situ measurements (logging, on sample measurements, geological logs, etc). - Available consultation by the staff on Andra's intranet network for selective viewing of data linked to a borehole and/or a sample and for making computations and graphs on sets of laboratory measurements related to a sample. - Physical management of fluid and solid samples stored in a 'core library' in order to localize a sample, follow-up its movement out of the 'core library' to an organization, and carry out regular inventories. The GEO database is a relational Oracle data base. It is installed on a data server which stores information and manages the users' transactions. The users can consult, download and exploit data from any computer connected to the Andra network or Internet. Management of the access rights is made through a login/ password. Four geo-scientific explanations are linked to the Geo database, they are: - The Geosciences portal: The Geosciences portal is a web Intranet application accessible from the ANDRA network. It does not require a particular installation from the client and is accessible through the Internet navigator. A SQL Server Express database manages the users and access rights to the application. This application is used for the acquisition of hydrogeological and geochemical data collected on the field and on fluid samples, as well as data related to scientific work carried out at surface level or in drifts

  12. Future Careers in Geoscience (United States)

    van der Vink, G. E.; van der Vink, G. E.


    A new generation of Geoscientists are abandoning the traditional pathways of oil exploration and academic research to pursue careers in public policy, international affairs, business, education and diplomacy. They are using their backgrounds in Geoscience to address challenging, multi-disciplinary problems of societal concern. To prepare for such careers, students are developing a broad understanding of science and a basic literacy in economics, international affairs, and policy-making.

  13. SAS- Semantic Annotation Service for Geoscience resources on the web (United States)

    Elag, M.; Kumar, P.; Marini, L.; Li, R.; Jiang, P.


    There is a growing need for increased integration across the data and model resources that are disseminated on the web to advance their reuse across different earth science applications. Meaningful reuse of resources requires semantic metadata to realize the semantic web vision for allowing pragmatic linkage and integration among resources. Semantic metadata associates standard metadata with resources to turn them into semantically-enabled resources on the web. However, the lack of a common standardized metadata framework as well as the uncoordinated use of metadata fields across different geo-information systems, has led to a situation in which standards and related Standard Names abound. To address this need, we have designed SAS to provide a bridge between the core ontologies required to annotate resources and information systems in order to enable queries and analysis over annotation from a single environment (web). SAS is one of the services that are provided by the Geosematnic framework, which is a decentralized semantic framework to support the integration between models and data and allow semantically heterogeneous to interact with minimum human intervention. Here we present the design of SAS and demonstrate its application for annotating data and models. First we describe how predicates and their attributes are extracted from standards and ingested in the knowledge-base of the Geosemantic framework. Then we illustrate the application of SAS in annotating data managed by SEAD and annotating simulation models that have web interface. SAS is a step in a broader approach to raise the quality of geoscience data and models that are published on the web and allow users to better search, access, and use of the existing resources based on standard vocabularies that are encoded and published using semantic technologies.

  14. Geo-Neutrinos

    International Nuclear Information System (INIS)

    Dye, S.T.


    This paper briefly reviews recent developments in the field of geo-neutrinos. It describes current and future detection projects, discusses modeling projects, suggests an observational program, and visits geo-reactor hypotheses.

  15. Geo-Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.T. [Department of Physics and Astronomy, University of Hawaii at Manoa, 2505 Correa Road, Honolulu, Hawaii, 96822 (United States); College of Natural Sciences, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, Hawaii, 96744 (United States)


    This paper briefly reviews recent developments in the field of geo-neutrinos. It describes current and future detection projects, discusses modeling projects, suggests an observational program, and visits geo-reactor hypotheses.

  16. The SmartGeo Portal: A retrospective (United States)

    Heilmann, Zeno; Satta, Guido; Bonomi, Ernesto


    The SmartGeo portal was created in a follow-up project that evolved from the geophysical data imaging services of a Grid computing portal for Geoscience, called GRIDA3. The scope of the project was to support commercial geotechnical service providers as well as academic researchers working in near-surface geoscience. Starting from the existing services, the SmartGeo portal was set up on new hardware, using the latest version of the grid portal environment EnginFrame. After a first working version was established, the services were reviewed, updated and accompanied by new services according to the feedback we received from our partners. One partner for instance experienced large difficulties in a project that aimed at delineating the aquifer for finding water pollutant substances in an industrial area of Basel. The seismic imaging service inherited from the previous portal was employing a data-driven algorithm optimized to provide, directly during data acquisition, nearly in real-time a first image of the subsurface structure. Different to this, our user needed for his data from a geologically very complex and noisy urban environment the maximum lateral resolution and noise reduction possible. For this purpose we added two cutting edge data imaging algorithms able to deliver such high precision results by simultaneously optimizing, for every single image point, all parameters of the mathematical model---a procedure which increased the computational effort by one or two magnitudes, respectively. Thus, parallel computing on grid infrastructure served for maximizing the image resolution instead for generating real-time results. This proved also very useful for the data of an academic partner, recorded for imaging the structure of a shallow sedimentary basin, where we could obtain strongly improved seismic velocity information using these new algorithms. A general user request was to implement interactive data visualization tools. To fulfill this demand we took

  17. Assessing The Role Of Integrated Learning In The BSc International Field Geosciences (IFG) Joint Degree Programme At University College Cork, the University of Montana and the University of Potsdam. (United States)

    Meere, Patrick; Hendrix, Marc; Strecker, Manfred; Berger, Andreas


    The Department of Geology at University College Cork (UCC), Ireland, in conjunction with the Universities of Montana (UM) and Potsdam (UP) launched a new BSc in International Field Geosciences in Autumn 2008. In this program superb natural field geoscience laboratories available in Europe and the western United States are utilized as learning environments forming the basis for a ‘Joint' Bachelor of Science undergraduate degree. This programme focuses on the documentation, interpretation, and synthesis of critical geological issues in the field. It rests upon a backbone of existing modules that are the foundation of current geology programs at three partner institutions complemented by an emphasis on the development of field-based learning in an intercultural setting. The core curriculum is identical to that required for the existing BSc Geology at UCC except the third Year is spent abroad at UM while additional courses are taken at the UP at the start the fourth year. The mobility component of the programme is funded as part of a joint EU/US ATLANTIS project. The motivation for the new programme was primarily driven by the growing international demand for geoscientists with integrated field skills. Over the last two decades existing geoscience programmes in Europe and the US have tended to progressively reduce their field based learning components. One of the major reasons for this neglect is the increasing cost associated with physically transporting students into the field and maintaining a safe outdoor working environment. Heath and safety considerations in an increasingly litigious society have led to increasingly limited choices for suitable field areas in the last few decades. Lastly, recent technological advances such as GIS and various other forms of remote sensing have led to new ways of analyzing geospatial data that, while certainly useful, divert the attention of the Geoscience community away from collecting ‘ground truth' data and making direct

  18. Communication of geo-scientific safety arguments

    International Nuclear Information System (INIS)

    Flavelle, P.; Goodwin, B.; Jensen, M.; Linden, R.; Mazurek, M.; Srivastave, M.; Strom, A.; Sudicky, E.; Voinis, S.


    Working Group B addressed the communication of geo-scientific safety arguments through a discussion of practical experience as it related to the methods, types of information and specific arguments found to best communicate geo-scientific concepts and notions of safety with broad audiences including, colleagues, authorities and regulators, political decision makers, academics, and the general public. The following questions were suggested by the programme committee of the AMIGO-2 workshop for discussion by Working Group B with respect to the communication of geo-scientific information and safety arguments: - What is the place of geo-scientific arguments in relation to quantitative and qualitative topics like scenario and FEPs (features, events, processes) assessment, simulated repository evolution, calculated dose or risk impacts, engineering tests of materials, etc., when presenting a safety case to different audiences and with respect to the various stages of the repository programme? (see section 3). - Would we be better off focusing messages to the public on time scales of a few hundred years or a few generations? (see section 4). - How do you handle the fact that geoscience interpretations seldom are unique and data often are open to various interpretations? (see section 5). - How do you handle expert controversy on a specific topic? (see section 6). (authors)

  19. High performance geospatial and climate data visualization using GeoJS (United States)

    Chaudhary, A.; Beezley, J. D.


    GeoJS ( is an open-source library developed to support interactive scientific and geospatial visualization of climate and earth science datasets in a web environment. GeoJS has a convenient application programming interface (API) that enables users to harness the fast performance of WebGL and Canvas 2D APIs with sophisticated Scalable Vector Graphics (SVG) features in a consistent and convenient manner. We started the project in response to the need for an open-source JavaScript library that can combine traditional geographic information systems (GIS) and scientific visualization on the web. Many libraries, some of which are open source, support mapping or other GIS capabilities, but lack the features required to visualize scientific and other geospatial datasets. For instance, such libraries are not be capable of rendering climate plots from NetCDF files, and some libraries are limited in regards to geoinformatics (infovis in a geospatial environment). While libraries such as d3.js are extremely powerful for these kinds of plots, in order to integrate them into other GIS libraries, the construction of geoinformatics visualizations must be completed manually and separately, or the code must somehow be mixed in an unintuitive way.We developed GeoJS with the following motivations:• To create an open-source geovisualization and GIS library that combines scientific visualization with GIS and informatics• To develop an extensible library that can combine data from multiple sources and render them using multiple backends• To build a library that works well with existing scientific visualizations tools such as VTKWe have successfully deployed GeoJS-based applications for multiple domains across various projects. The ClimatePipes project funded by the Department of Energy, for example, used GeoJS to visualize NetCDF datasets from climate data archives. Other projects built visualizations using GeoJS for interactively exploring

  20. Propuesta para la enseñanza del concepto de integral, un acercamiento visual con GeoGebra


    López, Armando


    La enseñanza del concepto de integral en la educación media superior es considerada clave del curso Cálculo Integral, de la Reforma Integral del Bachillerato como lo señalan los programas de estudio del bachillerato tecnológico SEP (2008). Los nuevos programas demandan una metodología centrada en el aprendizaje, donde los conocimientos previos deben ser el preámbulo para adentrarse al estudio de conceptos clave, por lo que es importante proponer actividades para abordar estos conceptos enmarc...

  1. Enhancing Diversity in the Geosciences (United States)

    Wechsler, Suzanne P.; Whitney, David J.; Ambos, Elizabeth L.; Rodrigue, Christine M.; Lee, Christopher T.; Behl, Richard J.; Larson, Daniel O.; Francis, Robert D.; Hold, Gregory


    An innovative interdisciplinary project at California State University, Long Beach, was designed to increase the attractiveness of the geosciences (physical geography, geology, and archaeology) to underrepresented groups. The goal was to raise awareness of the geosciences by providing summer research opportunities for underrepresented high school…

  2. Geoscience as an Agent for Change in Higher Education (United States)

    Manduca, C. A.; Orr, C. H.; Kastens, K.


    As our society becomes more aware of the realities of the resource and environmental challenges that face us, we have the opportunity to educate more broadly about the role of geoscience in addressing these challenges. The InTeGrate STEP Center is using three strategies to bring learning about the Earth to a wider population of undergraduate students: 1) infusing geoscience into disciplinary courses throughout the curriculum; 2) creating interdisciplinary or transdisciplinary courses with a strong geoscience component that draw a wide audience; and 3) embedding more opportunities to learn about the methods of geoscience and their application to societal challenges in courses for future teachers. InTeGrate is also bringing more emphasis on geoscience in service to societal challenges to geoscience students in introductory geoscience courses and courses for geoscience majors. Teaching science in a societal context is known to make science concepts more accessible for many learners, while learning to use geoscience to solve real world, interdisciplinary problems better prepares students for the 21stcentury workforce and for the decisions they will make as individuals and citizens. InTeGrate has developed materials and models that demonstrate a wide variety of strategies for increasing opportunities to learn about the Earth in a societal context that are freely available on the project website ( and that form the foundation of ongoing professional development opportunities nationwide. The strategies employed by InTeGrate reflect a systems approach to educational transformation, the importance of networks and communities in supporting change, and the need for resources designed for adaptability and use. The project is demonstrating how geoscience can play a larger role in higher education addressing topics of wide interest including 1) preparing a competitive workforce by increasing the STEM skills of students regardless of their major

  3. A GeoWall with Physics and Astronomy Applications (United States)

    Dukes, Phillip; Bruton, Dan


    A GeoWall is a passive stereoscopic projection system that can be used by students, teachers, and researchers for visualization of the structure and dynamics of three-dimensional systems and data. The type of system described here adequately provides 3-D visualization in natural color for large or small groups of viewers. The name ``GeoWall'' derives from its initial development to visualize data in the geosciences.1 An early GeoWall system was developed by Paul Morin at the electronic visualization laboratory at the University of Minnesota and was applied in an introductory geology course in spring of 2001. Since that time, several stereoscopic media, which are applicable to introductory-level physics and astronomy classes, have been developed and released into the public domain. In addition to the GeoWall's application in the classroom, there is considerable value in its use as part of a general science outreach program. In this paper we briefly describe the theory of operation of stereoscopic projection and the basic necessary components of a GeoWall system. Then we briefly describe how we are using a GeoWall as an instructional tool for the classroom and informal astronomy education and in research. Finally, we list sources for several of the free software media in physics and astronomy available for use with a GeoWall system.

  4. National Geothermal Data System: Open Access to Geoscience Data, Maps, and Documents (United States)

    Caudill, C. M.; Richard, S. M.; Musil, L.; Sonnenschein, A.; Good, J.


    The U.S. National Geothermal Data System (NGDS) provides free open access to millions of geoscience data records, publications, maps, and reports via distributed web services to propel geothermal research, development, and production. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG), and is compliant with international standards and protocols. NGDS currently serves geoscience information from 60+ data providers in all 50 states. Free and open source software is used in this federated system where data owners maintain control of their data. This interactive online system makes geoscience data easily discoverable, accessible, and interoperable at no cost to users. The dynamic project site serves as the information source and gateway to the system, allowing data and applications discovery and availability of the system's data feed. It also provides access to NGDS specifications and the free and open source code base (on GitHub), a map-centric and library style search interface, other software applications utilizing NGDS services, NGDS tutorials (via YouTube and USGIN site), and user-created tools and scripts. The user-friendly map-centric web-based application has been created to support finding, visualizing, mapping, and acquisition of data based on topic, location, time, provider, or key words. Geographic datasets visualized through the map interface also allow users to inspect the details of individual GIS data points (e.g. wells, geologic units, etc.). In addition, the interface provides the information necessary for users to access the GIS data from third party software applications such as GoogleEarth, UDig, and ArcGIS. A redistributable, free and open source software package called GINstack (USGIN software stack) was also created to give data providers a simple way to release data using

  5. Teaching Mineralogy, Petrology and Geochemistry in the 21st Century: Instructional Resources for Geoscience Faculty (United States)

    Mogk, D. W.; Beane, R. J.; Whitney, D. L.; Nicolaysen, K. E.; Panero, W. R.; Peck, W. H.


    Mineralogy, petrology and geochemistry (MPG) are pillars of the geoscience curriculum because of their relevance in interpreting Earth history and processes, application to geo-hazards, resources, and environmental issues, and contributions to emerging fields such as geology and human health. To keep faculty current in scientific advances in these fields, and in modern instructional methods, the On the Cutting Edge program convened a workshop at the University of Minnesota in August, 2011. This workshop builds on the previous 15 year's work that has been focused on identifying, aggregating, and developing high-quality collections of teaching activities and related resources, and in building a community of scholars in support of excellence in instruction in MPG courses. The goals of the workshop were to: a) develop an integrated, comprehensive and reviewed curriculum for MPG courses, and to seek ways to make connections with the larger geoscience curriculum; b) to explore emerging topics in MPG such as geobiology and climate change; c) demonstrate effective methods in teaching MPG in the context of Earth system science; d) share effective teaching activities and strategies for the classroom, laboratory and field including advances in pedagogy, assessments and research on learning; e) keep faculty current on recent advances in mineralogy, petrology and geochemistry research and to apply these findings to our teaching; f) explore and utilize current societal and global issues that intersect mineralogy, petrology and geochemistry to heighten the relevancy of course content for students; and h) meet colleagues and foster future teaching and research collaborations. A significant outcome of this workshop is a peer reviewed of collection of 300+ existing teaching activities, and a gap analysis to identify teaching activities needed to make these collections comprehensive and coherent. In addition, a series of thematic collections were developed to assist high priority

  6. Managing and delivering of 3D geo data across institutions has a web based solution - intermediate results of the project GeoMol. (United States)

    Gietzel, Jan; Schaeben, Helmut; Gabriel, Paul


    The increasing relevance of geological information for policy and economy at transnational level has recently been recognized by the European Commission, who has called for harmonized information related to reserves and resources in the EU Member States. GeoMol's transnational approach responds to that, providing consistent and seamless 3D geological information of the Alpine Foreland Basins based on harmonized data and agreed methodologies. However, until recently no adequate tool existed to ensure full interoperability among the involved GSOs and to distribute the multi-dimensional information of a transnational project facing diverse data policy, data base systems and software solutions. In recent years (open) standards describing 2D spatial data have been developed and implemented in different software systems including production environments for 2D spatial data (like regular 2D-GI-Systems). Easy yet secured access to the data is of upmost importance and thus priority for any spatial data infrastructure. To overcome limitations conditioned by highly sophisticated and platform dependent geo modeling software packages functionalities of a web portals can be utilized. Thus, combining a web portal with a "check-in-check-out" system allows distributed organized editing of data and models but requires standards for the exchange of 3D geological information to ensure interoperability. Another major concern is the management of large models and the ability of 3D tiling into spatially restricted models with refined resolution, especially when creating countrywide models . Using GST ("Geosciences in Space and Time") developed initially at TU Bergakademie Freiberg and continuously extended by the company GiGa infosystems, incorporating these key issues and based on an object-relational data model, it is possible to check out parts or whole models for edits and check in again after modification. GST is the core of GeoMol's web-based collaborative environment designed to

  7. Teaching Geoethics Across the Geoscience Curriculum (United States)

    Mogk, David; Bruckner, Monica; Kieffer, Susan; Geissman, John; Reidy, Michael; Taylor, Shaun; Vallero, Daniel


    Training in geoethics is an important part of pre-professional development of geoscientists. Professional societies, governmental agencies, and employers of the geoscience workforce increasingly expect that students have had some training in ethics to guide their professional lives, and the public demands that scientists abide by the highest standards of ethical conduct. The nature of the geosciences exposes the profession to ethical issues that derive from our work in a complex, dynamic Earth system with an incomplete geologic record and a high degree of uncertainty and ambiguity in our findings. The geosciences also address topics such as geohazards and resource development that have ethical dimensions that impact on the health, security, public policies, and economic well-being of society. However, there is currently no formal course of study to integrate geoethics into the geoscience curriculum and few faculty have the requisite training to effectively teach about ethics in their classes, or even informally in mentoring their research students. To address this need, an NSF-funded workshop was convened to explore how ethics education can be incorporated into the geoscience curriculum. The workshop addressed topics such as where and how should geoethics be taught in a range of courses including introductory courses for non-majors, as embedded modules in existing geoscience courses, or as a dedicated course for majors on geoethics; what are the best pedagogic practices in teaching ethics, including lessons learned from cognate disciplines (philosophy, biology, engineering); what are the goals for teaching geoethics, and what assessments can be used to demonstrate mastery of ethical principles; what resources currently exist to support teaching geoethics, and what new resources are needed? The workshop also explored four distinct but related aspects of geoethics: 1) Geoethics and self: what are the internal attributes of a geoscientist that establish the ethical

  8. An Innovative Infrastructure with a Universal Geo-Spatiotemporal Data Representation Supporting Cost-Effective Integration of Diverse Earth Science Data (United States)

    Rilee, Michael Lee; Kuo, Kwo-Sen


    The SpatioTemporal Adaptive Resolution Encoding (STARE) is a unifying scheme encoding geospatial and temporal information for organizing data on scalable computing/storage resources, minimizing expensive data transfers. STARE provides a compact representation that turns set-logic functions into integer operations, e.g. conditional sub-setting, taking into account representative spatiotemporal resolutions of the data in the datasets. STARE geo-spatiotemporally aligns data placements of diverse data on massive parallel resources to maximize performance. Automating important scientific functions (e.g. regridding) and computational functions (e.g. data placement) allows scientists to focus on domain-specific questions instead of expending their efforts and expertise on data processing. With STARE-enabled automation, SciDB (Scientific Database) plus STARE provides a database interface, reducing costly data preparation, increasing the volume and variety of interoperable data, and easing result sharing. Using SciDB plus STARE as part of an integrated analysis infrastructure dramatically eases combining diametrically different datasets.

  9. Environmental data for the planning of off-shore wind parks from the EnerGEO Platform of Integrated Assessment (PIA)

    Energy Technology Data Exchange (ETDEWEB)

    Zelle, Hein; Mika, Agnes; Calkoen, Charles; Santbergen, Peter [BMT ARGOSS, Marknesse (Netherlands); Blanc, Isabelle; Guermont, Catherine; Menard, Lionel; Gschwind, Benoit [MINES ParisTech, Sophia Antipolis (France)


    The EU-sponsored EnerGEO project aims at providing decision makers with a modelling platform to assess the environmental impacts of different sources of renewable energy. One of the pillars of the project is the Wind Energy Pilot, addressing the effects of offshore wind parks on air pollution and energy use. The methods used in the pilot and the underlying environmental databases are integrated into a WebGIS client tool and made available to the public. This paper is dedicated to describing the environmental databases and supporting data incorporated in the client tool. A 27-km resolution, 11-year wind database is created using the WRF model. The wind database is used to assess the wind climate in the north-west Atlantic region and to derive the potential power output from offshore wind parks. Auxiliary data concerning water depth, distance to shore and distance to the nearest suitable port are created to aid the planning and maintenance phases. Seasonal workability conditions are assessed using a 20-year wave database. The distance at which future wind parks should be placed to exhibit different wind climates is investigated. (orig.)

  10. Environmental data for the planning of off-shore wind parks from the EnerGEO Platform of Integrated Assessment (PIA)

    International Nuclear Information System (INIS)

    Zelle, Hein; Mika, Agnes; Calkoen, Charles; Santbergen, Peter; Blanc, Isabelle; Guermont, Catherine; Menard, Lionel; Gschwind, Benoit


    The EU-sponsored EnerGEO project aims at providing decision makers with a modelling platform to assess the environmental impacts of different sources of renewable energy. One of the pillars of the project is the Wind Energy Pilot, addressing the effects of offshore wind parks on air pollution and energy use. The methods used in the pilot and the underlying environmental databases are integrated into a WebGIS client tool and made available to the public. This paper is dedicated to describing the environmental databases and supporting data incorporated in the client tool. A 27-km resolution, 11-year wind database is created using the WRF model. The wind database is used to assess the wind climate in the north-west Atlantic region and to derive the potential power output from offshore wind parks. Auxiliary data concerning water depth, distance to shore and distance to the nearest suitable port are created to aid the planning and maintenance phases. Seasonal workability conditions are assessed using a 20-year wave database. The distance at which future wind parks should be placed to exhibit different wind climates is investigated. (orig.)

  11. Geo-Semantic Framework for Integrating Long-Tail Data and Model Resources for Advancing Earth System Science (United States)

    Elag, M.; Kumar, P.


    Often, scientists and small research groups collect data, which target to address issues and have limited geographic or temporal range. A large number of such collections together constitute a large database that is of immense value to Earth Science studies. Complexity of integrating these data include heterogeneity in dimensions, coordinate systems, scales, variables, providers, users and contexts. They have been defined as long-tail data. Similarly, we use "long-tail models" to characterize a heterogeneous collection of models and/or modules developed for targeted problems by individuals and small groups, which together provide a large valuable collection. Complexity of integrating across these models include differing variable names and units for the same concept, model runs at different time steps and spatial resolution, use of differing naming and reference conventions, etc. Ability to "integrate long-tail models and data" will provide an opportunity for the interoperability and reusability of communities' resources, where not only models can be combined in a workflow, but each model will be able to discover and (re)use data in application specific context of space, time and questions. This capability is essential to represent, understand, predict, and manage heterogeneous and interconnected processes and activities by harnessing the complex, heterogeneous, and extensive set of distributed resources. Because of the staggering production rate of long-tail models and data resulting from the advances in computational, sensing, and information technologies, an important challenge arises: how can geoinformatics bring together these resources seamlessly, given the inherent complexity among model and data resources that span across various domains. We will present a semantic-based framework to support integration of "long-tail" models and data. This builds on existing technologies including: (i) SEAD (Sustainable Environmental Actionable Data) which supports curation

  12. Geo-neutrino Observation

    International Nuclear Information System (INIS)

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.


    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  13. Programming and Technology for Accessibility in Geoscience (United States)

    Sevre, E.; Lee, S.


    Many people, students and professors alike, shy away from learning to program because it is often believed to be something scary or unattainable. However, integration of programming into geoscience education can be a valuable tool for increasing the accessibility of content for all who are interested. It is my goal to dispel these myths and convince people that: 1) Students with disabilities can use programming to increase their role in the classroom, 2) Everyone can learn to write programs to simplify daily tasks, 3) With a deep understanding of the task, anyone can write a program to do a complex task, 4) Technology can be combined with programming to create an inclusive environment for all students of geoscience, and 5) More advanced knowledge of programming and technology can lead geoscientists to create software to serve as assistive technology in the classroom. It is my goal to share my experiences using technology to enhance the classroom experience as a way of addressing the aforementioned issues. Through my experience, I have found that programming skills can be included and learned by all to enhance the content of courses without detracting from curriculum. I hope that, through this knowledge, geoscience courses can become more accessible for people with disabilities by including programming and technology to the benefit of all involved.

  14. ``I Didn't Realize that Science Could Be So Useful'': Integrating Service Learning and Student Research on Water-Quality Issues within an Undergraduate Geoscience Curriculum (Invited) (United States)

    Lea, P. D.; Urquhart, J.


    The title quote, from a senior geoscience major, illustrates one of the important aspects of service learning. The associated authentic research experiences benefit not only learning of geoscience concepts, but also students’ perceptions of the role of science in society. For the past two years, a wide-ranging study of water-quality dynamics in the Androscoggin Lake watershed of Maine has engaged (1) introductory students and non-science majors in spring-semester courses, (2) upper-level geoscience majors in fall-semester courses, and (3) seniors undertaking independent summer research. The overall focus of the research is to understand nutrient loading to Androscoggin Lake, which receives back-flooded water from the industrialized Androscoggin River, as well as from agricultural lands in the connecting Dead River valley. Stakeholders include the local lake association, the state DEP, pulp-mill and wastewater-plant operators, and local farmers. A key element in the project is the role adopted by the student researchers vis-à-vis policy options. Following the taxonomy of Pielke (2007, The Honest Broker: Cambridge University Press), students doing service learning may serve as issue advocates, seeking to provide scientific support for the policy positions of community partners. In contrast, we have adopted explicitly the position of honest brokers who seek to understand and communicate the workings of this complex system without advocating specific policy solutions. This approach has facilitated buy-in from a larger range of stakeholders, and encouraged students to address choices in the roles and responsibilities of scientists in policy decisions—a valuable perspective for future scientists and non-scientists alike. In service-learning courses, groups of 3 to 5 students engage in a variety of sub-projects, such as lake-bottom sediment studies, nutrient sampling in streams and lakes, developing rating curves for streamflow, and calculating phosphorus fluxes

  15. The Case for GEO Hosted SSA Payloads (United States)

    Welsch, C.; Armand, B.; Repp, M.; Robinson, A.


    Space situational awareness (SSA) in the geosynchronous earth orbit (GEO) belt presents unique challenges, and given the national importance and high value of GEO satellites, is increasingly critical as space becomes more congested and contested. Space situational awareness capabilities can serve as an effective deterrent against potential adversaries if they provide accurate, timely, and persistent information and are resilient to the threat environment. This paper will demonstrate how simple optical SSA payloads hosted on GEO commercial and government satellites can complement the SSA mission and data provided by Space-Based Space Surveillance (SBSS) and the Geosynchronous Space Situational Awareness Program (GSSAP). GSSAP is built by Orbital Sciences Corporation and launched on July 28, 2014. Analysis performed for this paper will show how GEO hosted SSA payloads, working in combination with SBSS and GSSAP, can increase persistence and timely coverage of high value assets in the GEO belt. The potential to further increase GEO object identification and tracking accuracy by integrating SSA data from multiple sources across different viewing angles including GEO hosted SSA sources will be addressed. Hosting SSA payloads on GEO platforms also increases SSA mission architecture resiliency as the sensors are by distributed across multiple platforms including commercial platforms. This distributed architecture presents a challenging target for an adversary to attempt to degrade or disable. We will present a viable concept of operations to show how data from hosted SSA sensors could be integrated with SBSS and GSSAP data to present a comprehensive and more accurate data set to users. Lastly, we will present an acquisition approach using commercial practices and building on lessons learned from the Commercially Hosted Infra Red Payload CHIRP to demonstrate the affordability of GEO hosted SSA payloads.

  16. An Innovative Infrastructure with a Universal Geo-spatiotemporal Data Representation Supporting Cost-effective Integration of Diverse Earth Science Data (United States)

    Kuo, K. S.; Rilee, M. L.


    Existing pathways for bringing together massive, diverse Earth Science datasets for integrated analyses burden end users with data packaging and management details irrelevant to their domain goals. The major data repositories focus on archival, discovery, and dissemination of products (files) in a standardized manner. End-users must download and then adapt these files using local resources and custom methods before analysis can proceed. This reduces scientific or other domain productivity, as scarce resources and expertise must be diverted to data processing. The Spatio-Temporal Adaptive Resolution Encoding (STARE) is a unifying scheme encoding geospatial and temporal information for organizing data on scalable computing/storage resources, minimizing expensive data transfers. STARE provides a compact representation that turns set-logic functions, e.g. conditional subsetting, into integer operations, that takes into account representative spatiotemporal resolutions of the data in the datasets, which is needed for data placement alignment of geo-spatiotemporally diverse data on massive parallel resources. Automating important scientific functions (e.g. regridding) and computational functions (e.g. data placement) allows scientists to focus on domain specific questions instead of expending their expertise on data processing. While STARE is not tied to any particular computing technology, we have used STARE for visualization and the SciDB array database to analyze Earth Science data on a 28-node compute cluster. STARE's automatic data placement and coupling of geometric and array indexing allows complicated data comparisons to be realized as straightforward database operations like "join." With STARE-enabled automation, SciDB+STARE provides a database interface, reducing costly data preparation, increasing the volume and variety of integrable data, and easing result sharing. Using SciDB+STARE as part of an integrated analysis infrastructure, we demonstrate the dramatic

  17. Engaging teachers & students in geosciences by exploring local geoheritage sites (United States)

    Gochis, E. E.; Gierke, J. S.


    Understanding geoscience concepts and the interactions of Earth system processes in one's own community has the potential to foster sound decision making for environmental, economic and social wellbeing. School-age children are an appropriate target audience for improving Earth Science literacy and attitudes towards scientific practices. However, many teachers charged with geoscience instruction lack awareness of local geological significant examples or the pedagogical ability to integrate place-based examples into their classroom practice. This situation is further complicated because many teachers of Earth science lack a firm background in geoscience course work. Strategies for effective K-12 teacher professional development programs that promote Earth Science literacy by integrating inquiry-based investigations of local and regional geoheritage sites into standards based curriculum were developed and tested with teachers at a rural school on the Hannahville Indian Reservation located in Michigan's Upper Peninsula. The workshops initiated long-term partnerships between classroom teachers and geoscience experts. We hypothesize that this model of professional development, where teachers of school-age children are prepared to teach local examples of earth system science, will lead to increased engagement in Earth Science content and increased awareness of local geoscience examples by K-12 students and the public.

  18. GeoServer cookbook

    CERN Document Server

    Iacovella, Stefano


    This book is ideal for GIS experts, developers, and system administrators who have had a first glance at GeoServer and who are eager to explore all its features in order to configure professional map servers. Basic knowledge of GIS and GeoServer is required.

  19. Extensions to Traditional Spatial Data Infrastructures: Integration of Social Media, Synchronization of Datasets, and Data on the Go in GeoPackages (United States)

    Simonis, Ingo


    Traditional Spatial Data Infrastructures focus on aspects such as description and discovery of geospatial data, integration of these data into processing workflows, and representation of fusion or other data analysis results. Though lots of interoperability agreements still need to be worked out to achieve a satisfying level of interoperability within large scale initiatives such as INSPIRE, new technologies, use cases and requirements are constantly emerging from the user community. This paper focuses on three aspects that came up recently: The integration of social media data into SDIs, synchronization aspects between datasets used by field workers in shared resources environments, and the generation and maintenance of data for mixed mode online/offline situations that can be easily packed, delivered, modified, and synchronized with reference data sets. The work described in this paper results from the latest testbed executed by the Open Geospatial Consortium, OGC. The testbed is part of the interoperability program (IP), which constitutes a significant part of the OGC standards development process. The IP has a number of instruments to enhance geospatial standards and technologies, such as Testbeds, Pilot Projects, Interoperability Experiments, and Interoperability Expert Services. These activities are designed to encourage rapid development, testing, validation, demonstration and adoption of open, consensus based standards and best practices. The latest global activity, testbed-11, aims at exploring new technologies and architectural approaches to enrich and extend traditional spatial data infrastructures with data from Social Media, improved data synchronization, and the capability to take data to the field in new synchronized data containers called GeoPackages. Social media sources are a valuable supplement to providing up to date information in distributed environments. Following an uncoordinated crowdsourcing approach, social media data can be both

  20. Development of Geo-Marketing


    Tatiana Ozhereleva


    This article analyzes the state and development of geo-marketing. The author illustrates the multi-aspectedness of geo-marketing: applied technology and management technology. The article demonstrates that geo-marketing can be viewed as a reflection of the processes of co-evolution in society. The author brings to light the specifics of geo-marketing research and situational analysis in geo-marketing. The article describes applications of geo-marketing

  1. Development of Geo-Marketing

    Directory of Open Access Journals (Sweden)

    Tatiana Ozhereleva


    Full Text Available This article analyzes the state and development of geo-marketing. The author illustrates the multi-aspectedness of geo-marketing: applied technology and management technology. The article demonstrates that geo-marketing can be viewed as a reflection of the processes of co-evolution in society. The author brings to light the specifics of geo-marketing research and situational analysis in geo-marketing. The article describes applications of geo-marketing

  2. Using Research Data to Stimulate Critical Thinking in Undergraduate Geoscience Courses: Examples and Future Directions (United States)

    Reed, D. L.; Moore, G. F.; Bangs, N. L.; Tobin, H.


    The results of major research initiatives, such as NSF-MARGINS, IODP and its predecessors DSDP and ODP, Ridge 2000, and NOAA's Ocean Explorer and Vents Programs provide a rich library of resources for inquiry-based learning in undergraduate classes in the geosciences. These materials are scalable for use in general education courses for the non-science major to upper division major and graduate courses, which are both content-rich and research-based. Examples of these materials include images and animations drawn from computer presentations at research workshops and audio/video clips from web sites, as well as data repositories, which can be accessed through GeoMapApp, a data exploration and visualization tool developed as part of the Marine Geoscience Data System by researchers at the LDEO ( Past efforts have focused on recreating sea-going research experiences by integrating and repurposing these data in web-based virtual environments to stimulate active student participation in laboratory settings and at a distance over the WWW. Virtual expeditions have been created based on multibeam mapping of the seafloor near the Golden Gate, bathymetric transects of the major ocean basins, subduction zone seismicity and related tsunamis, water column mapping and submersible dives at hydrothermal vents, and ocean drilling of deep-sea sediments to explore climate change. Students also make use of multichannel seismic data provided through the Marine Seismic Data Center of UTIG to study subduction zone processes at convergent plate boundaries. We will present the initial stages of development of a web-based virtual expedition for use in undergraduate classes, based on a recent 3-D seismic survey associated with the NanTroSEIZE program of NSF-MARGINS and IODP to study the properties of the plate boundary fault system in the upper limit of the seismogenic zone off Japan.

  3. Professional Development Opportunities for Two-Year College Geoscience Faculty: Issues, Opportunities, and Successes (United States)

    Baer, E. M.; Macdonald, H.; McDaris, J. R.; Granshaw, F. D.; Wenner, J. M.; Hodder, J.; van der Hoeven Kraft, K.; Filson, R. H.; Guertin, L. A.; Wiese, K.


    materials aimed at K-12 or at faculty teaching geoscience majors tend not to attract 2YC faculty. Conducting a needs assessment and including 2YC faculty in workshop planning helps ensure that the outcomes of professional development opportunities for 2YC faculty are achieved. Financial support for travel seems to be important, although typically it is not necessary to compensate 2YC faculty beyond expenses. 2YC faculty availability varies significantly during the summer as well as during the academic year, so offering multiple opportunities throughout the year and/or virtual events is important. The Geo2YC website at SERC is a resource for geoscience education at two-year colleges and the associated Geo2YC mailing has facilitated the targeted marketing of opportunities for this important group of educators.

  4. Open Geoscience Database (United States)

    Bashev, A.


    Currently there is an enormous amount of various geoscience databases. Unfortunately the only users of the majority of the databases are their elaborators. There are several reasons for that: incompaitability, specificity of tasks and objects and so on. However the main obstacles for wide usage of geoscience databases are complexity for elaborators and complication for users. The complexity of architecture leads to high costs that block the public access. The complication prevents users from understanding when and how to use the database. Only databases, associated with GoogleMaps don't have these drawbacks, but they could be hardly named "geoscience" Nevertheless, open and simple geoscience database is necessary at least for educational purposes (see our abstract for ESSI20/EOS12). We developed a database and web interface to work with them and now it is accessible at In this database a result is a value of a parameter (no matter which) in a station with a certain position, associated with metadata: the date when the result was obtained; the type of a station (lake, soil etc); the contributor that sent the result. Each contributor has its own profile, that allows to estimate the reliability of the data. The results can be represented on GoogleMaps space image as a point in a certain position, coloured according to the value of the parameter. There are default colour scales and each registered user can create the own scale. The results can be also extracted in *.csv file. For both types of representation one could select the data by date, object type, parameter type, area and contributor. The data are uploaded in *.csv format: Name of the station; Lattitude(dd.dddddd); Longitude(ddd.dddddd); Station type; Parameter type; Parameter value; Date(yyyy-mm-dd). The contributor is recognised while entering. This is the minimal set of features that is required to connect a value of a parameter with a position and see the results. All the complicated data

  5. Broadening Participation in the Geosciences through Participatory Research (United States)

    Pandya, R. E.; Hodgson, A.; Wagner, R.; Bennett, B.


    In spite of many efforts, the geosciences remain less diverse than the overall population of the United States and even other sciences. This lack of diversity threatens the quality of the science, the long-term viability of our workforce, and the ability to leverage scientific insight in service of societal needs. Drawing on new research into diversity specific to geosciences, this talk will explore underlying causes for the lack of diversity in the atmospheric and related sciences. Causes include the few geoscience majors available at institutions with large minority enrollment; a historic association of the geosciences with extractive industries which are negatively perceived by many minority communities, and the perception that science offers less opportunity for service than other fields. This presentation suggests a new approach - community-based participatory research (CBPR). In CBPR, which was first applied in the field of rural development and has been used for many years in biomedical fields, scientists and community leaders work together to design a research agenda that simultaneously advances basic understanding and addresses community priorities. Good CBPR integrates research, education and capacity-building. A CBRP approach to geoscience can address the perceived lack of relevance and may start to ameliorate a history of negative experiences of geosciences. Since CBPR works best when it is community-initiated, it can provide an ideal place for Minority-Serving Institutions to launch their own locally-relevant programs in the geosciences. The presentation will conclude by describing three new examples of CBPR. The first is NCAR’s partnerships to explore climate change and its impact on Tribal lands. The second approach a Denver-area listening conference that will identify and articulate climate-change related priorities in the rapidly-growing Denver-area Latino community. Finally, we will describe a Google-funded project that brings together

  6. Contributions of foreign, domestic and natural emissions to US ozone estimated using the path-integral method in CAMx nested within GEOS-Chem

    Directory of Open Access Journals (Sweden)

    A. M. Dunker


    Full Text Available The Goddard Earth Observing System global chemical transport (GEOS-Chem model was used at 2°  ×  2.5° resolution to simulate ozone formation for a base case representing year 2010 and a natural background case without worldwide anthropogenic emissions. These simulations provided boundary concentrations for base and natural background simulations with the Comprehensive Air Quality Model with Extensions (CAMx on a North American domain (one-way nested at 12 km  ×  12 km resolution over March–September 2010. The predicted maximum daily average 8 h (MDA8 background ozone for the US is largest in the mountainous areas of Colorado, New Mexico, Arizona, and California. The background MDA8 ozone in some of these locations exceeds 60 ppb, when averaged over the 10 days with the largest base-case ozone (T10base average. The background ozone generally becomes both a larger fraction of the base-case ozone in the western US and a smaller fraction in the eastern US when proceeding from spring to summer to the T10base average. The ozone difference between the base and background cases represents the increment to ozone from all anthropogenic sources. The path-integral method was applied to allocate this anthropogenic ozone increment to US anthropogenic emissions, Canadian/Mexican anthropogenic emissions, and the anthropogenic components of the lateral and top boundary concentrations (BCs. Using the T10base average MDA8 ozone, the relative importance of the sources is generally US emissions  >  anthropogenic lateral BCs  >  Canadian/Mexican emissions  ≫  anthropogenic top BCs. Specifically, for 10 US urban areas, the source contributions were 12–53 ppb for US emissions, 3–9 ppb for lateral BCs, 0.2–3 ppb for Canadian/Mexican emissions, and  ≤  0.1 ppb for top BCs. The contributions of the lateral BCs are largest for the higher-elevation US sites in the Intermountain West and along the

  7. Ontology Design Patterns: Bridging the Gap Between Local Semantic Use Cases and Large-Scale, Long-Term Data Integration (United States)

    Shepherd, Adam; Arko, Robert; Krisnadhi, Adila; Hitzler, Pascal; Janowicz, Krzysztof; Chandler, Cyndy; Narock, Tom; Cheatham, Michelle; Schildhauer, Mark; Jones, Matt; Raymond, Lisa; Mickle, Audrey; Finin, Tim; Fils, Doug; Carbotte, Suzanne; Lehnert, Kerstin


    Integrating datasets for new use cases is one of the common drivers for adopting semantic web technologies. Even though linked data principles enables this type of activity over time, the task of reconciling new ontological commitments for newer use cases can be daunting. This situation was faced by the Biological and Chemical Oceanography Data Management Office (BCO-DMO) as it sought to integrate its existing linked data with other data repositories to address newer scientific use cases as a partner in the GeoLink Project. To achieve a successful integration with other GeoLink partners, BCO-DMO's metadata would need to be described using the new ontologies developed by the GeoLink partners - a situation that could impact semantic inferencing, pre-existing software and external users of BCO-DMO's linked data. This presentation describes the process of how GeoLink is bridging the gap between local, pre-existing ontologies to achieve scientific metadata integration for all its partners through the use of ontology design patterns. GeoLink, an NSF EarthCube Building Block, brings together experts from the geosciences, computer science, and library science in an effort to improve discovery and reuse of data and knowledge. Its participating repositories include content from field expeditions, laboratory analyses, journal publications, conference presentations, theses/reports, and funding awards that span scientific studies from marine geology to marine ecology and biogeochemistry to paleoclimatology. GeoLink's outcomes include a set of reusable ontology design patterns (ODPs) that describe core geoscience concepts, a network of Linked Data published by participating repositories using those ODPs, and tools to facilitate discovery of related content in multiple repositories.

