WorldWideScience

Sample records for geopressured fluid production

  1. Fluid sampling and chemical modeling of geopressured brines containing methane. Final report, March 1980-February 1981

    Energy Technology Data Exchange (ETDEWEB)

    Dudak, B.; Galbraith, R.; Hansen, L.; Sverjensky, D.; Weres, O.

    1982-07-01

    The development of a flowthrough sampler capable of obtaining fluid samples from geopressured wells at temperatures up to 400/sup 0/F and pressures up to 20,000 psi is described. The sampler has been designed, fabricated from MP35N alloy, laboratory tested, and used to obtain fluid samples from a geothermal well at The Geysers, California. However, it has not yet been used in a geopressured well. The design features, test results, and operation of this device are described. Alternative sampler designs are also discussed. Another activity was to review the chemistry and geochemistry of geopressured brines and reservoirs, and to evaluate the utility of available computer codes for modeling the chemistry of geopressured brines. The thermodynamic data bases for such codes are usually the limiting factor in their application to geopressured systems, but it was concluded that existing codes can be updated with reasonable effort and can usefully explain and predict the chemical characteristics of geopressured systems, given suitable input data.

  2. Environmental impact assessment Geopressure Subprogram

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    This environmental impact assessment (EIA) addresses the expected programmatic activities of the Geopressure Subprogram of the Division of Geothermal Energy. The goal of the Geopressure Subprogram is to stimulate development of geopressured resources as an economic, reliable, operationally safe, and environmentally acceptable energy source. The subprogram includes activities in the areas of engineering research and development; resource exploration, assessment, and development; resource utilization including pilot and demonstration facilities; and environmental research and control technology development. It should be recognized that most of the subprogram activities extend over several years and are in their early stages of implementation at this time. The zones of potential geopressure development are in the region located along the Texas and Louisiana Gulf Coasts extending up to 200 miles (300 km) inland. Geopressured zones are sedimentary basins where water is trapped at high pressures within or below thick, nearly impermeable shale sequences. The confined water supports most or all of the weight of the overburden. This inhibits sediment compaction and causes formation pore pressure to exceed hydrostatic pressure. in sedimentary basins that are underlain by thin oceanic crust, upward thermal conduction from the mantle heats geopressured fluids and sediments to abnormally high temperatures, often in excess of 260 C (500 F).

  3. Geothermal energy geopressure subprogram

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

  4. Geopressured-geothermal drilling and testing plan. General Crude Oil--Dept. of Energy Pleasant Bayou No. 1 well, Brazoria County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    As a result of geopressured resource assessment studies in the Gulf Coast region, the Brazoria fairway, located in Brazoria County, Texas was determined to be an optimum area for additional studies. A plan is presented for drilling, completion, and testing of one geopressured-geothermal well and two disposal wells in Brazoria County, Texas. The objectives of the well drilling and testing program are to determine the following parameters: reservoir permeability, porosity, thickness, rock material properties, depth, temperature, and pressure; reservoir fluid content, specific gravity, resistivity, viscosity, and hydrocarbons in solution; reservoir fluid production rates, pressure, temperature, production decline, and pressure decline; geopressured well and surface equipment design requirements for high-volume production and possible sand production; specific equipment design for surface operations, hydrocarbons distribution, and effluent disposal; and possibilities of reservoir compaction and/or surface subsidence. (JGB)

  5. Environmental assessment of the projected uses for geopressured waters

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.S.; Manning, J.A.; Meriwether, J.

    1977-11-16

    An assessment of possible environmental effects of the use of geopressured water of the Texas and Louisiana Gulf Coast has been made. The uses considered include generation of electric power, production of low pressure steam for process heat and the direct use of the hot water for space heating. Based upon the projected uses, the direct and indirect emissions are estimated and the impact of these emissions upon the environment are discussed. The possible impacts of the production of large volumes of geopressured fluids are also considered in terms of possibility of subsidence and earthquakes. A summary of available analyses of Gulf Coast deep waters is listed as a guide for estimating expected emissions. Primary environmental problems are identified as waste brine disposal, accidental releases of brines, and subsidence. Minor problems such as cooling tower blowdown streams, noncondensable gas emissions, wind drift from exhaust plumes, noise levels, and construction activities are considered.

  6. Geothermal Energy Geopressure Subprogram, GCO-DOE, Pleasant Bayou No. 1

    Energy Technology Data Exchange (ETDEWEB)

    none

    1978-03-01

    This Environmental Assessment (EA) has been prepared to assess the environmental implications of the Department of Energy's proposal to drill, complete, and test one geopressure well located in Brazoria County on a 2 hectares (five acre) test site 64 km (40 mi) south of Houston, Abstract 107, Perry and Austin Survey, Brazoria County, TX. The test well is herein referred to as GCO-DOE Pleasant Bayou No. 1. A maximum of four disposal wells will be located within .8 km (1/2 mi) of the proposed well. The DOE and the University of Texas Center for Energy Studies propose to operate the test facility for three years to evaluate the geopressure potential of the subsurface. Tests to be conducted include flow rates, fluid composition, temperature, gas content, geologic characteristics, and the land subsidence potential for subsequent production.

  7. Analysis of ecological effects of geopressured-geothermal resource development. Geopressured-geothermal technical paper No. 4

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    The activities involved in geopressured-geothermal resource production are identified and their ecological impacts are discussed. The analysis separates those activites that are unique to geopressured-geothermal development from those that also occur in oil and gas and other resource developments. Of the unique activities, those with the greatest potential for serious ecological effect are: (1) accidental brine discharge as a result of a blowout during well drilling; (2) subsidence; (3) fault activation and enhanced seismicity; and (4) subsurface contamination of water, hydrocarbon, and mineral reservoirs. Available methods to predict and control these effects are discussed.

  8. Origin and generation mechanisms of geopressures in shale ...

    African Journals Online (AJOL)

    Geopressures influences many fluid related aspects of petroleum geology including diagenesis, migration and accumulation of oil and gas ,and indeed reservoir quality. It also constitutes a hazard in drilling wells and directly impacts on drilling costs and the safety of petroleum exploration. The general overview of the ...

  9. Continuity and productivity analysis of three geopressured geothermal aquifer-natural gas fields: Duson, Hollywood and Church Point, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.A.; Boardman, C.R.; Bebout, D.G.; Bachman, A.L. (eds.)

    1981-01-01

    The available well logs, production records and geological structure maps were analyzed for the Hollywood, Duson, and Church Point, Louisiana oil and gas fields to determine the areal extent of the sealed geopressured blocks and to identify which aquifer sands within the blocks are connected to commercial production of hydrocarbons. Studies such as these are needed for the Department of Energy program to identify geopressured brine reservoirs that are not connected to commercial productions. The analysis showed that over the depth intervals at the geopressured zones shown on the logs essentially all of the sands of any substantial thickness had gas production from them somewhere or other in the fault block. It is therefore expected that the sands which are fully brine saturated in many of the wells are the water drive portion of the producing gas/oil somewhere else within the fault block. In this study only one deep sand was identified, in the Hollywood field, which was apparently not connected to a producing horizon somewhere else in the field. Estimates of the reservoir parameters were made for this sand and a hypothetical production calculation showed the probable production to be less than 10,000 b/d. The required gas price to profitably produce this gas is well above the current market price.

  10. Geopressured energy availability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Near- and long-term prospects that geopressured/geothermal energy sources could become a viable alternative fuel for electric power generation were investigated. Technical questions of producibility and power generation were included, as well as economic and environmental considerations. The investigators relied heavily on the existing body of information, particularly in geotechnical areas. Statistical methods were used where possible to establish probable production values. Potentially productive geopressured sediments have been identified in twenty specific on-shore fairways in Louisiana and Texas. A total of 232 trillion cubic feet (TCF) of dissolved methane and 367 x 10/sup 15/ Btu (367 quads) of thermal energy may be contained in the water within the sandstone in these formations. Reasonable predictions of the significant reservoir parameters indicate that a maximum of 7.6 TCF methane and 12.6 quads of thermal energy may be producible from these potential reservoirs.

  11. The geopressured-geothermal resource

    International Nuclear Information System (INIS)

    Wys, J.N.; Dorfman, M.

    1990-01-01

    This paper reports that the Geopressured-Geothermal resource has an estimated 5,700 recoverable quad of gas and 11,000 recoverable quad of thermal energy in the onshore Texas and Louisiana Gulf Coasts area alone. After 15 years the program is now beginning a transition to commercialization. The program presently has three geopressured-geothermal wells in Texas and Louisiana. The Pleasant Bayou Well has a 1 MWe hybrid power system converting some gas and the thermal energy to electricity. The Gladys McCall Well produced over 23 MM bbls brine with 23 scf per bbl over 4 1/2 years. It is now shut-in building up pressure. The deep Hulin Well has been cleaned out and short term flow tested. It is on standby awaiting funds for long-term flow testing. In January 1990 an Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource was convened at Rice University, Houston, TX. Sixty-five participants heard industry cost-shared proposals for using the hot geopressured brine. Proposals ranged from thermal enhanced oil recovery to aquaculture, conversion, and environmental clean up processes. By the September meeting at UTA-Balcones Research Center, industry approved charters will have been received, an Advisory Board will be appointed, and election of officers from industry will he held

  12. The feasibility of applying geopressured-geothermal resources to direct uses

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Negus-de Wys, J.; Plum, M.M. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Lienau, P.J. (Oregon Inst. of Tech., Klamath Falls, OR (United States). Geo-Heat Center); Spencer, F.J. (International Management Services (United States)); Nitschke, G.F. (Nitschke (George F.) (United States))

    1991-09-01

    This study concludes that direct use technologies, especially desalinated water production, can contribute significantly to the value added process and the overall economic viability in developing a geopressured resource. Although agriculture and aquaculture applications are marginal projects when they are the only use of a geopressured well, the small margin of profitability can contribute to improving the overall economics of the direct use development. The added complexity from a technical and management aspect may add to the overall risk and unpredictability of the project. Six combination of direct uses received economic evaluation that resulted in 15% discounted payback periods ranging from 4 to over 10 years. Many other combinations are possible depending on the resource and market variables. Selection of appropriate technologies and sizes of applications will be established by the developer that engages in geopressured resource utilization. Currently, many areas of the country where geopressured resources are located also have surplus electrical capacity and generation, thus power utilities have been selling power for less than 2 cents per kWH, well below a reasonable breakeven value for geopressured produced electricity. However, when the energy demand of the integrated geopressured facility is large enough to install power generation equipment, operating expenses can be reduced by not paying the 10 to 12 cents per kWH utility rate. The study includes an analysis of a geothermal turbine unit installed with a desalination and an agriculture/aquaculture facility, taking advantage of the cascading energy values. Results suggest that this scenario becomes profitable only where the market price for electricity exceeds five cents per kWH.

  13. Parcperdue geopressure-geothermal project. Study a geopressured reservoir by drilling and producing a well in a limited geopressured water sand. Final technical report, September 28, 1979-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, J.R.; Stanley, J.G. (eds.)

    1984-01-15

    The behavior of geopressured reservoirs was investigated by drilling and producing a well in small, well defined, geopressured reservoir; and performing detailed pressure transient analysis together with geological, geophysical, chemical, and physical studies. The Dow-DOE L. R. Sweezy No. 1 well was drilled to a depth of 13,600 feet in Parcperdue field, just south of Lafayette, Louisiana, and began production in April, 1982. The production zone was a poorly consolidated sandstone which constantly produced sand into the well stream, causing damage to equipment and causing other problems. The amount of sand production was kept manageable by limiting the flow rate to below 10,000 barrels per day. Reservoir properties of size, thickness, depth, temperature, pressure, salinity, porosity, and permeability were close to predicted values. The reservoir brine was undersaturated with respect to gas, containing approximately 20 standard cubic feet of gas per barrel of brine. Shale dewatering either did not occur or was insignificant as a drive mechanism. Production terminated when the gravel-pack completion failed and the production well totally sanded in, February, 1983. Total production up to the sanding incident was 1.94 million barrels brine and 31.5 million standard cubic feet gas.

  14. The feasibility of applying geopressured-geothermal resources to direct uses

    Science.gov (United States)

    Lunis, Ben C.; Dewys, Jane Negus; Plum, Martin M.; Lienau, Paul J.; Spencer, F. J.; Nitschke, George F.

    1991-09-01

    This study concludes that direct use technologies, especially desalinated water production, can contribute significantly to the value added process and the overall economic viability in developing a geopressured resource. Although agriculture and aquaculture applications are marginal projects when they are the only use of a geopressured well, the small margin of profitability can contribute to improving the overall economics of the direct use development. The added complexity from a technical and management aspect may add to the overall risk and unpredictability of the project. Six combinations of direct uses received economic evaluation that resulted in 15 percent discounted payback periods ranging from 4 to over 10 years. Many other combinations are possible depending on the resource and market variables. Selection of appropriate technologies and sizes of applications will be established by the developer that engages in geopressured resource utilization. Currently, many areas of the country where geopressured resources are located also have surplus electrical capacity and generation; thus power utilities have been selling power for less than two cents per kWH, well below a reasonable breakeven value for geopressured produced electricity. However, when the energy demand of the integrated geopressured facility is large enough to install power generation equipment, operating expenses can be reduced by not paying the 10 to 12 cents per kWH utility rate. The study includes an analysis of a geothermal turbine unit installed with a desalination and an agriculture/aquaculture facility, taking advantage of the cascading energy values. Results suggest that this scenario becomes profitable only where the market price for electricity exceeds five cents per kWH.

  15. Depletion and recovery behavior of the Gladys McCall geopressured geothermal reservoir

    International Nuclear Information System (INIS)

    Riney, T.D.

    1991-01-01

    Many sedimentary basins throughout the world contain sealed fault blocks in which the pore fluids are at higher pressures and temperatures than normal as a consequence of their depositional environment. The U.S. Department of Energy has drilled, completed, and tested four deep research wells in selected geopressured geothermal prospects in the Texas-Louisiana Gulf Coast region to evaluate the recoverability of the thermal, hydraulic, and chemical (methane) energy in this potential energy resource. The wells are expensive and the specific energy of the fluids is relatively small, but the total recoverable energy from a single well can be extremely large. Long-term testing of the Gladys McCall No. 1 research well, located in Cameron Parish, Louisiana, U.S.A., has defined an impressively large geopressured geothermal reservoir. In this paper an integrated analysis of the test data is presented, and a numerical model is constructed that matches the available data for the 6.5-year test history of the well

  16. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Testing Activity, Frio Formation, Texas and Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    This Environmental Assessment (EA) has been prepared to provide the environmental input into the Division of Geothermal Energy's decisions to expand the geothermal well testing activities to include sites in the Frio Formation of Texas and Louisiana. It is proposed that drilling rigs be leased before they are removed from sites in the formation where drilling for gas or oil exploration has been unsuccessful and that the rigs be used to complete the drilling into the geopressured zone for resource exploration. This EA addresses, on a regional basis, the expected activities, affected environment, and the possible impacts in a broad sense as they apply to the Gulf Coast well testing activity of the Geothermal Energy Geopressure Subprogram of the Department of Energy. Along the Texas and Louisiana Gulf Coast (Plate 1 and Overlay, Atlas) water at high temperatures and high pressures is trapped within Gulf basin sediments. The water is confined within or below essentially impermeable shale sequences and carries most or all of the overburden pressure. Such zones are referred to as geopressured strata. These fluids and sediments are heated to abnormally high temperatures (up to 260 C) and may provide potential reservoirs for economical production of geothermal energy. The obvious need in resource development is to assess the resource. Ongoing studies to define large-sand-volume reservoirs will ultimately define optimum sites for drilling special large diameter wells to perform large volume flow production tests. in the interim, existing well tests need to be made to help define and assess the resource.

  17. Geopressured geothermal bibliography. Volume 1 (citation extracts)

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01

    This bibliography was compiled by the Center for Energy Studies at The University of Texas at Austin to serve as a tool for researchers in the field of geopressured geothermal energy resources. The bibliography represents citations of papers on geopressured geothermal energy resources over the past eighteen years. Topics covered in the bibliography range from the technical aspects of geopressured geothermal reservoirs to social, environmental, and legal aspects of tapping those reservoirs for their energy resources. The bibliography currently contains more than 750 entries. For quick reference to a given topic, the citations are indexed into five divisions: author, category, conference title, descriptor, and sponsor. These indexes are arranged alphabetically and cross-referenced by page number.

  18. Geopressured-geothermal well activities in Louisiana

    International Nuclear Information System (INIS)

    John, C.J.

    1992-10-01

    Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing

  19. Geopressured-geothermal energy development: government incentives and institutional structures

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, D.O.; Prestwood, D.C.L.; Roberts, K.; Vanston, J.H. Jr.

    1979-01-01

    The following subjects are included: a geothermal resource overview, the evolution of the current Texas geopressured-geothermal institutional structure, project evaluation with uncertainty and the structure of incentives, the natural gas industry, the electric utility industry, potential governmental participants in resource development, industrial users of thermal energy, current government incentives bearing on geopressured-geothermal development, six profiles for utilization of the geopressured-geothermal resources in the mid-term, and probable impacts of new government incentives on mid-term resource utilization profiles. (MHR)

  20. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  1. Environmental analysis of geopressured-geothermal prospect areas, Brazoria and Kenedy Counties, Texas

    Energy Technology Data Exchange (ETDEWEB)

    White, W.A.; McGraw, M.; Gustavson, T.C.

    1978-01-01

    Preliminary environmental data, including current land use, substrate lithology, soils, natural hazards, water resources, biological assemblages, meteorological data, and regulatory considerations have been collected and analyzed for approximately 150 km/sup 2/ of land: (1) near Chocolate Bayou, Brazoria County, Texas, where a geopressured-geothermal test well was drilled in 1978, and (2) near the rural community of Armstrong, Kenedy County, Texas, where future geopressured-geothermal test well development may occur. The study was designed to establish an environmental data base and to determine, within spatial constraints set by subsurface reservoir conditions, environmentally suitable sites for geopressured-geothermal wells.

  2. Comparison of estimated and background subsidence rates in Texas-Louisiana geopressured geothermal areas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L.M.; Clayton, M.; Everingham, J.; Harding, R.C.; Massa, A.

    1982-06-01

    A comparison of background and potential geopressured geothermal development-related subsidence rates is given. Estimated potential geopressured-related rates at six prospects are presented. The effect of subsidence on the Texas-Louisiana Gulf Coast is examined including the various associated ground movements and the possible effects of these ground movements on surficial processes. The relationships between ecosystems and subsidence, including the capability of geologic and biologic systems to adapt to subsidence, are analyzed. The actual potential for environmental impact caused by potential geopressured-related subsidence at each of four prospects is addressed. (MHR)

  3. Analysis of three geopressured geothermal aquifer-natural gas fields; Duson Hollywood and Church Point, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.A.; Boardman, C.R.

    1981-05-01

    The available well logs, production records and geological structure maps were analyzed for the Hollywood, Duson, and Church Point, Louisiana oil and gas field to determine the areal extent of the sealed geopressured blocks and to identify which aquifer sands within the blocks are connected to commercial production of hydrocarbons. The analysis showed that over the depth intervals of the geopressured zones shown on the logs essentially all of the sands of any substantial thickness had gas production from them somewhere or other in the fault block. It is therefore expected that the sands which are fully brine saturated in many of the wells are the water drive portion of the producing gas/oil somewhere else within the fault block. In this study only one deep sand was identified, in the Hollywood field, which was not connected to a producing horizon somewhere else in the field. Estimates of the reservoir parameters were made and a hypothetical production calculation showed the probable production to be less than 10,000 b/d. The required gas price to profitably produce this gas is well above the current market price.

  4. Parcperdue Geopressure--Geothermal Project: Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    Sweezy, L.R.

    1981-10-05

    The reservoir models used to perform the drawdown and buildup pressure analyses consist of analytic forms in lieu of the finite difference or numeric simulator types. Analytic models are derived from solutions of the diffusion equation which relate a pressure response with time and distance in the reservoir for a specified flow system. Solutions of the diffusion equation are obtained through mathematical methods such as Laplace transforms, Fourier transforms, Neuman's product techniques and Green's functions. Before an analytic solution is derived, the diffusivity equation is expressed in terms of dimensionless potential (m{sub D}), dimensionless distance (r{sub D}) and dimensionless time (t{sub D}). For the cylindrical coordinate case, the diffusivity equation in dimensionless form for a geopressured system is given.

  5. Microseismic monitoring of Chocolate Bayou, Texas: The Pleasant Bayou no. 2 geopressured/geothermal energy test well program

    Science.gov (United States)

    Mauk, F. J.; Kimball, B.; Davis, R. A.

    The Brazoria seismic network, instrumentation, design, and specifications are described. The data analysis procedures are presented. Seismicity is described in relation to the Pleasant Bayou production history. Seismicity originating near the chemical plant east of the geopressured/geothermal well is discussed.

  6. Problem definition study of subsidence caused by geopressured geothermal resource development

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The environmental and socio-economic settings of four environmentally representative Gulf Coast geopressured geothermal fairways were inventoried. Subsidence predictions were prepared using feasible development scenarios for the four representative subsidence sites. Based on the results of the subsidence estimates, an assessment of the associated potential environmental and socioeconomic impacts was prepared. An inventory of mitigation measures was also compiled. Results of the subsidence estimates and impact assessments are presented, as well as conclusions as to what are the major uncertainties, problems, and issues concerning the future study of geopressured geothermal subsidence.

  7. Gulf Coast geopressured-geothermal program summary report compilation. Volume 4: Bibliography (annotated only for all major reports)

    Energy Technology Data Exchange (ETDEWEB)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    This bibliography contains US Department of Energy sponsored Geopressured-Geothermal reports published after 1984. Reports published prior to 1984 are documented in the Geopressured Geothermal bibliography Volumes 1, 2, and 3 that the Center for Energy Studies at the University of Texas at Austin compiled in May 1985. It represents reports, papers and articles covering topics from the scientific and technical aspects of geopressured geothermal reservoirs to the social, environmental, and legal considerations of exploiting those reservoirs for their energy resources.

  8. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Negus-deWys, J. (ed.)

    1990-03-01

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  9. Environmental analysis of geopressured-geothermal prospect areas, De Witt and Colorado counties, Texas. Final report, March 1 - August 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, T.C.; Reeder, F.S.; Badger, E.A.

    1980-02-01

    Information collected and analyzed for a preliminary environmental analysis of geopressured geothermal prospect areas in Colorado and DeWitt Counties, Texas is presented. Specific environmental concerns for each geopressured geothermal prospect area are identified and discussed. Approximately 218 km/sup 2/(85 mi/sup 2/) were studied in the vicinity of each prospect area to: (1) conduct an environmental analysis to identify more and less suited areas for geopressured test wells; and (2) provide an environmental data base for future development of geopressured geothermal energy resources. A series of maps and tables are included to illustrate environmental characteristics including: geology, water resources, soils, current land use, vegetation, wildlife, and meteorological characteristics, and additional relevant information on cultural resources, power- and pipelines, and regulatory agencies. A series of transparent overlays at the scale of the original mapping has also been produced for the purposes of identifying and ranking areas of potential conflict between geopressured geothermal development and environmental characteristics. The methodology for ranking suitability of areas within the two prospect areas is discussed in the appendix. (MHR)

  10. Contractor for geopressured-geothermal sites: Final contract report, Volume 1, fiscal years 1986--1990 (5 years), testing of wells through October 1990

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Field tests and studies were conducted to determine the production behavior of geopressured-geothermal reservoirs and their potential as future energy sources. Results are presented for Gladys McCall Site, Pleasant Bayou Site, and Hulin Site.

  11. Parcperdue Geopressure -- Geothermal Project: Appendix E

    Energy Technology Data Exchange (ETDEWEB)

    Sweezy, L.R.

    1981-10-05

    The mechanical and transport properties and characteristics of rock samples obtained from DOW-DOE L.R. SWEEZY NO. 1 TEST WELL at the Parcperdue Geopressure/Geothermal Site have been investigated in the laboratory. Elastic moduli, compressibility, uniaxial compaction coefficient, strength, creep parameters, permeability, acoustic velocities (all at reservoir conditions) and changes in these quantities induced by simulated reservoir production have been obtained from tests on several sandstone and shale samples from different depths. Most important results are that the compaction coefficients are approximately an order of magnitude lower than those generally accepted for the reservoir sand in the Gulf Coast area and that the creep behavior is significant. Geologic characterization includes lithological description, SEM micrographs and mercury intrusion tests to obtain pore distributions. Petrographic analysis shows that approximately half of the total sand interval has excellent reservoir potential and that most of the effective porosity in the Cib Jeff Sand is formed by secondary porosity development.

  12. Geopressured-geothermal test of the EDNA Delcambre No. 1 well, Tigre Lagoon Field, Vermilion Parish, Louisiana: Analysis of water and dissolved natural gas: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hankind, B.E.; Karkalits, O.C.

    1978-09-01

    The presence of large volumes of hot water (250-425 F) containing dissolved natural gas in the Gulf of Mexico coastal areas at depths of 5,000 to 25,000 feet (the geopressured zone) has been known for several years. Because natural gas and oil from conventional production methods were relatively inexpensive prior to 1973, and because foreign oil was readily available, no economic incentive existed for developing this resource. With the oil embargo and the resulting rapid escalation in prices of oil and gas since 1973, a new urgency exists for examining the economic potential of the geopressured-geothermal resource. The main objective of the research reported here was to determine the volume of gas dissolved in the geopressured water, as well as the qualitative and quantitative composition of the water and the dissolved gas. A further objective was to use an existing shut-in gas well so that drilling time and the attendant costs could be avoided.

  13. T-F and S/DOE Gladys McCall No. 1 well, Cameron Parish, Louisiana. Geopressured-geothermal well report, Volume II. Well workover and production testing, February 1982-October 1985. Final report. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The T-F and S/DOE Gladys McCall No. 1 well was the fourth in a series of wells in the DOE Design Wells Program that were drilled into deep, large geopressured-geothermal brine aquifers in order to provide basic data with which to determine the technological and economic viability of producing energy from these unconventional resources. This brine production well was spudded on May 27, 1981 and drilling operations were completed on November 2, 1981 after using 160 days of rig time. The well was drilled to a total depth of 16,510 feet. The target sands lie at a depth of 14,412 to 15,860 feet in the Fleming Formation of the lower Miocene. This report covers well production testing operations and necessary well workover operations during the February 1982 to October 1985 period. The primary goals of the well testing program were: (1) to determine reservoir size, shape, volume, drive mechanisms, and other reservoir parameters, (2) to determine and demonstrate the technological and economic viability of producing energy from a geopressured-geothermal brine aquifer through long-term production testing, and (3) to determine problem areas associated with such long-term production, and to develop solutions therefor.

  14. Technical support for geopressured-geothermal well activities in Louisiana

    International Nuclear Information System (INIS)

    John, C.J.

    1994-01-01

    The US Department of Energy has operated continuous-recording, microearthquake monitoring networks at geopressured-geothermal test well sites since 1980. These microseismic networks were designed to detect microearthquakes indicative of fault activation and/or subsidence that can potentially result from the deep subsurface withdrawal and underground disposal of large volumes of brine during well testing. Seismic networks were established before the beginning of testing to obtain background levels of seismicity. Monitoring continued during testing and for some time after cessation of flow testing to assess any delayed microseismicity caused by the time dependence of stress migration within the earth. No flow testing has been done at the Hulin well since January 1990, and the Pleasant Bayou well has been shut down since September 1992. Microseismic monitoring continued at the Hulin and Pleasant Bayou sites until 31 December 1992, at which time both operations were shut down and field sites dismantled. During 1992, the networks recorded seismic signals from earthquakes, sonic booms, geophysical blasting, thunderstorms, etc. However, as in previous years, no local microseismic activity attributable to geopressured-geothermal well testing was recorded

  15. Investigation and evaluation of geopressured-geothermal wells. Notes on Gruy Federal's Well-of-Opportunity program

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    Obtaining test data from geopressured aquifers along the Texas and Louisiana Gulf Coast by arranging to assume operation of wells already drilled and found nonproductive of conventional oil or gas accumulations before such wells were abandoned by the operators is described. The geopressured aquifers were tested after performing whatever additional operations were required. The monitoring and screening of all wells which might qualify is described. The major activities and important milestones are summarized. (MHR)

  16. Plan for the long term environmental assessment of geopressured resource development in the Louisiana Gulf Coast Region

    Energy Technology Data Exchange (ETDEWEB)

    Newchurch, E.J.; Bryan, C.F.; Harrison, D.P.; Muller, R.A.; Wilcox, R.E.; Bachman, A.L.; Newman, J.P.; Cunningham, K.J.; Hilding, R.K.; Rehage, J.A.

    1978-07-15

    Results of research to develop a plan for the long-term environmental assessment of geopressured/geothermal resource development in the Louisiana Gulf Coast region are reported. An overall view of the environmental issues facing decision-makers in the area of geopressured resource development is presented, along with a plan for monitoring potential environmental impacts. Separate assessments and plans are presented for geological effects, air and water quality, ecosystem quality, and socioeconomic and cultural considerations. (JGB)

  17. Geopressured geothermal bibliography. Volume I. Citation extracts. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Sepehrnoori, K.; Carter, F.; Schneider, R.; Street, S.; McGill, K.

    1983-05-01

    This annoted bibliography contains 1131 citations. It represents reports, papers, and articles appearing over the past eighteen years covering topics from the scientific and technical aspects of geopressured geothermal reservoirs to the social, environmental, and legal considerations of exploiting those reservoirs for their energy resources. Six indexes include: author, conference title, descriptor, journal title, report number, and sponsor. (MHR)

  18. Environmental overview of geopressured-geothermal development: Texas Gulf Coast

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, T.C.; Kreitler, C.W.

    1979-01-01

    In the summary of the recommended environmental program are: site specific studies, general studies, cost estimates for the program, socioeconomic and demographic research, potential environmental concerns, environmental research, effects of geopressure exploitation, and research plans. The socioeconomic and cultural considerations are impacts on communities. Waste disposal, geologic framework, ground subsidence, and monitoring techniques are discussed. (MHR)

  19. Geopressured-geothermal aquifers. Final contract report

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    Task 1 is to provide petrophysical and reservoir analysis of wells drilled into geopressured-geothermal aquifers containing dissolved methane. The list of Design Wells and Wells of Opportunity analyzed: Fairfax Foster Sutter No. 2 (WOO), Pleasant Bayou No. 2 (Design), Amoco Fee No. 1 (Design), G.M. Koelemay No. 1 (WOO), Gladys McCall No. 1 (Design), P.R. Girouard No. 1 (WOO), and Crown Zellerbach No. 2 (WOO). Petrophysical and reservoir analysis of the above wells were performed based on availability of data. The analysis performed on each well, the assumptions made during simulation, and conclusions reached.

  20. Proceedings of second geopressured geothermal energy conference, Austin, Texas, February 23--25, 1976. Volume V. Legal, institutional, and environmental

    Energy Technology Data Exchange (ETDEWEB)

    Vanston, J.H.; Elmer, D.B.; Gustavson, T.C.; Kreitler, C.W.; Letlow, K.; Lopreato, S.C.; Meriwether, M.; Ramsey, P.; Rogers, K.E.; Williamson, J.K.

    1976-01-01

    Three separate abstracts were prepared for Volume V of the Proceedings of the Conference. Sections are entitled: Legal Issues in the Development of Geopressured--Geothermal Resources of Texas and Louisiana Gulf Coast; The Development of Geothermal Energy in the Gulf Coast; Socio-economic, Demographic, and Political Considerations; and Geothermal Resources of the Texas Gulf Coast--Environmental Concerns arising from the Production and Disposal of Geothermal waters. (MCW)

  1. Inventory and case studies of Louisiana, non-electric industrial applications of geopressured geothermal resources. Quarterly progress report, March 1-May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Schnadelbach, T.W. Jr.

    1977-06-01

    An inventory is provided of geopressured geothermal resources in Louisiana. The Louisiana industries; classified as Food and Kindred Products were cataloged and inventoried to determine potential and specific uses of the known energy resources. The possibility of relocating industries to the available resources is explored. Individual case studies are presented for near term industrial conversion for resource application. (MHR)

  2. Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

    1980-01-01

    Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

  3. Legal impediments to the development of the geopressured resource

    Energy Technology Data Exchange (ETDEWEB)

    Harrell, T.A.; Meriwether, J.

    1977-11-16

    A brief description is given of the physical characteristics of geopressured reservoirs and the methods of their exploitation upon which this analysis was based. Brief mention is made of some technological problems facing the developer. A summary description of the ownership of the resource in Louisiana and of the devices available for its development are set forth. The legal problems which result from the interplay of these factors are discussed, and a brief suggestion is made as to the kinds of action which might be taken to resolve these problems and expedite development. (MHR)

  4. Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-B: Resource description, program history, wells tested, university and company based research, site restoration

    Energy Technology Data Exchange (ETDEWEB)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Design well program; LaFourche Crossing; MG-T/DOE Amoco Fee No. 1 (Sweet Lake); Environmental monitoring at Sweet Lake; Air quality; Water quality; Microseismic monitoring; Subsidence; Dow/DOE L.R. Sweezy No. 1 well; Reservoir testing; Environmental monitoring at Parcperdue; Air monitoring; Water runoff; Groundwater; Microseismic events; Subsidence; Environmental consideration at site; Gladys McCall No. 1 well; Test results of Gladys McCall; Hydrocarbons in production gas and brine; Environmental monitoring at the Gladys McCall site; Pleasant Bayou No. 2 well; Pleasant Bayou hybrid power system; Environmental monitoring at Pleasant Bayou; and Plug abandonment and well site restoration of three geopressured-geothermal test sites. 197 figs., 64 tabs.

  5. Heating production fluids in a wellbore

    Science.gov (United States)

    Orrego, Yamila; Jankowski, Todd A.

    2016-07-12

    A method for heating a production fluid in a wellbore. The method can include heating, using a packer fluid, a working fluid flowing through a first medium disposed in a first section of the wellbore, where the first medium transfers heat from the packer fluid to the working fluid. The method can also include circulating the working fluid into a second section of the wellbore through a second medium, where the second medium transfers heat from the working fluid to the production fluid. The method can further include returning the working fluid to the first section of the wellbore through the first medium.

  6. Geopressured-geothermal resource development on public free school lands

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    The study's findings and recommendations are based upon analysis of the following: financial and economic feasibility of geopressured-geothermal resource development; possible ecological, social, and economic impacts of resource development on PFSL; and legal issues associated with resource development. The results of the analysis are summarized and are discussed in detail in a series of four technical papers which accompany this volume. Existing rules of the General Land Office (GLO), the School Land Board (SLB), and the Railroad Commission of Texas (RRC) were reviewed in light of the above analysis and were discussed with the agencies. The study's recommendations resulted from this analytical and review process; they are discussed. The preliminary draft rules and regulations to govern resource development on PFSL are presented in Appendix A; the accompanying forms and model lease are found in Appendix B.

  7. Investigation and evaluation of geopressured-geothermal wells. Fairfax Foster Sutter No. 2 well, St. Mary Parish, Louisiana. Volume I. Completion and testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Willits, M.H.; McCoy, R.L.; Dobson, R.J.; Hartsock, J.H.

    1979-12-01

    The Fairfax Foster Sutter No. 2 well, located in the East Franklin area of St. Mary Parish, Louisiana, is the first successful test of a geopressured-geothermal aquifer under the Well-of-Opportunity program. The section tested was the MA-6 sand of lower Miocene age which has produced large quantities of gas from the adjacent but structurally separated Garden City field. In the subject well the observed temperature was 270{sup 0}F (132{sup 0}C) and the measured gradient was 0.77 psi/ft. The gross sand thickness was 270 feet, the net sand thickness 190 feet, and the tested interval 58 net feet. The temperatures and pressures encountered approached the limits of the surface-recording bottomhole pressure gauge and particularly the single-conductor cables on which the gauges were run. The objectives of the tests were all accomplished, and data were obtained which will contribute to the overall assessment of the geopressured-geothermal resource of the Upper Gulf of Mexico basin. In general, the gas solubility (22.8 scf/bbl) was as expected for the temperature, pressure, and salinity of the brine. The produced water was more saline than expected (160,000 mg/l). The high concentrations of dissolved solids, coupled with the evolution of CO{sub 2} from these waters during production, created a scaling problem in the tubular goods and surface equipment that will have to be addressed in future tests.

  8. Industry participation in DOE-sponsored geopressured geothermal resource development. Final report, 1 September 1977-30 April 1979

    Energy Technology Data Exchange (ETDEWEB)

    Coffer, H.F.

    1979-01-01

    A series of DOE/Industry forums were carried out to keep industry advised of the DOE program to develop the geopressured geothermal resources of the Gulf Coast. A total of eighteen meetings were held with registered attendance of 621 representing a good cross section of industry, state, and federal agencies. An Overview Group and four working subgroups - site selection, drilling and testing, environmental/laboratory research, and legal institutional were established to subdivide the DOE programs into areas of interest and expertise. During the contract period three overview, four site selection, three drilling and testing, five environmental/laboratory research and three legal/institutional meetings have been conducted. Interest in and attendance at the meetings continue to grow reflecting increased industry contact with the DOE Geopressured Geothermal Resource Development Program. Two other studies were carried out for DOE under this contract; a Salt Water Disposal Study and an Industry Survey to evaluate the DOE Resource Development Program. The Salt Water Disposal Study reviewed subsurface salt water disposal experience on the Texas and Louisiana Gulf Coast. This preliminary study concluded that subsurface brine disposal should be possible in the areas of interest with adequate evaluation of the geology of each area and a well designed and constructed surface and subsurface facility. The industry survey indicated general satisfaction with the technical design of the resource evaluation program but felt the program should be moving faster.

  9. Geopressured aquifers - utilization of the energy potential of the Endorf thermal water deposit

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S; Hantelmann, G v

    1984-01-01

    The Endorf thermal water deposit (Rupel, 4229 to 4264 m) belongs to the type of ''geopressured aquifers''. The overall aim of the project is to exploit the energy stored in the deposit in the form of thermal brine (temperature: 115/sup 0/C) and natural gas (96% methane). In this first report on the project state, an overview on prehistory is followed by a description of the currently implemented test programme and its subsequent evaluation which aim at obtaining more exact knowledge concerning the present deposit conditions and, while doing so, indications of the energy content of the deposit in order to determine the energy potential theoretically exploitable at the well head.

  10. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  11. Legal problems inherent in the development of geopressured and geothermal resources in Louisiana. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harrell, T.A.; Pike, R.W.; Wilkins, B.; Hill, T.M.

    1978-03-01

    The legal framework within which the geopressured resource will have to be developed in Louisiana is discussed generally. Those problems which may be created by its development within that framework are identified. Where possible, solutions are offered to those problems or at least techniques or devices are indicated which might be considered in their resolution. Finally, a compendium is assembled of those statutory or regulatory provisions which may regulate or affect the resource to the end that it might serve as a handbook for the evaluation of the legal and institutional problems which will face a prospective developer, when and if the resource development is undertaken in Louisiana. (MHR)

  12. Energy Resources of Water-Bearing Geopressured Reservoirs-Tertiary Formations, Northwestern Gulf of Mexico (Summary Ressources énergétiques des réservoirs aquifères à pressions géostratégiques dans les formations tertiaires du golfe du Mexique (résumé

    Directory of Open Access Journals (Sweden)

    Bebout D. G.

    2006-11-01

    Full Text Available Estimates for the total gas resource in place in geopressured Tertiary sandstone reservoirs along the United States Gulf Coast range from 3,000 to 100,000 tcf 185 to 2,832 trillion cu m. This wide range in estimates was the incentive for initiative research effort in Texas and Louisiane to obtain more reliable data on all aspects of developing the available heat and hydraulic energy present in these aquifers in addition to the methane. All resource calculations are based on interpretations of total sandstone thickness, lateral extent of reservoirs, porosity and permeability, reservoir drive, salinity, temperature, pressure, and methane solubility. Diverse estimates arise from inadequate knowledge concerning these critical parameters. Regional and detailed local geologic studies have been conducted ta delineate prospective areas for testing the geopressured resource. A prospective area should have reservoir volume of 3 Cu mi (12 cu km, minimum permeability of 20 mD, and fluid temperatures of 300°F (150°C. A geothermal designed test well has been drilled in Brazoria County, Texas, in order to test the potential of producing up to 40,000 barrels of water per day from a geopressured reservoir. The reservoir consists of 250 to 300 ft (75 to 90 m of sandstone with core permeabilities between 40 and 60 mD and fluid temperatures from 300 to 350°F (159 to 177°C. The test period will continue for a 2-year period and, with other designed tests in Texas and Louisiana will provide invaluable data concerning high-volume production over long periods of time. Les estimations pour les ressources totales de gaz dans les réservoirs sableux tertiaires à pressions géostatiques le long de la Gulf Coast des Etats-Unis sont corises entre 3000 et 100 000 tcf, soit 85 à 2832. 10. 12 m3. Cette large incertitude a incité la mise en oeuvre d'un effort extensif de recherche au Texas et en Louisiane en vue d'obtenir des données plus sûres sur tous les aspects du d

  13. Consolidation of geologic studies of geopressured geothermal resources in Texas. 1982 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Morton, R.A.; Ewing, T.E.; Kaiser, W.R.; Finley, R.J.

    1983-03-01

    Detailed structural mapping at several horizons in selected study areas within the Frio growth-fault trend demonstrates a pronounced variability in structural style. At Sarita in South Texas, shale mobilization produced one or more shale ridges, one of which localized a low-angle growth fault trapping a wedge of deltaic sediments. At Corpus Christi, shale mobilization produced a series of large growth faults, shale-cored domed anticlines, and shale-withdrawal basins, which become progressively younger basinward. At Blessing, major growth faults trapped sands of the Greta/Carancahua barrier system with little progradation. At Pleasant Bayou, a major early growth-fault pattern was overprinted by later salt tectonics - the intrusion of Danbury Dome and the development of a salt-withdrawal basin. At Port Arthur, low-displacement, long-lived faults formed on a sand-poor shelf margin contemporaneously with broad salt uplifts and basins. Variability in styles is related to the nature and extent of Frio sedimentation and shelf-margin progradation and to the presence or absence of salt. Structural styles that are conducive to the development of large geothermal reservoirs include blocks between widely spaced growth faults having dip reversal, salt-withdrawal basins, and shale-withdrawal basins. These styles are widespread on the Texas Gulf Coast. However, actually finding a large reservoir depends on demonstrating the existence of sufficient sandstone with adequate quality to support geopressured geothermal energy production.

  14. Investigation and Evaluation of Geopressured - Geothermal Wells, Final Report; Alice C. Plantation No. 2 Well, St. Mary Parish, Louisiana; Volume 1; Narrative Report

    Energy Technology Data Exchange (ETDEWEB)

    Lohse, Alan; Willits, M.H.

    1978-12-01

    Gruy Federal, Inc. (Gruy) operates under Contract No. EG-77-C-08-1528 to the Department of Energy, Division of Geothermal Energy, to evaluate potential alternate energy sources occurring within geopressured-geothermal (Geo) aquifers in Miocene, Oligocene, Tuscaloosa, Wilcox, and Frio formations along the Texas and Louisiana Gulf Coast. The project is entitled ''Investigation and Evaluation of Geopressured-Geothermal Wells''. The original period of performance was from September 26, 1977, through September 30, 1978; the contract was later extended through September 30, 1979. The first well on which testing was attempted under this contract was the Alice C. Plantation No. 2 Well, located in St. Mary Parish, Louisiana. Originally drilled by the Sun Oil Company to a total depth of 19,000 feet, this well was abandoned as a dry hole in January 1964. Gruy's reentry attempt ended with plugging and abandonment after a saltwater flow on September 17, 1978. This report is a comprehensive document detailing all events and costs relating to the Alice C. plantation well, from its initial selection as a reentry well through the plugging and abandonment operations.

  15. Geothermal energy production with supercritical fluids

    Science.gov (United States)

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  16. [Dynamic enhanced recovery technologies]. Quarterly technical report, August 1992--October 1993

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.N.

    1993-10-15

    This paper has presented the investigation of the mechanism of geopressure occurrence, the transition of elastic properties from the hydrostatic pressured formation to the geopressured formation, and finally, a novel seismic amplitude analysis technique to map the top-of-geopresure surface. The successful application of our new technique to the Pleistocene, offshore Louisiana, Gulf of Mexico has again demonstrated that seismic attributes analyses are of importantance in the hydrocarbon exploration. There are three parts in this paper corresponding to the above discussed topics: Part I discusses mechanisms of geopressuring, and the effects of changing porosity, pressure, and fluid saturation on the elastic properties; Part II investigates the controlling factors in the geopressure transition zone, their seismic responses, and theoretical derivations of our new prediction method; and Part III demonstrates the application of the proposed method to the Pleistocene, Offshore Louisiana, Gulf of Mexico, the prediction discrpepancy between the seismic predicted top-of-geopressure and that dericed from 145 well logs, and finally, the importance of this hydrodynamic surface.

  17. Geopressure and Trap Integrity Predictions from 3-D Seismic Data: Case Study of the Greater Ughelli Depobelt, Niger Delta Pressions de pores et prévisions de l’intégrité des couvertures à partir de données sismiques 3D : le cas du grand sous-bassin d’Ughelli, Delta du Niger

    Directory of Open Access Journals (Sweden)

    Opara A.I.

    2012-05-01

    Full Text Available The deep drilling campaign in the Niger Delta has demonstrated the need for a detailed geopressure and trap integrity (drilling margin analysis as an integral and required step in prospect appraisal. Pre-drill pore pressure prediction from 3-D seismic data was carried out in the Greater Ughelli depobelt, Niger Delta basin to predict subsurface pressure regimes and further applied in the determination of hydrocarbon column height, reservoir continuity, fault seal and trap integrity. Results revealed that geopressured sedimentary formations are common within the more prolific deeper hydrocarbon reserves in the Niger Delta basin. The depth to top of mild geopressure (0.60 psi/ft ranges from about 10 000 ftss to over 30 000 ftss. The distribution of geopressures shows a well defined trend with depth to top of geopressures increasing towards the central part of the basin. This variation in the depth of top of geopressures in the area is believed to be related to faulting and shale diapirism, with top of geopressures becoming shallow with shale diapirism and deep with sedimentation. Post-depositional faulting is believed to have controlled the configuration of the geopressure surface and has played later roles in modifying the present day depth to top of geopressures. In general, geopressure in this area is often associated with simple rollover structures bounded by growth faults, especially at the hanging walls, while hydrostatic pressures were observed in areas with k-faults and collapsed crested structures. Les campagnes de forages profonds dans le delta du Niger ont démontré la nécessité d’une analyse détaillée des surpressions et de l’intégrité des structures pour évaluer correctement les prospects. La prédiction des pressions interstitielles a pu être réalisée ici avant forage à partir de données sismiques 3-D du grand sous-bassin d’Ughelli, dans le delta du Niger. Ce travail a permis de prévoir les régimes de pression du

  18. Preliminary environmental analysis of a geopressured-geothermal test well in Brazoria County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    White, W.A.; McGraw, M.; Gustavson, T.C.; Meriwether, J.

    1977-11-16

    Preliminary environmental data, including current land use, substrate lithology, soils, natural hazards, water resources, biological assemblages, meteorological data, and regulatory considerations have been collected and analyzed for approximately 150 km/sup 2/ of land near Chocolate Bayou, Brazoria County, Texas, in which a geopressured-geothermal test well is to be drilled in the fall of 1977. The study was designed to establish an environmental data base and to determine, within spatial constraints set by subsurface reservoir conditions, environmentally suitable sites for the proposed well. Preliminary analyses of data revealed the eed for focusing on the following areas: potential for subsidence and fault activation, susceptibility of test well and support facilities to fresh- and salt-water flooding, possible effects of produced saline waters on biological assemblages and groundwaer resources, distribution of expansive soils, and effect of drilling and associated support activities on known archeological-cultural resources.

  19. Fluid-bed process for SYNROC production

    International Nuclear Information System (INIS)

    Ackerman, F.J.; Grens, J.Z.; Ryerson, F.J.; Hoenig, C.L.; Bazan, F.; Peters, P.E.; Smith, R.; Campbell, J.H.

    1983-01-01

    SYNROC is a titanate-based ceramic waste developed for the immobilization of high-level nuclear reactor waste. Lawrence Livermore National Laboratory (LLNL) has investigated a fluid-bed technique for the large-scale production of SYNROC precursor powders. Making SYNROC in a fluid bed permits slurry drying, calcination and reduction-oxidation reactions to be carried out in a single unit. We present the results of SYNROC fluid-bed studies from two fluid-bed units 10 cm in diameter: an internally heated fluid-bed unit developed by Exxon Idaho and an externally heated unit constructed at LLNL. Bed operation over a range of temperatures, feed rates, fluidizing rates, and redox conditions indicate that SYNROC powders of a high density and a uniform particle size can be produced. These powders facilitate the densification step and yield dense ceramics (greater than 95% theoretical density) with well-developed phases and low leaching rates

  20. Geopressured-geothermal test of the EDNA Delcambre No. 1 well, Tigre Lagoon Field, Vermilion Parish, Louisiana: analysis of water an dissolved natural gas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hankins, B.E.; Karkalits, O.C.

    1978-09-01

    The Edna Delcambre et al. No. 1 gas well, shut-in since June 1975, was made available for the project. Two geopressured sand-bed aquifers were tested: sand No. 3 at a depth of 12,900 feet and sand No. 1 at a depth of 12,600 feet. Each aquifer was subjected to flow tests which lasted approximately three weeks in each case. Water samples were obtained during flow testing of the two geopressured aquifers. The water contained 11.3 to 13.3% dissolved solids. Several radioactive species were measured. Radium-226 was found to be approximately 10 times more concentrated than the average amount observed in surface waters. No appreciable amount of heavy metals was detected. Recombination studies at bottom-hole conditions indicate the solubility of natural gas per barrel of water to be about 24 SCF. The methane content was 93 to 95%, and the gas had a heating value in the range of 1020 to 1070 Btu/cu.ft. During the flow tests, the gas/water ratio at the well-head was observed to be 45 to 88 SCF/Bbl water produced. (MHR)

  1. Basis for a new product programme for fluid connections in

    DEFF Research Database (Denmark)

    Voigt, Kristian

    1999-01-01

    If one decides to make a new product programme for fluid connections (known as tubes, hoses, fittings) certain conditions should be taken into consideration. This include which functionality that is needed, what the different stakeholders demand from the product programme, how the functionality...... is distributed between the fluid connections and other system components, which phenomena there is of interest and how to deal with them. This paper can provide help when a specification has to be set up for a new product programme for fluid connections....

  2. Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

    1984-08-01

    Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

  3. Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-A: Resource description, program history, wells tested, university and company based research, site restoration

    Energy Technology Data Exchange (ETDEWEB)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal resource description; Resource origin and sediment type; Gulf Coast resource extent; Resource estimates; Project history; Authorizing legislation; Program objectives; Perceived constraints; Program activities and structure; Well testing; Program management; Program cost summary; Funding history; Resource characterization; Wells of opportunity; Edna Delcambre No. 1 well; Edna Delcambre well recompletion; Fairfax Foster Sutter No. 2 well; Beulah Simon No. 2 well; P.E. Girouard No. 1 well; Prairie Canal No. 1 well; Crown Zellerbach No. 2 well; Alice C. Plantation No. 2 well; Tenneco Fee N No. 1 well; Pauline Kraft No. 1 well; Saldana well No. 2; G.M. Koelemay well No. 1; Willis Hulin No. 1 well; Investigations of other wells of opportunity; Clovis A. Kennedy No. 1 well; Watkins-Miller No. 1 well; Lucien J. Richard et al No. 1 well; and the C and K-Frank A. Godchaux, III, well No. 1.

  4. Critical fluid technology for the processing of lipid-related natural products

    Energy Technology Data Exchange (ETDEWEB)

    King, J.W. [Los Alamos National Lab., Supercritical Fluid Facility, Chemistry Div. NM (United States)

    2004-07-01

    In recent years, the technology envelope that embraces critical fluids can involve a wide range of conditions, different types of pure and modified fluids, as well as processing options involving extractions, fractionations or reactions. Technological development drivers continue to be environmentally and consumer-benign processing and/or products, however in recent years expansion of the use of sub- and supercritical fluids has been catalyzed by applications in such opportune fields as nutraceuticals, conversion of biomass (bio-refining), and the ability to modify natural products by reactions. The use of critical fluid technology is an important facet of any sustainable development program, particularly when utilized over a broad, interconnected application platform. In this overview presentation, concepts and applications of critical fluids from the author's research as well as the literature will be cited to support the above trends. A totally 'green' processing platform appears to be viable using carbon dioxide in the appropriate form, ethanol and water as intermediate co-solvents/reactants, and water from above its boiling point to supercritical conditions. These fluids can be combined in overall coupled unit processes, such as combining trans-esterification with hydrogenation, or glycero-lysis of lipid moieties with supercritical fluid fractionation. Such fluids also can exploited sequentially for bio-refining processes or the segregation of value-added products, but may require using coupled fluid or unit operations to obtain the targeted product composition or purity. Changing the reduced temperatures and/or pressures of critical fluids offers a plethora of opportunity, an excellent example being the relative critical fluid state of water. For example, sub-critical water slightly above its boiling point provides a unique medium that mimics polar organic solvents, and has been used even for the extraction of thermally labile solutes or

  5. Evaluation of NEPA-based environmental commitments at four geopressure design wells

    Energy Technology Data Exchange (ETDEWEB)

    Reed, A.W.; Hunsaker, D.B. Jr.; Roop, R.D.; Webb, J.W.

    1983-09-01

    The implementation of environmental mitigation and monitoring commitments made for four geopressure design well projects was evaluated. The evaluation was based on site visits conducted in August 1982 and April 1983 and on a review of monitoring and project activity reports provided by DOE contractors. The projects evaluated include: Pleasant Bayou No. 1 in Brazoria County, Texas; Dow Parcperdue in Vermilion Parish, Louisiana; and Gladys McCall and Sweet Lake No. 1 well sites in Cameron Parish, Louisiana. The contractors responsible for drilling and testing activities at the well sites have adequately implemented most of the mitigation measures described in each project's site-specific Environmental Assessment (EA). Exceptions include the lack of impermeable liners for drilling mud pits at the Dow Parcperdue, Gladys McCall, and Pleasant Bayou sites and the lack of a ring levee at the Pleasant Bayou site. Air and water quality and noise monitoring activities were not performed as strictly as outlined in the EAs. A review of the monitoring data collected to date indicates that no significant environmental degradation has occurred. This report recommends additional or future monitoring needs, especially with regard to soil contamination, subsidence, and microseismicity, and provides guidance for decommissioning.

  6. U.S. DOE Geopressured/Geothermal Program: Final report on well plug and abandonment operations and well site restoration, Louisiana and Texas wells

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-08-30

    Some of the critical operations conducted during the plugging and abandonment of the three producing wells of the U.S. DOE GEOPRESSURED/GEOTHERL PROGRAM were witnessed by D-O-R Engineering personnel. All operations witnessed by D-O-R personnel were in compliance with the respective state regulations and were conducted as per D-O-R's recommendations to the Department of Energy and their prime contractor, EG&G Idaho. It is our belief that competent cement plugs were left in all three wells. The following describes the work actually witnessed by D-O-R personnel.

  7. Increasing Biogas Production Rate from Cattle Manure Using Rumen Fluid as Inoculums

    Directory of Open Access Journals (Sweden)

    Budiyono Budiyono

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 In this study, rumen fluid of animal ruminant was used as inoculums to increase biogas production rate from cattle manure at mesophilic condition. A series of laboratory experiments using 400 ml biodigester were performed in batch operation mode. Given 100 grams of fresh cattle manure (M was fed to each biodigester and mixed with rumen fluid (R and tap water (W in several ratio resulting six different M:W:R ratio contents i.e. 1:1:0; 1:0.75:0.25; 1:0.5:0.5; 1:0.25:0.75; and 1:0:1 (correspond to 0; 12.5; 25, 37.5; 50, and 100 % rumen, respectively and six different total solid (TS contents i.e. 2.6, 4.6, 6.2, 7.4, 9.2, 12.3, and 18.4 %. The operating temperatures were at room temperature. The results showed that the rumen fluid inoculated to biodigester significantly effected the biogas production. Rumen fluid inoculums caused biogas production rate and efficiency increase more than two times in compare to manure substrate without rumen fluid inoculums. The best performance for biogas production was the digester with rumen fluid and TS content in the range of 25-50 % and 7.4 and 9.2 %, respectively. These results suggest that, based on TS content effects to biogas yield, rumen fluid inoculums exhibit the similar effect with other inoculums. Increasing rumen content will also increase biogas production. Due to the optimum total solid (TS content for biogas production between 7-9 % (or correspond to more and less manure and total liquid 1:1, the rumen fluid content of 50 % will give the best performance for biogas production. The future work will be carried out to study the dynamics of biogas production if both the rumen fluid inoculums and manure are fed in the continuous system Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Doi: 10.12777/ijse.6.1.31-38 [How to cite this article: Budiyono, Widiasa, I.N., Johari, S. and Sunarso. (2014. Increasing Biogas

  8. The thermal denigration in fluid-bed to make uranyl product

    International Nuclear Information System (INIS)

    Ma Zhenrong; Cui Yulin; Zhu Changbing; Fan Chuanyong; Liu Yanfeng

    2010-01-01

    Nuclear fuel reprocessing plant used the thermal denigration to high concentration of uranyl nitrate solution in fluid-bed to make uranyl product. First the uranyl nitrate solution were concentrated in evaporator, into 300 gU/L, 600 gU/L, 750 gU/L and 1000 gU/L.When the fluid-bed was in good fluidity state at 320 degree C, the solution was sprayed all over the surface of the fine crystal seeds through the dual-channel air-blast nozzles to make new crystal seed and to make them grow up. The denigration reaction occurred when the internal temperature of the fluid-bed was kept at about 300 degree C by the outside and inside heat apparatus. The product were transported crossing the valve and spiral transfer to pack. The tail gas was purified and discharged. Through the fluid-bed's running, the variation discipline of temperature and the pressure, the effect curve of the quality of product accumulated to pressure drop were determined. At the same time, the gentrification temperature, the distributed heat and the transfer mode were tested. (authors)

  9. Analysis of anaerobic product properties in fluid and aggressive environments

    OpenAIRE

    Goncharov, A.; Tulinov, A.

    2008-01-01

    The article presents the results of experiments involved in investigation of properties of some domestic and foreign-made anaerobic materials in components and units operating in fluid and aggressive environments. These experiments determined the strength and swell values of anaerobic products in the sea water, fuel and oil, and confirmed their anticorrosion properties. The experiments demonstrated high resistance of anaerobic products to various fluids and aggressive environments, which make...

  10. Methods for collection and analysis of geopressured geothermal and oil field waters

    Energy Technology Data Exchange (ETDEWEB)

    Lico, M.S.; Kharaka, Y.K.; Carothers, W.W.; Wright, V.A.

    1982-01-01

    Present methods are described for the collection, preservation, and chemical analysis of waters produced from geopressured geothermal and petroleum wells. Detailed procedures for collection include precautions and equipment necessary to ensure that the sample is representative of the water produced. Procedures for sample preservation include filtration, acidification, dilution for silica, methyl isobutyl ketone (MIBK) extraction of aluminum, addition of potassium permanganate to preserve mercury, and precipitation of carbonate species as strontium carbonate for stable carbon isotopes and total dissolved carbonate analysis. Characteristics determined at the well site are sulfide, pH, ammonia, and conductivity. Laboratory procedures are given for the analysis of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, iron, manganese, zinc, lead, aluminum, and mercury by atomic absorption and flame emission spectroscopy. Chloride is determined by silver nitrate titration and fluoride by ion-specific electrode. Bromide and iodide concentrations are determined by the hypochlorite oxidation method. Sulfate is analyzed by titration using barium chloride with thorin indicator after pretreatment with alumina. Boron and silica are determined colorimetrically by the carmine and molybdate-blue methods, respectively. Aliphatic acid anions (C/sub 2/ through C/sub 5/) are determined by gas chromatography after separation and concentration in a chloroform-butanol mixture.

  11. Methods for collection and analysis of geopressured geothermal and oil field waters

    Science.gov (United States)

    Lico, Michael S.; Kharaka, Yousif K.; Carothers, William W.; Wright, Victoria A.

    1982-01-01

    Present methods are described for the collection, preservation, and chemical analysis of waters produced from geopressured geothermal and petroleum wells. Detailed procedures for collection include precautions and equipment necessary to ensure that the sample is representative of the water produced. Procedures for sample preservation include filtration, acidification, dilution for silica, methyl isobutyl ketone (MIBK) extraction of aluminum, addition of potassium permanganate to preserve mercury, and precipitation of carbonate species as strontium carbonate for stable carbon isotopes and total dissolved carbonate analysis. Characteristics determined at the well site are sulfide, pH, ammonia, and conductivity. Laboratory procedures are given for the analysis of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, iron, manganese, zinc, lead, aluminum, .and mercury by atomic absorption and flame emission spectroscopy. Chloride is determined by silver nitrate titration and fluoride by ion-specific electrode. Bromide and iodide concentrations are determined by the hypochlorite oxidation method. Sulfate is analyzed by titration using barium chloride with thorin indicator after pretreatment with alumina. Boron and silica are determined colorimetrically by the carmine and molybdate-blue methods, respectively. Aliphatic acid anions (C2 through C5) are determined by gas chromatography after separation and concentration in a chloroform-butanol mixture.

  12. Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

  13. Geothermal resources: Frio Formation, Middle Texas Gulf Coast. Geological circular 75-8

    Energy Technology Data Exchange (ETDEWEB)

    Bebout, D.G.; Agagu, O.K.; Dorfman, M.H.

    1975-01-01

    Regional sand distribution of the Frio Formation is determined; depositional environments are identified; and the geopressured zone and its relationship to sand/shale distribution, growth faults, and fluid temperatures in the Middle Texas Gulf Coast are delineated. (MHR)

  14. SYNROC production using a fluid bed calciner

    International Nuclear Information System (INIS)

    Ackerman, F.J.; Grens, J.Z.; Ryerson, F.J.; Hoenig, C.L.; Bazan, F.; Campbell, J.H.

    1982-01-01

    SYNROC is a titanate-based ceramic developed for immobilization of high-level nuclear reactor wastes in solid form. Fluid-bed SYNROC production permits slurry drying, calcining and redox to be carried out in a single unit. We present results of studies from two fluid beds; the Idaho Exxon internally-heated unit and the externally-heated unit constructed at Lawrence Livermore National laboratory. Bed operation over a range of temperature, feed rate, fluidizing rate and redox conditions indicate that high density, uniform particle-size SYNROC powders are produced which facilitate the densification step and give HUP parts with dense, well-developed phases and good leaching characteristics. 3 figures, 3 tables

  15. 30 CFR 251.1 - Definitions.

    Science.gov (United States)

    2010-07-01

    ..., gas, and sulphur mean oil, gas, sulphur, geopressured-geothermal, and associated resources. Outer..., laboratory analyses of physical and chemical properties, well logs or charts, results from formation fluid... authorized to act on the Director's behalf. Exploration means the commercial search for oil, gas, and sulphur...

  16. 30 CFR 280.1 - What definitions apply to this part?

    Science.gov (United States)

    2010-07-01

    ..., gas, and sulphur means oil, gas, and sulphur, geopressured-geothermal and associated resources... PROSPECTING FOR MINERALS OTHER THAN OIL, GAS, AND SULPHUR ON THE OUTER CONTINENTAL SHELF General Information... properties, well logs or charts, results from formation fluid tests, and descriptions of mineral occurrences...

  17. Leveraging Understanding of Flow of Variable Complex Fluid to Design Better Absorbent Hygiene Products

    Science.gov (United States)

    Krautkramer, C.; Rend, R. R.

    2014-12-01

    Menstrual flow, which is a result of shedding of uterus endometrium, occurs periodically in sync with a women's hormonal cycle. Management of this flow while allowing women to pursue their normal daily lives is the purpose of many commercial products. Some of these products, e.g. feminine hygiene pads and tampons, utilize porous materials in achieving their goal. In this paper we will demonstrate different phenomena that have been observed in flow of menstrual fluid through these porous materials, share some of the advances made in experimental and analytical study of these phenomena, and also present some of the unsolved challenges and difficulties encountered while studying this kind of flow. Menstrual fluid is generally composed of four main components: blood plasma, blood cells, cervical mucus, and tissue debris. This non-homogeneous, multiphase fluid displays very complex rheological behavior, e. g., yield stress, thixotropy, and visco-elasticity, that varies throughout and between menstrual cycles and among women due to various factors. Flow rates are also highly variable during menstruation and across the population and the rheological properties of the fluid change during the flow into and through the product. In addition to these phenomena, changes to the structure of the porous medium within the product can also be seen due to fouling and/or swelling of the material. This paper will, also, share how the fluid components impact the flow and the consequences for computer simulation, the creation of a simulant fluid and testing methods, and for designing products that best meet consumer needs. We hope to bring to light the challenges of managing this complex flow to meet a basic need of women all over the world. An opportunity exists to apply learnings from research in other disciplines to improve the scientific knowledge related to the flow of this complex fluid through the porous medium that is a sanitary product.

  18. A 100-Year Review: The production of fluid (market) milk.

    Science.gov (United States)

    Barbano, David M

    2017-12-01

    During the first 100 years of the Journal of Dairy Science, dairy foods and dairy production dairy scientists have partnered to publish new data and research results that have fostered the development of new knowledge. This knowledge has been the underpinning of both the commercial development of the fluid milk processing industry and regulations and marketing policies for the benefit of dairy farmers, processors, and consumers. During the first 50 years, most of the focus was on producing and delivering high-quality raw milk to factories and improving the shelf life of pasteurized fluid milk. During the second 50 years, raw milk quality was further improved through the use of milk quality payment incentives. Due to changing demographics and lifestyle, whole fluid milk consumption declined and processing technologies were developed to increase the range of fluid milk products (skim and low-fat milks, flavored milks, lactose-reduced milk, long-shelf-life milks, and milks with higher protein and calcium contents) offered to the consumer. In addition, technology to produce specialty high-protein sports beverages was developed, which expanded the milk-based beverage offerings to the consumer. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Testing of CFC replacement fluids for arc-induced toxic by-products

    Energy Technology Data Exchange (ETDEWEB)

    Cravey, W.R.; Goerz, D.A.; Hawley-Fedder, R.A.

    1993-06-01

    The authors have developed a unique test-stand for quantifying the generation of perfluoroisobutylene (PFIB) in chlorofluorocarbon (CFC) replacement fluids when they are subjected to high electrical stress/breakdown environments. PFIB is an extremely toxic gas with a threshold limit value of 10 ppbv as set by the American Conference of Governmental Industrial Hygienists. They have tested several new fluids from various manufacturers for their potential to generate PFIB. Their goal is to determine breakdown characteristics and quantify toxic by-products of these replacement fluids to determine a safe, usable alternative for present CFC`s.

  20. Major advances in fresh milk and milk products: fluid milk products and frozen desserts.

    Science.gov (United States)

    Goff, H D; Griffiths, M W

    2006-04-01

    Major technological advances in the fluid milk processing industry in the last 25 yr include significant improvements in all the unit operations of separation, standardization, pasteurization, homogenization, and packaging. Many advancements have been directed toward production capacity, automation, and hygienic operation. Extended shelf-life milks are produced by high heat treatment, sometimes coupled with microfiltration or centrifugation. Other nonthermal methods have also been investigated. Flavored milk beverages have increased in popularity, as have milk beverages packaged in single-service, closeable plastic containers. Likewise, the frozen dairy processing industry has seen the development of large-capacity, automated processing equipment for a wide range of products designed to gain market share. Significant advancements in product quality have been made, many of these arising from improved knowledge of the functional properties of ingredients and their impact on structure and texture. Incidents of foodborne disease associated with dairy products continue to occur, necessitating even greater diligence in the control of pathogen transmission. Analytical techniques for the rapid detection of specific types of microorganisms have been developed and greatly improved during this time. Despite tremendous technological advancements for processors and a greater diversity of products for consumers, per capita consumption of fluid milk has declined and consumption of frozen dairy desserts has been steady during this 25-yr period.

  1. Supercritical Fluid Chromatography--Theoretical Background and Applications on Natural Products.

    Science.gov (United States)

    Hartmann, Anja; Ganzera, Markus

    2015-11-01

    The use of supercritical fluid chromatography for natural product analysis as well as underlying theoretical mechanisms and instrumental requirements are summarized in this review. A short introduction focusing on the historical development of this interesting separation technique is followed by remarks on the current instrumental design, also describing possible detection modes and useable stationary phases. The overview on relevant applications is grouped based on their basic intention, may it be (semi)preparative or purely analytical. They indicate that supercritical fluid chromatography is still primarily considered for the analysis of nonpolar analytes like carotenoids, fatty acids, or terpenes. The low polarity of supercritical carbon dioxide, which is used with modifiers almost exclusively as a mobile phase today, combined with high efficiency and fast separations might explain the popularity of supercritical fluid chromatography for the analysis of these compounds. Yet, it has been shown that more polar natural products (e.g., xanthones, flavonoids, alkaloids) are separable too, with the same (if not superior) selectivity and reproducibility than established approaches like HPLC or GC. Georg Thieme Verlag KG Stuttgart · New York.

  2. Gulf Coast Programmatic Environmental Assessment Geothermal Well Testing: The Frio Formation of Texas and Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    In accordance with the requirements of 10 CFR Part 711, environmental assessments are being prepared for significant activities and individual projects of the Division of Geothermal Energy (DGE) of the Energy Research and Development Administration (ERDA). This environmental assessment of geopressure well testing addresses, on a regional basis, the expected activities, affected environments, and possible impacts in a broad sense. The specific part of the program addressed by this environmental assessment is geothermal well testing by the take-over of one or more unsuccessful oil wells before the drilling rig is removed and completion of drilling into the geopressured zone. Along the Texas and Louisiana Gulf Coast (Plate 1 and Overlay) water at high temperatures and high pressures is trapped within Gulf basin sediments. The water is confined within or below essentially impermeable shale sequences and carries most or all of the overburden pressure. Such zones are referred to as geopressured strata. These fluids and sediments are heated to abnormally high temperatures (up to 260 C) and may provide potential reservoirs for economical production of geothermal energy. The obvious need in resource development is to assess the resource. Ongoing studies to define large-sand-volume reservoirs will ultimately define optimum sites for drilling special large diameter wells to perform large volume flow production tests. In the interim, existing well tests need to be made to help define and assess the resource. The project addressed by this environmental assessment is the performance of a geothermal well test in high potential geothermal areas. Well tests involve four major actions each of which may or may not be required for each of the well tests. The four major actions are: site preparation, drilling a salt-water disposal well, actual flow testing, and abandonment of the well.

  3. Geopressured-Geothermal Drilling and Testing Plan, Volume II, Testing Plan; Dow Chemical Co. - Dept. of Energy Dow-DOE Sweezy No. 1 Well, Vermilion Parish, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-02-01

    The Dow/D.O.E. L. R. Sweezy No. 1 geopressured geothermal production well was completed in August of 1981. The well was perforated and gravel packed in approximately 50 feet of sand from 13,344 feet to 13,395 feet. Permeabilities of 6 to 914 millidarcies were measured with porosity of 25 to 36%. Static surface pressure after well clean-up was 5000 psi. At 1000 B/D flow rate the drawdown was 50 psi. The water produced in clean-up contained 100,000 ppm TDS. This report details the plan for testing this well with the goal of obtaining sufficient data to define the total production curve of the small, 939 acre, reservoir. A production time of six to nine months is anticipated. The salt water disposal well is expected to be completed and surface equipment installed such that production testing will begin by April 1, 1982. The program should be finished and reports written by February 28, 1983. The brine will be produced from the No.1 well, passed through a separator where the gas is removed, then reinjected into the No.2 (SWD) well under separator pressure. Flow rates of up to 25,000 B/D are expected. The tests are divided into a two-week short-term test and six to nine-month long-term tests with periodic downhole measurement of drawdown and buildup rates. Data obtained in the testing will be relayed by phoneline computer hookup to Otis Engineering in Dallas, Texas, where the reservoir calculations and modeling will be done. At the point where sufficient data has been obtained to reach the objectives of the program, production will be ended, the wells plugged and abandoned, and a final report will be issued.

  4. Detecting subsurface fluid leaks in real-time using injection and production rates

    Science.gov (United States)

    Singh, Harpreet; Huerta, Nicolas J.

    2017-12-01

    CO2 injection into geologic formations for either enhanced oil recovery or carbon storage introduces a risk for undesired fluid leakage into overlying groundwater or to the surface. Despite decades of subsurface CO2 production and injection, the technologies and methods for detecting CO2 leaks are still costly and prone to large uncertainties. This is especially true for pressure-based monitoring methods, which require the use of simplified geological and reservoir flow models to simulate the pressure behavior as well as background noise affecting pressure measurements. In this study, we propose a method to detect the time and volume of fluid leakage based on real-time measurements of well injection and production rates. The approach utilizes analogies between fluid flow and capacitance-resistance modeling. Unlike other leak detection methods (e.g. pressure-based), the proposed method does not require geological and reservoir flow models to simulate the behavior that often carry significant sources of uncertainty; therefore, with our approach the leak can be detected with greater certainty. The method can be applied to detect when a leak begins by tracking a departure in fluid production rate from the expected pattern. The method has been tuned to detect the effect of boundary conditions and fluid compressibility on leakage. To highlight the utility of this approach we use our method to detect leaks for two scenarios. The first scenario simulates a fluid leak from the storage formation into an above-zone monitoring interval. The second scenario simulates intra-reservoir migration between two compartments. We illustrate this method to detect fluid leakage in three different reservoirs with varying levels of geological and structural complexity. The proposed leakage detection method has three novelties: i) requires only readily-available data (injection and production rates), ii) accounts for fluid compressibility and boundary effects, and iii) in addition to

  5. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M.P. [Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); King, J.C., E-mail: kingjc@mines.edu [Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Gorman, B.P. [Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Marshall, D.W. [Idaho National Laboratory, 2525 N. Fremont Avenue, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Forming fluid selection criteria developed for TRISO kernel production. Black-Right-Pointing-Pointer Ten candidates selected for further study. Black-Right-Pointing-Pointer Density, viscosity, and surface tension measured for first time. Black-Right-Pointing-Pointer Settling velocity and heat transfer rates calculated. Black-Right-Pointing-Pointer Three fluids recommended for kernel production testing. - Abstract: Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of {approx}10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 Degree-Sign C and 80 Degree-Sign C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory

  6. The Effect of Feed to Inoculums Ratio on Biogas Production Rate from Cattle Manure Using Rumen Fluid as Inoculums

    Directory of Open Access Journals (Sweden)

    S. Sunarso

    2010-12-01

    Full Text Available In this study, rumen fluid of animal ruminant was used as inoculums to increase biogas production rate from cattle manure at mesophilic condition. A series of laboratory experiments using 400 ml biodigester were performed in batch operation mode. Given 100 grams of fresh cattle manure was fed to each biodigester and mixed with rumen fluid and tap water resulting five different feed to inoculum (F/I ratios (i.e. 17.64, 23.51, 35.27, and 70.54. The operating temperatures were varied at room temperature. The results showed that the rumen fluid inoculated to biodigester significantly effected the biogas production. Rumen fluid inoculums caused biogas production rate and efficiency increase more than two times in compare to manure substrate without rumen fluid inoculums. At four F/Is tested, after 80 days digestion, the biogas yield were 191, 162, 144 and 112 mL/g VS, respectively. About 80% of the biogas production was obtained during the first 40 days of digestion. The best performance of biogas production will be obtained if F/I ratio is in the range of 17.64 to 35.27 (correspond to 25 – 50 % of rumen fluid. The future work will be carried out to study the dynamics of biogas production if both the rumen fluid inoculums and manure are fed in the continuous system

  7. Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model

    Science.gov (United States)

    Suppachoknirun, Theerapat; Tutuncu, Azra N.

    2017-12-01

    With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize

  8. Experimental and computational fluid dynamics studies of mixing of complex oral health products

    Science.gov (United States)

    Cortada-Garcia, Marti; Migliozzi, Simona; Weheliye, Weheliye Hashi; Dore, Valentina; Mazzei, Luca; Angeli, Panagiota; ThAMes Multiphase Team

    2017-11-01

    Highly viscous non-Newtonian fluids are largely used in the manufacturing of specialized oral care products. Mixing often takes place in mechanically stirred vessels where the flow fields and mixing times depend on the geometric configuration and the fluid physical properties. In this research, we study the mixing performance of complex non-Newtonian fluids using Computational Fluid Dynamics models and validate them against experimental laser-based optical techniques. To this aim, we developed a scaled-down version of an industrial mixer. As test fluids, we used mixtures of glycerol and a Carbomer gel. The viscosities of the mixtures against shear rate at different temperatures and phase ratios were measured and found to be well described by the Carreau model. The numerical results were compared against experimental measurements of velocity fields from Particle Image Velocimetry (PIV) and concentration profiles from Planar Laser Induced Fluorescence (PLIF).

  9. Geothermal resources of the northern gulf of Mexico basin

    Science.gov (United States)

    Jones, P.H.

    1970-01-01

    Published geothermal gradient maps for the northern Gulf of Mexico basin indicate little or no potential for the development of geothermal resources. Results of deep drilling, from 4000 to 7000 meters or more, during the past decade however, define very sharp increases in geothermal gradient which are associated with the occurrence of abnormally high interstitial fluid pressure (geopressure). Bounded by regional growth faults along the landward margin of the Gulf Basin, the geopressured zone extends some 1300 km from the Rio Grande (at the boundary between the United States and Mexico) to the mouth of the Mississippi river. Gulfward, it extends to an unknown distance across the Continental Shelf. Within geopressured deposits, geothermal gradients range upwards to 100 ??C/km, being greatest within and immediately below the depth interval in which the maximum pressure gradient change occurs. The 120 ??C isogeotherm ranges from about 2500 to 5000 m below sea level, and conforms in a general way with depth of occurrence of the top of the geopressured zone. Measured geostatic ratios range upward to 0.97; the maximum observed temperature is 273 ??C, at a depth of 5859 m. Dehydration of montmorillonite, which comprises 60 to 80 percent of clay deposited in the northern Gulf Basin during the Neogene, occurs at depths where temperature exceeds about 80 ??C, and is generally complete at depths where temperature exceeds 120 ??C. This process converts intracrystalline and bound water to free pore water, the volume produced being roughly equivalent to half the volume of montmorillonite so altered. Produced water is fresh, and has low viscosity and density. Sand-bed aquifers of deltaic, longshore, or marine origin form excellent avenues for drainage of geopressured deposits by wells, each of which may yield 10,000 m3 or more of superheated water per day from reservoirs having pressures up to 1000 bars at depths greater than 5000 m. ?? 1971.

  10. Geothermal Energy Geopressure Subprogram: DOE Lafourche Crossing No. 1, Terrebonne Parish and Lafourche Parish, Louisiana: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    The proposed action will consist of drilling one geothermal fluid well for intermittent production testing of 284 days over a three year period. Two disposal wells will initially be drilled to provide disposal of lower volume fluids produced during initial testing. Two additional disposal wells will be drilled, logged, completed, tested, and operated prior to commencement of high volume fluid production. Construction of the proposed action will change the land-use of 2 ha (5 ac) for the test well and each of the injection wells from agriculture or wetlands to resource exploration. Lands will be cleared and erosion and runoff will result. During operation of the well test, the only expected impacts are from venting of gases or flaring of gases and noise. After the tests are completed, the area will be restored as much as possible to its natural condition by revegetation programs using nature species. All sources of pollutants will be collected and disposed in environmentally acceptable ways. Accidents may result from this proposed action.

  11. Update on Area Production in Mixing of Supercritical Fluids

    Science.gov (United States)

    Okongo, Nora; Bellan, Josette

    2003-01-01

    The focus of this research is on supercritical C7H16/N2 and O2/H2 mixing layers undergoing transitions to turbulence. The C7H16/N2 system serves as a simplified model of hydrocarbon/air systems in gas-turbine and diesel engines; the O2/H2 system is representative of liquid rocket engines. One goal of this research is to identify ways of controlling area production to increase disintegration of fluids and enhance combustion in such engines. As used in this research, "area production" signifies the fractional rate of change of surface area oriented perpendicular to the mass-fraction gradient of a mixing layer. In the study, a database of transitional states obtained from direct numerical simulations of the aforementioned mixing layers was analyzed to investigate global layer characteristics, phenomena in regions of high density-gradient magnitude (HDGM), irreversible entropy production and its relationship to the HDGM regions, and mechanisms leading to area production.

  12. Straight-chain halocarbon forming fluids for TRISO fuel kernel production – Tests with yttria-stabilized zirconia microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M.P. [Nuclear Science and Engineering Program, Metallurgical and Materials Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); King, J.C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Metallurgical and Materials Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Gorman, B.P. [Metallurgical and Materials Engineering Department, Colorado Center for Advanced Ceramics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Braley, J.C. [Nuclear Science and Engineering Program, Chemistry and Geochemistry Department, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States)

    2015-03-15

    Highlights: • YSZ TRISO kernels formed in three alternative, non-hazardous forming fluids. • Kernels characterized for size, shape, pore/grain size, density, and composition. • Bromotetradecane is suitable for further investigation with uranium-based precursor. - Abstract: Current methods of TRISO fuel kernel production in the United States use a sol–gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.

  13. Monitoring of magnetic EOR fluids in reservoir under production by using the electromagnetic method

    Science.gov (United States)

    KIM, S.; Min, D. J.; Moon, S.; Kim, W. K.; Shin, Y.

    2014-12-01

    To increase the amount of oil and gas extracted during production, some techniques like EOR (Enhanced Oil Recovery) are applied by injecting some materials such as water and CO2. Recently, there are some researches for injecting magnetic nanoparticles with fluids during EOR. The size of particle is nano-scale, which can prevent particles from adhering to the pores of reservoir. The main purpose of injecting magnetic nanoparticles is to monitor movement or distribution of EOR fluids. To monitor the injected magnetic EOR fluids in the reservoir, CSEM (controlled source electromagnetic method) can be the most optimized geophysical method among various geophysical monitoring methods. Depending on the reservoir circumstances, we can control the electric or magnetic sources to monitor reservoir during oil or gas production. In this study, we perform numerical simulation of CSEM for 3D horizontal-layered models assuming a reservoir under production. We suppose that there are two wells: one is for the controlled source; the other is for the receiver. By changing the distribution, movement and magnetization of EOR fluids, we compare the electric or magnetic fields recorded at the receiver. Maxwell's equations are the governing equation of CSEM and are approximated by using the edge-based finite-element method. Direct solver is applied to solve the linear equations. Because injected magnetic nanoparticle changes the conductivity of EOR fluid, there is high contrast of conductivity of reservoir. This high contrast of conductivity induces secondary electric or magnetic fields that are recorded at the receiver well. We compare these recorded secondary fields generated by various movement or distribution of magnetic EOR fluid. Acknowledgements This work was supported by the "Development of Technology for CO2 Marine Geological Storage" grant funded by the Ministry of Oceans and Fisheries of Korea, by the "Civil Military Technology Cooperation Center", and by the International

  14. Geothermal well log interpretation midterm report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1979-02-01

    Reservoir types are defined according to fluid phase and temperature, lithology, geologic province, pore geometry, and salinity and fluid chemistry. Improvements are needed in lithology and porosity definition, fracture detection, and thermal evaluation for more accurate interpretation. Further efforts are directed toward improving diagnostic techniques for relating rock characteristics and log response, developing petrophysical models for geothermal systems, and developing thermal evaluation techniques. The Geothermal Well Log Interpretation study and report has concentrated only on hydrothermal geothermal reservoirs. Other geothermal reservoirs (hot dry rock, geopressured, etc.) are not considered.

  15. Inhibition of oncostatin M in osteoarthritic synovial fluid enhances GAG production in osteoarthritic cartilage repair

    Directory of Open Access Journals (Sweden)

    M Beekhuizen

    2013-09-01

    Full Text Available Mediators in the synovial fluid are thought to play a major role in osteoarthritic cartilage turnover. The purpose of the current study was to investigate the role of oncostatin M (OSM in osteoarthritis (OA by evaluating the presence of the cytokine and its receptors in the OA joint and interfering with its activity in synovial fluid co-cultured with cartilage explants. OSM levels were increased in the synovial fluid of osteoarthritic patients compared to healthy donors. Immunohistochemistry confirmed the presence of both the leukaemia inhibitory factor (LIF and OSM receptors for OSM throughout the whole depth of osteoarthritic cartilage and synovial tissue, whereas in healthy cartilage their presence seemed more restricted to the superficial zone. Blocking OSM activity, using an activity inhibiting antibody, in 25 % osteoarthritic synovial fluid added to OA cartilage explant cultures increased glycosaminoglycan (GAG content from 18.6 mg/g to 24.3 mg/g (P < 0.03 and total production from 7.0 mg/g to 11.9 mg/g (P < 0.003. However, OSM exogenously added to cartilage explant cultures reflecting low and high concentrations in the synovial fluid (5 and 50 pg/mL did not affect cartilage matrix turnover, suggesting that factors present in the synovial fluid act in concert with OSM to inhibit GAG production. The current study indicates the potential to enhance cartilage repair in osteoarthritis by modulating the joint environment by interfering with OSM activity.

  16. Production of reagents for cleaning fluids

    Energy Technology Data Exchange (ETDEWEB)

    Grunberg, I V; Korostyleva, R N; Pytel, S P; Spasskii, P I; Titarenko, N K; Trachtenberg, S I; Yushkevich, V I

    1980-10-25

    A method for producing reagents for cleaning fluids is proposed using polymerization of acrylonitril, metachrylate or a mixture of the two in water and saponification of the polymers with alakali. To reduce the consumption of monomers and increase the quality of the reagents, 0.4-1.0 parts humic substances, 0.2-1.0 parts hydrolizate from tanning waste products and 1.2-4.0 parts monomers are added to the reaction medium, followed by copolymerization in an acid medium. The proposed method ensures quality reagents which combine lower water yield with a moderate increase in viscosity when acting on clay solutions. Compared with the current method, this method lowers the consumption of an expensive and hard-to-find monomer 1.2-1.4X for one ton of reagent, which lowers the cost of raw material by 1.3-1.7X. This results in a savings of 195-385 rubles per ton of reagent, 600-1200 thousand at 3000 tons/yr.

  17. Study of three-phase fluid dynamics in a surging production system

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Rodolfo; Assuncao, Pablo Morelato; Ressel, Fabio de Assis [Universidade Federal do Espirito Santo, Sao Mateus, ES (Brazil)

    2010-07-01

    Among others factors, petroleum extraction is subordinate to the reservoir pressure and the required pressure to rise it to the surface production facilities. Reservoir deliverability equations tied production rate with reservoir driving force (Economides, 1994). The Inflow Performance Relationship (IPR) is obtained by measuring the production rates under various drawdown pressures, and is used to assess well performance by plotting the well production rate against the flowing bottonhole pressure. Others limiting rate of production factors are imposed by wellhead required pressure and the production tubing performance. The tubing performance is sensitive to several parameters among which we can highlight the production tubing geometry and the properties of the produced fluids (Guo, 2007). Therewith we can define the Tubing Performance Relationship (TPR) similarly to the IPR. Thus the present work aims the hydraulic performance analysis of a production system with a flowing well without artificial elevation methods. Furthermore the triphasic (water-oil-gas) flow studies, both in the production string and the production line, allowed the inspection of the main variables of the system, fluid properties, operation conditions and geometric parameters, on the head loss. In order obtain all these, several methods were developed, each one with specifics limitations to include all flow patterns. The most common biphasic horizontal flow patterns according to Brill and Beggs (1975) are: mist flow, bubble flow, plug flow, slug flow, stratified flow, wavy flow and annular flow. Yet according to Brill and Beggs (1975) the most common biphasic vertical flow patterns are: bubbly flow, slug flow, churn flow, and annular flow. Accordingly to these, another outbreak discussed is the pattern flow sensibility on the head loss. The methodology used in the present work is based on the discretization of the system in several discrete counterparts cells, in which was where it was applied

  18. Fluid diversion in oil recovery

    International Nuclear Information System (INIS)

    Nimir, Hassan B.

    1999-01-01

    In any oil recovery process, large scale heterogeneities, such as fractures, channels, or high-permeability streaks, can cause early break through of injected fluid which will reduce oil recovery efficiency. In waterflooding, enhanced oil recovery, and acidizing operations, this problem is particularly acute because of the cost of the injected fluid. On the other hand coping with excess water production is always a challenging task for field operators. The cost of handling and disposing produced water can significantly shorten the economic production life of an oil well. The hydrostatic pressure created by high fluid levels in a well (water coning) is also detrimental to oil production. In this paper, the concept of fluid diversion is explained. Different methods that are suggested to divert the fluid into the oil-bearing-zones are briefly discussed, to show their advantages and disadvantages. Methods of reducing water production in production well are also discussed. (Author)

  19. Geothermal well log interpretation state of the art. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1980-01-01

    An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

  20. Isolation of oxidative degradation products of atorvastatin with supercritical fluid chromatography.

    Science.gov (United States)

    Klobčar, Slavko; Prosen, Helena

    2015-12-01

    The isolation of four oxidative degradation products of atorvastatin using preparative high-performance liquid chromatography applying at least two chromatographic steps is known from the literature. In this paper it is shown that the same four impurities could be isolated from similarly prepared mixtures in only one step using supercritical fluid chromatography. The methods for separation were developed and optimized. The preparation of the mixtures was altered in such a way as to enhance the concentration of desired impurities. Appropriate solvents were applied for collection of separated impurities in order to prevent degradation. The structures of the isolated impurities were confirmed and their purity determined. The preparative supercritical fluid chromatography has proven to be superior to preparative HPLC regarding achieved purity of standards applying fewer chromatographic as well as isolation steps. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Experimental and computational fluid dynamic studies of mixing for complex oral health products

    Science.gov (United States)

    Garcia, Marti Cortada; Mazzei, Luca; Angeli, Panagiota

    2015-11-01

    Mixing high viscous non-Newtonian fluids is common in the consumer health industry. Sometimes this process is empirical and involves many pilot plants trials which are product specific. The first step to study the mixing process is to build on knowledge on the rheology of the fluids involved. In this research a systematic approach is used to validate the rheology of two liquids: glycerol and a gel formed by polyethylene glycol and carbopol. Initially, the constitutive equation is determined which relates the viscosity of the fluids with temperature, shear rate, and concentration. The key variable for the validation is the power required for mixing, which can be obtained both from CFD and experimentally using a stirred tank and impeller of well-defined geometries at different impeller speeds. A good agreement between the two values indicates a successful validation of the rheology and allows the CFD model to be used for the study of mixing in the complex vessel geometries and increased sizes encountered during scale up.

  2. Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI

    DEFF Research Database (Denmark)

    Gideon, P; Ståhlberg, F; Thomsen, C

    1994-01-01

    An interleaved velocity-sensitised fast low-angle shot pulse sequence was used to study cerebrospinal fluid (CSF) flow in the cerebral aqueduct, and supratentorial CSF production in 9 patients with normal pressure hydrocephalus (NPH) and 9 healthy volunteers. The peak aqueduct CSF flow, both caudal...

  3. Procedure for controlling the extraction of production fluid from a production well; Fremgangsmaate for aa styre uttrekking av produksjonsfluid fra en produksjonsbroenn

    Energy Technology Data Exchange (ETDEWEB)

    Curlett, H.B.

    1996-06-17

    Basic well drilling techniques have not changed throughout the years: a number of drill pipes connected into a drill column are rotated along with a drill bit in the ground formation. It has been difficult to obtain instant information on the local parameters during the drilling operation. Such information is required by the drilling operator for efficient operation. The present invention concerns controlling the extraction of production fluids from a production well, characterized by externally monitoring local well parameters by means of signals from sensors in the well. If the signals indicate that defined limiting values of one or more parameters have been exceeded, one or more of different fluids are pumped simultaneously and independently down individually assigned conduits to restore the parameters to within their normal ranges. 28 figs.

  4. Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times

    OpenAIRE

    Sovová, H. (Helena)

    2012-01-01

    Kinetics of supercritical fluid extraction (SFE) from plants is variable due to different micro-structure of plants and their parts, different properties of extracted substances and solvents, and different flow patterns in the extractor. Variety of published mathematical models for SFE of natural products corresponds to this diversification. This study presents simplified equations of extraction curves in terms of characteristic times of four single extraction steps: internal diffusion, exter...