  8. South African oil dependency : geo-political, geo-economic and geo-strategic considerations



    Ph.D. There is little research undertaken on the economic assessment of oil security of supply from the dimensions of geo-politics, geo-economics and geo-strategy. This study seeks to bridge the gap by providing new analytical and empirical work that captures the impact of geo-politics, geo-economics and geo-strategy on oil supply, consumption and price. This study is the first to define, analyse and contextualise the South African oil security of supply from a geo-political, geo-economic ...

  9. Geo-scientific database for research and development purposes

    International Nuclear Information System (INIS)

    Tabani, P.; Mangeot, A.; Crabol, V.; Delage, P.; Dewonck, S.; Auriere, C.


    , fruit of a continuous computer development over the past ten years, can store several hundreds of million data. The GEO database (geo-scientific database) is a tool developed by Andra since 1992, in order to group in a secured computer form all data related to the acquisition of in situ and laboratory measurements made on solid and fluid samples as well as observations related to environment. This database has three main functions: - Acquisition and management of data and computer files related to geological, geomechanical, hydrogeological and geochemical measurements on solid and fluid samples and in situ measurements (logging, on sample measurements, geological logs, etc.) as well as observations on fauna and flora. - Available consultation by the staff on Andra's intranet network for selective viewing of data linked to a borehole, a sample or a watch point and for making computations and graphs on sets of laboratory measurements related to a sample. - Physical management of fluid and solid samples stored in a 'core library' in order to localize a sample, follow-up its movement out of the 'core library' to an organization, and carry out regular inventories. Three geo-scientific software are linked to the Geo database: - Geosciences portal: it's a web Intranet application accessible from the ANDRA network. This application is used for the acquisition of hydrogeological and geochemical data collected on the field and on fluid samples, observations related to environmental monitoring, as well as data related to scientific work carried out at surface level or in drifts. - GESTECH application is a software used to integrate geomechanical and geological data collected on solid samples in the GEO database. - INTEGRAT application is a software application automatically integrates data files in the GEO database. For the sake of traceability and efficiency, references of the fluid and solid samples, of the containers (crates, cells, etc.) and storage zones of the 'core library

  10. GIRAF 2009 - Taking action on geoscience information across Africa (United States)

    Asch, Kristine


    A workshop in Windhoek Between 16 and 20 March 2009 97 participants from 26 African nations, plus four European countries, and representatives from UNESCO, ICSU and IUGS-CGI, held a workshop at the Namibian Geological Survey in Windhoek. The workshop - GIRAF 2009 - Geoscience InfoRmation In Africa - was organised by the Federal Institute for Geosciences and Natural Resources (BGR) and the Geological Survey of Namibia (GSN) at the Namibian Ministry for Mines and Energy and was mainly financed by the German Federal Ministry for Economic Cooperation and Development (BMZ), supported by the IUGS Commission for the Management and Application of Geoscience Information (CGI). The participants came to Namibia to discuss one of the most topical issues in the geological domain - geoscience information and informatics. A prime objective was to set up a pan-African network for exchanging knowledge about geoscience information. GIRAF 2009 builds on the results of a preparatory workshop organised by the CGI and funded by the IUGS, which was held in June 2006 in Maputo at the 21st Colloquium on African Geology - CAG21. This preparatory workshop concentrated on identifying general problems and needs of African geological institutions in discussion with representatives of African geological surveys, universities, private companies and non-governmental organisations. The GIRAF 2009 workshop used the results of this discussion to plan and design its programme Aims In detail the five aims of the GIRAF2009 workshop were: to bring together relevant African authorities, national experts and stakeholders in geoscience information; to initiate the building of a pan-African geoscience information knowledge network to exchange and share geoscience information knowledge and best practice; to integrate the authorities, national experts and experts across Africa into global geoinformation initiatives; to develop a strategic plan for Africa's future in geoscience information; to make Africa a

  11. Integrating data infrastructure to facilitate holistic approach to the investigations of anthropogenic hazards evoked by exploration and exploitation of geo-resources (United States)

    Orlecka-Sikora, Beata; Kwiatek, Grzegorz; Olszewska, Dorota; Lasocki, Stanisław; Gasparini, Paolo; Kozlovskaya, Elena; Nevalainen, Jouni; Schmittbuhl, Jean; Grasso, Jean Robert; Schaming, Marc; Biggare, Pascal; Saccarotti, Gilberto; Garcia, Alexander; Cassidy, Nigel; Toon, Sam; Mutke, Grzegorz; Sterzel, Mariusz; Szepieniec, Tomasz


    The EPOS integration plan assumes a significant contribution to the research on anthropogenic hazards (AH) associated with the exploration and exploitation of geo-resources. These problems will be dealt in Thematic Core Service "Anthropogenic Hazards" (TCS AH). TCS AH is based on the prototype built in the framework of the IS-EPOS platform project (, financed from Polish structural funds (POIG.02.03.00-14-090/13-00), with will be further developed within EPOS IP project (H2020-INFRADEV-1-2015-1, INFRADEV-3-2015). TCS AH aims to have a measurable impact on innovative research and development as well as on society by providing comprehensive, wide-scale and high quality AH research infrastructure. One of the main deliverables are numerous comprehensive induced seismicity datasets called "episodes". The episode is a comprehensive data description of a geophysical process, induced or triggered by technological activity, which under certain circumstances can become hazardous for people, infrastructure and the environment. In addition to the six episodes already implemented during the mentioned IS-EPOS project, at least 20 new episodes related to conventional hydrocarbon extraction, reservoir treatment, underground mining and geothermal energy production are being integrated into the e-environment of the TCS AH. The heterogeneous multi-disciplinary data are transformed to unified structures developed within IS-EPOS project, to form integrated and validated datasets. Dedicated visualization tools for multidisciplinary data comprising episodes are also implemented. These tools are capable to aggregate and combine different data types and facilitating specific visualization possibilities (e.g. combining seismic and technological information). The implementation process, tailored for each episode, consists of four steps: (i) Data revision, determination of its accuracy and limitations; (ii) Data preparation and homogenization to follow the TCS AH

  12. Accessible Geoscience - Digital Fieldwork (United States)

    Meara, Rhian


    Accessible Geoscience is a developing field of pedagogic research aimed at widening participation in Geography, Earth and Environmental Science (GEES) subjects. These subjects are often less commonly associated with disabilities, ethnic minorities, low income socio-economic groups and females. While advancements and improvements have been made in the inclusivity of these subject areas in recent years, access and participation of disabled students remains low. While universities are legally obligated to provide reasonable adjustments to ensure accessibility, the assumed incompatibility of GEES subjects and disability often deters students from applying to study these courses at a university level. Instead of making reasonable adjustments if and when they are needed, universities should be aiming to develop teaching materials, spaces and opportunities which are accessible to all, which in turn will allow all groups to participate in the GEES subjects. With this in mind, the Swansea Geography Department wish to enhance the accessibility of our undergraduate degree by developing digital field work opportunities. In the first instance, we intend to digitise three afternoon excursions which are run as part of a 1st year undergraduate module. Each of the field trips will be digitized into English- and Welsh-medium formats. In addition, each field trip will be digitized into British Sign Language (BSL) to allow for accessibility for D/deaf and hard of hearing students. Subtitles will also be made available in each version. While the main focus of this work is to provide accessible fieldwork opportunities for students with disabilities, this work also has additional benefits. Students within the Geography Department will be able to revisit the field trips, to revise and complete associated coursework. The use of digitized field work should not replace opportunities for real field work, but its use by the full cohort of students will begin to "normalize" accessible field

  13. Data Services and Transnational Access for European Geosciences Multi-Scale Laboratories (United States)

    Funiciello, Francesca; Rosenau, Matthias; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Trippanera, Daniele; Spires, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst


    The EC policy for research in the new millennium supports the development of european-scale research infrastructures. In this perspective, the existing research infrastructures are going to be integrated with the objective to increase their accessibility and to enhance the usability of their multidisciplinary data. Building up integrating Earth Sciences infrastructures in Europe is the mission of the Implementation Phase (IP) of the European Plate Observing System (EPOS) project (2015-2019). The integration of european multiscale laboratories - analytical, experimental petrology and volcanology, magnetic and analogue laboratories - plays a key role in this context and represents a specific task of EPOS IP. In the frame of the WP16 of EPOS IP working package 16, European geosciences multiscale laboratories aims to be linked, merging local infrastructures into a coherent and collaborative network. In particular, the EPOS IP WP16-task 4 "Data services" aims at standardize data and data products, already existing and newly produced by the participating laboratories, and made them available through a new digital platform. The following data and repositories have been selected for the purpose: 1) analytical and properties data a) on volcanic ash from explosive eruptions, of interest to the aviation industry, meteorological and government institutes, b) on magmas in the context of eruption and lava flow hazard evaluation, and c) on rock systems of key importance in mineral exploration and mining operations; 2) experimental data describing: a) rock and fault properties of importance for modelling and forecasting natural and induced subsidence, seismicity and associated hazards, b) rock and fault properties relevant for modelling the containment capacity of rock systems for CO2, energy sources and wastes, c) crustal and upper mantle rheology as needed for modelling sedimentary basin formation and crustal stress distributions, d) the composition, porosity, permeability, and

  14. Entity Linking Leveraging the GeoDeepDive Cyberinfrastructure and Managing Uncertainty with Provenance. (United States)

    Maio, R.; Arko, R. A.; Lehnert, K.; Ji, P.


    Unlocking the full, rich, network of links between the scientific literature and the real world entities to which data correspond - such as field expeditions (cruises) on oceanographic research vessels and physical samples collected during those expeditions - remains a challenge for the geoscience community. Doing so would enable data reuse and integration on a broad scale; making it possible to inspect the network and discover, for example, all rock samples reported in the scientific literature found within 10 kilometers of an undersea volcano, and associated geochemical analyses. Such a capability could facilitate new scientific discoveries. The GeoDeepDive project provides negotiated access to 4.2+ million documents from scientific publishers, enabling text and document mining via a public API and cyberinfrastructure. We mined this corpus using entity linking techniques, which are inherently uncertain, and recorded provenance information about each link. This opens the entity linking methodology to scrutiny, and enables downstream applications to make informed assessments about the suitability of an entity link for consumption. A major challenge is how to model and disseminate the provenance information. We present results from entity linking between journal articles, research vessels and cruises, and physical samples from the Petrological Database (PetDB), and incorporate Linked Data resources such as cruises in the Rolling Deck to Repository (R2R) catalog where possible. Our work demonstrates the value and potential of the GeoDeepDive cyberinfrastructure in combination with Linked Data infrastructure provided by the EarthCube GeoLink project. We present a research workflow to capture provenance information that leverages the World Wide Web Consortium (W3C) recommendation PROV Ontology.

  15. GIS in geoscience education- geomorphometric study

    Digital Repository Service at National Institute of Oceanography (India)

    Mahender, K.; Yogita, K.; Kunte, P.D.

    The educational institutions around the world have realised the possibility of using GIS in geosciences teaching along with in many other subjects. GIS is been used in a large number of geoscience applications viz. mapping, mineral and petroleum...

  16. Examining sexism in the geosciences (United States)

    Simarski, Lynn Teo

    Do women geoscientists face worse obstacles because of their gender than women in other sciences? A recent survey by the Committee on Professionals in Science and Technology showed that women with geoscience bachelor's degrees start off at only 68% of their male colleagues' salaries, much lower than women in biology (92%), engineering (102%), chemistry (103%), and physics (111%).Women still lag behind men in geoscience degrees as well. In 1990, women received about one-third of geoscience bachelor's degrees, one-quarter of masters, and about one-fifth of Ph.D.'s, reports the American Geological Institute. In the sciences overall, women received about half of bachelor's degrees, 42% of masters, and about a third of Ph.D.'s in 1989, according to the National Research Council.

  17. Internet Geo-Location (United States)


    INTERNET GEO-LOCATION DUKE UNIVERSITY DECEMBER 2017 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR...REPORT TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) MAY 2014 – MAY 2017 4. TITLE AND SUBTITLE INTERNET GEO-LOCATION 5a. CONTRACT...of SpeedTest servers that are used by end users to measure the speed of their Internet connection. The servers log the IP address and the location

  18. Transforming Indigenous Geoscience Education and Research (TIGER) (United States)

    Berthelote, A. R.


    American Indian tribes and tribal confed­erations exert sovereignty over about 20% of all the freshwater resources in the United States. Yet only about 30 Native American (NA) students receive bachelor's degrees in the geosci­ences each year, and few of those degrees are in the field of hydrology. To help increase the ranks of NA geoscientists,TIGER builds upon the momentum of Salish Kootenai College's newly accredited Hydrology Degree Program. It allows for the development and implementation of the first Bachelor's degree in geosciences (hydrology) at a Tribal College and University (TCU). TIGER integrates a solid educational research-based framework for retention and educational preparation of underrepresented minorities with culturally relevant curriculum and socio-cultural supports, offering a new model for STEM education of NA students. Innovative hydrology curriculum is both academically rigorous and culturally relevant with concurrent theoretical, conceptual, and applied coursework in chemical, biological, physical and managerial aspects of water resources. Educational outcomes for the program include a unique combination of competencies based on industry recognized standards (e.g., National Institute of Hydrologists), input from an experienced External Advisory Board (EAB), and competencies required for geoscientists working in critical NA watersheds, which include unique competencies, such as American Indian Water Law and sovereignty issues. TIGER represents a unique opportunity to capitalize on the investments the geoscience community has already made into broadening the participation of underrepresented minorities and developing a diverse workforce, by allowing SKC to develop a sustainable and exportable program capable of significantly increasing (by 25 to 75%) the National rate of Native American geoscience graduates.

  19. Tracking the Health of the Geoscience Workforce (United States)

    Gonzales, L. M.; Keane, C. M.; Martinez, C. M.


    Increased demands for resources and environmental activities, relative declines in college students entering technical fields, and expectations of growth commensurate with society as a whole challenge the competitiveness of the U.S. geoscience workforce. Because of prior business cycles, more than 50% of the workforce needed in natural resource industries in 10 years is currently not in the workforce. This issue is even more acute in government at all levels and in academic institutions. Here, we present a snapshot of the current status of the geoscience profession that spans geoscientists in training to geoscience professionals in government, industry, and academia to understand the disparity between the supply of and demand for geoscientists. Since 1996, only 1% of high school SAT test takers plan to major in geosciences at college. Although the total number of geoscience degrees granted at community colleges have increased by 9% since 1996 , the number of geoscience undergraduate degrees has decreased by 7%. The number of geoscience master's and doctoral degrees have increased 4% and 14% respectively in the same time period. However, by 2005, 68 geoscience departments were consolidated or closed in U.S. universities. Students who graduate with geoscience degrees command competitive salaries. Recent bachelors geoscience graduates earned an average salary of 31,366, whereas recent master's recipients earned an average of 81,300. New geosciences doctorates commanded an average salary of 72,600. Also, fFederal funding for geoscience research has increase steadily from 485 million in 1970 to $3.5 billion in 2005. Economic indicators suggest continued growth in geoscience commodity output and in market capitalization of geoscience industries. Additionally, the Bureau of Labor Statistics projects a 19% increase in the number of geoscience jobs from 2006 to 2016. Despite the increased demand for geoscientists and increase in federal funding of geoscience research

  20. Integrity inspection of main access tunnel using ground penetrating radar (United States)

    Ismail, M. A.; Abas, A. A.; Arifin, M. H.; Ismail, M. N.; Othman, N. A.; Setu, A.; Ahmad, M. R.; Shah, M. K.; Amin, S.; Sarah, T.


    This paper discusses the Ground Penetrating Radar (GPR) survey performed to determine the integrity of wall of tunnel at a hydroelectric power generation facility. GPR utilises electromagnetic waves that are transmitted into the medium of survey. Any reflectors in the medium will reflect the transmitted waves and picked up by the GPR antenna. The survey was done using MALA GeoScience RAMAC CUII with 250MHz antenna. Survey was done on the left, the crown and the right walls of the underground tunnels. Distance was measured using wheel encoders. The results of the survey is discussed in this paper.

  1. A Model Collaborative Platform for Geoscience Education (United States)

    Fox, S.; Manduca, C. A.; Iverson, E. A.


    Over the last decade SERC at Carleton College has developed a collaborative platform for geoscience education that has served dozens of projects, thousands of community authors and millions of visitors. The platform combines a custom technical infrastructure: the SERC Content Management system (CMS), and a set of strategies for building web-resources that can be disseminated through a project site, reused by other projects (with attribution) or accessed via an integrated geoscience education resource drawing from all projects using the platform. The core tools of the CMS support geoscience education projects in building project-specific websites. Each project uses the CMS to engage their specific community in collecting, authoring and disseminating the materials of interest to them. At the same time the use of a shared central infrastructure allows cross-fertilization among these project websites. Projects are encouraged to use common templates and common controlled vocabularies for organizing and displaying their resources. This standardization is then leveraged through cross-project search indexing which allow projects to easily incorporate materials from other projects within their own collection in ways that are relevant and automated. A number of tools are also in place to help visitors move among project websites based on their personal interests. Related links help visitors discover content related topically to their current location that is in a 'separate' project. A 'best bets' feature in search helps guide visitors to pages that are good starting places to explore resources on a given topic across the entire range of hosted projects. In many cases these are 'site guide' pages created specifically to promote a cross-project view of the available resources. In addition to supporting the cross-project exploration of specific themes the CMS also allows visitors to view the combined suite of resources authored by any particular community member. Automatically

  2. Spatial assessment of Geo-environmental data by the integration of Remote Sensing and GIS techniques for Sitakund Region, Eastern foldbelt, Bangladesh. (United States)

    Gazi, M. Y.; Rahman, M.; Islam, M. A.; Kabir, S. M. M.


    Techniques of remote sensing and geographic information systems (GIS) have been applied for the analysis and interpretation of the Geo-environmental assessment to Sitakund area, located within the administrative boundaries of the Chittagong district, Bangladesh. Landsat ETM+ image with a ground resolution of 30-meter and Digital Elevation Model (DEM) has been adopted in this study in order to produce a set of thematic maps. The diversity of the terrain characteristics had a major role in the diversity of recipes and types of soils that are based on the geological structure, also helped to diversity in land cover and use in the region. The geological situation has affected on the general landscape of the study area. The problem of research lies in the possibility of the estimating the techniques of remote sensing and geographic information systems in the evaluation of the natural data for the study area spatially as well as determine the appropriate in grades for the appearance of the ground and in line with the reality of the region. Software for remote sensing and geographic information systems were adopted in the analysis, classification and interpretation of the prepared thematic maps in order to get to the building of the Geo-environmental assessment map of the study area. Low risk geo-environmental land mostly covered area of Quaternary deposits especially with area of slope wash deposits carried by streams. Medium and high risk geo-environmental land distributed with area of other formation with the study area, mostly the high risk shows area of folds and faults. The study has assessed the suitability of lands for agricultural purpose and settlements in less vulnerable areas within this region.

  3. Internships and UNAVCO: Training the Future Geoscience Workforce Through the NSF GAGE Facility (United States)

    Morris, A. R.; MacPherson-Krutsky, C. C.; Charlevoix, D. J.; Bartel, B. A.


    Facilities are uniquely positioned to both serve a broad, national audience and provide unique workforce experience to students and recent graduates. Intentional efforts dedicated to broadening participation in the future geoscience workforce at the NSF GAGE (Geodesy Advancing Geosciences and EarthScope) Facility operated by UNAVCO, are designed to meet the needs of the next generation of students and professionals. As a university-governed consortium facilitating research and education in the geosciences, UNAVCO is well-situated to both prepare students for geoscience technical careers and advanced research positions. Since 1998, UNAVCO has offered over 165 student assistant or intern positions including engineering, data services, education and outreach, and business support. UNAVCO offers three formal programs: the UNAVCO Student Internship Program (USIP), Research Experiences in Solid Earth Science for Students (RESESS), and the Geo-Launchpad (GLP) internship program. Interns range from community college students up through graduate students and recent Masters graduates. USIP interns gain real-world work experience in a professional setting, collaborate with teams toward a common mission, and contribute their knowledge, skills, and abilities to the UNAVCO community. RESESS interns conduct authentic research with a scientist in the Front Range area as well as participate in a structured professional development series. GLP students are in their first 2 years of higher education and work alongside UNAVCO technical staff gaining valuable work experience and insight into the logistics of supporting scientific research. UNAVCO's efforts in preparing the next generation of scientists largely focuses on increasing diversity in the geosciences, whether continuing academic studies or moving into the workforce. To date, well over half of our interns and student assistants come from backgrounds historically underrepresented in the geosciences. Over 80% of former interns

  4. Progress toward Modular UAS for Geoscience Applications (United States)

    Dahlgren, R. P.; Clark, M. A.; Comstock, R. J.; Fladeland, M.; Gascot, H., III; Haig, T. H.; Lam, S. J.; Mazhari, A. A.; Palomares, R. R.; Pinsker, E. A.; Prathipati, R. T.; Sagaga, J.; Thurling, J. S.; Travers, S. V.


    Small Unmanned Aerial Systems (UAS) have become accepted tools for geoscience, ecology, agriculture, disaster response, land management, and industry. A variety of consumer UAS options exist as science and engineering payload platforms, but their incompatibilities with one another contribute to high operational costs compared with those of piloted aircraft. This research explores the concept of modular UAS, demonstrating airframes that can be reconfigured in the field for experimental optimization, to enable multi-mission support, facilitate rapid repair, or respond to changing field conditions. Modular UAS is revolutionary in allowing aircraft to be optimized around the payload, reversing the conventional wisdom of designing the payload to accommodate an unmodifiable aircraft. UAS that are reconfigurable like Legos™ are ideal for airborne science service providers, system integrators, instrument designers and end users to fulfill a wide range of geoscience experiments. Modular UAS facilitate the adoption of open-source software and rapid prototyping technology where design reuse is important in the context of a highly regulated industry like aerospace. The industry is now at a stage where consolidation, acquisition, and attrition will reduce the number of small manufacturers, with a reduction of innovation and motivation to reduce costs. Modularity leads to interface specifications, which can evolve into de facto or formal standards which contain minimum (but sufficient) details such that multiple vendors can then design to those standards and demonstrate interoperability. At that stage, vendor coopetition leads to robust interface standards, interoperability standards and multi-source agreements which in turn drive costs down significantly.

  5. Design, Implementation and Applications of 3d Web-Services in DB4GEO (United States)

    Breunig, M.; Kuper, P. V.; Dittrich, A.; Wild, P.; Butwilowski, E.; Al-Doori, M.


    The object-oriented database architecture DB4GeO was originally designed to support sub-surface applications in the geo-sciences. This is reflected in DB4GeO's geometric data model as well as in its import and export functions. Initially, these functions were designed for communication with 3D geological modeling and visualization tools such as GOCAD or MeshLab. However, it soon became clear that DB4GeO was suitable for a much wider range of applications. Therefore it is natural to move away from a standalone solution and to open the access to DB4GeO data by standardized OGC web-services. Though REST and OGC services seem incompatible at first sight, the implementation in DB4GeO shows that OGC-based implementation of web-services may use parts of the DB4GeO-REST implementation. Starting with initial solutions in the history of DB4GeO, this paper will introduce the design, adaptation (i.e. model transformation), and first steps in the implementation of OGC Web Feature (WFS) and Web Processing Services (WPS), as new interfaces to DB4GeO data and operations. Among its capabilities, DB4GeO can provide data in different data formats like GML, GOCAD, or DB3D XML through a WFS, as well as its ability to run operations like a 3D-to-2D service, or mesh-simplification (Progressive Meshes) through a WPS. We then demonstrate, an Android-based mobile 3D augmented reality viewer for DB4GeO that uses the Web Feature Service to visualize 3D geo-database query results. Finally, we explore future research work considering DB4GeO in the framework of the research group "Computer-Aided Collaborative Subway Track Planning in Multi-Scale 3D City and Building Models".

  6. The ENGAGE Workshop: Encouraging Networks between Geoscientists and Geoscience Education Researchers (United States)

    Hubenthal, M.; LaDue, N.; Taber, J.


    The geoscience education community has made great strides in the study of teaching and learning at the undergraduate level, particularly with respect to solid earth geology. Nevertheless, the 2012 National Research Council report, Discipline-based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering suggests that the geosciences lag behind other science disciplines in the integration of education research within the discipline and the establishment of a broad research base. In January 2015, early career researchers from earth, atmospheric, ocean, and polar sciences and geoscience education research (GER) gathered for the ENGAGE workshop. The primary goal of ENGAGE was to broaden awareness of discipline-based research in the geosciences and catalyze relationships and understanding between these groups of scientists. An organizing committee of geoscientists and GERs designed a two-day workshop with a variety of activities to engage participants in the establishment of a shared understanding of education research and the development of project ideas through collaborative teams. Thirty-three participants were selected from over 100 applicants, based on disciplinary diversity and demonstrated interest in geoscience education research. Invited speakers and panelists also provided examples of successful cross-disciplinary collaborations. As a result of this workshop, participants indicated that they gained new perspectives on geoscience education and research, networked outside of their discipline, and are likely to increase their involvement in geoscience education research. In fact, 26 of 28 participants indicated they are now better prepared to enter into cross-disciplinary collaborations within the next year. The workshop evaluation revealed that the physical scientists particularly valued opportunities for informal networking and collaborative work developing geoscience education research projects. Meanwhile, GERs valued

  7. Making the GeoConnection: Web 2.0-based support for early-career geoscientists (Invited) (United States)

    Martinez, C. M.; Gonzales, L. M.; Keane, C. M.


    The US Bureau of Labor estimates that there will be an 18% increase in geoscience jobs between 2008 and 2018 in the United States, and demand for geoscientists is expected to rise worldwide as scientists tackle global challenges related to resources, hazards and climate. At the same time, the geoscience workforce is aging, with approximately half of the current workforce reaching retirement age within the next 10-15 years. A new generation of geoscientists must be ready to take the reins. To support this new generation, AGI’s geoscience workforce outreach programs were designed to help retain geoscience students through their degree programs and into careers in the field. These resources include support for early-career professional development and career planning. AGI’s GeoConnection Network for the Geosciences provides a venue for informal dissemination of career information and professional resources. The network links Web 2.0 platforms, including a Facebook page, YouTube Channel and Twitter feed, to build a robust geoscience community of geoscientists at all stages of their careers. Early-career geoscientists can participate in GeoConnection to network with other scientists, and to receive information about professional development and job opportunities. Through GeoConnection packets, students can join professional societies which will assist their transition from school to the workplace. AGI’s member societies provide professional development course work, field trips, career services, interviewing opportunities, and community meetings. As part of the GeoConnection Network, AGI hosts informational webinars to highlight new workforce data, discuss current affairs in the geosciences, and to provide information about geoscience careers. Between December 2009 and August 2010, AGI hosted 10 webinars, with more than 300 total participants for all the webinars, and 5 additional webinars are planned for the remainder of the year. The webinars offer early

  8. Summary outline of DOE geoscience and geoscience - related research

    International Nuclear Information System (INIS)


    The Office of Basic Energy Sciences (OBES) supports long-range, basic research in those areas of the geosciences which are relevant to the nation's energy needs. The objective of the Geoscience program is to develop a quantitative and predictive understanding of geological, geophysical and geochemical structures and processes in the solid earth and in solar-terrestrial relationships. This understanding is to assure an effective knowledge base for energy resource recognition, evaluation and utilization in an environmentally acceptable manner. The work is carried out primarily in DOE laboratories and in universities, although some is conducted by other federal agencies and by the National Academy of Sciences. Principal areas of interest include: Geology, Geophysics, and Earth Dynamics; Geochemistry; Energy Resource Recognition, Evaluation and Utilization; Hydrologic and Marine Sciences; and Solar-Terrestrial/Atmospheric Interactions

  9. Geo-neutrino review

    International Nuclear Information System (INIS)

    Tolich, N.


    The principal source of energy for dynamic processes of the earth, such as plate tectonics is thought to come from the radioactive decays of 238 U, 232 Th, and 40 K within the earth. These decays produce electron-antineutrinos, so-called geo-neutrinos, the measurement of which near the earth's surface allows for a direct measure of the total radiogenic heat production in the earth. The KamLAND and Borexino experiments have both measured a geo-neutrino flux significantly greater than zero. As shown in these proceedings, more precise future measurements will significantly constrain earth composition models.

  10. Developing A Large-Scale, Collaborative, Productive Geoscience Education Network (United States)

    Manduca, C. A.; Bralower, T. J.; Egger, A. E.; Fox, S.; Ledley, T. S.; Macdonald, H.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.


    Over the past 15 years, the geoscience education community has grown substantially and developed broad and deep capacity for collaboration and dissemination of ideas. While this community is best viewed as emergent from complex interactions among changing educational needs and opportunities, we highlight the role of several large projects in the development of a network within this community. In the 1990s, three NSF projects came together to build a robust web infrastructure to support the production and dissemination of on-line resources: On The Cutting Edge (OTCE), Earth Exploration Toolbook, and Starting Point: Teaching Introductory Geoscience. Along with the contemporaneous Digital Library for Earth System Education, these projects engaged geoscience educators nationwide in exploring professional development experiences that produced lasting on-line resources, collaborative authoring of resources, and models for web-based support for geoscience teaching. As a result, a culture developed in the 2000s in which geoscience educators anticipated that resources for geoscience teaching would be shared broadly and that collaborative authoring would be productive and engaging. By this time, a diverse set of examples demonstrated the power of the web infrastructure in supporting collaboration, dissemination and professional development . Building on this foundation, more recent work has expanded both the size of the network and the scope of its work. Many large research projects initiated collaborations to disseminate resources supporting educational use of their data. Research results from the rapidly expanding geoscience education research community were integrated into the Pedagogies in Action website and OTCE. Projects engaged faculty across the nation in large-scale data collection and educational research. The Climate Literacy and Energy Awareness Network and OTCE engaged community members in reviewing the expanding body of on-line resources. Building Strong

  11. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. Final report, September 29, 1993--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W.W.; Buckley, J.S.; Ouenes, A.


    The goal of this three-year project was to provide a quantitative definition of reservoir heterogeneity. This objective was accomplished through the integration of geologic, geophysical, and engineering databases into a multi-disciplinary understanding of reservoir architecture and associated fluid-rock and fluid-fluid interactions. This interdisciplinary effort integrated geological and geophysical data with engineering and petrophysical results through reservoir simulation to quantify reservoir architecture and the dynamics of fluid-rock and fluid-fluid interactions. An improved reservoir description allows greater accuracy and confidence during simulation and modeling as steps toward gaining greater recovery efficiency from existing reservoirs. A field laboratory, the Sulimar Queen Unit, was available for the field research. Several members of the PRRC staff participated in the development of improved reservoir description by integration of the field and laboratory data as well as in the development of quantitative reservoir models to aid performance predictions. Subcontractors from Stanford University and the University of Texas at Austin (UT) collaborated in the research and participated in the design and interpretation of field tests. The three-year project was initiated in September 1993 and led to the development and application of various reservoir description methodologies. A new approach for visualizing production data graphically was developed and implemented on the Internet. Using production data and old gamma rays logs, a black oil reservoir model that honors both primary and secondary performance was developed. The old gamma ray logs were used after applying a resealing technique, which was crucial for the success of the project. In addition to the gamma ray logs, the development of the reservoir model benefitted from an inverse Drill Stem Test (DST) technique which provided initial estimates of the reservoir permeability at different wells.

  12. Living with geo-resources and geo-hazards

    NARCIS (Netherlands)

    Hangx, Suzanne|info:eu-repo/dai/nl/30483579X; Niemeijer, André|info:eu-repo/dai/nl/370832132


    Two of the key strategic topics on the European Committee’s Horizon2020 Roadmap revolve around geo-resources and geo-hazards, and their impact on societal and economic development. On the way towards a better policy for sustainable geo-resources production, such as oil, gas, geothermal energy and

  13. Broadening Awareness and Participation in the Geosciences Among Underrepresented Minorities in STEM (United States)

    Blake, R.; Liou-Mark, J.


    , effects, and prediction of natural disasters including earthquakes, volcanoes, tsunamis, landslides, subsidence, global climate change, severe weather, coastal erosion, floods, mass extinctions, wildfires, and meteoroid impacts. In addition to the brand new geoscience course offerings, City Tech students participate in geoscience - seminars, guest lectures, lecture series, and geoscience internship and fellowship workshops. The students also participate in geoscience exposure trips to NASA/GISS Columbia University, NOAA-CREST, and the Brookhaven National Laboratory. Moreover, the undergrads are provided opportunities for paid research internships via two NSF grants - NSF REU and NSF STEP. Geoscience projects are also integrated into course work, and students make geoscience group project presentations in class. Students also participate in geoscience career and graduate school workshops. The program also creates geoscience articulation agreements with the City College of New York so that students at City Tech may pursue Bachelor's and advanced degrees in the geosciences. This program is supported by NSF OEDG grant #1108281.

  14. Application of QA geoscience investigations

    International Nuclear Information System (INIS)

    Henderson, J.T.


    This paper discusses the evolution of a classical hardware QA program (as currently embodied in DOE/ALO Manual Chapter 08XA; NRC 10CFR Part 50, Appendix B; and other similar documents) into the present geoscience quality assurance programs that address eventual NRC licensing, if required. In the context of this paper, QA will be restricted to the tasks associated with nuclear repositories, i.e. site identification, selection, characterization, verification, and utilization

  15. Spatiotemporal Thinking in the Geosciences (United States)

    Shipley, T. F.; Manduca, C. A.; Ormand, C. J.; Tikoff, B.


    Reasoning about spatial relations is a critical skill for geoscientists. Within the geosciences different disciplines may reason about different sorts of relationships. These relationships may span vastly different spatial and temporal scales (from the spatial alignment in atoms in crystals to the changes in the shape of plates). As part of work in a research center on spatial thinking in STEM education, we have been working to classify the spatial skills required in geology, develop tests for each spatial skill, and develop the cognitive science tools to promote the critical spatial reasoning skills. Research in psychology, neurology and linguistics supports a broad classification of spatial skills along two dimensions: one versus many objects (which roughly translates to object- focused and navigation focused skills) and static versus dynamic spatial relations. The talk will focus on the interaction of space and time in spatial cognition in the geosciences. We are working to develop measures of skill in visualizing spatiotemporal changes. A new test developed to measure visualization of brittle deformations will be presented. This is a skill that has not been clearly recognized in the cognitive science research domain and thus illustrates the value of interdisciplinary work that combines geosciences with cognitive sciences. Teaching spatiotemporal concepts can be challenging. Recent theoretical work suggests analogical reasoning can be a powerful tool to aid student learning to reason about temporal relations using spatial skills. Recent work in our lab has found that progressive alignment of spatial and temporal scales promotes accurate reasoning about temporal relations at geological time scales.

  16. 3D visualization of geo-scientific data for research and development purposes

    International Nuclear Information System (INIS)

    Mangeot, A.; Tabani, P.; Yven, B.; Dewonck, S.; Napier, B.; Waston, C.J.; Baker, G.R.; Shaw, R.P.


    Document available in extended abstract form only. In recent years national geoscience organizations have increasingly utilized 3D model data as an output to the stakeholder community. Advances in both software and hardware have led to an increasing use of 3D depictions of geoscience data alongside the standard 2D data formats such as maps and GIS data. By characterizing geoscience data in 3D, knowledge transfer between geo-scientists and stakeholders is improved as the mindset and thought processes are communicated more effectively in a 3D model than in a 2D flat file format. 3D models allow the user to understand the conceptual basis of the 2D data and aids the decision making process at local, regional and national scales. In April 29 2009 a Memorandum of Understanding has been signed between BGS and Andra in order to provide an improved mechanism for technical cooperation and collaboration in the Earth sciences. A specific agreement was signed the 1 December 2009 to evaluate the capacity of a 3D software called GeoVisionary to represent the Underground research Laboratory and its environment. GeoVisionary is the result of collaboration between Virtalis and the British Geological Survey. Combining a powerful data engine with a virtual geological tool-kit enables geo-scientists to visualize, analyze and share large datasets seamlessly in an immersive, real time environment A typical GeoVisionary environment contains one or more the following: 3D terrain files, Aerial photography, Bitmap overlays of specialized data, Vector shapes and outlines, 3D object Models. The key benefits are: Continuously stream geometry and photography in real time, Visualise 2D GIS data in immersive 3D stereo, Diverse datasets in a single environment, 'Fly' to any part of the data in seconds, Infinitely scalable, Prepare and evaluate before you begin fieldwork, Enhance team-working and increased efficiency of field operations, Clearer communication of results. Now, the 3D model has been

  17. Building an International Collaboration for GeoInformatics (United States)

    Snyder, W. S.; Lehnert, K.; Klump, J.


    Geoinformatics (cyberinfrastructure for the geosciences) is being developed as a linked system of sites that provide to the Earth science community a library of research data research-grade tools to manipulate, mine, analyze and model interdisciplinary data, and mechanisms to provide the necessary computational resources for these activities. Our science is global in scope and hence, geoinformatics (GI) must be an international effort. How do we build this international GI? What are the main challenges presented by the political, cultural, organizational, and technical diversity of the global science community that we need to address to achieve a truly global cyberinfrastructure for the Geosciences? GI needs to be developed in an internet-like fashion establishing connections among independent globally distributed sites (`nodes') that will share, link, and integrate their data holdings and services. Independence of the GI pieces with respect to goals, scope, and approaches is critical to sustain commitment from people to build a GI node for which they feel ownership and get credit. This should not be fought by funding agencies - and certainly not by state and federal agencies. Communication, coordination, and collaboration are the core efforts to build the connections, but incentives and resources are required to advance and support them. Part of the coordination effort is development and maintenance of standards. Who should set these standards and govern their modification? Do we need an official international body to do so, and should this be a "governing body" or an "advisory body"? What role should international commissions and bodies such as CODATA/ICSU or IUGS-CGI, international societies and unions, the national geological surveys and other federal agencies play? Guidance from the science community is key to construct a system that geo-researchers will want to use, and that meets their needs. Only when the community endorses GI as a fundamental platform to

  18. Geoscience is Important? Show Me Why (United States)

    Boland, M. A.


    "The public" is not homogenous and no single message or form of messaging will connect the entire public with the geosciences. One approach to promoting trust in, and engagement with, the geosciences is to identify specific sectors of the public and then develop interactions and communication products that are immediately relevant to that sector's interests. If the content and delivery are appropriate, this approach empowers people to connect with the geosciences on their own terms and to understand the relevance of the geosciences to their own situation. Federal policy makers are a distinct and influential subgroup of the general public. In preparation for the 2016 presidential election, the American Geosciences Institute (AGI) in collaboration with its 51 member societies prepared Geoscience for America's Critical Needs: Invitation to a National Dialogue, a document that identified major geoscience policy issues that should be addressed in a national policy platform. Following the election, AGI worked with eight other geoscience societies to develop Geoscience Policy Recommendations for the New Administration and the 115th Congress, which outlines specific policy actions to address national issues. State and local decision makers are another important subgroup of the public. AGI has developed online content, factsheets, and case studies with different levels of technical complexity so people can explore societally-relevant geoscience topics at their level of technical proficiency. A related webinar series is attracting a growing worldwide audience from many employment sectors. Partnering with government agencies and other scientific and professional societies has increased the visibility and credibility of these information products with our target audience. Surveys and other feedback show that these products are raising awareness of the geosciences and helping to build reciprocal relationships between geoscientists and decision makers. The core message of all

  19. Why Geo-Humanities (United States)

    Graells, Robert Casals i.; Sibilla, Anna; Bohle, Martin


    Anthropogenic global change is a composite process. It consists of societal processes (in the 'noosphere') and natural processes (in the 'bio-geosphere'). The 'noosphere' is the ensemble of social, cultural or political insights ('shared subjective mental concepts') of people. Understanding the composite of societal and natural processes ('human geo-biosphere intersections'), which shapes the features of anthropogenic global change, would benefit from a description that draws equally on natural sciences, social sciences and humanities. To that end it is suggested to develop a concept of 'geo-humanities': This essay presents some aspects of its scope, discussing "knowledge that is to manage", "intentions that are to shape", "choices that are to justify" and "complexity that is to handle". Managing knowledge: That people understand anthropogenic global change requires their insights into how 'human geosphere intersections' function. Insights are formed ('processed') in the noosphere by means of interactions between people. Understanding how 'human geosphere intersections' functions combines scientific, engineering and economic studies with studies of the dynamics of the noosphere. Shaping intentions: During the last century anthropogenic global change developed as the collateral outcome of humankind's accumulated actions. It is caused by the number of people, the patterns of their consumption of resources, and the alterations of their environments. Nowadays, anthropogenic global chance is either an intentional negligence or a conscious act. Justifying choices: Humanity has alternatives how to alter Earth at planetary scale consciously. For example, there is a choice to alter the geo-biosphere or to adjust the noosphere. Whatever the choice, it will depend on people's world-views, cultures and preferences. Thus beyond issues whether science and technology are 'sound' overarching societal issues are to tackle, such as: (i) how to appropriate and distribute natural

  20. Translational Geoscience: Converting Geoscience Innovation into Societal Impacts (United States)

    Schiffries, C. M.


    Translational geoscience — which involves the conversion of geoscience discovery into societal, economic, and environmental impacts — has significant potential to generate large benefits but has received little systematic attention or resources. In contrast, translational medicine — which focuses on the conversion of scientific discovery into health improvement — has grown enormously in the past decade and provides useful models for other fields. Elias Zerhouni [1] developed a "new vision" for translational science to "ensure that extraordinary scientific advances of the past decade will be rapidly captured, translated, and disseminated for the benefit of all Americans." According to Francis Collins, "Opportunities to advance the discipline of translational science have never been better. We must move forward now. Science and society cannot afford to do otherwise." On 9 July 2015, the White House issued a memorandum directing U.S. federal agencies to focus on translating research into broader impacts, including commercial products and decision-making frameworks [3]. Natural hazards mitigation is one of many geoscience topics that would benefit from advances in translational science. This paper demonstrates that natural hazards mitigation can benefit from advances in translational science that address such topics as improving emergency preparedness, communicating life-saving information to government officials and citizens, explaining false positives and false negatives, working with multiple stakeholders and organizations across all sectors of the economy and all levels of government, and collaborating across a broad range of disciplines. [1] Zerhouni, EA (2005) New England Journal of Medicine 353(15):1621-1623. [2] Collins, FS (2011) Science Translational Medicine 3(90):1-6. [3] Donovan, S and Holdren, JP (2015) Multi-agency science and technology priorities for the FY 2017 budget. Executive Office of the President of the United States, 5 pp.

  1. Challenges of the NGSS for Future Geoscience Education (United States)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Lopez, R. E.; Messina, P.; Speranza, P.