  5. Fluid flow behaviour of gas-condensate and near-miscible fluids at the pore scale

    Energy Technology Data Exchange (ETDEWEB)

    Dawe, Richard A. [Department of Chemical Engineering, University of West Indies, St. Augustine (Trinidad and Tobago); Grattoni, Carlos A. [Department of Earth Science and Engineering, Imperial College, London, SW7 2BP (United Kingdom)

    2007-02-15

    Retrograde condensate reservoir behaviour is complex with much of the detailed mechanisms of the multiphase fluid transport and mass transfer between the phases within the porous matrix still speculative. Visual modelling of selected processes occurring at the pore level under known and controlled boundary conditions can give an insight to fluid displacements at the core scale and help the interpretation of production behaviour at reservoir scale. Visualisation of the pore scale two-phase flow mechanisms has been studied experimentally at low interfacial tensions, < 0.5 mN/m, using a partially miscible fluid system in glass visual micro models. As the interfacial tension decreases the balance between fluid-fluid forces (interfacial, spreading and viscous) and fluid-solid interactions (wettability and viscous interactions) changes. Data measurements in the laboratory, particularly relative permeability, will therefore always be difficult especially for condensate fluids just below their dew point. What is certain is that gas production from a gas-condensate leads to condensate dropout when pressure falls below the dew point, either within the wellbore or, more importantly, in the reservoir. This paper illustrates some pore scale physics, particularly interfacial phenomena at low interfacial tension, which has relevance to appreciating the flow of condensate fluids close to their dew point either near the wellbore (which affects well productivity) or deep inside the reservoir (which affects condensate recovery). (author)

  6. Semi-annual report for the unconventional gas recovery program, period ending September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Manilla, R.D. (ed.)

    1980-11-01

    Progress is reported in research on methane recovery from coalbeds, eastern gas shales, western gas sands, and geopressured aquifers. In the methane from coalbeds project, data on information evaluation and management, resource and site assessment and characterization, model development, instrumentation, basic research, and production technology development are reported. In the methane from eastern gas shales project, data on resource characterization and inventory, extraction technology, and technology testing and verification are presented. In the western gas sands project, data on resource assessments, field tests and demonstrations and project management are reported. In the methane from geopressured aquifers project, data on resource assessment, supporting research, field tests and demonstrations, and technology transfer are reported.

  7. Enhancing methane production from U. lactuca using combined anaerobically digested sludge (ADS) and rumen fluid pre-treatment and the effect on the solubilization of microbial community structures.

    Science.gov (United States)

    Zou, Yu; Xu, Xiaochen; Li, Liang; Yang, Fenglin; Zhang, Shushen

    2018-04-01

    Methane production by the anaerobic digestion of seaweed is restricted by the slow degradation caused by the influence of the rigid algal cell wall. At the present time, there has been no study focusing on the anaerobic digestion of U. lactuca by co-fermentation and pre-treatment with rumen fluid. Rumen fluid can favor methane production from algal biomass by utilizing the diversity and quantity of bacterial and archaeal communities in the rumen fluid. This research presents a novel method based on combined ADS and rumen fluid pre-treatment to improve the production of methane from seaweed. Biochemical methane potential (BMP) tests were performed to investigate the biogas production using combined ADS and rumen fluid pre-treatment at varied inoculum ratios on the performance of methane production from U. lactuca biomass. Compared to the control (no rumen fluid pre-treatment), the highest BMP yields of U. lactuca increased from 3%, 27.5% and 39.5% to 31.1%, 73% and 85.6%, respectively, for three different types of treatment. Microbial community analysis revealed that the Methanobrevibacter species, known to accept electrons to form methane, were only detected when rumen fluid was added. Together with the significant increase in species of Methanoculleus, Methanospirillum and Methanosaeta, rumen fluid improved the fermentation and degradation of the microalgae biomass not only by pre-treatment to foster cell-wall degradation but also by relying on methane production within itself during anaerobic processes. Batch experiments further indicated that rumen fluid applied to the co-fermentation and pre-treatment could increase the economic value and hold promise for enhancing biogas production from different seaweed species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Selection of fluids for tritium pumping systems

    International Nuclear Information System (INIS)

    Chastagner, P.

    1984-02-01

    The degradation characteristics of three types of vacuum pump fluids, polyphenyl ethers, perfluoropolyethers and hydrocarbon oils were reviewed. Fluid selection proved to be a critical factor in the long-term performance of tritium pumping systems and subsequent tritium recovery operations. Thermal degradation and tritium radiolysis of pump fluids produce contaminants which can damage equipment and interfere with tritium recovery operations. General characteristics of these fluids are as follows: polyphenyl ether has outstanding radiation resistance, is very stable under normal diffusion pump conditions, but breaks down in the presence of oxygen at anticipated operating temperatures. Perfluoropolyether fluids are very stable and do not react chemically with most gases. Thermal and mechanical degradation products are inert, but the radiolysis products are very corrosive. Most of the degradation products of hydrogen oils are volatile and the principal radiolysis product is methane. Our studies show that polyphenyl ethers and hydrocarbon oils are the preferred fluids for use in tritium pumping systems. No corrosive materials are formed and most of the degradation products can be removed with suitable filter systems

  9. Workshop on induced Seismicity due to fluid injection/production from Energy-Related Applications

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L.; Asanuma, Hiroshi; Rueter, Horst; Stump, Brian; Segall, Paul; Zoback, Mark; Nelson, Jim; Frohlich, Cliff; Rutledge, Jim; Gritto, Roland; Baria, Roy; Hickman, Steve; McGarr, Art; Ellsworth, Bill; Lockner, Dave; Oppenheimer, David; Henning, Peter; Rosca, Anca; Hornby, Brian; Wang, Herb; Beeler, Nick; Ghassemi, Ahmad; Walters, Mark; Robertson-Tait, Ann; Dracos, Peter; Fehler, Mike; Abou-Sayed, Ahmed; Ake, Jon; Vorobiev, Oleg; Julian, Bruce

    2011-04-01

    that was necessary not only to make fluid injections safe, but an economic asset, DOE organized a series of workshops. The first workshop was held on February 4, 2010, at Stanford University. A second workshop will be held in mid-2010 to address the critical elements of a 'best practices/protocol' that industry could use as a guide to move forward with safe implementation of fluid injections/production for energy-related applications, i.e., a risk mitigation plan, and specific recommendations for industry to follow. The objectives of the first workshop were to identify critical technology and research needs/approaches to advance the understanding of induced seismicity associated with energy related fluid injection/production, such that: (1) The risk associated with induced seismicity can be reduced to a level that is acceptable to the public, policy makers, and regulators; and (2) Seismicity can be utilized/controlled to monitor, manage, and optimize the desired fluid behavior in a cost effective fashion. There were two primary goals during the workshop: (1) Identify the critical roadblocks preventing the necessary understanding of human-induced seismicity. These roadblocks could be technology related (better imaging of faults and fractures, more accurate fluid tracking, improved stress measurements, etc.), research related (fundamental understanding of rock physical properties and geochemical fluid/rock interactions, development of improved constitutive relations, improved understanding of rock failure, improved data processing and modeling, etc.), or a combination of both. (2) After laying out the roadblocks the second goal was to identify technology development and research needs that could be implemented in the near future to address the above objectives.

  10. Field study of completion fluids to enhance gas production in the Barnett Shale

    Energy Technology Data Exchange (ETDEWEB)

    Penny, G.S.; Pursley, J.T. [CESI Chemical, Houston, TX (United States); Clawson, T.D. [Antero Resources Corp., Denver, CO (United States)

    2006-07-01

    In the mid 1990s, the initial Barnett shale wells were completed with massive hydraulic fracturing treatments. Light sand fracturing in slick water consisting of water and friction reducer was used in order to reduce stimulation costs without reducing production. Field and lab data were presented for commonly used fluids pumped in the Barnett Shale. An evaluation of these surfactants as well as a microemulsion system was also conducted. An illustration of how the microemulsion system speeds up the cleanup of injected fluids in tight gas cores was presented, Overall, the study treated and analysed over 200 wells and made side by side comparisons of treatment variations. Laboratory studies that were presented included leakoff control, capillary end effect control, relative permeability and fracture cleanup. The field studies in the Barnett Shale provided the following information: a geological overview, a description of the Barnett Shale fracturing/refracturing program, and evaluation of production data. It was concluded that water saturation decreased and relative permeability to gas improved as evidenced through the core data. The study also showed that including the microemulsion in low permeability gas cores would cut the capillary pressure by half. 12 refs., 16 figs., 3 tabs.

  11. Performance Testing of Cutting Fluids

    DEFF Research Database (Denmark)

    Belluco, Walter

    The importance of cutting fluid performance testing has increased with documentation requirements of new cutting fluid formulations based on more sustainable products, as well as cutting with minimum quantity of lubrication and dry cutting. Two sub-problems have to be solved: i) which machining...... tests feature repeatability, reproducibility and sensitivity to cutting fluids, and ii) to what extent results of one test ensure relevance to a wider set of machining situations. The present work is aimed at assessing the range of validity of the different testing methods, investigating correlation...... within the whole range of operations, materials, cutting fluids, operating conditions, etc. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping, and with respect to tool life, cutting forces, chip formation and product quality (dimensional accuracy and surface integrity...

  12. Multivariable Real-Time Control of Viscosity Curve for a Continuous Production Process of a Non-Newtonian Fluid

    Directory of Open Access Journals (Sweden)

    Roberto Mei

    2018-01-01

    Full Text Available The application of a multivariable predictive controller to the mixing process for the production of a non-Newtonian fluid is discussed in this work. A data-driven model has been developed to describe the dynamic behaviour of the rheological properties of the fluid as a function of the operating conditions using experimental data collected in a pilot plant. The developed model provides a realistic process representation and it is used to test and verify the multivariable controller, which has been designed to maintain viscosity curves of the non-Newtonian fluid within a given region of the viscosity-vs-shear rate plane in presence of process disturbances occurring in the mixing process.

  13. Effect of Morinda citrifolia leaf as saponin sources on fermentation characteristic, protozoa defaunated, gas and methane production of ruminal fluid in vitro

    Directory of Open Access Journals (Sweden)

    Hendra Herdian

    2011-06-01

    Full Text Available Many studies have reported that the Morinda citrifolia (pace plant was a useful material for human health. However the exploration of this plant on rumen fermentation is still needed. Therefore, a research was done to study the effect of M. citrifolia leaf on fermentation characteristics of rumen fluid consisted of protozoa defaunated process, VFA composition, NH3 content, rumen microbial protein content, gas and methane production using in vitro techniques. Rumen fluid obtained from two fistulated Ongole crossbreed cattle fed with forage and concentrate feed ration (70 : 30. The fluid was incubated at 39ºC for 48 hours. The treatment on the rumen fluid consisted of control treatment: 100% (200 mg DM kolonjono forage substrate (Penisetum purpureum and M. citrifolia treatments: kolonjono forage plus M. citrifolia (equivalent saponin 3; 6; 9; and 12 mg DM, respectively. The treatment of M. citrifolia leaf addition showed declined patterns in the number of protozoa population (P 0.05. Microbial protein content in rumen fluid increased (P 0.05 compared to control, while M. citrifolia treatments reduced the methane gas production of (P < 0.05 compared to control. It was concluded that M. citrifolia leaf has potential as a limiting agent of protozoa population and methane gas production in rumen.

  14. Mitigation of greenhouse gas emissions in the production of fluid milk.

    Science.gov (United States)

    Tomasula, Peggy M; Nutter, Darin W

    2011-01-01

    Global climate change, driven by the buildup of greenhouse gas (GHG) emissions in the atmosphere, is challenging the dairy industries in the United States and throughout the world to develop sustainable initiatives to reduce their environmental impact. The U.S. dairy industry has committed to lowering the GHG emissions, primarily CH(4), N(2)O, and CO(2), in each sector of the fluid milk supply chain which extends from the farm, to the processing plant, and to distribution of the packaged product, where it is refrigerated by the retailer and then the consumer. This chapter provides an overview of the life cycle analysis (LCA) technique and its use in identifying the GHG emissions in each sector of the fluid milk supply chain, from cradle to grave, and the best practices and research that is currently being conducted to reduce or mitigate GHG emissions in each sector. We also discuss the use of on-farm and off-farm process simulation as tools for evaluating on-farm mitigation techniques, off-farm alternative processing scenarios, and use of alternative energy management practices. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Fast flux fluid fuel reactor: A concept for the next generation of nuclear power production

    International Nuclear Information System (INIS)

    Palmiotti, G.; Feldman, E.E.

    1999-01-01

    Nuclear energy has not become the preferred method of electrical energy production largely because of economic, safety, and proliferation concerns and challenges posed by nuclear waste disposal. Economies is the most important factor. To reduce the capital costs, the authors propose a compact configuration with a very high power density and correspondingly reduced reactor component sizes. Enhanced efficiency made possible by higher operating temperatures will also improve the economics of the design, and design simplicity will keep capital, operational, and maintenance costs down. The most direct solution to the nuclear waste problem is to eliminate waste production or, at least, minimize its amount and long-term radiotoxicity. This can be achieved by very high burnups, ideally 100%, and by the eventual transmutation of the long-lived fission products in situ. Very high burnups also improve the economics by optimal exploitation of the fuel. Safety concerns can be addressed by an inherently safe reactor design. Because of the intrinsic nature of nuclear materials, there probably is no definitive answer to proliferation concerns for systems that generate neutrons; however, it is important to minimize proliferation risks. The thorium cycle is a promising option because (a) plutonium is produced only in very small quantities, (b) the presence of 232 U makes handling the fuel very difficult and therefore proliferation resistant, and (c) 233 U is a fissile isotope that is less suitable than 239 Pu for making weapons and can be diluted with other uranium isotopes. An additional benefit of the thorium cycle is that it increases nuclear fuel resources by one order of magnitude. A fast flux fluid fuel reactor is a concept that can satisfy all the foregoing requirements. The fluid fuel systems have a very simple structure. Because integrity of the fuel is not an issue, these systems can operate at very high temperatures, can have high power densities, and can achieve very

  16. Enhanced oil recovery system

    Science.gov (United States)

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  17. A wash fluid for drilling into a field

    Energy Technology Data Exchange (ETDEWEB)

    Belyakov, V M; Badzhurak, R F; Koptelova, Ye K; Rogovoy, V K; Sapozhnikov, N G

    1979-01-18

    A wash fluid is proposed, used in drilling wells in water and a content of 3-5% by weight starch products. To speed up destruction of the starch products, to the fluid are added amylolytic enzymes in the amount of 0.01-0.1 percent by weight of the starch products' weight. To lower the use of starch products, up to 3% clay can be added to the fluid. The wash fluid is prepared directly at the work site. Dry powder of modified starch is mixed with cold water until a colloidal solution is obtained. Such a wash fluid preserves the required structural-mechanical properties for 3-5 days, which ensures prompt drilling into the waterbearing layer and installation of the filter. Then, during the work process, 5-6 hours before the moment required for lowering the viscosity, to the wash fluid is added the amylolytic enzyme; under its influence, the starch molecules split up, and the viscosity drops sharply. Using this wash fluid enables a reduction in well construction times from the beginning of drilling to the end of development of the water-bearing layer, and a rise in outputs and well service lives by reducing sedimentation of the water-bearing formation and elimination of down times during work required while waiting for destruction of the starch wash fluid under natural conditions.

  18. Review of Geopressured-Geothermal and Co-Production Research

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-16

    This report is the minutes of the DOE/GRI/Industry meeting. They include a transcript of the questions and answers following each presentation and copies of slides and/or summaries prepared by each of the speakers.

  19. Multi-fluid renewable geo-energy systems and methods

    Science.gov (United States)

    Buscheck, Thomas A.

    2017-08-22

    A geo-energy production method for extracting thermal energy from a reservoir formation. A production well extracts brine from the reservoir formation. A plurality of working fluid injection ("WFI") wells may be arranged proximate to the production well to at least partially circumscribe the production well. A plurality of brine production ("BP") wells may be arranged in a vicinity of the WFI wells to at least partially circumscribe the WFI wells. A working fluid is injected into the WFI wells to help drive a flow of the brine up through the production and BP wells, together with at least a portion of the injected working fluid. Parasitic-load time-shifting and to storing of excess solar thermal energy may also be performed.

  20. Bio-oil production from biomass via supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr [Yuzuncu Yıl University, Vocational School of Health Services, 65080, Van (Turkey)

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  1. Bio-oil production from biomass via supercritical fluid extraction

    International Nuclear Information System (INIS)

    Durak, Halil

    2016-01-01

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  2. Bubble dynamics equations in Newton fluid

    International Nuclear Information System (INIS)

    Xiao, J

    2008-01-01

    For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed

  3. Fluid Behavior and Fluid-Solid Interactions in Nanoporous Media

    Science.gov (United States)

    Xu, H.

    2015-12-01

    Although shale oil/gas production in the US has increased exponentially, the low energy recovery is a daunting problem needed to be solved for its sustainability and continued growth, especially in light of the recent oil/gas price decline. This is apparently related to the small porosity (a few to a few hundred nm) and low permeability (10-16-10-20 m2) of tight shale formations. The fundamental question lies in the anomalous behavior of fluids in nanopores due to confinement effects, which, however, remains poorly understood. In this study, we combined experimental characterization and observations, particularly using small-angle neutron scattering (SANS), with pore-scale modeling using lattice Boltzmann method (LBM), to examine the fluid behavior and fluid-solid interactions in nanopores at reservoir conditions. Experimentally, we characterized the compositions and microstructures of a shale sample from Wolfcamp, Texas, using a variety of analytical techniques. Our analyses reveal that the shale sample is made of organic-matter (OM)-lean and OM-rich layers that exhibit different chemical and mineral compositions, and microstructural characteristics. Using the hydrostatic pressure system and gas-mixing setup we developed, in-situ SANS measurements were conducted at pressures up to 20 kpsi on shale samples imbibed with water or water-methane solutions. The obtained results indicate that capillary effect plays a significant role in fluid-nanopore interactions and the associated changes in nanopore structures vary with pore size and pressure. Computationally, we performed LBM modeling to simulate the flow behavior of methane in kerogen nanoporous structure. The correction factor, which is the ratio of apparent permeability to intrinsic permeability, was calculated. Our results show that the correction factor is always greater than one (non-continuum/non-Darcy effects) and increases with decreasing nanopore size, intrinsic permeability and pressure. Hence, the

  4. Early chest tube removal after video-assisted thoracic surgery lobectomy with serous fluid production up to 500 ml/day

    DEFF Research Database (Denmark)

    Bjerregaard, Lars S; Jensen, Katrine; Petersen, Rene Horsleben

    2014-01-01

    In fast-track pulmonary resections, we removed chest tubes after video-assisted thoracic surgery (VATS) lobectomy with serous fluid production up to 500 ml/day. Subsequently, we evaluated the frequency of recurrent pleural effusions requiring reintervention....

  5. Laboratory exposures of invertebrate and vertebrate species to concentrations of IA-35 (Petro-Canada) drill mud fluid, production water, and Hibernia mud cuttings

    Energy Technology Data Exchange (ETDEWEB)

    Payne, J.; Fancey, L.; Andrews, C.; Meade, J.; Power, F.; Veinot, G. [Department of Fisheries and Oceans, St. John' s, NF (Canada). Science Branch; Lee, K. [Department of Fisheries and Oceans, Mont-Joli, PQ (Canada). Maurice Lamontagne Inst.; Cook, A. [Environment Canada, Moncton, NB (Canada). Environmental Quality Laboratory

    2001-04-01

    The authors studied the short term effects on brine shrimp nauplii (Artemia franciscana), capelin larvae (Mallotus villosus), marine copepods (Calanus finmarchicus), juvenile yellowtail flounder (Limanda ferruginea) and ctenophores (Pleurobrachius pileus) of synthetic drill mud fluid, produced water and drill mud cuttings. In this report, they presented the data collected, including data on the water solubility of Petro-Canada drill mud fluid IA-35 and metal analysis of production water from the Sable Island Offshore Exploration Project. Low acute toxicity potential for drill mud fluid, production water and Hibernia drill cuttings for the species and life stages tested were revealed. The hypothesis to the effect that wastes pose very little or no risk of an acute toxic nature to the marine environment were reinforced by the results from this study. 5 refs., 25 tabs.

  6. Explosive Evaporating Phenomena of Cryogenic Fluids by Direct Contacting Normal Temperature Fluids

    Directory of Open Access Journals (Sweden)

    T Watanabe

    2016-09-01

    Full Text Available Cryogenic fluids have characteristics such as thermal stratification and flashing by pressure release in storage vessel. The mixture of the extreme low temperature fluid and the normal temperature fluid becomes the cause which causes pressure vessel and piping system crush due to explosive boiling and rapid freezing. In recent years in Japan, the demand of cryogenic fluids like a LH2, LNG is increasing because of the advance of fuel cell device technology, hydrogen of engine, and stream of consciousness for environmental agreement. These fuel liquids are cryogenic fluids. On the other hand, as for fisheries as well, the use of a source of energy that environment load is small has been being a pressing need. And, the need of the ice is high, as before, for keeping freshness of marine products in fisheries. Therefore, we carried out the experiments related to promotion of evaporating cryogenic fluids and generation of ice, in the contact directly of the water and liquid nitrogen. From the results of visualization, phenomena of explosive evaporating and ice forming were observed by using video camera.

  7. Portable Intravenous Fluid Production Device for Ground Use

    Data.gov (United States)

    National Aeronautics and Space Administration — There are several medical conditions require the administration of intravenous (IV) fluids, but limitations of mass, volume, shelf-life, transportation, and local...

  8. On the stability of the production of bubbles in yield-stress fluid using flow-focusing and T-junction devices

    Science.gov (United States)

    Laborie, B.; Rouyer, F.; Angelescu, D. E.; Lorenceau, E.

    2016-06-01

    We investigate experimentally the stability of bubble production in yield-stress fluids (YSF) and highly viscous silicone oil, using flow-focusing and T-junction devices. When the exit channel is initially pre-filled with the fluid and the gas is pressure-driven, the production is highly unstable, despite a regular frequency of bubble production in the junction. As observed for pressure-driven bubble trains in Newtonian fluids, we report that two mechanisms can explain these observations: (i) drastic reduction of the hydrodynamic pressure drop along the channel during the transient bubble production, which induces a rapid increase of the gas flow rate and (ii) thin film deposition resulting in a cascade of plug break-up and bubble coalescence. While the drastic reduction of the pressure drop is inevitable in such two-phase flows, we show that modifying the surfaces of the channel can help to stabilize the system when the continuous phase is a YSF. To do so, we measure the thickness of the film deposited on the channel wall for rough and smooth channels. Our results are rationalized by introducing the inverse of the Bingham number Bi-1 comparing the viscous stress to the yield stress. For Bi-1 ≥ 1, a fast fluidization process associated to efficient deposition of YSF on the channel wall leads to a rapid destabilization of bubble production. However, for Bi-1 < 1, the deposition driven by capillarity can be hindered by the wall-slip induced by the existence of the yield stress: the thickness of the deposited film is very thin and corresponds to the equivalent roughness of the channels. It is typically 40 μm thick for rough surfaces and below the limit of resolution of our set-up for smooth surfaces. In this regime of Bi-1 and for smooth surfaces, the length of the plugs barely vanishes, thus the start-up flow is less prone to destabilization. These results therefore potentially open routes to steady production of aerated YSF on smooth channels in the regime of

  9. Fluid Flow in Low Permeable, Porous Media Écoulements fluides dans un milieu poreux peu perméable

    Directory of Open Access Journals (Sweden)

    Dutta N. C.

    2006-11-01

    kinetic theory of chemical reaction in which the time-temperature history is provided by the solution of an appropriate heat conduction equation. This model of geopressure has a practical application since it deals with the generation and maintenance of abnormally high fluid pressures over geologic time and impacts the hydrocarbon migration in clastic basins. La migration des hydrocarbures traite du déplacement du pétrole consécutif à l'expulsion des roches mères vers les réservoirs saturés en eau ou à travers des zones perméables créées par des fractures ou des failles. Bien que les principes sous-jacents contrôlant les mouvements de fluides dans les milieux poreux (réservoirs soient bien compris des ingénieurs de réservoir, on connaît moins de choses sur les caractéristiques des écoulements dans les milieux poreux peu perméables, comme les argiles et les schistes. En termes d'écoulement, les paramètres principaux sont la porosité, la perméabilité, et les gradients potentiels des fluides. Pour les argiles et les schistes, ces paramètres sont peu connus; et cependant ce sont eux qui contrôlent les périodes pendant lesquelles les écoulements fluides se sont produits dans les bassins sédimentaires (de 100 à 100 millions d'années. Dans cet article, on examine la dépendance paramétrique des constantes temporelles des écoulements fluides dans les sédiments peu perméables par rapport à leur porosité et leur perméabilité. Dans une première partie, on présente une technique d'étude de l'effet d'un écoulement dans les argiles qui produit la sous-compaction et l'augmentation de la pression de fluide par rapport à la pression hydrostatique normale. On se place dans des conditions d'avant-forage ; la technique utilise la méthode des analyses de vitesse par mise en collection de point milieu commun des données sismiques de surface, et est basée sur le concept développé par Hottmann et Johnson (1965 et Pennebaker (1968. Dans une seconde

  10. Coupling microscopic and mesoscopic scales to simulate chemical equilibrium between a nanometric carbon cluster and detonation products fluid.

    Science.gov (United States)

    Bourasseau, Emeric; Maillet, Jean-Bernard

    2011-04-21

    This paper presents a new method to obtain chemical equilibrium properties of detonation products mixtures including a solid carbon phase. In this work, the solid phase is modelled through a mesoparticle immersed in the fluid, such that the heterogeneous character of the mixture is explicitly taken into account. Inner properties of the clusters are taken from an equation of state obtained in a previous work, and interaction potential between the nanocluster and the fluid particles is derived from all-atoms simulations using the LCBOPII potential (Long range Carbon Bond Order Potential II). It appears that differences in chemical equilibrium results obtained with this method and the "composite ensemble method" (A. Hervouet et al., J. Phys. Chem. B, 2008, 112.), where fluid and solid phases are considered as non-interacting, are not significant, underlining the fact that considering the inhomogeneity of such system is crucial.

  11. Filtering reducer of flushing fluid

    Energy Technology Data Exchange (ETDEWEB)

    Secu, P; Apostu, M; Basarabescu, T; Popescu, F

    1981-02-28

    This is a patent of a filtering reducer of flushing fluid on a water base with low content of solid particles used at temperatures of roughly 200/sup 0/C. With the use of the proposed filtering reducer, there is no excessive increase in viscosity and gelatinization of the flushing fluids without restriction in the quantity of reducer needed to guarantee the required filtering. There is a possibility of recovering the polyalkylphenol vat residues obtained in the production of nonyl phenol. It is possible to reduce the time of treatment and dissolving of the product; there is no danger of plugging of the productive oil beds. The process of hydration of clay is excluded.

  12. Supercritical fluid technology for energy and environmental applications

    CERN Document Server

    Anikeev, Vladimir

    2014-01-01

    Supercritical Fluid Technology for Energy and Environmental Applications covers the fundamental principles involved in the preparation and characterization of supercritical fluids (SCFs) used in the energy production and other environmental applications. Energy production from diversified resources - including renewable materials - using clean processes can be accomplished using technologies like SCFs. This book is focused on critical issues scientists and engineers face in applying SCFs to energy production and environmental protection, the innovative solutions they have found, and the challenges they need to overcome. The book also covers the basics of sub- and supercritical fluids, like the thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations. A supercritical fluid is any substance at a temperature and pressure above its critical point where distinct liquid and gas phases do not exist. At this state the compound demonstrates unique properties, which can be "fine...

  13. Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Maria Cecilia Bravo

    2006-06-30

    This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

  14. Total phosphorus recovery in flowback fluids after gelled hydrocarbon fracturing fluid treatments

    Energy Technology Data Exchange (ETDEWEB)

    Fyten, G.; Houle, P.; Taylor, R.S. [Halliburton Energy Services, Calgary, AB (Canada); Stemler, P.S. [Petro-Canada Oil and Gas Inc., Calgary, AB (Canada); Lemieux, A. [Omnicon Consultants Inc., Calgary, AB (Canada)

    2006-07-01

    in the flowback fluid. The total phosphorus introduced by the gelled oil fracturing-fluid treatment could be present in the production fluid for significant periods of time depending on well production rates and hydraulic fracturing fluid treatment volume. Phosphonate ester oil gellants offer a notably lower ratio of volatile phosphorus to total phosphorus than phosphate esters. However, the ratio remains constant for both systems during flowback. The only exception is during initial flowback where a positive mass balance occurs and the ratio of volatile to total phosphorus doubles. 6 refs., 1 tab., 14 figs.

  15. Ultra high-temperature solids-free insulating packer fluid for oil and gas production, steam injection and geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Ezell, R.G.; Harrison, D.J. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Halliburton Energy Services, Calgary, AB (Canada)

    2008-10-15

    Uncontrolled heat transfer from production/injection tubing during thermal oil recovery via steam injection can be detrimental to the integrity of the casing and to the quality of the steam that is injected into the reservoir. An aqueous-based insulating packer fluid (IPF) was introduced to improve the steam injection process by controlling the total heat loss from the produced fluids to the surrounding wellbore, internal annuli and formation. The IPF was developed for elevated temperature environments through extensive investigation across multidisciplinary technology. The innovative system delivers performance beyond conventional systems of comparable thermal conductivity. Its density range and conductivity measurements were presented in this paper. High-temperature static aging tests showed superior gel integrity without any phase separation after exposure to temperatures higher than 260 degrees C. The new fluids are hydrate inhibitive, non-corrosive and pass oil and grease testing. They are considered to be environmentally sound by Gulf of Mexico standards. It was concluded that the new ultra high-performance insulating packer fluid (HTIPF) reduced the heat loss significantly by both conduction and convection. Heat transfer within the aqueous-based HTIPF was 97 per cent less than that of pure water. It was concluded that the HTIPF can be substituted for conventional packer fluids without compromising any well control issues. 21 refs., 1 tab., 4 figs.

  16. Maximum Entropy Production Is Not a Steady State Attractor for 2D Fluid Convection

    Directory of Open Access Journals (Sweden)

    Stuart Bartlett

    2016-12-01

    Full Text Available Multiple authors have claimed that the natural convection of a fluid is a process that exhibits maximum entropy production (MEP. However, almost all such investigations were limited to fixed temperature boundary conditions (BCs. It was found that under those conditions, the system tends to maximize its heat flux, and hence it was concluded that the MEP state is a dynamical attractor. However, since entropy production varies with heat flux and difference of inverse temperature, it is essential that any complete investigation of entropy production allows for variations in heat flux and temperature difference. Only then can we legitimately assess whether the MEP state is the most attractive. Our previous work made use of negative feedback BCs to explore this possibility. We found that the steady state of the system was far from the MEP state. For any system, entropy production can only be maximized subject to a finite set of physical and material constraints. In the case of our previous work, it was possible that the adopted set of fluid parameters were constraining the system in such a way that it was entirely prevented from reaching the MEP state. Hence, in the present work, we used a different set of boundary parameters, such that the steady states of the system were in the local vicinity of the MEP state. If MEP was indeed an attractor, relaxing those constraints of our previous work should have caused a discrete perturbation to the surface of steady state heat flux values near the value corresponding to MEP. We found no such perturbation, and hence no discernible attraction to the MEP state. Furthermore, systems with fixed flux BCs actually minimize their entropy production (relative to the alternative stable state, that of pure diffusive heat transport. This leads us to conclude that the principle of MEP is not an accurate indicator of which stable steady state a convective system will adopt. However, for all BCs considered, the quotient of

  17. Using presence of calcite cap rock in shales to predict occurrence of reservoirs composed of leached secondary porosity in the geopressured zone. Annual report, June 1, 1980-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, W.R.; Magara, K.; Milliken, K.L.; Richmann, D.L.

    1981-01-01

    The distribution of high-resistivity shale in the Frio Formation between hydropressured and geopressured strata has been mapped along the Texas Gulf Coast. Two high-resistivity intervals more than 1000 ft thick have been mapped, one in Brazoria and Galveston Counties and the other in Kenedy County. They coincide with Frio delta systems and may be related to extraordinary quantities of CO/sub 2/ produced by deltaic sediments rich in woody and herbaceous matter. Beyond being calcareous, the nature of the high-resistivity interval is enigmatic and its relationship to deep secondary porosity problematic. Most of the contained carbonate is microscopically and isotopically skeletal in origin, revealing no evidence of diagenetic modification. Minor rhombs of iron-bearing carbonate tens of microns in size were identified. Detrital feldspar compositions are being established to test subsequent changes in feldspar composition resulting from progressive burial and albitization. Hydrolysis reactions for authigenic minerals and reactions between key pairs of minerals have been written. Thermodynamic functions for complex phyllosilicates at temperatures up to 200/sup 0/C have been calculated. From thermodynamic calculations it was predicted that ferroan calcite would be the favored authigenic carbonate in shales.

  18. Biogas production from pretreated coffee-pulp waste by mixture of cow dung and rumen fluid in co-digestion

    Science.gov (United States)

    Juliastuti, Sri Rachmania; Widjaja, Tri; Altway, Ali; Iswanto, Toto

    2017-05-01

    Coffee is an excellent commodity in Indonesia that has big problem in utilizing its wastes. As the solution, the abundant coffee pulp waste from processing of coffee bean industry has been used as a substrate of biogas production. Coffee pulp waste (CPW) was approximately 48% of total weight, consisting 42% of the coffee pulp and 6% of the seed coat. CPW holds good composition as biogas substrate that is consist of cellulose (63%), hemicellulose (2.3%) and protein (11.5%). Methane production from coffee pulp waste still has much problems because of toxic chemicals content such as caffeine, tannin, and total phenol which can inhibit the biogas production. In this case, CPW was pretreated by ethanol/water (50/50, v/v) at room temperature to remove those inhibitors. This study was to compare the methane production by microbial consortium of cow dung and rumen fluid mixture coffee pulp waste as a substrate with and without pretreatment. The pretreated CPW was fermented with mixture of Cow Dung (CD) and Rumen Fluid (RF) in anaerobic co-digestion for 30 days at mesophilic temperature (30-40°C) and the pH was maintained from 6.8 to 7.2 on a reactor with working volume of 3.6 liters. There were two reactors with each containing the mixture of CPW without pretreatment, cow dung and rumen fluid (CD+RF+CPW) and then compared with the CPW with pretreatment (CD+RF+PCPW) reactor. The measured parameters included the decreasing of inhibitor compound concentration, Volatile Fatty Acids (VFAs), Chemical Oxygen Demand (COD), Total Solid (TS), Volatile Solid (VS), Methane and the Calorific value of gas (heating value) were studied as well. The result showed a decrease in inhibitor component concentration due to methanol pretreatment was 90% of caffeine; 78% of polyphenols (total phenol) and 66% of tannins. The highest methane content in biogas was produced in CD+RF+PCPW digester with concentration amounted of 44.56% with heating value of 27,770 BTU/gal.

  19. Investigations of Cutting Fluid Performance Using Different Machining Operations

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Belluco, Walter

    2002-01-01

    An analysis of cutting fluid performance in dif-ferent metal cutting operations is presented based on performance criteria, work material and fluid type. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping operations, with respect to tool life, cutting forces and prod...... will get the same performance ranking for different metalworking fluids no matter what machining test is used, when the fluids are of the same type. Results show that this is mostly true for the water-based fluids on austenitic stainless steel while ranking did change depending on the test with straight......-gated. In the case of austenitic stainless steel as the workpiece material, results using the different operations under different cutting conditions show that the performance of vegetable oil based prod-ucts is superior or equal to that of mineral oil based products. The hypothesis was investigated that one...

  20. Downhole Fluid Analyzer Development

    Energy Technology Data Exchange (ETDEWEB)

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  1. Comparison of protein fermentation characteristics in rumen fluid determined with the gas production technique and the nylon bag technique

    NARCIS (Netherlands)

    Cone, J.W.; Rodrigues, M.A.M.; Guedes, C.M.; Blok, M.C.

    2009-01-01

    In this study, a modified version of the gas production technique was used to determine protein fermentation characteristics in rumen fluid of 19 feedstuffs. Performing the incubations in a N-free environment, and with an excess of rapidly fermentable carbohydrates, made N the limiting factor to

  2. On the Relationship between Fluid Intelligence, Gesture Production, and Brain Structure

    Science.gov (United States)

    Wartenburger, Isabell; Kuhn, Esther; Sassenberg, Uta; Foth, Manja; Franz, Elizabeth A.; van der Meer, Elke

    2010-01-01

    Individuals scoring high in fluid intelligence tasks generally perform very efficiently in problem solving tasks and analogical reasoning tasks presumably because they are able to select the task-relevant information very quickly and focus on a limited set of task-relevant cognitive operations. Moreover, individuals with high fluid intelligence…

  3. Resolution of through tubing fluid flow and behind casing fluid flow in multiple completion wells

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1977-01-01

    A method is provided for resolving undesired fluid flow in cement channels behind casing in one producing zone of a multi zone completion well operating on gas lift from the fluid flow from lower producing zones in the same well which is contained in production tubing passing through the producing zone being investigated. Gamma rays which are characteristic of the decay of the unstable isotope nitrogen 16 produced by activation of elemental oxygen nuclei comprising the molecular structure of both the tubing fluid flow and the undesired fluid flow are detected in at least two energy bonds at two longitudinally spaced detectors in a well borehole. By appropriately combining the four count rate signals so producing according to predetermined relationships the two fluid flow components in the same direction may be uniquely distinguished on the basis of their differing distances from the gamma ray detectors. 9 claims, 17 figures

  4. Heat transfer study on open heat exchangers used in jaggery production modules – Computational Fluid Dynamics simulation and field data assessment

    International Nuclear Information System (INIS)

    La Madrid, Raul; Marcelo, Daniel; Orbegoso, Elder Mendoza; Saavedra, Rafael

    2016-01-01

    Highlights: • Heat transfer modeling and simulation between flue gases and sugar cane juice. • Use of Computational Fluid Dynamics to get thermal parameters of a jaggery furnace. • Data acquisition system installed in the jaggery production module. • Parametric analysis changing the flue-gases velocity to represent temperature drops. - Abstract: Jaggery (also called organic sugar) is a concentrated product of sugarcane juice that is produced in rural communities in the highlands and jungle of Peru. In the last few years there has been an increase in the exports of jaggery and higher volumes of production are required driving this activity from a rural process with small production to an industry seeking greater productivity. In this framework, optimization of the use of energy becomes essential for the proper development of the process of production and the correct performance of the involved equipment. Open heat exchangers made of stainless steel are used in the production of jaggery. These heat exchangers containing sugarcane juice are placed over a flue gas duct. The thermal energy contained in the gas is used to evaporate the water contained in the sugarcane juice thickening the juice and after evaporating almost all the water, a pasty crystalline yellow substance is left in the boiling pan which becomes solid after cooling, this is the jaggery. The modeling and simulation of heat transfer between the combustion gases and the juice is very important in order to improve the thermal efficiency of the process. It permits to know with a high level of detail the physical phenomena of heat transfer occurring from bagasse combustion flue gases to sugarcane juice. This paper presents the results of the numerical simulation of heat transfer phenomena in the open heat exchangers and those results are compared to field measured data. Numerical results about temperature drop of flue gases in the several locations of the jaggery furnace are in good accordance with

  5. Entropy production in a fluid-solid system far from thermodynamic equilibrium.

    Science.gov (United States)

    Chung, Bong Jae; Ortega, Blas; Vaidya, Ashwin

    2017-11-24

    The terminal orientation of a rigid body in a moving fluid is an example of a dissipative system, out of thermodynamic equilibrium and therefore a perfect testing ground for the validity of the maximum entropy production principle (MaxEP). Thus far, dynamical equations alone have been employed in studying the equilibrium states in fluid-solid interactions, but these are far too complex and become analytically intractable when inertial effects come into play. At that stage, our only recourse is to rely on numerical techniques which can be computationally expensive. In our past work, we have shown that the MaxEP is a reliable tool to help predict orientational equilibrium states of highly symmetric bodies such as cylinders, spheroids and toroidal bodies. The MaxEP correctly helps choose the stable equilibrium in these cases when the system is slightly out of thermodynamic equilibrium. In the current paper, we expand our analysis to examine i) bodies with fewer symmetries than previously reported, for instance, a half-ellipse and ii) when the system is far from thermodynamic equilibrium. Using two-dimensional numerical studies at Reynolds numbers ranging between 0 and 14, we examine the validity of the MaxEP. Our analysis of flow past a half-ellipse shows that overall the MaxEP is a good predictor of the equilibrium states but, in the special case of the half-ellipse with aspect ratio much greater than unity, the MaxEP is replaced by the Min-MaxEP, at higher Reynolds numbers when inertial effects come into play. Experiments in sedimentation tanks and with hinged bodies in a flow tank confirm these calculations.

  6. [The criterion prognostic significance of examinations of chemiluminescence of oral fluid under impact of chemical pollutants of manufacture of rubber and rubber technical production].

    Science.gov (United States)

    Galiullina, E F; Valiev, A v; Kamilov, R F; Shakirov, D F; Buliakov, P T

    2013-12-01

    The article presents the results of studies concerning the effect of unfavorable factors of chemical nature on fluid of oral cavity among workers of the Ufa plant of elastomer materials, articles and structures. It is established that in persons contacting with chemical pollutants of manufacture of rubber and rubber technical production the indicators of chemiluminescence of saliva fluid are significantly expressed and depend on professional standing.

  7. The Concentrations of Rumen Fluid Volatile Fatty Acids and Ammonia, and Rumen Microbial Protein Production in Sheep Given Feed During the Day and Night Time

    Science.gov (United States)

    Gumilar, D. A. K. W.; Rianto, E.; Arifin, M.

    2018-02-01

    An experimental study was carried out to investigate the concentrations of volatile (VFA), ammonia and microbial protein production of rumen fluid in sheep given fedd during the day and at night. This study used 12 fat-tailed rams aged 12-18 months and weighed 24,12 ± 25 kg (CV = 10,51%). The rams were fed a complete feed containing 16.64% protein and 68,33% total digestible nutrients (TDN). The rams were allocated into a completely randomised design with 3 treatments and 4 replications. The treatments applied were: T1: day time feeding (6.00 hrs - 18.00 hrs); T2: night time feeding (18.00 hrs - 6.00 hrs); and T3: day and night time feedings (6.00 hrs - 6.00 hrs). The parameters observed were dry matter intake (DMI), rumen VFA concentration, rumen ammonia concentration, rumen rmicrobial protein production and the efficiency of rumen microbial protein production. The results showed that feeding time did not significantly affect (P>0.05) all the parameters observed. Dry matter intake, VFA concentration, ammonia concentration, the microbial protein production of rumen fluid and the efficiency of microbial protein production were 1,073g/d, 49.69 mmol; 4.77 mg N/100 ml, 12,111 g/d and 19.96 g per kg digestible organic matter intake (DOMI), respectively. It is concluded that feeding time did not affect DMI, condition of rumen fluid and rumen microbial protein production in sheep.

  8. On the fluid mechanics of bilabial plosives

    NARCIS (Netherlands)

    Pelorson, X.; Hofmans, G.C.J.; Ranucci, M.; Bosch, R.C.M.

    1997-01-01

    In this paper we present a review of some fluid mechanical phenomena involved in bilabial plosive sound production. As a basis for further discussion, firstly an in vivo experimental set-up is described. The order of magnitude of some important geometrical and fluid dynamical quantities is

  9. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  10. Supercritical fluids technology. Pt. 1 General topics

    International Nuclear Information System (INIS)

    Marongiu, B.; De Giorgi, M. R.; Porcedda, S.; Cadoni, E.

    1998-01-01

    Supercritical fluids technology is among the emerging 'clean' technologies, that allows the minimization in the use of chemical and thermic treatments and products irradiation, diminishing the quantity of liquid wastes to be treated. In this first article phase equilibria thermodynamics and fluid mechanics of transport phenomena are reviewed [it

  11. Industrial applications and current trends in supercritical fluid technologies

    Directory of Open Access Journals (Sweden)

    Gamse Thomas

    2005-01-01

    Full Text Available Supercritical fluids have a great potential for wide fields of processes Although CO2 is still one of the most used supercritical gases, for special purposes propane or even fluorinated-chlorinated fluids have also been tested. The specific characteristics of supercritical fluids behaviour were analyzed such as for example the solubilities of different components and the phase equilibria between the solute and solvent. The application at industrial scale (decaffeinating of tea and coffee, hop extraction or removal of pesticides from rice, activity in supercritical extraction producing total extract from the raw material or different fractions by using the fractionated separation of beverages (rum, cognac, whisky, wine, beer cider, of citrus oils and of lipids (fish oils, tall oil were also discussed. The main interest is still for the extraction of natural raw materials producing food ingredients, nutraceuticals and phytopharmaceuticals but also cleaning purposes were tested such as the decontamination of soils the removal of residual solvents from pharmaceutical products, the extraction of flame retardants from electronic waste or precision degreasing and cleaning of mechanical and electronic parts. An increasing interest obviously exists for impregnation purposes based on supercritical fluids behaviour, as well as for the dying of fibres and textiles. The production of fine particles in the micron and submicron range, mainly for pharmaceutical products is another important application of supercritical fluids. Completely new products can be produced which is not possible under normal conditions. Supercritical fluid technology has always had to compete with the widespread opinion that these processes are very expensive due to very high investment costs in comparison with classical low-pressure equipment. Thus the opinion is that these processes should be restricted to high-added value products. A cost estimation for different plant sizes and

  12. Energy use and implications for efficiency strategies in global fluid-milk processing industry

    International Nuclear Information System (INIS)

    Xu Tengfang; Flapper, Joris

    2009-01-01

    The fluid-milk processing industry around the world processes approximately 60% of total raw milk production to create diverse fresh fluid-milk products. This paper reviews energy usage in existing global fluid-milk markets to identify baseline information that allows comparisons of energy performance of individual plants and systems. In this paper, we analyzed energy data compiled through extensive literature reviews on fluid-milk processing across a number of countries and regions. The study has found that the average final energy intensity of individual plants exhibited significant large variations, ranging from 0.2 to 12.6 MJ per kg fluid-milk product across various plants in different countries and regions. In addition, it is observed that while the majority of larger plants tended to exhibit higher energy efficiency, some exceptions existed for smaller plants with higher efficiency. These significant differences have indicated large potential energy-savings opportunities in the sector across many countries. Furthermore, this paper illustrates a positive correlation between implementing energy-monitoring programs and curbing the increasing trend in energy demand per equivalent fluid-milk product over time in the fluid-milk sector, and suggests that developing an energy-benchmarking framework, along with promulgating new policy options should be pursued for improving energy efficiency in global fluid-milk processing industry.

  13. Hydrodynamic characteristics and mixing behaviour of Sclerotium glucanicum culture fluids in an airlift reactor with an internal loop used for scleroglucan production.

    Science.gov (United States)

    Kang, X; Wang, H; Wang, Y; Harvey, L M; McNeil, B

    2001-10-01

    The filamentous fungus, Sclerotium glucanicum NRRL 3006, was cultivated in a 0.008 m(3) airlift bioreactor with internal recirculation loop (ARL-IL) for production of the biopolymer, scleroglucan. The rheological behaviour of the culture fluid was characterised by measurement of the fluid consistency coefficient (K) and the flow behaviour index (n). Based on these measurements, the culture fluid changed from a low viscosity Newtonian system early in the process, to a viscous non-Newtonian (pseudoplastic) system. In addition, reactor hydrodynamics and mixing behaviour were characterised by measurement of whole mean gas hold-up (epsilon(g)), liquid re-circulation velocity (U(ld)) and mixing time (t(m)). Under identical process conditions, the effects of the viscosity of the culture fluid and air flow rate on epsilon(g), U(ld) and t(m) were examined and empirical correlations for epsilon(g), U(ld) and t(m) with both superficial velocity U(g) and consistency coefficient K were obtained and expressed separately. The correlations obtained are likely to describe the behaviour of real fungal culture fluids more accurately than previous correlations based on Newtonian or simulated non-Newtonian systems.

  14. Application of Zeolitic Additives in the Fluid Catalytic Cracking (FCC

    Directory of Open Access Journals (Sweden)

    A. Nemati Kharat

    2013-06-01

    Full Text Available Current article describes application of zeolites in fluid catalytic cracking (FCC. The use of several zeolitic additives for the production light olefins and reduction of pollutants is described. Application of zeolites as fluid catalytic cracking (FCC catalysts and additives due to the presence of active acid sites in the zeolite framework  increase the formation of desired cracking products (i.e., olefin and branched products  in the FCC unit.

  15. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Norman K. [Iowa State Univ., Ames, IA (United States)

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect to the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”

  16. Cerebrospinal Fluid and Interstitial Fluid Motion via the Glymphatic Pathway Modelled by Optimal Mass Transport

    OpenAIRE

    Benveniste, Helene; Nedergaard, Maikan; Lee, Hedok; Gao, Yi; Tannenbaum, Allen; Ratner, Vadim

    2016-01-01

    It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the `glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs [1,2]. It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly throu...

  17. Cytotoxicity and apoptosis induction by e-cigarette fluids in human gingival fibroblasts.

    Science.gov (United States)

    Sancilio, Silvia; Gallorini, Marialucia; Cataldi, Amelia; di Giacomo, Viviana

    2016-04-01

    Electronic cigarettes (e-cigarettes) are generally acknowledged as a safer alternative to the use of combusted tobacco products. Nevertheless, there are increasing conflicting claims concerning the effect of these novel industrial products on the health of e-cigarettes users. The aim of this work was to investigate the effects of the liquids of e-cigarettes on human gingival fibroblasts (HGFs) and to compare the effects of nicotine-containing fluid to the fluid itself. HGFs were treated with different concentrations (0-5 mg/mL) of fluids of e-cigarettes for different times (0-72 h) and cytotoxicity was analyzed by MTT assay. Fluids were administered also after being vaped (e.g., warmed into the cartomizer). Apoptosis occurrence and Bax expression were evaluated by flow cytometry; ROS production was analyzed by fluorescence optical microscopy. Both nicotine-containing and nicotine-free fluids induced an increased ROS production after 24 h, along with an increased Bax expression, followed by apoptosis occurrence after 48 h of exposure. The cytotoxicity exerted on HGFs by e-cigarettes fluids is not entirely ascribable to nicotine. Since the e-cigarettes are advertised as a safer alternative to traditional ones, especially for the possibility of "smoking" nicotine-free fluids, further studies are necessary to clarify the mechanism involved in the occurrence of cytotoxicity exerted by such compounds. Our results suggest a role for e-cigarette fluids in the pathogenesis of oral diseases, such as periodontitis.

  18. Engineering applications of computational fluid dynamics

    CERN Document Server

    Awang, Mokhtar

    2015-01-01

    This volume presents the results of Computational Fluid Dynamics (CFD) analysis that can be used for conceptual studies of product design, detail product development, process troubleshooting. It demonstrates the benefit of CFD modeling as a cost saving, timely, safe and easy to scale-up methodology.

  19. Pre-drilling prediction techniques on the high-temperature high-pressure hydrocarbon reservoirs offshore Hainan Island, China

    Science.gov (United States)

    Zhang, Hanyu; Liu, Huaishan; Wu, Shiguo; Sun, Jin; Yang, Chaoqun; Xie, Yangbing; Chen, Chuanxu; Gao, Jinwei; Wang, Jiliang

    2018-02-01

    Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure (HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques (PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.

  20. Chemical Warfare Agent Simulants in Gamble’s Fluid: Is the Fluid Toxic? Can It Be Made Safer by Inclusion of Solid Nanocrystalline Metal Oxides?

    Directory of Open Access Journals (Sweden)

    Dennis Karote

    2013-01-01

    Full Text Available The reactions of chemical warfare agent simulants, 2-chloroethyl ethyl sulfide (2-CEES and di-i-propyl fluoro phosphate (DFP, in fluids have been investigated. Data analyses confirm the major degradation pathway to be hydrolysis of 2-CEES to 2-hydroxyethyl ethyl sulfide, along with minor self-condensation products. Among the three fluids examined, 2-CEES degradation was the fastest in Gamble’s fluid during a 96 h period. Upon addition of Exceptional Hazard Attenuation Materials (EHAMs to 2-CEES containing Gamble’s fluid, degradation was generally improved during the first 24 h period. The 96 h outcome was similar for fluid samples with or without EHAM 2 and EHAM 4. EHAM 1-added fluid contained only one degradation product, 2-nitroethyl ethyl sulfide. DFP degradation was the slowest in Gamble’s fluid, but was enhanced by the addition of EHAMs. FTIR and solid state 31P NMR confirm the destructive adsorption of 2-CEES and DFP by the EHAMs. The results collectively demonstrate that 2-CEES and DFP decompose to various extents in Gamble’s fluid over a 96 h period but the fluid still contains a considerable amount of intact simulant. EHAM 1 appears to be promising for 2-CEES and DFP mitigation while EHAM 2 and EHAM 4 work well for early on concentration reduction of 2-CEES and DFP.

  1. The impact of environmental regulations on drilling fluid technology

    International Nuclear Information System (INIS)

    Clark, R.K.

    1994-01-01

    A multitude of new drilling fluid products, systems, and treatment processes have been developed in recent years in response to increasingly stringent environmental regulations. Many fluid additives and systems that once played a major role in the drilling industry are little used today or are no longer available. New water-base mud systems are approaching the performance levels typical of conventional oil-base muds, levels largely achieved by the new synthetic-base fluids. However, these new drilling fluids do not have the adverse environmental impact associated with oil-base systems when waste fluids and cuttings are discarded. 65 refs., 3 tabs

  2. Chemical and radiolytical characterization of perfluorocarbon fluids used as coolants for LHC experiments : radiolysis effects in perfluorohexane fluids.

    CERN Document Server

    Ilie, Soran; Teissandier, B; CERN. Geneva. TS Department

    2007-01-01

    Perfluorohexane fluids, used as coolants within High Energy Physics Detectors in the Large Hadrons Collider (LHC) at CERN, were irradiated using gammas 60Co and characterized using different analytical techniques. The aim of this work was the assessment of radiation induced effects as a function of the chemical nature of these fluids and their impurity content. Were evidenced the radioinduced polymers and acidity, as well as different chemical by-products. Purification tests and measurements were carried out on different irradiated fluid samples to assess the efficiency of such purification treatments in view of their re-use in the HEP detector cooling systems.

  3. Fluid-flow-rate metrology: laboratory uncertainties and traceabilities

    Science.gov (United States)

    Mattingly, G. E.

    1991-03-01

    Increased concerns for improved fluid flowrate measurement are driving the fluid metering community-meter manufacturers and users alike-to search for better verification and documentation for their fluid measurements. These concerns affect both our domestic and international market places they permeate our technologies - aerospace chemical processes automotive bioengineering etc. They involve public health and safety and they impact our national defense. These concerns are based upon the rising value of fluid resources and products and the importance of critical material accountability. These values directly impact the accuracy needs of fluid buyers and sellers in custody transfers. These concerns impact the designers and operators of chemical process systems where control and productivity optimization depend critically upon measurement precision. Public health and safety depend upon the quality of numerous pollutant measurements - both liquid and gaseous. The performance testing of engines - both automotive and aircraft are critically based upon accurate fuel measurements - both liquid and oxidizer streams. Fluid flowrate measurements are established differently from counterparts in length and mass measurement systems because these have the benefits of " identity" standards. For rate measurement systems the metrology is based upon " derived standards" . These use facilities and transfer standards which are designed built characterized and used to constitute basic measurement capabilities and quantify performance - accuracy and precision. Because " identity standards" do not exist for flow measurements facsimiles or equivalents must

  4. Plutonium (TRU) transmutation and {sup 233}U production by single-fluid type accelerator molten-salt breeder (AMSB)

    Energy Technology Data Exchange (ETDEWEB)

    Furukaw, Kazuo [Tokai Univ., Kanagawa (Japan); Kato, Yoshio [Japan Atom. Ene. Res. Inst., Ibaraki (Japan); Chigrinov, Sergey E. [Academy of Science, Minsk (Belarus)

    1995-10-01

    For practical/industrial disposition of Pu(TRU) by accelerator facility, not only physical soundness and safety but also the following technological rationality should be required: (1) few R&D items including radiation damage, heat removal and material compatibility; (2) few operation/maintenance/processing works: (3) few reproduction of radioactivity; (4) effective energy production in parallel. This will be achieved by the new modification of Th-fertilizing Single-Fluid type Accelerator Molten-Salt Breeder (AMSB), by which a global nuclear energy strategy for next century might be prepared.

  5. Adaptation of systems to fluid changes; Adaptation des systemes aux changements de fluides

    Energy Technology Data Exchange (ETDEWEB)

    Clodic, D. [Ecole Nationale Superieure des Mines, 75 - Paris (France)

    1996-12-31

    Regulation constraints and the stoppage of CFCs production and HCFCs production in the future lead to rapid evolutions in the conceiving of refrigerating installations which are linked with refrigerant changes. The refrigerant/installation pair has become the aim of detailed analyses in order to understand the relation between the thermodynamical properties of fluids and the energy efficiency of refrigerating installations. The efficiency depends entirely on the global design of the installation while the choice of the fluid is only one element that contributes to this efficiency. This paper analyzes successively: the consequences of pure refrigerant substitution on volume and centrifugal compressors, and the constraints linked with the use of mixtures close to azeotropic compounds (R408A and R404A) and mixtures with temperature shift like R407C. In this last case, the replacement is deeply different in the case of water heat exchangers and in the case of air-circulation heat exchangers. (J.S.) 3 refs.

  6. Amniotic fluid embolism and isolated coagulopathy: atypical presentation of amniotic fluid embolism.

    LENUS (Irish Health Repository)

    Awad, I T

    2012-02-03

    A 41-year-old multigravida presented at 32 weeks of gestation with polyhydramnios and an anencephalic fetus. Abnormal bleeding as a result of disseminated intravascular coagulation complicated an emergency Caesarean section for severe abdominal pain thought to be due to uterine rupture. Massive transfusion with blood products was necessary and the abdomen packed to control bleeding. The patient was transferred to the intensive care unit where she made a slow but complete recovery. Amniotic fluid embolism with atypical presentation of isolated coagulopathy is the likely diagnosis in this case. The case serves to demonstrate that amniotic fluid embolism may present with symptoms and signs other than the classical pattern of dyspnoea, cyanosis and hypotension.

  7. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  8. Connecting the Production Multiple

    DEFF Research Database (Denmark)

    Lichen, Alex Yu; Mouritsen, Jan

    &OP process itself is a fluid object, but there is still possibility to organise the messy Production. There are connections between the Production multiple and the managerial technology fluid. The fluid enacted the multiplicity of Production thus making it more difficult to be organised because there were...... in opposite directions. They are all part of the fluid object. There is no single chain of circulating references that makes the object a matter of fact. Accounting fluidity means that references drift back and forth and enact new realities also connected to the chain. In this setting future research may......This paper is about objects. It follows post ANT trajectories and finds that objects are multiple and fluid. Extant classic ANT inspired accounting research largely sees accounting inscriptions as immutable mobiles. Although multiplicity of objects upon which accounting acts has been explored...

  9. Modern supercritical fluid technology for food applications.

    Science.gov (United States)

    King, Jerry W

    2014-01-01

    This review provides an update on the use of supercritical fluid (SCF) technology as applied to food-based materials. It advocates the use of the solubility parameter theory (SPT) for rationalizing the results obtained when employing sub- and supercritical media to food and nutrient-bearing materials and for optimizing processing conditions. Total extraction and fractionation of foodstuffs employing SCFs are compared and are illustrated by using multiple fluids and unit processes to obtain the desired food product. Some of the additional prophylactic benefits of using carbon dioxide as the processing fluid are explained and illustrated with multiple examples of commercial products produced using SCF media. I emphasize the role of SCF technology in the context of environmentally benign and sustainable processing, as well as its integration into an overall biorefinery concept. Conclusions are drawn in terms of current trends in the field and future research that is needed to secure new applications of the SCF platform as applied in food science and technology.

  10. Rayleigh-Bénard convection of a supercritical fluid : PIV and heat transfer study

    NARCIS (Netherlands)

    Valori, V.

    2018-01-01

    Fluids above the critical point are widely used in industry. Chemical, pharmaceutical, food industry and energy production are some examples. In the energy production sector they are mainly used as cooling fluids, because they allow to increase the thermal efficiency of the power plants. However,

  11. Synthetic lubricants and high-performance functional fluids

    CERN Document Server

    Rudnick, Leslie R

    1999-01-01

    Offers state-of-the-art information on all the major synthetic fluids, describing established products as well as highly promising experimental fluids with commercial potential. This second edition contains chapters on polyinternalolefins, polymer esters, refrigeration lubes, polyphenyl ethers, highly refined mineral oils, automotive gear oils and industrial gear oils. The book also assesses automotive, industrial, aerospace, environmental, and commercial trends in Europe, Asia, South America, and the US.

  12. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete or...

  13. Geothermal energy technology: issues, R and D needs, and cooperative arrangements

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In 1986, the National Research Council, through its Energy Engineering Board, formed the Committee on Geothermal Energy Technology. The committee's study addressed major issues in geothermal energy technology, made recommendations for research and development, and considered cooperative arrangements among government, industry, and universities to facilitate RandD under current severe budget constraints. The report addresses four types of geothermal energy: hydrothermal, geopressured, hot dry rock, and magma systems. Hydrothermal systems are the only type that are now economically competitive commercially. Further technology development by the Department of Energy could make the uneconomical hydrothermal resources commercially attractive to the industry. The economics are more uncertain for the longer-term technologies for extracting energy from geopressured, hot dry rock, and magma systems. For some sites, the cost of energy derived from geopressured and hot dry rock systems is projected within a commercially competitive range. The use of magma energy is too far in the future to make reasonable economic calculations.

  14. Fluid coking : a competitive option for heavy feed processing

    International Nuclear Information System (INIS)

    Hammond, D.G.; Feinberg, A.S.; McCaffrey, D.S.

    1997-01-01

    Fluid coking is a proven thermal conversion process for converting heavy hydrocarbon feeds to lighter products. Fluid coking was commercialized by Exxon over 40 years ago. A total of 13 units have been built with over 330 years of cumulative operating experience. Fluid coking can process many different feeds at once and is usually insensitive to feed contaminants such as sulfur, nitrogen and metals. New developments in coke utilization and flue gas desulfurization/departiculation have prompted new economic studies. Fluid coking is competitive and is the most attractive option compared to delayed coking, particularly for very heavy feed stocks such as deasphalter bottoms. Viewgraphs describe the fluid coking process, its advantages, utilization, and commercial viability. 7 tabs., 3 figs

  15. Effects of drilling fluids on marine organisms

    International Nuclear Information System (INIS)

    Parrish, P.R.; Duke, T.W.

    1990-01-01

    This paper reports on drilling fluids, also called drilling muds, which are essential to drilling processes in the exploration and production of oil and gas from the U.S. Outer Continental Shelf (OCS). These fluids are usually discharged from drilling platforms into surrounding waters of the OCS and are regulated by the U.S. Environmental Protection Agency (EPA). In a program carried out by the EPA Environmental research Laboratory at Gulf Breeze, Florida, diverse marine species as well as microbiotic and macrobiotic communities were studied. Drilling fluids were toxic to marine organisms in certain concentrations and exposure regimes. Furthermore, the fluids adversely affected the benthos physically by burying them or by altering the substrates. Toxicity of the drilling-fluid components, used drilling fluids from active Gulf of Mexico sites, and laboratory-prepared drilling fluids varied considerably. for example 96-h LC 50 s were from 25 μ liter -1 to > 1500 μl liter -1 for clams, larval lobsters, mysids, and grass shrimp. In most instances, mortality was significantly (α = 0.05) correlated with the diesel-oil content of the fluids collected from the Gulf of Mexico. Data and model simulations suggest a rapid dilution of drilling fluids released into OCS waters, resulting in concentrations below the acute-effect concentration for the water column organisms tested

  16. Fluid catalytic cracking : Feedstocks and reaction mechanism

    NARCIS (Netherlands)

    Dupain, X.

    2006-01-01

    The Fluid Catalytic Cracking (FCC) process is one of the key units in a modern refinery. Traditionally, its design is primarily aimed for the production of gasoline from heavy oil fractions, but as co-products also diesel blends and valuable gasses (e.g. propene and butenes) are formed in

  17. Multivariate Associations of Fluid Intelligence and NAA.

    Science.gov (United States)

    Nikolaidis, Aki; Baniqued, Pauline L; Kranz, Michael B; Scavuzzo, Claire J; Barbey, Aron K; Kramer, Arthur F; Larsen, Ryan J

    2017-04-01

    Understanding the neural and metabolic correlates of fluid intelligence not only aids scientists in characterizing cognitive processes involved in intelligence, but it also offers insight into intervention methods to improve fluid intelligence. Here we use magnetic resonance spectroscopic imaging (MRSI) to measure N-acetyl aspartate (NAA), a biochemical marker of neural energy production and efficiency. We use principal components analysis (PCA) to examine how the distribution of NAA in the frontal and parietal lobes relates to fluid intelligence. We find that a left lateralized frontal-parietal component predicts fluid intelligence, and it does so independently of brain size, another significant predictor of fluid intelligence. These results suggest that the left motor regions play a key role in the visualization and planning necessary for spatial cognition and reasoning, and we discuss these findings in the context of the Parieto-Frontal Integration Theory of intelligence. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. The Imperfect Fluid behind Kinetic Gravity Braiding

    CERN Document Server

    Pujolas, Oriol; Vikman, Alexander

    2011-01-01

    We present a standard hydrodynamical description for non-canonical scalar field theories with kinetic gravity braiding. In particular, this picture applies to the simplest galileons and k-essence. The fluid variables not only have a clear physical meaning but also drastically simplify the analysis of the system. The fluid carries charges corresponding to shifts in field space. This shift-charge current contains a spatial part responsible for diffusion of the charges. Moreover, in the incompressible limit, the equation of motion becomes the standard diffusion equation. The fluid is indeed imperfect because the energy flows neither along the field gradient nor along the shift current. The fluid has zero vorticity and is not dissipative: there is no entropy production, the energy-momentum is exactly conserved, the temperature vanishes and there is no shear viscosity. Still, in an expansion around a perfect fluid one can identify terms which correct the pressure in the manner of bulk viscosity. We close by formul...

  19. Effects of plant antioxidants and natural vicinal diketones on methane production, studied in vitro with rumen fluid and a polylactate as maintenance substrate

    NARCIS (Netherlands)

    Becker, P.M.; Wikselaar, van P.G.

    2011-01-01

    In a simplified model of methane production, lactate based maintenance substrates provided primary metabolites and H2, for methanogenic reduction of CO2, to a rumen fluid inoculum. In batch incubation assays, the polylactate Hydrogen Release Compound eXtended® (HRC-X) as maintenance substrate caused

  20. Numerical investigation on hydraulic fracture cleanup and its impact on the productivity of a gas well with a non-Newtonian fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Friedel, T. [Schlumberger Data and Consulting Services, Sugar Land, TX (United States)

    2006-07-01

    There are many damage mechanisms associated with hydraulically fractured gas wells. These include hydraulic damage caused by invading fluids during the treatment and damage due to the stresses exerted on the fracture face. Damage to the proppant pack can also reduce conductivity and non-Darcy flow. However, these are not the only impacts of impaired productivity in tight-gas reservoirs, which do not respond to hydraulic fracturing as expected. Some sustain a flat production profile or show only a slow increase in production rate for several weeks or months. This is due to poor rock quality, strong stress dependency in permeability, hydraulic and mechanical damage. Another reason for the poor performance is related to the cleanup of the cross-linked fracturing fluid with its non-Newtonian characteristics. This paper presented an improved 3-phase cleanup model for the investigation of polymer gel cleanup. Yield stress was considered according to the Herschel-Bulkley rheology model. The viscosity model is based on the exact analytical solution, including the plug flow zone. According to data in the published literature, half of the gel phase can be recovered. The gel saturation gradually increases towards the fracture tips, thereby lowering the fracture conductivities. The residing gel damages the permeability and porosity of the proppant pack or causes damage to the fracture face, thereby reducing production potential. These results are in agreement with field observations where fracture half-lengths, conductivities and productivity are also lower than expected. Preliminary results suggest that capillary forces and load-water recovery have little influence on gel cleanup. 16 refs., 2 tabs., 17 figs.

  1. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    Science.gov (United States)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  2. Soluble Receptor for Advanced Glycation End-Products Predicts Impaired Alveolar Fluid Clearance in Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Jabaudon, Matthieu; Blondonnet, Raiko; Roszyk, Laurence; Bouvier, Damien; Audard, Jules; Clairefond, Gael; Fournier, Mathilde; Marceau, Geoffroy; Déchelotte, Pierre; Pereira, Bruno; Sapin, Vincent; Constantin, Jean-Michel

    2015-07-15

    Levels of the soluble form of the receptor for advanced glycation end-products (sRAGE) are elevated during acute respiratory distress syndrome (ARDS) and correlate with severity and prognosis. Alveolar fluid clearance (AFC) is necessary for the resolution of lung edema but is impaired in most patients with ARDS. No reliable marker of this process has been investigated to date. To verify whether sRAGE could predict AFC during ARDS. Anesthetized CD-1 mice underwent orotracheal instillation of hydrochloric acid. At specified time points, lung injury was assessed by analysis of blood gases, alveolar permeability, lung histology, AFC, and plasma/bronchoalveolar fluid measurements of proinflammatory cytokines and sRAGE. Plasma sRAGE and AFC rates were also prospectively assessed in 30 patients with ARDS. The rate of AFC was inversely correlated with sRAGE levels in the plasma and the bronchoalveolar fluid of acid-injured mice (Spearman's ρ = -0.73 and -0.69, respectively; P < 10(-3)), and plasma sRAGE correlated with AFC in patients with ARDS (Spearman's ρ = -0.59; P < 10(-3)). Similarly, sRAGE levels were significantly associated with lung injury severity, and decreased over time in mice, whereas AFC was restored and lung injury resolved. Our results indicate that sRAGE levels could be a reliable predictor of impaired AFC during ARDS, and should stimulate further studies on the pathophysiologic implications of RAGE axis in the mechanisms leading to edema resolution. Clinical trial registered with www.clinicaltrials.gov (NCT 00811629).

  3. Systems and methods for multi-fluid geothermal energy systems

    Science.gov (United States)

    Buscheck, Thomas A.

    2017-09-19

    A method for extracting geothermal energy from a geothermal reservoir formation. A production well is used to extract brine from the reservoir formation. At least one of nitrogen (N.sub.2) and carbon dioxide (CO.sub.2) may be used to form a supplemental working fluid which may be injected into a supplemental working fluid injection well. The supplemental working fluid may be used to augment a pressure of the reservoir formation, to thus drive a flow of the brine out from the reservoir formation.

  4. Drivers of choice for fluid milk versus plant-based alternatives: What are consumer perceptions of fluid milk?

    Science.gov (United States)

    McCarthy, K S; Parker, M; Ameerally, A; Drake, S L; Drake, M A

    2017-08-01

    Fluid milk consumption has declined for decades while consumption of nondairy alternatives has increased. A better understanding of why consumers purchase fluid milk or nondairy alternatives is needed to assist increased sales of milk or maintain sales without further decline. The objective of this study was to determine the extrinsic attributes that drive purchase within each product category. The second objective was to determine the personal values behind the purchase of each beverage type to give further understanding why particular attributes are important. An online conjoint survey was launched with 702 dairy consumers, 172 nondairy consumers, and 125 consumers of both beverages. Individual means-end chain interviews were conducted with fluid milk consumers (n = 75), plant-based alternative consumers (n = 68), and consumers of both beverages (n = 78). Fat content was the most important attribute for dairy milk followed by package size and label claims. Consumers of fluid milk preferred 1 or 2% fat content, gallon, or half-gallon packaging, conventionally pasteurized store-brand milk. Sugar level was the most important attribute for plant-based beverages, followed by plant source and package size. Almond milk was the most desirable plant source, and half-gallon packaging was the most preferred packaging. Means-end chain interviews results suggested that maintaining a balanced diet and healthy lifestyle was important to all consumer groups. Lactose free was an important attribute for plant-based alternative consumers and consumers of both dairy and nondairy. A distinguishing characteristic of those who only drank nondairy plant-based alternatives was that plant-based beverages contributed to a goal to consume less animal products, beliefs about animal mistreatment, and perceived lesser effect on the environment than fluid milk. Unique to fluid milk consumers was that fluid milk was perceived as a staple food item. These results suggest that the dairy industry

  5. Fluid and hybrid models for streamers

    Science.gov (United States)

    Bonaventura, Zdeněk

    2016-09-01

    Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.

  6. 9 CFR 319.721 - Fluid extract of meat.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Fluid extract of meat. 319.721 Section... AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Meat Soups, Soup Mixes...

  7. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Lorie M. Dilley

    2011-03-30

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the

  8. Reactive flash volatilization of fluid fuels

    Science.gov (United States)

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Dreyer, Bradon J.; Salge, James R.

    2013-01-08

    The invention provides methods for the production of synthesis gas. More particularly, various embodiments of the invention relate to systems and methods for volatilizing fluid fuel to produce synthesis gas by using a metal catalyst on a solid support matrix.

  9. Connection Between Thermodynamics and Dynamics of Simple Fluids in Pores: Impact of Fluid-Fluid Interaction Range and Fluid-Solid Interaction Strength.

    Science.gov (United States)

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-08-03

    Using molecular simulations, we investigate how the range of fluid-fluid (adsorbate-adsorbate) interactions and the strength of fluid-solid (adsorbate-adsorbent) interactions impact the strong connection between distinct adsorptive regimes and distinct self-diffusivity regimes reported in [Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Langmuir 2013 , 29 , 14527-14535]. Although increasing the fluid-fluid interaction range changes both the thermodynamics and the dynamic properties of adsorbed fluids, the previously reported connection between adsorptive filling regimes and self-diffusivity regimes remains. Increasing the fluid-fluid interaction range leads to enhanced layering and decreased self-diffusivity in the multilayer-formation regime but has little effect on the properties within film-formation and pore-filling regimes. We also find that weakly attractive adsorbents, which do not display distinct multilayer formation, are hard-sphere-like at super- and subcritical temperatures. In this case, the self-diffusivity of the confined and bulk fluid has a nearly identical scaling-relationship with effective density.

  10. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    West, H.B.; Delanoy, G.A.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States). Hawaii Inst. of Geophysics); Gerlach, D.C. (Lawrence Livermore National Lab., CA (United States)); Chen, B.; Takahashi, P.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States) Evans (Charles) and Associates, Redwood City, CA (United States))

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  11. Oral fluid drug tests: effects of adulterants and foodstuffs.

    Science.gov (United States)

    Wong, Raphael C; Tran, Minhchau; Tung, James K

    2005-06-10

    An on-site oral fluid drug screen, Oratect, was used to investigate the effects of adulterants and foodstuffs on oral fluid test results. Common foods, beverages, food ingredients, cosmetics and hygienic products were demonstrated not to cause false positive results when tested 30 min after their consumption. Evaluations of two commercial oral fluid adulterants, "Clear Choice Fizzy Flush" and "Test'in Spit n Kleen Mouthwash" suggest their mechanism of action is the clearing of residual drugs of abuse compounds through rinsing of the oral cavity. They do not directly destroy the drug compounds or change the pH of the oral fluid. It is also suggested that a common mouthwash would perform similar action.

  12. Variation in supratentorial cerebrospinal fluid production rate in one day. Measurement by nontriggered phase-contrast magnetic resonance imaging

    International Nuclear Information System (INIS)

    Takahashi, Hiroto; Tanaka, Hisashi; Fujita, Norihiko; Murase, Kenya; Tomiyama, Noriyuki

    2011-01-01

    Measuring the cerebrospinal fluid (CSF) production rate is important for understanding the physiology related to normal conditions and neurological disorders. Triggered phase-contrast magnetic resonance imaging (MRI) has been used to measure CSF production rate, but the use of nontriggered phase-contrast MRI has not been reported. The purposes of this study were to assess the feasibility of using nontriggered phase-contrast MRI to measure CSF flow and to determine whether CSF production exhibits circadian rhythm. The feasibility of phase-contrast MRI was assessed with a phantom simulated human cerebral aqueduct. CSF flow through the cerebral aqueduct was measured with nontriggered phase-contrast MRI four times during 1 day in 10 normal volunteers. In the phantom study, linear regression analysis gave the following measured values (ml/h): 0.80 x (value of steady flow)-10.0 for triggered phase-contrast MRI and 1.27 x (value of steady flow)-12.2 for nontriggered phase-contrast MRI. One-factor analysis of variance showed no significant effect of the time of the measurements (P=0.47). The supratentorial CSF production rate was 510±549 ml/day (mean ± SD). Nontriggered phase-contrast MRI provided good estimates of the flow rate in the phantom study. We observed no circadian rhythm in CSF production. (author)

  13. Cytokine production by cells in cerebrospinal fluid during experimental allergic encephalomyelitis in SJL/J mice

    DEFF Research Database (Denmark)

    Renno, T; Lin, J Y; Piccirillo, C

    1994-01-01

    Cytokine production by T cells in the cerebrospinal fluid (CSF) and central nervous system (CNS) of SJL/J mice during myelin basic protein (MBP)-induced experimental allergic encephalomyelitis (EAE) was examined. Reverse transcriptase/polymerase chain reaction (RT/PCR) was used to measure...... interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) mRNA levels from perfused CNS tissue (brain and spinal cord) and from cells isolated from CSF. Animals were grouped according to EAE severity, ranging from asymptomatic (adjuvant only) to severe disease (paralysis or severe paresis). Cytokine signals......, normalized to actin, were almost undetectable in control tissues, and only slightly elevated in whole CNS tissue from animals with mild EAE. Both cytokine messages were strongly upregulated in CNS tissues derived from severely affected animals, consistent with previous observations correlating disease...

  14. PROSPECTS FOR USE OF CONDENSED GASES AND SUPERCRITICAL FLUIDS IN PHYTOCHEMICAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Demyanenko DV

    2017-03-01

    Full Text Available In the given review article analysis of the literature and patent sources concerning main methods for intensification of extraction processes of medicinal vegetative raw materials – use of condensed gases and supercritical fluids (SCF on more acceptable extractants has been carried out for last 20 years. Urgency of the specified technologies consists in need for replacement of traditional extraction methods on power- and time-saving ones, and also in use of nontoxic, fire-proof and low-boiling solvents because the most of routine organic solvents (ethanol, methanol, acetone, chloroform, ethylacetate, etc. are toxic and/or flammable or expansive and rather hard to evaporate out from extracts obtained. The abovementioned trends are the most universal for intensification of extraction processes and sometimes purification of final or intermediate products acceptable for commercial scale of manufacture. The main advantages and disadvantages of the given methods are compared for different plant species and groups of biologically active substances (BAS. It has been shown that in most cases supercritical СО2 (SC-СО2 are inferior in its dissolving ability to number of condensed gases and, besides, such technology is much more expensive. The range of BAS taken with SC-СО2 is limited to mainly lipophilic compounds because of zero electrical dipole moment of SC-СО2 and its low polarity. As extractants alternative to SC-СО2 with higher dissolving ability SC - ethane, nitrogen monoxide, freons - R134а, R23, R32, R408 and number of others can be used. Also to enlarge range of extractable BAS it is possible to add different cosolvents, mainly ethanol or methanol in quantity up to 20%. At the same time in phytochemical production prospective alternatives to liquid or supercritical СО2 are certain condensed gases with wider range of physico-chemical properties: fluorinated derivatives of hydrocarbons (freons, liquid ammonia, dimethyl ether (DME

  15. Product Analysis and Design Engineering Approach for MScand PhD Students´ Research and Self-Learning Competence in Mechatronics and Fluid Power

    DEFF Research Database (Denmark)

    Conrad, Finn; Andersen, T. O.; Hansen, M. R.

    2002-01-01

    with interactive methods for improving of MSc- and PhD-students´ research and self-learning competence at the Technical University of Denmark and the Aalborg University are presented and discussed. The didactic approach has two legs: (1) Analysis and IT-modelling of products and systems from day one......The paper deals with engineering education having the focus on research skills as well as experimental based project organised didactic self-learning within the area of design of mechatronic products and systems, in particular intelligent fluid power components and systems. Experiences...... at the university, and (2) Synthesis with increasing project activities focusing on product development and design engineering, including testing, evaluation and validation. The objective is to educate candidates with high-level professional engineering skills for research and integrated product development teams...

  16. Hemostatic Findings in Ascitic Fluid: A Cross-Sectional Study in 70 Dogs

    NARCIS (Netherlands)

    Zoia, A.; Drigo, M.; Piek, C. J.; Simioni, P.; Caldin, M.

    2017-01-01

    BACKGROUND: Ascitic fluids of horses and humans have fibrinolytic activity, independent of the underlying mechanism of fluid formation. OBJECTIVE: To determine whether coagulation and fibrinogenolytic/fibrinolytic activity (ie, low fibrinogen and increased fibrin-fibrinogen degradation products

  17. Two-phase cooling fluids; Les fluides frigoporteurs diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)

    1997-12-31

    In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry

  18. Early pleural fluid dynamics following video-assisted thoracoscopic lobectomy has limited clinical value

    DEFF Research Database (Denmark)

    Holbek, Bo Laksáfoss; Petersen, René Horsleben; Kehlet, Henrik

    2017-01-01

    The objective of this study was to evaluate the potential of predicting the pleural fluid output in patients after video-assisted thoracoscopic lobectomy of the lung. Detailed measurements of continuous fluid output were obtained prospectively using an electronic thoracic drainage device (Thopaz...... and 48 hours. Assessment of initial fluid production may predict high 24-hour fluid output (≥500 mL) but seems to lack clinical value in drain removal criteria....

  19. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid.

    Science.gov (United States)

    Poulsen, Morten; Jensen, Bent Borg; Engberg, Ricarda M

    2012-02-01

    Methane emission from livestock, ruminants in particular, contributes to the build up of greenhouse gases in the atmosphere. Therefore the focus on methane emission from ruminants has increased. The objective of this study was to investigate mechanisms for methanogenesis in a rumen fluid-based in vitro fermentation system as a consequence of carbohydrate source (pectin, wheat and corn starch and inulin) and pH (ranging from 5.5 to 7.0). Effects were evaluated with respect to methane and short chain fatty acid (SCFA) production, and changes in the microbial community in the ruminal fluid as assessed by terminal-restriction fragment length polymorphism (T-RFLP) analysis. Fermentation of pectin resulted in significantly lower methane production rates during the first 10 h of fermentation compared to the other substrates (P = 0.001), although total methane production was unaffected by carbohydrate source (P = 0.531). Total acetic acid production was highest for pectin and lowest for inulin (P Methane production rates were significantly lower for fermentations at pH 5.5 and 7.0 (P = 0.005), sustained as a trend after 48 h (P = 0.059), indicating that there was a general optimum for methanogenic activity in the pH range from 6.0 to 6.5. Decreasing pH from 7.0 to 5.5 significantly favored total butyric acid production (P composition. This study demonstrates that both carbohydrate source and pH affect methane and SCFA production patterns, and the microbial community composition in rumen fluid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Viscous Flow with Large Fluid-Fluid Interface Displacement

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild

    1998-01-01

    The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...... is useful in the simulation of low and intermediate Reynolds number viscous flow. The displacement of two immiscible Newtonian fluids in a vertical (concentric and eccentric) annulus and a (vertical and inclined)tube is simulated....

  1. The genesis of fluid mechanics, 1640-1780

    CERN Document Server

    Calero, Julián Simón

    2008-01-01

    Fluid Mechanics, as a scientific discipline in a modern sense, was established between the last third of the 17th century and the first half of the 18th one. This book analyses its genesis, following its evolution along two basic lines of research, which have been named the "problem of resistance" and the "problem of discharge". This approach highlights the existence of a remarkable experimental aspect in the aforementioned research lines, together with their link with problems of a practical nature, such as ballistics, hydraulics, fluid-using machines or naval theory. On the other hand, although previous studies usually present fluid mechanics from the point of view of mathematics, this is complemented here by an engineering viewpoint; gathering attempts made in the beginnings of fluid mechanics to see if the theory was capable of productive application in practical terms. This is nothing unusual in a time where the quality of knowledge and skill is measured largely by its usefulness. (c) Universidad Naciona...

  2. Liquid–liquid equilibria for reservoir fluids+monoethylene glycol and reservoir fluids+monoethylene glycol+water: Experimental measurements and modeling using the CPA EoS

    DEFF Research Database (Denmark)

    Frost, Michael; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2013-01-01

    for critical temperature, pressure and acentric factor.This work presents new phase equilibrium data for binary MEG/reservoir fluid and ternary MEG/water/reservoir fluid systems, where two reservoir fluids from Statoil operated fields are used. The solubility data are reported over a range of temperatures......The complex phase equilibrium between reservoir fluids and associating compounds like water and glycols has become more and more important as the increasing global energy demand pushes the oil industry to use advanced methods to increase oil recovery, such as increasing the use of various chemicals...... to ensure a constant and safe production. The CPA equation of state has been successfully applied in the past to well defined systems and gas condensates, containing associating compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using modified correlations...

  3. Determination of in vitro isoflavone degradation in rumen fluid.

    Science.gov (United States)

    Trnková, Andrea; Šancová, Kateřina; Zapletalová, Martina; Kašparovská, Jitka; Dadáková, Kateřina; Křížová, Ludmila; Lochman, Jan; Hadrová, Sylvie; Ihnatová, Ivana; Kašparovský, Tomáš

    2018-06-01

    The aim of this study was to determine the degradation of dietary isoflavones in rumen fluid under 2 feeding regimens. The experiments were performed in vitro using a rumen fluid buffer system. The rumen fluid was taken from cows fed either a hay diet or a concentrate-rich diet (the diet consisted of 34.6% maize silage, 17.6% haylage, 12.8% alfalfa hay, and 35.0% supplemental mixture on a dry matter basis). As a source of isoflavones, 40% soybean extract (Biomedica, Prague, Czech Republic) at levels of 5, 25, 50, and 75 mg per 40 mL of rumen fluid was used. Samples of soybean extract were incubated in triplicate at 39°C for 0, 3.0, 6.0, 12.0, and 24.0 h in incubation solution. The metabolism of daidzein and genistein was faster under concentrate-rich diet conditions. In general, production of equol started after 3 to 6 h of incubation and reached the highest rate after approximately 12 h of incubation regardless of the type of diet or concentration of extract. In most of the experiments, production of equol continued after 24 h of incubation. Generally, equol production was greater under the hay diet conditions. Furthermore, experiments with higher amounts of added soybean extract revealed possible inhibitory effects of high levels of isoflavones on the rumen microflora. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Extrema principles of entrophy production and energy dissipation in fluid mechanics

    Science.gov (United States)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appears to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  5. Fluid transport due to nonlinear fluid-structure interaction

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1997-01-01

    This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating unidirectional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness...... of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...

  6. Status of and prospects for the application of unconventional energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Stanescu, I D

    1975-01-01

    A review is provided of the status of various non-conventional energy sources. The economics and technical aspects of oil shale utilization are described. Oil shale is currently burned in power plants in the USSR. Oil sands are a similar resource, the most significant deposits belonging to Canada, the USA, Venezuela, and Madagascar. Geothermal resources are divided into dry steam, wet steam, hot water, geopressured, and hot-dry-rock categories. The geopressured type contains natural gas which is dissolved in saline water under pressure. Hot-dry-rock fields, in which cold water is heated by passing it through hot formations, are described. Solar energy applications are presently limited to domestic heating and hot water, but several power plant designs are under development. Wind energy is especially attractive for remote applications. A tidal energy power plant with a 240 MW output is operational in France. Other plants of this type have been proposed in the USSR, UK, Canada, and Argentina. Two ocean thermal gradient power plants are planned for the Gulf Stream, south of Miami. The production of energy from garbage by way of pyrolysis, hydrogenation, and anaerobic fermentation is discussed. High-temperature and fast-breeder reactors are briefly detailed.

  7. Supercritical Fluid Extraction of Eucalyptus globulus Bark—A Promising Approach for Triterpenoid Production

    Science.gov (United States)

    Domingues, Rui M. A.; Oliveira, Eduardo L. G.; Freire, Carmen S. R.; Couto, Ricardo M.; Simões, Pedro C.; Neto, Carlos P.; Silvestre, Armando J. D.; Silva, Carlos M.

    2012-01-01

    Eucalyptus bark contains significant amounts of triterpenoids with demonstrated bioactivity, namely triterpenic acids and their acetyl derivatives (ursolic, betulinic, oleanolic, betulonic, 3-acetylursolic, and 3-acetyloleanolic acids). In this work, the supercritical fluid extraction (SFE) of Eucalyptus globulus deciduous bark was carried out with pure and modified carbon dioxide to recover this fraction, and the results were compared with those obtained by Soxhlet extraction with dichloromethane. The effects of pressure (100–200 bar), co-solvent (ethanol) content (0, 5 and 8% wt), and multistep operation were studied in order to evaluate the applicability of SFE for their selective and efficient production. The individual extraction curves of the main families of compounds were measured, and the extracts analyzed by GC-MS. Results pointed out the influence of pressure and the important role played by the co-solvent. Ethanol can be used with advantage, since its effect is more important than increasing pressure by several tens of bar. At 160 bar and 40 °C, the introduction of 8% (wt) of ethanol greatly improves the yield of triterpenoids more than threefold. PMID:22837719

  8. Lactulose efficacy in reduction of nitrogen products, blood potassium and fluid overload in patients with end-stage renal failure

    Directory of Open Access Journals (Sweden)

    Negin Aleagha

    2017-06-01

    Full Text Available Introduction: Chronic kidney disease (CKD is a major public health problem that often goes unrecognized until its late-stage. Patients with chronic kidney disease face uremic toxins and hyperkalemia. Also, fluid overload in CKD patients is associated with rapid decline in kidney function. Lactulose is a hyperosmotic agent and as a prebiotic, it plays an important role in regulating serum urea and potassium levels and has some effects on fluid overload. The aim of this study was to evaluate the effect of lactulose on serum levels of biochemical products in patients with CKD. Materials and Methods: In this interventional study, 17 patients with end stage of CKD ( 76.47 % men; mean age 65.88 ± 13.4 were evaluated.All patients received lactulose, 10 ml, 3 times per day for 3 months. Blood samples from all participants were collected before and at the end of intervention to examine changes in biochemical parameters, including potassium, urea, creatinine and uric acid. Results: Lactulose significantly decreased urea levels (p=0.001, blood potassium (0.001 and fluid overload(considering the patient’s weight p=0.001 in patients with end-stage renal failure. The decrease in serum creatinine and uric acid were not significant. Conclusion: Lactulose administration in CKD patients could decrease levels of various deleterious elements, especially urea and blood potassium and its daily use can be recommended in these patients.

  9. Fluid-fluid level on MR image: significance in Musculoskeletal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hye Won; Lee, Kyung Won [Seoul Naitonal University, Seoul (Korea, Republic of). Coll. of Medicine; Song, Chi Sung [Seoul City Boramae Hospital, Seoul (Korea, Republic of); Han, Sang Wook; Kang, Heung Sik [Seoul Naitonal University, Seoul (Korea, Republic of). Coll. of Medicine

    1998-01-01

    To evaluate the frequency, number and signal intensity of fluid-fluid levels of musculoskeletal diseases on MR images, and to determine the usefulness of this information for the differentiation of musculoskeletal diseases. MR images revealed fluid-fluid levels in the following diseases : giant cell tumor(6), telangiectatic osteosarcoma(4), aneurysmal bone cyst(3), synovial sarcoma(3), chondroblastoma(2), soft tissue tuberculous abscess(2), hematoma(2), hemangioma (1), neurilemmoma(1), metastasis(1), malignant fibrous histiocytoma(1), bursitis(1), pyogenic abscess(1), and epidermoid inclusion cyst(1). Fourteen benign tumors and ten malignant, three abscesses, and the epidermoid inclusion cyst showed only one fluid-fluid level in a unilocular cyst. On T1-weighted images, the signal intensities of fluid varied, but on T2-weighted images, superior layers were in most cases more hyperintense than inferior layers. Because fluid-fluid layers are a nonspecific finding, it is difficult to specifically diagnose each disease according to the number of fluid-fluid levels or signal intensity of fluid. In spite of the nonspecificity of fluid-fluid levels, they were frequently seen in cases of giant cell tumor, telangiectatic osteosarcoma, aneurysmal bone cycle, and synovial sarcoma. Nontumorous diseases such abscesses and hematomas also demonstrated this finding. (author). 11 refs., 1 tab., 4 figs.