    The new Next Generation Science Standards (NGSS), which spell out a set of K-12 performance expectations for life science, physical science, and Earth and space science (ESS), pose a variety of opportunities and challenges for geoscience education. Among the changes recommended by the NGSS include establishing ESS on an equal footing with both life science and physical sciences, at the full K-12 level. This represents a departure from the traditional high school curriculum in most states. In addition, ESS is presented as a complex, integrated, interdisciplinary, quantitative Earth Systems-oriented set of sciences that includes complex and politically controversial topics such as climate change and human impacts. The geoscience communities will need to mobilize in order to assist and aid in the full implementation of ESS aspects of the NGSS in as many states as possible. In this context, the NGSS highlight Earth and space science to an unprecedented degree. If the NGSS are implemented in an optimal manner, a year of ESS will be taught in both middle and high school. In addition, because of the complexity and interconnectedness of the ESS content (with material such as climate change and human sustainability), it is recommended (Appendix K of the NGSS release) that much of it be taught following physics, chemistry, and biology. However, there are considerable challenges to a full adoption of the NGSS. A sufficient work force of high school geoscientists qualified in modern Earth Systems Science does not exist and will need to be trained. Many colleges do not credit high school geoscience as a lab science with respect to college admission. The NGSS demand curricular practices that include analyzing and interpreting real geoscience data, and these curricular modules do not yet exist. However, a concerted effort on the part of geoscience research and education organizations can help resolve these challenges.

  2. Unidata: A cyberinfrastrucuture for the geosciences (United States)

    Ramamurthy, Mohan


    originated externally, but are modified, maintained, and supported at the UPC. Software provided by Unidata is available at no charge. The overarching goal embodied in Unidata's strategic plan is the creation of a scientific ecosystem in which "data friction" is reduced and data transparency and ease-of-use are increased. In such an environment, scientists will expend less effort locating, acquiring, and processing data and more time interpreting their data and sharing knowledge. To accomplish the goals set forth in our strategic plan, Unidata has been working to build and provide cloud-based infrastructure that makes it easy to discover, access, integrate and use data from disparate geoscience disciplines, allowing investigators to perceive connections that today are obscured by incompatible data formats or the mistaken impression that the data they need for their investigations do not exist.

  3. Open-source web-enabled data management, analyses, and visualization of very large data in geosciences using Jupyter, Apache Spark, and community tools (United States)

    Chaudhary, A.


    Current simulation models and sensors are producing high-resolution, high-velocity data in geosciences domain. Knowledge discovery from these complex and large size datasets require tools that are capable of handling very large data and providing interactive data analytics features to researchers. To this end, Kitware and its collaborators are producing open-source tools GeoNotebook, GeoJS, Gaia, and Minerva for geosciences that are using hardware accelerated graphics and advancements in parallel and distributed processing (Celery and Apache Spark) and can be loosely coupled to solve real-world use-cases. GeoNotebook ( is co-developed by Kitware and NASA-Ames and is an extension to the Jupyter Notebook. It provides interactive visualization and python-based analysis of geospatial data and depending the backend (KTile or GeoPySpark) can handle data sizes of Hundreds of Gigabytes to Terabytes. GeoNotebook uses GeoJS ( to render very large geospatial data on the map using WebGL and Canvas2D API. GeoJS is more than just a GIS library as users can create scientific plots such as vector and contour and can embed InfoVis plots using D3.js. GeoJS aims for high-performance visualization and interactive data exploration of scientific and geospatial location aware datasets and supports features such as Point, Line, Polygon, and advanced features such as Pixelmap, Contour, Heatmap, and Choropleth. Our another open-source tool Minerva (( is a geospatial application that is built on top of open-source web-based data management system Girder ( which provides an ability to access data from HDFS or Amazon S3 buckets and provides capabilities to perform visualization and analyses on geosciences data in a web environment using GDAL and GeoPandas wrapped in a unified API provided by Gaia (https

  4. The deep geologic repository technology programme: toward a geoscience basis for understanding repository safety

    International Nuclear Information System (INIS)

    Jensen, M.R.


    Within the Deep Geologic Repository Technology Programme (DGRTP) several Geoscience activities are focused on advancing the understanding of groundwater flow system evolution and geochemical stability in a Canadian Shield setting as affected by long-term climate change. A key aspect is developing confidence in predictions of groundwater flow patterns and residence times as they relate to the safety of a deep geologic repository for used nuclear fuel waste. This is being achieved through a coordinated multi-disciplinary approach intent on: i) demonstrating coincidence between independent geo-scientific data; ii) improving the traceability of geo-scientific data and its interpretation within a conceptual descriptive model(s); iii) improving upon methods to assess and demonstrate robustness in flow domain prediction(s) given inherent flow domain uncertainties (i.e. spatial chemical/physical property distributions, boundary conditions) in time and space; and iv) improving awareness amongst geo-scientists as to the utility of various geo-scientific data in supporting a safety case for a deep geologic repository. This multi-disciplinary DGRTP approach is yielding an improved understanding of groundwater flow system evolution and stability in Canadian Shield settings that is further contributing to the geo-scientific basis for understanding and communicating aspects of DGR safety. (author)

  5. Summary outline of ERDA geosciences and geoscience-related research

    International Nuclear Information System (INIS)


    The Division of Biomedical and Environmental Research (DBER) supports long-range, basic geosciences research in those areas of the life sciences which are relevant to current or planned ERDA programs. A central objective of the DBER geosciences program is to understand the mechanisms by which radionuclides and non-nuclear pollutants move through and interact with ecological systems including the air, land, inland waters, and oceans. Principal areas of interest include, in the field of atmospheric sciences: studies of the troposphere, particle formation, particulate matter, behavior of aerosols and gases, atmospheric transport and diffusion of fossil fuel pollutants, radionuclides, radionuclide global distribution patterns, nuclear emergency response systems, precipitation scavenging and dry deposition, regional relationships between pollutant sources and ambient atmospheric concentrations; and oceanographic studies of radioactivity that may be directly added to the environment from waste disposal activities and reactor operations or indirectly from nuclear explosions and transportation, the source term characterization, transport, fate, and effects of these pollutants in the marine environment; and studies of thermal effects on biological systems, mixing and circulation of water, distribution of radionuclides in ocean waters and sediments, and geochronology.A summary outline of the research programs is presented

  6. Association for Women Geoscientists: enhancing gender diversity in the geosciences. (United States)

    Holmes, M.; O'Connell, S.; Foos, A.


    The Association for Women Geoscientists (AWG) has been working to increase the representation and advancement of women in geoscience careers since its founding in 1977. We promote the professional development of our members and encourage women to become geoscientists by gathering and providing data on the status of women in the field, providing publications to train women in professional skills, encouraging networking, publicizing mentoring opportunities, organizing and hosting workshops, funding programs to encourage women to enter the field of geosciences, and providing scholarships, particularly to non-traditional students. We promote women geoscientists' visibility through our Phillips Petroleum Speaker's List, by recognizing an Outstanding Educator at our annual breakfast at the Geological Society of America meetings, and by putting qualified women's names forward for awards given by other geo-societies. Our paper and electronic newsletters inform our members of job and funding opportunities. These newsletters provide the geoscience community with a means of reaching a large pool of women (nearly 1000 members). Our outreach is funded by the AWG Foundation and carried out by individual members and association chapters. We provide a variety of programs, from half-day "Fossil Safaris" to two-week field excursions such as the Lincoln Chapter/Homestead Girl Scouts Council Wider Opportunity, "Nebraska Rocks!!". Our programs emphasize the field experience as the most effective "hook" for young people. We have found that women continue to be under-represented in academia in the geosciences. Data from 1995 indicate we hold only 11 percent of academic positions and 9 percent of tenure-track positions, while our enrollment at the undergraduate level has risen from 25 to 34 percent over the last ten years. The proportion of women in Master's degree programs is nearly identical with our proportions in undergraduate programs, but falls off in doctoral programs. Between 1986

  7. Geoscience Diversity Enhancement Project: Student Responses. (United States)

    Rodrigue, Christine M.; Wechsler, Suzanne P.; Whitney, David J.; Ambos, Elizabeth L.; Ramirez-Herrera, Maria Teresa; Behl, Richard; Francis, Robert D.; Larson, Daniel O.; Hazen, Crisanne

    This paper describes an interdisciplinary project at California State University (Long Beach) designed to increase the attractiveness of the geosciences to underrepresented groups. The project is called the Geoscience Diversity Enhancement Project (GDEP). It is a 3-year program which began in the fall of 2001 with funding from the National Science…

  8. Inquiring with Geoscience Datasets: Instruction and Assessment (United States)

    Zalles, D.; Quellmalz, E.; Gobert, J.


    This session will describe a new NSF-funded project in Geoscience education, Inquiring with Geoscience Data Sets. The goals of the project are to (1) Study the impacts on student learning of Web-based supplementary curriculum modules that engage secondary-level students in inquiry projects addressing important geoscience problems using an Earth System Science approach. Students will use technologies to access real data sets in the geosciences and to interpret, analyze, and communicate findings based on the data sets. The standards addressed will include geoscience concepts, inquiry abilities in NSES and Benchmarks for Science Literacy, data literacy, NCTM standards, and 21st-century skills and technology proficiencies (NETTS/ISTE). (2) Develop design principles, specification templates, and prototype exemplars for technology-based performance assessments that provide evidence of students' geoscientific knowledge and inquiry skills (including data literacy skills) and students' ability to access, use, analyze, and interpret technology-based geoscience data sets. (3) Develop scenarios based on the specification templates that describe curriculum modules and performance assessments that could be developed for other Earth Science standards and curriculum programs. Also to be described in the session are the project's efforts to differentiate among the dimensions of data literacy and scientific inquiry that are relevant for the geoscience discplines, and how recognition and awareness of the differences can be effectively channelled for the betterment of geoscience education.

  9. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  10. OneGeology - The most appropriate model to achieve access to up-to-date geoscience data using a distributed data system (United States)

    Komac, Marko; Duffy, Tim; Robida, Francois; Harrison, Matt; Allison, Lee


    OneGeology is an initiative of Geological Survey Organisations (GSO) around the globe that dates back to Brighton, UK in 2007. Since then OneGeology has been a leader in developing geological online map data using a new international standard - a geological exchange language known as the 'GeoSciML' (currently version 3.2 exists, which enables instant interoperability of the data). Increased use of this new language allows geological data to be shared and integrated across the planet with other organisations. One of very important goals of OneGeology was a transfer of valuable know-how to the developing world, hence shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making its structure more official, its operability more flexible and its membership more open where in addition to GSO also to other type of organisations that manage geoscience data can join and contribute. The next stage of the OneGeology initiative will hence be focused into increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource on the rocks beneath our feet. Authoritative information on hazards and minerals will help to prevent natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale. With this new stage also renewed OneGeology objectives were defined and these are 1) to be the provider of geosciences data globally, 2) to ensure exchange of know-how and skills so all can participate, and 3) to use the global profile of 1G to increase awareness of the geosciences and their relevance among professional and general public. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscience data and One

  11. Multi-User GeoGebra for Virtual Math Teams

    Directory of Open Access Journals (Sweden)

    Gerry Stahl


    Full Text Available The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT service provides an integrated web-based environment for small teams to discuss mathematics. The VMT collaboration environment now includes the dynamic mathematics application, GeoGebra. It offers a multi-user version of GeoGebra, which can be used in concert with VMT’s chat, web browsers, curricula and wiki repository.

  12. Nurturing a growing field: Computers & Geosciences (United States)

    Mariethoz, Gregoire; Pebesma, Edzer


    Computational issues are becoming increasingly critical for virtually all fields of geoscience. This includes the development of improved algorithms and models, strategies for implementing high-performance computing, or the management and visualization of the large datasets provided by an ever-growing number of environmental sensors. Such issues are central to scientific fields as diverse as geological modeling, Earth observation, geophysics or climatology, to name just a few. Related computational advances, across a range of geoscience disciplines, are the core focus of Computers & Geosciences, which is thus a truly multidisciplinary journal.

  13. Geo-collaboration under stress

    NARCIS (Netherlands)

    Looije, R.; Brake, G.M. te; Neerincx, M.A.


    “Most of the science and decision making involved in geo-information is the product of collaborative teams. Current geospatial technologies are a limiting factor because they do not provide any direct support for group efforts. In this paper we present a method to enhance geo-collaboration by

  14. Contributions of the German Research Center for Geosciences (GFZ) to the EPOS (European Plate Observing System) Implementation Phase 2015-18 (United States)

    Hoffmann, T. L.; Lauterjung, J.


    The European Plate Observing System project is currently approaching the end of year two of its four-year Implementation Phase 2015-18 (EPOS-IP). Under the Horizon 2020 Programme INFRADEV-3, the EPOS cyberinfrastructure is being established as an ERIC (European Research Infrastructure Consortium) and encompasses the implementation of both the EPOS Integrated Core Services (ICS) for solid Earth Science and a multitude of EPOS Thematic Core Services (TCS). During year two, a basic set of ICS and TCS services was developed and implemented, so that in October 2017 the validation phase (year 3) of EPOS is ready to be launched. Up to now, various TCS-Elements have integrated different Service Providers (SD) that are delivering Data, Data Products, Services and Software (DDSS) to their specific scientific community. As one of the 29 awardees of the EC grant, the German Research Center for Geosciences (GFZ) plays an important role in the implementation of EPOS and its Thematic and Integrated Core Services. The presented poster will give an overview of GFZ's participation in the work of nine technical EPOS Work Packages (WP7 ICS Development, WP8 Seismology, WP11 Volcano Observations, WP12 Satellite Data, WP13 Geomagnetic Observations, WP14 Anthropogenic Hazards, WP15 Geological Information and Modelling, WP16 Multi-Scale Laboratories and WP17 Geo Energy Test Beds) as well as in four administrative EPOS Work Packages (WP2 Communication, WP3 Harmonization, WP4 Legal & Governance, and WP5 Financial).

  15. GeoLab: A Geological Workstation for Future Missions (United States)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi


    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  16. Geoscience at Community Colleges: Availability of Programs and Geoscience Student Pathways (United States)

    Gonzales, L. M.; Keane, C. M.; Houlton, H. R.


    Community colleges served over 7.5 million students in 2009, and have a more diverse student population than four-year institutions. In 2008, 58% of community college students were women and 33% of students were underrepresented minorities. Community colleges provide a large diverse pool of untapped talent for the geosciences and for all science and engineering disciplines. The most recent data from NSF's 2006 NSCRG database indicate that within the physical sciences, 43% of Bachelor's, 31% of Master's and 28% of Doctoral recipients had attended community college. Until recently, fine-grained datasets for examining the prevalence of community college education in geoscience students' academic pathways has not been available. Additionally, there has been limited information regarding the availability of geoscience programs and courses at community colleges. In 2011, the American Geological Institute (AGI) expanded its Directory of Geoscience Departments (DGD) to cover 434 community colleges that offer either geoscience programs and/or geoscience curriculum, and launched the first pilot of a standardized National Geoscience Exit Survey. The survey collects information not only about students' pathways in the university system and future academic and career plans, but also about community college attendance including geoscience course enrollments and Associate's degrees. The National Geoscience Exit Survey will be available to all U.S. geoscience programs at two- and four-year colleges and universities by the end of the 2011-2012 academic year, and will also establish a longitudinal survey effort to track students through their careers. Whereas the updated DGD now provides wider coverage of geoscience faculty members and programs at community colleges, the Exit Survey provides a rich dataset for mapping the flow of students from community colleges to university geoscience programs. We will discuss the availability of geoscience courses and programs at community

  17. NSF-Sponsored Summit on the Future of Undergraduate Geoscience Education: outcomes (United States)

    Mosher, S.


    The NSF-sponsored Summit on the Future of Undergraduate Geoscience Education made major progress toward developing a collective community vision for the geosciences. A broad spectrum of the geoscience education community, ~200 educators from research universities/four and two year colleges, focused on preparation of undergraduates for graduate school and future geoscience careers, pedagogy, use of technology, broadening participation/retention of underrepresented groups, and preparation of K-12 science teachers. Participants agreed that key concepts, competencies and skills learned throughout the curriculum were more important than specific courses. Concepts included understanding Earth as complex, dynamic system, deep time, evolution of life, natural resources, energy, hazards, hydrogeology, surface processes, Earth materials and structure, and climate change. Skills/competencies included ability to think spatially and temporally, reason inductively and deductively, make and use indirect observations, engage in complex open, coupled systems thinking, and work with uncertainty, non-uniqueness, and incompleteness, as well as critical thinking, problem solving, communication, and ability to think like a scientist and continue to learn. Successful ways of developing these include collaborative, integrative projects involving teams, interdisciplinary projects, fieldwork and research experiences, as well as flipped classrooms and integration and interactive use of technology, including visualization, simulation, modeling and analysis of real data. Wider adoption of proven, effective best practices is our communities' main pedagogical challenge, and we focused on identifying implementation barriers. Preparation of future teachers in introductory and general geoscience courses by incorporating Next Generation Science Standards and using other sciences/math to solve real world geoscience problems should help increase diversity and number of future geoscientists and

  18. Summaries of FY 1993 geosciences research

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the DOE`s many missions. The Geosciences Research Program is supported by the Office of Energy Research. The participants in this program include DOE laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the DOE and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar-atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  19. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound underlay of fundamental knowledge in those areas of the earth, atmospheric, and solar/terrestrial sciences that relate to the Department of Energy's many missions. The Division of Engineering, Mathematical and Geosciences, which is a part of the Office of Basic Energy Sciences and comes under the Director of Energy Research, supports under its Geosciences program major Department of Energy laboratories, industry, universities and other governmental agencies. The summaries in this document, prepared by the investigators, describe the overall scope of the individual programs and details of the research performed during 1979-1980. The Geoscience program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related to the Department's technological needs, either directly or indirectly.

  20. Illuminate Knowledge Elements in Geoscience Literature (United States)

    Ma, X.; Zheng, J. G.; Wang, H.; Fox, P. A.


    There are numerous dark data hidden in geoscience literature. Efficient retrieval and reuse of those data will greatly benefit geoscience researches of nowadays. Among the works of data rescue, a topic of interest is illuminating the knowledge framework, i.e. entities and relationships, embedded in documents. Entity recognition and linking have received extensive attention in news and social media analysis, as well as in bioinformatics. In the domain of geoscience, however, such works are limited. We will present our work on how to use knowledge bases on the Web, such as ontologies and vocabularies, to facilitate entity recognition and linking in geoscience literature. The work deploys an un-supervised collective inference approach [1] to link entity mentions in unstructured texts to a knowledge base, which leverages the meaningful information and structures in ontologies and vocabularies for similarity computation and entity ranking. Our work is still in the initial stage towards the detection of knowledge frameworks in literature, and we have been collecting geoscience ontologies and vocabularies in order to build a comprehensive geoscience knowledge base [2]. We hope the work will initiate new ideas and collaborations on dark data rescue, as well as on the synthesis of data and knowledge from geoscience literature. References: 1. Zheng, J., Howsmon, D., Zhang, B., Hahn, J., McGuinness, D.L., Hendler, J., and Ji, H. 2014. Entity linking for biomedical literature. In Proceedings of ACM 8th International Workshop on Data and Text Mining in Bioinformatics, Shanghai, China. 2. Ma, X. Zheng, J., 2015. Linking geoscience entity mentions to the Web of Data. ESIP 2015 Summer Meeting, Pacific Grove, CA.

  1. EarthCube: A Community Organization for Geoscience Cyberinfrastructure (United States)

    Patten, K.; Allison, M. L.


    The National Science Foundation's (NSF) EarthCube initiative is a community-driven approach to building cyberinfrastructure for managing, sharing, and exploring geoscience data and information to better address today's grand-challenge science questions. The EarthCube Test Enterprise Governance project is a two-year effort seeking to engage diverse geo- and cyber-science communities in applying a responsive approach to the development of a governing system for EarthCube. During Year 1, an Assembly of seven stakeholder groups representing the broad EarthCube community developed a draft Governance Framework. Finalized at the June 2014 EarthCube All Hands Meeting, this framework will be tested during the demonstration phase in Year 2, beginning October 2014. A brief overview of the framework: Community-elected members of the EarthCube Leadership Council will be responsible for managing strategic direction and identifying the scope of EarthCube. Three Standing Committees will also be established to oversee the development of technology and architecture, to coordinate among new and existing data facilities, and to represent the academic geosciences community in driving development of EarthCube cyberinfrastructure. An Engagement Team and a Liaison Team will support communication and partnerships with internal and external stakeholders, and a central Office will serve a logistical support function to the governance as a whole. Finally, ad hoc Working Groups and Special Interest Groups will take on other issues related to EarthCube's goals. The Year 2 demonstration phase will test the effectiveness of the proposed framework and allow for elements to be changed to better meet community needs. It will begin by populating committees and teams, and finalizing leadership and decision-making processes to move forward on community-selected priorities including identifying science drivers, coordinating emerging technical elements, and coming to convergence on system architecture. A

  2. Geo-social visual analytics

    Directory of Open Access Journals (Sweden)

    Wei Luo


    Full Text Available Spatial analysis and social network analysis typically consider social processes in their own specific contexts, either geographical or network space. Both approaches demonstrate strong conceptual overlaps. For example, actors close to each other tend to have greater similarity than those far apart; this phenomenon has different labels in geography (spatial autocorrelation and in network science (homophily. In spite of those conceptual and observed overlaps, the integration of geography and social network context has not received the attention needed in order to develop a comprehensive understanding of their interaction or their impact on outcomes of interest, such as population health behaviors, information dissemination, or human behavior in a crisis. In order to address this gap, this paper discusses the integration of geographic with social network perspectives applied to understanding social processes in place from two levels: the theoretical level and the methodological level. At the theoretical level, this paper argues that the concepts of nearness and relationship in terms of a possible extension of the First Law of Geography are a matter of both geographical and social network distance, relationship, and interaction. At the methodological level, the integration of geography and social network contexts are framed within a new interdisciplinary field:~visual analytics, in which three major application-oriented subfields (data exploration, decision-making, and predictive analysis are used to organize discussion. In each subfield, this paper presents a theoretical framework first, and then reviews what has been achieved regarding geo-social visual analytics in order to identify potential future research.

  3. GEO600: status and plans

    International Nuclear Information System (INIS)

    Willke, B


    The GEO600 gravitational wave detector located near Hannover in Germany is one of the four detectors of the LIGO Scientific Collaboration (LSC). For almost the entire year of 2006, GEO600 participated in the S5 science run of the LSC. Overall an equivalent of about 270 days of science data with an average peak sensitivity of better than 3 x 10 -22 Hz -1/2 have been acquired so far. In this paper, we describe the status of the GEO600 project during the period between January 2006 and February 2007. In addition, plans for the near-term and medium-term future are discussed

  4. The German-Chinese research collaboration YANGTZE-GEO: Assessing the geo-risks in the Three Gorges Reservoir area (United States)

    Schönbrodt, S.; Behrens, T.; Bieger, K.; Ehret, D.; Frei, M.; Hörmann, G.; Seeber, C.; Schleier, M.; Schmalz, B.; Fohrer, N.; Kaufmann, H.; King, L.; Rohn, J.; Subklew, G.; Xiang, W.


    The river impoundment by The Three Gorges Dam leads to resettlement and land reclamation on steep slopes. As a consequence, ecosystem changes such as soil erosion, mass movements, and diffuse sediment and matter fluxes are widely expected to increase rapidly. In order to assess and analyse those ecosystem changes, the German-Chinese joint research project YANGTZE-GEO was set up in 2008. Within the framework of YANGTZE-GEO five German universities (Tuebingen, Erlangen, Giessen, Kiel, Potsdam) conducted studies on soil erosion, mass movements, diffuse matter inputs, and land use change and vulnerability in close collaboration with Chinese scientists. The Chinese partners and institutions are according to their alphabetic order of hometown the Chinese Research Academy of Environmental Sciences (CRAES; Beijing), the Standing Office of the State Council Three Gorges Project Construction Committee (Beijing), the National Climate Centre (NCC) of the China Meteorological Administration (CMA; Beijing), the Aero Geophysical Survey and Remote Sensing for Land and Resources (AES; Beijing), the Nanjing University, the CAS Institute of Soil Science (Nanjing), the Nanjing Institute of Geography and Limnology at CAS (NIGLAS; Nanjing), the China University of Geosciences (CUG; Wuhan), the CAS Institute of Hydrobiology (Wuhan), and the China Three Gorges University (Yichang). The overall aim of YANGTZE-GEO is the development of a risk assessment and forecasting system to locate high risk areas using GIS-based erosion modelling, data mining tools for terrace condition analysis and landslide recognition, eco-hydrological modelling for diffuse matter inputs, and state-of-the-art remote sensing to assess the landscape's vulnerability. Furthermore, the project aims at the recommendation of sustainable land management systems. YANGTZE-GEO showed the relevance of such research and crucially contributes to the understanding of the dimension and dynamics of the ecological consequences of

  5. EnerGEO biomass pilot

    International Nuclear Information System (INIS)

    Tum, M.; Guenther, K.P.; McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S.; Biberacher, M.


    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  6. EnerGEO biomass pilot

    Energy Technology Data Exchange (ETDEWEB)

    Tum, M.; Guenther, K.P. [German Aerospace Center (DLR), Wessling (Germany). German Remote Sensing Data Center (DFD); McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S. [International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Biberacher, M. [Research Studios Austria AG (RSA), Salzburg (Austria)


    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  7. e-Infrastuctures interoperability: the Geohazards Exploitation Platform for the use of satellite earth observations in Geosciences (United States)

    Caumont, Herve; Brito, Fabrice; Mathot, Emmanuel; Barchetta, Francesco; Loeschau, Frank


    We present recent achievements with the Geohazards Exploitation Platform (GEP), a European contribution to the GEO SuperSites, and its interoperability with the MEDiterranean SUpersite Volcanoes (MED-SUV) e- infrastructure. The GEP is a catalyst for the use of satellite Earth observation missions, providing data to initiatives such as the GEO Geohazard Supersites and Natural Laboratories (GSNL), the Volcano and Seismic Hazards CEOS Pilots or the European Plate Observing System (EPOS). As satellite sensors are delivering increasing amounts of data, researchers need more computational science tools and services. The GEP contribution in this regard allows scientists to access different data types, relevant to the same area and phenomena and to directly stage selected inputs to scalable processing applications that deliver EO-based science products. With the GEP concept of operation for improved collaboration, a partner can bring its processing tools, use from his workspace other shared toolboxes and access large data repositories. GEP is based on Open Source Software components, on a Cloud Services architecture inheriting a range of ESA and EC funded innovations, and is associating the scientific community and SMEs in implementing new capabilities. Via MED-SUV, we are making discoverable and accessible a large number of products over the Mt. Etna, Vesu- vius/Campi Flegrei volcanic areas, which are of broader interest for Geosciences researchers, so they can process ENVISAT MERIS, ENVISAT ASAR, and ERS SAR data (both Level 1 and Level 2) hosted in the ESA clusters and in ESA's Virtual Archive, TerraSAR-X data hosted in DLR's Virtual Archive, as well as data hosted in other dedicated MED-SUV Virtual Archives (e.g. for LANDSAT, EOS-1). GEP will gradually access Sentinel-1A data, other space agencies data and value-added products. Processed products can also be published and archived on the MED-SUV e-Infrastructure. In this effort, data policy rules applied to the

  8. Defining the Geoscience Community through a Quantitative Perspective (United States)

    Wilson, C. E.; Keane, C. M.


    The American Geosciences Institute's (AGI) Geoscience Workforce Program collects and analyzes data pertaining to the changes in the supply, demand, and training of the geoscience workforce. These data cover the areas of change in the education of future geoscientists from K-12 through graduate school, the transition of geoscience graduates into early-career geoscientists, the dynamics of the current geoscience workforce, and the future predictions of the changes in the availability of geoscience jobs. The Workforce Program also considers economic changes in the United States and globally that can affect the supply and demand of the geoscience workforce. In order to have an informed discussion defining the modern geoscience community, it is essential to understand the current dynamics within the geoscience community and workforce. This presentation will provide a data-driven outlook of the current status of the geosciences in the workforce and within higher education using data collected by AGI, federal agencies and other stakeholder organizations. The data presented will highlight the various industries, including those industries with non-traditional geoscience jobs, the skills development of geoscience majors, and the application of these skills within the various industries in the workforce. This quantitative overview lays the foundation for further discussions related to tracking and understanding the current geoscience community in the United States, as well as establishes a baseline for global geoscience workforce comparisons in the future.

  9. Planning for the Future of Geo-Cybereducation: Outcomes of the Workshop, Challenges, and Future Directions (United States)

    Ryan, J. G.; Eriksson, S. C.


    Inspired by the recommendations of the NSF report “Fostering Learning in the Networked World: The Cyberlearning Opportunity and Challenge” (NSF08204), the NSF National STEM Digital Learning program funded “Planning for the Future of Geocybereducation” Workshop sought to bring together leaders from the geoscience education community, from major geoscience research initiatives, and from the growing public- and private-sector geoscience information community. The objectives of the workshop were to begin conversations aimed at identifying best practices and tools for geoscience cyber-education, in the context of both the changing nature of learners and of rapidly evolving geo-information platforms, and to provide guidance to the NSF as to necessary future directions and needs for funding. 65 participants met and interacted live for the two-day workshop, with ongoing post-meeting virtual interactions via a collaborative workspace ( Topics addressed included the rapidly changing character of learners, the growing capabilities of geoscience information systems and their affiliated tools, and effective models for collaboration among educators, researchers and geoinformation specialists. Discussions at the meeting focused on the implications of changing learners on the educational process, the challenges for teachers and administrators in keeping pace, and on the challenges of communication among these divergent professional communities. Ongoing virtual discussions and collaborations have produced a draft workshop document, and the workshop conveners are maintaining the workshop site as a venue for ongoing discussion and interaction. Several key challenges were evident from the workshop discussions and subsequent interactions: a) the development of most of the large geoinformatics and geoscience research efforts were not pursued with education as a significant objective, resulting in limited financial support for such activities after the

  10. Make it fun for everyone: visualization techniques in geoscience (United States)

    Portnov, A.; Sojtaric, M.


    We live on a planet that mostly consists of oceans, but most people cannot picture what the surface and the subsurface of the ocean floor looks like. Marine geophysics has traditionally been difficult to explain to general public as most of what we do happens beyond the visual realm of an average audience. However, recent advances in 3D visualization of scientific data is one of the tools we can employ to better explain complex systems through gripping visual content. Coupled with a narrative approach, this type of visualization can open up a whole new and relatively little known world of science to general public. Up-to-date remote-sensing methods provide unique data of surface of seabed and subsurface all over the planet. Modern software can present this data in a spectacular way and with great scientific accuracy, making it attractive both for specialists and non-specialists in geoscience. As an example, we present several visualizations, which in simple way tell stories of various research in the remote parts of the World, such as Arctic regions and deep ocean in the Gulf of Mexico. Diverse datasets: multibeam echosounding; hydrographic survey; seismic and borehole data are put together to build up perfectly geo-referenced environment, showing the complexity of geological processes on our planet. Some of the data was collected 10-15 years ago, but acquired its new life with the help of new data visualization techniques. Every digital object with assigned coordinates, including 2D pictures and 3D models may become a part of this virtual geologic environment, limiting the potential of geo-visualization only by the imagination of a scientist. Presented videos have an apparent scientific focus on marine geology and geophysics, since the data was collected by several research and petroleum organizations, specialized in this field. The stories which we tell in this way may, for example, provide the public with further insight in complexities surrounding natural

  11. Geo-Seas - a pan-European infrastructure for the management of marine geological and geophysical data. (United States)

    Glaves, Helen; Graham, Colin


    Geo-Seas - a pan-European infrastructure for the management of marine geological and geophysical data. Helen Glaves1 and Colin Graham2 on behalf of the Geo-Seas consortium The Geo-Seas project will create a network of twenty six European marine geoscience data centres from seventeen coastal countries including six from the Baltic Sea area. This will be achieved through the development of a pan-European infrastructure for the exchange of marine geoscientific data. Researchers will be able to locate and access harmonised and federated marine geological and geophysical datasets and data products held by the data centres through the Geo-Seas data portal, using a common data catalogue. The new infrastructure, an expansion of the exisiting SeaDataNet, will create an infrastructure covering oceanographic and marine geoscientific data. New data products and services will be developed following consultations with users on their current and future research requirements. Common data standards will be implemented across all of the data centres and other geological and geophysical organisations will be encouraged to adopt the protocols, standards and tools which are developed as part of the Geo-Seas project. Oceanographic and marine data include a wide range of variables, an important category of which are the geological and geophysical data sets. This data includes raw observational and analytical data as well as derived data products from seabed sediment samples, boreholes, geophysical surveys (seismic, gravity etc) and sidescan sonar surveys. All of which are essential in order to produce a complete interpretation of seabed geology. Despite there being a large volume of geological and geophysical data available for the marine environment it is currently very difficult to use these datasets in an integrated way between organisations due to different nomenclatures, formats, scales and coordinate systems being used within different organisations and also within different

  12. Geoscience on television: a review of science communication literature in the context of geosciences (United States)

    Hut, Rolf; Land-Zandstra, Anne M.; Smeets, Ionica; Stoof, Cathelijne R.


    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be challenging when interacting with journalists on a powerful medium like TV. To provide geoscience communicators with background knowledge on effective science communication on television, we reviewed relevant theory in the context of geosciences and discuss six major themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We illustrate each theme with a case study of geosciences on TV and discuss relevant science communication literature. We then highlight how this literature applies to the geosciences and identify knowledge gaps related to science communication in the geosciences. As TV offers a unique opportunity to reach many viewers, we hope this review can not only positively contribute to effective geoscience communication but also to the wider geoscience debate in society.

  13. Geoscience Academic Provenance: A Theoretical Framework for Understanding Geoscience Students' Pathways (United States)

    Houlton, H.; Keane, C.


    The demand and employment opportunities for geoscientists in the United States are projected to increase 23% from 2008 to 2018 (Gonzales, 2011). Despite this trend, there is a disconnect between undergraduate geoscience students and their desire to pursue geoscience careers. A theoretical framework was developed to understand the reasons why students decide to major in the geosciences and map those decisions to their career aspirations (Houlton, 2010). A modified critical incident study was conducted to develop the pathway model from 17, one-hour long semi-structured interviews of undergraduate geoscience majors from two Midwest Research Institutions (Houlton, 2010). Geoscience Academic Provenance maps geoscience students' initial interests, entry points into the major, critical incidents and future career goals as a pathway, which elucidates the relationships between each of these components. Analyses identified three geoscience student population groups that followed distinct pathways: Natives, Immigrants and Refugees. A follow up study was conducted in 2011 to ascertain whether these students continued on their predicted pathways, and if not, reasons for attrition. Geoscientists can use this framework as a guide to inform future recruitment and retention initiatives and target these geoscience population groups for specific employment sectors.

  14. Proceedings of the geosciences workshop

    Energy Technology Data Exchange (ETDEWEB)



    The manuscripts in these proceedings represent current understanding of geologic issues associated with the Weldon Spring Site Remedial Action Project (WSSRAP). The Weldon Spring site is in St. Charles County, Missouri. The proceedings are the record of the information presented during the WSSRAP Geosciences Workshop conducted on February 21, 1991. The objective of the workshop and proceedings is to provide the public and scientific community with technical information that will facilitate a common understanding of the geology of the Weldon Spring site, of the studies that have been and will be conducted, and of the issues associated with current and planned activities at the site. This coverage of geologic topics is part of the US Department of Energy overall program to keep the public fully informed of the status of the project and to address public concerns as we clean up the site and work toward the eventual release of the property for use by this and future generations. Papers in these proceedings detail the geology and hydrology of the site. The mission of the WSSRAP derives from the US Department of Energy's Surplus Facilities Management Program. The WSSRAP will eliminate potential hazards to the public and the environment and make surplus real property available for other uses to the extent possible. This will be accomplished by conducting remedial actions which will place the quarry, the raffinate pits, the chemical plant, and the vicinity properties in a radiologically and chemically safe condition. The individual papers have been catalogued separately.

  15. Career Paths for Geosciences Students (Invited) (United States)

    Bowers, T. S.; Flewelling, S. A.


    Current and future drivers of hiring in the geosciences include climate, environment, energy, georisk and litigation areas. Although climate is closely linked to the atmospheric sciences, hiring needs in the geosciences exist as well, in understanding potential impacts of climate change on coastal erosion and water resources. Where and how to consider carbon sequestration as a climate mitigation policy will also require geosciences expertise. The environmental sciences have long been a source of geosciences hiring, and have ongoing needs in the areas of investigation of contamination, and in fluid and chemical transport. The recent expansion of the energy sector in the U.S. is providing opportunities for the geosciences in oil and gas production, hydraulic fracturing, and in geothermal development. In georisk, expertise in earthquake and volcanic hazard prediction are increasingly important, particularly in population centers. Induced seismicity is a relatively new area of georisk that will also require geosciences skills. The skills needed in the future geosciences workforce are increasingly interdisciplinary, and include those that are both observational and quantitative. Field observations and their interpretation must be focused forward as well as backwards and include the ability to recognize change as it occurs. Areas of demand for quantitative skills include hydrological, geophysical, and geochemical modeling, math and statistics, with specialties such as rock mechanics becoming an increasingly important area. Characteristics that students should have to become successful employees in these sectors include strong communication skills, both oral and written, the ability to know when to stop "studying" and identify next steps, and the ability to turn research areas into solutions to problems.

  16. Synergy between geo- and biomechanics

    NARCIS (Netherlands)

    Huyghe, J.M.R.J.; Kraaijeveld, F.; Broek, van den P.R.; Pizzocolo, F.; Schroder, Y.


    Today,the focus of physical scientists is shifting to biology more than ever before. Because there is no biological tissue that is not a porous medium, the porous media community should be very alert to this shift of attention. The impact that porous media mechanics had on geosciences in the past

  17. The energy geo-policy

    International Nuclear Information System (INIS)

    Duval, M.


    This analysis updates and develops the analysis of the energy geo-policy proposed by the French Review of geo-policy. In this framework the today policies of the different sate and geographical actors, as suppliers and consumers of petroleum energy, are examined. Then the author analyzes the political problems resulting from, this petroleum energy transfers by earth and sea and the problems resulting specifically from the nuclear energy. The last part brings the author own opinions. (A.L.B.)

  18. Building Bridges Between Cyberinfrastructure and Effective Instructional Practice in the Geosciences (United States)

    Mogk, D. W.


    The new geo-cybersinfrastructure (CI) has tremendous potential to fundamentally change geoscience education. Learners will have enhanced opportunities to learn science by doing science, particularly in the realm of inquiry and discovery through exploration of CI data and data products. The promise of CI lies in the universal access to data, analytical tools and data products and in the ability to integrate disparate types of data collected from many sources. But access to data for instructional purposes is not enough. CI may initially present significant barriers to learning related to data archive issues, access pathways that are designed for specialists that preclude use by novices, and the lack of educational metadata that can guide instructors and learners in the appropriate use of CI in a variety of educational applications. Consequently, there is a need for CI providers to build instructional portals in their systems that allow users to find and access relevant data; evaluate the quality of data, model output, and other data products; interrogate, sub- set, manipulate and render data; integrate diverse types of data; generate visualizations and other representations; and allow student contributions to the database. These capabilities presented by CI have important implications for what we teach and how we teach: 1) learning goals will have to be realigned to address concept and content mastery, skill development (higher-order thinking, quantitative, communication, interpersonal skills), and attitudes and values about Science, its processes and products; 2) assessments should be well-aligned with instructional goals to measure the process as well as the products of scientific investigations; 3) "primers" and "tutorials" should be developed to help students become critical consumers and producers of data by presenting data in the full context of underlying first principles, investigative strategies, instrumentation and analytical procedures, data manipulation

  19. LIME: 3D visualisation and interpretation of virtual geoscience models (United States)

    Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias


    Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel

  20. Integrated hierarchical geo-environmental survey strategy applied to the detection and investigation of an illegal landfill: A case study in the Campania Region (Southern Italy). (United States)

    Di Fiore, Vincenzo; Cavuoto, Giuseppe; Punzo, Michele; Tarallo, Daniela; Casazza, Marco; Guarriello, Silvio Marco; Lega, Massimiliano


    This paper describes an approach to detect and investigate the main characteristics of a solid waste landfill through the integration of geological, geographical and geophysical methods. In particular, a multi-temporal analysis of the landfill morphological evolution was carried out using aerial and satellite photos, since there were no geological and geophysical data referring to the study area. Subsequently, a surface geophysical prospection was performed through geoelectric and geomagnetic methods. In particular, the combination of electrical resistivity, induced polarization and magnetic measurements removed some of the uncertainties, generally associated with a separate utilization of these techniques. This approach was successfully tested to support the Prosecutor Office of Salerno (S Italy) during a specific investigation about an illegal landfill. All the collected field data supported the reconstruction of the site-specific history, while the real quarry geometry and site geology were defined. Key elements of novelty of this method are the combination and the integration of different methodological approaches, as the parallel and combined use of satellite, aerial and in-situ collected data, that were validated in a real investigation and that revealed the effectiveness of this strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Making a Difference: a Global Geoscience Initiative (United States)

    Nickless, E.


    Since 2009, an informal group, comprising four former board members of the International Year of Planet Earth, has been promoting the concept of a so-called Global Geoscientific Initiative. The GGI should: i.Be inclusive, involve a geoscience community, which is broad both in terms of discipline and nationality, and involve the social sciences; ii.Have a clear socio-economic context and global societal relevance; iii.Focus on a globally significant science theme and preferably involve global processes; iv.Attract the support of geoscientific communities, funding agencies, governments and other institutions in many countries, under the umbrella of UNESCO, ICSU and its geoscientific unions. A series of five town hall meetings have been held at which usually three invited, well-respected figures from the geoscientific community gave presentations. Those presentations were followed by discussion about the importance or otherwise of particular areas of science, and the need to engage better with legislators, policy makers, the media and the lay public. No one challenged the desirability of a large-scale programme that would attract researchers from many geoscientific disciplines and potentially involve the geo-unions. The discussions can be summarised under three broad themes: i.Mineral and hydrocarbon resources and their waste products; ii.Living with natural hazards; iii.Strategic Earth science in Africa through the Africa Alive corridors. During the course of development of the GGI, ICSU has issued a number of papers, most recently a strategic plan, covering the period 2012-2017, working parties have been undertaking foresight analysis and there have also been discussions concerning regional environmental change: human action and adaptation with the question "what does it take to meet the Belmont challenge?". The Belmont Forum brings together a number of funding agencies and could provide the resource to enable some initiative to go forward. More recently a programme

  2. Addressing Issues of Broadening Participation Highlighted in the Report on the Future of Undergraduate Geoscience Education (United States)

    McDaris, J. R.; Manduca, C. A.; Macdonald, H.; Iverson, E. A. R.


    The final report for the Summit on the Future of Geoscience Education lays out a consensus on issues that must be tackled by the geoscience community collectively if there are to be enough qualified people to fill the large number of expected geoscience job vacancies over the coming decade. Focus areas cited in the report include: Strengthening the connections between two-year colleges and four-year institutions Sharing and making use of successful recruitment and retention practices for students from underrepresented groups Making students aware of high-quality job prospects in the geosciences as well as its societal relevance The InTeGrate STEP Center for the Geosciences, the Supporting and Advancing Geoscience Education at Two-Year Colleges (SAGE 2YC) program, and the Building Strong Geoscience Departments (BSGD) project together have developed a suite of web resources to help faculty and program leaders begin to address these and other issues. These resources address practices that support the whole student, both in the classroom and as a part of the co-curriculum as well as information on geoscience careers, guidance for developing coherent degree programs, practical advice for mentoring and advising, and many others. In addition to developing web resources, InTeGrate has also undertaken an effort to profile successful program practices at a variety of institutions. An analysis of these data shows several common themes (e.g. proactive marketing, community building, research experiences) that align well with the existing literature on what works to support student success. But there are also indications of different approaches and emphases between Minority Serving Institutions (MSIs) and Primarily White Institutions (PWIs) as well as between different kinds of MSIs. Highlighting the different strategies in use can point both MSIs and PWIs to possible alternate solutions to the challenges their students face. InTeGrate -

  3. Summaries of FY 92 geosciences research

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions and their subdivisions including Earth dynamics, properties of Earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  4. Summaries of FY 91 geosciences research

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. Theses activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs. 2 tabs.

  5. Social Learning Theories--An Important Design Consideration for Geoscience Fieldwork (United States)

    Streule, M. J.; Craig, L. E.


    The nature of field trips in geoscience lends them to the application of social learning theories for three key reasons. First, they provide opportunity for meaningful practical experience and promote effective learning afforded by no other educational vehicle in the subject. Second, they are integral for students creating a strong but changing…

  6. Computer axial tomography in geosciences

    International Nuclear Information System (INIS)

    Duliu, Octavian G.


    Computer Axial Tomography (CAT) is one of the most adequate non-invasive techniques for the investigation of the internal structure of a large category of objects. Initially designed for medical investigations, this technique, based on the attenuation of X- or gamma-ray (and in some cases neutrons), generates digital images which map the numerical values of the linear attenuation coefficient of a section or of the entire volume of the investigated sample. Shortly after its application in medicine, CAT has been successfully used in archaeology, life sciences, and geosciences as well as for the industrial materials non-destructive testing. Depending on the energy of the utilized radiation as well as on the effective atomic number of the sample, CAT can provide with a spatial resolution of 0.01 - 0.5 mm, quantitative as well as qualitative information concerning local density, porosity or chemical composition of the sample. At present two types of axial Computer Tomographs (CT) are in use. One category, consisting of medical as well as industrial CT is equipped with X-ray tubes while the other uses isotopic gamma-ray sources. CT provided with intense X-ray sources (equivalent to 12-15 kCi or 450-550 TBq) has the advantage of an extremely short running time (a few seconds and even less) but presents some disadvantages known as beam hardening and absorption edge effects. These effects, intrinsically related to the polychromatic nature of the X-rays generated by classical tubes, need special mathematical or physical corrections. A polychromatic X-ray beam can be made almost monochromatic by means of crystal diffraction or by using adequate multicomponent filters, but these devices are costly and considerably diminish the output of X-ray generators. In the case of CT of the second type, monochromatic gamma-rays generated by radioisotopic sources, such as 169 Yb (50.4 keV), 241 Am (59 keV), 192 Ir (310.5 and 469.1 keV ) or 137 Cs (662.7 keV), are used in combination with

  7. Build It, But Will They Come? A Geoscience Cyberinfrastructure Baseline Analysis

    Directory of Open Access Journals (Sweden)

    Joel Cutcher-Gershenfeld


    Full Text Available Understanding the earth as a system requires integrating many forms of data from multiple fields. Builders and funders of the cyberinfrastructure designed to enable open data sharing in the geosciences risk a key failure mode: What if geoscientists do not use the cyberinfrastructure to share, discover and reuse data? In this study, we report a baseline assessment of engagement with the NSF EarthCube initiative, an open cyberinfrastructure effort for the geosciences. We find scientists perceive the need for cross-disciplinary engagement and engage where there is organizational or institutional support. However, we also find a possibly imbalanced involvement between cyber and geoscience communities at the outset, with the former showing more interest than the latter. This analysis highlights the importance of examining fields and disciplines as stakeholders to investments in the cyberinfrastructure supporting science.

  8. Visual Analytics for Heterogeneous Geoscience Data (United States)

    Pan, Y.; Yu, L.; Zhu, F.; Rilee, M. L.; Kuo, K. S.; Jiang, H.; Yu, H.


    Geoscience data obtained from diverse sources have been routinely leveraged by scientists to study various phenomena. The principal data sources include observations and model simulation outputs. These data are characterized by spatiotemporal heterogeneity originated from different instrument design specifications and/or computational model requirements used in data generation processes. Such inherent heterogeneity poses several challenges in exploring and analyzing geoscience data. First, scientists often wish to identify features or patterns co-located among multiple data sources to derive and validate certain hypotheses. Heterogeneous data make it a tedious task to search such features in dissimilar datasets. Second, features of geoscience data are typically multivariate. It is challenging to tackle the high dimensionality of geoscience data and explore the relations among multiple variables in a scalable fashion. Third, there is a lack of transparency in traditional automated approaches, such as feature detection or clustering, in that scientists cannot intuitively interact with their analysis processes and interpret results. To address these issues, we present a new scalable approach that can assist scientists in analyzing voluminous and diverse geoscience data. We expose a high-level query interface that allows users to easily express their customized queries to search features of interest across multiple heterogeneous datasets. For identified features, we develop a visualization interface that enables interactive exploration and analytics in a linked-view manner. Specific visualization techniques such as scatter plots to parallel coordinates are employed in each view to allow users to explore various aspects of features. Different views are linked and refreshed according to user interactions in any individual view. In such a manner, a user can interactively and iteratively gain understanding into the data through a variety of visual analytics operations. We

  9. Transitioning from Faculty-Led Lecture to Student-Centered Field Learning Facilitated by Near-Peer Mentors: Preliminary Findings from the GeoFORCE/ STEMFORCE Program. (United States)

    Berry, M.; Wright, V. D.; Ellins, K. K.; Browder, M. G. J.; Castillo, R.; Kotowski, A. J.; Libarkin, J. C.; Lu, J.; Maredia, N.; Butler, N.


    GeoFORCE Texas, a geology-based outreach program in the Jackson School of Geosciences, offers weeklong summer geology field based courses to secondary students from minority-serving high schools in Texas and the Bahamas. Students transitioning from eighth to ninth grade are recruited into the program and ideally remain in GeoFORCE for four years. The program aims to empower underrepresented students by exposing them to experiences intended to inspire them to pursue geoscience or other STEM careers. Since the program's inception in 2005, GeoFORCE Texas has relied on a mix of classroom lectures delivered by a geoscience faculty member and time in the field. Early research findings from a National Science Foundation-sponsored GeoPaths-IMPACT project are influencing the evolution of field instruction away from the faculty-led lecture model to student-centered learning that may improve students' grasp of key geological concepts. The eleventh and twelfth grade programs are shifting towards this strategy. Each trip is facilitated by a seven-person team comprised of a geoscience graduate student, master teachers, four undergraduate geology students, and preservice teachers. Members of the instructional team reflected the racial, ethnic, and cultural diversity that the geoscience strives to achieve; all are excellent role models for GeoFORCE students. The outcome of the most recent Central Texas twelfth grade trip, which used a student-centered, project-based approach, was especially noteworthy. Each group was given a topic to apply to what they saw in the field, such as fluvial systems, cultural significance, or geohazards, etc., and present in any manner in front of peers and a panel of geoscience experts. Students used the latest presentation technology available to them (e.g. Prezi, iMovies) and sketches and site notes from field stops. The final presentations were clear, informative, and entertaining. It can be concluded that the students were more engaged with the

  10. Field Studies—Essential Cognitive Foundations for Geoscience Expertise (United States)

    Goodwin, C.; Mogk, D. W.


    Learning in the field has traditionally been one of the fundamental components of the geoscience curriculum. Field experiences have been attributed to having positive impacts on cognitive, affective, metacognitive, mastery of skills and social components of learning geoscience. The development of geoscience thinking, and of geoscience expertise, encompasses a number of learned behaviors that contribute to the progress of Science and the development of scientists. By getting out into Nature, students necessarily engage active and experiential learning. The open, dynamic, heterogeneous and complex Earth system provides ample opportunities to learn by inquiry and discovery. Learning in this environment requires that students make informed decisions and to think critically about what is important to observe, and what should be excluded in the complex overload of information provided by Nature. Students must learn to employ the full range of cognitive skills that include observation, description, interpretation, analysis and synthesis that lead to “deep learning”. They must be able to integrate and rationalize observations of Nature with modern experimental, analytical, theoretical, and modeling approaches to studying the Earth system, and they must be able to iterate between what is known and what is yet to be discovered. Immersion in the field setting provides students with a sense of spatial and temporal scales of natural phenomena that can not be derived in other learning environments. The field setting provides strong sensory inputs that stimulate cognition and memories that will be available for future application. The field environment also stimulates strong affective responses related to motivation, curiosity, a sense of “ownership” of field projects, and inclusion in shared experiences that carry on throughout professional careers. The nature of field work also contains a strong metacognitive component, as students learn to be aware of what and how they

  11. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas that are germane to the Department of Energy's many missions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  12. Summaries of physical research in the geosciences

    International Nuclear Information System (INIS)


    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries describe the scope of the individual programs and detail the research performed during 1980 to 1981. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas

  13. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries describe the scope of the individual programs and detail the research performed during 1980 to 1981. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas.

  14. Creating a More Inclusive Talent Pool for the GeoSciences in NOAA Mission Fields: (United States)

    Rousseau, J.; Trotman, A. A.


    The National Oceanic and Atmospheric Administration (NOAA) Educational Partnership Program (EPP) with Minority Serving Institutions (MSI) is recognized as a model federal Science, Technology, Engineering, and Mathematics, (STEM) education investment. The EPP has a premier goal of increasing the numbers of students, especially from underrepresented communities, who are trained and awarded degrees in NOAA mission-relevant STEM fields. This goal is being achieved through awards to support undergraduate and graduate level student scholarships and to enhance NOAA mission-relevant education, research and internships at EPP Cooperative Science Centers located at MSIs. The internships allow undergraduate students to gain technical experience in STEM fields while gaining an understanding of a science mission agency such as NOAA. EPP has built evidence supporting the value of internships with its Undergraduate Scholarship Program (USP). Program metrics are used to refine and improve the internship to ensure student success. Scholarships are competitively awarded and requires applicants to submit a personal statement detailing the NOAA-relevant professional experience the applicant seeks to acquire, and gauges the depth of understanding of the work of NOAA.A focus is the EPP USP Student Internship at NOAA, which has two training phases. The first occurs at NOAA HQ in Maryland and incorporates exposure to NOAA professional culture including mentoring and professional development for scholarship recipients. The second occurs at NOAA facilities in the 50 states and US Territories. The internship projects are conducted under the supervision of a NOAA mentor and allow the scholars to: acquire increased science and technology skills: be attached to a research group and participate in a research activity as part of the team; and, acquire practical experience and knowledge of the day-to-day work of the NOAA facility. EPP has recently initiated the Experiential Research and Training Opportunities (NERTO) for students from the CSCs. The NERTO is a longer term immersion at NOAA facilities, with a NOAA mentor working collaboratively with their academic advisor on a NOAA science priority. Consequently, the NERTO is strengthening the undergraduate to graduate education and workforce pipeline.

  15. Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics. (United States)

    Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A; Wondraczek, Lothar


    We report on the magneto-optical (MO) properties of heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb(3+) ion concentration of up to 9.7 × 10(21) cm(-3), the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400-1500 nm is found for a Tb(3+) concentration of ~6.5 × 10(21) cm(-3). For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb(3+) photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10(-21) cm(2) for ~ 5.0 × 10(21) cm(-3) Tb(3+). This results in an optical gain parameter σem*τ of ~2.5 × 10(-24) cm(2)s, what could be of interest for implementation of a Tb(3+) fiber laser.

  16. Faraday rotation and photoluminescence in heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics (United States)

    Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A.; Wondraczek, Lothar


    We report on the magneto-optical (MO) properties of heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb3+ ion concentration of up to 9.7 × 1021 cm−3, the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400–1500 nm is found for a Tb3+ concentration of ~6.5 × 1021 cm−3. For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb3+ photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10−21 cm2 for ~ 5.0 × 1021 cm−3 Tb3+. This results in an optical gain parameter σem*τ of ~2.5 × 10−24 cm2s, what could be of interest for implementation of a Tb3+ fiber laser. PMID:25754819

  17. MGDS: Free, on-line, cutting-edge tools to enable the democratisation of geoscience data (United States)

    Goodwillie, A. M.; Ryan, W. B.; O'Hara, S.; Ferrini, V.; Arko, R. A.; Coplan, J.; Chan, S.; Carbotte, S. M.; Nitsche, F. O.; Bonczkowski, J.; Morton, J. J.; Weissel, R.; Leung, A.


    The availability of user-friendly, effective cyber-information resources for accessing and manipulating geoscience data has grown rapidly in recent years. Based at Lamont-Doherty Earth Observatory the MGDS group has developed a number of free tools that have wide application across the geosciences for both educators and researchers. A simple web page ( allows users to search for and download many types of data by key word, geographical region, or published citation. The popular Create Maps and Grids function and the downloadable Google Earth-compatible KML files appeal to a wide user base. MGDS MediaBank galleries ( enable users to view and download compelling images that are purposefully selected for their educational value from NSF-funded field programs. GeoMapApp (, a free map-based interactive tool that works on any machine, is increasingly being adopted across a broad suite of users from middle school students to university researchers. GeoMapApp allows users to plot, manipulate and present data in an intuitive geographical reference frame. GeoMapApp offers a convenient way to explore the wide range of built-in data sets, to quickly generate maps and images that aid visualisation and, when importing their own gridded and tabular data sets, to access the same rich built-in functionality. A user guide, short multi-media tutorials, and webinar are available on-line. The regularly-updated Global Multi-Resolution Topography (GMRT) Synthesis is used as the default GeoMapApp base map and is an increasingly popular means to rapidly create location maps. Additionally, the layer manager offers a fast way to overlay and compare multiple data sets and is augmented by the ability to alter layer transparency so that underlying layers become visible. Examples of GeoMapApp built-in data sets include high-resolution land topography and ocean floor bathymetry derived from satellite and multi

  18. Status and Future of Lunar Geoscience. (United States)


    A review of the status, progress, and future direction of lunar research is presented in this report from the lunar geoscience working group of the National Aeronautics and Space Administration. Information is synthesized and presented in four major sections. These include: (1) an introduction (stating the reasons for lunar study and identifying…

  19. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)


    The summaries in this document describe the scope of the individual programs and detail the research performed during 1984-1985. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas.

  20. Teaching Plate Tectonic Concepts using GeoMapApp Learning Activities (United States)

    Goodwillie, A. M.; Kluge, S.


    GeoMapApp Learning Activities ( ) can help educators to expose undergraduate students to a range of earth science concepts using high-quality data sets in an easy-to-use map-based interface called GeoMapApp. GeoMapApp Learning Activities require students to interact with and analyse research-quality geoscience data as a means to explore and enhance their understanding of underlying content and concepts. Each activity is freely available through the SERC-Carleton web site and offers step-by-step student instructions and answer sheets. Also provided are annotated educator versions of the worksheets that include teaching tips, additional content and suggestions for further work. The activities can be used "off-the-shelf". Or, since the educator may require flexibility to tailor the activities, the documents are provided in Word format for easy modification. Examples of activities include one on the concept of seafloor spreading that requires students to analyse global seafloor crustal age data to calculate spreading rates in different ocean basins. Another activity has students explore hot spots using radiometric age dating of rocks along the Hawaiian-Emperor seamount chain. A third focusses upon the interactive use of contours and profiles to help students visualise 3-D topography on 2-D computer screens. A fourth activity provides a study of mass wasting as revealed through geomorphological evidence. The step-by-step instructions and guided inquiry approach reduce the need for teacher intervention whilst boosting the time that students can spend on productive exploration and learning. The activities can be used, for example, in a classroom lab with the educator present and as self-paced assignments in an out-of-class setting. GeoMapApp Learning Activities are funded through the NSF GeoEd program and are aimed at students in the introductory undergraduate, community college and high school levels. The activities are

  1. Research on Utilization of Geo-Energy (United States)

    Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group


    The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field

  2. Geo-Enabled, Mobile Services

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard


    We are witnessing the emergence of a global infrastructure that enables the widespread deployment of geo-enabled, mobile services in practice. At the same time, the research community has also paid increasing attention to data management aspects of mobile services. This paper offers me...

  3. GeoGebra for Mathematical Statistics (United States)

    Hewson, Paul


    The GeoGebra software is attracting a lot of interest in the mathematical community, consequently there is a wide range of experience and resources to help use this application. This article briefly outlines how GeoGebra will be of great value in statistical education. The release of GeoGebra is an excellent example of the power of free software…

  4. Building Bridges Between Geoscience and Data Science through Benchmark Data Sets (United States)

    Thompson, D. R.; Ebert-Uphoff, I.; Demir, I.; Gel, Y.; Hill, M. C.; Karpatne, A.; Güereque, M.; Kumar, V.; Cabral, E.; Smyth, P.


    The changing nature of observational field data demands richer and more meaningful collaboration between data scientists and geoscientists. Thus, among other efforts, the Working Group on Case Studies of the NSF-funded RCN on Intelligent Systems Research To Support Geosciences (IS-GEO) is developing a framework to strengthen such collaborations through the creation of benchmark datasets. Benchmark datasets provide an interface between disciplines without requiring extensive background knowledge. The goals are to create (1) a means for two-way communication between geoscience and data science researchers; (2) new collaborations, which may lead to new approaches for data analysis in the geosciences; and (3) a public, permanent repository of complex data sets, representative of geoscience problems, useful to coordinate efforts in research and education. The group identified 10 key elements and characteristics for ideal benchmarks. High impact: A problem with high potential impact. Active research area: A group of geoscientists should be eager to continue working on the topic. Challenge: The problem should be challenging for data scientists. Data science generality and versatility: It should stimulate development of new general and versatile data science methods. Rich information content: Ideally the data set provides stimulus for analysis at many different levels. Hierarchical problem statement: A hierarchy of suggested analysis tasks, from relatively straightforward to open-ended tasks. Means for evaluating success: Data scientists and geoscientists need means to evaluate whether the algorithms are successful and achieve intended purpose. Quick start guide: Introduction for data scientists on how to easily read the data to enable rapid initial data exploration. Geoscience context: Summary for data scientists of the specific data collection process, instruments used, any pre-processing and the science questions to be answered. Citability: A suitable identifier to

  5. Visualizing Geoscience Concepts Through Textbook Art (Invited) (United States)

    Marshak, S.


    Many, if not most, college students taking an introductory geoscience course purchase, borrow, download, or rent one of several commercial textbooks currently available. Art used in such books has evolved significantly over the past three decades. Concepts once conveyed only by black-and-white line drawings, drawn by hand in ink, have gradually been replaced by full-color images produced digitally. Multiple high-end graphics programs, when used in combination, can yield images with super-realistic textures and palettes so that, in effect, anything that a book author wants to be drawn can be drawn. Because of the time and skill level involved in producing the art, the process commonly involves professional artists. In order to produce high-quality geoscience art that can help students (who are, by definition, non-experts) understand concepts, develop geoscience intuition, and hone their spatial-visualization skills, an author must address two problems. First, design a figure which can convey complex concepts through visual elements that resonate with students. Second, communicate the concepts to a professional artist who does not necessarily have personal expertise in geoscience, so that the figure rendered is both technically correct and visually engaging. The ultimate goal of geoscience art in textbooks is to produce an image that avoids unnecessary complexity that could distract from the art's theme, includes sufficient realism for a non-expert to relate the image to the real world, provides a personal context in which to interpret the figure, and has a layout that conveys relationships among multiple components of the art so that the art tells a coherent story. To accomplish this goal, a chain of choices--about perspective, sizes, colors, texture, labeling, captioning, line widths, and fonts--must be made in collaboration between the author and artist. In the new world of computer-aided learning, figures must also be able to work both on the computer screen and

  6. Pricing Analysis in Geo/Geo/1 Queueing System

    Directory of Open Access Journals (Sweden)

    Yan Ma


    Full Text Available This paper studies the equilibrium behavior of customers and optimal pricing strategies of servers in a Geo/Geo/1 queueing system. Two common pricing mechanisms are considered. The first one is called ex-post payment (EPP scheme where the server collects tolls proportional to queue times, and the second one is called ex-ante payment (EAP scheme where the server charges a flat fee for the total service. The server sets the toll price to maximize its own profit. It is found that, under a customer’s choice equilibrium, the two toll mechanisms are equivalent from the economic point of view. Finally, we present several numerical experiments to investigate the effects of system parameters on the equilibrium customer joining rate and servers’ profits.

  7. GeoSciML version 3: A GML application for geologic information (United States)

    International Union of Geological Sciences., I. C.; Richard, S. M.


    After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred

  8. Digital Simulation in the Geosciences

    Directory of Open Access Journals (Sweden)

    Alexandr A. Lobanov


    Full Text Available This article provides an analysis of methods for digital modeling in the area of Earth Sciences. The author illustrates the difference between digital modeling in radio communication and that in the area of Earth Sciences. The article examines the integration aspect of digital models, demonstrates the advantages of digital over analog models, and illustrates that digital models are discrete. The author outlines the characteristics of digital modeling and illustrates the logical structure of digital models.

  9. Summaries of FY 1994 geosciences research

    Energy Technology Data Exchange (ETDEWEB)


    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  10. The Correlation of Geo-Ecological Environment and Mountain Urban planning (United States)

    Yang, Chun; Zeng, Wei


    As a special area with the complex geological structure, mountain city is more prone to geological disasters. Due to air pollution, ground subsidence, serious water pollution, earthquakes and floods geo-ecological environment problems have become increasingly serious, mountain urban planning is facing more severe challenges. Therefore, this article bases on the correlation research of geo-ecological environment and mountain urban planning, and re-examins mountain urban planning from the perspective of geo-ecological, coordinates the relationship between the human and nature by geo-ecological thinking, raises the questions which urban planning need to pay attention. And advocates creating an integrated system of geo-ecological and mountain urban planning, analysis the status and dynamics of present mountain urban planning.

  11. A practical guide to ethical and effective delivery of geoscience for the service of society (United States)

    Allington, Ruth


    Competence, integrity, accountability and high ethical standards - judged peer-to-peer - are the hallmarks of what it means to be a professional and part of a professional community. The geoscience profession is no different and professionalism is relevant in all of its constituent communities - academia, industry, government etc There are three propositions that illustrate the importance of professionalism in the delivery of geoscience across the board. The first: Without understanding the skills and expertise needed by 'industry', how can educators prepare students for the workplace? Most of those graduating in geoscience will not stay in universities - do we not owe it to them to develop a realistic idea of what a non-academic career might look like? This is done very well in some institutions and not at all in others and the author's impression is that the latter is the norm. The second: Without understanding societal needs, how can researchers design research which is truly relevant to those needs? A more connected geoscience community that is, in turn, more connected to the needs and wants of Society will develop research agendas that are truly relevant. And finally…… Without access to high quality graduates and excellent underpinning fundamental and applied research, how can geoscientists in 'industry' or public service deliver their expertise effectively? This contribution, which draws on ideas set out in the author's plenary speech at 35IGC, will consider the practical skills, experience, ethical and behavioural regulatory frameworks, codes and norms that underpin success in meeting these challenges.

  12. Development of the Virginia Tech Department of Geosciences MEDL-CMC (United States)

    Glesener, G. B.


    In 2015 the Virginia Tech Department of Geosciences took a leading role in increasing the level of support for Geoscience instructors by investing in the development of the Geosciences Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC). The MEDL-CMC is an innovative curriculum materials center designed to foster new collaborative teaching and learning environments by providing hands-on physical models combined with education technology for instructors and outreach coordinators. The mission of the MEDL-CMC is to provide advanced curriculum material resources for the purpose of increasing and sustaining high impact instructional capacity in STEM education for both formal and informal learning environments. This presentation describes the development methods being used to implement the MEDL-CMC. Major development methods include: (1) adopting a project management system to support collaborations with stakeholders, (2) using a diversified funding approach to achieve financial sustainability and the ability to evolve with the educational needs of the community, and (3) establishing a broad collection of systems-based physical analog models and data collection tools to support integrated sciences such as the geosciences. Discussion will focus on how these methods are used for achieving organizational capacity in the MEDL-CMC and on their intended role in reducing instructor workload in planning both classroom activities and research grant broader impacts.

  13. History of Geoscience Research Matters to You (United States)

    Fleming, J. R.


    The geosciences have a long, distinguished, and very useful history Today's science is tomorrow's history of science. If we don't study the past, then every decision we face will seem unprecedented. If we don't study the history of science and apply its lessons, then I don't think we can say we really understand science. Actual research results and ongoing programs will be highlighted, with a focus on public understanding and support for atmospheric science and global change.

  14. Smartphones: Powerful Tools for Geoscience Education (United States)

    Johnson, Zackary I.; Johnston, David W.


    Observation, formation of explanatory hypotheses, and testing of ideas together form the basic pillars of much science. Consequently, science education has often focused on the presentation of facts and theories to teach concepts. To a great degree, libraries and universities have been the historical repositories of scientific information, often restricting access to a small segment of society and severely limiting broad-scale geoscience education.

  15. Using the GeoFEST Faulted Region Simulation System (United States)

    Parker, Jay W.; Lyzenga, Gregory A.; Donnellan, Andrea; Judd, Michele A.; Norton, Charles D.; Baker, Teresa; Tisdale, Edwin R.; Li, Peggy


    GeoFEST (the Geophysical Finite Element Simulation Tool) simulates stress evolution, fault slip and plastic/elastic processes in realistic materials, and so is suitable for earthquake cycle studies in regions such as Southern California. Many new capabilities and means of access for GeoFEST are now supported. New abilities include MPI-based cluster parallel computing using automatic PYRAMID/Parmetis-based mesh partitioning, automatic mesh generation for layered media with rectangular faults, and results visualization that is integrated with remote sensing data. The parallel GeoFEST application has been successfully run on over a half-dozen computers, including Intel Xeon clusters, Itanium II and Altix machines, and the Apple G5 cluster. It is not separately optimized for different machines, but relies on good domain partitioning for load-balance and low communication, and careful writing of the parallel diagonally preconditioned conjugate gradient solver to keep communication overhead low. Demonstrated thousand-step solutions for over a million finite elements on 64 processors require under three hours, and scaling tests show high efficiency when using more than (order of) 4000 elements per processor. The source code and documentation for GeoFEST is available at no cost from Open Channel Foundation. In addition GeoFEST may be used through a browser-based portal environment available to approved users. That environment includes semi-automated geometry creation and mesh generation tools, GeoFEST, and RIVA-based visualization tools that include the ability to generate a flyover animation showing deformations and topography. Work is in progress to support simulation of a region with several faults using 16 million elements, using a strain energy metric to adapt the mesh to faithfully represent the solution in a region of widely varying strain.

  16. Exploring Various Monte Carlo Simulations for Geoscience Applications (United States)

    Blais, R.


    Computer simulations are increasingly important in geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on (0, 1), can be very different depending on the selection of pseudo-random number (PRN), or chaotic random number (CRN) generators. Equidistributed quasi-random numbers (QRNs) can also be used in Monte Carlo simulations. In the evaluation of some definite integrals, the resulting error variances can even be of different orders of magnitude. Furthermore, practical techniques for variance reduction such as Importance Sampling and Stratified Sampling can be implemented to significantly improve the results. A comparative analysis of these strategies has been carried out for computational applications in planar and spatial contexts. Based on these experiments, and on examples of geodetic applications of gravimetric terrain corrections and gravity inversion, conclusions and recommendations concerning their performance and general applicability are included.

  17. Exploring Monte Carlo Simulation Strategies for Geoscience Applications (United States)

    Blais, J.; Grebenitcharsky, R.; Zhang, Z.


    Computer simulations are an increasingly important area of geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on [0, 1], can be very different depending on the selection of pseudo-random number (PRN), quasi-random number (QRN) or chaotic random number (CRN) generators. In the evaluation of some definite integrals, the expected error variances are generally of different orders for the same number of random numbers. A comparative analysis of these three strategies has been carried out for geodetic and related applications in planar and spherical contexts. Based on these computational experiments, conclusions and recommendations concerning their performance and error variances are included.

  18. Summaries of physical research in the geosciences

    International Nuclear Information System (INIS)


    The Department of Energy supports research in the geosciences in order to provide a sound underlay of fundamental knowledge in those areas of the earth, atmospheric, and solar/terrestrial sciences which relate to DOE's many missions. This research may be conducted in the major DOE laboratories, industry, universities and other government agencies. Such support provides for payment of salaries, purchase of equipment and other materials, an allowance for overhead costs, and is formalized by a contract between the Department and the organization performing the work. The summaries in this document, prepared by the investigators, describe the work performed during 1977, include the scope of the work to be performed in 1978 and provide information regarding some of the research planned for 1979. The Division of Engineering, Mathematics, and Geosciences, which is a part of the Office of Energy Research, supports, under its Geoscience Program, research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology and natural resource analysis, including the various subdivisions and interdisciplinary relationships, as well as their relationship to the Department's technological needs

  19. Summaries of FY 1996 geosciences research

    Energy Technology Data Exchange (ETDEWEB)



    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward building the long-term fundamental knowledge base necessary to provide for energy technologies of the future. Future energy technologies and their individual roles in satisfying the nations energy needs cannot be easily predicted. It is clear, however, that these future energy technologies will involve consumption of energy and mineral resources and generation of technological wastes. The earth is a source for energy and mineral resources and is also the host for wastes generated by technological enterprise. Viable energy technologies for the future must contribute to a national energy enterprise that is efficient, economical, and environmentally sound. The Geosciences Research Program emphasizes research leading to fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy by-products of man.

  20. Geo-scientific information system

    International Nuclear Information System (INIS)

    Gedeon, M.; De Soete, H.


    Document available in extended abstract form only. In the framework of the geological disposal of radioactive waste, the characterization of the Boom Clay and its environment has been going on for more than 30 years. During this time, a great quantity of data was collected to support the research on the reference host rock. A geo-scientific information system was built to store the data acquired in this framework,. The aim was to create a central place where all types of data could be looked up for further analyses and interpretation. All data stored in the system are geographically referenced. The GSIS database was created using PostgreSQL database with PostGIS spatial extension. PostgreSQL is an open-source object-relational database management system (ORDBMS) based on POSTGRES, developed at the University of California at Berkeley Computer Science Department. POSTGRES pioneered many concepts that only became available in some commercial database systems much later. PostgreSQL is an open-source descendant of this original Berkeley code. It supports SQL92 and SQL99 and offers many modern features: complex queries, foreign keys, triggers, views, transactional integrity, multi-version concurrency control. PostGIS is an extension to the PostgreSQL object-relational database system which allows GIS (Geographic Information Systems) objects to be stored in the database. PostGIS includes support for GiST-based R-Tree spatial indexes, and functions for analysis and processing of GIS objects. The GSIS database consists of three principal database domains, the objects database domain (ObjectsDB) and the data domain (DataDB). ObjectsDB includes the definitions (including the geometry/ position) and relative hierarchy of the objects. The objects are defined as structures, enclosed areas or scientific instruments with definable geometry (2D or 3D) including samples used to acquire data (boreholes, piezometers, sampling locations, galleries, sensors, etc.). DataDB includes

  1. Embedding Data Stewardship in Geoscience Australia (United States)

    Bastrakova, I.; Fyfe, S.


    Ten years of technological innovation now enable vast amounts of data to be collected, managed, processed and shared. At the same time, organisations have witnessed government legislative and policy requirements for open access to public sector data, and a demand for flexibility in access to data by both machine-to-machine and human consumption. Geoscience Australia (GA) has adopted Data Stewardship as an organisation-wide initiative to improve the way we manage and share our data. The benefits to GA including: - Consolidated understanding of GA's data assets and their value to the Agency; - Recognition of the significant role of data custodianship and data management; - Well-defined governance, policies, standards, practices and accountabilities that promote the accessibility, quality and interoperability of GA's data; - Integration of disparate data sets into cohesive information products available online in real time and equally accessible to researchers, government, industry and the public. Although the theory behind data stewardship is well-defined and accepted and the benefits are generally well-understood, practical implementation requires an organisation to prepare for a long-term commitment of resources, both financial and human. Fundamentally this involves: 1. Raising awareness in the organisation of the need for data stewardship and the challenges this entails; 2. Establishing a data stewardship framework including a data governance office to set policy and drive organisational change; and 3. Embedding the functions and a culture of data stewardship into business as usual operations. GA holds a vast amount of data ranging from petabytes of Big Data to significant quantities of relatively small ';long tail' geoscientific observations and measurements. Over the past four years, GA has undertaken strategic activities that prepare us for Data Stewardship: - Organisation-wide audits of GA's data holdings and identification of custodians for each dataset

  2. Geoscience Workforce Development at UNAVCO: Leveraging the NSF GAGE Facility (United States)

    Morris, A. R.; Charlevoix, D. J.; Miller, M.


    Global economic development demands that the United States remain competitive in the STEM fields, and developing a forward-looking and well-trained geoscience workforce is imperative. According to the Bureau of Labor Statistics, the geosciences will experience a growth of 19% by 2016. Fifty percent of the current geoscience workforce is within 10-15 years of retirement, and as a result, the U.S. is facing a gap between the supply of prepared geoscientists and the demand for well-trained labor. Barring aggressive intervention, the imbalance in the geoscience workforce will continue to grow, leaving the increased demand unmet. UNAVCO, Inc. is well situated to prepare undergraduate students for placement in geoscience technical positions and advanced graduate study. UNAVCO is a university-governed consortium facilitating research and education in the geosciences and in addition UNAVCO manages the NSF Geodesy Advancing Geosciences and EarthScope (GAGE) facility. The GAGE facility supports many facets of geoscience research including instrumentation and infrastructure, data analysis, cyberinfrastructure, and broader impacts. UNAVCO supports the Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering graduate school in the geosciences. RESESS has met with high success in the first 9 years of the program, as more than 75% of RESESS alumni are currently in Master's and PhD programs across the U.S. Building upon the successes of RESESS, UNAVCO is launching a comprehensive workforce development program that will network underrepresented groups in the geosciences to research and opportunities throughout the geosciences. This presentation will focus on the successes of the RESESS program and plans to expand on this success with broader

  3. GeoSearch: A lightweight broking middleware for geospatial resources discovery (United States)

    Gui, Z.; Yang, C.; Liu, K.; Xia, J.


    With petabytes of geodata, thousands of geospatial web services available over the Internet, it is critical to support geoscience research and applications by finding the best-fit geospatial resources from the massive and heterogeneous resources. Past decades' developments witnessed the operation of many service components to facilitate geospatial resource management and discovery. However, efficient and accurate geospatial resource discovery is still a big challenge due to the following reasons: 1)The entry barriers (also called "learning curves") hinder the usability of discovery services to end users. Different portals and catalogues always adopt various access protocols, metadata formats and GUI styles to organize, present and publish metadata. It is hard for end users to learn all these technical details and differences. 2)The cost for federating heterogeneous services is high. To provide sufficient resources and facilitate data discovery, many registries adopt periodic harvesting mechanism to retrieve metadata from other federated catalogues. These time-consuming processes lead to network and storage burdens, data redundancy, and also the overhead of maintaining data consistency. 3)The heterogeneous semantics issues in data discovery. Since the keyword matching is still the primary search method in many operational discovery services, the search accuracy (precision and recall) is hard to guarantee. Semantic technologies (such as semantic reasoning and similarity evaluation) offer a solution to solve these issues. However, integrating semantic technologies with existing service is challenging due to the expandability limitations on the service frameworks and metadata templates. 4)The capabilities to help users make final selection are inadequate. Most of the existing search portals lack intuitive and diverse information visualization methods and functions (sort, filter) to present, explore and analyze search results. Furthermore, the presentation of the value

  4. An Overview of the GEOS-5 Aerosol Reanalysis (United States)

    da Silva, Arlindo; Colarco, Peter Richard; Damenov, Anton Spasov; Buchard-Marchant, Virginie; Randles, Cynthia A.; Gupta, Pawan


    GEOS-5 is the latest version of the NASA Global Modeling and Assimilation Office (GMAO) earth system model. GEOS-5 contains components for atmospheric circulation and composition (including data assimilation), ocean circulation and biogeochemistry, and land surface processes. In addition to traditional meteorological parameters, GEOS-5 includes modules representing the atmospheric composition, most notably aerosols and tropospheric/stratospheric chemical constituents, taking explicit account of the impact of these constituents on the radiative processes of the atmosphere. MERRA is a NASA meteorological reanalysis for the satellite era (1979-present) using GEOS-5. This project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales. As a first step towards an integrated Earth System Analysis (IESA), the GMAO is extending MERRA with reanalyses for other components of the earth system: land, ocean, bio-geochemistry and atmospheric constituents. In this talk we will present results from the MERRA-driven aerosol reanalysis covering the Aqua period (2003-present). The assimilation of Aerosol Optical Depth (AOD) in GEOS-5 involves very careful cloud screening and homogenization of the observing system by means of a Neural Net scheme that translates MODIS radiances into AERONET calibrated AOD. These measurements are further quality controlled using an adaptive buddy check scheme, and assimilated using the Local Displacement Ensemble (LDE) methodology. For this reanalysis, GEOS-5 runs at a nominal 50km horizontal resolution with 72 vertical layers (top at approx. 8Skm). GEOS-5 is driven by daily biomass burning emissions derived from MODIS fire radiative power retrievals. We will present a summary of our efforts to validate such dataset. The GEOS-5 assimilated aerosol fields are first validated by comparison to independent in-situ measurements (AERONET and PM2.5 surface concentrations). In order to asses aerosol

  5. Highlighting Successful Strategies for Engaging Minority Students in the Geosciences (United States)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.


    Igniting interest and creativity in students for the geosciences oftentimes require innovation, bold `outside-the-box' thinking, and perseverance, particularly for minority students for whom the preparation for the discipline and its lucrative pathways to the geoscience workforce are regrettably unfamiliar and woefully inadequate. The enrollment, retention, participation, and graduation rates of minority students in STEM generally and in the geosciences particularly remain dismally low. However, a coupled, strategic geoscience model initiative at the New York City College of Technology (City Tech) of the City University of New York has been making steady in-roads of progress, and it offers practical solutions to improve minority student engagement in the geosciences. Aided by funding from the National Science Foundation (NSF), two geoscience-centric programs were created from NSF REU and NSF IUSE grants, and these programs have been successfully implemented and administered at City Tech. This presentation shares the hybrid geoscience research initiatives, the multi-tiered mentoring structures, the transformative geoscience workforce preparation, and a plethora of other vital bastions of support that made the overall program successful. Minority undergraduate scholars of the program have either moved on to graduate school, to the geoscience workforce, or they persist with greater levels of success in their STEM disciplines.

  6. CEOS Ocean Variables Enabling Research and Applications for Geo (COVERAGE) (United States)

    Tsontos, V. M.; Vazquez, J.; Zlotnicki, V.


    The CEOS Ocean Variables Enabling Research and Applications for GEO (COVERAGE) initiative seeks to facilitate joint utilization of different satellite data streams on ocean physics, better integrated with biological and in situ observations, including near real-time data streams in support of oceanographic and decision support applications for societal benefit. COVERAGE aligns with programmatic objectives of CEOS (the Committee on Earth Observation Satellites) and the missions of GEO-MBON (Marine Biodiversity Observation Network) and GEO-Blue Planet, which are to advance and exploit synergies among the many observational programs devoted to ocean and coastal waters. COVERAGE is conceived of as 3 year pilot project involving international collaboration. It focuses on implementing technologies, including cloud based solutions, to provide a data rich, web-based platform for integrated ocean data delivery and access: multi-parameter observations, easily discoverable and usable, organized by disciplines, available in near real-time, collocated to a common grid and including climatologies. These will be complemented by a set of value-added data services available via the COVERAGE portal including an advanced Web-based visualization interface, subsetting/extraction, data collocation/matchup and other relevant on demand processing capabilities. COVERAGE development will be organized around priority use cases and applications identified by GEO and agency partners. The initial phase will be to develop co-located 25km products from the four Ocean Virtual Constellations (VCs), Sea Surface Temperature, Sea Level, Ocean Color, and Sea Surface Winds. This aims to stimulate work among the ocean VCs while developing products and system functionality based on community recommendations. Such products as anomalies from a time mean, would build on the theme of applications with a relevance to CEOS/GEO mission and vision. Here we provide an overview of the COVERAGE initiative with an

  7. Early College STEM-focused High Schools: A Natural and Overlooked Recruitment Pool for the Geosciences (United States)

    Freeman, R.; Bathon, J.; Fryar, A. E.; Lyon, E.; McGlue, M. M.


    As national awareness of the importance of STEM education has grown, so too has the number of high schools that specifically emphasize STEM education. Students at these schools outperform their peers and these institutions send students into the college STEM pipeline at twice the rate of the average high school or more. Another trend in secondary education is the "early college high school" (ECHS) model, which encourages students to prepare for and attend college while in high school. These high schools, particularly ECHS's that focus on STEM, represent a natural pool for recruitment into the geosciences, yet most efforts at linking high school STEM education to future careers focus on health sciences or engineering. Through the NSF GEOPATHS-IMPACT program, the University of Kentucky (UK) Department of Earth and Environmental Science and the STEAM Academy, a STEM-focused ECHS located in Lexington, KY, have partnered to expose students to geoscience content. This public ECHS admits students using a lottery system to ensure that the demographics of the high school match those of the surrounding community. The perennial problem for recruiting students into geosciences is the lack of awareness of it as a potential career, due to lack of exposure to the subject in high school. Although the STEAM Academy does not offer an explicitly-named geoscience course, students begin their first semester in 9th grade Integrated Science. This course aligns to the Next Generation Science Standards (NGSS), which include a variety of geoscience content. We are working with the teachers to build a project-based learning curriculum to include explicit mention and awareness of careers in geosciences. The second phase of our project involves taking advantage of the school's existing internship program, in which students develop professional skills and career awareness by spending either one day/week or one hour/day off campus. We hosted our second round of interns this year. Eventually we

  8. GEO activities towards improved Geophysical monitoring. A key input to Disaster Risk Reduction. (United States)

    Achache, J.; Rum, G.


    GEO has been established in 2005 with the main objective to put in place a Global, Coordinated, Comprehensive and Sustained System of Observing Systems (GEOSS) to serve 9 Social Benefit Areas, among which Disaster Risk Reduction. The paper will first set up the reference GEO framework, through a brief description of GEOSS key features, architectural functions and capacity building, and then will recall the value of the Geophysical observations, coming both from in situ and remote (satellite) systems, and, even more important, of their integration. GEO activities related to Geophysical monitoring and the use of related observation to foster social benefits in the Disaster Risk Reduction area will then be shortly described, together with the on-going key actions, including specific examples on key scientific/technical and data sharing aspects associated to GEOSS implementation. Special attention will be devoted on how Capacity Building strategy and activities are addressed through GEOSS development, building on infrastructure and programs under consolidation within GEO framework, such as the GEOSS Information collection and dissemination systems under development (GEONETCast, GEO Web Portal, GEO Clearinghouse) and the UN programs such as SPIDER (SPace based Information for Disaster management and Emergency Response) and UNOSAT. The paper will provide recommendations on the way forward for the implementation of Disaster Risk Management provisions as an integral part of sustainable development, also with the objective of creating within GEO a supporting framework to UNDP and World Bank activities on Risk Identification and Assessment.

  9. Alliances With the Potential to Transform Geoscience Education (United States)

    Barron, E. J.