  10. Fluid-fluid level on MR image: significance in Musculoskeletal diseases

    International Nuclear Information System (INIS)

    Chung, Hye Won; Lee, Kyung Won; Han, Sang Wook; Kang, Heung Sik

    1998-01-01

    To evaluate the frequency, number and signal intensity of fluid-fluid levels of musculoskeletal diseases on MR images, and to determine the usefulness of this information for the differentiation of musculoskeletal diseases. MR images revealed fluid-fluid levels in the following diseases : giant cell tumor(6), telangiectatic osteosarcoma(4), aneurysmal bone cyst(3), synovial sarcoma(3), chondroblastoma(2), soft tissue tuberculous abscess(2), hematoma(2), hemangioma (1), neurilemmoma(1), metastasis(1), malignant fibrous histiocytoma(1), bursitis(1), pyogenic abscess(1), and epidermoid inclusion cyst(1). Fourteen benign tumors and ten malignant, three abscesses, and the epidermoid inclusion cyst showed only one fluid-fluid level in a unilocular cyst. On T1-weighted images, the signal intensities of fluid varied, but on T2-weighted images, superior layers were in most cases more hyperintense than inferior layers. Because fluid-fluid layers are a nonspecific finding, it is difficult to specifically diagnose each disease according to the number of fluid-fluid levels or signal intensity of fluid. In spite of the nonspecificity of fluid-fluid levels, they were frequently seen in cases of giant cell tumor, telangiectatic osteosarcoma, aneurysmal bone cycle, and synovial sarcoma. Nontumorous diseases such abscesses and hematomas also demonstrated this finding. (author). 11 refs., 1 tab., 4 figs

  11. Rheological behavior of drilling fluids under low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lomba, Rosana F.T.; Sa, Carlos H.M. de; Brandao, Edimir M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mails: rlomba, chsa, edimir@cenpes.petrobras.com.br

    2000-07-01

    The so-called solid-free fluids represent a good alternative to drill through productive zones. These drill-in fluids are known to be non-damaging to the formation and their formulation comprise polymers, salts and acid soluble solids. Xanthan gum is widely used as viscosifier and modified starch as fluid loss control additive. The salts most commonly used are sodium chloride and potassium chloride, although the use of organic salt brines has been increasing lately. Sized calcium carbonate is used as bridging material, when the situation requires. The low temperatures encountered during deep water drilling demand the knowledge of fluid rheology at this temperature range. The rheological behavior of drill-in fluids at temperatures as low as 5 deg C was experimentally evaluated. Special attention was given to the low shear rate behavior of the fluids. A methodology was developed to come up with correlations to calculate shear stress variations with temperature. The developed correlations do not depend on a previous choice of a rheological model. The results will be incorporated in a numerical simulator to account for temperature effects on well bore cleaning later on. (author)

  12. Hydraulic fracturing chemicals and fluids technology

    CERN Document Server

    Fink, Johannes

    2013-01-01

    When classifying fracturing fluids and their additives, it is important that production, operation, and completion engineers understand which chemical should be utilized in different well environments. A user's guide to the many chemicals and chemical additives used in hydraulic fracturing operations, Hydraulic Fracturing Chemicals and Fluids Technology provides an easy-to-use manual to create fluid formulations that will meet project-specific needs while protecting the environment and the life of the well. Fink creates a concise and comprehensive reference that enables the engineer to logically select and use the appropriate chemicals on any hydraulic fracturing job. The first book devoted entirely to hydraulic fracturing chemicals, Fink eliminates the guesswork so the engineer can select the best chemicals needed on the job while providing the best protection for the well, workers and environment. Pinpoints the specific compounds used in any given fracturing operation Provides a systematic approach to class...

  13. Three-Dimensional Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Haworth, D.C.; O' Rourke, P.J.; Ranganathan, R.

    1998-09-01

    Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.

  14. Statistical modeling of geopressured geothermal reservoirs

    Science.gov (United States)

    Ansari, Esmail; Hughes, Richard; White, Christopher D.

    2017-06-01

    Identifying attractive candidate reservoirs for producing geothermal energy requires predictive models. In this work, inspectional analysis and statistical modeling are used to create simple predictive models for a line drive design. Inspectional analysis on the partial differential equations governing this design yields a minimum number of fifteen dimensionless groups required to describe the physics of the system. These dimensionless groups are explained and confirmed using models with similar dimensionless groups but different dimensional parameters. This study models dimensionless production temperature and thermal recovery factor as the responses of a numerical model. These responses are obtained by a Box-Behnken experimental design. An uncertainty plot is used to segment the dimensionless time and develop a model for each segment. The important dimensionless numbers for each segment of the dimensionless time are identified using the Boosting method. These selected numbers are used in the regression models. The developed models are reduced to have a minimum number of predictors and interactions. The reduced final models are then presented and assessed using testing runs. Finally, applications of these models are offered. The presented workflow is generic and can be used to translate the output of a numerical simulator into simple predictive models in other research areas involving numerical simulation.

  15. FluidCam 1&2 - UAV-based Fluid Lensing Instruments for High-Resolution 3D Subaqueous Imaging and Automated Remote Biosphere Assessment of Reef Ecosystems

    Science.gov (United States)

    Chirayath, V.; Instrella, R.

    2016-02-01

    We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.

  16. Thermophysical characterization of Al2O3 and ZrO2 nano-fluids as emergency cooling fluids of future generations of nuclear reactors - 15504

    International Nuclear Information System (INIS)

    Rocha, M.S.; Cabral, E.L.L.; Sabundjian, G.; Yoriyaz, H.; Lima, A.C.S.; Belchior Junior, A.; Prado, A.C.; Filho, T.F.; Andrade, D.A.; Shorto, J.M.B.; Mesquita, R.N.; Otubo, L.; Filho, B.D.B.; Ribatsky, G.; Ubices de Moraes, A.A.

    2015-01-01

    Among the countless applications presently proposed for the nano-fluids, the applications in energy have special attention by academic and industrial interest. Studies demonstrate that nano-fluids based on metal oxide nanoparticles have physical properties that characterize them as promising working fluids, mainly, in industrial systems in which high heat flux want to be removed. Nuclear reactors for power production are examples of industry where such an application has been proposed. However, there are no concrete results about the ionizing radiation effects on nano-fluids properties. This work aims to present the initial results of the current study carried out with the objective to check the effects caused by that ionizing radiation on nano-fluids based on Al 2 O 3 and ZrO 2 nanoparticles. Results from thermophysical analyses demonstrate that particular behavior on thermal conductivity, and density of such nano-fluids can be observed as a function of temperature under no ionizing radiation effect. New investigations will analyze the application potentiality of some nano-fluids in nuclear systems for heat transfer enhancement under ionizing radiation influence. (authors)

  17. Fluid Flow Patterns During Production from Gas Hydrates in the Laboratory compared to Field Settings: LARS vs. Mallik

    Science.gov (United States)

    Strauch, B.; Heeschen, K. U.; Priegnitz, M.; Abendroth, S.; Spangenberg, E.; Thaler, J.; Schicks, J. M.

    2015-12-01

    The GFZ's LArge Reservoir Simulator LARS allows for the simulation of the 2008 Mallik gas hydrate production test and the comparison of fluid flow patterns and their driving forces. Do we see the gas flow pattern described for Mallik [Uddin, M. et al., J. Can. Petrol Tech, 50, 70-89, 2011] in a pilot scale test? If so, what are the driving forces? LARS has a network of temperature sensors and an electric resistivity tomography (ERT) enabling a good spatial resolution of gas hydrate occurrences, water and gas distribution, and changes in temperature in the sample. A gas flow meter and a water trap record fluid flow patterns and a backpressure valve has controlled the depressurization equivalent to the three pressure stages (7.0 - 5.0 - 4.2 MPa) applied in the Mallik field test. The environmental temperature (284 K) and confining pressure (13 MPa) have been constant. The depressurization induced immediate endothermic gas hydrate dissociation until re-establishment of the stability conditions by a consequent temperature decrease. Slight gas hydrate dissociation continued at the top and upper lateral border due to the constant heat input from the environment. Here transport pathways were short and permeability higher due to lower gas hydrate saturation. At pressures of 7.0 and 5.0 MPa the LARS tests showed high water flow rates and short irregular spikes of gas production. The gas flow patterns at 4.2 MPa and 3.0MPa resembled those of the Mallik test. In LARS the initial gas surges overlap with times of hydrate instability while water content and lengths of pathways had increased. Water production was at a minimum. A rapidly formed continuous gas phase caused the initial gas surges and only after gas hydrate dissociation decreased to a minimum the single gas bubbles get trapped before slowly coalescing again. In LARS, where pathways were short and no additional water was added, a transport of microbubbles is unlikely to cause a gas surge as suggested for Mallik.

  18. An Introduction to Thermal-Fluid Engineering

    Science.gov (United States)

    Warhaft, Zellman

    1998-01-01

    This text is the first to provide an integrated introduction to basic engineering topics and the social implications of engineering practice. Aimed at beginning engineering students, the book presents the basic ideas of thermodynamics, fluid mechanics, heat transfer, and combustion through a real-world engineering situation. It relates the engine to the atmosphere in which it moves and exhausts its waste products. The book also discusses the greenhouse effect and atmospheric inversions, and the social implications of engineering in a crowded world with increasing energy demands. Students in mechanical, civil, agricultural, environmental, aerospace, and chemical engineering will welcome this engaging, well-illustrated introduction to thermal-fluid engineering.

  19. Application des fluides supercritiques à la production d'hydrocarbures. Exploitation des gisements par récupération assistée et applications diverses : pétrole, sables, schistes, charbons Application of Supercritical Fluids to Hydrocarbon Production. Enhanced Oi Recovery and Miscellaneous Applications: Oil, Tar Sands, Shales, Coals

    Directory of Open Access Journals (Sweden)

    Behar E.

    2006-11-01

    Full Text Available Le taux moyen de récupération par drainage naturel des gisements pétroliers atteint à peine 30 %. La récupération assistée désigne l'ensemble des procédés d'exploitation qui permettent d'accroître très sensiblement ce taux. Parmi ces procédés, l'injection de fluides supercritiques joue un rôle prometteur. Les principaux fluides actuellement utilisés sont : le méthane (ou plus généralement les gaz hydrocarbures dits pauvres , l'azote et enfin le gaz carbonique. Les domaines d'application et les mécanismes thermodynamiques mis en jeu sont brièvement exposés, les sources de fluides supercritiques disponibles au voisinage des gisements pétroliers sont rapidement répertoriées et certains problèmes d'exploitation évoqués. Outre leur application en récupération assistée, les fluides supercritiques sont également impliqués dans des procédés de raffinage et d'extraction divers. C'est le procédé de désasphaltage de fractions pétrolières lourdes qui, en 1956, a fait l'objet de la première application industrielle exploitant les fortes variations du pouvoir solvant d'un fluide au voisinage de son point critique. Ce procédé connaît, depuis une dizaine d'années, un regain d'intérêt du fait de l'économie d'énergie qu'il permet de réaliser. D'autre part, les schistes bitumineux, les sables asphaltiques et les charbons, sources d'hydrocarbures considérables pour l'avenir, constituent des domaines d'applications potentielles originales des fluides supercritiques. Les procédés spécifiques, pour la plupart en cours de développement au stade pilote, sont passés en revue. The average recovery by natural drainage from oil fields is barely 30%. Enhanced recovery includes all production processes which appreciably increase this rate. Among such processes, supercritical fluid flooding is quite promising. The main fluids now used are methane (or, more generally, so-called leangaseous hydrocarbons, nitrogen and carbon

  20. The fluid mechanics of channel fracturing flows: experiment

    Science.gov (United States)

    Rashedi, Ahmadreza; Tucker, Zachery; Ovarlez, Guillaume; Hormozi, Sarah

    2017-11-01

    We show our preliminary experimental results on the role of fluid mechanics in channel fracturing flows, particularly yield stress fracturing fluids. Recent trends in the oil industry have included the use of cyclic pumping of a proppant slurry interspersed with a yield stress fracturing fluid, which is found to increase wells productivity, if particles disperse in a certain fashion. Our experimental study aims to investigate the physical mechanisms responsible for dispersing the particles (proppant) within a yield stress carrier fluid, and to measure the dispersion of proppant slugs in various fracturing regimes. To this end we have designed and built a unique experimental setup that resembles a fracture configuration coupled with a particle image/tracking velocimetry setup operating at micro to macro dimensions. Moreover, we have designed optically engineered suspensions of complex fluids with tunable yield stress and consistency, well controlled density match-mismatch properties and refractive indices for both X-rays and visible lights. We present our experimental system and preliminary results. NSF (Grant No. CBET-1554044- CAREER), ACS PRF (Grant No. 55661-DNI9).

  1. The origin of methanethiol in midocean ridge hydrothermal fluids.

    Science.gov (United States)

    Reeves, Eoghan P; McDermott, Jill M; Seewald, Jeffrey S

    2014-04-15

    Simple alkyl thiols such as methanethiol (CH3SH) are widely speculated to form in seafloor hot spring fluids. Putative CH3SH synthesis by abiotic (nonbiological) reduction of inorganic carbon (CO2 or CO) has been invoked as an initiation reaction for the emergence of protometabolism and microbial life in primordial hydrothermal settings. Thiols are also presumptive ligands for hydrothermal trace metals and potential fuels for associated microbial communities. In an effort to constrain sources and sinks of CH3SH in seafloor hydrothermal systems, we determined for the first time its abundance in diverse hydrothermal fluids emanating from ultramafic, mafic, and sediment-covered midocean ridge settings. Our data demonstrate that the distribution of CH3SH is inconsistent with metastable equilibrium with inorganic carbon, indicating that production by abiotic carbon reduction is more limited than previously proposed. CH3SH concentrations are uniformly low (∼10(-8) M) in high-temperature fluids (>200 °C) from all unsedimented systems and, in many cases, suggestive of metastable equilibrium with CH4 instead. Associated low-temperature fluids (<200 °C) formed by admixing of seawater, however, are invariably enriched in CH3SH (up to ∼10(-6) M) along with NH4(+) and low-molecular-weight hydrocarbons relative to high-temperature source fluids, resembling our observations from a sediment-hosted system. This strongly implicates thermogenic interactions between upwelling fluids and microbial biomass or associated dissolved organic matter during subsurface mixing in crustal aquifers. Widespread thermal degradation of subsurface organic matter may be an important source of organic production in unsedimented hydrothermal systems and may influence microbial metabolic strategies in cooler near-seafloor and plume habitats.

  2. Fluid-mediated redox transfer in subduction zones: Measuring the intrinsic fO2 of slab fluids in the lab

    Science.gov (United States)

    Iacovino, K.; Till, C. B.

    2017-12-01

    It is widely observed that arc magmas are the most oxidized magmas on Earth. One frequently cited explanation calls on the flux of aqueous fluid from the highly oxidized down-going slab to catalyze sub-arc mantle melting and impose a highly oxidized redox signature on the mantle wedge. Fluid inclusions from sub-arc mantle xenoliths provide evidence that "slab fluids" may be highly oxidizing (fO2 QFM+1.5; Brandon & Draper, 1996; Frost and Ballhaus, 1998), but for decades, determination of the precise reactive mechanism potentially responsible for the transfer of O2 from slab to mantle has been elusive. Pure H2O has been shown to have insufficient oxidizing capacity to affect mantle redox, but H2O-rich fluids may facilitate the mobilization of Fe3+ or other multivalent cations and/or O2 transfer via the reduction of sulfate, particularly if such fluids are hypersaline. Here we present the first results from experiments designed to investigate fluid-mediated element transfer, including redox reactions, at the slab-mantle interface. These data include the first direct measurements of the intrinsic oxygen fugacity of fluids released during slab dehydration using sliding binary alloy redox sensors. Experiments were performed on natural Fe3+-bearing antigorite serpentinite at 1-2 GPa and 800°C in a piston cylinder at Arizona State University, analogous to conditions in a subducting slab and sufficient to cause the breakdown of starting material into forsteritic olivine, Mg-rich clinopyroxene, magnetite, and aqueous fluid. Experimental time series allow for the detection of (and correction for) any buffering effect on the sample by the experimental assembly. Initial results indicate that the dehydration of sulfur-free antigorite serpentinite can generate fluids with fO2 several orders of magnitude above that of MORB mantle and similar to those observed in natural sub-arc fluid inclusions. Careful measurements of the chemistry of fluid and solid run products will elucidate

  3. Early fluid loading for septic patients: Any safety limit needed?

    Science.gov (United States)

    Gong, Yi-Chun; Liu, Jing-Tao; Ma, Peng-Lin

    2018-02-01

    Early adequate fluid loading was the corner stone of hemodynamic optimization for sepsis and septic shock. Meanwhile, recent recommended protocol for fluid resuscitation was increasingly debated on hemodynamic stability vs risk of overloading. In recent publications, it was found that a priority was often given to hemodynamic stability rather than organ function alternation in the early fluid resuscitation of sepsis. However, no safety limits were used at all in most of these reports. In this article, the rationality and safety of early aggressive fluid loading for septic patients were discussed. It was concluded that early aggressive fluid loading improved hemodynamics transitorily, but was probably traded off with a follow-up organ function impairment, such as worsening oxygenation by reduction of lung aeration, in a part of septic patients at least. Thus, a safeguard is needed against unnecessary excessive fluids in early aggressive fluid loading for septic patients. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  4. Introduction to thermal and fluid engineering

    CERN Document Server

    Kraus, Allan D; Aziz, Abdul; Ghajar, Afshin J

    2011-01-01

    The Thermal/Fluid Sciences: Introductory ConceptsThermodynamicsFluid MechanicsHeat TransferEngineered Systems and ProductsHistorical DevelopmentThe Thermal/Fluid Sciences and the EnvironmentThermodynamics: Preliminary Concepts and DefinitionsThe Study of ThermodynamicsSome DefinitionsDimensions and UnitsDensity and Related PropertiesPressureTemperature and the Zeroth Law of ThermodynamicsProblem-Solving MethodologyEnergy and the First Law of ThermodynamicsKinetic, Potential, and Internal EnergyWorkHeatThe First Law of ThermodynamicsThe Energy Balance for Closed SystemsThe Ideal Gas ModelIdeal Gas Enthalpy and Specific HeatsProcesses of an Ideal GasProperties of Pure, Simple Compressible SubstancesThe State PostulateP-v-T RelationshipsThermodynamic Property DataThe T-s and h-s DiagramsReal Gas BehaviorEquations of StateThe Polytropic Process for an Ideal GasControl Volume Mass and Energy Analysis The Control VolumeConservation of MassConservation of Energy for a Control VolumeSpecific Heats of Incompressible S...

  5. The Janus fluid a theoretical perspective

    CERN Document Server

    Fantoni, Riccardo

    2013-01-01

    The state-of-the-art in the theoretical statistical physics treatment of the Janus fluid is reported with a bridge between new research results published in journal articles and a contextual literature review. Recent Monte Carlo simulations on the Kern and Frenkel model of the Janus fluid have revealed that in the vapor phase, below the critical point, there is the formation of preferred inert clusters made up of a well-defined number of particles: the micelles and the vesicles. This is responsible for a re-entrant gas branch of the gas-liquid binodal. Detailed account of this findings are given in the first chapter where the Janus fluid is introduced as a product of new sophisticated synthesis laboratory techniques. In the second chapter a cluster theory is developed to approximate the exact clustering properties stemming from the simulations. It is shown that the theory is able to reproduce semi-quantitatively the micellization phenomenon.

  6. Biocompatible Peritoneal Dialysis Fluids: Clinical Outcomes

    Directory of Open Access Journals (Sweden)

    Yeoungjee Cho

    2012-01-01

    Full Text Available Peritoneal dialysis (PD is a preferred home dialysis modality and has a number of added advantages including improved initial patient survival and cost effectiveness over haemodialysis. Despite these benefits, uptake of PD remains relatively low, especially in developed countries. Wider implementation of PD is compromised by higher technique failure from infections (e.g., PD peritonitis and ultrafiltration failure. These are inevitable consequences of peritoneal injury, which is thought to result primarily from continuous exposure to PD fluids that are characterised by their “unphysiologic” composition. In order to overcome these barriers, a number of more biocompatible PD fluids, with neutral pH, low glucose degradation product content, and bicarbonate buffer have been manufactured over the past two decades. Several preclinical studies have demonstrated their benefit in terms of improvement in host cell defence, peritoneal membrane integrity, and cytokine profile. This paper aims to review randomised controlled trials assessing the use of biocompatible PD fluids and their effect on clinical outcomes.

  7. Counterfeit Electronic Cigarette Products with Mislabeled Nicotine Concentrations.

    Science.gov (United States)

    Omaiye, Esther E; Cordova, Iliana; Davis, Barbara; Talbot, Prue

    2017-07-01

    We compared nicotine concentrations in one brand of refill fluids that were purchased in 4 countries and labeled 0 mg of nicotine/mL. We then identified counterfeit e-cigarette products from these countries. Overall, 125 e-cigarette refill fluids were purchased in Nigeria, the United States (US), England, and China. Nicotine concentrations were measured using high performance liquid chromatography and compared to labeled concentrations. Refill fluids were examined to identify physical differences and grouped into authentic and counterfeit products. Whereas nicotine was in 51.7% (15/29) of the Nigerian, 3.7% (1/27) of the Chinese and 1.6% (1/61) of the American refill fluids (range = 0.4 - 20.4 mg/mL), 8 British products did not contain nicotine. Products from China, the US, and Nigeria with trace amounts of nicotine (0.4 to 0.6 mg/mL) were authentic; however, all products from Nigeria with more than 3.7 mg/mL were counterfeit. We introduce 2 novel issues in the e-cigarette industry, the production of counterfeit refill fluids under a brandjacked label and inclusion of nicotine in 81.3% of the counterfeit products labeled 0 mg/mL. This study emphasizes the need for better control and monitoring of nicotine containing products and sales outlets.

  8. Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System.

    Science.gov (United States)

    Matsumae, Mitsunori; Sato, Osamu; Hirayama, Akihiro; Hayashi, Naokazu; Takizawa, Ken; Atsumi, Hideki; Sorimachi, Takatoshi

    2016-07-15

    Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016.

  9. Microbiological quality of some brands of intravenous fluids ...

    African Journals Online (AJOL)

    SERVER

    2007-10-04

    Oct 4, 2007 ... Food, Drug Administration and Control (NAFDAC), have on many occasions ... products from 8 manufacturers were tested for their ... Table 1. Microbial contamination level of brand of intravenous fluids produced by some.

  10. Auxillary Fluid Flowmeter

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Forouzbakhsh, Farshid; Ebrahimi Darkhaneh, Hadi

    2010-01-01

    The Auxiliary Fluid Flow meter is proposed to measure the fluid flow of any kind in both pipes and open channels. In this kind of flow measurement, the flow of an auxiliary fluid is measured Instead of direct measurement of the main fluid flow. The auxiliary fluid is injected into the main fluid ...

  11. Batch statistical process control of a fluid bed granulation process using in-line spatial filter velocimetry and product temperature measurements.

    Science.gov (United States)

    Burggraeve, A; Van den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T

    2011-04-18

    Fluid bed granulation is a batch process, which is characterized by the processing of raw materials for a predefined period of time, consisting of a fixed spraying phase and a subsequent drying period. The present study shows the multivariate statistical modeling and control of a fluid bed granulation process based on in-line particle size distribution (PSD) measurements (using spatial filter velocimetry) combined with continuous product temperature registration using a partial least squares (PLS) approach. Via the continuous in-line monitoring of the PSD and product temperature during granulation of various reference batches, a statistical batch model was developed allowing the real-time evaluation and acceptance or rejection of future batches. Continuously monitored PSD and product temperature process data of 10 reference batches (X-data) were used to develop a reference batch PLS model, regressing the X-data versus the batch process time (Y-data). Two PLS components captured 98.8% of the variation in the X-data block. Score control charts in which the average batch trajectory and upper and lower control limits are displayed were developed. Next, these control charts were used to monitor 4 new test batches in real-time and to immediately detect any deviations from the expected batch trajectory. By real-time evaluation of new batches using the developed control charts and by computation of contribution plots of deviating process behavior at a certain time point, batch losses or reprocessing can be prevented. Immediately after batch completion, all PSD and product temperature information (i.e., a batch progress fingerprint) was used to estimate some granule properties (density and flowability) at an early stage, which can improve batch release time. Individual PLS models relating the computed scores (X) of the reference PLS model (based on the 10 reference batches) and the density, respectively, flowabililty as Y-matrix, were developed. The scores of the 4 test

  12. Tracer technology modeling the flow of fluids

    CERN Document Server

    Levenspiel, Octave

    2012-01-01

    A vessel’s behavior as a heat exchanger, absorber, reactor, or other process unit is dependent upon how fluid flows through the vessel.  In early engineering, the designer would assume either plug flow or mixed flow of the fluid through the vessel.  However, these assumptions were oftentimes inaccurate, sometimes being off by a volume factor of 100 or more.  The result of this unreliable figure produced ineffective products in multiple reaction systems.   Written by a pioneering researcher in the field of chemical engineering, the tracer method was introduced to provide more accurate flow data.  First, the tracer method measured the actual flow of fluid through a vessel.  Second, it developed a suitable model to represent the flow in question.  Such models are used to follow the flow of fluid in chemical reactors and other process units, like in rivers and streams, or solid and porous structures.  In medicine, the tracer method is used to study the flow of chemicals—harmful  and harmless—in the...

  13. Self-study manual for introduction to computational fluid dynamics

    OpenAIRE

    Nabatov, Andrey

    2017-01-01

    Computational Fluid Dynamics (CFD) is the branch of Fluid Mechanics and Computational Physics that plays a decent role in modern Mechanical Engineering Design process due to such advantages as relatively low cost of simulation comparing with conduction of real experiment, an opportunity to easily correct the design of a prototype prior to manufacturing of the final product and a wide range of application: mixing, acoustics, cooling and aerodynamics. This makes CFD particularly and Computation...

  14. Fluids engineering

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general

  15. Removing sulphur oxides from a fluid stream

    Science.gov (United States)

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

  16. Personalised fluid resuscitation in the ICU: still a fluid concept?

    Science.gov (United States)

    van Haren, Frank

    2017-12-28

    The administration of intravenous fluid to critically ill patients is one of the most common, but also one of the most fiercely debated, interventions in intensive care medicine. Even though many thousands of patients have been enrolled in large trials of alternative fluid strategies, consensus remains elusive and practice is widely variable. Critically ill patients are significantly heterogeneous, making a one size fits all approach unlikely to be successful.New data from basic, animal, and clinical research suggest that fluid resuscitation could be associated with significant harm. There are several important limitations and concerns regarding fluid bolus therapy as it is currently being used in clinical practice. These include, but are not limited to: the lack of an agreed definition; limited and short-lived physiological effects; no evidence of an effect on relevant patient outcomes; and the potential to contribute to fluid overload, specifically when fluid responsiveness is not assessed and when targets and safety limits are not used.Fluid administration in critically ill patients requires clinicians to integrate abnormal physiological parameters into a clinical decision-making model that also incorporates the likely diagnosis and the likely risk or benefit in the specific patient's context. Personalised fluid resuscitation requires careful attention to the mnemonic CIT TAIT: context, indication, targets, timing, amount of fluid, infusion strategy, and type of fluid.The research agenda should focus on experimental and clinical studies to: improve our understanding of the physiological effects of fluid infusion, e.g. on the glycocalyx; evaluate new types of fluids; evaluate novel fluid minimisation protocols; study the effects of a no-fluid strategy for selected patients and scenarios; and compare fluid therapy with other interventions. The adaptive platform trial design may provide us with the tools to evaluate these types of interventions in the intrinsically

  17. An experimental investigation of the thermal/fluid properties of the nitrate to ammonia and ceramic (NAC) product slurry

    International Nuclear Information System (INIS)

    Muguercia, I.; Lagos, L.; Yang, G.; Li, W.; Ebadian, M.A.; Mattus, A.J.; Lee, D.D.; Walker, J.W.; Hunt, R.D.

    1994-01-01

    Recently, a new immobilization technique for LLW, the Nitrate to Ammonia and Ceramic (NAC) process, has been developed. Instead of mixing the liquid waste form directly with the cement to make concrete blocks, the NAC process eliminates the nitrate from the LLW by converting it to ammonia gas. Aluminum particles are used as a reductant to complete this conversion. The final product of the NAC process is gibbsite, which can be further sintered to a ceramic waste form. Experimental tests are conducted to measure the apparent viscosity, the pressure drop, and the heat transfer coefficient of the pipe flow of the Nitrate to Ammonia and Ceramic (NAC) process product slurry. The tests indicate that the NAC product slurry exhibits a typical pseudoplastic fluid behavior. The pressure drop in the pipe flow is a function of the Reynolds number and the slurry temperature. The results also indicate that at a low slurry temperature, the slurry is uniformly heated peripherally. At a high slurry temperature, however, the slurry may be thermally stratified. In a straight pipe, the Nusselt number is reduced as the slurry temperature increases

  18. Use and practice of achiral and chiral supercritical fluid chromatography in pharmaceutical analysis and purification.

    Science.gov (United States)

    Lemasson, Elise; Bertin, Sophie; West, Caroline

    2016-01-01

    The interest of pharmaceutical companies for complementary high-performance chromatographic tools to assess a product's purity or enhance this purity is on the rise. The high-throughput capability and economic benefits of supercritical fluid chromatography, but also the "green" aspect of CO2 as the principal solvent, render supercritical fluid chromatography very attractive for a wide range of pharmaceutical applications. The recent reintroduction of new robust instruments dedicated to supercritical fluid chromatography and the progress in stationary phase technology have also greatly benefited supercritical fluid chromatography. Additionally, it was shown several times that supercritical fluid chromatography could be orthogonal to reversed-phase high-performance liquid chromatography and could efficiently compete with it. Supercritical fluid chromatography is an adequate tool for small molecules of pharmaceutical interest: synthetic intermediates, active pharmaceutical ingredients, impurities, or degradation products. In this review, we first discuss about general chromatographic conditions for supercritical fluid chromatography analysis to better suit compounds of pharmaceutical interest. We also discuss about the use of achiral and chiral supercritical fluid chromatography for analytical purposes and the recent applications in these areas. The use of preparative supercritical fluid chromatography by pharmaceutical companies is also covered. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Analogy between spin glasses and Yang--Mills fluids

    International Nuclear Information System (INIS)

    Holm, D.D.; Kupershmidt, B.A.

    1988-01-01

    A dictionary of correspondence is established between the dynamical variables for spin-glass fluid and Yang-Mills plasma. The Lie-algebraic interpretation of these variables is presented for the two theories. The noncanonical Poisson bracket for the Hamiltonian dynamics of an ideal spin glass is shown to be identical to that for the dynamics of a Yang--Mills fluid plasma, although the Hamiltonians differ for the two theories. This Poisson bracket is associated to the dual space of an infinite-dimensional Lie algebra of semidirect-product type

  20. Modern fluid dynamics

    CERN Document Server

    Kleinstreuer, Clement

    2018-01-01

    Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix.

  1. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    Science.gov (United States)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  2. Optimization of organo clay production for applications in based oil drilling fluid; Otimizacao do processo de organofilizacao para aplicacoes em fluidos de perfuracao base oleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Heber S; Martins, Alice B; Costa, Danubia L. da; Ferreira, Heber C; Neves, Gelmires de A; Melo, Tomas J.A. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Teixeira Neto, Erico [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2008-07-01

    The organophilic clays are widely used as an agent dispersed in the composition of oil based drilling fluids. The organophilic clays are gotten from bentonite clays treated, in watery way, with ionic surfactants, that are adsorbed in the surface of interlayer of the clays, re-covered them with a organic layer. A fundamental stage of production of the organophilic clays is the dispersion of bentonite clays, in way that variables like: speed of agitation, temperature and time of cure, influences directly in plastic and apparent viscosities of these dispersions, together with other variables of organophilization process, like, temperature and time of cure of organophilization, has direct influence in efficiency of the organophilization process. This work considers a study of these variable, using bentonite clays: Brasgel PA{sup R} and Cloisite Na{sup +R}, treated with the ionic surfactant Praepagem WB{sup R}. The organophilic clays gotten had been characterized by rays X diffraction, Foster's swelling, and the results were compared with the commercial organophilic clay VG-69{sup R}, industrially treated with ionic surfactant. Viscosities plastic and apparent of the dispersions had been measured in the midst of organic dispersant diesel oil used to obtain the oil based drilling fluids. Preliminary results of Foster's swelling and preparation of fluids show that the clays have affinity with the means liquid organic dispersants, and the fluids meet specifications of PETROBRAS (N-22581-1997 and N-2259 to 1997) for use in the of diesel oil based drilling fluids. (author)

  3. On Fluid and Thermal Dynamics in a Heterogeneous CO2 Plume Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Tianfu Xu

    2017-01-01

    Full Text Available CO2 is now considered as a novel heat transmission fluid to extract geothermal energy. It can achieve both the energy exploitation and CO2 geological sequestration. The migration pathway and the process of fluid flow within the reservoirs affect significantly a CO2 plume geothermal (CPG system. In this study, we built three-dimensional wellbore-reservoir coupled models using geological and geothermal conditions of Qingshankou Formation in Songliao Basin, China. The performance of the CPG system is evaluated in terms of the temperature, CO2 plume distribution, flow rate of production fluid, heat extraction rate, and storage of CO2. For obtaining a deeper understanding of CO2-geothermal system under realistic conditions, heterogeneity of reservoir’s hydrological properties (in terms of permeability and porosity is taken into account. Due to the fortissimo mobility of CO2, as long as a highly permeable zone exists between the two wells, it is more likely to flow through the highly permeable zone to reach the production well, even though the flow path is longer. The preferential flow shortens circulation time and reduces heat-exchange area, probably leading to early thermal breakthrough, which makes the production fluid temperature decrease rapidly. The analyses of flow dynamics of CO2-water fluid and heat may be useful for future design of a CO2-based geothermal development system.

  4. One-Step Production of Protein-Loaded PLGA Microparticles via Spray Drying Using 3-Fluid Nozzle

    DEFF Research Database (Denmark)

    Wan, Feng; Maltesen, Morten Jonas; Andersen, Sune Klint

    2014-01-01

    The aim of this study was to investigate the potential of using a spray-dryer equipped with a 3-fluid nozzle to microencapsulate protein drugs into polymeric microparticles.......The aim of this study was to investigate the potential of using a spray-dryer equipped with a 3-fluid nozzle to microencapsulate protein drugs into polymeric microparticles....

  5. Proteomic analysis of chinook salmon (Oncorhynchus tshawytscha ovarian fluid.

    Directory of Open Access Journals (Sweden)

    Sheri L Johnson

    Full Text Available The ovarian, or coelomic, fluid that is released with the egg mass of many fishes is increasingly found to play an important role in several biological processes crucial for reproductive success. These include maintenance of oocyte fertility and developmental competence, prolonging of sperm motility, and enhancing sperm swimming speed. Here we examined if and how the proteome of chinook salmon (Oncorhynchus tshawytscha ovarian fluid varied among females and then sought to examine the composition of this fluid. Ovarian fluid in chinook salmon was analyzed using 1D SDS PAGE and LC-MS/MS tryptic digest screened against Mascot and Sequest databases. We found marked differences in the number and concentrations of proteins in salmon ovarian fluid across different females. A total of 174 proteins were identified in ovarian fluid, 47 of which were represented by six or more peptides, belonging to one of six Gene Ontology pathways. The response to chemical stimulus and response to hypoxia pathways were best represented, accounting for 26 of the 174 proteins. The current data set provides a resource that furthers our understanding of those factors that influence successful egg production and fertilisation in salmonids and other species.

  6. Detection of impurities in fluid flowing in refinery pipeline or oil production operations using nuclear techniques

    International Nuclear Information System (INIS)

    Arnold, D.M.; Peelman, H.E.; Langford, O.M.; Paap, H.J.; Sopernaw, I.R.

    1977-01-01

    Fluid in a pipeline or container at a refinery or at any of various petroleum producing operations is bombarded with neutrons and high energy gamma rays resulting from capture of thermal neutrons are detected. The spectra of the detected gamma rays are then analyzed to determine the concentration of the element chlorine, which gives an indication of the presence and concentration of salt water in the fluid. The concentration of sulfur and the percentage gas in the fluid may be determined simultaneously with the concentration of chlorine. (Auth.)

  7. The Feynman fluid analogy in e+e- annihilation

    International Nuclear Information System (INIS)

    Hegyi, S.; Krasznovszky, S.

    1990-07-01

    An analysis of the charged particle multiplicity distributions observed in e + e - annihilation is given using the generalized Feynman fluid analogy of multiparticle production. Only the two-and three-particle integrated correlation functions are included into the scheme. It is shown that the model correctly describes the available experimental data from the TASSO and HRS collaborations. Some properties of the fluid of the analogy are computed and a prediction is made for the multiplicity distribution at √s = 91 GeV. (author) 19 refs.; 5 figs.; 1 tab

  8. Fluid bed direct denitration process for plutonium nitrate to oxide conversion

    International Nuclear Information System (INIS)

    Souply, K.R.; Neal, D.H.

    1977-01-01

    The fluid bed direct-denitration process appears feasible for reprocessing Light Water Reactor fuel. Considerable experience with the fluid bed process exists in the denitration of uranyl nitrate and it shows promise for use in the denitration of plutonium nitrate. The process will require some development work before it can be used in a production-size facility. This report describes a fluid bed direct-denitration process for converting plutonium nitrate to plutonium oxide, and the information should be used when making comparisons of alternative processes or as a basis for further detailed studies

  9. Similarities and differences among fluid milk products: traditionally produced, extended shelf life and ultrahigh-temperature processed.

    Science.gov (United States)

    Grabowski, N T; Ahlfeld, B; Brix, A; Hagemann, A; von Münchhausen, C; Klein, G

    2013-06-01

    Extended shelf life milk is a relatively new kind of fluid milk, generally manufactured by high-temperature treatment and/or micro-filtration. Being advertised as 'pasteurized milk with an extended shelf life', its flavour, compositional quality and labelling was questioned. Extended shelf life (high-temperature treatment), pasteurized ('traditionally produced') and ultrahigh-temperature milk were, therefore, compared at the beginning and end of shelf life. In triangle tests, panellists distinguished clearly between all products. High-temperature treatment milk's flavour was closer to ultrahigh-temperature and traditionally produced milk in the beginning and at the end of shelf life, respectively. Physicochemically and bacteriologically, all three types could be distinguished. Since 'extended shelf life' comprises many process varieties (each affecting flavour differently), consumer information and appropriate package labelling beyond 'long-lasting' is necessary, e.g. by mentioning the heat treatment applied.

  10. Fluid Mechanics, Arterial Disease, and Gene Expression.

    Science.gov (United States)

    Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  11. Supercritical fluid technologies for ceramic-processing applications

    International Nuclear Information System (INIS)

    Matson, D.W.; Smith, R.D.

    1989-01-01

    This paper reports on the applications of supercritical fluid technologies for ceramic processing. The physical and chemical properties of these densified gases are summarized and related to their use as solvents and processing media. Several areas are identified in which specific ceramic processes benefit from the unique properties of supercritical fluids. The rapid expansion of supercritical fluid solutions provides a technique for producing fine uniform powders and thin films of widely varying materials. Supercritical drying technologies allow the formation of highly porous aerogel products with potentially wide application. Hydrothermal processes leading to the formation of large single crystals and microcrystalline powders can also be extended into the supercritical regime of water. Additional applications and potential applications are identified in the areas of extraction of binders and other additives from ceramic compacts, densification of porous ceramics, the formation of powders in supercritical micro-emulsions, and in preceramic polymer processing

  12. Mobility of Yield-Stress Fluids on Lubricant-Impregnated Surface

    Science.gov (United States)

    Rapoport, Leonid; Solomon, Brian; Varanasi, Kripa; Varanasi Research Group Team

    2017-11-01

    Assuring the flow of yield-stress fluids is an essential problem for various industries such as consumer products, health care, and energy. Elimination of wall-induced pinning forces can potentially save power and cleaning costs as well as enable the flow of yield-stress fluids in channels previously considered too narrow. Lubricant-Impregnated Surfaces (LIS) have been demonstrated to change the dynamic behavior of yield-stress fluids and enable them to move as bulk without shearing at all. However, despite the wide applicability of this technology and its general appeal, the fundamental principles governing the performance of yield stress fluids on LIS have not yet been fully explained. In this work, we explore the mobility of yield stress fluids on a wide range of LIS, and explain the connection between macroscale behavior and the microscale properties of the LIS. Specifically, we show a striking difference in mobility between an LIS that contains a lubricant which fully spreads on the rough micro-features of the surface, and an LIS that contains a lubricant which only imbibes these features but does spread over them

  13. Organic compounds in hydraulic fracturing fluids and wastewaters: A review.

    Science.gov (United States)

    Luek, Jenna L; Gonsior, Michael

    2017-10-15

    High volume hydraulic fracturing (HVHF) of shale to stimulate the release of natural gas produces a large quantity of wastewater in the form of flowback fluids and produced water. These wastewaters are highly variable in their composition and contain a mixture of fracturing fluid additives, geogenic inorganic and organic substances, and transformation products. The qualitative and quantitative analyses of organic compounds identified in HVHF fluids, flowback fluids, and produced waters are reviewed here to communicate knowledge gaps that exist in the composition of HVHF wastewaters. In general, analyses of organic compounds have focused on those amenable to gas chromatography, focusing on volatile and semi-volatile oil and gas compounds. Studies of more polar and non-volatile organic compounds have been limited by a lack of knowledge of what compounds may be present as well as quantitative methods and standards available for analyzing these complex mixtures. Liquid chromatography paired with high-resolution mass spectrometry has been used to investigate a number of additives and will be a key tool to further research on transformation products that are increasingly solubilized through physical, chemical, and biological processes in situ and during environmental contamination events. Diverse treatments have been tested and applied to HVHF wastewaters but limited information has been published on the quantitative removal of individual organic compounds. This review focuses on recently published information on organic compounds identified in flowback fluids and produced waters from HVHF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A Promising Material by Using Residue Waste from Bisphenol A Manufacturing to Prepare Fluid-Loss-Control Additive in Oil Well Drilling Fluid

    Directory of Open Access Journals (Sweden)

    Zhi-Lei Zhang

    2013-01-01

    Full Text Available The residues mixture from Bisphenol A manufacturing process was analyzed. Fourier transform infrared (FTIR spectroscopy, gas chromatography-mass spectrometry (GC-MS, and nuclear magnetic resonance (NMR were used to characterize the residues. The results indicated that the residues were complex mixture of several molecules. 3-(2-Hydroxyphenyl-1,1,3-trimethyl-2,3-dihydro-1H-inden-5-ol and phenol were the main components of the residues. The technical feasibility of using it as phenol replacement in fluid-loss-control additive production was also investigated. The fluid-loss-control capacity of the novel additive was systematically investigated. It was discovered that the well fluid-loss performance of the prepared additive can be achieved, especially at high temperature.

  15. Biocompatibility of peritoneal dialysis fluids: long-term exposure of nonuremic rats.

    Science.gov (United States)

    Musi, Barbara; Braide, Magnus; Carlsson, Ola; Wieslander, Anders; Albrektsson, Ann; Ketteler, Markus; Westenfeld, Ralf; Floege, Jürgen; Rippe, Bengt

    2004-01-01

    Long-term peritoneal dialysis (PD) leads to structural and functional changes in the peritoneum. The aim of the present study was to investigate the long-term effects of PD fluid components, glucose and glucose degradation products (GDP), and lactate-buffered solution on morphology and transport characteristics in a nonuremic rat model. Rats were subjected to two daily intraperitoneal injections (20 mL/day) during 12 weeks of one of the following: commercial PD fluid (Gambrosol, 4%; Gambro AB, Lund, Sweden), commercial PD fluid with low GDP levels (Gambrosol trio, 4%; Gambro AB), sterile-filtered PD fluid (4%) without GDP, or a glucose-free lactate-buffered PD fluid. Punctured and untreated controls were used. Following exposure, the rats underwent a single 4-hour PD dwell (30 mL, 4% glucose) to determine peritoneal function. Additionally, submesothelial tissue thickness, percentage of high mesothelial cells (perpendicular diameter > 2 microm), vascular density, vascular endothelial growth factor (VEGF), and transforming growth factor (TGF) beta1 mRNA expression were determined. Submesothelial collagen concentration was estimated by van Gieson staining. Submesothelial tissue thickness and vascular density, mediated by VEGF and TGFbeta production, in the diaphragmatic peritoneum increased significantly in rats exposed to any PD fluid. Gambrosol induced a marked increased fibrosis of the hepatic peritoneum. A significant increase in high mesothelial cells was observed in the Gambrosol group only. Net ultrafiltration was reduced in the Gambrosol and in the glucose-free groups compared to untreated controls. Small solute transport was unchanged, but all groups exposed to fluids showed significantly increased lymph flow. Our results show that long-term exposure to different components of PD fluids leads to mesothelial cell damage, submesothelial fibrosis, and neoangiogenesis. Mesothelial cell damage could be connected to the presence of GDP; the other changes were

  16. Bicarbonate buffered peritoneal dialysis fluid upregulates angiopoietin-1 and promotes vessel maturation.

    Directory of Open Access Journals (Sweden)

    Gwendolyn Eich

    Full Text Available Ultrafiltration decline is a progressive issue for patients on chronic peritoneal dialysis (PD and can be caused by peritoneal angiogenesis induced by PD fluids. A recent pediatric trial suggests better preservation of ultrafiltration with bicarbonate versus lactate buffered fluid; underlying molecular mechanisms are unknown.Angiogenic cytokine profile, tube formation capacity and Receptor Tyrosine Kinase translocation were assessed in primary human umbilical vein endothelial cells following incubation with bicarbonate (BPDF and lactate buffered (LPDF, pH neutral PD fluid with low glucose degradation product content and lactate buffered, acidic PD fluid with high glucose degradation product content (CPDF. Peritoneal biopsies from age-, PD-vintage- and dialytic glucose exposure matched, peritonitis-free children on chronic PD underwent automated histomorphometry and immunohistochemistry.In endothelial cells angiopoietin-1 mRNA and protein abundance increased 200% upon incubation with BPDF, but decreased by 70% with LPDF as compared to medium control; angiopoietin-2 remained unchanged. Angiopoietin-1/Angiopoietin-2 protein ratio was 15 and 3-fold increased with BPDF compared to LPDF and medium. Time-lapse microscopy with automated network analysis demonstrated less endothelial cell tube formation with BPDF compared to LPDF and CPDF incubation. Receptor Tyrosine Kinase translocated to the cell membrane in BPDF but not in LPDF or CPDF incubated endothelial cells. In children dialyzed with BPDF peritoneal vessels were larger and angiopoietin-1 abundance in CD31 positive endothelium higher compared to children treated with LPDF.Bicarbonate buffered PD fluid promotes vessel maturation via upregulation of angiopoietin-1 in vitro and in children on dialysis. Our findings suggest a molecular mechanism for the observed superior preservation of ultrafiltration capacity with bicarbonate buffered PD fluid with low glucose degradation product content.