    Geoscience problems and disciplines are inherently global, and today's opportunities for students to join the workforce also increasingly involve every country and every place on the planet. We have reached the point where the need to create global educational experiences and to make global connections are more important than ever. First, there is enormous benefit to all students if they can contribute within the context of an increasingly globalized world. Second, our primary objective as educators is to build human capacity. The reach and impact of any university is severely limited if our efforts to build this capacity is limited to students within our own classroom. The Alliances that have the potential to transform Geoscience education then have two pathways. The first is to internationalize the curriculum and to provide international educational and research opportunities. This includes: (1) establishing formal undergraduate exchange opportunities specially for the Geosciences, (2) providing opportunities within our course frameworks to enable students to gain international competences, (3) promoting international field experiences and research projects, (4) developing collaborative educational projects with international partners, and (5) creating institutional structures that are charged with promoting, proposing, reviewing, monitoring and assessing international opportunities. The second is to recognize that developing strong educational programs across the world will have a greater impact on education and research, and hence the global workforce, then for select countries to educate small populations of international students. The Alliance for Earth Science, Engineering and Development in Africa (AESEDA), created at Penn State in 2003, is establishing the partnerships with universities in Africa and with HCBUs within the U.S. that both internationalize the education of Penn State students and enable capacity building within the participating universities

  10. Microstructural controls on the macroscopic behavior of geo-architected rock samples (United States)

    Mitchell, C. A.; Pyrak-Nolte, L. J.


    Reservoir caprocks, are known to span a range of mechanical behavior from elastic granitic units to visco-elastic shale units. Whether a rock will behave elastically, visco-elastically or plastically depends on both the compositional and textural or microsctructural components of the rock, and how these components are spatially distributed. In this study, geo-architected caprock fabrication was performed to develop synthetic rock to study the role of rock rheology on fracture deformations, fluid flow and geochemical alterations. Samples were geo-architected with Portland Type II cement, Ottawa sand, and different clays (kaolinite, illite, and Montmorillonite). The relative percentages of these mineral components are manipulated to generate different rock types. With set protocols, the mineralogical content, texture, and certain structural aspects of the rock were controlled. These protocols ensure that identical samples with the same morphological and mechanical characteristics are constructed, thus overcoming issues that may arise in the presence of heterogeneity and high anisotropy from natural rock samples. Several types of homogeneous geo-architected rock samples were created, and in some cases the methods were varied to manipulate the physical parameters of the rocks. Characterization of rocks that the samples exhibit good repeatability. Rocks with the same mineralogical content generally yielded similar compressional and shear wave velocities, UCS and densities. Geo-architected rocks with 10% clay in the matrix had lower moisture content and effective porosities than rocks with no clay. The process by which clay is added to the matrix can strongly affect the resulting compressive strength and physical properties of the geo-architected sample. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  11. Native Geoscience: Pathways to Knowledge (United States)

    Bolman, J. R.; Seielstad, G.


    We are living in a definite time of change. Distinct changes are being experienced in our most sacred and natural environments. This is especially true on Native lands. Native people have lived for millennia in distinct and unique ways. The knowledge of balancing the needs of people with the needs of our natural environments is paramount in all tribal societies. This inherent accumulated knowledge has become the foundation on which to build a "blended" contemporary understanding of western science. The Dakota's and Northern California have embraced the critical need of understanding successful tribal strategies to engage educational systems (K-12 and higher education), to bring to prominence the professional development opportunities forged through working with tribal peoples and ensure the continued growth of Native earth and environmental scientists The presentation will highlight: 1) past and present philosophies on building and maintaining Native/Tribal students in earth and environmental sciences; 2) successful educational programs/activities in PreK-Ph.D. systems; 3) current Native leadership development in earth and environmental sciences; and 4) forward thinking for creating proaction collaborations addressing sustainable environmental, educational and social infrastructures for all people. Humboldt State University (HSU) and the University of North Dakota's Northern Great Plains Center for People and the Environment and the Upper Midwest Aerospace Consortium (UMAC) have been recognized nationally for their partnerships with Native communities. Unique collaborations are emerging "bridging" Native people across geographic areas in developing educational/research experiences which integrate the distinctive earth/environmental knowledge of tribal people. The presentation will highlight currently funded projects and initiatives as well as success stories of emerging Native earth system students and scientists.

  12. The Case for Infusing Quantitative Literacy into Introductory Geoscience Courses

    Directory of Open Access Journals (Sweden)

    Jennifer M. Wenner


    Full Text Available We present the case for introductory geoscience courses as model venues for increasing the quantitative literacy (QL of large numbers of the college-educated population. The geosciences provide meaningful context for a number of fundamental mathematical concepts that are revisited several times in a single course. Using some best practices from the mathematics education community surrounding problem solving, calculus reform, pre-college mathematics and five geoscience/math workshops, geoscience and mathematics faculty have identified five pedagogical ideas to increase the QL of the students who populate introductory geoscience courses. These five ideas include techniques such as: place mathematical concepts in context, use multiple representations, use technology appropriately, work in groups, and do multiple-day, in-depth problems that place quantitative skills in multiple contexts. We discuss the pedagogical underpinnings of these five ideas and illustrate some ways that the geosciences represent ideal places to use these techniques. However, the inclusion of QL in introductory courses is often met with resistance at all levels. Faculty who wish to include quantitative content must use creative means to break down barriers of public perception of geoscience as qualitative, administrative worry that enrollments will drop and faculty resistance to change. Novel ways to infuse QL into geoscience classrooms include use of web-based resources, shadow courses, setting clear expectations, and promoting quantitative geoscience to the general public. In order to help faculty increase the QL of geoscience students, a community-built faculty-centered web resource (Teaching Quantitative Skills in the Geosciences houses multiple examples that implement the five best practices of QL throughout the geoscience curriculum. We direct faculty to three portions of the web resource: Teaching Quantitative Literacy, QL activities, and the 2006 workshop website

  13. Pro iOS Geo building apps with location based services

    CERN Document Server

    Andreucci, Giacomo


    Deepen your app development skills with Pro iOS Geo. This book shows you how to use geolocation-based tools to enhance the iOS apps you develop. Author Giacomo Andreucci describes different ways to integrate geo services, depending on the kind of app you're looking to develop: a web app, a hybrid app, or a native app. You'll discover how to use the Google Maps API features to integrate powerful geo capabilities in your apps with a little effort. You'll learn how to: Design geographic features for your apps while respecting usability criteria Design touristic geo apps Use HTML5 and the Google M

  14. Maritime Geo-Fence Letter Report (United States)


    1 Classification | CG-926 RDC | author | audience | month year Maritime Geo-Fence Letter Report Authors: Irene Gonin and Gregory...Johnson   Distribution Statement A: Approved for public release; distribution is unlimited. July 2016 Report No. CG-D-10-16 Maritime Geo-Fence...United States Coast Guard Research & Development Center 1 Chelsea Street New London, CT 06320 Maritime Geo-Fence Letter Report 1

  15. Linking Undergraduate Geoscience and Education Departments (United States)

    Ireton, F. W.; McManus, D. A.


    In many colleges and universities students who have declared a major in one of the geosciences are often ineligible to take the education courses necessary for state certification. In order to enroll in education courses to meet the state's Department of Education course requirements for a teaching credential, these students must drop their geoscience major and declare an education major. Students in education programs in these universities may be limited in the science classes they take as part of their degree requirements. These students face the same problem as students who have declared a science major in that course work is not open to them. As a result, universities too often produce science majors with a weak pedagogy background or education majors with a weak Earth and space sciences background. The American Geophysical Union (AGU) formed a collaboration of four universities with strong, yet separate science and education departments, to provide the venue for a one week NSF sponsored retreat to allow the communication necessary for solutions to these problems to be worked out by faculty members. Each university was represented by a geoscience department faculty member, an education department faculty member, and a K-12 master teacher selected by the two faculty members. This retreat was followed by a second retreat that focused on community colleges in the Southwest United States. Change is never easy and Linkages has shown that success for a project of this nature requires the dedication of not only the faculty involved in the project, but colleagues in their respective schools as well as the administration when departmental cultural obstacles must be overcome. This paper will discuss some of the preliminary work accomplished by the schools involved in the project.

  16. Dual recycling for GEO 600

    International Nuclear Information System (INIS)

    Grote, H; Freise, A; Malec, M; Heinzel, G; Willke, B; Lueck, H; Strain, K A; Hough, J; Danzmann, K


    Dual recycling is the combination of signal recycling and power recycling; both optical techniques improve the shot-noise-limited sensitivity of interferometric gravitational-wave detectors. In addition, signal recycling can reduce the loss of light power due to imperfect interference and allows us, in principle, to beat the standard quantum limit. The interferometric gravitational-wave detector GEO 600 is the first of the kilometre-scale detectors to use signal recycling. We have recently equipped the detector with a signal-recycling mirror with a transmittance of 1%. In this paper, we present details of the detector commissioning and the first locks of the dual-recycled interferometer

  17. Alignment control of GEO 600

    International Nuclear Information System (INIS)

    Grote, H; Heinzel, G; Freise, A; Gossler, S; Willke, B; Lueck, H; Ward, H; Casey, M M; Strain, K A; Robertson, D I; Hough, J; Danzmannx, K


    We give an overview of the automatic mirror alignment system of the gravitational wave detector GEO 600. In order to achieve the required sensitivity of the Michelson interferometer, the axes of interfering beams have to be superimposed with a residual angle of the order 10 -8 rad. The beam spots have to be centred on the mirrors to minimize coupling of alignment noise into longitudinal signals. We present the actual control topology and results from the system in operation, which controls all alignment degrees of the power-recycled Michelson. With this system continuous lock stretches of more than 121 h duration were achieved

  18. GEO Supersites Data Exploitation Platform (United States)

    Lengert, W.; Popp, H.-J.; Gleyzes, J.-P.


    In the framework of the GEO Geohazard Supersite initiative, an international partnership of organizations and scientists involved in the monitoring and assessment of geohazards has been established. The mission is to advance the scientific understanding of geohazards by improving geohazard monitoring through the combination of in-situ and space-based data, and by facilitating the access to data relevant for geohazard research. The stakeholders are: (1) governmental organizations or research institutions responsible for the ground-based monitoring of earthquake and volcanic areas, (2) space agencies and satellite operators providing satellite data, (3) the global geohazard scientific community. The 10.000's of ESA's SAR products are accessible, since beginning 2008, using ESA's "Virtual Archive", a Cloud Computing assets, allowing the global community an utmost downloading performance of these high volume data sets for mass-market costs. In the GEO collaborative context, the management of ESA's "Virtual Archive" and the ordering of these large data sets is being performed by UNAVCO, who is also coordinating the data demand for the several hundreds of co-PIs. ESA is envisaging to provide scientists and developers access to a highly elastic operational e-infrastructure, providing interdisciplinary data on a large scale as well as tools ensuring innovation and a permanent evolution of the products. Consequently, this science environment will help in defining and testing new applications and technologies fostering innovation and new science findings. In Europe, the collaboration between EPOS, "European Plate Observatory System" lead by INGV, and ESA with support of DLR, ASI, and CNES are the main institutional stakeholders for the GEO Supersites contributing also to a unifying e-infrastructure. The overarching objective of the Geohazard Supersites is: "To implement a sustainable Global Earthquake Observation System and a Global Volcano Observation System as part of the

  19. Geo synthetic-reinforced Pavement systems

    International Nuclear Information System (INIS)

    Zornberg, J. G.


    Geo synthetics have been used as reinforcement inclusions to improve pavement performance. while there are clear field evidence of the benefit of using geo synthetic reinforcements, the specific conditions or mechanisms that govern the reinforcement of pavements are, at best, unclear and have remained largely unmeasured. Significant research has been recently conducted with the objectives of: (i) determining the relevant properties of geo synthetics that contribute to the enhanced performance of pavement systems, (ii) developing appropriate analytical, laboratory and field methods capable of quantifying the pavement performance, and (iii) enabling the prediction of pavement performance as a function of the properties of the various types of geo synthetics. (Author)

  20. Summaries of FY 1995 geosciences research

    Energy Technology Data Exchange (ETDEWEB)



    The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either direct or indirect to the Department of Energy`s long-range technological needs.

  1. Muons tomography applied to geosciences and volcanology

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, J., E-mail: [Institut de Physique Nucleaire de Lyon (UMR CNRS-IN2P3 5822), Universite Lyon 1, Lyon (France); Gibert, D.; Lesparre, N. [Institut de Physique du Globe de Paris (UMR CNRS 7154), Sorbonne Paris Cite, Paris (France); Nicollin, F. [Geosciences Rennes (CNRS UMR 6118), Universite Rennes 1, Bat. 15 Campus de Beaulieu, 35042 Rennes cedex (France); Noli, P. [Universita degli studi di Napoli Federico II and INFN sez. Napoli (Italy); Giacoppo, F. [Laboratory for High Energy Physics, University of Bern, SidlerStrasse 5, CH-3012 Bern (Switzerland)


    Imaging the inner part of large geological targets is an important issue in geosciences with various applications. Different approaches already exist (e.g. gravimetry, electrical tomography) that give access to a wide range of information but with identified limitations or drawbacks (e.g. intrinsic ambiguity of the inverse problem, time consuming deployment of sensors over large distances). Here we present an alternative and complementary tomography method based on the measurement of the cosmic muons flux attenuation through the geological structures. We detail the basics of this muon tomography with a special emphasis on the photo-active detectors.

  2. Geoscience Training for NASA Astronaut Candidates (United States)

    Young, K. E.; Evans, C. A.; Bleacher, J. E.; Graff, T. G.; Zeigler, R.


    After being selected to the astronaut office, crewmembers go through an initial two year training flow, astronaut candidacy, where they learn the basic skills necessary for spaceflight. While the bulk of astronaut candidate training currently centers on the multiple subjects required for ISS operations (EVA skills, Russian language, ISS systems, etc.), training also includes geoscience training designed to train crewmembers in Earth observations, teach astronauts about other planetary systems, and provide field training designed to investigate field operations and boost team skills. This training goes back to Apollo training and has evolved to support ISS operations and future exploration missions.

  3. OERL: A Tool For Geoscience Education Evaluators (United States)

    Zalles, D. R.


    The Online Evaluation Resource Library (OERL) is a Web-based set of resources for improving the evaluation of projects funded by the Directorate for Education and Human Resources (EHR) of the National Science Foundation (NSF). OERL provides prospective project developers and evaluators with material that they can use to design, conduct, document, and review evaluations. OERL helps evaluators tackle the challenges of seeing if a project is meeting its implementation and outcome-related goals. Within OERL is a collection of exemplary plans, instruments, and reports from evaluations of EHR-funded projects in the geosciences and in other areas of science and mathematics. In addition, OERL contains criteria about good evaluation practices, professional development modules about evaluation design and questionnaire development, a dictionary of key evaluation terms, and links to evaluation standards. Scenarios illustrate how the resources can be used or adapted. Currently housed in OERL are 137 instruments, and full or excerpted versions of 38 plans and 60 reports. 143 science and math projects have contributed to the collection so far. OERL's search tool permits the launching of precise searches based on key attributes of resources such as their subject area and the name of the sponsoring university or research institute. OERL's goals are to 1) meet the needs for continuous professional development of evaluators and principal investigators, 2) complement traditional vehicles of learning about evaluation, 3) utilize the affordances of current technologies (e.g., Web-based digital libraries, relational databases, and electronic performance support systems) for improving evaluation practice, 4) provide anytime/anyplace access to update-able resources that support evaluators' needs, and 5) provide a forum by which professionals can interact on evaluation issues and practices. Geoscientists can search the collection of resources from geoscience education projects that have

  4. Enhanced STEM Learning with the GeoMapApp Data Exploration Tool (United States)

    Goodwillie, A. M.


    GeoMapApp (, is a free, map-based data discovery and visualisation tool developed with NSF funding at Lamont-Doherty Earth Observatory. GeoMapApp provides casual and specialist users alike with access to hundreds of built-in geoscience data sets covering geology, geophysics, geochemistry, oceanography, climatology, cryospherics, and the environment. Users can also import their own data tables, spreadsheets, shapefiles, grids and images. Simple manipulation and analysis tools combined with layering capabilities and engaging visualisations provide a powerful platform with which to explore and interrogate geoscience data in its proper geospatial context thus helping users to more easily gain insight into the meaning of the data. A global elevation base map covering the oceans as well as continents forms the backbone of GeoMapApp. The multi-resolution base map is updated regularly and includes data sources ranging from Space Shuttle elevation data for land areas to ultra-high-resolution surveys of coral reefs and seafloor hydrothermal vent fields. Examples of built-in data sets that can be layered over the elevation model include interactive earthquake and volcano data, plate tectonic velocities, hurricane tracks, land and ocean temperature, water column properties, age of the ocean floor, and deep submersible bottom photos. A versatile profiling tool provides instant access to data cross-sections. Contouring and 3-D views are also offered - the attached image shows a 3-D view of East Africa's Ngorongoro Crater as an example. Tabular data - both imported and built-in - can be displayed in a variety of ways and a lasso tool enables users to quickly select data points directly from the map. A range of STEM-based education material based upon GeoMapApp is already available, including a number of self-contained modules for school- and college-level students ( More learning modules are

  5. Building an Outdoor Classroom for Field Geology: The Geoscience Garden (United States)

    Waldron, John W. F.; Locock, Andrew J.; Pujadas-Botey, Anna


    Many geoscience educators have noted the difficulty that students experience in transferring their classroom knowledge to the field environment. The Geoscience Garden, on the University of Alberta North Campus, provides a simulated field environment in which Earth Science students can develop field observation skills, interpret features of Earth's…

  6. Photometrical Observations "SBIRS GEO-2" (United States)

    Sukhov, P. P.; Epishev, V. P.; Karpenko, G. F.; Sukhov, K. P.; Kudak, V. I.


    Photometrical observations GSS "SBIRS GEO 2" in B,V,R filters were carried near the equinoxes 2014-2015. Used velocity electrophotometer based on the FEU-79 in the pulse-counting mode. Received more than 25 light curves. From the known dimensions are defined; effective reflecting area - Sγλ, the spectral reflectance index - γλ, periods of light variation. Color-indices showed that in the reflected light flux from the GSS prevails "red" component. In the light curves are periodically dips and specular flash. This shows that GSS orbit is not in a static position specified triaxial orientation as in dynamic motion. Assumed following dynamics of the satellite "SBIRS GEO 2" in orbit. Helical scanning the Earth's surface visible infrared sensors satellite occurs with a period P1 = 15.66 sec. and swinging of the GSS about the direction of the motion vector of the satellite in an orbit with P2 = 62.64 sec., from the northern to the southern pole. Thus, during the period of swinging GSS going on 2 scan the visible part of the northern and southern hemispheres. In some dates observations dynamics work satellite in orbit changed.

  7. Diversifying the Geosciences: Examples from the Arctic (United States)

    Holmes, R. M.


    Like other realms of the geosciences, the scientists who comprise the Arctic research community tends to be white and male. For example, a survey of grants awarded over a 5-year period beginning in 2010 by NSF's Arctic System Science and Arctic Natural Sciences programs showed that over 90% of PIs were white whereas African Americans, Hispanics, and Native Americans together accounted for only about 1% of PIs. Over 70% of the PIs were male. I will suggest that involving diverse upper-level undergraduate students in authentic field research experiences may be one of the shortest and surest routes to diversifying the Arctic research community, and by extension, the geoscientific research community overall. Upper-level undergraduate students are still open to multiple possibilities, but an immersive field research experience often helps solidify graduate school and career trajectories. Though an all-of-the-above strategy is needed, focusing on engaging a diverse cohort of upper-level undergraduate students may provide one of the most efficient means of diversifying the geosciences over the coming years and decades.

  8. Fundamental geosciences program. Annual report, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A.; Apps, J.A.


    The geoscience program relating to geothermal energy consists of four projects. In the project on reservoir dynamics, sophisticated codes have been written to simulate the dynamics of heat flow in geothermal reservoir systems. These codes have also been applied to the investigations of natural aquifers as a storage system for thermal energy. In the second project, core samples are studied to determine the high temperature and high pressure behavior of aquifers in the presence of saturating fluids. The third project covers the systematic evaluation of the thermodynamic properties of electrolytes in order to interpret the behavior of geothermal fluids. The fourth project involves hydrothermal solubility measurements of various minerals to elucidate the chemistry and mass transfer in geothermal systems. The second major program includes four projects which involve precise measurements and analysis of physical and chemical properties of geologic materials. These include measurements of the thermodynamic properties (viscosity, density and heat capacity) of silicate materials to help understand magma genesis and evolution, high-precision neutron activation analysis of rare and trace elements in magmatic materials, and the precise measurement of seismic wave velocities near geological faults, in order to determine the buildup of stress in the earth's crust. Third, the development program in fundamental geosciences includes six innovative projects. These projects include research in the in situ leaching of uranium ore, properties of magmas, removal of pyrite from coal, properties of soils and soft rocks, stress flow behavior of fractured rock systems, and high-precision mass spectrometry.

  9. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary


    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  10. Geosciences Information for Teachers (GIFT) in Catalonia (United States)

    Camerlenghi, Angelo; Cacho, Isabel; Calvo, Eva; Demol, Ben; Sureda, Catalina; Artigas, Carme; Vilaplana, Miquel; Porbellini, Danilo; Rubio, Eduard


    CATAGIFT is the acronym of the project supported by the Catalan Government (trough the AGAUR agency) to support the activities of the EGU Committee on Education in Catalonia. The objective of this project is two-fold: 1) To establish a coordinated action to support the participation of three Catalan science teachers of primary and secondary schools in the GIFT Symposium, held each year during the General Assembly of the European Geosciences Union (EGU). 2) To produce a video documentary each year on hot topics in geosciences. The documentary is produced in Catalan, Spanish and English and is distributed to the Catalan science teachers attending the annual meeting organized by the Institute of Education Sciences and the Faculty of Geology of the University together with the CosmoCaixa Museum of Barcelona, to the international teachers attending the EGU GIFT Workshop, and to other schools in the Spanish territory. In the present-day context of science dissemination through documentaries and television programs there is a dominance of products of high technical quality and very high costs sold and broadcasted world wide. The wide spread of such products tends to standardize scientific information, not only in its content, but also in the format used for communicating science to the general public. In the field of geosciences in particular, there is a scarcity of products that combine high scientific quality and accessible costs to illustrate aspects of the natural life of our planet Earth through the results of the work of individual researchers and / or research groups. The scientific documentaries produced by CATAGIFT pursue the objective to support primary and secondary school teachers to critically interpret scientific information coming from the different media (television, newspapers, magazines, audiovisual products), in a way that they can transmit to their students. CataGIFT has created a series of documentaries called MARENOSTRUM TERRANOSTRA designed and

  11. Diversifying Geoscience by Preparing Faculty as Workshop Leaders to Promote Inclusive Teaching and Inclusive Geoscience Departments (United States)

    Macdonald, H.; Manduca, C. A.; Beane, R. J.; Doser, D. I.; Ebanks, S. C.; Hodder, J.; McDaris, J. R.; Ormand, C. J.


    Efforts to broaden participation in the geosciences require that faculty implement inclusive practices in their teaching and their departments. Two national projects are building the capacity for faculty and departments to implement inclusive practices. The NAGT/InTeGrate Traveling Workshops Program (TWP) and the Supporting and Advancing Geoscience Education in Two-Year Colleges (SAGE 2YC) project each prepares a cadre of geoscience educators to lead workshops that provide opportunities for faculty and departments across the country to enhance their abilities to implement inclusive teaching practices and develop inclusive environments with the goal of increasing diversity in the geosciences. Both projects prepare faculty to design and lead interactive workshops that build on the research base, emphasize practical applications and strategies, enable participants to share their knowledge and experience, and include time for reflection and action planning. The curriculum common to both projects includes a framework of support for the whole student, supporting all students, data on diversity in the geosciences, and evidence-based strategies for inclusive teaching and developing inclusive environments that faculty and departments can implement. Other workshop topics include classroom strategies for engaging all students, addressing implicit bias and stereotype threat, and attracting diverse students to departments or programs and helping them thrive. Online resources for each project provide support beyond the workshops. The TWP brings together educators from different institutional types and experiences to develop materials and design a workshop offered to departments and organizations nationwide that request the workshop; the workshop leaders then customize the workshop for that audience. In SAGE 2YC, a team of leaders used relevant literature to develop workshop materials intended for re-use, and designed a workshop session for SAGE 2YC Faculty Change Agents, who

  12. Intersection of Hip-Hop and Geoscience: Changes in The Climate (United States)

    López, R. D.; Heraldo, S. E.; Nawman, M. A.; Gerry, V. R.; Gerry, M. A.


    Professionals and educators in the science, technology, engineering, art, and mathematics (STEAM) field rely heavily on scientific communication to convey innovations, concepts, and evidence-based policy. The geosciences presents itself as a unique field to communicate respective scientific endeavors, as research efforts have direct impacts on the Earth's resources and understanding natural processes. Several of the authors have previously composed musical pieces that integrated Earth Sciences with music, utilizing this as mechanism to not only foster creativity, but to also establish more dynamic outreach efforts. Unfortunately, geoscience does not readily present itself as a field that is easily accessible to minorities - particularly women, people of color, and those from disadvantaged communities. However, music is somewhat of a universal form of communication that is accessible to everyone. It is through the intersection of hip-hop and geoscience, that topics can be introduced to communities in unique ways. Flows in Hydrogeology was a previous project that several of the authors produced as a means to connect with youth who identify with the hip-hop community, while encouraging inquiry in the STEAM fields. Several of the authors grew up and still reside in some of the most violent cities in the United States of America. The authors have utilized their respective backgrounds in both upbringing and career endeavors to help bridge the gap between science and disadvantaged communities. The musical piece, Changes in the Climate, illustrates the power of understanding the changes in one's life and surrounding world via delivery of concepts with hip-hop and rap. Therefore this musical composition not only integrates STEAM and music, but also serves as mechanism for outreach and encouraging diversity. Such actions could yield the success of accessing untapped potential, while fostering unique opportunities for future collaboration between professionals in geoscience

  13. The Elwha Science Education Project (ESEP): Engaging an Entire Community in Geoscience Education (United States)

    Young, R. S.; Kinner, F.


    Native Americans are poorly represented in all science, technology and engineering fields. This under- representation results from numerous cultural, economic, and historical factors. The Elwha Science Education Project (ESEP), initiated in 2007, strives to construct a culturally-integrated, geoscience education program for Native American young people through engagement of the entire tribal community. The ESEP has developed a unique approach to informal geoscience education, using environmental restoration as a centerpiece. Environmental restoration is an increasingly important goal for tribes. By integrating geoscience activities with community tradition and history, project stakeholders hope to show students the relevance of science to their day-to-day lives. The ESEP's strength lies in its participatory structure and unique network of partners, which include Olympic National Park; the non-profit, educational center Olympic Park Institute (OPI); a geologist providing oversight and technical expertise; and the Lower Elwha Tribe. Lower Elwha tribal elders and educators share in all phases of the project, from planning and implementation to recruitment of students and discipline. The project works collaboratively with tribal scientists and cultural educators, along with science educators to develop curriculum and best practices for this group of students. Use of hands-on, place-based outdoor activities engage students and connect them with the science outside their back doors. Preliminary results from this summer's middle school program indicate that most (75% or more) students were highly engaged approximately 90% of the time during science instruction. Recruitment of students has been particularly successful, due to a high degree of community involvement. Preliminary evaluations of the ESEP's outcomes indicate success in improving the outlook of the tribe's youth towards the geosciences and science, in general. Future evaluation will be likewise participatory

  14. Kennisagenda Geo-informatie: GISsen met beleid

    NARCIS (Netherlands)

    Dessing, N.; Lips, F.; Hoogenboom, J.; Vullings, L.A.E.


    LNV wil méér geo-informatie inzetten bij de ontwikkeling en uitvoering van beleid en beleidsnota’s ruimer voorzien van kaartmateriaal. Dit betekent dat geo-informatie vaker moet worden benut om lokale knelpunten, mogelijkheden en de gevolgen van alternatieve oplossingen inzichtelijk te maken. Om dit

  15. Requirements elicitation for geo-information solutions

    NARCIS (Netherlands)

    Robbi Sluter, Claudia; van Elzakker, Corné P.J.M.; Ivanova, Ivana


    Geo-information solutions can achieve a higher level of quality if they are developed in accordance with a user-centred design that requires definition of the user requirements in the first step of solution construction. We treat a geo-information solution as a system designed to support human-based

  16. User Defined Geo-referenced Information

    DEFF Research Database (Denmark)

    Konstantas, Dimitri; Villalba, Alfredo; di Marzo Serugendo, Giovanna


    . In this paper we present two novel mobile and wireless collaborative services and concepts, the Hovering Information, a mobile, geo-referenced content information management system, and the QoS Information service, providing user observed end-to-end infrastructure geo-related QoS information....

  17. Leveraging Emerging Standards to Advance Data Interoperability in the Marine Geosciences (United States)

    Arko, R. A.; Fishman, A. V.


    Data interoperability in the marine geosciences has long been hampered by the heterogeneity of our data sets (i.e. the large number and variety of expeditions, platforms, instruments, data types, etc); the corresponding lack of metadata standardization; and a tendency to focus on graphical user interfaces (because geoscience data is highly visual in nature) rather than programmatic interfaces. The Marine Geoscience Data Management System (mgDMS; is an umbrella project based at Lamont-Doherty Earth Observatory that is building data repositories and services for the NSF-funded Ridge2000, MARGINS, and U.S. Antarctic Programs. mgDMS is partnered with several closely-related NSF projects including the Ocean Floor Petrology Database (PetDB), Marine Seismic Data Center (SDC), Sediment Geochemistry Database (SedDB), and others -- all of which include international collaborators and data sets -- and thus provides an excellent testbed to develop interoperability. Toward that end, we are implementing metadata standards and programmatic interfaces to facilitate the discovery and exchange of well-documented data sets. ISO 19115 (published in May 2003 and adopted by ANSI in December 2003) is emerging as an international standard for geoscience metadata, and has been adopted by national standards bodies and agencies in the U.S. (FGDC), E.U., Japan, and others. ISO 19115 defines a comprehensive set of elements for both "discovery" (search) and "markup" (use) metadata, and is easily extensible. We have developed a metadata profile for mgDMS which implements the mandatory elements of 19115, and extends it to accommodate the unique aspects of marine geoscience expedition-based data sets. We have implemented the profile as a lightweight REST-type Web service based on a W3C XML schema and associated XSL stylesheet. Closely related to the development of metadata standards is the development of controlled vocabularies to describe platforms, instruments, etc. The

  18. [Brief introduction of geo-authentic herbs]. (United States)

    Liang, Fei; Li, Jian; Zhang, Wei; Zhang, Rui-Xian


    The science of geo-authentic herbs is a characteristic discipline of traditional Chinese medicine established during thousands of years of clinical practices. It has a long history under the guidance of profound theories of traditional Chinese medicine. The words of "geo-authentic product" were derived from an administrative division unit in the ancient times, which layed stress on the good quality of products in particular regions. In ancient records of traditional Chinese medicine, the words of "geo-authentic product" were first found in Concise Herbal Foundation Compilation of the Ming dynasty, and the words of "geo-authentic herbs" were first discovered in Peony Pavilion of the late Ming dynasty. After all, clinical effect is the fundamental evaluation standard of geo-authentic herbs.

  19. GEOS-5 Chemistry Transport Model User's Guide (United States)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.


    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  20. Strength Through Options: Providing Choices for Undergraduate Education in the Geosciences (United States)

    Furman, T.; Freeman, K. H.; Faculty, D.


    Undergraduate major enrollments in the Department of Geosciences at Penn State have held steady over the past 5 years despite generally declining national trends. We have successfully recruited and retained new students through intensive advising coupled with innovative curricular revision aimed to meet an array of students' educational and career goals. Our focus is on degree programs that reflect emerging interdisciplinary trends in both employment and student interest, and are designed to attract individuals from underrepresented groups. In addition to a traditional Geosciences BS program we offer a rigorous integrated Earth Sciences BS and a Geosciences BA tailored to students with interests in education and environmental law. The Earth Sciences BS incorporates course work from Geosciences, Geography and Meterology, and requires completion of an interdisciplinary minor (e.g., Climatology, Marine Sciences, Global Business Strategies). A new Geobiology BS program will attract majors with interests at the intersection of the earth and life sciences. The curriculum includes both paleontological and biogeochemical coursework, and is also tailored to accommodate pre-medicine students. We are working actively to recruit African-American students. A new minor in Science and Technology in Africa crosses disciplinary boundaries to educate students from the humanities as well as sciences. Longitudinal recruitment programs include summer research group experiences for high school students, summer research mentorships for college students, and dual undergraduate degree programs with HBCUs. Research is a fundamental component of every student's degree program. We require a capstone independent thesis as well as a field program for Geosciences and Geobiology BS students, and we encourage all students to pursue research as early as the freshman year. A new 5-year combined BS-MS program will enable outstanding students to carry their undergraduate research further before

  1. The GEO 600 laser system

    CERN Document Server

    Zawischa, I; Danzmann, K; Fallnich, C; Heurs, M; Nagano, S; Quetschke, V; Welling, H; Willke, B


    Interferometric gravitational wave detectors require high optical power, single frequency lasers with very good beam quality and high amplitude and frequency stability as well as high long-term reliability as input light source. For GEO 600 a laser system with these properties is realized by a stable planar, longitudinally pumped 12 W Nd:YAG rod laser which is injection-locked to a monolithic 800 mW Nd:YAG non-planar ring oscillator. Frequency control signals from the mode cleaners are fed to the actuators of the non-planar ring oscillator which determines the frequency stability of the system. The system power stabilization acts on the slave laser pump diodes which have the largest influence on the output power. In order to gain more output power, a combined Nd:YAG-Nd:YVO sub 4 system is scaled to more than 22 W.

  2. Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. Concept Presentation (United States)

    Janz, Scott; Smith, James C.; Mannino, Antonio


    This slide presentation reviews the concepts of the Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) which will be used on the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. The primary science requirements require scans of the U.S. Coastal waters 3 times per day during the daylight hours. Included in the overview are presentations about the systems, the optics, the detectors, the mechanical systems, the electromechanical systems, the electrical design, the flight software, the thermal systems, and the contamination prevention requirements.

  3. Radon applications in geosciences - Progress & perspectives (United States)

    Barbosa, S. M.; Donner, R. V.; Steinitz, G.


    During the last decades, the radioactive noble gas radon has found a variety of geoscientific applications, ranging from its utilization as a potential earthquake precursor and proxy of tectonic stress over its specific role in volcanic environments to a wide range of applications as a tracer in marine and hydrological settings. This topical issue summarizes the current state of research as exemplified by some original research articles covering the aforementioned as well as other closely related aspects and points to some important future directions of radon application in geosciences. This editorial provides a more detailed overview of the contents of this volume, a brief summary of the rationale underlying the diverse applications, and outlines some important perspectives.

  4. Mentored undergraduate research in the geosciences (United States)

    Judge, Shelley; Pollock, Meagen; Wiles, Greg; Wilson, Mark


    There is little argument about the merits of undergraduate research, but it can seem like a complex, resource-intensive endeavor [e.g., Laursen et al., 2010; Lopatto, 2009; Hunter et al., 2006]. Although mentored undergraduate research can be challenging, the authors of this feature have found that research programs are strengthened when students and faculty collaborate to build new knowledge. Faculty members in the geology department at The College of Wooster have conducted mentored undergraduate research with their students for more than 60 years and have developed a highly effective program that enhances the teaching, scholarship, and research of our faculty and provides life-changing experiences for our students. Other colleges and universities have also implemented successful mentored undergraduate research programs in the geosciences. For instance, the 18 Keck Geology Consortium schools (, Princeton University, and other institutions have been recognized for their senior capstone experiences by U.S. News & World Report.

  5. Use of Persistent Identifiers to link Heterogeneous Data Systems in the Integrated Earth Data Applications (IEDA) Facility (United States)

    Hsu, L.; Lehnert, K. A.; Carbotte, S. M.; Arko, R. A.; Ferrini, V.; O'hara, S. H.; Walker, J. D.


    The Integrated Earth Data Applications (IEDA) facility maintains multiple data systems with a wide range of solid earth data types from the marine, terrestrial, and polar environments. Examples of the different data types include syntheses of ultra-high resolution seafloor bathymetry collected on large collaborative cruises and analytical geochemistry measurements collected by single investigators in small, unique projects. These different data types have historically been channeled into separate, discipline-specific databases with search and retrieval tailored for the specific data type. However, a current major goal is to integrate data from different systems to allow interdisciplinary data discovery and scientific analysis. To increase discovery and access across these heterogeneous systems, IEDA employs several unique IDs, including sample IDs (International Geo Sample Number, IGSN), person IDs (GeoPass ID), funding award IDs (NSF Award Number), cruise IDs (from the Marine Geoscience Data System Expedition Metadata Catalog), dataset IDs (DOIs), and publication IDs (DOIs). These IDs allow linking of a sample registry (System for Earth SAmple Registration), data libraries and repositories (e.g. Geochemical Research Library, Marine Geoscience Data System), integrated synthesis databases (e.g. EarthChem Portal, PetDB), and investigator services (IEDA Data Compliance Tool). The linked systems allow efficient discovery of related data across different levels of granularity. In addition, IEDA data systems maintain links with several external data systems, including digital journal publishers. Links have been established between the EarthChem Portal and ScienceDirect through publication DOIs, returning sample-level objects and geochemical analyses for a particular publication. Linking IEDA-hosted data to digital publications with IGSNs at the sample level and with IEDA-allocated dataset DOIs are under development. As an example, an individual investigator could sign up

  6. The use of Web-based GIS data technologies in the construction of geoscience instructional materials: examples from the MARGINS Data in the Classroom project (United States)

    Ryan, J. G.; McIlrath, J. A.


    Web-accessible geospatial information system (GIS) technologies have advanced in concert with an expansion of data resources that can be accessed and used by researchers, educators and students. These resources facilitate the development of data-rich instructional resources and activities that can be used to transition seamlessly into undergraduate research projects. MARGINS Data in the Classroom ( margins/index.html) seeks to engage MARGINS researchers and educators in using the images, datasets, and visualizations produced by NSF-MARGINS Program-funded research and related efforts to create Web-deliverable instructional materials for use in undergraduate-level geoscience courses (MARGINS Mini-Lessons). MARGINS science data is managed by the Marine Geosciences Data System (MGDS), and these and all other MGDS-hosted data can be accessed, manipulated and visualized using GeoMapApp (; Carbotte et al, 2004), a freely available geographic information system focused on the marine environment. Both "packaged" MGDS datasets (i.e., global earthquake foci, volcanoes, bathymetry) and "raw" data (seismic surveys, magnetics, gravity) are accessible via GeoMapApp, with WFS linkages to other resources (geodesy from UNAVCO; seismic profiles from IRIS; geochemical and drillsite data from EarthChem, IODP, and others), permitting the comprehensive characterization of many regions of the ocean basins. Geospatially controlled datasets can be imported into GeoMapApp visualizations, and these visualizations can be exported into Google Earth as .kmz image files. Many of the MARGINS Mini-Lessons thus far produced use (or have studentss use the varied capabilities of GeoMapApp (i.e., constructing topographic profiles, overlaying varied geophysical and bathymetric datasets, characterizing geochemical data). These materials are available for use and testing from the project webpage ( Classroom testing and assessment

  7. File Specification for GEOS-5 FP (Forward Processing) (United States)

    Lucchesi, R.


    The GEOS-5 FP Atmospheric Data Assimilation System (GEOS-5 ADAS) uses an analysis developed jointly with NOAA's National Centers for Environmental Prediction (NCEP), which allows the Global Modeling and Assimilation Office (GMAO) to take advantage of the developments at NCEP and the Joint Center for Satellite Data Assimilation (JCSDA). The GEOS-5 AGCM uses the finite-volume dynamics (Lin, 2004) integrated with various physics packages (e.g, Bacmeister et al., 2006), under the Earth System Modeling Framework (ESMF) including the Catchment Land Surface Model (CLSM) (e.g., Koster et al., 2000). The GSI analysis is a three-dimensional variational (3DVar) analysis applied in grid-point space to facilitate the implementation of anisotropic, inhomogeneous covariances (e.g., Wu et al., 2002; Derber et al., 2003). The GSI implementation for GEOS-5 FP incorporates a set of recursive filters that produce approximately Gaussian smoothing kernels and isotropic correlation functions. The GEOS-5 ADAS is documented in Rienecker et al. (2008). More recent updates to the model are presented in Molod et al. (2011). The GEOS-5 system actively assimilates roughly 2 × 10(exp 6) observations for each analysis, including about 7.5 × 10(exp 5) AIRS radiance data. The input stream is roughly twice this volume, but because of the large volume, the data are thinned commensurate with the analysis grid to reduce the computational burden. Data are also rejected from the analysis through quality control procedures designed to detect, for example, the presence of cloud. To minimize the spurious periodic perturbations of the analysis, GEOS-5 FP uses the Incremental Analysis Update (IAU) technique developed by Bloom et al. (1996). More details of this procedure are given in Appendix A. The assimilation is performed at a horizontal resolution of 0.3125-degree longitude by 0.25- degree latitude and at 72 levels, extending to 0.01 hPa. All products are generated at the native resolution of the

  8. Voluntarism, public engagement and the role of geoscience in radioactive waste management policy-making (United States)

    Bilham, Nic


    In the UK, as elsewhere in Europe, there has been a move away from previous 'technocratic' approaches to radioactive waste management (RWM). Policy-makers have recognised that for any RWM programme to succeed, sustained engagement with stakeholders and the public is necessary, and any geological repository must be constructed and operated with the willing support of the community which hosts it. This has opened up RWM policy-making and implementation to a wider range of (often contested) expert inputs, ranging across natural and social sciences, engineering and even ethics. Geoscientists and other technical specialists have found themselves drawn into debates about how various types of expertise should be prioritised, and how they should be integrated with diverse public and stakeholder perspectives. They also have a vital role to play in communicating to the public the need for geological disposal of radioactive waste, and the various aspects of geoscience which will inform the process of implementing this, from identifying potential volunteer host communities, to finding a suitable site, developing the safety case, construction of a repository, emplacement of waste, closure and subsequent monitoring. High-quality geoscience, effectively communicated, will be essential to building and maintaining public confidence throughout the many decades such projects will take. Failure to communicate effectively the relevant geoscience and its central role in the UK's radioactive waste management programme arguably contributed to West Cumbria's January 2013 decision to withdraw from the site selection process, and may discourage other communities from coming forward in future. Across countries needing to deal with their radioactive waste, this unique challenge gives an unprecedented urgency to finding ways to engage and communicate effectively with the public about geoscience.