  17. Optimization of organo clay production for applications in based oil drilling fluid; Otimizacao do processo de organofilizacao para aplicacoes em fluidos de perfuracao base oleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Heber S.; Martins, Alice B.; Costa, Danubia L. da; Ferreira, Heber C.; Neves, Gelmires de A.; Melo, Tomas J.A. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Teixeira Neto, Erico [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2008-07-01

    The organophilic clays are widely used as an agent dispersed in the composition of oil based drilling fluids. The organophilic clays are gotten from bentonite clays treated, in watery way, with ionic surfactants, that are adsorbed in the surface of interlayer of the clays, re-covered them with a organic layer. A fundamental stage of production of the organophilic clays is the dispersion of bentonite clays, in way that variables like: speed of agitation, temperature and time of cure, influences directly in plastic and apparent viscosities of these dispersions, together with other variables of organophilization process, like, temperature and time of cure of organophilization, has direct influence in efficiency of the organophilization process. This work considers a study of these variable, using bentonite clays: Brasgel PA{sup R} and Cloisite Na{sup +R}, treated with the ionic surfactant Praepagem WB{sup R}. The organophilic clays gotten had been characterized by rays X diffraction, Foster's swelling, and the results were compared with the commercial organophilic clay VG-69{sup R}, industrially treated with ionic surfactant. Viscosities plastic and apparent of the dispersions had been measured in the midst of organic dispersant diesel oil used to obtain the oil based drilling fluids. Preliminary results of Foster's swelling and preparation of fluids show that the clays have affinity with the means liquid organic dispersants, and the fluids meet specifications of PETROBRAS (N-22581-1997 and N-2259 to 1997) for use in the of diesel oil based drilling fluids. (author)

  18. Real-time PCR detection of Paenibacillus spp. in raw milk to predict shelf life performance of pasteurized fluid milk products.

    Science.gov (United States)

    Ranieri, Matthew L; Ivy, Reid A; Mitchell, W Robert; Call, Emma; Masiello, Stephanie N; Wiedmann, Martin; Boor, Kathryn J

    2012-08-01

    Psychrotolerant sporeformers, specifically Paenibacillus spp., are important spoilage bacteria for pasteurized, refrigerated foods such as fluid milk. While Paenibacillus spp. have been isolated from farm environments, raw milk, processing plant environments, and pasteurized fluid milk, no information on the number of Paenibacillus spp. that need to be present in raw milk to cause pasteurized milk spoilage was available. A real-time PCR assay targeting the 16S rRNA gene was designed to detect Paenibacillus spp. in fluid milk and to discriminate between Paenibacillus and other closely related spore-forming bacteria. Specificity was confirmed using 16 Paenibacillus and 17 Bacillus isolates. All 16 Paenibacillus isolates were detected with a mean cycle threshold (C(T)) of 19.14 ± 0.54. While 14/17 Bacillus isolates showed no signal (C(T) > 40), 3 Bacillus isolates showed very weak positive signals (C(T) = 38.66 ± 0.65). The assay provided a detection limit of approximately 3.25 × 10(1) CFU/ml using total genomic DNA extracted from raw milk samples inoculated with Paenibacillus. Application of the TaqMan PCR to colony lysates obtained from heat-treated and enriched raw milk provided fast and accurate detection of Paenibacillus. Heat-treated milk samples where Paenibacillus (≥1 CFU/ml) was detected by this colony TaqMan PCR showed high bacterial counts (>4.30 log CFU/ml) after refrigerated storage (6°C) for 21 days. We thus developed a tool for rapid detection of Paenibacillus that has the potential to identify raw milk with microbial spoilage potential as a pasteurized product.

  19. Yield stress fluids slowly yield to analysis

    NARCIS (Netherlands)

    Bonn, D.; Denn, M.M.

    2009-01-01

    We are surrounded in everyday life by yield stress fluids: materials that behave as solids under small stresses but flow like liquids beyond a critical stress. For example, paint must flow under the brush, but remain fixed in a vertical film despite the force of gravity. Food products (such as

  20. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  1. Electric fluid pump

    Science.gov (United States)

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  2. Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 202 Haihe Road, Nangang District, Harbin, Heilongjiang 150090 (China)

    2010-10-15

    The objective of conducting experiments in a laboratory is to gain data that helps in designing and operating large-scale biological processes. However, the scale-up and design of industrial-scale biohydrogen production reactors is still uncertain. In this paper, an established and proven Eulerian-Eulerian computational fluid dynamics (CFD) model was employed to perform hydrodynamics assessments of an industrial-scale continuous stirred-tank reactor (CSTR) for biohydrogen production. The merits of the laboratory-scale CSTR and industrial-scale CSTR were compared and analyzed on the basis of CFD simulation. The outcomes demonstrated that there are many parameters that need to be optimized in the industrial-scale reactor, such as the velocity field and stagnation zone. According to the results of hydrodynamics evaluation, the structure of industrial-scale CSTR was optimized and the results are positive in terms of advancing the industrialization of biohydrogen production. (author)

  3. Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2012-01-01

    Roč. 66, SI (2012), s. 73-79 ISSN 0896-8446 R&D Projects: GA MŠk 2B06049 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * vegetable oils * essential oils Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.732, year: 2012

  4. Principles of fluid mechanics

    International Nuclear Information System (INIS)

    Kreider, J.F.

    1985-01-01

    This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements

  5. Four-fluid description of turbulent plasma focus dynamics

    International Nuclear Information System (INIS)

    Hayd, A.; Maurer, M.; Meinke, P.; Kaeppeler, H.J.

    1984-06-01

    The dynamic phenomena in the compression, pinch and late phases of the plasma focus experiment POSEIDON in its operational mode at 60 kV, 280 kJ, were previously calculated from a two-fluid theory using the new hybrid code REDUCE/FORTRAN. Two important results were found: the neutron production already in the pinch phase for currents larger than 500 kA and filamentary structures on and around the pinch axis. In a continuation of this work, a four-fluid system of dynamical equations was formulated and programmed with the REDUCE/FORTRAN code. Besides macro-turbulence, the new four-fluid theory includes micro-instabilities and anomalous transport properties, as well as the runaway effect for electrons and ions. First results from calculations with this new theory are presented and are compared with previous calculations and with recent experimental observations. (orig.)

  6. BMS3 invariant fluid dynamics at null infinity

    Science.gov (United States)

    Penna, Robert F.

    2018-02-01

    We revisit the boundary dynamics of asymptotically flat, three dimensional gravity. The boundary is governed by a momentum conservation equation and an energy conservation equation, which we interpret as fluid equations, following the membrane paradigm. We reformulate the boundary’s equations of motion as Hamiltonian flow on the dual of an infinite-dimensional, semi-direct product Lie algebra equipped with a Lie–Poisson bracket. This gives the analogue for boundary fluid dynamics of the Marsden–Ratiu–Weinstein formulation of the compressible Euler equations on a manifold, M, as Hamiltonian flow on the dual of the Lie algebra of \

  7. Oscillating flow of a Burgers' fluid in a pipe

    International Nuclear Information System (INIS)

    Khan, M.; Asghar, S.; Hayat, T.

    2005-12-01

    An analysis is made to see the influences of Hall current on the flow of a Burgers' fluid. The velocity field corresponding to flow in a pipe is determined. The closed form analytical solutions for several Newtonian and non-Newtonian fluid models can be obtained from the present analysis as the limiting cases. The purpose of this work is twofold. Firstly, to investigate the oscillating flow in a pipe using Burgers? fluid model. Secondly, to see the effects of Hall current on the velocity field. The flow in a pipe is induced due to imposition of an oscillating pressure gradient. An exact analytical solution to the governing problem is given using the Fourier transform technique. The obtained expression for the velocity field shows that there are pronounced effects of Hall and rheological parameters. The considered fluid model is a viscoelastic model and has been used to characterize food products such as cheese, soil, asphalt and asphalt mixes etc. (author)

  8. Polymer Microstructures: Modification and Characterization by Fluid Sorption

    Science.gov (United States)

    Boyer, S. A. E.; Baba, M.; Nedelec, J.-M.; Grolier, Jean-Pierre E.

    2008-12-01

    Polymer micro-organization can be modified by a combination of three constraints, thermal, hydrostatic, and fluid sorption. In selecting the fluid’s nature, chemically active or inert, and its physical state, liquid or supercritical, new “materials” can be generated. In addition, the interplay of temperature and pressure allows tailoring the obtained material structure for specific applications. Several complementary techniques have been developed to modify, analyze, and characterize the end products: scanning transitiometry, vibrating-wire (VW)-PVT coupling, thermoporosimetry, and temperature-modulated DSC (TMDSC). The great variety of possible applications in materials science is illustrated with different polymers which can produce materials from soft gel to rigid foams when submitted to fluid sorption, typical fluids being methane or a simple gas (CO2 or N2). Absorption of an appropriate fluid in a cross-linked polymer leads to a swelling phenomenon. Thermoporosimetry is a calorimetric technique developed to measure the shift by confinement of thermal-transition temperatures of the swelling fluids, which can be currently used solvents or mercury. Application of thermoporosimetry to a swollen cross-linked polymer allows calculation of the mesh size distribution and evaluation of the degree of reticulation of the polymer. The same technique can be applied to characterize the pore size distribution in a foamed polymer.

  9. Numerical Modeling of Fluid-Structure Interaction with Rheologically Complex Fluids

    OpenAIRE

    Chen, Xingyuan

    2014-01-01

    In the present work the interaction between rheologically complex fluids and elastic solids is studied by means of numerical modeling. The investigated complex fluids are non-Newtonian viscoelastic fluids. The fluid-structure interaction (FSI) of this kind is frequently encountered in injection molding, food processing, pharmaceutical engineering and biomedicine. The investigation via experiments is costly, difficult or in some cases, even impossible. Therefore, research is increasingly aided...

  10. Liquid petroleum gas fracturing fluids for unconventional gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.S.; Funkhouser, G.P.; Watkins, H.; Attaway, D. [Halliburton Energy Services, Calgary, AB (Canada); Lestz, R.S.; Wilson, L. [Chevron Canada Resources, Calgary, AB (Canada)

    2006-07-01

    This paper presented details of a gelled liquid petroleum gas (LPG) based fracturing fluid designed to address phase trapping concerns by replacing water with a mixture of LPG and a volatile hydrocarbon fluid. The system eliminates the need for water, which is a growing concern in terms of its availability. In the application process, up to 100 per cent gelled LPG is used for the pad and flush. Sand slurry stages are comprised of a mixture of up to 90 per cent LPG, with the balance of the volume being a volatile hydrocarbon base fluid. The fluid system is not adversely affected by shear, which ensures that acceptable fluid rheology is delivered. Viscosity can be adjusted during the treatment because the surfactant gellant and crosslinker are run in a 1:1 ratio and have good tolerance to concentration variations. The application ratio also allows for fast and accurate visual checks on amounts pumped during the treatment. A portion of the LPG in the fluid can be reproduced as a gas, while the remaining LPG is dissolved in the hydrocarbon fluid and is produced back as a miscible mixture through the use of a methane drive mechanism. Clean-up is facilitated by eliminating water and having LPG as up to 80-90 per cent of the total fluid system, even when wells have low permeability and reservoir pressure. However, LPG and optimized base oils are more expensive than other fluids. It was concluded that the higher costs of the system can be recovered through eliminating the need for swabbing, coiled tubing and nitrogen. Higher final stabilized productions rates may also offset initial costs. 7 refs., 2 tabs., 2 figs.

  11. Time and speed of fruit drying on batch fluid-beds

    Indian Academy of Sciences (India)

    Drying of particles (pieces) in a fluidized bed affords better quality of end products, especially for better product structure and its shorter reconstitution time. Fluid-bed drying of different fruit particles has been investigated. Starting water content varies from grape berries 81·5% and peach 87·7% to apricot 86·9%.

  12. Bubble Formation in Yield Stress Fluids Using Flow-Focusing and T-Junction Devices.

    Science.gov (United States)

    Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise

    2015-05-22

    We study the production of bubbles inside yield stress fluids (YSFs) in axisymmetric T-junction and flow-focusing devices. Taking advantage of yield stress over capillary stress, we exhibit a robust break-up mechanism reminiscent of the geometrical operating regime in 2D flow-focusing devices for Newtonian fluids. We report that when the gas is pressure driven, the dynamics is unsteady due to hydrodynamic feedback and YSF deposition on the walls of the channels. However, the present study also identifies pathways for potential steady-state production of bubbly YSFs at large scale.

  13. Relativistic thermodynamics of Fluids. l

    International Nuclear Information System (INIS)

    Havas, P.; Swenson, R.J.

    1979-01-01

    In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail

  14. Tracing Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Adams; Greg Nash

    2004-03-01

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  15. Maintenance fluid therapy and fluid creep impose more significant fluid, sodium, and chloride burdens than resuscitation fluids in critically ill patients: a retrospective study in a tertiary mixed ICU population.

    Science.gov (United States)

    Van Regenmortel, Niels; Verbrugghe, Walter; Roelant, Ella; Van den Wyngaert, Tim; Jorens, Philippe G

    2018-04-01

    Research on intravenous fluid therapy and its side effects, volume, sodium, and chloride overload, has focused almost exclusively on the resuscitation setting. We aimed to quantify all fluid sources in the ICU and assess fluid creep, the hidden and unintentional volume administered as a vehicle for medication or electrolytes. We precisely recorded the volume, sodium, and chloride burdens imposed by every fluid source administered to 14,654 patients during the cumulative 103,098 days they resided in our 45-bed tertiary ICU and simulated the impact of important strategic fluid choices on patients' chloride burdens. In septic patients, we assessed the impact of the different fluid sources on cumulative fluid balance, an established marker of morbidity. Maintenance and replacement fluids accounted for 24.7% of the mean daily total fluid volume, thereby far exceeding resuscitation fluids (6.5%) and were the most important sources of sodium and chloride. Fluid creep represented a striking 32.6% of the mean daily total fluid volume [median 645 mL (IQR 308-1039 mL)]. Chloride levels can be more effectively reduced by adopting a hypotonic maintenance strategy [a daily difference in chloride burden of 30.8 mmol (95% CI 30.5-31.1)] than a balanced resuscitation strategy [daily difference 3.0 mmol (95% CI 2.9-3.1)]. In septic patients, non-resuscitation fluids had a larger absolute impact on cumulative fluid balance than did resuscitation fluids. Inadvertent daily volume, sodium, and chloride loading should be avoided when prescribing maintenance fluids in view of the vast amounts of fluid creep. This is especially important when adopting an isotonic maintenance strategy.

  16. Sustainable extraction of molecules for human food, cosmetic and pharmaceutical products: extraction in supercritical fluids

    International Nuclear Information System (INIS)

    Leone, GianPaolo; Ferri, Donatella

    2015-01-01

    Since several years, the ENEA Innovation Laboratory for Agro-Industrial, proposed activities of research and development of extraction processes with supercritical fluids (SFE, Supercritical Fluid Extraction), focusing on sustainability characteristics of the process. The technique, in fact, makes no use of organic solvents, has a low energy consumption and requires a lower number of process steps compared to conventional extractions. The process also responds to the requirements imposed by the legislation for human food, cosmetic and pharmaceutical extracts. [it

  17. Identifying and Remediating High Water Production Problems in Basin-Centered Formations

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Billingsley

    2005-12-01

    Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we developed concepts and approaches for mitigating unwanted water production in tight gas reservoirs and for increasing recovery of gas resources presently considered noncommercial. Only new completion research (outside the scope of this study) will validate our hypothesis. The first task was assembling and interpreting a robust regional database of historical produced-water analyses to address the production of excessive water in basin-centered tight gas fields in the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is supplemented with a sampling program in currently active areas. Interpretation of the regional water chemistry data indicates most produced waters reflect their original depositional environments and helps identify local anomalies related to basement faulting. After the assembly and evaluation phases of this project, we generated a working model of tight formation reservoir development, based on the regional nature and occurrence of the formation waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized a generalized development scheme organized around reservoir confining stress cycles. This single overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River basins. Burial and tectonic processes destroy much of the depositional intergranular fabric of the reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas and fluids. Stress release associated with uplift regenerates reservoir permeability through the development of a penetrative grain bounding natural fracture fabric. Reservoir mineral composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact mechanism of permeability development. We applied the reservoir working model to an area of perceived anomalous water production. Detailed water analyses

  18. Discovering geothermal supercritical fluids: a new frontier for seismic exploration.

    Science.gov (United States)

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto; Chiarabba, Claudio

    2017-11-06

    Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation.

  19. Self lubricating fluid bearings

    International Nuclear Information System (INIS)

    Kapich, D.D.

    1980-01-01

    The invention concerns self lubricating fluid bearings, which are used in a shaft sealed system extending two regions. These regions contain fluids, which have to be isolated. A first seal is fluid tight for the first region between the carter shaft and the shaft. The second seal is fluid tight between the carter and the shaft, it communicates with the second region. The first fluid region is the environment surrounding the shaft carter. The second fluid region is a part of a nuclear reactor which contains the cooling fluid. The shaft is conceived to drive a reactor circulating and cooling fluid [fr

  20. Development of an operation strategy for hydrogen production using solar PV energy based on fluid dynamic aspects

    Directory of Open Access Journals (Sweden)

    Amores Ernesto

    2017-06-01

    Full Text Available Alkaline water electrolysis powered by renewable energy sources is one of the most promising strategies for environmentally friendly hydrogen production. However, wind and solar energy sources are highly dependent on weather conditions. As a result, power fluctuations affect the electrolyzer and cause several negative effects. Considering these limiting effects which reduce the water electrolysis efficiency, a novel operation strategy is proposed in this study. It is based on pumping the electrolyte according to the current density supplied by a solar PV module, in order to achieve the suitable fluid dynamics conditions in an electrolysis cell. To this aim, a mathematical model including the influence of electrode-membrane distance, temperature and electrolyte flow rate has been developed and used as optimization tool. The obtained results confirm the convenience of the selected strategy, especially when the electrolyzer is powered by renewable energies.

  1. Magnetic nanofluids and magnetic composite fluids in rotating seal systems

    International Nuclear Information System (INIS)

    Borbath, T; Borbath, I; Boros, T; Bica, D; Vekas, L; Potencz, I

    2010-01-01

    Recent results are presented concerning the development of magnetofluidic leakage-free rotating seals for vacuum and high pressure gases, evidencing significant advantages compared to mechanical seals. The micro-pilot scale production of various types of magnetizable sealing fluids is shortly reviewed, in particular the main steps of the chemical synthesis of magnetic nanofluids and magnetic composite fluids with light hydrocarbon, mineral oil and synthetic oil carrier liquids. The behavior of different types of magnetizable fluids in the rotating sealing systems is analyzed. Design concepts, some constructive details and testing procedures of magnetofluidic rotating seals are presented such as the testing equipment. The main characteristics of several magnetofluidic sealing systems and their applications will be presented: vacuum deposition systems and liquefied gas pumps applications, mechanical and magnetic nanofluid combined seals, gas valves up to 40 bar equipped by rotating seal with magnetic nanofluids and magnetic composite fluids.

  2. Determination of major aromatic constituents in vanilla using an on-line supercritical fluid extraction coupled with supercritical fluid chromatography.

    Science.gov (United States)

    Liang, Yanshan; Liu, Jiaqi; Zhong, Qisheng; Shen, Lingling; Yao, Jinting; Huang, Taohong; Zhou, Ting

    2018-04-01

    An on-line supercritical fluid extraction coupled with supercritical fluid chromatography method was developed for the determination of four major aromatic constituents in vanilla. The parameters of supercritical fluid extraction were systematically investigated using single factor optimization experiments and response surface methodology by a Box-Behnken design. The modifier ratio, split ratio, and the extraction temperature and pressure were the major parameters which have significant effects on the extraction. While the static extraction time, dynamic extraction time, and recycle time had little influence on the compounds with low polarity. Under the optimized conditions, the relative extraction efficiencies of all the constituents reached 89.0-95.1%. The limits of quantification were in the range of 1.123-4.747 μg. The limits of detection were in the range of 0.3368-1.424 μg. The recoveries of the four analytes were in the range of 76.1-88.9%. The relative standard deviations of intra- and interday precision ranged from 4.2 to 7.6%. Compared with other off-line methods, the present method obtained higher extraction yields for all four aromatic constituents. Finally, this method has been applied to the analysis of vanilla from different sources. On the basis of the results, the on-line supercritical fluid extraction-supercritical fluid chromatography method shows great promise in the analysis of aromatic constituents in natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  4. Thermophysical properties of supercritical fluids and fluid mixtures

    International Nuclear Information System (INIS)

    Sengers, J.V.

    1991-07-01

    This research is concerned with the development of a quantitative scientific description of the thermodynamic and transport properties of supercritical and subcritical fluids and fluid mixtures. It is known that the thermophysical properties of fluids and fluid mixtures asymptotically close to the critical point satisfy scaling laws with universal critical exponents and universal scaling functions. However, the range of validity of these asymptotic scaling laws is quite small. As a consequence, the impact of the modern theory of critical phenomena on chemical engineering has been limited. On the other hand, an a priori estimate of the range of temperatures and densities, where critical fluctuations become significant, can be made on the basis of the so-called Ginzburg criterion. A recent analysis of this criterion suggests that this range is actually quite large and for a fluid like carbon dioxide can easily extend to 100 degrees or so above the critical temperature. Hence, the use of traditional engineering equations like cubic equations is not scientifically justified in a very wide range of temperatures and densities around the critical point. We have therefore embarked on a scientific approach to deal with the global effects of critical fluctuations on the thermophysical properties of fluids and fluid mixtures. For this purpose it is not sufficient to consider the asymptotic critical fluctuations but we need to deal also with the nonasymptotic critical fluctuations. The goal is to develop scientifically based questions that account for the crossover of the thermophysical properties from their asymptotic singular behavior in the near vicinity of the critical point to their regular behavior very far away from the critical point

  5. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    International Nuclear Information System (INIS)

    1995-01-01

    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  6. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. Evaluation of a solar-powered organic Rankine cycle using dry organic working fluids

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2015-12-01

    Full Text Available This paper presents a model to evaluate the performance of a solar-powered organic Rankine cycle (ORC. The system was evaluated in Jackson, MS, using five dry organic working fluids, R218, R227ea, R236ea, R236fa, and RC318. The purpose of this study is to investigate how hourly temperature change affects the electricity production and exergy destruction rates of the solar ORC, and to determine the effect of the working fluid on the proposed system. The system was also evaluated in Tucson, AZ, to investigate the effect of average hourly outdoor temperatures on its performance. The potential of the system to reduce primary energy consumption and carbon dioxide emissions is also investigated. A parametric analysis to determine how temperature and pressure of the organic working fluid, the solar collector area, and the turbine efficiency affect the electricity production is performed. Results show that the ORC produces the most electricity during the middle of the day, when the temperatures are the highest and when the solar collectors have the highest efficiency. Also, R-236ea is the working fluid that shows the best performance of the evaluated fluids. An economic analysis was performed to determine the capital cost available for the proposed system.

  8. Gas condensate reservoir performance : part 1 : fluid characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, F.B.; Bennion, D.B. [Hycal Energy Research Laboratories Ltd., Calgary, AB (Canada); Andersen, G. [ChevronTexaco, Calgary, AB (Canada)

    2006-07-01

    Phase behaviour in gas condensate reservoirs is sensitive to changes in pressure and temperature, which can lead to significant errors in fluid characterization. The challenging task of characterizing in situ fluids in gas condensate reservoirs was discussed with reference to the errors that occur as a result of the complex coupling between phase behavior and geology. This paper presented techniques for reservoir sampling and characterization and proposed methods for minimizing errors. Errors are often made in the classification of dew point systems because engineering criteria does not accurately represent the phase behavior of the reservoir. For example, the fluid of a certain condensate yield may be categorized as a wet gas rather than a retrograde condensate fluid. It was noted that the liquid yield does not dictate whether the fluid is condensate or wet gas, but rather where the reservoir temperature is situated in the pressure temperature phase loop. In order to proceed with a viable field development plan and optimization, the reservoir fluid must be understood. Given that gas productivity decreases with liquid drop out in the near wellbore region, capillary pressure plays a significant role in retrograde reservoirs. It was noted that well understood parameters will lead to a better assessment of the amount of hydrocarbon in place, the rate at which the resource can be produced and optimization strategies as the reservoir matures. It was concluded that multi-rate sampling is the best method to use in sampling fluids since the liquid yield changes as a function of rate. Although bottom-hole sampling in gas condensate reservoirs may be problematic, it should always be performed to address any concerns for liquid-solid separation. Produced fluids typically reveal a specific signature that informs the operator of in situ properties. This paper presented examples that pertain to wet versus retrograde condensate behavior and the presence of an oil zone. The

  9. towards a fluid and multiscalar governance of extractive resources

    African Journals Online (AJOL)

    RAYAN_

    out, for instance, the geopolitics of pipelines in Africa and its critical role in .... article develops an analysis of its fluid, multiscalar, and networked governance. .... the production and use of this raw material.18 Oil crises are then more significantly ...

  10. CT findings of a unicameral calcaneal bone cyst containing a fluid-fluid level.

    Science.gov (United States)

    Gallagher, Thomas A; Lim-Dunham, Jennifer E; Vade, Aruna

    2007-03-01

    Calcaneal unicameral bone cysts often contain fluid, but rarely contain fluid-fluid levels. We present a case focusing on the CT findings of a large calcaneal bone cyst with a fluid-fluid level and a review of the literature.

  11. Reduction of light oil usage as power fluid for jet pumping in deep heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Li, H.; Yang, D. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada); Zhang, Q. [China Univ. of Petroleum, Dongying, Shandong (China); He, J. [China National Petroleum Corp., Haidan District, Beijing (China). PetroChina Tarim Oilfield Co.

    2008-10-15

    In deep heavy oil reservoirs, reservoir fluid can flow more easily in the formation as well as around the bottomhole. However, during its path along the production string, viscosity of the reservoir fluid increases dramatically due to heat loss and release of the dissolved gas, resulting in significant pressure drop along the wellbore. Artificial lifting methods need to be adopted to pump the reservoir fluids to the surface. This paper discussed the development of a new technique for reducing the amount of light oil used for jet pumping in deep heavy oil wells. Two approaches were discussed. Approach A uses the light oil as a power fluid first to obtain produced fluid with lower viscosity, and then the produced fluid is reinjected into the well as a power fluid. The process continues until the viscosity of the produced fluid is too high to be utilized. Approach B combines a portion of the produced fluid with the light oil at a reasonable ratio and then the produced fluid-light oil mixture is used as the power fluid for deep heavy oil well production. The viscosity of the blended power fluid continue to increase and eventually reach equilibrium. The paper presented the detailed processes of both approaches in order to indicate how to apply them in field applications. Theoretic models were also developed and presented to determine the key parameters in the field operations. A field case was also presented and a comparison and analysis between the two approaches were discussed. It was concluded from the field applications that, with a certain amount of light oil, the amount of reservoir fluid produced by using the new technique could be 3 times higher than that of the conventional jet pumping method. 17 refs., 3 tabs., 6 figs.

  12. The Hamiltonian structure of general relativistic perfect fluids

    International Nuclear Information System (INIS)

    Bao, D.; Houston Univ., TX; Marsden, J.; Walton, R.

    1985-01-01

    We show that the evolution equations for a perfect fluid coupled to general relativity in a general lapse and shift, are Hamiltonian relative to a certain Poisson structure. For the fluid variables, a Lie-Poisson structure associated to the dual of a semi-direct product Lie algebra is used, while the bracket for the gravitational variables has the usual canonical symplectic structure. The evolution is governed by a Hamiltonian which is equivalent to that obtained from a canonical analysis. The relationship of our Hamiltonian structure with other approaches in the literature, such as Clebsch potentials, Lagrangian to Eulerian transformations, and its use in clarifying linearization stability, are discussed. (orig.)

  13. A comparative study of vascular injection fluids in fresh-frozen and embalmed human cadaver forearms.

    Science.gov (United States)

    Doomernik, D E; Kruse, R R; Reijnen, M M P J; Kozicz, T L; Kooloos, J G M

    2016-10-01

    Over the years, various vascular injection products have been developed to facilitate anatomical dissections. This study aimed to compare the most commonly used vascular injection products in fresh-frozen and formalin-embalmed cadaver specimens. An overview of the properties, advantages and limitations of each substance was given, and a comparison of vascular infusion procedures in both preservation methods was made. A literature search was performed in order to identify the most commonly used vascular injection products. Acrylic paint, latex, gelatin, silicone, Araldite F and Batson's No. 17 were selected for the study. One fresh-frozen and one embalmed cadaver forearm were infused with each injection product according to a uniform protocol. The curing time, skin- and subcutaneous tissue penetration, degree of filling of the arterial tree, extravasations, consistency of the injected vessels during dissection, and the costs of each injection fluid were noted. There was a large variation between the injection fluids in processing- and curing time, colour intensity, flexibility, fragility, elasticity, strength, toxicity and costs. All fluids were suitable for infusion. The penetration of injection fluid into the skin and subcutaneous tissue was significantly better in fresh-frozen specimens (P = 0.002 and P = 0.009, respectively), with significantly smaller branches casted (P = 0.004). Vascular infusion of fresh-frozen cadaver specimens results in a significantly better filled coloured arterial tree, enabling more detail to be achieved and smaller branches casted. The biomechanical properties of fresh-frozen soft tissues are less affected compared with formalin fixation. All the injection fluids studied are suitable for vascular infusion, but their different properties ensure that certain products and procedures are more suitable for specific study purposes. © 2016 Anatomical Society.

  14. Atomistic Modeling of the Fluid-Solid Interface in Simple Fluids

    Science.gov (United States)

    Hadjiconstantinou, Nicolas; Wang, Gerald

    2017-11-01

    Fluids can exhibit pronounced structuring effects near a solid boundary, typically manifested in a layered structure that has been extensively shown to directly affect transport across the interface. We present and discuss several results from molecular-mechanical modeling and molecular-dynamics (MD) simulations aimed at characterizing the structure of the first fluid layer directly adjacent to the solid. We identify a new dimensionless group - termed the Wall number - which characterizes the degree of fluid layering, by comparing the competing effects of wall-fluid interaction and thermal energy. We find that in the layering regime, several key features of the first layer layer - including its distance from the solid, its width, and its areal density - can be described using mean-field-energy arguments, as well as asymptotic analysis of the Nernst-Planck equation. For dense fluids, the areal density and the width of the first layer can be related to the bulk fluid density using a simple scaling relation. MD simulations show that these results are broadly applicable and robust to the presence of a second confining solid boundary, different choices of wall structure and thermalization, strengths of fluid-solid interaction, and wall geometries.

  15. Basic feasibility study on utilization for geopressured thermal reservoir in Hungary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Investigations and discussions were given on a project to implement district heating, greenhouse heating, and binary power generation by utilizing geothermal resources in Hungary. Hungary has deep earth pressure type hot water areas distributed, that flow hot water of about 90 to 180 degrees C by the bed pressure. The areas that can utilize the hot water were extracted and investigated by using literatures and data. The project plans district heating of about 15,000 households using the geothermal water, heating of greenhouses equivalent to 100,000 m{sup 2}, gas engine power generation by using the flowing fluid pressure and combustion of the generated methane gas, and binary power generation by using the geothermal water. As a result of the discussions, it was revealed that the energy saving effect would save 5,008 Ktoe in 20 years as converted to crude oil, and the greenhouse effect gas reducing effect would reduce 14.2 million t-CO2 in 20 years. The total project cost would be about 16.62 billion yen. The internal profit rate of this project is 11.34%, largely exceeding the opportunity cost, and indicating the financial effect possibility. (NEDO)

  16. Reasons for the low flowback rates of fracturing fluids in marine shale

    Directory of Open Access Journals (Sweden)

    Yongjun Lu

    2018-02-01

    Full Text Available In this paper, marine shale cores taken from Zhaotong, Changning and Weiyuan Blocks in South China were used as samples to investigate the interaction between fracturing fluids and shale and the retention mechanisms. Firstly, adsorption, swelling, dissolution pore, dissolution fluid mineralization degree and ionic composition were experimentally studied to reveal the occurrence of water in shale and the reason for a high mineralization degree. Then, the mechanisms of water retention and mineralization degree increase were simulated and calculated. The scanning electron microscopy (SEM analysis shows that there are a large number of micro fractures originated from clay minerals in the shale. Mineral dissolution rates of shale immersed in ultrasonic is around 0.5–0.7%. The ionic composition is in accordance with that of formation water. The clay minerals in core samples are mainly composed of chlorites and illites with a small amount of illites/smectites, but no montmorillonites (SS, and its content is between 18% and 20%. It is verified by XRD and infrared spectroscopy that the fracturing fluid doesn't flow into the space between clay mineral layers, so it can't lead to shale swelling. Thus, the retention of fracturing fluids is mainly caused by the adsorption at the surface of the newly fractured micro fractures in shale in a mode of successive permeation, and its adsorptive saturation rates is proportional to the pore diameters. It is concluded that the step-by-step extraction of fracturing fluids to shale and the repulsion of nano-cracks to ion are the main reasons for the abrupt increase of mineralization degree in the late stage of flowing back. In addition, the liquid carrying effect of methane during the formation of a gas reservoir is also a possible reason. Based on the experimental and field data, fracturing fluid flowback rates and gas production rates of 9 wells were analyzed. It is indicated that the same block follows an overall

  17. Synovial fluid analysis

    Science.gov (United States)

    Joint fluid analysis; Joint fluid aspiration ... El-Gabalawy HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O'Dell JR, eds. Kelly's Textbook of ...

  18. Cosmology with bulk viscosity and the gravitino problem. Consequences of imperfect fluids on gravitino production

    Energy Technology Data Exchange (ETDEWEB)

    Buoninfante, L.; Lambiase, G. [Dipartimento di Fisica ' ' E.R. Caianiello' ' Universita di Salerno, Fisciano (Italy); INFN-Gruppo Collegato di Salerno, Fisciano (Italy)

    2017-05-15

    The gravitino problem is revisited in the framework of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. Dissipative effects (or bulk viscosity effects) arise owing to the different cooling rates of the fluid components. We show that the effects of the bulk viscosity allow one to avoid the late abundance of gravitinos. In particular, for particular values of the parameters characterizing the cosmological model, the gravitino abundance turns out to be weakly depending on the reheating temperature. (orig.)

  19. Editorial Special Issue on Fluid Mechanics and Fluid Power (FMFP ...

    Indian Academy of Sciences (India)

    This special issue of Sadhana contains selected papers from two conferences related to fluid mechanics held in India recently, Fluid Mechanics and Fluid Power conference at NIT, Hamirpur, and an International Union of Theoretical ... A simple, well thought out, flow visualization experiment or a computation can sometimes ...

  20. FOREWORD Fluid Mechanics and Fluid Power (FMFP)

    Indian Academy of Sciences (India)

    This section of the Special Issue carries selected articles from the Fluid Mechanics and Fluid. Power Conference held during 12–14 December 2013 at the National Institute of Technology,. Hamirpur (HP). The section includes three review articles and nine original research articles. These were selected on the basis of their ...

  1. statistical fluid theory for associating fluids containing alternating ...

    Indian Academy of Sciences (India)

    Statistical associating fluid theory of homonuclear dimerized chain fluids and homonuclear ... The proposed models account for the appropriate .... where gHNM(1,1) is the expression for the contact value of the correlation func- tion of two ...

  2. A method for treating clayless wash fluids

    Energy Technology Data Exchange (ETDEWEB)

    Deykalo, T A; Dzhumagaliyev, T N; Skvortsov, D S

    1980-02-18

    To increase the heat and salt resistance of a wash fluid, monoethanolamine processed waste of licorice production - grist in a volume of 5-8% by weight, is introduced into it as the disperse phase. The processing of the grist is conducted for 1-2 hours at 20-100/sup 0/C and the volume of the monoethanolamine is 0.05-0.1% by weight. The properties of the washing fluids treated by the grist with the introduction of 20% CaC1/sub 2/ into them were not deteriorated, while complete coagulation was achieved with its introduction into washing fluids on the basis of KMTs. Grist washing liquids do not deteriorate their own properties to a temperature of 200/sup 0/C, do not cause equipment corrosion, are inert to swelling clay rocks and with the introduction of KMTs at a temperature above 130-140/sup 0/C cause insignificant destruction of the reagent which is accompanied by a change in the color of the solutions and a drop in the degree of polymerization and viscosity.

  3. A viscoelastic deadly fluid in carnivorous pitcher plants.

    Science.gov (United States)

    Gaume, Laurence; Forterre, Yoel

    2007-11-21

    The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera) flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.

  4. Mastication and swallowing : influence of fluid addition to foods

    NARCIS (Netherlands)

    Pereira, Luciano Jose; Duarte Gaviao, Maria Beatriz; Engelen, Lina; van der Bilt, Andries

    2007-01-01

    introduction: The production of sufficient saliva is indispensable for good chewing. Recent research has demonstrated that salivary flow rate has little influence on the swallowing threshold. Objectives: The hypothesis examined in the present study was that adding fluids to foods will influence

  5. Identification and characterization of psychrotolerant coliform bacteria isolated from pasteurized fluid milk.

    Science.gov (United States)

    Masiello, S N; Martin, N H; Trmčić, A; Wiedmann, M; Boor, K J

    2016-01-01

    The presence of coliform bacteria in pasteurized fluid milk typically indicates that product contamination occurred downstream of the pasteurizer, but it may also indicate pasteurization failure. Although coliform detection is frequently used as a hygiene indicator for dairy products, our understanding of the taxonomic and phenotypic coliform diversity associated with dairy products is surprisingly limited. Therefore, using Petrifilm Coliform Count plates (3M, St. Paul, MN), we isolated coliforms from high-temperature, short-time (HTST)-pasteurized fluid milk samples from 21 fluid milk processing plants in the northeast United States. Based on source information and initial characterization using partial 16S rDNA sequencing, 240 nonredundant isolates were obtained. The majority of these isolates were identified as belonging to the genera Enterobacter (42% of isolates), Hafnia (13%), Citrobacter (12%), Serratia (10%), and Raoultella (9%); additional isolates were classified into the genera Buttiauxella, Cedecea, Kluyvera, Leclercia, Pantoea, and Rahnella. A subset of 104 representative isolates was subsequently characterized phenotypically. Cold growth analysis in skim milk broth showed that all isolates displayed at least a 2-log increase over 10 d at 6°C; the majority of isolates (n=74) displayed more than a 5-log increase. In total, 43% of the representative isolates displayed lipolysis when incubated on spirit blue agar at 6°C for 14 d, whereas 71% of isolates displayed proteolysis when incubated on skim milk agar at 6°C for 14 d. Our data indicate that a considerable diversity of coliforms is found in HTST-pasteurized fluid milk and that a considerable proportion of these coliforms have phenotypic characteristics that will allow them to cause fluid milk spoilage. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Fluid inclusion geothermometry

    Science.gov (United States)

    Cunningham, C.G.

    1977-01-01

    Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.

  7. Supercritical fluid technology: concepts and pharmaceutical applications.

    Science.gov (United States)

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is

  8. Molecular and phenotypic adaptation in social insect reproductive fluids

    DEFF Research Database (Denmark)

    Liberti, Joanito

    of sperm competition. The seminal fluid of ants and bees with multiply mated queens are known to have evolved proteins that are able to kill the sperm of rival males, but the identity of the proteins involved has remained poorly understood. I sequenced the seminal fluid proteomes of four fungus-growing ant...... species that span the evolutionary transition from single to multiple queen-mating in the fungus-growing ant phylogeny. I then reconstructed the evolutionary histories of these proteins and identified a number of their functions related to energy production, control of oxidative stress, and proteolysis...

  9. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes

    Science.gov (United States)

    Weis, P.; Driesner, T.; Heinrich, C. A.

    2012-12-01

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  10. Buffer fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadzhanzade, A Kh; Dedusanko, G Ya; Dinaburg, L S; Markov, Yu M; Rasizade, Ya N; Rozov, V N; Sherstnev, N M

    1979-08-30

    A drilling fluid is suggested for separating the drilling and plugging fluids which contains as the base increased solution of polyacrylamide and additive. In order to increase the viscoelastic properties of the liquid with simultaneous decrease in the periods of its fabrication, the solution contains as an additive dry bentonite clay. In cases of the use of a buffer fluid under conditions of negative temperatures, it is necessary to add to it table salt or ethylene glycol.

  11. Fluid dynamics following flow shut-off in bottle filling

    Science.gov (United States)

    Thete, Sumeet; Appathurai, Santosh; Gao, Haijing; Basaran, Osman

    2012-11-01

    Bottle filling is ubiquitous in industry. Examples include filling of bottles with shampoos and cleaners, engine oil and pharmaceuticals. In these examples, fluid flows out of a nozzle to fill bottles in an assembly line. Once the required volume of fluid has flowed out of the nozzle, the flow is shut off. However, an evolving fluid thread or string may remain suspended from the nozzle following flow shut-off and persist. This stringing phenomenon can be detrimental to a bottle filling operation because it can adversely affect line speed and filling accuracy by causing uncertainty in fill volume, product loss and undesirable marring of the bottles' exterior surfaces. The dynamics of stringing are studied numerically primarily by using the 1D, slender-jet approximation of the flow equations. A novel feature entails development and use of a new boundary condition downstream of the nozzle exit to expedite the computations. While the emphasis is on stringing of Newtonian fluids and use of 1D approximations, results will also be presented for situations where (a) the fluids are non-Newtonian and (b) the full set of equations are solved without invoking the 1D approximation. Phase diagrams will be presented that identify conditions for which stringing can be problematic.

  12. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  13. Environmental assessment of alternative pasteurization technologies for fluid milk production using process simulation

    Science.gov (United States)

    Fluid milk processing (FMP) has significant environmental impact because of its high energy use. High temperature short time (HTST) pasteurization is the third most energy intensive operation comprising about 16% of total energy use, after clean-in-place operations and packaging. Nonthermal processe...

  14. Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Myeong, Hyeon Guk

    1999-06-01

    This book deals with computational fluid dynamics with basic and history of numerical fluid dynamics, introduction of finite volume method using one-dimensional heat conduction equation, solution of two-dimensional heat conduction equation, solution of Navier-Stokes equation, fluid with heat transport, turbulent flow and turbulent model, Navier-Stokes solution by generalized coordinate system such as coordinate conversion, conversion of basic equation, program and example of calculation, application of abnormal problem and high speed solution of numerical fluid dynamics.

  15. Fluid and mass transfer at subduction interfaces-The field metamorphic record

    Science.gov (United States)

    Bebout, Gray E.; Penniston-Dorland, Sarah C.

    2016-01-01

    The interface between subducting oceanic slabs and the hanging wall is a structurally and lithologically complex region. Chemically disparate lithologies (sedimentary, mafic and ultramafic rocks) and mechanical mixtures thereof show heterogeneous deformation. These lithologies are tectonically juxtaposed at mm to km scales, particularly in more intensely sheared regions (mélange zones, which act as fluid channelways). This juxtaposition, commonly in the presence of a mobile fluid phase, offers up huge potential for mass transfer and related metasomatic alteration. Fluids in this setting appear capable of transporting mass over scales of kms, along flow paths with widely varying geometries and P-T trajectories. Current models of arc magmatism require km-scale migration of fluids from the interface into mantle wedge magma source regions and implicit in these models is the transport of any fluids generated in the subducting slab along and ultimately through the subduction interface. Field and geochemical studies of high- and ultrahigh-pressure metamorphic rocks elucidate the sources and compositions of fluids in subduction interfaces and the interplay between deformation and fluid and mass transfer in this region. Recent geophysical studies of the subduction interface - its thickness, mineralogy, density, and H2O content - indicate that its rheology greatly influences the ways in which the subducting plate is coupled with the hanging wall. Field investigation of the magnitude and styles of fluid-rock interaction in metamorphic rocks representing "seismogenic zone" depths (and greater) yields insight regarding the roles of fluids and elevated fluid pore pressure in the weakening of plate interface rocks and the deformation leading to seismic events. From a geochemical perspective, the plate interface contributes to shaping the "slab signature" observed in studies of the composition of arc volcanic rocks. Understanding the production of fluids with hybridized chemical

  16. Semi-industrial production of organo clays to use in base oil drilling fluid; Producao em escala piloto de argilas organofilicas visando uso em fluidos de perfuracao base oleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Heber S.; Martins, Alice B.; Costa, Danubia L. da; Ferreira, Heber C.; Neves, Gelmires de A.; Melo, Tomas J.A. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Teixeira Neto, Erico [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2008-07-01

    The drilling fluids are essential to the operations of exploration of oil. The organoclays are widely used in the composition of the oil based drilling fluids and raw materials are of high value added. These clays can be obtained, traditionally, from bentonitic clay treated, in water, with ionic surfactants, however, non-ionic surfactants can be adsorbed on the surface of interlamelar bentonitic clay, naturally hydrophilic, making them organophilic. A pilot plant for production of organoclays was mounted in the Recycling Laboratory / UFCG. The bentonitic clay imported Cloisite Na{sup +R} was treated with a non-ionic surfactant in levels of 40, 50 and 60% in scale and bench-scale pilot. The commercial organoclay VG-69{sup R} was used as a standard for comparison of results. The clay obtained were characterized by X-ray diffraction, and Foster's swelling. The oil based fluids were prepared in accordance with the standards of PETROBRAS (N-22581 1997 and N-2259, 1997). Tests show that the characterization of organoclays have obtained intercalation of non-ionic surfactant with great expansion of layers of clay, with interlayer distances more significant than the clay trade, both on clay obtained in the laboratory scale as in clays obtained by pilot scale, with results very similar for both methods. It appears that it is possible the pilot-scale production of organoclays with equivalent quality produced in the laboratory scale and quality compatible with the clay used commercially. (author)

  17. Roles of interstitial fluid pH in diabetes mellitus: Glycolysis and mitochondrial function

    Science.gov (United States)

    Marunaka, Yoshinori

    2015-01-01

    The pH of body fluids is one the most important key factors regulating various cell function such as enzyme activity and protein-protein interaction via modification of its binding affinity. Therefore, to keep cell function normal, the pH of body fluids is maintained constant by various systems. Insulin resistance is one of the most important, serious factors making the body condition worse in diabetes mellitus. I have recently found that the pH of body (interstitial) fluids is lower in diabetes mellitus than that in non-diabetic control, and that the lowered pH is one of the causes producing insulin resistance. In this review article, I introduce importance of body (interstitial) fluid pH in regulation of body function, evidence on abnormal regulation of body fluid pH in diabetes mellitus, and relationship between the body fluid pH and insulin resistance. Further, this review proposes perspective therapies on the basis of regulation of body fluid pH including propolis (honeybee product) diet. PMID:25685283

  18. Indirect detection of radiation sources through direct detection of radiolysis products

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Fischer, Larry E [Los Gatos, CA; Felter, Thomas E [Livermore, CA

    2010-04-20

    A system for indirectly detecting a radiation source by directly detecting radiolytic products. The radiation source emits radiation and the radiation produces the radiolytic products. A fluid is positioned to receive the radiation from the radiation source. When the fluid is irradiated, radiolytic products are produced. By directly detecting the radiolytic products, the radiation source is detected.