  9. Recovery Act: Understanding the Impact of CO2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology

    Energy Technology Data Exchange (ETDEWEB)

    Fouke, Bruce [Univ. of Illinois, Champaign, IL (United States)


    An integrated research and teaching program was developed to provide cross--disciplinary training opportunities in the emerging field of carbon capture and storage (CCS) for geobiology students attending the University of Illinois Urbana-­Champaign (UIUC). Students from across the UIUC campus participated, including those from the departments of Geology, Microbiology, Biochemistry, Civil and Environmental Engineering, Animal Sciences and the Institute for Genomic Biology. The project took advantage of the unique opportunity provided by the drilling and sampling of the large-­scale Phase III CCS demonstration Illinois Basin - Decatur Project (IBDP) in the central Illinois Basin at nearby Decatur, Illinois. The IBPD is under the direction of the Illinois State Geological Survey (ISGS, located on the UIUC campus) and the Midwest Geological Sequestration Consortium (MGSC). The research component of this project focused on the subsurface sampling and identification of microbes inhabiting the subsurface Cambrian-­age Mt. Simon Sandstone. In addition to formation water collected from the injection and monitoring wells, sidewall rock cores were collected and analyzed to characterize the cements and diagenetic features of the host Mt. Simon Sandstone. This established a dynamic geobiological framework, as well as a comparative baseline, for future studies of how CO2 injection might affect the deep microbial biosphere at other CCS sites. Three manuscripts have been prepared as a result of these activities, which are now being finalized for submission to top-­tier international peer-­reviewed research journals. The training component of this project was structured to ensure that a broad group of UIUC students, faculty and staff gained insight into CCS issues. An essential part of this training was that the UIUC faculty mentored and involved undergraduate and graduate students, as well as postdocs and research scientists, at all stages of the project in order

  10. Photometric Studies of GEO Debris (United States)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt


    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus

  11. Preparing Future Geoscience Professionals: Needs, Strategies, Programs, and Online Resources (United States)

    Macdonald, H.; Manduca, C. A.; Ormand, C. J.; Dunbar, R. W.; Beane, R. J.; Bruckner, M.; Bralower, T. J.; Feiss, P. G.; Tewksbury, B. J.; Wiese, K.


    Geoscience faculty, departments, and programs play an important role in preparing future geoscience professionals. One challenge is supporting the diversity of student goals for future employment and the needs of a wide range of potential employers. Students in geoscience degree programs pursue careers in traditional geoscience industries; in geoscience education and research (including K-12 teaching); and opportunities at the intersection of geoscience and other fields (e.g., policy, law, business). The Building Strong Geoscience Departments project has documented a range of approaches that departments use to support the development of geoscience majors as professionals ( On the Cutting Edge, a professional development program, supports graduate students and post-doctoral fellows interested in pursuing an academic career through workshops, webinars, and online resources ( Geoscience departments work at the intersection of student interests and employer needs. Commonly cited program goals that align with employer needs include mastery of geoscience content; field experience; skill in problem solving, quantitative reasoning, communication, and collaboration; and the ability to learn independently and take a project from start to finish. Departments and faculty can address workforce issues by 1) implementing of degree programs that develop the knowledge, skills, and attitudes that students need, while recognizing that students have a diversity of career goals; 2) introducing career options to majors and potential majors and encouraging exploration of options; 3) advising students on how to prepare for specific career paths; 4) helping students develop into professionals, and 5) supporting students in the job search. It is valuable to build connections with geoscience employers, work with alumni and foster connections between students and alumni with similar career interests, collaborate with

  12. Teaching Geoscience in Place for Local Diversity and Sustainability (United States)

    Semken, S.


    Globalization, careerism, media, thoughtless consumption, standardized education and assessment, and even well-meaning advocacy for far-flung environments and people all divert our attention from meaningful interaction with our own surroundings. Meanwhile, many young Americans prefer virtual realities over personal intimacy with nature. Many have lost sight of the pedagogical power of places: localities imbued with meaning by human experience. To lack a sense of local places is to be oblivious to their environmental, cultural, and aesthetic importance, and to risk acceding to their degradation. The geosciences, born and rooted in exploration of environments, have much to lose from this trend but can be pivotal in helping to reverse it. Place-based teaching is situated in local physical and cultural environments and blends experiential learning, transdisciplinary and multicultural content, and service to the community. It is advocated for its relevance and potential to engage diverse students. Authentically place-based education is informed not only by scientific knowledge of places but also by the humanistic meanings and attachments affixed to them. Leveraging and enriching the senses of place of students, teachers, and the community is a defining and desirable learning outcome. We have researched and piloted several place-based approaches to geoscience teaching at various places in the Southwest USA: at a rural Tribal College, a large urban university, and a teacher in-service program at an underserved, minority-majority rural school district. Curricula are situated in complexly evolved, ruggedly beautiful desert-mountain physical landscapes coincident with multicultural, deeply historic, but rapidly changing cultural landscapes. The organizing theme is a cyclical path of inquiry through Earth and Sky, derived from Indigenous ethnogeology; syllabi integrate geology, hydrology, climate, environmental quality, and cultural geography and are situated in real places

  13. Strengthening International Collaboration: Geosciences Research and Education in Developing Countries (United States)

    Fucugauchi, J. U.


    Geophysical research increasingly requires global multidisciplinary approaches and global integration. Global warming, increasing CO2 levels and increased needs of mineral and energy resources emphasize impact of human activities. The planetary view of our Earth as a deeply complex interconnected system also emphasizes the need of international scientific cooperation. International collaboration presents an immense potential and is urgently needed for further development of geosciences research and education. In analyzing international collaboration a relevant aspect is the role of scientific societies. Societies organize meetings, publish journals and books and promote cooperation through academic exchange activities and can further assist communities in developing countries providing and facilitating access to scientific literature, attendance to international meetings, short and long-term stays and student and young researcher mobility. Developing countries present additional challenges resulting from limited economic resources and social and political problems. Most countries urgently require improved educational and research programs. Needed are in-depth analyses of infrastructure and human resources and identification of major problems and needs. Questions may include what are the major limitations and needs in research and postgraduate education in developing countries? what and how should international collaboration do? and what are the roles of individuals, academic institutions, funding agencies, scientific societies? Here we attempt to examine some of these questions with reference to case examples and AGU role. We focus on current situation, size and characteristics of research community, education programs, facilities, economic support, and then move to perspectives for potential development in an international context.

  14. Geoscience Education Research, Development, and Practice at Arizona State University (United States)

    Semken, S. C.; Reynolds, S. J.; Johnson, J.; Baker, D. R.; Luft, J.; Middleton, J.


    Geoscience education research and professional development thrive in an authentically trans-disciplinary environment at Arizona State University (ASU), benefiting from a long history of mutual professional respect and collaboration among STEM disciplinary researchers and STEM education researchers--many of whom hold national and international stature. Earth science education majors (pre-service teachers), geoscience-education graduate students, and practicing STEM teachers richly benefit from this interaction, which includes team teaching of methods and research courses, joint mentoring of graduate students, and collaboration on professional development projects and externally funded research. The geologically, culturally, and historically rich Southwest offers a superb setting for studies of formal and informal teaching and learning, and ASU graduates the most STEM teachers of any university in the region. Research on geoscience teaching and learning at ASU is primarily conducted by three geoscience faculty in the School of Earth and Space Exploration and three science-education faculty in the Mary Lou Fulton Institute and Graduate School of Education. Additional collaborators are based in the College of Teacher Education and Leadership, other STEM schools and departments, and the Center for Research on Education in Science, Mathematics, Engineering, and Technology (CRESMET). Funding sources include NSF, NASA, US Dept Ed, Arizona Board of Regents, and corporations such as Resolution Copper. Current areas of active research at ASU include: Visualization in geoscience learning; Place attachment and sense of place in geoscience learning; Affective domain in geoscience learning; Culturally based differences in geoscience concepts; Use of annotated concept sketches in learning, teaching, and assessment; Student interactions with textbooks in introductory courses; Strategic recruitment and retention of secondary-school Earth science teachers; Research-based professional

  15. West Bank Gaza Geo-MIS System (United States)

    US Agency for International Development — The Geo-MIS System is USAID/West Bank and Gaza's primary system for capturing and managing projectrelated information. Its purpose is to assist USAID and its...

  16. Geo3DML: A standard-based exchange format for 3D geological models (United States)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Wang, Xianghong


    A geological model (geomodel) in three-dimensional (3D) space is a digital representation of the Earth's subsurface, recognized by geologists and stored in resultant geological data (geodata). The increasing demand for data management and interoperable applications of geomodelscan be addressed by developing standard-based exchange formats for the representation of not only a single geological object, but also holistic geomodels. However, current standards such as GeoSciML cannot incorporate all the geomodel-related information. This paper presents Geo3DML for the exchange of 3D geomodels based on the existing Open Geospatial Consortium (OGC) standards. Geo3DML is based on a unified and formal representation of structural models, attribute models and hierarchical structures of interpreted resultant geodata in different dimensional views, including drills, cross-sections/geomaps and 3D models, which is compatible with the conceptual model of GeoSciML. Geo3DML aims to encode all geomodel-related information integrally in one framework, including the semantic and geometric information of geoobjects and their relationships, as well as visual information. At present, Geo3DML and some supporting tools have been released as a data-exchange standard by the China Geological Survey (CGS).

  17. Mind the Gap: furthering the development of EU-US collaboration in marine geoscience. (United States)

    Glaves, H.; Miller, S.; Schaap, D.


    There is a large and ever increasing amount of marine geological and geophysical data available throughout Europe, the USA and beyond. The challenges associated with the acquisition of this data mean that the cost of collecting it is very high and there is therefore a need to maximise the potential re-use of this data wherever possible. Facilitating this is becoming an increasingly important aspect of marine geosciences data management as the need for marine data increases at a time when the financial resources for data acquisition are being dramatically reduced. A significant barrier to the re-use of marine geoscience data is the variety of different formats, standards, vocabularies etc which have been used by the various organisations engaged with the collection and management of marine geosciences data at a regional, national and international scale. This is also proving to be a barrier to the development of interoperability with other data types at a time when there is a need to develop a more holistic approach to marine research. These challenges are currently being addressed within Europe by a number of EU funded initiatives, the objectives of which are an improvement in the discovery and access to marine data. The Geo-Seas project is just one of these initiatives, the focus of which is the development of an e-infrastructure for the delivery of standardised marine geological and geophysical data across Europe. The project is developing this e-infrastructure by adopting and adapting the methodologies of the SeaDataNet project which currently provides an e-infrastructure for the management of oceanographic data. This re-use of the existing technologies has lead to the development a joint multidisciplinary e-infrastructure for the delivery or both geoscientific and oceanographic data. In order to expand these initiatives further and bridge the gap between these European projects and those being undertaken by colleagues in both the US and elsewhere a number of

  18. Kennisagenda Geo-informatie: GISsen met beleid


    Dessing, N.; Lips, F.; Hoogenboom, J.; Vullings, L.A.E.


    LNV wil méér geo-informatie inzetten bij de ontwikkeling en uitvoering van beleid en beleidsnota’s ruimer voorzien van kaartmateriaal. Dit betekent dat geo-informatie vaker moet worden benut om lokale knelpunten, mogelijkheden en de gevolgen van alternatieve oplossingen inzichtelijk te maken. Om dit te bereiken moet de beschikbaarheid van adequate data en gebruikersvriendelijke en nieuwe GIS-technieken aanmerkelijk verbeteren.

  19. GEOS Code Development Road Map - May, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Scott [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Settgast, Randolph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fu, Pengcheng [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Antoun, Tarabay [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    GEOS is a massively parallel computational framework designed to enable HPC-based simulations of subsurface reservoir stimulation activities with the goal of optimizing current operations and evaluating innovative stimulation methods. GEOS will enable coupling of different solvers associated with the various physical processes occurring during reservoir stimulation in unique and sophisticated ways, adapted to various geologic settings, materials and stimulation methods. The overall architecture of the framework includes consistent data structures and will allow incorporation of additional physical and materials models as demanded by future applications. Along with predicting the initiation, propagation and reactivation of fractures, GEOS will also generate a seismic source term that can be linked with seismic wave propagation codes to generate synthetic microseismicity at surface and downhole arrays. Similarly, the output from GEOS can be linked with existing fluid/thermal transport codes. GEOS can also be linked with existing, non-intrusive uncertainty quantification schemes to constrain uncertainty in its predictions and sensitivity to the various parameters describing the reservoir and stimulation operations. We anticipate that an implicit-explicit 3D version of GEOS, including a preliminary seismic source model, will be available for parametric testing and validation against experimental and field data by Oct. 1, 2013.

  20. Nuclear physics for geo-neutrino studies

    International Nuclear Information System (INIS)

    Fiorentini, Gianni; Ianni, Aldo; Korga, George; Suvorov, Yury; Lissia, Marcello; Mantovani, Fabio; Miramonti, Lino; Oberauer, Lothar; Obolensky, Michel; Smirnov, Oleg


    Geo-neutrino studies are based on theoretical estimates of geo-neutrino spectra. We propose a method for a direct measurement of the energy distribution of antineutrinos from decays of long-lived radioactive isotopes. We present preliminary results for the geo-neutrinos from 214 Bi decay, a process that accounts for about one-half of the total geo-neutrino signal. The feeding probability of the lowest state of 214 Bi--the most important for geo-neutrino signal--is found to be p 0 =0.177±0.004 (stat) -0.001 +0.003 (sys), under the hypothesis of universal neutrino spectrum shape (UNSS). This value is consistent with the (indirect) estimate of the table of isotopes. We show that achievable larger statistics and reduction of systematics should allow for the testing of possible distortions of the neutrino spectrum from that predicted using the UNSS hypothesis. Implications on the geo-neutrino signal are discussed.

  1. How to learn Thematic Cartography in the context of Geosciences and Engineering? Towards a new pedagogical proposal (United States)

    Vargas, German Giovanni; Rocha, Luz Angela


    This paper aims to expose the development of a educational proposal supported in the use of ICT, adopting for this purpose the methodology of instructional design ADDIE, widely used in the design and development of e-learning courses, which offer the possibility of analyzing the results obtained from an individual assessment of each one of these phases and make the feedback respective to the whole process, therefore it allowing assess the effectiveness of the training in terms of its quality and relevance in the academic and professional work of learners, with the goal of helping the process of teaching-learning of Thematic Cartography applied to the study of Geosciences through the design and implementation of a free course in a virtual environment. In this sense the course allows to highlight the scope of the thematic map as a support tool for smart land management in Colombia. The final result is a theoretical and practical virtual course proposed to be developed over a period of five weeks with a total of fifty hours of academic work by the learner, oriented to facilitate the appropriation of concepts, criteria and techniques for reading and apply graphical representation of geospatial information, used and produced in the theme of Geosciences and the use of web tools for geo-visualization and publication. Likewise, this paper offers a short discussion of the opportunities and challenges that involve the course construction, to join efforts that motivate innovation and continuous improvement in transfer quality knowledge in this discipline.

  2. Enabling Data-as- a-Service (DaaS) - Biggest Challenge of Geoscience Australia (United States)

    Bastrakova, I.; Kemp, C.; Car, N. J.


    Geoscience Australia (GA) is recognised and respected as the national repository and steward of multiple national significance data collections that provides geoscience information, services and capability to the Australian Government, industry and stakeholders. Provision of Data-as-a-Service is both GA's key responsibility and core business. Through the Science First Transformation Program GA is undergoing a significant rethinking of its data architecture, curation and access to support the Digital Science capability for which DaaS forms both a dependency and underpins its implementation. DaaS, being a service, means we can deliver its outputs in multiple ways thus providing users with data on demand in ready-for-consumption forms. We can then to reuse prebuilt data constructions to allow self-serviced integration of data underpinned by dynamic query tools. In GA's context examples of DaaS are the Australian Geoscience Data Cube, the Foundation Spatial Data Framework and data served through several Virtual Laboratories. We have implemented a three-layered architecture for DaaS in order to store and manage the data while honouring the semantics of Scientific Data Models defined by subject matter experts and GA's Enterprise Data Architecture as well as retain that delivery flexibility. The foundation layer of DaaS is Canonical Datasets, which are optimised for a long-term data stewardship and curation. Data is well structured, standardised, described and audited. All data creation and editing happen within this layer. The middle Data Transformation layer assists with transformation of data from Canonical Datasets to data integration layer. It provides mechanisms for multi-format and multi-technology data transformation. The top Data Integration layer is optimised for data access. Data can be easily reused and repurposed; data formats made available are optimised for scientific computing and adjusted for access by multiple applications, tools and libraries. Moving to

  3. Native Geosciences: Strengthening the Future Through Tribal Traditions (United States)

    Bolman, J. R.; Quigley, I.; Douville, V.; Hollow Horn Bear, D.


    Native people have lived for millennia in distinct and unique ways in our natural sacred homelands and environments. Tribal cultures are the expression of deep understandings of geosciences shared through oral histories, language and ceremonies. Today, Native people as all people are living in a definite time of change. The developing awareness of "change" brings forth an immense opportunity to expand and elevate Native geosciences knowledge, specifically in the areas of earth, wind, fire and water. At the center of "change" is the need to balance the needs of the people with the needs of the environment. Native tradition and our inherent understanding of what is "sacred above is sacred below" is the foundation for an emerging multi-faceted approach to increasing the representation of Natives in geosciences. The approach is also a pathway to assist in Tribal language revitalization, connection of oral histories and ceremonies as well as building an intergenerational teaching/learning community. Humboldt State University, Sinte Gleska University and South Dakota School of Mines and Technology in partnership with Northern California (Hoopa, Yurok, & Karuk) and Great Plains (Lakota) Tribes have nurtured Native geosciences learning communities connected to Tribal Sacred Sites and natural resources. These sites include the Black Hills (Mato Paha, Mato Tiplia, Hinhan Kaga Paha, Mako Sica etc.), Klamath River (Ishkêesh), and Hoopa Valley (Natinixwe). Native geosciences learning is centered on the themes of earth, wind, fire and water and Native application of remote sensing technologies. Tribal Elders and Native geoscientists work collaboratively providing Native families in-field experiential intergenerational learning opportunities which invite participants to immerse themselves spiritually, intellectually, physically and emotionally in the experiences. Through this immersion and experience Native students and families strengthen the circle of our future Tribal

  4. Portrayal of the Geosciences in the New York Times (United States)

    Wysession, M. E.; Lindstrom, A.


    An analysis of the portrayal of science, including the geosciences, in the New York Times shows that geoscience topics dominate front-page science coverage, appearing significantly more often than articles concerning biology, chemistry, or physics. This is significant because the geosciences are sometimes portrayed (in most high schools, for example) as being of less significance or importance than the other sciences, yet their portrayal in what is arguably the leading U.S. newspaper shows just the opposite - that the geosciences are the most relevant and newsworthy of the sciences. We analyzed NY Times front pages and Tuesday "Science Times" sections for 2012 - 2015, and looked at many parameters including science discipline, the kind of article (research, policy, human-interest, etc.), correlations to the "big ideas" of the Next Generation Science Standards, and for the geosciences, a break-down of sub-disciplines. For the front pages, we looked at both full articles and call-outs to articles on later pages. For front-page full articles, geoscience-related articles were more frequent (almost 60%) than biology, chemistry, and physics combined. Including call-outs to later articles, the geosciences still made the most front-page appearances (almost 40%), and this included the fact that 1/3 of front-page science articles were medicine-related, which accounted for nearly all of the biology and chemistry articles. Interestingly, what the NY Times perceived as "science" differed significantly: 60% of all Tuesday "Science Times" articles were medicine-related, and even removing these, biology (40%) edged the geosciences (35%) as the most frequent Science Times articles. Of the front-page geoscience articles, the topics were dominated each year by natural hazards, natural resources, and human impacts, with the percentage of human-impact-related articles almost doubling over the 4 years. The most significant 4-year trend was in the attention paid to climate change. For

  5. Constructing space-time pdfs in Geosciences

    Energy Technology Data Exchange (ETDEWEB)

    Christakos, G.; Angulo, J. M.; Yu, H.L.


    The focus of this work is the comparative analysis of techniques for constructing multivariate probability density function (Mv-pdf) models that can be used in a variety of geo mathematics applications. The paper is concerned with formal and substantive model building methods. The former includes models that are speculative and analytically tractable, whereas the latter is based on substantive knowledge synthesis. More specifically, the present work focuses on the factoras and copulas techniques of Mv-pdf building, and their comparative analysis. It also discusses a substantive Mv-pdf building method that generates models on the basis of natural knowledge bases and takes into account the contextual and contextual domain of the in situ situation. The methods are compared in terms of a simulation study. (Author) 39 refs.

  6. BCube: Building a Geoscience Brokering Framework (United States)

    Jodha Khalsa, Siri; Nativi, Stefano; Duerr, Ruth; Pearlman, Jay


    BCube is addressing the need for effective and efficient multi-disciplinary collaboration and interoperability through the advancement of brokering technologies. As a prototype "building block" for NSF's EarthCube cyberinfrastructure initiative, BCube is demonstrating how a broker can serve as an intermediary between information systems that implement well-defined interfaces, thereby providing a bridge between communities that employ different specifications. Building on the GEOSS Discover and Access Broker (DAB), BCube will develop new modules and services including: • Expanded semantic brokering capabilities • Business Model support for work flows • Automated metadata generation • Automated linking to services discovered via web crawling • Credential passing for seamless access to data • Ranking of search results from brokered catalogs Because facilitating cross-discipline research involves cultural and well as technical challenges, BCube is also addressing the sociological and educational components of infrastructure development. We are working, initially, with four geoscience disciplines: hydrology, oceans, polar and weather, with an emphasis on connecting existing domain infrastructure elements to facilitate cross-domain communications.

  7. Raft river geoscience case study, volume 1 (United States)

    Dolenc, M. R.; Hull, L. C.; Mizell, S. A.; Russell, B. F.; Skiba, P. A.; Strawn, J. A.; Tullis, J. A.; Garber, R.


    The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (1) produced from fractures found at the contact metamorphic zone apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (2) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (3) hydraulically connected to the shallow thermal fluid of the Crook and BLM wells based upon both geochemistry and pressure response; (4) controlled by a mixture of diluted meteoric water recharging from the northwest and a saline sodium chloride water entering from the southwest. Although the hydrogeologic environment of the Raft River geothermal area is very complex and unique, it is typical of many Basin and Range systems.

  8. Why research into the history of geosciences? (United States)

    Schröder, Wilfried

    Study of the history of various sciences is rather heterogeneous. Some disciplines, such as medicine, mathematics, and astronomy, have numerous noteworthy compendia and even specialized journals where papers on the history of these sciences can be published.The situation in geophysics, meteorology, and other subdivisions of the geosciences is far less favorable. This neglect is an outcome of a dogma of autonomy that is essentially oriented toward progress in understanding, without much reference to historical developments. But even the geoscientists cannot ignore that the phenomenon ‘science’ must be viewed in the context of sociological processes. In the initial stages, sociologists and some philosophers, in the context of the general theory of perception, began research into the development of scientific thought, but the geoscientists and other natural scientists contributed very little. It has since become clear that research on these topics requires historical assessment and more insight. The development of the ‘science of science’ is directed toward understanding and explanation of the complex human involvement in science, not only in the sense of theorizing about the scientific processes but also in sociological, political, and historical context [Kuhn, 1973; Burrichter, 1979; Sandkühler and Plath, 1979.

  9. Developing Short Films of Geoscience Research (United States)

    Shipman, J. S.; Webley, P. W.; Dehn, J.; Harrild, M.; Kienenberger, D.; Salganek, M.


    In today's prevalence of social media and networking, video products are becoming increasingly more useful to communicate research quickly and effectively to a diverse audience, including outreach activities as well as within the research community and to funding agencies. Due to the observational nature of geoscience, researchers often take photos and video footage to document fieldwork or to record laboratory experiments. Here we present how researchers can become more effective storytellers by collaborating with filmmakers to produce short documentary films of their research. We will focus on the use of traditional high-definition (HD) camcorders and HD DSLR cameras to record the scientific story while our research topic focuses on the use of remote sensing techniques, specifically thermal infrared imaging that is often used to analyze time varying natural processes such as volcanic hazards. By capturing the story in the thermal infrared wavelength range, in addition to traditional red-green-blue (RGB) color space, the audience is able to experience the world differently. We will develop a short film specifically designed using thermal infrared cameras that illustrates how visual storytellers can use these new tools to capture unique and important aspects of their research, convey their passion for earth systems science, as well as engage and captive the viewer.

  10. Building Strong Geoscience Departments: Case Studies and Findings from Six Years of Programming (United States)

    Iverson, E. A.; Lee, S.; Ormand, C. J.; Feiss, P. G.; Macdonald, H.; Manduca, C. A.; Richardson, R. M.


    Begun in 2005, the Building Strong Geoscience Departments project sought to help geoscience departments respond to changes in geosciences research, academic pressures, and the changing face of the geosciences workforce by working as a team, planning strategically, and learning from the experiences of other geoscience departments. Key strategies included becoming more central to their institution's mission and goals; articulating the department's learning goals for students; designing coordinated curricula, co-curricular activities, and assessments to meet these goals; and recruiting students effectively. A series of topical workshops identified effective practices in use in the U.S. and Canada. These practices were documented on the project website and disseminated through a national workshop for teams of faculty, through activities at the AGU Heads and Chairs workshops, and in a visiting workshop program bringing leaders to campuses. The program has now involved over 450 participants from 185 departments. To understand the impact of the program, we engaged in ongoing discussion with five departments of various sizes and institutional types, and facing a variety of immediate challenges. In aggregate they made use of the full spectrum of project offerings. These departments all reported that the project brought an important new perspective to their ability to work as a department: they have a better understanding of how their departments' issues relate to the national scene, have more strategies for making the case for the entire department to college administrators, and are better poised to make use of campus resources including the external review process. These results were consistent with findings from end-of-workshop surveys. Further they developed the ability to work together as a team to address departmental challenges through collective problem solving. As a result of their workshop participation, two of the departments who considered their department to be

  11. GeoGirls: A Geology and Geophysics Field Camp for Middle School Girls at Mount St. Helens (United States)

    Samson, C.; Allstadt, K.; Melander, S.; Groskopf, A.; Driedger, C. L.; Westby, E.


    The August 2015 GeoGirls program was a project designed to inspire girls to gain an appreciation and enthusiasm for Earth sciences using Mount St. Helens as an outdoor volcanic laboratory. Occupations in the field of science and engineering tend to be held by more males than females. One way to address this is to introduce girls to possible opportunities within the geosciences and encourage them to learn more about the dynamic environment in which they live. In 2015, the GeoGirls program sought to accomplish this goal through organizing a five day-long field camp for twenty middle school-aged girls, along with four high school-aged mentors and two local teachers. This group explored Mount St. Helens guided by female scientists from the USGS Cascade Volcano Observatory (CVO), the Mount St. Helens Institute (MSHI), UNAVCO, Boise State, Georgia Tech, University of Washington and Oregon State University. To introduce participants to techniques used by volcanologists, the girls participated in hands-on experiments and research projects focusing on seismology, GPS, terrestrial lidar, photogrammetry, water and tephra. Participants also learned to collect samples, analyze data and use microscopes. Through this experience, participants acquired strategies for conducting research by developing hypotheses, making observations, thinking critically and sharing their findings with others. The success of the GeoGirls program was evaluated by participant and parent survey questionnaires, which allowed assessment of overall enthusiasm and interest in pursuing careers in the geosciences. The program was free to participants and was run jointly by MSHI and CVO and funded by NSF, the American Association of University Women, the Association for Women Geoscientists, the Association of Environmental & Engineering Geologists and private donors. The program will run again in the summer of 2016.

  12. Understanding the Prevalence of Geo-Like Degree Programs at Minority Serving Institutions (United States)

    McDaris, J. R.; Manduca, C. A.; Larsen, K.


    Over the decade 2002-12, the percentage of students from underrepresented minorities (URM) graduating with geoscience degrees has increased by 50%. In 2012, of the nearly 6,000 geoscience Bachelor's degrees, 8% were awarded to students from URM. But that same year across all of STEM, 18% of Bachelors went to these students, and URM made up 30% of the US population overall. Minority Serving Institutions (MSIs) play an important role in increasing the diversity of geoscience graduates where there are appropriate degree programs or pathways to programs. To better understand opportunities at these institutions, the InTeGrate project collected information on degree programs at MSIs. A summer 2013 survey of websites for three types of MSIs confirmed that, while stand-alone Geology, Geoscience, or Environmental Science departments are present, there are a larger number of degree programs that include elements of geoscience or related disciplines (geography, GIS, etc.) offered in interdisciplinary departments (e.g. Natural Sciences and Math) or cognate science departments (Physics, Engineering, etc.). Approximately one-third of Hispanic Serving Institutions and Tribal Colleges and one-fifth of Historically Black Colleges and Universities offer at least one degree that includes elements of geoscience. The most common programs were Geology and Environmental Science (94 and 88 degrees respectively), but 21 other types of program were also found. To better profile the nature of these programs, 11 interviews were conducted focusing on strategies for attracting, supporting, and preparing minority students for the workforce. In conjunction with the February 2014 Broadening Access to the Earth and Environmental Sciences workshop, an additional 6 MSI profiles were obtained as well as 22 profiles from non-MSIs. Several common strategies emerge: Proactive marketing and outreach to local high schools and two-year colleges Community building, mentoring and advising, academic support

  13. Implementing the Next Generation Science Standards: Impacts on Geoscience Education (United States)

    Wysession, M. E.


    This is a critical time for the geoscience community. The Next Generation Science Standards (NGSS) have been released and are now being adopted by states (a dozen states and Washington, DC, at the time of writing this), with dramatic implications for national K-12 science education. Curriculum developers and textbook companies are working hard to construct educational materials that match the new standards, which emphasize a hands-on practice-based approach that focuses on working directly with primary data and other forms of evidence. While the set of 8 science and engineering practices of the NGSS lend themselves well to the observation-oriented approach of much of the geosciences, there is currently not a sufficient number of geoscience educational modules and activities geared toward the K-12 levels, and geoscience research organizations need to be mobilizing their education & outreach programs to meet this need. It is a rare opportunity that will not come again in this generation. There are other significant issues surrounding the implementation of the NGSS. The NGSS involves a year of Earth and space science at the high school level, but there does not exist a sufficient workforce is geoscience teachers to meet this need. The form and content of the geoscience standards are also very different from past standards, moving away from a memorization and categorization approach and toward a complex Earth Systems Science approach. Combined with the shift toward practice-based teaching, this means that significant professional development will therefore be required for the existing K-12 geoscience education workforce. How the NGSS are to be assessed is another significant question, with an NRC report providing some guidance but leaving many questions unanswered. There is also an uneasy relationship between the NGSS and the Common Core of math and English, and the recent push-back against the Common Core in many states may impact the implementation of the NGSS.

  14. Teaching Geosciences With Visualizations: Challenges for Spatial Thinking and Abilities (United States)

    Montello, D. R.


    It is widely recognized that the geosciences are very spatial disciplines. Their subject matter includes phenomena on, under, and above the Earth surface whose spatial properties are critical to understanding them. Important spatial properties of geoscience structures and processes include location (both absolute and relative), size, shape, and pattern; temporal changes in spatial properties are also of interest. Information visualizations that depict spatiality are thus critically important to teaching in the geosciences, at all levels from K-12 to Ph.D. work; verbal and mathematical descriptions are quite insufficient by themselves. Such visualizations range from traditional maps and diagrams to digital animations and virtual environments. These visualizations are typically rich and complex because they are attempts to communicate rich and complex realities. Thus, understanding geoscience visualizations accurately and efficiently involves complex spatial thinking. Over a century of psychometric and experimental research reveals some of the cognitive components of spatial thinking, and provides insight into differences among individuals and groups of people in their abilities to think spatially. Some research has specifically examined these issues within the context of geoscience education, and recent research is expanding these investigations into the realm of new digital visualizations that offer the hope of using visualizations to teach complex geoscience concepts with unprecedented effectiveness. In this talk, I will briefly highlight some of the spatial cognitive challenges to understanding geoscience visualizations, including the pervasive and profound individual and group differences in spatial abilities. I will also consider some visualization design issues that arise because of the cognitive and ability challenges. I illustrate some of these research issues with examples from research being conducted by my colleagues and me, research informed by

  15. Outdoor Experiential Learning to Increase Student Interest in Geoscience Careers (United States)

    Lazar, K.; Moysey, S. M.


    Outdoor-focused experiential learning opportunities are uncommon for students in large introductory geology courses, despite evidence that field experiences are a significant pathway for students to enter the geoscience pipeline. We address this deficiency by creating an extracurricular program for geology service courses that allows students to engage with classmates to foster a positive affective environment in which they are able to explore their geoscience interests, encouraged to visualize themselves as potential geoscientists, and emboldened to continue on a geoscience/geoscience-adjacent career path. Students in introductory-level geology courses were given pre- and post-semester surveys to assess the impact of these experiential learning experiences on student attitudes towards geoscience careers and willingness to pursue a major/minor in geology. Initial results indicate that high achieving students overall increase their interest in pursuing geology as a major regardless of their participation in extracurricular activities, while low achieving students only demonstrate increased interest in a geology major if they did not participate in extra credit activities. Conversely, high achieving, non-participant students showed no change in interest of pursuing a geology minor, while high achieving participants were much more likely to demonstrate interest in a minor at the end of the course. Similar to the trends of interest in a geology major, low achieving students only show increased interest in a minor if they were non-participants. These initial results indicate that these activities may be more effective in channeling students towards geology minors rather than majors, and could increase the number of students pursuing geoscience-related career paths. There also seem to be several competing factors at play affecting the different student populations, from an increased interest due to experience or a displeasure that geology is not simply `rocks for jocks

  16. The Population of Optically Faint GEO Debris (United States)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Gomez, Juan; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.


    The 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile has been used for spot surveys of the GEO orbital regime to study the population of optically faint GEO debris. The goal is to estimate the size of the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small size of the field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude have been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The observed detections have a wide range in characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections with variations in brightness, flashers, during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected size times albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm. The data in this paper was collected over the last several years using Magellan's IMACS camera in f/2 mode. The analysis shows the brightness bins for the observed GEO population as well as the periodicity of the flashers. All objects presented are correlated with the catalog: the focus of the paper will be on the uncorrelated, optically faint, objects. The goal of this project is to better characterize the faint debris population in GEO that access to a 6.5-m optical telescope in a superb site can provide.

  17. A Critical Appraisal of Peter Gowan’s “Contemporary Intra-Core Relations and World-Systems Theory”: A Capitalist World-Empire or U.S.-East Asian Geo-Economic Integration?

    Directory of Open Access Journals (Sweden)

    John Gulick


    Full Text Available This paper evaluates Peter Gowan’s musings on the topic of a U.S.-centered “capitalist world-empire.” Gowan’s heterodox concept of a “capitalist world-empire” is intellectually defensible. And his claim that U.S. hegemony is historically unique, because unlike previous dominant powers the U.S. has been able to distinctly mold the accumulation regimes and security environments of its would-be rivals in the core, is more than convincing. However, Gowan tends to overstate the degree to which the U.S. in the 1990’s enjoyed a productive sector revival, rather than a mere super-inflation of dollar-denominated assets. This tendency prevents him from anticipating just how summarily the U.S. would ditch consensual approaches to managing the capitalistworld-economy once the Wall Street bubble collapsed, and hence from appreciating just how fed up Western European and East Asian elites would become with the predatory character of U.S. hegemony in decay. In conclusion the paper argues that while the U.S. may have neither the resources nor the credibility to politically control the global division of labor, something akin to a U.S.-East Asian geo-economic bloc may be in the process of forming. This is so because the Chinese and Japanese economic growth models remain wedded to the underwriting of the U.S.’ seigniorage privileges', and because past and present frictions between China and Japan stand in the way of tighter Sino-Japanese political coordination.

  18. MS PHD'S: A Successful Model Promoting Inclusion, Preparation and Engagement of Underrepresented Minorities within the Geosciences Workforce (United States)

    Padilla, E.; Scott, O.; Strickland, J. T.; Ricciardi, L.; Guzman, W. I.; Braxton, L.; Williamson, V.; Johnson, A.


    According to 2014 findings of the National Research Council, geoscience and related industries indicate an anticipated 48,000 blue-collar, scientific, and managerial positions to be filled by underrepresented minority (URM) workers in the next 15 years. An Information Handling Services (IHS) report prepared for the American Petroleum Institute forecasts even greater numbers estimating upward of 408,000 opportunities for URM workers related to growth in accelerated development of oil, gas and petroleum industries. However, many URM students lack the training in both the hard sciences and craft skills necessary to fill these positions. The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) Professional Development Program uses integrative and holistic strategies to better prepare URM students for entry into all levels of the geoscience workforce. Through a three-phase program of mentoring, community building, networking and professional development activities, MS PHD'S promotes collaboration, critical thinking, and soft skills development for participants. Program activities expose URM students to education, training and real-life geoscience workforce experiences while maintaining a continuity of supportive mentoring and training networks via an active virtual community. MS PHD'S participants report increased self-confidence and self-efficacy in pursuing geoscience workforce goals. To date, the program supports 223 participants of who 57, 21 and 16 have received Doctorate, Masters and Baccalaureate degrees respectively and are currently employed within the geoscience and related industries workforce. The remaining 129 participants are enrolled in undergraduate and graduate programs throughout the U.S. Geographic representation of participants includes 35 states, the District of Columbia, Puerto Rico and two international postdoctoral appointments - one in Saudi Arabia and the other in France.

  19. Using the Geoscience Literacy Frameworks and Educational Technologies to Promote Science Literacy in Non-science Major Undergraduates (United States)

    Carley, S.; Tuddenham, P.; Bishop, K. O.


    In recent years several geoscience communities have been developing ocean, climate, atmosphere and earth science literacy frameworks as enhancements to the National Science Education Standards content standards. Like the older content standards these new geoscience literacy frameworks have focused on K-12 education although they are also intended for informal education and general public audiences. These geoscience literacy frameworks potentially provide a more integrated and less abstract approach to science literacy that may be more suitable for non-science major students that are not pursuing careers in science research or education. They provide a natural link to contemporary environmental issues - e.g., climate change, resource depletion, species and habitat loss, natural hazards, pollution, development of renewable energy, material recycling. The College of Exploration is an education research non-profit that has provided process and technical support for the development of most of these geoscience literacy frameworks. It has a unique perspective on their development. In the last ten years it has also gained considerable national and international expertise in facilitating web-based workshops that support in-depth conversations among educators and working scientists/researchers on important science topics. These workshops have been of enormous value to educators working in K-12, 4-year institutions and community colleges. How can these geoscience literacy frameworks promote more collaborative inquiry-based learning that enhances the appreciation of scientific thinking by non-majors? How can web- and mobile-based education technologies transform the undergraduate non-major survey course into a place where learners begin their passion for science literacy rather than end it? How do we assess science literacy in students and citizens?

  20. Radiogenic heat production and the earth's heat balance. A source of arguments in geoscience

    International Nuclear Information System (INIS)

    Kuczera, B.


    The terrestrial heat flow into interstellar space amounts to approx. 32 TW on the basis of an average heat flow density of 63 mW per sq.m. of earth surface. The loss flow derives part of the energy from the residual heat of the nascent phase of the earth (approx. 40%) and the other part from the natural disintegration of longlived radionuclides, i.e. radiogenic heat production (roughly 60%). This concept met with broad consensus in the geosciences until the 1980s. In 1993, Pollack et al. concluded from the evaluation of recent measured data that heat loss via the oceanic crust of the earth was clearly higher, which raises the loss flow to a total of 44 TW. This is contradicted by Hoffmeister and Criss, who conclude from a modified geochemical model that the total heat loss of 31 TW is fully compensated by radiogenic heat production. In 2001, C. Herndon introduced a new idea into the discussion. According to his thesis, planetary differentiation caused a nuclear georeactor to be created in the center of the earth, whose continuous thermal power of approx. 3 TW contributes to compensating heat losses. Physicists and geoscientists hope to be able to derive new findings on this thesis and on the distribution of radiogenic heat production in the interior of the earth from the planned geo-neutrino experiment in Homestake, USA. (orig.)

  1. Nature as a treasure map! Teaching geoscience with the help of earth caches?! (United States)

    Zecha, Stefanie; Schiller, Thomas


    This presentation looks at how earth caches are influence the learning process in the field of geo science in non-formal education. The development of mobile technologies using Global Positioning System (GPS) data to point geographical location together with the evolving Web 2.0 supporting the creation and consumption of content, suggest a potential for collaborative informal learning linked to location. With the help of the GIS in smartphones you can go directly in nature, search for information by your smartphone, and learn something about nature. Earth caches are a very good opportunity, which are organized and supervised geocaches with special information about physical geography high lights. Interested people can inform themselves about aspects in geoscience area by earth caches. The main question of this presentation is how these caches are created in relation to learning processes. As is not possible, to analyze all existing earth caches, there was focus on Bavaria and a certain feature of earth caches. At the end the authors show limits and potentials for the use of earth caches and give some remark for the future.

  2. Sustaining Public Communication of Geoscience in the Mass Media Market (United States)

    Keane, Christopher


    Most public communication about geoscience is either performed as a derivative of a research program or as part of one-off funded outreach activities. Few efforts are structured to both educate the public about geoscience while also attempting to establish a sustainable funding model. EARTH Magazine, a non-profit publications produced by the American Geosciences Institute, is a monthly geoscience news and information magazine geared towards the public. Originally a profession-oriented publication, titled Geotimes, the publication shifted towards public engagement in the 1990s, completing that focus in 1998. Though part of a non-profit institute, EARTH is not a recipient of grants or contributions to offset its costs and thus must strive to "break even" to sustain its operations and further its mission. How "break even" is measured in a mission-based enterprise incorporates a number of factors, including financial, but also community impact and offsets to other investments. A number of strategies and their successes and failures, both editorially in its focus on audience in scope, tone, and design, and from an operational perspective in the rapidly changing world of magazines, will be outlined. EARTH is now focused on exploring alternative distribution channels, new business models, and disaggregation as means towards broader exposure of geoscience to the widest audience possible.

  3. Geoscience for society. 125th Anniversary volume

    Energy Technology Data Exchange (ETDEWEB)

    Nenonen, K.; Nurmi, P.A. (eds.)


    Our knowledge of Finnish geology and natural resources has considerably increased during the last few decades. Geological Survey of Finland - GTK has mapped the bedrock and Quaternary deposits, as well as mineral resources in great detail using modern geological, geochemical and geophysical techniques, so that Finland today has one of the best geological databases in the world. We have recently compiled countrywide datasets of seamless bedrock information at the scale of 1:200,000, and completed low-altitude airborne geophysical (200 m line spacing and 40 m terrain clearance), regional geochemical (80 000 samples), and reflection seismic surveys at the crustal scale and at high resolution on the main orepotential formations. Isotopic age determinations have been performed at GTK since the 1960s, and we now have accurate ages for about thousand samples, which is a key to studying the complex evolution of the Finnish Precambrian. GTK currently plays a vital role in providing geological expertise to the government, the business sector and the wider community. Specific responsibilities include the promotion and implementation of sustainable approaches to the supply and management of minerals, energy and construction materials, and to ensure environmental compliance through monitoring, assessment and remediation programmes. GTK also contributes to a wide range of international geoscience, mapping, mineral resources and environmental monitoring projects, and is active in developing multidisciplinary research programmes with universities, government agencies and stakeholders across related sectors. This 125th Anniversary Publication aims at elucidating, through a number of short articles, the current focus of research and development at GTK. In reaching the milestone of 125 years, we can state that our anniversary slogan, 'forever young', is justified by the vitality and increasing societal impact of the organization and our research focusing on sustainable

  4. Geoscience for society. 125th Anniversary volume

    Energy Technology Data Exchange (ETDEWEB)

    Nenonen, K.; Nurmi, P A [eds.