  19. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-01-01

    ®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding

  20. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a

  1. Molecular mechanics and structure of the fluid-solid interface in simple fluids

    Science.gov (United States)

    Wang, Gerald J.; Hadjiconstantinou, Nicolas G.

    2017-09-01

    Near a fluid-solid interface, the fluid spatial density profile is highly nonuniform at the molecular scale. This nonuniformity can have profound effects on the dynamical behavior of the fluid and has been shown to play an especially important role when modeling a wide variety of nanoscale heat and momentum transfer phenomena. We use molecular-mechanics arguments and molecular-dynamics (MD) simulations to develop a better understanding of the structure of the first fluid layer directly adjacent to the solid in the layering regime, as delineated by a nondimensional number that compares the effects of wall-fluid interaction to thermal energy. Using asymptotic analysis of the Nernst-Planck equation, we show that features of the fluid density profile close to the wall, such as the areal density of the first layer ΣFL (defined as the number of atoms in this layer per unit of fluid-solid interfacial area), can be expressed as polynomial functions of the fluid average density ρave. This is found to be in agreement with MD simulations, which also show that the width of the first layer hFL is a linear function of the average density and only a weak function of the temperature T . These results can be combined to show that, for system average densities corresponding to a dense fluid (ρave≥0.7 ), the ratio C ≡ΣFLρavehFL, representing a density enhancement with respect to the bulk fluid, depends only weakly on temperature and is essentially independent of density. Further MD simulations suggest that the above results, nominally valid for large systems (solid in contact with semi-infinite fluid), also describe fluid-solid interfaces under considerable nanoconfinement, provided ρave is appropriately defined.

  2. Data processing for the fluid flow tomography method; Ryutai ryudo den`iho no data kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ushijima, K; Mizunaga, H; Tanaka, T [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Hashimoto, K [Kyushu Electric Power Co. Inc., Fukuoka (Japan)

    1997-05-27

    An automatic measurement system by means of conductive potential and self-potential methods (fluid flow tomography method) has been developed to measure the change of geothermal steam fluid during production and injection. For the fluid flow tomography method, the four-electrode configuration of the conductive potential method is adopted using the casing pipe of well as a current source. A lot of potential receiving electrodes are connected to the earth, preliminarily. The surface potential profile is measured, which is formed during the injection and production of the fluid through the well. Artificial and spontaneous potential profiles were continuously measured using this system during the hydraulic crushing tests at the test field of hot dry rock power generation at Ogachi-machi, Akita Prefecture. As a result of inversion analysis of self-potential data using a four-layer structural model of specific resistance, it was observed that the fluid injected at the depth of 711 m in the borehole permeated into the depth between 700 and 770 m in the south-eastern part of the well, and that the fractures propagated into the deeper part, gradually with the progress of hydraulic crushing test. 3 figs.

  3. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil

    2010-01-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  4. Fullerol ionic fluids

    Science.gov (United States)

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-09-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like).

  5. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    Science.gov (United States)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  6. Pericardial Parietal Mesothelial Cells: Source of the Angiotensin-Converting-Enzyme of the Bovine Pericardial Fluid

    Directory of Open Access Journals (Sweden)

    Ilsione Ribeiro de Sousa Filho

    Full Text Available Abstract Background: Angiotensin II (Ang II, the primary effector hormone of the renin-angiotensin system (RAS, acts systemically or locally, being produced by the action of angiotensin-converting-enzyme (ACE on angiotensin I. Although several tissue RASs, such as cardiac RAS, have been described, little is known about the presence of an RAS in the pericardial fluid and its possible sources. Locally produced Ang II has paracrine and autocrine effects, inducing left ventricular hypertrophy, fibrosis, heart failure and cardiac dysfunction. Because of the difficulties inherent in human pericardial fluid collection, appropriate experimental models are useful to obtain data regarding the characteristics of the pericardial fluid and surrounding tissues. Objectives: To evidence the presence of constituents of the Ang II production paths in bovine pericardial fluid and parietal pericardium. Methods: Albumin-free crude extracts of bovine pericardial fluid, immunoprecipitated with anti-ACE antibody, were submitted to electrophoresis (SDS-PAGE and gels stained with coomassie blue. Duplicates of gels were probed with anti-ACE antibody. In the pericardial membranes, ACE was detected by use of immunofluorescence. Results: Immunodetection on nitrocellulose membranes showed a 146-KDa ACE isoform in the bovine pericardial fluid. On the pericardial membrane sections, ACE was immunolocalized in the mesothelial layer. Conclusions: The ACE isoform in the bovine pericardial fluid and parietal pericardium should account at least partially for the production of Ang II in the pericardial space, and should be considered when assessing the cardiac RAS.

  7. Prevalence, extension and characteristics of fluid-fluid levels in bone and soft tissue tumors

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, P. van; Venstermans, C.; Gielen, J.; Parizel, P.M. [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); Vanhoenacker, F.M. [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); AZ St-Maarten, Department of Radiology, Duffel/Mechelen (Belgium); Vogel, J. [Leiden University Medical Centre, Department of Orthopedics, Leiden (Netherlands); Kroon, H.M.; Bloem, J.L. [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Schepper, A.M.A. de [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands)

    2006-12-15

    The purpose of this study was to determine the prevalence, extension and signal characteristics of fluid-fluid levels in a large series of 700 bone and 700 soft tissue tumors. Out of a multi-institutional database, MRI of 700 consecutive patients with a bone tumor and MRI of 700 consecutive patients with a soft tissue neoplasm were retrospectively reviewed for the presence of fluid-fluid levels. Extension (single, multiple and proportion of the lesion occupied by fluid-fluid levels) and signal characteristics on magnetic resonance imaging of fluid-fluid levels were determined. In all patients, pathologic correlation was available. Of 700 patients with a bone tumor, 19 (10 male and 9 female; mean age, 29 years) presented with a fluid-fluid level (prevalence 2.7%). Multiple fluid-fluid levels occupying at least one half of the total volume of the lesion were found in the majority of patients. Diagnoses included aneurysmal bone cyst (ten cases), fibrous dysplasia (two cases), osteoblastoma (one case), simple bone cyst (one case), telangiectatic osteosarcoma (one case), ''brown tumor'' (one case), chondroblastoma (one case) and giant cell tumor (two cases). Of 700 patients with a soft tissue tumor, 20 (9 males and 11 females; mean age, 34 years) presented with a fluid-fluid level (prevalence 2.9%). Multiple fluid-fluid levels occupying at least one half of the total volume of the lesion were found in the majority of patients. Diagnoses included cavernous hemangioma (12 cases), synovial sarcoma (3 cases), angiosarcoma (1 case), aneurysmal bone cyst of soft tissue (1 case), myxofibrosarcoma (1 case) and high-grade sarcoma ''not otherwise specified'' (2 cases). In our series, the largest reported in the literature to the best of our knowledge, the presence of fluid-fluid levels is a rare finding with a prevalence of 2.7 and 2.9% in bone and soft tissue tumors, respectively. Fluid-fluid levels remain a non-specific finding and can

  8. Fluid contact monitoring in some western Canadian reefs

    International Nuclear Information System (INIS)

    Pickel, J.S.; Heslop, A.

    1978-01-01

    Thirty years have passed since oil was first discovered in reefal reservoirs in the Western Canadian Sedimentary Basin. The early giants such as Redwater, Leduc, and the large Swan Hill pools have been followed in subsequent years by the development of reef pools of declining size, culminating with the discovery of the Keg River reefs of the Rainbow Zama area some 10 years ago. Unfortunately the majority of reef pools are reaching a mature stage in their productive cycle. With this maturity comes an increasing need for the log analyst to diversify his role from merely recognizing hydrocarbons during the discovery process, to the analysis of remaining hydrocarbon distribution within the depleting reservoir. The monitoring of fluid movement has become an integral part of reservoir description. Geologist, log analyst, reservoir and production engineer must work as a coordinated team to explain the often anomalous fluid distributions that occur in the well bore. Oil recovery from the Devonian Leduc age reef at Golden Spike, Alberta has been, until recently, by displacement with a miscible solvent bank. The monitoring of gas--fluid interfaces has been accomplished by the use of pulsed neutron logs in cased holes and the combination of SNP-Density and SNP-Acoustic data in open hole situations. At Judy Creek premature advances of formation water and inefficient reservoir depletion resulted from a highly stratified reefal reservoir. Pulsed neutron logs, used after the recognition of the production problems, have helped define oil-water distributions in the reservoir and led to an improvement in recovery efficiency. Rainbow Devonian Keg River reefs are subjected to gas, miscible and water injection recovery schemes. A pool that has been converted from a primary gas expansion drive to water drive by injection has used the pulsed neutron log to monitor the effectiveness of this change

  9. Effects of the fluid flows on enzymatic chemical oscillations

    Science.gov (United States)

    Shklyaev, Oleg; Yashin, Victor; Balazs, Anna

    2017-11-01

    Chemical oscillations are ubiquitous in nature and have a variety of promising applications. Usually, oscillating chemical systems are analyzed within the context of a reaction-diffusion framework. Here, we examine how fluid flows carrying the reactants can be utilized to modulate the negative feedback loops and time delays that promote chemical oscillations. We consider a model where a chemical reaction network involves two species, X and Y, which undergo transformations catalyzed by respective enzymes immobilized at the bottom wall of a fluid-filled microchamber. The reactions with the enzymes provide a negative feedback in the chemically oscillating system. In particular, the first enzyme, localized on the first patch, promotes production of chemical X, while the second enzyme, immobilized on the second patch, promotes production of chemical Y, which inhibits the production of chemical X. The separation distance between the enzyme-coated patches sets the time delay required for the transportation of X and Y. The chemical transport is significantly enhanced if convective fluxes accompany the diffusive ones. Therefore, the parameter region where oscillations are present is modified. The findings provide guidance to designing micro-scale chemical reactors with improved functionalities.

  10. CXCL11 production in cerebrospinal fluid distinguishes herpes simplex meningitis from herpes simplex encephalitis.

    Science.gov (United States)

    Lind, Liza; Studahl, Marie; Persson Berg, Linn; Eriksson, Kristina

    2017-07-10

    The closely related herpes simplex viruses 1 and 2 can cause inflammations of the central nervous system (CNS), where type 1 most often manifest as encephalitis (HSE), and type 2 as meningitis (HSM). HSE is associated with severe neurological complications, while HSM is benign in adults. We proposed that studying the chemokine and cytokine production in cerebrospinal fluid (CSF) and serum could indicate why two closely related viruses exhibit different severity of their accompanied CNS inflammation. Secretion patterns of 30 chemokines and 10 cytokines in CSF of adult patients with acute HSE (n = 14) and HSM (n = 20) in the initial stage of disease were analyzed and compared to control subjects without viral central nervous system infections and to levels in serum. Most measured chemokines and cytokines increased in CSF of HSE and HSM patients. Overall, the CSF chemokine levels were higher in CSF of HSM patients compared to HSE patients. However, only five chemokines reached levels in the CSF that exceeded those in serum facilitating a positive CSF-serum chemokine gradient. Of these, CXCL8, CXCL9, and CXCL10 were present at high levels both in HSE and HSM whereas CXCL11 and CCL8 were present in HSM alone. Several chemokines were also elevated in serum of HSE patients but only one in HSM patients. No chemokine in- or efflux between CSF and serum was indicated as the levels of chemokines in CSF and serum did not correlate. We show that HSM is associated with a stronger and more diverse inflammatory response in the CNS compared to HSE in the initial stage of disease. The chemokine patterns were distinguished by the exclusive local CNS production of CXCL11 and CCL8 in HSM. Inflammation in HSM appears to be restricted to the CNS whereas HSE also was associated with systemic inflammation.

  11. Fluidized bed pyrolysis of HDPE: A study of the influence of operating variables and the main fluid dynamic parameters on the composition and production of gases

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Lidia; Aguado, Alicia; Moral, Alberto [CARTOF Centro Tecnologico, Valladolid (Spain). Environmental Div.; Irusta, Ruben [CARTOF Centro Tecnologico, Valladolid (Spain). Environmental Div.; Valladolid Univ. (Spain). Dept. of Chemical Engineering and Environmental Technology

    2011-02-15

    In the present work, a preliminary study of the pyrolysis process of high density polyethylene (HDPE) in a fluidized bed is investigated in order to determine the influence between the fluid dynamic properties of the bed reactor and the amount and composition of the gases produced. As is known, fluidized bed technology is a very interesting option to apply in the pyrolysis field due to i) the lack of moving parts in the hot region that facilitates the maintenance of equipment, ii) the high surface area to volume ratio available in the bed, and iii) the high heat transfer coefficient reached which governs the reaction products. But, heat and mass transfer coefficients are strongly affected by the fluid dynamic properties of the bed. During the pyrolysis of HDPE, a fluid dynamic characterization of the bed particles that consist of char-coated sand of HDPE has been carried out. Parameters such as the minimum fluidizing velocity (u{sub mf}), terminal velocity (u{sub t}), bed height (h{sub f}), bed voidage ({epsilon}{sub f}), fraction of the bed occupied by bubbles ({delta}), bubble diameter (d{sub b}), bubble velocity (u{sub b}), the mass transfer coefficients between the bubble and the cloud (K{sub bc}) and between the cloud and the emulsion (K{sub ce}) were determined. Subsequently, the influence of major operating variables and the fluid dynamic parameters on the composition and the gas yield of the pyrolysis of HDPE were studied. (author)

  12. Influence of Inoculum Content on Performance of Anaerobic Reactors for Treating Cattle Manure using Rumen Fluid Inoculum

    OpenAIRE

    Sunarso; S. Johari; I N. Widiasa; Budiyono

    2009-01-01

    Biogas productions of cattle manure using rumen fluid inoculums were determined using batch anaerobic digesters at mesophilic temperatures (room and 38.5 oC). The aim of this paper was to analyze the influence of rumen fluid contents on biogas yield from cattle manure using fluid rumen inoculums. A series of laboratory experiments using 400 ml biodigester were performed in batch operation mode. Given 100 grams of fresh cattle manure (M) was fed to each biodigester and mixed with rumen fluid (...

  13. Management of intraoperative fluid balance and blood conservation techniques in adult cardiac surgery.

    Science.gov (United States)

    Vretzakis, George; Kleitsaki, Athina; Aretha, Diamanto; Karanikolas, Menelaos

    2011-02-01

    Blood transfusions are associated with adverse physiologic effects and increased cost, and therefore reduction of blood product use during surgery is a desirable goal for all patients. Cardiac surgery is a major consumer of donor blood products, especially when cardiopulmonary bypass (CPB) is used, because hematocrit drops precipitously during CPB due to blood loss and blood cell dilution. Advanced age, low preoperative red blood cell volume (preoperative anemia or small body size), preoperative antiplatelet or antithrombotic drugs, complex or re-operative procedures or emergency operations, and patient comorbidities were identified as important transfusion risk indicators in a report recently published by the Society of Cardiovascular Anesthesiologists. This report also identified several pre- and intraoperative interventions that may help reduce blood transfusions, including off-pump procedures, preoperative autologous blood donation, normovolemic hemodilution, and routine cell saver use.A multimodal approach to blood conservation, with high-risk patients receiving all available interventions, may help preserve vital organ perfusion and reduce blood product utilization. In addition, because positive intravenous fluid balance is a significant factor affecting hemodilution during cardiac surgery, especially when CPB is used, strategies aimed at limiting intraoperative fluid balance positiveness may also lead to reduced blood product utilization.This review discusses currently available techniques that can be used intraoperatively in an attempt to avoid or minimize fluid balance positiveness, to preserve the patient's own red blood cells, and to decrease blood product utilization during cardiac surgery.

  14. A viscoelastic deadly fluid in carnivorous pitcher plants.

    Directory of Open Access Journals (Sweden)

    Laurence Gaume

    Full Text Available BACKGROUND: The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. CONCLUSIONS/SIGNIFICANCE: This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.

  15. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2010-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  16. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2012-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  17. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W

    1965-01-01

    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  18. Theoretical Fluid Dynamics

    CERN Document Server

    Shivamoggi, Bhimsen K

    1998-01-01

    "Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses

  19. Modeling of bubble growth in complex fluids. Application to radiolytic swelling of nuclear bituminized waste products

    International Nuclear Information System (INIS)

    Marchal, Antoine

    2015-01-01

    The aim of this PhD thesis is to predict the swelling of bitumen barrels in which radioactive salts are mixed. The bitumen exposed to radioactivity undergoes a chemical reaction: the radiolysis. This implies a generation of dihydrogen. The created is solubilized until the concentration reaches a limit value which is called saturation. Over this limit nucleation of bubbles is observed. Then they will grow thank to the contribution of the gas generated by radiolysis and they will be submitted to Archimede's principle so that they will rise in the fluid. The swelling is the result of the competition between generation and evacuation of gas. A model has been built to describe the evolution of a bubble population. Because of it is not possible to solve it analytically, a numerical program was developed. The results show that an increase of the fluid viscosity, the gas generation or the container height lead to an increase of the swelling and that an increase of the diffusion coefficient contributes to a decrease of the swelling. In the particular case of a yield stress fluid, the behavior of the bubble population is modified and the evacuation of gas is done with several shots, at the opposite of the case of a Newtonian fluid for which a stationary evacuation is reached. (author)

  20. Fluid sampling tool

    Science.gov (United States)

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    1999-05-25

    A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.

  1. Using analogs to generate production forecasts in Faja

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Lugo, Rolando A. [Repsol (Canada)

    2011-07-01

    In the Carabobol Block, extra heavy oil will be produced by cold production from Miocene Morical Member sands. Many parameters such as pressure, temperature, solution gas oil ratio and viscosity variation significantly impact well productivity; unfortunately little information is available on the Carabobol Block. The aim of this paper is to provide a new methodology for using analog data to develop fluid properties correlations and a future production profile. Data from the analog neighbour field in the Orinoco oil belt was used. A methodology using scatter data was successfully applied for the Carabobol Block and fluid composition, a complete PVT and an analytical forecast were found and confirmed with actual laboratory data and a gross numerical model. This study showed that analog data can be used as a first approach to assess initial reservoir conditions and fluid properties and to generate production forecasts.

  2. Variable flexure-based fluid filter

    Science.gov (United States)

    Brown, Steve B.; Colston, Jr., Billy W.; Marshall, Graham; Wolcott, Duane

    2007-03-13

    An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.

  3. Effect of Inlet Velocity on Heat Transfer Process in a Novel Photo-Fermentation Biohydrogen Production Bioreactor using Computational Fluid Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Zhiping Zhang

    2014-11-01

    Full Text Available Temperature is one of the most important parameters in biohydrogen production by way of photo-fermentation. Enzymatic hydrolysate of corncob powder was utilized as a substrate. Computational fluid dynamics (CFD modeling was conducted to simulate the temperature distribution in an up-flow baffle photo-bioreactor (UBPB. Commercial software, GAMBIT, was utilized to mesh the photobioreactor geometry, while the software FLUENT was adopted to simulate the heat transfer in the photo-fermentation process. The inlet velocity had a marked impact on heat transfer; the most optimum velocity value was 0.0036 m•s-1 because it had the smallest temperature fluctuation and the most uniform temperature distribution. When the velocity decreased from 0.0036 m•s-1 to 0.0009 m•s-1, more heat was accumulated. The results obtained from the established model were consistent to the actual situation by comparing the simulation values and experimental values. The hydrogen production simulation verified that the novel UBPB was suitable for biohydrogen production by photosynthetic bacteria because of its uniform temperature and lighting distribution, with the serpentine flow pattern also providing mixing without additional energy input, thus enhancing the mass transfer and biohydrogen yield.

  4. Computational fluid dynamics tracking of UF6 reaction products release into a gaseous diffusion plant cell housing

    International Nuclear Information System (INIS)

    Wendel, M.W.; Chen, N.C.J.; Kim, S.H.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.

    1996-01-01

    A three-dimensional (3-D) computational fluid dynamics (CFD) model has been developed using CFDS-FLOW3D Version 3.3 to model the transport of aerosol products formed during a release of uranium hexafluoride (UF 6 ) into a gaseous diffusion plant (GDP) process building. As part of a facility-wide safety evaluation, a one-dimensional (1-D) analysis of aerosol/vapor transport following such an hypothesized severe accident is being performed. The objective of this study is to supplement the 1-D analysis with more detailed 3-D results. Specifically, the goal is to quantify the distribution of aerosol passing out of the process building during the hypothetical accident. This work demonstrates a useful role for CFD in large 3-D problems, where some experimental data are available for calibrating key parameters and the desired results are global (total time-integrated aerosol flow rates across a few boundary surfaces) as opposed to local velocities, temperatures, or heat transfer coefficients

  5. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  6. Testing geopressured geothermal reservoirs in existing wells: Detailed completion prognosis for geopressured-geothermal well of opportunity, prospect #7

    Energy Technology Data Exchange (ETDEWEB)

    Godchaux, Frank A.

    1981-06-01

    This book is a detailed prognosis covering the acquisition, completion, drilling, testing and abandonment of the Frank A. Godchaux, III, Well No. 1 under the Wells of Opportunity Program. The well is located approximately 12 miles southeast of the city of Abbeville, Louisiana. Eaton Operating Company proposes to test a section of the Planulina sand at a depth ranging from 15,584 to 15,692 feet. The reservoir pressure is estimated to be 14,480 psi and the temperature of the formation water is expected to be 298 F. The water salinity is calculated to be 75,000 ppm. The well is expected to produce 20,000 barrels of water per day with a gas content of 44 standard cubic feet pre barrel. The well was acquired from C and K Petroleu, Inc. on March 20, 1981. C and K abandoned the well at a total depth of 16,000 feet. The well has a 7-5/8 inches liner set at 13,387 feet. Eaton proposes to set 5-1/2 inch casing at 16,000 feet and produce the well through the casing using a 2-3/8 inch tubing string for wireline protection and for pressure control. A 4,600 foot saltwater disposal well will be drilled on the site and testing will be conducted similar to previous Eaton tests. The total estimated cost to perform the work is $2,959,000. An optional test from 14,905 to 15,006 feet may be performed after the original test and will require a workover with a rig on location to perform the plugback. The surface production equipment utilized on previous Eaton WOO tests will be utilized on this test. This equipment has worked satisfactorily and all parties involved in the testing are familiar with its operation. The Institute of Gas Technology and Mr. Don Clark will handle the sampling and testing and reservoir evaluation, respectively, as on the previous Eaton tests.

  7. Body fluid derived exosomes as a novel template for clinical diagnostics

    Directory of Open Access Journals (Sweden)

    Janssen Johannes WG

    2011-06-01

    Full Text Available Abstract Background Exosomes are small membrane vesicles with a size of 40-100 nm that are released by different cell types from a late endosomal cellular compartment. They can be found in various body fluids including plasma, malignant ascites, urine, amniotic fluid and saliva. Exosomes contain proteins, miRNAs and mRNAs (exosome shuttle RNA, esRNA that could serve as novel platform for diagnosis. Method We isolated exosomes from amniotic fluid, saliva and urine by differential centrifugation on sucrose gradients. Marker proteins were identified by Western blot and FACS analysis after adsorption of exosomes to latex beads. We extracted esRNA from exosomes, carried out RT-PCR, and analyzed amplified products by restriction length polymorphism. Results Exosomes were positive for the marker proteins CD24, CD9, Annexin-1 and Hsp70 and displayed the correct buoyant density and orientation of antigens. In sucrose gradients the exosomal fractions contained esRNA that could be isolated with sufficient quantity for further analysis. EsRNAs were protected in exosomes from enzymatic degradation. Amniotic fluid esRNA served as template for the typing of the CD24 single nucleotide polymorphism (rs52812045. It also allowed sex determination of the fetus based on the detection of the male specific ZFY gene product. Conclusions Our data demonstrate that exosomes from body fluids carry esRNAs which can be analyzed and offers access to the transcriptome of the host organism. The exosomal lipid bilayer protects the genetic information from degradation. As the isolation of exosomes is a minimally invasive procedure, this technique opens new possibilities for diagnostics.

  8. Maximizing light olefins production in fluid catalytic cracking (FCC) units; Maximizacao de olefinas leves em unidades de craqueamento catalitico fluido

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Ricardo D.M.; Pinho, Andrea de Rezende [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The Fluid Catalytic Cracking (FCC) process is widely spread over the ten PETROBRAS refineries in its thirteen industrial units. The importance of the FCC process resides on its high gasoline output, being the main supplier of this important product to the system. Additionally, FCC process is the main source of light hydrocarbons in the LPG range, including light olefins. The increasing demand for ethylene, propylene and butylenes was encouraging to concentrate the research efforts on studies about alternatives for the traditional FCC process. In the present work, the proposals from main licensors (UOP, KBR, Stone and Webster) for a light-olefins-driven FCC process (Petrochemical FCC) will be compared. Furthermore, the catalytic route for light olefins production in FCC units is also described. An additive based on ZSM- 5 zeolite, which is produced following a PETROBRAS proprietary technology, is being largely applied into the catalyst inventories of all FCC units. An analysis of different scenarios was performed to estimate the maximum potential of light olefins production from the highest possible ZSM-5 additive usage. More specifically for the case of ethylene, which production is also boosted by the same type of additive, studies are being conducted with the objective of recovering it from a C2 stream using specific units to do the splitting (UPGR). The search for increasing light olefins production in the refining processes is in line with PETROBRAS strategic plan which targeted for the company a more intense activity in the Brazilian petrochemical market (author)

  9. Space Station fluid management logistics

    Science.gov (United States)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  10. Fluid dynamics

    CERN Document Server

    Bernard, Peter S

    2015-01-01

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  11. In vitro rumen gas and methane production of grass silages differing in plant maturity and nitrogen fertilisation, compared to in vivo enteric methane production

    NARCIS (Netherlands)

    Macome, F. M.; Pellikaan, Wilbert F; Schonewille, J. Th; Bannink, A.; Laar, H.; Hendriks, W. H.; Warner, D.; Cone, John W

    2017-01-01

    The potential of an in vitro gas production (GP) system to predict the in vivo enteric methane (CH4) production for various ryegrass-based silages was evaluated, using adapted rumen fluid from cows. Rumen fluid from 12 lactating rumen-cannulated Holstein-Friesian cows were used for in vitro

  12. Thermophysical properties of supercritical fluids and fluid mixtures

    International Nuclear Information System (INIS)

    Sengers, J.V.

    1989-08-01

    The purpose of the research is to extend the theory of critical phenomena in fluids and fluid mixtures to obtain scientifically based equations that include the crossover from the asymptotic singular behavior of the thermophysical properties close to the critical point to the regular behavior of these properties far away from the critical point

  13. Flow of mantle fluids through the ductile lower crust: Heliumisotope trends

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B. Mack; van Soest, Matthijs C.

    2007-10-07

    Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum 3He/4He ratios in surface fluids from the northern Basin and Range province, western North America increase systematically from low, crustal values in the east to high, mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The correspondence of helium isotope ratios and active trans-tensional deformation indicates a deformation enhanced permeability and that mantle fluids can penetrate the ductile lithosphere in regions even where there is no significant magmatism. Superimposed on the regional trend are local, high-{sup 3}He/{sup 4}He anomalies signifying hidden magmatic activity and/or deep fluid production with locally enhanced permeability, identifying zones with high resource potential, particularly for geothermal energy development.

  14. Fluid Creep and Over-resuscitation.

    Science.gov (United States)

    Saffle, Jeffrey R

    2016-10-01

    Fluid creep is the term applied to a burn resuscitation, which requires more fluid than predicted by standard formulas. Fluid creep is common today and is linked to several serious edema-related complications. Increased fluid requirements may accompany the appropriate resuscitation of massive injuries but dangerous fluid creep is also caused by overly permissive fluid infusion and the lack of colloid supplementation. Several strategies for recognizing and treating fluid creep are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Analysis of thermal cycles and working fluids for power generation in space

    International Nuclear Information System (INIS)

    Tarlecki, Jason; Lior, Noam; Zhang Na

    2007-01-01

    Production of power in space for terrestrial use is of great interest in view of the rapidly rising power demand and its environmental impacts. Space also offers a very low temperature, making it a perfect heat sink for power plants, thus offering much higher efficiencies. This paper focuses on the evaluation and analysis of thermal Brayton, Ericsson and Rankine power cycles operating at space conditions on several appropriate working fluids. Under the examined conditions, the thermal efficiency of Brayton cycles reaches 63%, Ericsson 74%, and Rankine 85%. These efficiencies are significantly higher than those for the computed or real terrestrial cycles: by up to 45% for the Brayton, and 17% for the Ericsson; remarkably 44% for the Rankine cycle even when compared with the best terrestrial combined cycles. From the considered working fluids, the diatomic gases (N 2 and H 2 ) produce somewhat better efficiencies than the monatomic ones in the Brayton and Rankine cycles. The Rankine cycles require radiator areas that are larger by up to two orders of magnitude than those required for the Brayton and Ericsson cycles. The results of the analysis of the sensitivity of the cycle performance parameters to major parameters such as turbine inlet temperature and pressure ratio are presented, equations or examining the effects of fluid properties on the radiator area and pressure drop were developed, and the effects of the working fluid properties on cycle efficiency and on the power production per unit radiator area were explored to allow decisions on the optimal choice of working fluids

  16. Fluid sampling tool

    Science.gov (United States)

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  17. Dietary cation and anion difference: Effects on milk production and body fluid distribution in lactating dairy goats under tropical conditions.

    Science.gov (United States)

    Nguyen, Thiet; Chaiyabutr, Narongsak; Chanpongsang, Somchai; Thammacharoen, Sumpun

    2018-01-01

    This study aimed to determine the effect of dietary cation and anion difference (DCAD) on milk production and body fluid distribution in lactating dairy goats. Ten dairy goats were selected and divided into two groups, five animals each. Animals received either control DCAD (control, 22.81 mEq/100 g dry matter (DM)) or high DCAD (DCAD, 39.08 mEq/100 g DM). The results indicated that rectal temperature (Tr), respiration rate, milk yield and compositions did not differ between groups. But the percentage change of Tr from the DCAD group was lower than the control group between 09.00 and 13.00 hours. DM intake tended to increase in the DCAD group. Dairy goats in the DCAD group drank more water, but urinary excretion and plasma antidiuretic hormone concentration remained unchanged. Apparent water balance was higher from the DCAD group over 24 h. There was no effect of DCAD on plasma and blood volumes, but tended to increase in extracellular fluid and thereby increased total body water. The present results indicate that animals supplemented with high DCAD increase their total body water and apparent water balance. These results have contributed to the process of adaptation for evaporative cooling and would be useful in slowing down the elevation in Tr. © 2017 Japanese Society of Animal Science.

  18. Working fluid selection for organic Rankine cycles - Impact of uncertainty of fluid properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Andreasen, Jesper Graa; Liu, Wei

    2016-01-01

    of processmodels and constraints 2) selection of property models, i.e. Penge Robinson equation of state 3)screening of 1965 possible working fluid candidates including identification of optimal process parametersbased on Monte Carlo sampling 4) propagating uncertainty of fluid parameters to the ORC netpower output......This study presents a generic methodology to select working fluids for ORC (Organic Rankine Cycles)taking into account property uncertainties of the working fluids. A Monte Carlo procedure is described as a tool to propagate the influence of the input uncertainty of the fluid parameters on the ORC....... The net power outputs of all the feasible working fluids were ranked including their uncertainties. The method could propagate and quantify the input property uncertainty of the fluidproperty parameters to the ORC model, giving an additional dimension to the fluid selection process. In the given analysis...

  19. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  20. Supercritical fluid carbon dioxide extraction of actinides

    International Nuclear Information System (INIS)

    Rao, Ankita; Tomar, B.S.

    2016-01-01

    Supercritical fluid extraction (SFE) is a process akin to liquid-liquid or solvent extraction where a Supercritical fluid (SCF) is contacted with a solid/ liquid matrix for the purpose of separating the component of interest from the original matrix. Carbon dioxide is a preferred choice as supercritical fluid (SCF) owing to its moderate critical parameter (P c = 7.38 MPa and T c = 304.1K) coupled with radiation and chemical stability, non toxic nature and low cost. Despite widespread applications for extraction of organic compounds and associated advantages especially liquid waste minimization, the SFE of metal ions was left unexplored for quite some time, as direct metal ion extraction is inefficient due charge neutralization requirement and weak solute-solvent interaction. Neutral SCF soluble metal-ligand complexation is imperative and SFE of actinides was reported only in 1994. Several studies have been carried out on SFE of uranium, thorium and plutonium from nitric acid medium employing different sets of ligands (organophosphorus, diketones, amides). Especially attractive is the possibility of direct dissolution and extraction of actinides employing ligand-acid adducts (like TBP.HNO 3 adduct) from solid matrices of different stages of nuclear fuel cycle viz. ores, spent nuclear fuels and radioactive wastes. Also, partitioning of actinides from fission products has been explored in spent nuclear fuel. These studies on supercritical fluid extraction of actinides indicate a more efficient and environmentally sustainable technology. (author)

  1. Imaging fluid/solid interactions in hydrocarbon reservoir rocks.

    Science.gov (United States)

    Uwins, P J; Baker, J C; Mackinnon, I D

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  2. Fluid and particle mechanics

    CERN Document Server

    Michell, S J

    2013-01-01

    Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th

  3. Analysis and hazard evaluation of heat-transfer fluids for the direct contact cooling system

    International Nuclear Information System (INIS)

    Hong, Joo Hi; Lee, Yeon Hee; Shin, You Hwan; Karng, Sarng Woo; Kim, Seo Young; Kim, Young Gil

    2006-01-01

    This paper discusses several low-temperature heat-transfer fluids, including water-based inorganic salt, organic salt, alcohol/glycol mixtures, silicones, and halogenated hydrocarbons in order to choose the best heat-transfer fluid for the newly designed direct contact refrigeration system. So, it contains a survey on commercial products such as propylene glycol and potassium formate as newly used in super market and food processing refrigeration. The stability of commercial fluids at the working temperature of -20 .deg. C was monitored as a function of time up to two months. And organic and inorganic compositions of candidate fluids were obtained by analytical instruments such as ES, XRF, AAS, ICP-AES, GC, and GC-MS. Analysis results indicate that commercial propylene glycol is very efficient and safe heat transfer fluids for the direct cooling system with liquid phase

  4. Performance analysis a of solar driven organic Rankine cycle using multi-component working fluids

    DEFF Research Database (Denmark)

    Baldasso, E.; Andreasen, J. G.; Modi, A.

    2015-01-01

    suitable control strategy and both the overall annual production and the average solar to electrical efficiency are estimated with an annual simulation. The results suggest that the introduction of binary working fluids enables to increase the solar system performance both in design and part-load operation....... cycle. The purpose of this paper is to optimize a low temperature organic Rankine cycle tailored for solar applications. The objective of the optimization is the maximization of the solar to electrical efficiency and the optimization parameters are the working fluid and the turbine inlet temperature...... and pressure. Both pure fluids and binary mixtures are considered as possible working fluids and thus one of the primary aims of the study is to evaluate whether the use of multi-component working fluids might lead to increased solar to electrical efficiencies. The considered configuration includes a solar...

  5. Estimating Energy Consumption of Mobile Fluid Power in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Lauren [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zigler, Bradley T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    This report estimates the market size and energy consumption of mobile off-road applications utilizing hydraulic fluid power, and summarizes technology gaps and implementation barriers. Mobile fluid power is the use of hydraulic fluids under pressure to transmit power in mobile equipment applications. The mobile off-road fluid power sector includes various uses of hydraulic fluid power equipment with fundamentally diverse end-use application and operational requirements, such as a skid steer loader, a wheel loader or an agriculture tractor. The agriculture and construction segments dominate the mobile off-road fluid power market in component unit sales volume. An estimated range of energy consumed by the mobile off-road fluid power sector is 0.36 - 1.8 quads per year, which was 1.3 percent - 6.5 percent of the total energy consumed in 2016 by the transportation sector. Opportunities for efficiency improvements within the fluid power system result from needs to level and reduce the peak system load requirements and develop new technologies to reduce fluid power system level losses, both of which may be facilitated by characterizing duty cycles to define standardized performance test methods. There are currently no commonly accepted standardized test methods for evaluating equipment level efficiency over a duty cycle. The off-road transportation sector currently meets criteria emissions requirements, and there are no efficiency regulations requiring original equipment manufacturers (OEM) to invest in new architecture development to improve the fuel economy of mobile off-road fluid power systems. In addition, the end-user efficiency interests are outweighed by low equipment purchase or lease price concerns, required payback periods, and reliability and durability requirements of new architecture. Current economics, low market volumes with high product diversity, and regulation compliance challenge OEM investment in commercialization of new architecture development.

  6. Characteristics of estrogen-induced peroxidase in mouse uterine luminal fluid

    International Nuclear Information System (INIS)

    Jellinck, P.H.; Newbold, R.R.; McLachlan, J.A.

    1991-01-01

    Peroxidase activity in the uterine luminal fluid of mice treated with diethylstilbestrol was measured by the guaiacol assay and also by the formation of 3H2O from [2-3H]estradiol. In the radiometric assay, the generation of 3H2O and 3H-labeled water-soluble products was dependent on H2O2 (25 to 100 microM), with higher concentrations being inhibitory. Tyrosine or 2,4-dichlorophenol strongly enhanced the reaction catalyzed either by the luminal fluid peroxidase or the enzyme in the CaCl2 extract of the uterus, but decreased the formation of 3H2O from [2-3H]estradiol by lactoperoxidase in the presence of H2O2 (80 microM). NADPH, ascorbate, and cytochrome c inhibited both luminal fluid and uterine tissue peroxidase activity to the same extent, while superoxide dismutase showed a marginal activating effect. Lactoferrin, a major protein component of uterine luminal fluid, was shown not to contribute to its peroxidative activity, and such an effect by prostaglandin synthase was also ruled out. However, it was not possible to exclude eosinophil peroxidase, brought to the uterus after estrogen stimulation, as being the source of peroxidase activity in uterine luminal fluid

  7. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  8. Material Exchange and Migration between Pore Fluids and Sandstones during Diagenetic Processes in Rift Basins: A Case Study Based on Analysis of Diagenetic Products in Dongying Sag, Bohai Bay Basin, East China

    Directory of Open Access Journals (Sweden)

    W. Meng

    2018-01-01

    Full Text Available The exchange and migration of basin materials that are carried by pore fluids are the essence of diagenesis, which can alter physical properties of clastic rocks as well as control formation and distribution of favorable reservoirs of petroliferous basins. Diagenetic products and pore fluids, resulting from migration and exchange of basin materials, can be used to deduce those processes. In this study, 300 core samples from 46 wells were collected for preparation of casting thin sections, SEM, BSE, EDS, inclusion analysis, and isotope analysis in Dongying Sag, Bohai Bay Basin, East China. Combined with geochemical characteristics of pore fluids and geological background of the study area, the source and exchange mechanisms of materials in the pore fluids of rift basins were discussed. It was revealed that the material exchange of pore fluids could be divided into five stages. The first stage was the evaporation concentration stage during which mainly Ca2+, Mg2+, and CO32- precipitated as high-Mg calcites. Then came the shale compaction stage, when mainly Ca2+ and CO32- from shale compaction water precipitated as calcites. The third stage was the carboxylic acid dissolution stage featured by predominant dissolution of plagioclases, during which Ca2+ and Na+ entered pore fluids, and Si and Al also entered pore fluids and then migrated as clathrates, ultimately precipitating as kaolinites. The fourth stage was the organic CO2 stage, mainly characterized by the kaolinization of K-feldspar as well as dissolution of metamorphic lithic fragments and carbon cements. During this stage, K+, Fe2+, Mg2+, Ca2+, HCO3-, and CO32- entered pore fluids. The fifth stage was the alkaline fluid stage, during which the cementation of ferro-carbonates and ankerites as well as illitization or chloritization of kaolinites prevailed, leading to the precipitation of K+, Fe2+, Mg2+, Ca2+, and CO32- from pore fluids.

  9. Hyperacid volcano-hydrothermal fluids from Copahue volcano, Argentina: Analogs for "subduction zone fluids"?

    Science.gov (United States)

    Varekamp, J. C.

    2007-12-01

    Hyperacid concentrated Chlorine-Sulfate brines occur in many young arc volcanoes, with pH values Copahue volcanic system (Argentina) suggest reservoir temperatures of 175-300 oC, whereas the surface fluids do not exceed local boiling temperatures. These fluids are generated at much lower P-T conditions than fluids associated with a dehydrating subducted sediment complex below arc volcanoes, but their fundamental chemical compositions may have similarities. Incompatible trace element, major element concentrations and Pb isotope compositions of the fluids were used to determine the most likely rock protoliths for these fluids. Mean rock- normalized trace element diagrams then indicate which elements are quantitatively extracted from the rocks and which are left behind or precipitated in secondary phases. Most LILE show flat rock-normalized patterns, indicating close to congruent dissolution, whereas Ta-Nb-Ti show strong depletions in the rock-normalized diagrams. These HFSE are either left behind in the altered rock protolith or were precipitated along the way up. The behavior of U and Th is almost identical, suggesting that in these low pH fluids with abundant ligands Th is just as easily transported as U, which is not the case in more dilute, neutral fluids. Most analyzed fluids have steeper LREE patterns than the rocks and have negative Eu anomalies similar to the rocks. Fluids that interacted with newly intruded magma e.g., during the 2000 eruption, have much less pronounced Eu anomalies, which was most likely caused by the preferential dissolution of plagioclase when newly intruded magma interacted with the acid fluids. The fluids show a strong positive correlation between Y and Cd (similar to MORB basalts, Yi et al., JGR, 2000), suggesting that Cd is mainly a rock-derived element that may not show chalcophilic behavior. The fluids are strongly enriched (relative to rock) in As, Zn and Pb, suggesting that these elements were carried with the volcanic gas phase

  10. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production (Part I)

    Science.gov (United States)

    Fernandez, C. A.; Jung, H. B.; Shao, H.; Bonneville, A.; Heldebrant, D.; Hoyt, D.; Zhong, L.; Holladay, J.

    2014-12-01

    Cost-effective yet safe creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the viability of enhanced geothermal systems and unconventional oil/gas recovery. Current reservoir stimulation processes utilize brute force (hydraulic pressures in the order of hundreds of bar) to create/propagate fractures in the bedrock. Such stimulation processes entail substantial economic costs ($3.3 million per reservoir as of 2011). Furthermore, the environmental impacts of reservoir stimulation are only recently being determined. Widespread concerns about the environmental contamination have resulted in a number of regulations for fracturing fluids advocating for greener fracturing processes. To reduce the costs and environmental impact of reservoir stimulation, we developed an environmentally friendly and recyclable hydraulic fracturing fluid that undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at temperatures relevant for reservoir stimulation in Enhanced Geothermal System (EGS). The volume expansion, which will specifically occurs at EGS depths of interest, generates an exceptionally large mechanical stress in fracture networks of highly impermeable rock propagating fractures at effective stress an order of magnitude lower than current technology. This paper will concentrate on the presentation of this CO2-triggered expanding hydrogel formed from diluted aqueous solutions of polyallylamine (PAA). Aqueous PAA-CO2 mixtures also show significantly higher viscosities than conventional rheology modifiers at similar pressures and temperatures due to the cross-linking reaction of PAA with CO2, which was demonstrated by chemical speciation studies using in situ HP-HT 13C MAS-NMR. In addtion, PAA shows shear-thinning behavior, a critical advantage for the use of this fluid system in EGS reservoir stimulation. The high pressure/temperature experiments and their results as well

  11. Benign mural nodules within fluid collections at MRI after soft-tissue sarcoma resection.

    Science.gov (United States)

    Lantos, Joshua E; Hwang, Sinchun; Panicek, David M

    2014-06-01

    The purpose of this study was to determine the prevalence and clinical significance of nodules within fluid collections on MRI after surgical resection of soft-tissue sarcoma. This retrospective study included 175 patients who underwent resection of primary soft-tissue sarcoma and whose postoperative MRI reports mentioned fluid. Images were reviewed to determine the presence of fluid collections of 1 cm or greater in diameter in the surgical bed and any nodule (measuring ≥ 0.7 cm) within the collection. Signal intensity and characteristics of each collection and rim and presence of septa or blood products were recorded. Size, signal intensity, and contrast enhancement of nodules were reviewed. Nodules were classified as benign or malignant on the basis of histologic results or clinical or MRI follow-up. Fluid collections were present in 75 patients. Of those, 45 collections (60%) showed homogeneous fluid signal intensity and 30 (40%) were heterogeneous; septa were present in 45 (60%) and blood products in 12 (16%). Most collections showed a thin rim (59%) and rim enhancement (88%). Nodules were present along the inner wall of six (8%) collections. Four (66%) nodules enhanced and two (33%) were T1 hyperintense. At follow-up MRI, two nodules were stable in size, one decreased, and three resolved. Nodules in three patients were biopsied; all were benign. Two other patients had no recurrence at follow-up, and another died at 3 months. A nodule within a postoperative fluid collection at MRI after soft-tissue sarcoma resection generally does not represent tumor recurrence; short-interval follow-up MRI is recommended rather than immediate biopsy.

  12. Regulation of cerebrospinal fluid production by caffeine consumption

    Directory of Open Access Journals (Sweden)

    Yoon Sik

    2009-09-01

    Full Text Available Abstract Background Caffeine is the most commonly consumed psycho-stimulant in the world. The effects of caffeine on the body have been extensively studied; however, its effect on the structure of the brain has not been investigated to date. Results In the present study we found that the long-term consumption of caffeine can induce ventriculomegaly; this was observed in 40% of the study rats. In the caffeine-treated rats with ventriculomegaly, there was increased production of CSF, associated with the increased expression of Na+, K+-ATPase and increased cerebral blood flow (CBF. In contrast to the chronic effects, acute treatment with caffeine decreased the production of CSF, suggesting 'effect inversion' associated with caffeine, which was mediated by increased expression of the A1 adenosine receptor, in the choroid plexus of rats chronically treated with caffeine. The involvement of the A1 adenosine receptor in the effect inversion of caffeine was further supported by the induction of ventriculomegaly and Na+, K+-ATPase, in A1 agonist-treated rats. Conclusion The results of this study show that long-term consumption of caffeine can induce ventriculomegaly, which is mediated in part by increased production of CSF. Moreover, we also showed that adenosine receptor signaling can regulate the production of CSF by controlling the expression of Na+, K+-ATPase and CBF.