    Our knowledge of Finnish geology and natural resources has considerably increased during the last few decades. Geological Survey of Finland - GTK has mapped the bedrock and Quaternary deposits, as well as mineral resources in great detail using modern geological, geochemical and geophysical techniques, so that Finland today has one of the best geological databases in the world. We have recently compiled countrywide datasets of seamless bedrock information at the scale of 1:200,000, and completed low-altitude airborne geophysical (200 m line spacing and 40 m terrain clearance), regional geochemical (80 000 samples), and reflection seismic surveys at the crustal scale and at high resolution on the main orepotential formations. Isotopic age determinations have been performed at GTK since the 1960s, and we now have accurate ages for about thousand samples, which is a key to studying the complex evolution of the Finnish Precambrian. GTK currently plays a vital role in providing geological expertise to the government, the business sector and the wider community. Specific responsibilities include the promotion and implementation of sustainable approaches to the supply and management of minerals, energy and construction materials, and to ensure environmental compliance through monitoring, assessment and remediation programmes. GTK also contributes to a wide range of international geoscience, mapping, mineral resources and environmental monitoring projects, and is active in developing multidisciplinary research programmes with universities, government agencies and stakeholders across related sectors. This 125th Anniversary Publication aims at elucidating, through a number of short articles, the current focus of research and development at GTK. In reaching the milestone of 125 years, we can state that our anniversary slogan, 'forever young', is justified by the vitality and increasing societal impact of the organization and our research focusing on sustainable development of

  5. GEO Label Web Services for Dynamic and Effective Communication of Geospatial Metadata Quality (United States)

    Lush, Victoria; Nüst, Daniel; Bastin, Lucy; Masó, Joan; Lumsden, Jo


    We present demonstrations of the GEO label Web services and their integration into a prototype extension of the GEOSS portal (, the GMU portal ( and a GeoNetwork catalog application ( The GEO label is designed to communicate, and facilitate interrogation of, geospatial quality information with a view to supporting efficient and effective dataset selection on the basis of quality, trustworthiness and fitness for use. The GEO label which we propose was developed and evaluated according to a user-centred design (UCD) approach in order to maximise the likelihood of user acceptance once deployed. The resulting label is dynamically generated from producer metadata in ISO or FDGC format, and incorporates user feedback on dataset usage, ratings and discovered issues, in order to supply a highly informative summary of metadata completeness and quality. The label was easily incorporated into a community portal as part of the GEO Architecture Implementation Programme (AIP-6) and has been successfully integrated into a prototype extension of the GEOSS portal, as well as the popular metadata catalog and editor, GeoNetwork. The design of the GEO label was based on 4 user studies conducted to: (1) elicit initial user requirements; (2) investigate initial user views on the concept of a GEO label and its potential role; (3) evaluate prototype label visualizations; and (4) evaluate and validate physical GEO label prototypes. The results of these studies indicated that users and producers support the concept of a label with drill-down interrogation facility, combining eight geospatial data informational aspects, namely: producer profile, producer comments, lineage information, standards compliance, quality information, user feedback, expert reviews, and citations information. These are delivered as eight facets of a wheel

  6. GeoViQua: quality-aware geospatial data discovery and evaluation (United States)

    Bigagli, L.; Papeschi, F.; Mazzetti, P.; Nativi, S.


    GeoViQua (QUAlity aware VIsualization for the Global Earth Observation System of Systems) is a recently started FP7 project aiming at complementing the Global Earth Observation System of Systems (GEOSS) with rigorous data quality specifications and quality-aware capabilities, in order to improve reliability in scientific studies and policy decision-making. GeoViQua main scientific and technical objective is to enhance the GEOSS Common Infrastructure (GCI) providing the user community with innovative quality-aware search and evaluation tools, which will be integrated in the GEO-Portal, as well as made available to other end-user interfaces. To this end, GeoViQua will promote the extension of the current standard metadata for geographic information with accurate and expressive quality indicators, also contributing to the definition of a quality label (GEOLabel). GeoViQua proposed solutions will be assessed in several pilot case studies covering the whole Earth Observation chain, from remote sensing acquisition to data processing, to applications in the main GEOSS Societal Benefit Areas. This work presents the preliminary results of GeoViQua Work Package 4 "Enhanced geo-search tools" (WP4), started in January 2012. Its major anticipated technical innovations are search and evaluation tools that communicate and exploit data quality information from the GCI. In particular, GeoViQua will investigate a graphical search interface featuring a coherent and meaningful aggregation of statistics and metadata summaries (e.g. in the form of tables, charts), thus enabling end users to leverage quality constraints for data discovery and evaluation. Preparatory work on WP4 requirements indicated that users need the "best" data for their purpose, implying a high degree of subjectivity in judgment. This suggests that the GeoViQua system should exploit a combination of provider-generated metadata (objective indicators such as summary statistics), system-generated metadata (contextual

  7. Real-time geo-referenced video mosaicking with the MATISSE system

    DEFF Research Database (Denmark)

    Vincent, Anne-Gaelle; Pessel, Nathalie; Borgetto, Manon

    This paper presents the MATISSE system: Mosaicking Advanced Technologies Integrated in a Single Software Environment. This system aims at producing in-line and off-line geo-referenced video mosaics of seabed given a video input and navigation data. It is based upon several techniques of image...

  8. GeoSpark SQL: An Effective Framework Enabling Spatial Queries on Spark

    Directory of Open Access Journals (Sweden)

    Zhou Huang


    Full Text Available In the era of big data, Internet-based geospatial information services such as various LBS apps are deployed everywhere, followed by an increasing number of queries against the massive spatial data. As a result, the traditional relational spatial database (e.g., PostgreSQL with PostGIS and Oracle Spatial cannot adapt well to the needs of large-scale spatial query processing. Spark is an emerging outstanding distributed computing framework in the Hadoop ecosystem. This paper aims to address the increasingly large-scale spatial query-processing requirement in the era of big data, and proposes an effective framework GeoSpark SQL, which enables spatial queries on Spark. On the one hand, GeoSpark SQL provides a convenient SQL interface; on the other hand, GeoSpark SQL achieves both efficient storage management and high-performance parallel computing through integrating Hive and Spark. In this study, the following key issues are discussed and addressed: (1 storage management methods under the GeoSpark SQL framework, (2 the spatial operator implementation approach in the Spark environment, and (3 spatial query optimization methods under Spark. Experimental evaluation is also performed and the results show that GeoSpark SQL is able to achieve real-time query processing. It should be noted that Spark is not a panacea. It is observed that the traditional spatial database PostGIS/PostgreSQL performs better than GeoSpark SQL in some query scenarios, especially for the spatial queries with high selectivity, such as the point query and the window query. In general, GeoSpark SQL performs better when dealing with compute-intensive spatial queries such as the kNN query and the spatial join query.

  9. Strategic Planning for Interdisciplinary Science: a Geoscience Success Story (United States)

    Harshvardhan, D.; Harbor, J. M.


    The Department of Earth and Atmospheric Sciences at Purdue University has engaged in a continuous strategic planning exercise for several years, including annual retreats since 1997 as an integral part of the process. The daylong Saturday retreat at the beginning of the fall semester has been used to flesh out the faculty hiring plan for the coming year based on the prior years' plans. The finalized strategic plan is built around the choice of three signature areas, two in disciplinary fields, (i) geodynamics and active tectonics, (ii) multi-scale atmospheric interactions and one interdisciplinary area, (iii) atmosphere/surface interactions. Our experience with strategic planning and the inherently interdisciplinary nature of geoscience helped us recently when our School of Science, which consists of seven departments, announced a competition for 60 new faculty positions that would be assigned based on the following criteria, listed in order of priority - (i) scientific merit and potential for societal impact, (ii) multidisciplinary nature of topic - level of participation and leveraging potential, (iii) alignment with Purdue's strategic plan - discovery, learning, engagement, (iv) existence of critical mass at Purdue and availability of faculty and student candidate pools, (v) corporate and federal sponsor interest. Some fifty white papers promoting diverse fields were submitted to the school and seven were chosen after a school-wide retreat. The department fared exceedingly well and we now have significant representation on three of the seven school areas of coalescence - (i) climate change, (ii) computational science and (iii) science education research. We are now in the process of drawing up hiring plans and developing strategies for allocation and reallocation of resources such as laboratory space and faculty startup to accommodate the 20% growth in faculty strength that is expected over the next five years.

  10. A project-based geoscience curriculum: select examples (United States)

    Brown, L. M.; Kelso, P. R.; White, R. J.; Rexroad, C. B.


    Principles of constructivist educational philosophy serve as a foundation for the recently completed National Science Foundation sponsored undergraduate curricular revision undertaken by the Geology Department of Lake Superior State University. We integrate lecture and laboratory sessions utilizing active learning strategies that focus on real-world geoscience experiences and problems. In this presentation, we discuss details of three research-like projects that require students to access original data, process and model the data using appropriate geological software, interpret and defend results, and disseminate results in reports, posters, and class presentations. The projects are from three upper division courses, Carbonate Systems, Sequence Stratigraphy, and Geophysical Systems, where teams of two to four students are presented with defined problems of durations ranging from a few weeks to an entire semester. Project goals and location, some background information, and specified dates and expectations for interim and final written and oral reports are provided to students. Some projects require the entire class to work on one data set, some require each team to be initially responsible for a portion of the project with teams ultimately merging data for interpretation and to arrive at final conclusions. Some projects require students to utilize data from appropriate geological web sites such as state geological surveys. Others require students to design surveys and utilize appropriate instruments of their choice for field data collection. Students learn usage and applications of appropriate geological software in compiling, processing, modeling, and interpreting data and preparing formal reports and presentations. Students uniformly report heightened interest and motivation when engaged in these projects. Our new curriculum has resulted in an increase in students" quantitative and interpretive skills along with dramatic improvement in communication and

  11. BCube: A Broker Framework for Next Generation Geoscience (United States)

    Khalsa, S. S.; Pearlman, J.; Nativi, S.


    EarthCube is an NSF initiative that aims to transform the conduct of research through the creation of community-guided cyberinfrastructure enabling the integration information and data across the geosciences. Following an initial phase of concept and community development activities, NSF has made awards for the development of cyberinfrastructure 'building blocks.' In this talk we describe the goals and methods for one of these projects - BCube, for Brokering Building Blocks. BCube addresses the need for effective and efficient multi-disciplinary collaboration and interoperability through the introduction of brokering technologies. Brokers, as information systems middleware, have existed for many years and are found in diverse domains and industries such as financial systems, business-to-business interfaces, medicine and the automotive industry, to name a few. However, the emergence of brokers in science is relatively new and is now being piloted with great promise in cyberinfrastructure and science communities in the U.S., Europe, and elsewhere. Brokers act as intermediaries between information systems that implement well-defined interfaces, providing a bridge between communities using different specifications. The BCube project is helping to build a truly cross-disciplinary, global platform for data providers, cyberinfrastructure developers, and data users to make data more available and interoperable through a brokering framework. Building on the GEOSS Discover and Access Broker (DAB), BCube will develop new modules and services including * Expanded semantic brokering * Business Model support for work flows * Automated metadata generation * Automated linking to services discovered via web crawling * Plug and play for most community service buses * Credential passing for seamless access to data * Ranking of search results from brokered catalogs Because facilitating cross-discipline research involves cultural and well as technical challenges, BCube is also

  12. From infotainment to tools of interaction - A critical perspective on the use of film/video in geoscience (United States)

    Ickert, Johanna


    In times of omnipresent digitisation and interconnectedness, the way how we generate and experience knowledge on geo-related themes is strongly influenced by audiovisual media representations. Moving images are powerful tools and have significant potential to communicate science in novel ways. Major research frameworks such as Horizon 2020 strongly encourage the use of audiovisual media in order to communicate science "more effectively" to the public. An increasing number of geoscientists produce films themselves, while most of them still delegate this task to media professionals to whom they provide their scientific expert knowledge. Usually, the intention behind these outreach efforts is to take advantage of the suitability of the medium to convey "scientific facts", or to motivate certain cognitive/behavioural responses of different target audiences. Undoubtedly, film has a great potential for representing geoscientific knowledge and thus has become a key instrument for geoscience communication. However, the use of images also raises fundamental ethical and representational concerns. While the latter have provoked intense debates in sub-disciplines such as visual anthropology or film geography, the geosciences have paid only little attention to questions on how distinct practices and disciplinary paradigms create filmic representations. Given the fact that the use of scientific images and film is far from being "objective" and that the way how we create and experience images is always context-specific and strongly influenced by the relationship between film maker, film subjects/informants and audience, a series of important question arises: What do we know about the use of film in geosciences beyond the realm of information and representational purposes? What can we learn from using film as a reflexive, process-oriented and dialogue-based medium? How can film help us to better understand ethical and representational dimensions of our interaction with the public

  13. Leveraging biology interest to broaden participation in the geosciences (United States)

    Perin, S.; Conner, L.; Oxtoby, L.


    It has been well documented that female participation in the geoscience workforce is low. By contrast, the biology workforce has largely reached gender parity. These trends are rooted in patterns of interest among youth. Specifically, girls tend to like biology and value social and societal connections to science (Brotman & Moore 2008). Our NSF-funded project, "BRIGHT Girls," offers two-week summer academies to high school-aged girls, in which the connections between the geosciences and biology are made explicit. We are conducting qualitative research to trace the girls' identity work during this intervention. Using team-based video interaction analysis, we are finding that the fabric of the academy allows girls to "try on" new possible selves in science. Our results imply that real-world, interdisciplinary programs that include opportunities for agency and authentic science practice may be a fruitful approach for broadening participation in the geosciences.

  14. Interdisciplinary cooperation and studies in geoscience in the Carpathian Basin

    Directory of Open Access Journals (Sweden)

    Marcel MINDRESCU


    Full Text Available An interdisciplinary approach to geoscience is particularly important in this vast research field, as the more innovative studies are increasingly crossing discipline boundaries and thus benefitting from multiple research methods and viewpoints. Grasping this concept has led us to encourage interdisciplinary cooperation by supporting and promoting the creation of “meeting places” able to provide a framework for researchers and scholars involved in geoscience research to find common grounds for discussion and collaboration. Most recently, this was achieved by organizing the 1st Workshop on “Interdisciplinarity in Geosciences in the Carpathian Basin” (IGCB held in the Department of Geography at the University of Suceava (Romania, between the 18th and 22nd October 2012. This event brought together both an international group of scientists and local researchers which created opportunities for collaboration in research topics such as geography, environment, geology and botany, biology and ecology in the Carpathian Basin.

  15. The GEO Handbook on Biodiversity Observation Networks

    CSIR Research Space (South Africa)

    Walters, Michele


    Full Text Available across the planet. I congratulate GEO BON on creating this powerful mechanism and wish the GEO BON community great success in each of its future endeavours. Geneva, Switzerland Barbara J. Ryan Executive Director: Group on Earth Observations viii Foreword... of biodiversity data is the desired goal, it would be hard to achieve except via the mechanism of a network, simply because 6 R.J. Scholes et al. sampling and species identification is more cost-effective and situation-appropriate if conducted using local...

  16. Canadian Geoscience Education Network (CGEN): Fostering Excellence in Earth Science Education and Outreach (United States)

    Haidl, F. M.; Vodden, C.; Bates, J. L.; Morgan, A. V.


    CGEN, the outreach arm of the Canadian Federation of Earth Sciences, is a network of more than 270 individuals from all over Canada who work to promote geoscience education and public awareness of science. CGEN's priorities are threefold: to improve the quality of Earth science education delivered in our primary and secondary schools; to raise public awareness about the Earth sciences and their impact on everyday life; and to encourage student interest in the Earth sciences as a career option. These priorities are supported by CGEN's six core programs: 1) The national EdGEO program (, initiated in the 1970s, supports Earth science workshops for teachers. These workshops, organized by teams of local educators and geoscientists, provide teachers with "enhanced knowledge, classroom resources and increased confidence" to more effectively teach Earth science. In 2008, a record 521 teachers attended 14 EdGEO workshops. 2) EarthNet ( is a virtual resource centre that provides support for teachers and for geoscientists involved in education and outreach. In 2008, EarthNet received a $11,500 grant from Encana Corporation to develop energy-related content. 3) The new Careers in Earth Science website (, launched in October 2008, enhances CGEN's capacity to encourage students to pursue a career in the Earth sciences. This project exemplifies the value of collaboration with other organizations. Seven groups provided financial support for the project and many other organizations and individuals contributed in-kind support. 4) Geoscape Canada and Waterscape Canada, programs led by the Geological Survey of Canada, communicate practical Earth science information to teachers, students, and other members of communities across Canada through a series of electronic and hard-copy posters and other resources. Many of the resources created from 1998 to 2007 are available online ( A northern

  17. DAGIK: A data-showcase system of geoscience in KML (United States)

    Yoshida, D.; Saito, A.


    We are developing a system to display geoscience data of various databases on virtual globe. This system is designed to be a showcase of databases. Users can browse various types of data of databases on this system. When they find data of interest, they can follow the network link to the WWW-based database and study it in detail. This system is served as a portal to geoscience databases. We call this system DAGIK (DAta-showcase system of Geoscience In Kml). It uses Google Earth as a browser. The reason to use Google Earth is that it has 1) four-dimensional data presentation capability, 2) scalability in time and space, 3) network capability. Virtual globe can show the data in intuitive way. It is a very powerful tool to show the characteristics of data for those who are not familiar with the data. DAGIK started in 2007 for geospace data, and was expanded to cover the geoscience in 2009. The sequence of usage of DAGIK is as follows: 1) user downloads the start up file, dagik.kml, from the DAGIK server ( with a WWW browser, 2) it can be opened with Google Earth, 3) user select year, month and day, 4) for the selected date, the data list file will be downloaded from the DAGIK server, 5) user can select the data type from the data list, 6) and the KML/KMZ plot files will be downloaded from the DAGIK server or the other KML/KMZ server to display on Google Earth. There are several databases that provide their data plots in KML/KMZ format for DAGIK. DAGIK, a data-showcase system of geoscience, can bridge the gap between databases and novice users of the geoscience data.

  18. A framework for high-school teacher support in Geosciences (United States)

    Bookhagen, B.; Mair, A.; Schaller, G.; Koeberl, C.


    To attract future geoscientists in the classroom and share the passion for science, successful geoscience education needs to combine modern educational tools with applied science. Previous outreach efforts suggest that classroom-geoscience teaching tremendously benefits from structured, prepared lesson plans in combination with hands-on material. Building on our past experience, we have developed a classroom-teaching kit that implements interdisciplinary exercises and modern geoscientific application to attract high-school students. This "Mobile Phone Teaching Kit" analyzes the components of mobile phones, emphasizing the mineral compositions and geologic background of raw materials. Also, as geoscience is not an obligatory classroom topic in Austria, and university training for upcoming science teachers barely covers geoscience, teacher training is necessary to enhance understanding of the interdisciplinary geosciences in the classroom. During the past year, we have held teacher workshops to help implementing the topic in the classroom, and to provide professional training for non-geoscientists and demonstrate proper usage of the teaching kit. The material kit is designed for classroom teaching and comes with a lesson plan that covers background knowledge and provides worksheets and can easily be adapted to school curricula. The project was funded by kulturkontakt Austria; expenses covered 540 material kits, and we reached out to approximately 90 schools throughout Austria and held a workshop in each of the nine federal states in Austria. Teachers received the training, a set of the material kit, and the lesson plan free of charge. Feedback from teachers was highly appreciative. The request for further material kits is high and we plan to expand the project. Ultimately, we hope to enlighten teachers and students for the highly interdisciplinary variety of geosciences and a link to everyday life.

  19. National Geoscience Data Repository System: Phase 2 final report

    Energy Technology Data Exchange (ETDEWEB)



    The American Geological Institute (AGI) has completed Phase 2 of a project to establish a National Geoscience Data Repository System (NGDRS). The project`s primary objectives are to preserve geoscience data in jeopardy of being destroyed and to make that data available to those who have a need to use it in future investigations. These data are available for donation to the public as a result of the downsizing that has occurred in the major petroleum and mining companies in the US for the past decade. In recent years, these companies have consolidated domestic operations, sold many of their domestic properties and relinquished many of their leases. The scientific data associated with those properties are no longer considered to be useful assets and are consequently in danger of being lost forever. The national repository project will make many of these data available to the geoscience community for the first time. Phase 2 encompasses the establishment of standards for indexing and cataloging of geoscience data and determination of the costs of transferring data from the private sector to public-sector data repositories. Pilot projects evaluated the feasibility of the project for transfer of different data types and creation of a Web-based metadata supercatalog and browser. Also as part of the project, a national directory of geoscience data repositories was compiled to assess what data are currently available in existing facilities. The next step, Phase 3, will focus on the initiation of transfer of geoscience data from the private sector to the public domain and development of the web-based Geotrek metadata supercatalog.

  20. On the merits of conversion electron Mossbauer spectroscopy in geosciences

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Bertelsen, P.; Budtz-Jørgensen, Carl


    Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give on the weath......Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give...

  1. Reciprocal Estimation of Pedestrian Location and Motion State toward a Smartphone Geo-Context Computing Solution

    Directory of Open Access Journals (Sweden)

    Jingbin Liu


    Full Text Available The rapid advance in mobile communications has made information and services ubiquitously accessible. Location and context information have become essential for the effectiveness of services in the era of mobility. This paper proposes the concept of geo-context that is defined as an integral synthesis of geographical location, human motion state and mobility context. A geo-context computing solution consists of a positioning engine, a motion state recognition engine, and a context inference component. In the geo-context concept, the human motion states and mobility context are associated with the geographical location where they occur. A hybrid geo-context computing solution is implemented that runs on a smartphone, and it utilizes measurements of multiple sensors and signals of opportunity that are available within a smartphone. Pedestrian location and motion states are estimated jointly under the framework of hidden Markov models, and they are used in a reciprocal manner to improve their estimation performance of one another. It is demonstrated that pedestrian location estimation has better accuracy when its motion state is known, and in turn, the performance of motion state recognition can be improved with increasing reliability when the location is given. The geo-context inference is implemented simply with the expert system principle, and more sophisticated approaches will be developed.

  2. Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System (United States)

    Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max


    This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.

  3. Enabling Field Experiences in Introductory Geoscience Classes through the Use of Immersive Virtual Reality (United States)

    Moysey, S. M.; Smith, E.; Sellers, V.; Wyant, P.; Boyer, D. M.; Mobley, C.; Brame, S.


    Although field experiences are an important aspect of geoscience education, the opportunity to provide physical world experiences to large groups of introductory students is often limited by access, logistical, and financial constraints. Our project (NSF IUSE 1504619) is investigating the use of immersive virtual reality (VR) technologies as a surrogate for real field experiences in introductory geosciences classes. We are developing a toolbox that leverages innovations in the field of VR, including the Oculus Rift and Google Cardboard, to enable every student in an introductory geology classroom the opportunity to have a first-person virtual field experience in the Grand Canyon. We have opted to structure our VR experience as an interactive game where students must explore the Canyon to accomplish a series of tasks designed to emphasize key aspects of geoscience learning. So far we have produced two demo products for the virtual field trip. The first is a standalone "Rock Box" app developed for the iPhone, which allows students to select different rock samples, examine them in 3D, and obtain basic information about the properties of each sample. The app can act as a supplement to the traditional rock box used in physical geology labs. The second product is a fully functioning VR environment for the Grand Canyon developed using satellite-based topographic and imagery data to retain real geologic features within the experience. Players can freely navigate to explore anywhere they desire within the Canyon, but are guided to points of interest where they are able to complete exercises that will be aligned with specific learning goals. To this point we have integrated elements of the "Rock Box" app within the VR environment, allowing players to examine 3D details of rock samples they encounter within the Grand Canyon. We plan to provide demos of both products and obtain user feedback during our presentation.

  4. Cloud-Hosted Real-time Data Services for the Geosciences (CHORDS) (United States)

    Daniels, M. D.; Graves, S. J.; Vernon, F.; Kerkez, B.; Chandra, C. V.; Keiser, K.; Martin, C.


    Cloud-Hosted Real-time Data Services for the Geosciences (CHORDS) Access, utilization and management of real-time data continue to be challenging for decision makers, as well as researchers in several scientific fields. This presentation will highlight infrastructure aimed at addressing some of the gaps in handling real-time data, particularly in increasing accessibility of these data to the scientific community through cloud services. The Cloud-Hosted Real-time Data Services for the Geosciences (CHORDS) system addresses the ever-increasing importance of real-time scientific data, particularly in mission critical scenarios, where informed decisions must be made rapidly. Advances in the distribution of real-time data are leading many new transient phenomena in space-time to be observed, however real-time decision-making is infeasible in many cases that require streaming scientific data as these data are locked down and sent only to proprietary in-house tools or displays. This lack of accessibility to the broader scientific community prohibits algorithm development and workflows initiated by these data streams. As part of NSF's EarthCube initiative, CHORDS proposes to make real-time data available to the academic community via cloud services. The CHORDS infrastructure will enhance the role of real-time data within the geosciences, specifically expanding the potential of streaming data sources in enabling adaptive experimentation and real-time hypothesis testing. Adherence to community data and metadata standards will promote the integration of CHORDS real-time data with existing standards-compliant analysis, visualization and modeling tools.

  5. Integration of real-time operational data in geographical information for power and gas business; Integrando em tempo real os dados operacionais aos sistemas geo referenciados do negocio gas e energia

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, Fernando Jose de Carvalho; Carvalho, Ronaldo Jose Seixas de [PETROBRAS, Rio de Janeiro, RJ (Brazil)


    The Strategical Management of Data and Information of the Gas e Energia, has as its being reason, the provision of right information, in the right place and in the right time, based on the correct sources, adding strategic value to Business. The SCADA systems (Supervisory Control and Data Acquisition), give to the Thermoelectrical Plant Operators and Electrical Transporting Operators the integration with the operational stations, measurement and energy delivery. The Geographical Information Systems - GIS, give the maps visualization with geopolitics aspects, gas pipeline infrastructure and satellite images. The Historical Data systems, have as its requirements the interface between many SCADA systems by means of accompaniment of historical data, real time data of the common variables of the process (outflow, pressure, temperature, egg.) and KPI's visualization - typical performance indicators of energy systems (non-availability, generation efficiency and distribution, egg.). Based on the business systemic vision, the Real-Time Enterprise Architecture - Real Time data integration and Performance Indicators based on the GIS software platform was developed in the Gas e Energia enterprise scenario. The present action has, as its focus, the dynamic visualization in real-time of the integrated data to the GIS infrastructure of the Gas Pipelines and Thermoelectrical Plants, guaranteeing the integrity, the audit trail of the information and a pro active vision for the Management of the Gas e Energia Business. (author)

  6. Integration of real-time operational data in geographical information for power and gas business; Integrando em tempo real os dados operacionais aos sistemas geo referenciados do negocio gas e energia

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, Fernando Jose de Carvalho; Carvalho, Ronaldo Jose Seixas de [PETROBRAS, Rio de Janeiro, RJ (Brazil)


    The Strategical Management of Data and Information of the Gas e Energia, has as its being reason, the provision of right information, in the right place and in the right time, based on the correct sources, adding strategic value to Business. The SCADA systems (Supervisory Control and Data Acquisition), give to the Thermoelectrical Plant Operators and Electrical Transporting Operators the integration with the operational stations, measurement and energy delivery. The Geographical Information Systems - GIS, give the maps visualization with geopolitics aspects, gas pipeline infrastructure and satellite images. The Historical Data systems, have as its requirements the interface between many SCADA systems by means of accompaniment of historical data, real time data of the common variables of the process (outflow, pressure, temperature, egg.) and KPI's visualization - typical performance indicators of energy systems (non-availability, generation efficiency and distribution, egg.). Based on the business systemic vision, the Real-Time Enterprise Architecture - Real Time data integration and Performance Indicators based on the GIS software platform was developed in the Gas e Energia enterprise scenario. The present action has, as its focus, the dynamic visualization in real-time of the integrated data to the GIS infrastructure of the Gas Pipelines and Thermoelectrical Plants, guaranteeing the integrity, the audit trail of the information and a pro active vision for the Management of the Gas e Energia Business. (author)

  7. Funding of Geosciences: Coordinating National and International Resources (United States)

    Bye, B.; Fontaine, K. S.


    Funding is an important element of national as well as international policy for Earth observations. The Group on Earth Observations (GEO) is coordinating efforts to build a Global Earth Observation System of Systems, or GEOSS. The lack of dedicated funding to support specific S&T activities in support of GEOSS is one of the most important obstacles to engaging the S&T communities in its implementation. This problem can be addressed by establishing explicit linkages between research and development programmes funded by GEO Members and Participating Organizations and GEOSS. In appropriate funding programs, these links may take the form of requiring explanations of how projects to be funded will interface with GEOSS and ensuring that demonstrating significant relevance for GEOSS is viewed as an asset of these proposals, requiring registration of Earth observing systems developed in these projects, or stipulating that data and products must adhere to the GEOSS Data Sharing Principles. Examples of Earth observations include: - Measurements from ground-based, in situ monitors; - Observations from Earth satellites; - Products and predictive capabilities from Earth system models, often using the capabilities of high-performance computers; - Scientific knowledge about the Earth system; and, - Data visualization techniques. These examples of Earth observations activities requires different types of resources, R&D top-down, bottom-up funding and programs of various sizes. Where innovation and infrastructure are involved different kind of resources are better suited, for developing countries completely other sources of funding are applicable etc. The European Commission funded Egida project is coordinating the development of a funding mechanism based on current national and international funding instruments such as the European ERANet, the new Joint Programming Initiatives, ESFRI as well as other European and non-European instruments. A general introduction to various

  8. Study on geo-information modelling

    Czech Academy of Sciences Publication Activity Database

    Klimešová, Dana


    Roč. 5, č. 5 (2006), s. 1108-1113 ISSN 1109-2777 Institutional research plan: CEZ:AV0Z10750506 Keywords : control GIS * geo-information modelling * uncertainty * spatial temporal approach Web Services Subject RIV: BC - Control Systems Theory

  9. Model driven geo-information systems development

    NARCIS (Netherlands)

    Morales Guarin, J.M.; Ferreira Pires, Luis; van Sinderen, Marten J.; Williams, A.D.

    Continuous change of user requirements has become a constant for geo-information systems. Designing systems that can adapt to such changes requires an appropriate design methodology that supports abstraction, modularity and other mechanisms to capture the essence of the system and help controlling

  10. Fundamental Limitations for Imaging GEO Satellites (United States)


    Fundamental limitations for imaging GEO satellites D. Mozurkewich Seabrook Engineering , Seabrook, MD 20706 USA H. R. Schmitt, J. T. Armstrong Naval...higher spatial frequency. Send correspondence to David Mozurkewich, Seabrook Engineering , 9310 Dubarry Ave., Seabrook MD 20706 E-mail: dave

  11. Variable-scale Geo-information

    NARCIS (Netherlands)

    Meijers, B.M.


    The use of geo-information is changing by the advent of new mobile devices, such as tablet-pc's that harness a lot of computing power. This type of information is more and more applied in mainstream digital consumer products, in a net-centric environment (i.e. dissemination takes place via the

  12. GEO/SQL in water resource manegement

    Directory of Open Access Journals (Sweden)

    Andrej Vidmar


    Full Text Available The development of water resource management concepts shouis the problem of collecting, combining, and using alphanumerical and graphical spatial data. The solution of this problem lies in the use of geographic information systems - GIS. This paper describes the usefulness of GIS programming tool Geo/SQL in water resources management.

  13. Complex Functions with GeoGebra (United States)

    Breda, Ana Maria D'azevedo; Dos Santos, José Manuel Dos Santos


    Complex functions, generally feature some interesting peculiarities, seen as extensions of real functions. The visualization of complex functions properties usually requires the simultaneous visualization of two-dimensional spaces. The multiple Windows of GeoGebra, combined with its ability of algebraic computation with complex numbers, allow the…

  14. Academic Research Library as Broker in Addressing Interoperability Challenges for the Geosciences (United States)

    Smith, P., II


    Data capture is an important process in the research lifecycle. Complete descriptive and representative information of the data or database is necessary during data collection whether in the field or in the research lab. The National Science Foundation's (NSF) Public Access Plan (2015) mandates the need for federally funded projects to make their research data more openly available. Developing, implementing, and integrating metadata workflows into to the research process of the data lifecycle facilitates improved data access while also addressing interoperability challenges for the geosciences such as data description and representation. Lack of metadata or data curation can contribute to (1) semantic, (2) ontology, and (3) data integration issues within and across disciplinary domains and projects. Some researchers of EarthCube funded projects have identified these issues as gaps. These gaps can contribute to interoperability data access, discovery, and integration issues between domain-specific and general data repositories. Academic Research Libraries have expertise in providing long-term discovery and access through the use of metadata standards and provision of access to research data, datasets, and publications via institutional repositories. Metadata crosswalks, open archival information systems (OAIS), trusted-repositories, data seal of approval, persistent URL, linking data, objects, resources, and publications in institutional repositories and digital content management systems are common components in the library discipline. These components contribute to a library perspective on data access and discovery that can benefit the geosciences. The USGS Community for Data Integration (CDI) has developed the Science Support Framework (SSF) for data management and integration within its community of practice for contribution to improved understanding of the Earth's physical and biological systems. The USGS CDI SSF can be used as a reference model to map to Earth

  15. Geo-portal as a planning instrument: supporting decision making and fostering market potential of Energy efficiency in buildings (United States)

    Cuca, Branka; Brumana, Raffaella; Oreni, Daniela; Iannaccone, Giuliana; Sesana, Marta Maria


    Steady technological progress has led to a noticeable advancement in disciplines associated with Earth observation. This has enabled information transition regarding changing scenarios, both natural and urban, to occur in (almost) real time. In particular, the need for integration on a local scale with the wider territorial framework has occurred in analysis and monitoring of built environments over the last few decades. The progress of Geographic Information (GI) science has provided significant advancements when it comes to spatial analysis, while the almost free availability of the internet has ensured a fast and constant exchange of geo-information, even for everyday users' requirements. Due to its descriptive and semantic nature, geo-spatial information is capable of providing a complete overview of a certain phenomenon and of predicting the implications within the natural, social and economic context. However, in order to integrate geospatial data into decision making processes, it is necessary to provide a specific context, which is well supported by verified data. This paper investigates the potentials of geo-portals as planning instruments developed to share multi-temporal/multi-scale spatial data, responding to specific end-users' demands in the case of Energy efficiency in Buildings (EeB) across European countries. The case study regards the GeoCluster geo-portal and mapping tool (Project GE2O, FP7), built upon a GeoClustering methodology for mapping of indicators relevant for energy efficiency technologies in the construction sector.

  16. Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals (United States)

    Zamyadi, A.; Pouliot, J.; Bédard, Y.


    Accessing 3D geospatial models, eventually at no cost and for unrestricted use, is certainly an important issue as they become popular among participatory communities, consultants, and officials. Various geo-portals, mainly established for 2D resources, have tried to provide access to existing 3D resources such as digital elevation model, LIDAR or classic topographic data. Describing the content of data, metadata is a key component of data discovery in geo-portals. An inventory of seven online geo-portals and commercial catalogues shows that the metadata referring to 3D information is very different from one geo-portal to another as well as for similar 3D resources in the same geo-portal. The inventory considered 971 data resources affiliated with elevation. 51% of them were from three geo-portals running at Canadian federal and municipal levels whose metadata resources did not consider 3D model by any definition. Regarding the remaining 49% which refer to 3D models, different definition of terms and metadata were found, resulting in confusion and misinterpretation. The overall assessment of these geo-portals clearly shows that the provided metadata do not integrate specific and common information about 3D geospatial models. Accordingly, the main objective of this research is to improve 3D geospatial model discovery in geo-portals by adding a specific metadata-set. Based on the knowledge and current practices on 3D modeling, and 3D data acquisition and management, a set of metadata is proposed to increase its suitability for 3D geospatial models. This metadata-set enables the definition of genuine classes, fields, and code-lists for a 3D metadata profile. The main structure of the proposal contains 21 metadata classes. These classes are classified in three packages as General and Complementary on contextual and structural information, and Availability on the transition from storage to delivery format. The proposed metadata set is compared with Canadian Geospatial

  17. File Specification for GEOS-5 FP-IT (Forward Processing for Instrument Teams) (United States)

    Lucchesi, R.


    The GEOS-5 FP-IT Atmospheric Data Assimilation System (GEOS-5 ADAS) uses an analysis developed jointly with NOAA's National Centers for Environmental Prediction (NCEP), which allows the Global Modeling and Assimilation Office (GMAO) to take advantage of the developments at NCEP and the Joint Center for Satellite Data Assimilation (JCSDA). The GEOS-5 AGCM uses the finite-volume dynamics (Lin, 2004) integrated with various physics packages (e.g, Bacmeister et al., 2006), under the Earth System Modeling Framework (ESMF) including the Catchment Land Surface Model (CLSM) (e.g., Koster et al., 2000). The GSI analysis is a three-dimensional variational (3DVar) analysis applied in grid-point space to facilitate the implementation of anisotropic, inhomogeneous covariances (e.g., Wu et al., 2002; Derber et al., 2003). The GSI implementation for GEOS-5 FP-IT incorporates a set of recursive filters that produce approximately Gaussian smoothing kernels and isotropic correlation functions. The GEOS-5 ADAS is documented in Rienecker et al. (2008). More recent updates to the model are presented in Molod et al. (2011). The GEOS-5 system actively assimilates roughly 2 × 10(exp 6) observations for each analysis, including about 7.5 × 10(exp 5) AIRS radiance data. The input stream is roughly twice this volume, but because of the large volume, the data are thinned commensurate with the analysis grid to reduce the computational burden. Data are also rejected from the analysis through quality control procedures designed to detect, for example, the presence of cloud. To minimize the spurious periodic perturbations of the analysis, GEOS-5 FP-IT uses the Incremental Analysis Update (IAU) technique developed by Bloom et al. (1996). More details of this procedure are given in Appendix A. The analysis is performed at a horizontal resolution of 0.625-degree longitude by 0.5-degree latitude and at 72 levels, extending to 0.01 hPa. All products are generated at the native resolution of the

  18. Technology-Supported Performance Assessments for Middle School Geoscience (United States)

    Zalles, D. R.; Quellmalz, E.; Rosenquist, A.; Kreikemeier, P.


    Under funding from the World Bank, the U.S. Department of Education, the National Science Foundation, and the Federal Government's Global Learning and Observations to Benefit the Environment Program (GLOBE), SRI International has developed and piloted web-accessible performance assessments that measure K-12 students' abilities to use learning technologies to reason with scientific information and communicate evidence-based conclusions to scientific problems. This presentation will describe the assessments that pertain to geoscience at the middle school level. They are the GLOBE Assessments and EPA Phoenix, an instantiation of SRI's model of assessment design known as Integrative Performance Assessments in Technology (IPAT). All are publicly-available on the web. GLOBE engages students in scientific data collection and observation about the environment. SRI's classroom assessments for GLOBE provide sample student assessment tools and frameworks that allow teachers and students to assess how well students can use the data in scientific inquiry projects. Teachers can use classroom assessment tools on the site to develop integrated investigations for assessing GLOBE within their particular science curricula. Rubrics are provided for measuring students' GLOBE-related skills, and alignments are made to state, national, and international science standards. Sample investigations are provided about atmosphere, hydrology, landcover, soils, earth systems, and visualizations. The IPAT assessments present students with engaging problems rooted in science or social science content, plus sets of tasks and questions that require them to gather relevant information on the web, use reasoning strategies to analyze and interpret the information, use spreadsheets, word processors, and other productivity tools, and communicate evidence-based findings and recommendations. In the process of gathering information and drawing conclusions, students are assessed on how well they can operate

  19. Working Towards New Transformative Geoscience Analytics Enabled by Petascale Computing (United States)

    Woodcock, R.; Wyborn, L.


    resolutions with integration and validation across data type boundaries. Increased capacity of storage and compute will mean that uncertainty and reliability of individual observations will consistently be taken into account and propagated throughout the processing chain. If these data access difficulties can be overcome, the increased compute capacity will also mean that larger scale, more complex models can be run at higher resolution and instead of single pass modelling runs. Ensembles of models will be able to be run to simultaneously test multiple hypotheses. Petascale computing and high performance data offer more than "bigger, faster": it is an opportunity for a transformative change in the way in which geoscience research is routinely conducted.

  20. Geoscience meets the four horsemen?: Tracking the rise of neocatastrophism (United States)

    Marriner, Nick; Morhange, Christophe; Skrimshire, Stefan


    Although it is acknowledged that there has been an exponential growth in neocatastrophist geoscience inquiry, the extent, chronology and origin of this mode have not been precisely scrutinized. In this study, we use the bibliographic research tool Scopus to explore 'catastrophic' words replete in the earth and planetary science literature between 1950 and 2009, assessing when, where and why catastrophism has gained new currency amongst the geoscience community. First, we elucidate an exponential rise in neocatastrophist research from the 1980s onwards. We then argue that the neocatastrophist mode came to prominence in North America during the 1960s and 1970s before being more widely espoused in Europe, essentially after 1980. We compare these trends with the EM-DAT disaster database, a worldwide catalogue that compiles more than 11,000 natural disasters stretching back to 1900. The findings imply a clear link between anthropogenically forced global change and an increase in disaster research (r 2 = 0.73). Finally, we attempt to explain the rise of neocatastrophism by highlighting seven non-exhaustive factors: (1) the rise of applied geoscience; (2) inherited geological epistemology; (3) disciplinary interaction and the diffusion of ideas from the planetary to earth sciences; (4) the advent of radiometric dating techniques; (5) the communications revolution; (6) webometry and the quest for high-impact geoscience; and (7) popular cultural frameworks.

  1. Geoscience Videos and Their Role in Supporting Student Learning (United States)

    Wiggen, Jennifer; McDonnell, David


    A series of short (5 to 7 minutes long) geoscience videos were created to support student learning in a flipped class setting for an introductory geology class at North Carolina State University. Videos were made using a stylus, tablet, microphone, and video editing software. Essentially, we narrate a slide, sketch a diagram, or explain a figure…

  2. Information extraction and knowledge graph construction from geoscience literature (United States)

    Wang, Chengbin; Ma, Xiaogang; Chen, Jianguo; Chen, Jingwen


    Geoscience literature published online is an important part of open data, and brings both challenges and opportunities for data analysis. Compared with studies of numerical geoscience data, there are limited works on information extraction and knowledge discovery from textual geoscience data. This paper presents a workflow and a few empirical case studies for that topic, with a focus on documents written in Chinese. First, we set up a hybrid corpus combining the generic and geology terms from geology dictionaries to train Chinese word segmentation rules of the Conditional Random Fields model. Second, we used the word segmentation rules to parse documents into individual words, and removed the stop-words from the segmentation results to get a corpus constituted of content-words. Third, we used a statistical method to analyze the semantic links between content-words, and we selected the chord and bigram graphs to visualize the content-words and their links as nodes and edges in a knowledge graph, respectively. The resulting graph presents a clear overview of key information in an unstructured document. This study proves the usefulness of the designed workflow, and shows the potential of leveraging natural language processing and knowledge graph technologies for geoscience.

  3. Undergraduate research projects help promote diversity in the geosciences (United States)

    Young, De'Etra; Trimboli, Shannon; Toomey, Rick S.; Byl, Thomas D.


    A workforce that draws from all segments of society and mirrors the ethnic, racial, and gender diversity of the United States population is important. The geosciences (geology, hydrology, geospatial sciences, environmental sciences) continue to lag far behind other science, technology, engineering and mathematical (STEM) disciplines in recruiting and retaining minorities (Valsco and Valsco, 2010). A report published by the National Science Foundation in 2015, “Women, Minorities, and Persons with Disabilities in Science and Engineering” states that from 2002 to 2012, less than 2% of the geoscience degrees were awarded to African-American students. Data also show that as of 2012, approximately 30% of African-American Ph.D. graduates obtained a bachelor’s degree from a Historic Black College or University (HBCU), indicating that HBCUs are a great source of diverse students for the geosciences. This paper reviews how an informal partnership between Tennessee State University (a HBCU), the U.S. Geological Survey, and Mammoth Cave National Park engaged students in scientific research and increased the number of students pursuing employment or graduate degrees in the geosciences.

  4. A Compilation and Review of over 500 Geoscience Misconceptions (United States)

    Francek, Mark


    This paper organizes and analyses over 500 geoscience misconceptions relating to earthquakes, earth structure, geologic resources, glaciers, historical geology, karst (limestone terrains), plate tectonics, rivers, rocks and minerals, soils, volcanoes, and weathering and erosion. Journal and reliable web resources were reviewed to discover (1) the…

  5. Undergraduate Research in Geoscience with Students from Two-year Colleges: SAGE 2YC Resources (United States)

    McDaris, J. R.; Hodder, J.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.


    Undergraduate research experiences are important for the development of expertise in geoscience disciplines. These experiences have been shown to help students learn content and skills, promote students' cognitive and affective development, and develop students' sense of self. Early exposure to research experiences has shown to be effective in the recruitment of students, improved retention and persistence in degree programs, motivation for students to learn and increase self-efficacy, improved attitudes and values about science, and overall increased student success. Just as departments at four-year institutions (4YCs) are increasingly integrating research into their introductory courses, two-year college (2YC) geoscience faculty have a great opportunity to ground their students in authentic research. The Undergraduate Research with Two-year College Students website developed by SAGE 2YC: Supporting and Advancing Geoscience Education at Two-year Colleges provides ideas and advice for 2YC and 4YC faculty who want to get more 2YC students involved in research. The continuum of possibilities for faculty to explore includes things that can be done at 2YCs (eg. doing research as part of a regular course, developing a course specifically around research on a particular topic, or independent study), done in collaboration with other local institutions (eg. using their facilities, conducting joint class research, or using research to support transfer programs), and by involving students in the kind of organized Undergraduate Research programs run by a number of institutions and organizations. The website includes profiles illustrating how 2YC geoscience faculty have tackled these various models of research and addressed potential challenges such as lack of time, space, and funding as part of supporting the wide diversity of students that attend 2YCs, most of whom have less experience than that of rising seniors who are the traditional REU participant. The website also

  6. Incorporating Geoscience, Field Data Collection Workflows into Software Developed for Mobile Devices (United States)

    Vieira, D. A.; Mookerjee, M.; Matsa, S.


    Modern geological sciences depend heavily on investigating the natural world in situ, i.e., within "the field," as well as managing data collections in the light of evolving advances in technology and cyberinfrastructure. To accelerate the rate of scientific discovery, we need to expedite data collection and management in such a way so as to not interfere with the typical geoscience, field workflow. To this end, we suggest replacing traditional analog methods of data collection, such as the standard field notebook and compass, with primary digital data collection applications. While some field data collecting apps exist for both the iOS and android operating systems, they do not communicate with each other in an organized data collection effort. We propose the development of a mobile app that coordinates the collection of GPS, photographic, and orientation data, along with field observations. Additionally, this application should be able to pair with other devices in order to incorporate other sensor data. In this way, the app can generate a single file that includes all field data elements and can be synced to the appropriate database with ease and efficiency. We present here a prototype application that attempts to illustrate how digital collection can be integrated into a "typical" geoscience, field workflow. The purpose of our app is to get field scientists to think about specific requirements for the development of a unified field data collection application. One fundamental step in the development of such an app is the community-based, decision-making process of adopting certain data/metadata standards and conventions. In August of 2014, on a four-day field trip to Yosemite National Park and Owens Valley, we engaged a group of field-based geologists and computer/cognitive scientists to start building a community consensus on these cyberinfrastructure-related issues. Discussing the unique problems of field data recording, conventions, storage, representation

  7. Teaching Service Learning in the Geosciences: An On the Cutting Edge Workshop Report (United States)

    Bruckner, M. Z.; Laine, E. P.; Mogk, D. W.; O'Connell, S.; Kirk, K. B.


    Service learning is an instructional method that combines community service and academic instruction within the context of an established academic course. It is a particularly effective approach that uses active and experiential learning to develop the academic skills required of a course of study and to simultaneously address authentic community needs. Service learning projects can energize and motivate students by engaging a sense of civic responsibility by working in concert with community partners. The geosciences provide abundant opportunities to develop service learning projects on topics related to natural hazards, resources, land use, water quality, community planning, public policy, and education (K-12 and public outreach). To explore the opportunities of teaching service learning in the geosciences, the On the Cutting Edge program convened an online workshop in February 2010. The goals of the workshop were to: 1) introduce the principles and practices of effective service learning instructional activities; 2) provide examples of successful service learning projects and practical advice about "what works;" 3) provide participants with the opportunity to design, develop, and refine their own service learning courses or projects; 4) develop collections of supporting resources related to the pedagogy of service learning; and 5) support a community of scholars interested in continued work on service learning in the geoscience curriculum. The workshop consisted of a series of web-based synchronous and asynchronous sessions, including presentations from experienced practitioners of service learning, panel discussions, threaded discussions, and editable web pages used to develop new material for the website. Time was also provided for small group and individual work and for participants to peer-review each others' service learning projects and to revise their own activities based on reviewer comments. Insights from the workshop were integrated into new web pages

  8. GEOS-5 Seasonal Forecast System: ENSO Prediction Skill and Bias (United States)

    Borovikov, Anna; Kovach, Robin; Marshak, Jelena


    The GEOS-5 AOGCM known as S2S-1.0 has been in service from June 2012 through January 2018 (Borovikov et al. 2017). The atmospheric component of S2S-1.0 is Fortuna-2.5, the same that was used for the Modern-Era Retrospective Analysis for Research and Applications (MERRA), but with adjusted parameterization of moist processes and turbulence. The ocean component is the Modular Ocean Model version 4 (MOM4). The sea ice component is the Community Ice CodE, version 4 (CICE). The land surface model is a catchment-based hydrological model coupled to the multi-layer snow model. The AGCM uses a Cartesian grid with a 1 deg × 1.25 deg horizontal resolution and 72 hybrid vertical levels with the upper most level at 0.01 hPa. OGCM nominal resolution of the tripolar grid is 1/2 deg, with a meridional equatorial refinement to 1/4 deg. In the coupled model initialization, selected atmospheric variables are constrained with MERRA. The Goddard Earth Observing System integrated Ocean Data Assimilation System (GEOS-iODAS) is used for both ocean state and sea ice initialization. SST, T and S profiles and sea ice concentration were assimilated.

  9. Building Strong Geoscience Departments Through the Visiting Workshop Program (United States)

    Ormand, C. J.; Manduca, C. A.; Macdonald, H.; Bralower, T. J.; Clemens-Knott, D.; Doser, D. I.; Feiss, P. G.; Rhodes, D. D.; Richardson, R. M.; Savina, M. E.


    The Building Strong Geoscience Departments project focuses on helping geoscience departments adapt and prosper in a changing and challenging environment. From 2005-2009, the project offered workshop programs on topics such as student recruitment, program assessment, preparing students for the workforce, and strengthening geoscience programs. Participants shared their departments' challenges and successes. Building on best practices and most promising strategies from these workshops and on workshop leaders' experiences, from 2009-2011 the project ran a visiting workshop program, bringing workshops to 18 individual departments. Two major strengths of the visiting workshop format are that it engages the entire department in the program, fostering a sense of shared ownership and vision, and that it focuses on each department's unique situation. Departments applied to have a visiting workshop, and the process was highly competitive. Selected departments chose from a list of topics developed through the prior workshops: curriculum and program design, program elements beyond the curriculum, recruiting students, preparing students for the workforce, and program assessment. Two of our workshop leaders worked with each department to customize and deliver the 1-2 day programs on campus. Each workshop incorporated exercises to facilitate active departmental discussions, presentations incorporating concrete examples drawn from the leaders' experience and from the collective experiences of the geoscience community, and action planning to scaffold implementation. All workshops also incorporated information on building departmental consensus and assessing departmental efforts. The Building Strong Geoscience Departments website complements the workshops with extensive examples from the geoscience community. Of the 201 participants in the visiting workshop program, 140 completed an end of workshop evaluation survey with an overall satisfaction rating of 8.8 out of a possible 10

  10. The Quantitative Preparation of Future Geoscience Graduate Students (United States)

    Manduca, C. A.; Hancock, G. S.


    Modern geoscience is a highly quantitative science. In February, a small group of faculty and graduate students from across the country met to discuss the quantitative preparation of geoscience majors for graduate school. The group included ten faculty supervising graduate students in quantitative areas spanning the earth, atmosphere, and ocean sciences; five current graduate students in these areas; and five faculty teaching undergraduate students in the spectrum of institutions preparing students for graduate work. Discussion focused in four key ares: Are incoming graduate students adequately prepared for the quantitative aspects of graduate geoscience programs? What are the essential quantitative skills are that are required for success in graduate school? What are perceived as the important courses to prepare students for the quantitative aspects of graduate school? What programs/resources would be valuable in helping faculty/departments improve the quantitative preparation of students? The participants concluded that strengthening the quantitative preparation of undergraduate geoscience majors would increase their opportunities in graduate school. While specifics differed amongst disciplines, a special importance was placed on developing the ability to use quantitative skills to solve geoscience problems. This requires the ability to pose problems so they can be addressed quantitatively, understand the relationship between quantitative concepts and physical representations, visualize mathematics, test the reasonableness of quantitative results, creatively move forward from existing models/techniques/approaches, and move between quantitative and verbal descriptions. A list of important quantitative competencies desirable in incoming graduate students includes mechanical skills in basic mathematics, functions, multi-variate analysis, statistics and calculus, as well as skills in logical analysis and the ability to learn independently in quantitative ways

  11. Ethical dilemmas in geosciences. We can ask, but, can we ans? (United States)

    Marone, Eduardo


    Philosophy tries to provide rules and principles enabling us to solve the ethical dilemmas we face in a wide sense, and, also, in particular fields as (geo)sciences. One alleged goal of ethics is to figure out how to solve ethical dilemmas. But, is it possible to solve such dilemmas? And what can we do if we cannot? An ethical dilemma is a problem that offers an alternative between two or more solutions, none of which proves to be fully acceptable in practice. Dilemmas arise because of conflict between the rightness or wrongness of the actions/means and the goodness or badness of the consequences/ends. They involve an apparent conflict between moral imperatives, in which to follow one would result in violating another. Can a geoscientist answer those dilemmas that appear in the exercise of his/her profession? Always? In some cases? Not at all? What if we cannot? Have we? As geoscientists, we hold the knowledge (our scientific principles), not perfect, thus fallible, and always subject to changes and improvements. If we have to do what is right, based on our principles, despite potentially bad consequences, then we have to be sure that the principle is an absolute true. But, are our scientific principles such a true? Deontological theories may deny that consequences are of any concern, provided the intention was a good one. However, if our principles are not perfect (and we know that): can we answer in one or other direction to geoethical dilemmas in good faith? Although, if a geoscientist action does usually go for the best consequences, sometimes bad consequences may be accepted. But, who have to decide to accept the bad consequences? If ethical dilemmas with a conflict between means and ends cannot simply be solved by a geoscientist, where is our duty? If there is no real solution to the conflict of the right with the good, in the sense that a solution usually seems to be expected, what has to be our professional attitude? When we have duties of omission and when

  12. GeoFORCE Alaska: Four-Year Field Program Brings Rural Alaskan High School Students into the STEM Pipeline (United States)

    Fowell, S. J.; Rittgers, A.; Stephens, L.; Hutchinson, S.; Peters, H.; Snow, E.; Wartes, D.


    GeoFORCE Alaska is a four-year, field-based, summer geoscience program designed to raise graduation rates in rural Alaskan high schools, encourage participants to pursue college degrees, and increase the diversity of Alaska's technical workforce. Residents of predominantly Alaska Native villages holding degrees in science, technology, engineering, or math (STEM) bring valuable perspectives to decisions regarding management of cultural and natural resources. However, between 2010 and 2015 the average dropout rate for students in grades 7-12 was 8.5% per year in the North Slope School District and 7% per year in the Northwest Arctic School District. 2015 graduation rates were 70% and 75%, respectively. Statewide statistics highlight the challenge for Alaska Native students. During the 2014-2015 school year alone 37.6% of Alaska Native students dropped out of Alaskan public schools. At the college level, Alaska Native students are underrepresented in University of Alaska Fairbanks (UAF) science departments. Launched in 2012 by UAF in partnership with the longstanding University of Texas at Austin program, GeoFORCE applies the cohort model, leading the same group of high school students on geological field academies during four consecutive summers. Through a combination of active learning, teamwork, and hands-on projects at spectacular geological locations, students gain academic skills and confidence that facilitate high school and college success. To date, GeoFORCE Alaska has recruited two cohorts. 78% of these students identify as Alaska Native, reflecting community demographics. The inaugural cohort of 18 students from the North Slope Borough completed the Fourth-Year Academy in summer 2015. 94% of these students graduated from high school, at least 72% plan to attend college, and 33% will major in geoscience. A second cohort of 34 rising 9th and 10th graders entered the program in 2016. At the request of corporate sponsors, this cohort was recruited from both the

  13. GEOS Atmospheric Model: Challenges at Exascale (United States)

    Putman, William M.; Suarez, Max J.


    The Goddard Earth Observing System (GEOS) model at NASA's Global Modeling and Assimilation Office (GMAO) is used to simulate the multi-scale variability of the Earth's weather and climate, and is used primarily to assimilate conventional and satellite-based observations for weather forecasting and reanalysis. In addition, assimilations coupled to an ocean model are used for longer-term forecasting (e.g., El Nino) on seasonal to interannual times-scales. The GMAO's research activities, including system development, focus on numerous time and space scales, as detailed on the GMAO website, where they are tabbed under five major themes: Weather Analysis and Prediction; Seasonal-Decadal Analysis and Prediction; Reanalysis; Global Mesoscale Modeling, and Observing System Science. A brief description of the GEOS systems can also be found at the GMAO website. GEOS executes as a collection of earth system components connected through the Earth System Modeling Framework (ESMF). The ESMF layer is supplemented with the MAPL (Modeling, Analysis, and Prediction Layer) software toolkit developed at the GMAO, which facilitates the organization of the computational components into a hierarchical architecture. GEOS systems run in parallel using a horizontal decomposition of the Earth's sphere into processing elements (PEs). Communication between PEs is primarily through a message passing framework, using the message passing interface (MPI), and through explicit use of node-level shared memory access via the SHMEM (Symmetric Hierarchical Memory access) protocol. Production GEOS weather prediction systems currently run at 12.5-kilometer horizontal resolution with 72 vertical levels decomposed into PEs associated with 5,400 MPI processes. Research GEOS systems run at resolutions as fine as 1.5 kilometers globally using as many as 30,000 MPI processes. Looking forward, these systems can be expected to see a 2 times increase in horizontal resolution every two to three years, as well as

  14. Teaching Introductory Geoscience: A Cutting Edge Workshop Report (United States)

    Manduca, C.; Tewksbury, B.; Egger, A.; MacDonald, H.; Kirk, K.


    Introductory undergraduate courses play a pivotal role in the geosciences. They serve as recruiting grounds for majors and future professionals, provide relevant experiences in geoscience for pre-service teachers, and offer opportunities to influence future policy makers, business people, professionals, and citizens. An introductory course is also typically the only course in geoscience that most of our students will ever take. Because the role of introductory courses is pivotal in geoscience education, a workshop on Teaching Introductory Courses in the 21st Century was held in July 2008 as part of the On the Cutting Edge faculty development program. A website was also developed in conjunction with the workshop. One of the central themes of the workshop was the importance of considering the long-term impact a course should have on students. Ideally, courses can be designed with this impact in mind. Approaches include using the local geology to focus the course and illustrate concepts; designing a course for particular audience (such as Geology for Engineers); creating course features that help students understand and interpret geoscience in the news; and developing capstone projects to teach critical thinking and problem solving skills in a geologic context. Workshop participants also explored strategies for designing engaging activities including exploring with Google Earth, using real-world scenarios, connecting with popular media, or making use of campus features on local field trips. In addition, introductory courses can emphasize broad skills such as teaching the process of science, using quantitative reasoning and developing communication skills. Materials from the workshop as well as descriptions of more than 150 introductory courses and 350 introductory-level activities are available on the website:

  15. Automatic User Interface Generation for Visualizing Big Geoscience Data (United States)

    Yu, H.; Wu, J.; Zhou, Y.; Tang, Z.; Kuo, K. S.


    Along with advanced computing and observation technologies, geoscience and its related fields have been generating a large amount of data at an unprecedented growth rate. Visualization becomes an increasingly attractive and feasible means for researchers to effectively and efficiently access and explore data to gain new understandings and discoveries. However, visualization has been challenging due to a lack of effective data models and visual representations to tackle the heterogeneity of geoscience data. We propose a new geoscience data visualization framework by leveraging the interface automata theory to automatically generate user interface (UI). Our study has the following three main contributions. First, geoscience data has its unique hierarchy data structure and complex formats, and therefore it is relatively easy for users to get lost or confused during their exploration of the data. By applying interface automata model to the UI design, users can be clearly guided to find the exact visualization and analysis that they want. In addition, from a development perspective, interface automaton is also easier to understand than conditional statements, which can simplify the development process. Second, it is common that geoscience data has discontinuity in its hierarchy structure. The application of interface automata can prevent users from suffering automation surprises, and enhance user experience. Third, for supporting a variety of different data visualization and analysis, our design with interface automata could also make applications become extendable in that a new visualization function or a new data group could be easily added to an existing application, which reduces the overhead of maintenance significantly. We demonstrate the effectiveness of our framework using real-world applications.

  16. Analyzing Forest Inventory Data from Geo-Located Photographs (United States)

    Toivanen, Timo; Tergujeff, Renne; Andersson, Kaj; Molinier, Matthieu; Häme, Tuomas


    Forests are widely monitored using a variety of remote sensing data and techniques. Remote sensing offers benefits compared to traditional in-situ forest inventories made by experts. One of the main benefits is that the number of ground reference plots can be significantly reduced. Remote sensing of forests can provide reduced costs and time requirement compared to full forest inventories. The availability of ground reference data has been a bottleneck in remote sensing analysis over wide forested areas, as the acquisition of this data is an expensive and slow process. In this paper we present a tool for estimating forest inventory data from geo-located photographs. The tool can be used to estimate in-situ forest inventory data including estimated biomass, tree species, tree height and diameter. The collected in-situ forest measurements can be utilized as a ground reference material for spaceborne or airborne remote sensing data analysis. The GPS based location information with measured forest data makes it possible to introduce measurements easily as in-situ reference data. The central projection geometry of digital photographs allows the use of the relascope principle [1] to measure the basal area of stems per area unit, a variable very closely associated with tree biomass. Relascope is applied all over the world for forest inventory. Experiments with independent ground reference data have shown that in-situ data analysed from photographs can be utilised as reference data for satellite image analysis. The concept was validated by comparing mobile measurements with 54 independent ground reference plots from the Hyytiälä forest research station in Finland [2]. Citizen scientists could provide the manpower for analysing photographs from forests on a global level and support researchers working on tasks related to forests. This low-cost solution can also increase the coverage of forest management plans, particularly in regions where possibilities to invest on

  17. Ontological Encoding of GeoSciML and INSPIRE geological standard vocabularies and schemas: application to geological mapping (United States)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario; Fubelli, Giandomenico; Giardino, Marco


    Encoding of geologic knowledge in formal languages is an ambitious task, aiming at the interoperability and organic representation of geological data, and semantic characterization of geologic maps. Initiatives such as GeoScience Markup Language (last version is GeoSciML 4, 2015[1]) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013[2]), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG[3]) have been promoting information exchange of the geologic knowledge. There have also been limited attempts to encode the knowledge in a machine-readable format, especially in the lithology domain (see e.g. the CGI_Lithology ontology[4]), but a comprehensive ontological model that connect the several knowledge sources is still lacking. This presentation concerns the "OntoGeonous" initiative, which aims at encoding the geologic knowledge, as expressed through the standard vocabularies, schemas and data models mentioned above, through a number of interlinked computational ontologies, based on the languages of the Semantic Web and the paradigm of Linked Open Data. The initiative proceeds in parallel with a concrete case study, concerning the setting up of a synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap" (developed by the CNR Institute of Geosciences and Earth Resources, CNR IGG, Torino), where the description and classification of GeologicUnits has been supported by the modeling and implementation of the ontologies. We have devised a tripartite ontological model called OntoGeonous that consists of: 1) an ontology of the geologic features (in particular, GeologicUnit, GeomorphologicFeature, and GeologicStructure[5], modeled from the definitions and UML schemata of CGI vocabularies[6], GeoScienceML and INSPIRE, and aligned with the Planetary realm of NASA SWEET ontology[7]), 2) an ontology of the Earth materials (as defined by the

  18. Designing and implementing a Quality Broker: the GeoViQua experience (United States)

    Papeschi, Fabrizio; Bigagli, Lorenzo; Masò, Joan; Nativi, Stefano


    GeoViQua (QUAlity aware VIsualisation for the Global Earth Observation System of Systems) is an FP7 project aiming at complementing the Global Earth Observation System of Systems (GEOSS) with rigorous data quality specifications and quality-aware capabilities, in order to improve reliability in scientific studies and policy decision-making. GeoViQua main scientific and technical objective is to enhance the GEOSS Common Infrastructure (GCI) providing the user community with innovative quality-aware search and visualization tools, which will be integrated in the GEOPortal, as well as made available to other end-user interfaces. To this end, GeoViQua will promote the extension of the current standard metadata for geographic information with accurate and expressive quality indicators. Employing and extending several ISO standards such as 19115, 19157 and 19139, a common set of data quality indicators has been selected to be used within the project. The resulting work, in the form of a data model, is expressed in XML Schema Language and encoded in XML. Quality information can be stated both by data producers and by data users, actually resulting in two conceptually distinct data models, the Producer Quality model and the User Quality model (or User Feedback model). GeoViQua architecture is built on the brokering approach successfully experimented within the EuroGEOSS project and realized by the GEO DAB (Discovery and Access Broker) which is part of the GCI. The GEO DAB allows for harmonization and distribution in a transparent way for both users and data providers. This way, GeoViQua can effectively complement and extend the GEO DAB obtaining a Quality augmentation Broker (DAB-Q) which plays a central role in ensuring the consistency of the Producer and User quality models. The GeoViQua architecture also includes a Feedback Catalog, a particular service brokered by the DAB-Q which is dedicated to the storage and discovery of user feedbacks. A very important issue

  19. GeoBoost: accelerating research involving the geospatial metadata of virus GenBank records. (United States)

    Tahsin, Tasnia; Weissenbacher, Davy; O'Connor, Karen; Magge, Arjun; Scotch, Matthew; Gonzalez-Hernandez, Graciela


    GeoBoost is a command-line software package developed to address sparse or incomplete metadata in GenBank sequence records that relate to the location of the infected host (LOIH) of viruses. Given a set of GenBank accession numbers corresponding to virus GenBank records, GeoBoost extracts, integrates and normalizes geographic information reflecting the LOIH of the viruses using integrated information from GenBank metadata and related full-text publications. In addition, to facilitate probabilistic geospatial modeling, GeoBoost assigns probability scores for each possible LOIH. Binaries and resources required for running GeoBoost are packed into a single zipped file and freely available for download at A video tutorial is included to help users quickly and easily install and run the software. The software is implemented in Java 1.8, and supported on MS Windows and Linux platforms. Supplementary data are available at Bioinformatics online.

  20. Piloting a Geoscience Literacy Exam for Assessing Students' Understanding of Earth, Climate, Atmospheric and Ocean Science Concepts (United States)

    Steer, D. N.; Iverson, E. A.; Manduca, C. A.


    This research seeks to develop valid and reliable questions that faculty can use to assess geoscience literacy across the curriculum. We are particularly interested on effects of curricula developed to teach Earth, Climate, Atmospheric, and Ocean Science concepts in the context of societal issues across the disciplines. This effort is part of the InTeGrate project designed to create a population of college graduates who are poised to use geoscience knowledge in developing solutions to current and future environmental and resource challenges. Details concerning the project are found at The Geoscience Literacy Exam (GLE) under development presently includes 90 questions. Each big idea from each literacy document can be probed using one or more of three independent questions: 1) a single answer, multiple choice question aimed at basic understanding or application of key concepts, 2) a multiple correct answer, multiple choice question targeting the analyzing to analysis levels and 3) a short essay question that tests analysis or evaluation cognitive levels. We anticipate multiple-choice scores and the detail and sophistication of essay responses will increase as students engage with the curriculum. As part of the field testing of InTeGrate curricula, faculty collected student responses from classes that involved over 700 students. These responses included eight pre- and post-test multiple-choice questions that covered various concepts across the four literacies. Discrimination indices calculated from the data suggest that the eight tested questions provide a valid measure of literacy within the scope of the concepts covered. Student normalized gains across an academic term with limited InTeGrate exposure (typically two or fewer weeks of InTeGrate curriculum out of 14 weeks) were found to average 16% gain. A small set of control data (250 students in classes from one institution where no InTeGrate curricula were used) was

  1. GeoSEA: Geodetic Earthquake Observatory on the Seafloor (United States)

    Kopp, Heidrun; Lange, Dietrich; Flueh, Ernst R.; Petersen, Florian; Behrmann, Jan-Hinrich; Devey, Colin


    Space geodetic observations of crustal deformation have contributed greatly to our understanding of plate tectonic processes in general, and plate subduction in particular. Measurements of interseismic strain have documented the active accumulation of strain, and subsequent strain release during earthquakes. However, techniques such as GPS cannot be applied below the water surface because the electromagnetic energy is strongly attenuated in the water column. Evidence suggests that much of the elastic strain build up and release (and particularly that responsible for both tsunami generation and giant earthquakes) occurs offshore. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. Here we report on first results of sea trials of a newly implemented seafloor geodesy array. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. Seafloor displacement occurs in the horizontal (x,y) and vertical direction (z). The vertical displacement is measured by monitoring pressure variations at the seafloor. Horizontal seafloor displacement can be measured either using an acoustic/GPS combination to provide absolute positioning (requiring a suitably equipped vessel to perform repeated cruises to provide the GPS fixes) or by long-term acoustic telemetry between different beacons fixed on the seafloor to determine relative distances by using the travel time observations to each other, which is the technique tested during our short sea trials. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distances. Vertical motion is obtained from pressure gauges. Integrated inclinometers

  2. US Geoscience Information Network, Web Services for Geoscience Information Discovery and Access (United States)

    Richard, S.; Allison, L.; Clark, R.; Coleman, C.; Chen, G.


    The US Geoscience information network has developed metadata profiles for interoperable catalog services based on ISO19139 and the OGC CSW 2.0.2. Currently data services are being deployed for the US Dept. of Energy-funded National Geothermal Data System. These services utilize OGC Web Map Services, Web Feature Services, and THREDDS-served NetCDF for gridded datasets. Services and underlying datasets (along with a wide variety of other information and non information resources are registered in the catalog system. Metadata for registration is produced by various workflows, including harvest from OGC capabilities documents, Drupal-based web applications, transformation from tabular compilations. Catalog search is implemented using the ESRI Geoportal open-source server. We are pursuing various client applications to demonstrated discovery and utilization of the data services. Currently operational applications allow catalog search and data acquisition from map services in an ESRI ArcMap extension, a catalog browse and search application built on openlayers and Django. We are developing use cases and requirements for other applications to utilize geothermal data services for resource exploration and evaluation.

  3. PROGRESS (PROmoting Geoscience Research Education and SuccesS): a novel mentoring program for retaining undergraduate women in the geosciences (United States)

    Clinton, Sandra; Adams, Amanda; Barnes, Rebecca; Bloodhart, Brittany; Bowker, Cheryl; Burt, Melissa; Godfrey, Elaine; Henderson, Heather; Hernandez, Paul; Pollack, Ilana; Sample McMeeking, Laura Beth; Sayers, Jennifer; Fischer, Emily


    Women still remain underrepresented in many areas of the geosciences, and this underrepresentation often begins early in their university career. In 2015, an interdisciplinary team including expertise in the geosciences (multiple sub-disciplines), psychology, education and STEM persistence began a project focused on understanding whether mentoring can increase the interest, persistence, and achievement of undergraduate women in geoscience fields. The developed program (PROGRESS) focuses on mentoring undergraduate female students, starting in their 1st and 2nd year, from two geographically disparate areas of the United States: the Carolinas in the southeastern part of the United States and the Front Range of the Rocky Mountains in the western part of the United States. The two regions were chosen due to their different student demographics, as well as the differences in the number of working female geoscientists in the region. The mentoring program includes a weekend workshop, access to professional women across geoscience fields, and both in-person and virtual peer networks. Four cohorts of students were recruited and participated in our professional development workshops (88 participants in Fall 2015 and 94 participants in Fall 2016). Components of the workshops included perceptions of the geosciences, women in STEM misconceptions, identifying personal strengths, coping strategies, and skills on building their own personal network. The web-platform (, designed to enable peer-mentoring and provide resources, was launched in the fall of 2015 and is used by both cohorts in conjunction with social media platforms. We will present an overview of the major components of the program, discuss lessons learned during 2015 that were applied to 2016, and share preliminary analyses of surveys and interviews with study participants from the first two years of a five-year longitudinal study that follows PROGRESS participants and a control group.

  4. Comparative geoscience studies of the Madeira and Southern Nares Abyssal Plains: NEA/SWG preference location document

    International Nuclear Information System (INIS)

    Auffret, G.A.; Buckley, D.E.; Schuttenhelm, R.T.E.; Searle, R.C.; Shephard, L.E.; Cranston, R.E.


    This document summarizes the status of geoscience investigations in the two primary North Atlantic study locations Great Meteor East (GME) in the Madeira Abyssal Plain, and the Southern Nares Abyssal Plain (SNAP), and assesses the characteristics of these locations relative to the guidelines considered desirable and necessary for a potential subseabed high-level waste repository. These characteristics will be continually reevaluated as additional data become available and as our understanding of deep-sea sediment processes within abyssal plain environments improves. Initially, a number of areas of minimum size were identified in the ocean basins that appeared to comply with most of the stability and barrier guidelines. However, detailed studies in both GME and SNAP demonstrate that as our level of knowledge improves, and the degree of resolution increases, the number of 100 km 2 areas complying with these guidelines becomes much more limited. This observation may be characteristic of abyssal plain and abyssal hill environments in both the North Atlantic and North Pacific basins. Marked differences in geoscience characteristics exist between the Great Meteor East and the Southern Nares Abyssal Plain study locations. The significance of these differences, as they impact the selection of a single preferred site for a potential subseabed repository, can only be determined by using an integrated systems risk assessment modeling approach. The known geoscience characteristics can, however, be used in conjunction with the site assessment guidelines to draw conclusions concerning the geoscience suitability of these two locations. These conclusions will be modified as specific types of data from future expeditions become available

  5. Moisture Forecast Bias Correction in GEOS DAS (United States)

    Dee, D.


    Data assimilation methods rely on numerous assumptions about the errors involved in measuring and forecasting atmospheric fields. One of the more disturbing of these is that short-term model forecasts are assumed to be unbiased. In case of atmospheric moisture, for example, observational evidence shows that the systematic component of errors in forecasts and analyses is often of the same order of magnitude as the random component. we have implemented a sequential algorithm for estimating forecast moisture bias from rawinsonde data in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The algorithm is designed to remove the systematic component of analysis errors and can be easily incorporated in an existing statistical data assimilation system. We will present results of initial experiments that show a significant reduction of bias in the GEOS DAS moisture analyses.

  6. Geo-neutrinos and earth's interior

    International Nuclear Information System (INIS)

    Fiorentini, Gianni; Lissia, Marcello; Mantovani, Fabio


    The deepest hole that has ever been dug is about 12 km deep. Geochemists analyze samples from the Earth's crust and from the top of the mantle. Seismology can reconstruct the density profile throughout all Earth, but not its composition. In this respect, our planet is mainly unexplored. Geo-neutrinos, the antineutrinos from the progenies of U, Th and 40 K decays in the Earth, bring to the surface information from the whole planet, concerning its content of natural radioactive elements. Their detection can shed light on the sources of the terrestrial heat flow, on the present composition, and on the origins of the Earth. Geo-neutrinos represent a new probe of our planet, which can be exploited as a consequence of two fundamental advances that occurred in the last few years: the development of extremely low background neutrino detectors and the progress on understanding neutrino propagation. We review the status and the prospects of the field

  7. Geo-communication and information design

    DEFF Research Database (Denmark)

    Brodersen, Lars


    of processes, procedures, factors, relations etc., all forming parts of a theory on geo-communication and information design. How do we decide whether to transmit content A or content B to another person? We make a decision. Making decisions does not normally give rise to difficulties, although a great deal......This article is an abstract of the book 'Geo-communication and information design'. The work involved in the book was inspired by the author's sense of wonder that there were apparently no existing theories, models etc. capable of identifying and choosing the content of information in systematic...... of debate might occur during the decision-making process. But if the question is extended to include a demand for systematics and consciousness (control) in the procedure adopted, the whole issue becomes more complex. How do we decide to transmit content A or content B to another person on a systematic...

  8. Photometrical research geostationary satellite "SBIRS GEO-2" (United States)

    Sukhov, P. P.; Epishev, V. P; Sukhov, K. P; Kudak, V. I.

    The multicolor photometrical observations GSS "Sbirs Geo-2" were carried in B,V,R filters out during the autumn equinox 2014 and spring 2015 y. Periodic appearance of many light curves and dips of mirror reflections suggests that the GSS was not in orbit in a static position, predetermined three-axis orientation and in dynamic motion. On the basis of computer modeling suggests the following dynamics GSS "Sbirs Geo-2" in orbit. Helically scanning the visible Earth's surface infrared satellite sensors come with period P1 = 15.66 sec. and the rocking of the GSS about the direction of the motion vector of the satellite in orbit with P2 = 62.64 sec., most likely with the purpose to survey the greatest possible portion of the earth's surface.

  9. Parametric instability in GEO 600 interferometer

    International Nuclear Information System (INIS)

    Gurkovsky, A.G.; Vyatchanin, S.P.


    We present analysis of undesirable effect of parametric instability in signal recycled GEO 600 interferometer. The basis for this effect is provided by excitation of additional (Stokes) optical mode, having frequency ω 1 , and mirror elastic mode, having frequency ω m , when the optical energy stored in the main FP cavity mode, having frequency ω 0 , exceeds a certain threshold and detuning Δ=ω 0 -ω 1 -ω m is small. We discuss the potential of observing parametric instability and its precursors in GEO 600 interferometer. This approach provides the best option to get familiar with this phenomenon, to develop experimental methods to depress it and to test the effectiveness of these methods in situ

  10. How Accessible Are the Geosciences? a Study of Professionally Held Perceptions and What They Mean for the Future of Geoscience Workforce Development (United States)

    Atchison, C.; Libarkin, J. C.


    Individuals with disabilities are not entering pathways leading to the geoscience workforce; the reasons for which continue to elude access-focused geoscience educators. While research has focused on barriers individuals face entering into STEM disciplines, very little research has considered the role that practitioner perceptions play in limiting access and accommodation to scientific disciplines. The authors argue that changing the perceptions within the geoscience community is an important step to removing barriers to entry into the myriad fields that make up the geosciences. This paper reports on an investigation of the perceptions that geoscientist practitioners hold about opportunities for engagement in geoscience careers for people with disabilities. These perspectives were collected through three separate iterations of surveys at three professional geoscience meetings in the US and Australia between 2011 and 2012. Respondents were asked to indicate the extent to which individuals with specific types of disabilities would be able to perform various geoscientific tasks. The information obtained from these surveys provides an initial step in engaging the larger geoscience community in a necessary discussion of minimizing the barriers of access to include students and professionals with disabilities. The results imply that a majority of the geoscience community believes that accessible opportunities exist for inclusion regardless of disability. This and other findings suggest that people with disabilities are viewed as viable professionals once in the geosciences, but the pathways into the discipline are prohibitive. Perceptions of how individuals gain entry into the field are at odds with perceptions of accessibility. This presentation will discuss the common geoscientist perspectives of access and inclusion in the geoscience discipline and how these results might impact the future of the geoscience workforce pathway for individuals with disabilities.

  11. Data Provenance Architecture for the Geosciences (United States)

    Murphy, F.; Irving, D. H.


    in the first place. Analytical value can be placed on data and this can govern the mode of custodianship. 3/ The broader scientific domain requires the development of new business models, whereby the need to re-examine how scientific credit and reputation are built and assessed, the current management of the scientific canon still refers back to the paper system and an appraisal of how we curate layered/rich/dynamic scientific content is timely. Using our review of the upstream Oil and Gas industry, we expand our ideas to the interplay between government, academic, private and public geo- and other datasets. Whilst there is no simple answer, much work has already been achieved around standardised data exchange formats, metadata and searchability via semantic frameworks, and cost/charge/licensing models. The key observation from the Oil industry is that it is the practicalities of data management issues that are driving change rather than any commercial/philosophical agenda - driven in particular by the custodians, managers and architects of the data rather than the users or the owners.

  12. The ConnectinGEO Observation Inventory (United States)

    Santoro, M.; Nativi, S.; Jirka, S.; McCallum, I.


    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations) is an EU-funded project under the H2020 Framework Programme. The primary goal of the project is to link existing coordinated Earth Observation networks with science and technology (S&T) communities, the industry sector and the GEOSS and Copernicus stakeholders. An expected outcome of the project is a prioritized list of critical gaps within GEOSS (Global Earth Observation System of Systems) in observations and models that translate observations into practice relevant knowledge. The project defines and utilizes a formalized methodology to create a set of observation requirements that will be related to information on available observations to identify key gaps. Gaps in the information provided by current observation systems as well as gaps in the systems themselves will be derived from five different threads. One of these threads consists in the analysis of the observations and measurements that are currently registered in GEO Discovery and Access Broker (DAB). To this aim, an Observation Inventory (OI) has been created and populated using the current metadata information harmonized by the DAB. This presentation describes the process defined to populate the ConnectinGEO OI and the resulting system architecture. In addition, it provides information on how to systematically access the OI for performing the gap analysis. Furthermore it demonstrates initial findings of the gap analysis, and shortcomings in the metadata that need attention. The research leading to these results benefited from funding by the European Union H2020 Framework Programme under grant agreement n. 641538 (ConnectinGEO).

  13. Prediction of HAMR Debris Population Distribution Released from GEO Space (United States)

    Rosengren, A.; Scheeres, D.


    The high area-to-mass ratio (HAMR) debris population is thought to have origins in the GEO region. Many of these objects are uncharacterized with apparent area-to-mass ratios of up to 30 meters squared per kilogram. The orbits of HAMR objects are highly perturbed due to the combined effect of solar radiation pressure (SRP), anomalies of the Earth gravitational field, and third-body gravitational interactions induced by the Sun and the Moon. A sound understanding of their nature, orbital evolution, and possible origin is critical for space situational awareness. The study of the orbital evolution of HAMR objects, taking into account both short-period and long-period terms, requires numerical integration of the precise set of differential equations, and the investigation of a broad range of possible parameter values. However, such computations become very costly when continuously applied over a period of several decades, as is necessary in the case of HAMR debris. It therefore seems reasonable to investigate the equations that govern the long-term behavior of orbits; such equations can be derived by the method of averaging. We have validated a semi-analytical averaged theory of HAMR object orbit evolution against high precision numerical integrations, and are able to capture the extreme dynamical behaviors reported for these objects. This new averaged model, explicitly given in terms of the eccentricity and angular momentum vectors, is several hundred times faster to numerically integrate than the non-averaged Newtonian counterpart, and provides a very accurate description of the long-term behavior. Using this model, it is possible to make predictions of how a population of HAMR objects, released into GEO orbit, will evolve over time. Our earlier analyses revealed that the population would have a range of orbits much different than circular GEO. Their orbits will suffer a sub-yearly oscillation in the eccentricity and inclination evolutions, and a longer-term drift

  14. Collaborative ontology development for the geosciences

    NARCIS (Netherlands)

    Kalbasi Khoramdashti, R.; Janowicz, K.; Reitsma, F.; Boerboom, L.G.J.; Alasheikh, A.


    Ontology-based information publishing, retrieval, reuse, and integration have become popular research topics to address the challenges involved in exchanging data between heterogeneous sources. However, in most cases ontologies are still developed in a centralized top-down manner by a few knowledge

  15. A New Sensor for Surface Process Quantification in the Geosciences - Image-Assisted Tacheometers (United States)

    Vicovac, Tanja; Reiterer, Alexander; Rieke-Zapp, Dirk


    The quantification of earth surface processes in the geosciences requires precise measurement tools. Typical applications for precise measurement systems involve deformation monitoring for geo-risk management, detection of erosion rates, etc. Often employed for such applications are laser scanners, photogrammetric sensors and image-assisted tacheometers. Image-assisted tacheometers offer the user (metrology expert) an image capturing system (CCD/CMOS camera) in addition to 3D point measurements. The images of the telescope's visual field are projected onto the camera's chip. The camera is capable of capturing panoramic image mosaics through camera rotation if the axes of the measurement system are driven by computer controlled motors. With appropriate calibration, these images are accurately geo-referenced and oriented since the horizontal and vertical angles of rotation are continuously measured and fed into the computer. The oriented images can then directly be used for direction measurements with no need for control points in object space or further photogrammetric orientation processes. In such a system, viewing angles must be addressed to chip pixels inside the optical field of view. Hence dedicated calibration methods have to be applied, an autofocus unit has to be added to the optical path, and special digital image processing procedures have to be used to detect the points of interest on the objects to be measured. We present such a new optical measurement system for measuring and describing 3D surfaces for geosciences. Besides the technique and methods some practical examples will be shown. The system was developed at the Vienna University of Technology (Institute of Geodesy and Geophysics) - two interdisciplinary research project, i-MeaS and SedyMONT, have been launched with the purpose of measuring and interpreting 3D surfaces and surface processes. For the in situ measurement of bed rock erosion the level of surveying accuracy required for recurring sub

  16. The 33rd IGC, Oslo, Norway 2008; Geoscience World Congress 2008 (United States)

    Solheim, A.; Bjoerlykke, A.


    The International Geological Congress (IGC) has been arranged every four years since 1878. During the previous Congress in Florence, Italy, 2004, the Nordic countries were awarded the organisation of the 33rd IGC, which will be held in Oslo, Norway, August 6-14, 2008. We expect between 6000 and 9000 participants to the Congress, which also includes workshops, short-courses, and business meetings, as well as more than 50 pre -and post Congress excursions. The Congress is organised under the umbrella of IUGS and the patronage of UNESCO. The Congress will run with 40 parallel sessions and cover the whole width of the geosciences. About 500 symposia will run in 40 parallel sessions. There will be a major poster session, as well as a large exhibition (Geoex