  13. Differentiating benign from malignant bone tumors using fluid-fluid level features on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hong; Cui, Jian Ling; Cui, Sheng Jie; Sun, Ying Cal; Cui, Feng Zhen [Dept. of Radiology, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laborary of Orthopedics, Shijiazhuang, Hebei (China)

    2014-12-15

    To analyze different fluid-fluid level features between benign and malignant bone tumors on magnetic resonance imaging (MRI). This study was approved by the hospital ethics committee. We retrospectively analyzed 47 patients diagnosed with benign (n = 29) or malignant (n = 18) bone tumors demonstrated by biopsy/surgical resection and who showed the intratumoral fluid-fluid level on pre-surgical MRI. The maximum length of the largest fluid-fluid level and the ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane were investigated for use in distinguishing benign from malignant tumors using the Mann-Whitney U-test and a receiver operating characteristic (ROC) analysis. Fluid-fluid level was categorized by quantity (multiple vs. single fluid-fluid level) and by T1-weighted image signal pattern (high/low, low/high, and undifferentiated), and the findings were compared between the benign and malignant groups using the chi2 test. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of bone tumors in the sagittal plane that allowed statistically significant differentiation between benign and malignant bone tumors had an area under the ROC curve of 0.758 (95% confidence interval, 0.616-0.899). A cutoff value of 41.5% (higher value suggests a benign tumor) had sensitivity of 73% and specificity of 83%. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane may be useful to differentiate benign from malignant bone tumors.

  14. Differentiating benign from malignant bone tumors using fluid-fluid level features on magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yu, Hong; Cui, Jian Ling; Cui, Sheng Jie; Sun, Ying Cal; Cui, Feng Zhen

    2014-01-01

    To analyze different fluid-fluid level features between benign and malignant bone tumors on magnetic resonance imaging (MRI). This study was approved by the hospital ethics committee. We retrospectively analyzed 47 patients diagnosed with benign (n = 29) or malignant (n = 18) bone tumors demonstrated by biopsy/surgical resection and who showed the intratumoral fluid-fluid level on pre-surgical MRI. The maximum length of the largest fluid-fluid level and the ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane were investigated for use in distinguishing benign from malignant tumors using the Mann-Whitney U-test and a receiver operating characteristic (ROC) analysis. Fluid-fluid level was categorized by quantity (multiple vs. single fluid-fluid level) and by T1-weighted image signal pattern (high/low, low/high, and undifferentiated), and the findings were compared between the benign and malignant groups using the chi2 test. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of bone tumors in the sagittal plane that allowed statistically significant differentiation between benign and malignant bone tumors had an area under the ROC curve of 0.758 (95% confidence interval, 0.616-0.899). A cutoff value of 41.5% (higher value suggests a benign tumor) had sensitivity of 73% and specificity of 83%. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane may be useful to differentiate benign from malignant bone tumors.

  15. Phoresis in fluids.

    Science.gov (United States)

    Brenner, Howard

    2011-12-01

    This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise quiescent single-component gases and liquids and animated by a gradient in the fluid's temperature (thermophoresis), pressure (barophoresis), density (pycnophoresis), or any combination thereof. The ansatz builds upon a recent paper [Phys. Rev. E 84, 046309 (2011)] concerned with slip of the fluid's mass velocity at solid surfaces--that is, with phenomena arising from violations of the classical no-slip fluid-mechanical boundary condition. Experimental and other data are cited in support of the phoretic model developed herein.

  16. Plasmas and fluids

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Plasma and fluid physics includes the fields of fusion research and space investigation. This book discusses the most important advances in these areas over the past decade and recommends a stronger commitment to basic research in plasma and fluid physics. The book recommends that plasma and fluid physics be included in physics curriculums because of their increasing importance in energy and defense. The book also lists recent accomplishments in the fields of general plasma physics, fusion plasma confinement and heating, space and astrophysical plasmas, and fluid physics and lists research opportunities in these areas. A funding summary explains how research monies are allocated and suggests ways to improve their effectiveness

  17. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials

    International Nuclear Information System (INIS)

    Woehl, Taylor J.; Jungjohann, Katherine L.; Evans, James E.; Arslan, Ilke; Ristenpart, William D.; Browning, Nigel D.

    2013-01-01

    Scanning transmission electron microscopy of various fluid and hydrated nanomaterial samples has revealed multiple imaging artifacts and electron beam–fluid interactions. These phenomena include growth of crystals on the fluid stage windows, repulsion of particles from the irradiated area, bubble formation, and the loss of atomic information during prolonged imaging of individual nanoparticles. Here we provide a comprehensive review of these fluid stage artifacts, and we present new experimental evidence that sheds light on their origins in terms of experimental apparatus issues and indirect electron beam sample interactions with the fluid layer. A key finding is that many artifacts are a result of indirect electron beam interactions, such as production of reactive radicals in the water by radiolysis, and the associated crystal growth. The results presented here will provide a methodology for minimizing fluid stage imaging artifacts and acquiring quantitative in situ observations of nanomaterial behavior in a liquid environment

  18. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Woehl, Taylor J., E-mail: tjwoehl@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Jungjohann, Katherine L. [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Evans, James E. [Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Arslan, Ilke [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Ristenpart, William D. [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Department of Food Science and Technology, University of California, Davis, Davis, CA 95616 (United States); Browning, Nigel D. [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2013-04-15

    Scanning transmission electron microscopy of various fluid and hydrated nanomaterial samples has revealed multiple imaging artifacts and electron beam–fluid interactions. These phenomena include growth of crystals on the fluid stage windows, repulsion of particles from the irradiated area, bubble formation, and the loss of atomic information during prolonged imaging of individual nanoparticles. Here we provide a comprehensive review of these fluid stage artifacts, and we present new experimental evidence that sheds light on their origins in terms of experimental apparatus issues and indirect electron beam sample interactions with the fluid layer. A key finding is that many artifacts are a result of indirect electron beam interactions, such as production of reactive radicals in the water by radiolysis, and the associated crystal growth. The results presented here will provide a methodology for minimizing fluid stage imaging artifacts and acquiring quantitative in situ observations of nanomaterial behavior in a liquid environment.

  19. Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988

    Science.gov (United States)

    1989-02-01

    Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6 percent of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the U.S. public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99 percent of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98 percent. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future U.S. energy markets.

  20. Supercritical fluid extraction of positron-emitting radioisotopes from solid target matrices

    International Nuclear Information System (INIS)

    Schlyer, D.

    2000-01-01

    Supercritical fluids are attractive as media for both chemical reactions, as well as process extraction, since their physical properties can be manipulated by small changes in pressure and temperature near the critical point of the fluid. Such changes can result in drastic effects on density-dependent properties such as solubility, refractive index, dielectric constant, viscosity and diffusivity of the fluid. This suggests that pressure tuning of a pure supercritical fluid may be a useful means to manipulate chemical reactions on the basis of a thermodynamic solvent effect. It also means that the solvation properties of the fluid can be precisely controlled to enable selective component extraction from a matrix. In recent years there has been a growing interest in applying supercritical fluid extraction to the selective removal of trace metals from solid samples. Much of the work has been done on simple systems comprised of inert matrices such as silica or cellulose. Recently, this process as been expanded to environmental samples as well. However, very little is understood about the exact mechanism of the extraction process. Of course, the widespread application of this technology is highly dependent on the ability of scientists to model and predict accurate phase equilibria in complex systems. In this project, we plan to explore the feasibility of utilizing supercritical fluids as solvents for reaction and extraction of radioisotopes produced from solid enriched targets. The reason for this work is that many of these enriched target materials used for radioisotope production are expensive

  1. Emulsifiers performance on the stability of the drilling fluid base biodiesel; Desempenho de emulsificantes sobre a estabilidade de fluido de perfuracao a base de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Giselle P.; Costa, Marta [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    This work was prepared six (6) formulations of biodiesel based drilling fluids. Three formulations in the proportion oil-water 70/30 and other three in 60/40, just varying the employed surfactants: new product derived the citric acid (developed at our laboratory) and two other commercial surfactants. After production the fluids, It was analyzed them performance of the products through rheological properties to 135 deg F , filtrate volume in HPHT to 500 psi and to 200 deg F, electric stability to 135 deg F and phase separation during seven days of rest. The rheological analyses allowed to determine the behavior every fluids, though flow curves. Those fluids presented same behavior of the fluids used in oil field (Binghamianos). The laboratory tests demonstrated that new surfactant reduced the filtrated volume and provided mechanics and thermic stability. (author)

  2. Evaluation of CO2-Fluid-Rock Interaction in Enhanced Geothermal Systems: Field-Scale Geochemical Simulations

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2017-01-01

    Full Text Available Recent studies suggest that using supercritical CO2 (scCO2 instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS may improve energy extraction. While CO2-fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO2 as a working fluid (“CO2-EGS” compared to those for water as a working fluid (H2O-EGS are needed. The primary objectives of this study are (1 constraining geochemical processes associated with CO2-fluid-rock interactions under the high pressures and temperatures of a typical CO2-EGS site and (2 comparing geochemical impacts of CO2-EGS to geochemical impacts of H2O-EGS. The St. John’s Dome CO2-EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO2-EGS were larger compared to H2O-EGS, suggesting that using scCO2 as a working fluid may enhance EGS heat extraction. More aqueous CO2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO2 as a working fluid. It indicates that geochemical processes of scCO2-rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.

  3. Schroedinger fluid

    International Nuclear Information System (INIS)

    Kan, K.K.

    1983-01-01

    The relationship of nuclear internal flow and collective inertia, the difference of this flow from that of a classical fluid, and the approach of this flow to rigid flow in independent-particle model rotation are elucidated by reviewing the theory of Schroedinger fluid and its implications for collective vibration and rotation. (author)

  4. Intraoperative Fluids and Fluid Management for Ambulatory Dental Sedation and General Anesthesia.

    Science.gov (United States)

    Saraghi, Mana

    2015-01-01

    Intravenous fluids are administered in virtually every parenteral sedation and general anesthetic. The purpose of this article is to review the physiology of body-water distribution and fluid dynamics at the vascular endothelium, evaluation of fluid status, calculation of fluid requirements, and the clinical rationale for the use of various crystalloid and colloid solutions. In the setting of elective dental outpatient procedures with minor blood loss, isotonic balanced crystalloid solutions are the fluids of choice. Colloids, on the other hand, have no use in outpatient sedation or general anesthesia for dental or minor oral surgery procedures but may have several desirable properties in long and invasive maxillofacial surgical procedures where advanced hemodynamic monitoring may assess the adequacy of intravascular volume.

  5. Magnetic fluid equipment for sorting of secondary polyolefins from waste

    NARCIS (Netherlands)

    Rem, P.C.; Di Maio, F.; Hu, B.; Houzeaux, G.; Baltes, L.; Tierean, M.

    2012-01-01

    The paper presents the researches made on the FP7 project „Magnetic Sorting and Ultrasound Sensor Technologies for Production of High Purity Secondary Polyolefins from Waste” in order to develop a magnetic fluid equipment for sorting of polypropylene (PP) and polyethylene (PE) from polymers mixed

  6. Standard Specification for Sampling Single-Phase Geothermal Liquid or Steam for Purposes of Chemical Analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This specification covers the basic requirements for equipment to be used for the collection of uncontaminated and representative samples from single-phase geothermal liquid or steam. Geopressured liquids are included. See Fig 1.

  7. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  8. Nuclear microscopy of fluid inclusions at the CSIRO

    International Nuclear Information System (INIS)

    Ryan, C.; Van Achterbergh, E.; Win, T.T.; McInnes, B.; Cripps, G.; Suter, G.; Liu, W.

    2003-01-01

    Full text: The deep penetration of a MeV energy proton beam and the predictable nature of X-ray production using proton induced X-ray emission (PIXE) make the nuclear microprobe ideally suited to the imaging and analysis of fluid and melt inclusions in minerals. MeV protons interact with a target through electronic interactions with a loss of ∼100 eV per collision. Such small energy loss leads to a smooth and predictable slowing down behaviour with a small energy uncertainty. Furthermore, the small momentum transfers in these collisions result in negligible spreading of the beam (e.g. ∼1 μm at 40 μm depth in quartz). Hence, the proton path can be regarded as linear. The principle mechanisms for proton energy loss, proton-induced ionization, secondary fluorescence and X-ray absorption and detection are understood and well characterized. This enables the integration of expected PIXE X-ray yields along the path of the proton beam and provides the foundation for a standardless microanalytical method. A strength of standardless PIXE analysis enables the approach to be extended to complex problems where the production of standards becomes impractical or unrepresentative of natural samples. One such problem is the study of ore metal transport and ore formation processes using the non-destructive analysis of fluids trapped as fluid inclusions in minerals using a raster-scanned proton probe. In this case, the integration of PIXE X-rays can be confined to the volume of the fluid inclusion in order to calculate the yield of elemental X-rays per ppm of an element. This calculation is illustrated, which shows one volume element of the fluid inclusion excited by the beam and the X-ray path to a detector. The CSIRO-GEMOC Nuclear Microprobe can focus a 3 MeV proton beam into a 1.3 μm beam spot for fluid inclusion analysis and intense beams for mineral imaging at 1.8 μm resolution (Ryan et al., 2001a). Quantitative elemental images are projected using the Dynamic Analysis

  9. Geothermal and heavy-oil resources in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Seni, S.J.; Walter, T.G.

    1994-01-01

    In a five-county area of South Texas, geopressured-geothermal reservoirs in the Paleocene-Eocene Wilcox Group lie below medium- to heavy-oil reservoirs in the Eocene Jackson Group. This fortuitous association suggests the use of geothermal fluids for thermally enhanced oil recovery (TEOR). Geothermal fairways are formed where thick deltaic sandstones are compartmentalized by growth faults. Wilcox geothermal reservoirs in South Texas are present at depths of 11,000 to 15,000 ft (3,350 to 4,570 m) in laterally continuous sandstones 100 to 200 ft (30 to 60 m) thick. Permeability is generally low (typically 1 md), porosity ranges from 12 to 24 percent, and temperature exceeds 250{degrees}F (121{degrees}C). Reservoirs containing medium (20{degrees} to 25{degrees} API gravity) to heavy (10{degrees} to 20{degrees} API gravity) oil are concentrated along the Texas Coastal Plain in the Jackson-Yegua Barrier/Strandplain (Mirando Trend), Cap Rock, and Piercement Salt Dome plays and in the East Texas Basin in Woodbine Fluvial/Deltaic Strandplain and Paluxy Fault Line plays. Injection of hot, moderately fresh to saline brines will improve oil recovery by lowering viscosity and decreasing residual oil saturation. Smectite clay matrix could swell and clog pore throats if injected waters have low salinity. The high temperature of injected fluids will collapse some of the interlayer clays, thus increasing porosity and permeability. Reservoir heterogeneity resulting from facies variation and diagenesis must be considered when siting production and injection wells within the heavy-oil reservoir. The ability of abandoned gas wells to produce sufficient volumes of hot water over the long term will also affect the economics of TEOR.

  10. Decontamination of nuclear plant fluids with grafted celluloses

    International Nuclear Information System (INIS)

    Sandeaux, R.

    1991-01-01

    Ion exchange processes are specially well adapted techniques to solve some of nuclear plants problems, such as decontamination of the primary cooling circuit fluid and the cooling pool, because of the low concentration of the miscellaneous products to eliminate. Now the purification of these fluids is performed by using ion exchange resins. But recent researches show it is necessary to use more efficient techniques (1). The use of grafted celluloses should improve this process. The manufacturing of grafted celluloses was first performed with the collaboration of French Textile Institute and Morgane-Framatome (2). Cellulosic structure offers well known qualities for filtration: good micrometric retention, good mechanical behaviour, strong hydrophilic properties and high specific surface. Grafting was performed through a radiochemical process so as to bind polyelectrolytes on the backbone polymer. Compared to usual ion exchangers, these new materials offer different properties: - fast exchange kinetic - as uncrosslinked polymers, these grafted celluloses withstand better fouling with macroions or ionic complexes; - as they can be incinerated, radioactive wastes can be greatly reduced; - different commercial products of these grafted celluloses offer a wide range of possibilities for industrial uses [fr

  11. Fluid flow and heat transfer modeling for castings

    International Nuclear Information System (INIS)

    Domanus, H.M.; Liu, Y.Y.; Sha, W.T.

    1986-01-01

    Casting is fundamental to manufacturing of many types of equipment and products. Although casting is a very old technology that has been in existence for hundreds of years, it remains a highly empirical technology, and production of new castings requires an expensive and time-consuming trial-and-error approach. In recent years, mathematical modeling of casting has received increasing attention; however, a majority of the modeling work has been in the area of heat transfer and solidification. Very little work has been done in modeling fluid flow of the liquid melt. This paper presents a model of fluid flow coupled with heat transfer of a liquid melt for casting processes. The model to be described in this paper is an extension of the COMMIX code and is capable of handling castings with any shape, size, and material. A feature of this model is the ability to track the liquid/gas interface and liquid/solid interface. The flow of liquid melt through the sprue and runners and into the mold cavity is calculated as well as three-dimensional temperature and velocity distributions of the liquid melt throughout the casting process. 14 refs., 13 figs

  12. Geochemistry of mud volcano fluids in the Taiwan accretionary prism

    International Nuclear Information System (INIS)

    You Chenfeng; Gieskes, Joris M.; Lee, Typhoon; Yui Tzenfu; Chen Hsinwen

    2004-01-01

    Taiwan is located at the collision boundary between the Philippine Sea Plate and the Asian Continental Plate and is one of the most active orogenic belts in the world. Fluids sampled from 9 sub-aerial mud volcanoes distributed along two major geological structures in southwestern Taiwan, the Chishan fault and the Gutingkeng anticline, were analyzed to evaluate possible sources of water and the degree of fluid-sediment interaction at depth in an accretionary prism. Overall, the Taiwanese mud volcano fluids are characterized by high Cl contents, up to 347 mM, suggesting a marine origin from actively de-watering sedimentary pore waters along major structures on land. The fluids obtained from the Gutingkeng anticline, as well as from the Coastal Plain area, show high Cl, Na, K, Ca, Mg and NH 4 , but low SO 4 and B concentrations. In contrast, the Chishan fault fluids are much less saline (1/4 seawater value), but show much heavier O isotope compositions (δ 18 O=5.1-6.5 %o). A simplified scenario of mixing between sedimentary pore fluids and waters affected by clay dehydration released at depth can explain several crucial observations including heavy O isotopes, radiogenic Sr contents ( 87 Sr/ 86 Sr=0.71136-0.71283), and relatively low salinities in the Chishan fluids. Gases isolated from the mud volcanoes are predominantly CH 4 and CO 2 , where the CH 4 -C isotopic compositions show a thermogenic component of δ 13 C=-38 %o. These results demonstrate that active mud volcano de-watering in Taiwan is a direct product of intense sediment accretion and plate collision in the region

  13. The Influence of Fracturing Fluids on Fracturing Processes: A Comparison Between Water, Oil and SC-CO2

    Science.gov (United States)

    Wang, Jiehao; Elsworth, Derek; Wu, Yu; Liu, Jishan; Zhu, Wancheng; Liu, Yu

    2018-01-01

    Conventional water-based fracturing treatments may not work well for many shale gas reservoirs. This is due to the fact that shale gas formations are much more sensitive to water because of the significant capillary effects and the potentially high contents of swelling clay, each of which may result in the impairment of productivity. As an alternative to water-based fluids, gaseous stimulants not only avoid this potential impairment in productivity, but also conserve water as a resource and may sequester greenhouse gases underground. However, experimental observations have shown that different fracturing fluids yield variations in the induced fracture. During the hydraulic fracturing process, fracturing fluids will penetrate into the borehole wall, and the evolution of the fracture(s) then results from the coupled phenomena of fluid flow, solid deformation and damage. To represent this, coupled models of rock damage mechanics and fluid flow for both slightly compressible fluids and CO2 are presented. We investigate the fracturing processes driven by pressurization of three kinds of fluids: water, viscous oil and supercritical CO2. Simulation results indicate that SC-CO2-based fracturing indeed has a lower breakdown pressure, as observed in experiments, and may develop fractures with greater complexity than those developed with water-based and oil-based fracturing. We explore the relation between the breakdown pressure to both the dynamic viscosity and the interfacial tension of the fracturing fluids. Modeling demonstrates an increase in the breakdown pressure with an increase both in the dynamic viscosity and in the interfacial tension, consistent with experimental observations.

  14. The mechanism of reequilibration of solids in the presence of a fluid phase

    International Nuclear Information System (INIS)

    Putnis, Andrew; Putnis, Christine V.

    2007-01-01

    The preservation of morphology (pseudomorphism) and crystal structure during the transformation of one solid phase to another is regularly used as a criterion for a solid-state mechanism, even when there is a fluid phase present. However, a coupled dissolution-reprecipitation mechanism also preserves the morphology and transfers crystallographic information from parent to product by epitaxial nucleation. The generation of porosity in the product phase is a necessary condition for such a mechanism as it allows fluid to maintain contact with a reaction interface which moves through the parent phase from the original surface. We propose that interface-coupled dissolution-reprecipitation is a general mechanism for reequilibration of solids in the presence of a fluid phase. - Graphical abstract: A single crystal of KBr is transformed to a porous single crystal of KCl by immersion in saturated KCl solution. The image shows partial transformation of a crystal of KBr (core) to KCl (porous, milky rim) by an interface coupled dissolution-reprecipitation mechanism. The external dimensions and crystallographic orientation of the original crystal are preserved, while a reaction interface moves through the crystal

  15. Scintigraphy of the cerebrospinal fluid

    International Nuclear Information System (INIS)

    Touya, E.; Perillo, W.; Paez, A.; Osorio, A.; Ferrando, R.; Lago, G.; Garcia Guelfi, A.; Ferrari, M.

    1977-01-01

    Eight years of experience in scintigraphy of cerebrospinal fluid (CSF) with 113 Insup(m)-colloid is reported. Two hundred cases are discussed. On the basis of the clinical diagnosis, the cases are divided into five groups: (1) spinal cord compression; (2) hydrocephalus of the adult and child; (3) control of extracranial CSF shunts; (4) CSF fistula; and (5) brain tumour. It is concluded that the radiopharmaceutical used has no limitations except in the study of the hydrocephalus of the adult. For those services remote from the production centres, it is a convenient option for CSF scintigraphy. (author)

  16. Male mating rate is constrained by seminal fluid availability in bedbugs, Cimex lectularius.

    Directory of Open Access Journals (Sweden)

    Klaus Reinhardt

    Full Text Available Sexual selection, differences in reproductive success between individuals, continues beyond acquiring a mating partner and affects ejaculate size and composition (sperm competition. Sperm and seminal fluid have very different roles in sperm competition but both components encompass production costs for the male. Theoretical models predict that males should spend ejaculate components prudently and differently for sperm and seminal fluid but empirical evidence for independent variation of sperm number and seminal fluid volume is scarce. It is also largely unknown how sperm and seminal fluid variation affect future mating rate. In bedbugs we developed a protocol to examine the role of seminal fluids in ejaculate allocation and its effect on future male mating rate. Using age-related changes in sperm and seminal fluid volume we estimated the lowest capacity at which mating activity started. We then showed that sexually active males allocate 12% of their sperm and 19% of their seminal fluid volume per mating and predicted that males would be depleted of seminal fluid but not of sperm. We tested (and confirmed this prediction empirically. Finally, the slightly faster replenishment of seminal fluid compared to sperm did not outweigh the faster decrease during mating. Our results suggest that male mating rate can be constrained by the availability of seminal fluids. Our protocol might be applicable to a range of other organisms. We discuss the idea that economic considerations in sexual conflict research might benefit from distinguishing between costs and benefits that are ejaculate dose-dependent and those that are frequency-dependent on the mating rate per se.

  17. Working fluid selection for organic Rankine cycles - Impact of uncertainty of fluid properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Andreasen, Jesper Graa; Liu, Wei

    2016-01-01

    This study presents a generic methodology to select working fluids for ORC (Organic Rankine Cycles)taking into account property uncertainties of the working fluids. A Monte Carlo procedure is described as a tool to propagate the influence of the input uncertainty of the fluid parameters on the ORC...... modeloutput, and provides the 95%-confidence interval of the net power output with respect to the fluid property uncertainties. The methodology has been applied to a molecular design problem for an ORCusing a low-temperature heat source and consisted of the following four parts: 1) formulation...... of processmodels and constraints 2) selection of property models, i.e. Penge Robinson equation of state 3)screening of 1965 possible working fluid candidates including identification of optimal process parametersbased on Monte Carlo sampling 4) propagating uncertainty of fluid parameters to the ORC netpower output...

  18. Subcritical Fluid Extraction of Chinese Quince Seed: Optimization and Product Characterization.

    Science.gov (United States)

    Wang, Li; Wu, Min; Liu, Hua-Min; Ma, Yu-Xiang; Wang, Xue-De; Qin, Guang-Yong

    2017-03-25

    Chinese quince seed (CQS) is an underutilized oil source and a potential source of unsaturated fatty acids and α-tocopherol-rich oil. Subcritical fluid (SCF) extraction is executed at lower pressures and temperatures than the pressures and temperatures used in supercritical fluid extraction. However, no studies on the SCF extraction of CQS oil are reported. Therefore, the objective of this study was to evaluate the use of SCF for the extraction of CQS oil and to compare the use of SCF with the classical Soxhlet (CS) and supercritical CO₂ (SC-CO₂) extraction methods. Response surface methodology (RSM) was used to investigate the extraction conditions: temperature (45-65 °C), time (30-50 min), and solvent/solid ratio (5-15 mL/g). The optimization results showed that the highest yield (27.78%) was obtained at 56.18 °C, 40.20 min, and 12.57 mL/g. The oil extracted by SCF had a higher unsaturated fatty acid content (86.37%-86.75%), higher α-tocopherol content (576.0-847.6 mg/kg), lower acid value (3.97 mg/g), and lower peroxide value (0.02 meq O₂/kg) than extractions using CS and SC-CO 2 methods. The SCF-defatted meal of oilseed exhibited the highest nitrogen solubility index (49.64%) and protein dispersibility index (50.80%), demonstrating that SCF extraction was a promising and efficient technique as an alternative to CS and SC-CO 2 methods, as very mild operating conditions and an eco-friendly solvent can be used in the process with maximum preservation of the quality of the meal.

  19. Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum

    Science.gov (United States)

    Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

    2008-01-01

    Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

  20. Modeling the cometary environment using a fluid approach

    Science.gov (United States)

    Shou, Yinsi

    Comets are believed to have preserved the building material of the early solar system and to hold clues to the origin of life on Earth. Abundant remote observations of comets by telescopes and the in-situ measurements by a handful of space missions reveal that the cometary environments are complicated by various physical and chemical processes among the neutral gases and dust grains released from comets, cometary ions, and the solar wind in the interplanetary space. Therefore, physics-based numerical models are in demand to interpret the observational data and to deepen our understanding of the cometary environment. In this thesis, three models using a fluid approach, which include important physical and chemical processes underlying the cometary environment, have been developed to study the plasma, neutral gas, and the dust grains, respectively. Although models based on the fluid approach have limitations in capturing all of the correct physics for certain applications, especially for very low gas density environment, they are computationally much more efficient than alternatives. In the simulations of comet 67P/Churyumov-Gerasimenko at various heliocentric distances with a wide range of production rates, our multi-fluid cometary neutral gas model and multi-fluid cometary dust model have achieved comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid in all collisional regimes. Therefore, our model is a powerful alternative to the particle-based model, especially for some computationally intensive simulations. Capable of accounting for the varying heating efficiency under various physical conditions in a self-consistent way, the multi-fluid cometary neutral gas model is a good tool to study the dynamics of the cometary coma with different production rates and heliocentric distances. The modeled H2O expansion speeds reproduce the general trend and the speed's nonlinear dependencies of production rate

  1. Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets.

    Science.gov (United States)

    Lauricella, Marco; Melchionna, Simone; Montessori, Andrea; Pisignano, Dario; Pontrelli, Giuseppe; Succi, Sauro

    2018-03-01

    We present a lattice Boltzmann model for charged leaky dielectric multiphase fluids in the context of electrified jet simulations, which are of interest for a number of production technologies including electrospinning. The role of nonlinear rheology on the dynamics of electrified jets is considered by exploiting the Carreau model for pseudoplastic fluids. We report exploratory simulations of charged droplets at rest and under a constant electric field, and we provide results for charged jet formation under electrospinning conditions.

  2. Thermodynamics of Fluid Polyamorphism

    Directory of Open Access Journals (Sweden)

    Mikhail A. Anisimov

    2018-01-01

    Full Text Available Fluid polyamorphism is the existence of different condensed amorphous states in a single-component fluid. It is either found or predicted, usually at extreme conditions, for a broad group of very different substances, including helium, carbon, silicon, phosphorous, sulfur, tellurium, cerium, hydrogen, and tin tetraiodide. This phenomenon is also hypothesized for metastable and deeply supercooled water, presumably located a few degrees below the experimental limit of homogeneous ice formation. We present a generic phenomenological approach to describe polyamorphism in a single-component fluid, which is completely independent of the molecular origin of the phenomenon. We show that fluid polyamorphism may occur either in the presence or in the absence of fluid phase separation depending on the symmetry of the order parameter. In the latter case, it is associated with a second-order transition, such as in liquid helium or liquid sulfur. To specify the phenomenology, we consider a fluid with thermodynamic equilibrium between two distinct interconvertible states or molecular structures. A fundamental signature of this concept is the identification of the equilibrium fraction of molecules involved in each of these alternative states. However, the existence of the alternative structures may result in polyamorphic fluid phase separation only if mixing of these structures is not ideal. The two-state thermodynamics unifies all the debated scenarios of fluid polyamorphism in different areas of condensed-matter physics, with or without phase separation, and even goes beyond the phenomenon of polyamorphism by generically describing the anomalous properties of fluids exhibiting interconversion of alternative molecular states.

  3. Cerebrospinal fluid culture

    Science.gov (United States)

    ... Alternative Names Culture - CSF; Spinal fluid culture; CSF culture Images Pneumococci organism References Karcher DS, McPherson RA. Cerebrospinal, synovial, serous body fluids, and alternative specimens. In: McPherson RA, Pincus ...

  4. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.

    Science.gov (United States)

    Kelly, Sinead; O'Rourke, Malachy

    2012-04-01

    This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given

  5. Effect of pre-donation fluid intake on fluid shift from interstitial to intravascular compartment in blood donors.

    Science.gov (United States)

    Deepika, Chenna; Murugesan, Mohandoss; Shastry, Shamee

    2018-02-01

    Fluid shifts from interstitial to intravascular space during blood donation helps in compensating the lost blood volume. We aimed to determine the volume of fluid shift following donation in donors with and without pre-donation fluid intake. We studied the fluid shift in 325 blood donors prospectively. Donors were divided in groups- with no fluid intake (GI) and either water (GII) or oral rehydrating fluids (GIII) before donation. Fluid shift following donation was calculated based on the difference between the pre and post donation blood volume. The influence of oral fluid intake, age, gender and body mass index (BMI) on volume of fluid shift was analyzed. The fluid shift was significant between donors without fluids (GI: 127 ± 81 ml) and donors with fluid intake (GII & III: 96 ± 45 ml) (p donation. As per our observation, the oral fluids before donation might not contribute to increase in fluid shift in blood donors after donation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  7. Sampling guidelines for oral fluid-based surveys of group-housed animals.

    Science.gov (United States)

    Rotolo, Marisa L; Sun, Yaxuan; Wang, Chong; Giménez-Lirola, Luis; Baum, David H; Gauger, Phillip C; Harmon, Karen M; Hoogland, Marlin; Main, Rodger; Zimmerman, Jeffrey J

    2017-09-01

    Formulas and software for calculating sample size for surveys based on individual animal samples are readily available. However, sample size formulas are not available for oral fluids and other aggregate samples that are increasingly used in production settings. Therefore, the objective of this study was to develop sampling guidelines for oral fluid-based porcine reproductive and respiratory syndrome virus (PRRSV) surveys in commercial swine farms. Oral fluid samples were collected in 9 weekly samplings from all pens in 3 barns on one production site beginning shortly after placement of weaned pigs. Samples (n=972) were tested by real-time reverse-transcription PCR (RT-rtPCR) and the binary results analyzed using a piecewise exponential survival model for interval-censored, time-to-event data with misclassification. Thereafter, simulation studies were used to study the barn-level probability of PRRSV detection as a function of sample size, sample allocation (simple random sampling vs fixed spatial sampling), assay diagnostic sensitivity and specificity, and pen-level prevalence. These studies provided estimates of the probability of detection by sample size and within-barn prevalence. Detection using fixed spatial sampling was as good as, or better than, simple random sampling. Sampling multiple barns on a site increased the probability of detection with the number of barns sampled. These results are relevant to PRRSV control or elimination projects at the herd, regional, or national levels, but the results are also broadly applicable to contagious pathogens of swine for which oral fluid tests of equivalent performance are available. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  9. Concentrations and speciation of polybrominated diphenyl ethers in human amniotic fluid

    Science.gov (United States)

    Miller, Mark F.; Chernyak, Sergei M.; Domino, Steven E.; Batterman, Stuart A.; Loch-Caruso, Rita

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) are persistent organic chemicals used as flame retardants in textiles, plastics, and consumer products. Although PBDE accumulation in humans has been noted since the 1970s, few studies have investigated PBDEs within the gestational compartment, and none to date has identified levels in amniotic fluid. The present study reports congener-specific brominated diphenyl ether (BDE) concentrations in second-trimester clinical amniotic fluid samples collected in 2009 from fifteen women in southeast Michigan, USA. Twenty-one BDE congeners were measured by GC/MS/NCI. The average total PBDE concentration was 3795 pg/ml amniotic fluid (range: 337 – 21842 pg/ml). BDE-47 and BDE-99 were identified in all samples. Based on median concentrations, the dominant congeners were BDE-208, 209, 203, 206, 207, and 47 representing 23, 16, 12, 10, 9 and 6%, respectively, of the total detected PBDEs. PBDE concentrations were identified in all amniotic fluid samples from southeast Michigan, supporting a need for further investigations of fetal exposure pathways and potential impacts on perinatal health. PMID:22236635

  10. Detection of fumonisin b1 and ochratoxin a in grain products using microsphere-based fluid array immunoassays.

    Science.gov (United States)

    Anderson, George P; Kowtha, Vasudha A; Taitt, Chris R

    2010-02-01

    Grain products are a staple of diets worldwide and therefore, the ability to accurately and efficiently detect foodborne contaminants such as mycotoxins is of importance to everyone. Here we describe an indirect competitive fluid array fluoroimmunoassay to quantify the mycotoxins, fumonisin B1 and ochratoxin A. Both toxins were immobilized to the surface of microspheres using a variety of intermediate molecules and binding of biotinylated "tracer" antibody tracers determined through flow cytometry using streptavidin-phycoerythrin conjugates and the Luminex100 flow cytometer. Competitive assays were developed where the binding of biotinylated monoclonal antibodies to fumonisin B and ochratoxin A was competitively inhibited by different concentrations of those toxins in solution. Concentrations of fumonisin giving 50% inhibition were 300 pg/mL in buffer, 100 ng/g in spiked oats, and 1 μg/g in spiked cornmeal; analogous concentrations for ochratoxin A were 30 ng/mL in buffer, 30 ng/g in spiked oats, and 10 ng/g in spiked corn. The future challenge will be to expand the number of mycotoxins tested both individually and in multiplexed format using this platform.

  11. Fluid Statics and Archimedes

    Indian Academy of Sciences (India)

    librium of a vertical slice fluid (Figure Id) of height H and again using the fact .... same fluid having the same shape and same volume as the body. This fluid volume .... example, can be caused by the heating of air near the ground by the sun ...

  12. Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress.

    Science.gov (United States)

    Kraft, David Christian Evar; Bindslev, Dorth Arenholt; Melsen, Birte; Klein-Nulend, Jenneke

    2011-02-01

    For engineering bone tissue to restore, for example, maxillofacial defects, mechanosensitive cells are needed that are able to conduct bone cell-specific functions, such as bone remodelling. Mechanical loading affects local bone mass and architecture in vivo by initiating a cellular response via loading-induced flow of interstitial fluid. After surgical removal of ectopically impacted third molars, human dental pulp tissue is an easily accessible and interesting source of cells for mineralized tissue engineering. The aim of this study was to determine whether human dental pulp-derived cells (DPC) are responsive to mechanical loading by pulsating fluid flow (PFF) upon stimulation of mineralization in vitro. Human DPC were incubated with or without mineralization medium containing differentiation factors for 3 weeks. Cells were subjected to 1-h PFF (0.7 ± 0.3 Pa, 5 Hz) and the response was quantified by measuring nitric oxide (NO) and prostaglandin E₂ (PGE₂) production, and gene expression of cyclooxygenase (COX)-1 and COX-2. We found that DPC are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. PFF stimulated NO and PGE₂ production, and up-regulated COX-2 but not COX-1 gene expression. In DPC cultured under mineralizing conditions, the PFF-induced NO, but not PGE₂, production was significantly enhanced. These data suggest that human DPC, like osteogenic cells, acquire responsiveness to pulsating fluid shear stress in mineralizing conditions. Thus DPC might be able to perform bone-like functions during mineralized tissue remodeling in vivo, and therefore provide a promising new tool for mineralized tissue engineering to restore, for example, maxillofacial defects.

  13. Agarwood Waste as A New Fluid Loss Control Agent in Water-based Drilling Fluid

    Directory of Open Access Journals (Sweden)

    Azlinda Azizi

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Agarwood has been used widely in various ways, including traditional medicine and art. The usage of agarwood has grown broader in modern times include in therapeutic medicines and perfumery. In this paper the agarwood waste has been explored to be used as a fluid loss control agent to control fluid loss without affecting the drilling fluid rheological properties which are density, pH, viscosity, yield point and gel strength. Agarwood waste was used as an additive in the drilling fluid system due to its unique characteristic. Rheological and filtration measurements were performed on the formulated water-based drilling fluid. Formulations of a base solution of fresh water, sodium hydroxide, bentonite, barite, and xanthan gum were presented. The performance of the agarwood waste as the fluid loss control agent was compared with based fluid formulation and water-based drilling fluid with treating with conventional fluid loss control agent (starch. The filtrate volume of drilling fluid with agarwood waste was about 13 ml while for drilling fluid with conventional fluid loss control agent, starch gave 12 ml of filtrate volume after undergoing filtration test by using LPLT filter press. The performance of drilling fluid with agarwood was efficient as drilling fluid with starch. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso

  14. Influence of clay and surfactant content in non-aqueous fluid rheology

    International Nuclear Information System (INIS)

    Guedes, I.C.; Gomes, N.L.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.

    2012-01-01

    The bentonite clay used as viscosity agent in the production of non-aqueous fluids cannot be used without organic treatment for their surfaces to become hydrophobic. These clays are called organophilic clays, and are generally obtained by adding, in an aqueous way, ionic or a nonionic surfactant. Recent studies of the variables involved in the dispersion of bentonite clays and in the process of organophilization, showed their lack of influence. This work aims to study the influence of clay content and surfactants on the rheology of nonaqueous fluids. To this end, the clays were treats and characterized, evidencing the incorporation of the surfactant, and then formulated non-aqueous fluids, following PETROBRAS standards, being possible to verify the influence of clay content and surfactant both from the point of view as the characterizing and rheological behavior. (author)

  15. Estimating the Density of Fluid in a Pipeline System with an Electropump

    DEFF Research Database (Denmark)

    Sadeghi, H.; Poshtan, J.; Poulsen, Niels Kjølstad

    2018-01-01

    to detect the product in the pipeline is to sample the fluid in a laboratory and perform an offline measurement of its physical characteristics. The measurement requires sophisticated laboratory equipment and can be time-consuming and susceptible to human error. In this paper, for performing the online......To transfer petroleum products, a common pipeline is often used to continuously transfer various products in batches. Separating the different products requires detecting the interface between the batches at the storage facilities or pump stations along the pipelines. The conventional technique...

  16. Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion

    Science.gov (United States)

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Renard, François; Galland, Olivier; Jamtveit, Bjørn; Meakin, Paul; Dysthe, Dag Kristian

    2014-11-01

    A simple and reproducible analog experiment was used to simulate fracture formation in a low-permeability elastic solid during internal fluid/gas production, with the objective of developing a better understanding of the mechanisms that control the dynamics of fracturing, fracture opening and closing, and fluid transport. In the experiment, nucleation, propagation, and coalescence of fractures within an elastic gelatin matrix, confined in a Hele-Shaw cell, occurred due to CO2 production via fermentation of sugar, and it was monitored by optical means. We first quantified how a fracture network develops, and then how intermittent fluid transport is controlled by the dynamics of opening and closing of fractures. The gas escape dynamics exhibited three characteristic behaviors: (1) Quasiperiodic release of gas with a characteristic frequency that depends on the gas production rate but not on the system size. (2) A 1 /f power spectrum for the fluctuations in the total open fracture area over an intermediate range of frequencies (f ), which we attribute to collective effects caused by interaction between fractures in the drainage network. (3) A 1 /f2 power spectrum was observed at high frequencies, which can be explained by the characteristic behavior of single fractures.

  17. Extension of Generalized Fluid System Simulation Program's Fluid Property Database

    Science.gov (United States)

    Patel, Kishan

    2011-01-01

    This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.

  18. Synovial Fluid Analysis

    Science.gov (United States)

    ... Plasma Free Metanephrines Platelet Count Platelet Function Tests Pleural Fluid Analysis PML-RARA Porphyrin Tests Potassium Prealbumin ... is being tested? Synovial fluid is a thick liquid that acts as a lubricant for the body's ...

  19. Fluids in volcanic and geothermal systems

    Science.gov (United States)

    Sigvaldason, Gudmundur E.

    Mineral buffers control the composition of most volatile components of magmas and dissolved species in geothermal fluids. The only element which occurs in significant quantities in volcanic and geothermal fluids and is not controlled by mineral buffers is chlorine. It is argued that in absence of marine influence, geothermal fluids reflect the chlorine content of associated magmatic fluids. The chlorine content of oceanic volcanic rocks has a positive correlation with elements, which are believed to indicate a heterogenous source region. Since the source is generally believed to be the Earth's mantle, the implication is that the mantle is heterogenous with regard to chlorine and other volatiles. Such heterogeneities would have important consequences for genesis and distribution of ore. All major magma types of the oceanic environment occur in Iceland. Their spatial distribution is closely related to a volcanotectonic pattern, suggesting crustal control. A geophysical model of crustal accretion in a rift zone is used in conjunction with classical petrology to predict geochemical processes in a rift zone crust. The model has two kinematic parameters-drift rate and subsidence rate-which combined describe trajectories of mass particles deposited on the surface. When considering in conjunction with thermal gradients of the rift zone a series of metamorphic reactions and chemical fractionation processes are bound to occur, eventually resulting in a layering of the oceanic crust. The physical parameters result in a derived variable, rift zone residence time, which depends on the width of a rift zone. Long residence times in a wide rift zone lead to multistage recycling of material. Other properties of the model, based on geometric arrangement of productive fissure swarms within a rift zone, explain off-rift volcanism as directly related to rift zone processes, either as plate trapped magmatic domains or a transgressive thermal anomaly into an older crust. Off

  20. Fluid structure interaction due to fluid communications between fluid volumes. Application to seismic behaviour of F.B.R. vessels

    International Nuclear Information System (INIS)

    Durandet, E.; Gibert, R.J.; Gantenbein, F.

    1988-01-01

    The internal structures of a pool-type breeder reactor are mainly axisymmetric shells separated by fluid volumes which are connected one to another by small communications. Unfortunately, the communications destroy the axisymmetry of the problem and a correct modelisation by finite element method generally need a lot of small elements compared to the size of the standard mesh of the fluid volumes. To overcome these difficulties, an equivalent axisymmetric element based on a local tridimensional solution in the vicinity of the fluid communication is defined and will be described in the paper. This special fluid element is characterized by an equivalent length and annular cross-section. The second part of the paper is devoted to the application to an horizontal seismic calculation of breeder reactor

  1. Gastric fluid versus amniotic fluid analysis for the identification of intra-amniotic infection due to Ureaplasma species.

    Science.gov (United States)

    Kim, Sun Min; Romero, Roberto; Lee, JoonHo; Chaemsaithong, Piya; Docheva, Nikolina; Yoon, Bo Hyun

    2016-01-01

    Early neonatal sepsis is often due to intra-amniotic infection. The stomach of the neonate contains fluid swallowed before and during delivery. The presence of bacteria as well as neutrophils detected by culture or Gram stain of the gastric fluid during the first day of life is suggestive of exposure to bacteria or inflammation. We undertook this study to determine the relationship between gastric fluid analysis and amniotic fluid obtained by transabdominal amniocentesis in the detection of Ureaplasma species, the most frequent microorganisms responsible for intra-amniotic infection. The study population consisted of 100 singleton pregnant women who delivered preterm neonates (Ureaplasma species was performed. Intra-amniotic inflammation was defined as an elevated amniotic fluid matrix metalloproteinase-8 concentration (>23 ng/mL). (1) Ureaplasma species were detected by culture or PCR in 18% (18/100) of amniotic fluid samples and in 5% (5/100) of gastric fluid samples; (2) among the amniotic fluid cases positive for Ureaplasma species, these microorganisms were identified in 27.8% (5/18) of gastric fluid samples; (3) none of the cases negative for Ureaplasma species in the amniotic fluid were found to be positive for these microorganisms in the gastric fluid; (4) patients with amniotic fluid positive for Ureaplasma species but with gastric fluid negative for these microorganisms had a significantly higher rate of intra-amniotic inflammation, acute histologic chorioamnionitis, and neonatal death than those with both amniotic fluid and gastric fluid negative for Ureaplasma species; and (5) no significant differences were observed in the rate of intra-amniotic inflammation, acute histologic chorioamnionitis, and neonatal death between patients with amniotic fluid positive for Ureaplasma species but with gastric fluid negative for these microorganisms and those with both amniotic fluid and gastric fluid positive for Ureaplasma species. Gastric fluid analysis has 100

  2. Short communication: Pseudomonas azotoformans causes gray discoloration in HTST fluid milk.

    Science.gov (United States)

    Evanowski, Rachel L; Reichler, Samuel J; Kent, David J; Martin, Nicole H; Boor, Kathryn J; Wiedmann, Martin

    2017-10-01

    Pseudomonas species are well recognized as dairy product spoilage organisms, particularly due to their ability to grow at refrigeration temperatures. Although Pseudomonas-related spoilage usually manifests itself in flavor, odor, and texture defects, which are typically due to production of bacterial enzymes, Pseudomonas is also reported to cause color defects. Because of consumer complaints, a commercial dairy company shipped 4 samples of high temperature, short time (HTST)-pasteurized milk with distinctly gray colors to our laboratory. Bacterial isolates from all 4 samples were identified as Pseudomonas azotoformans. All isolates shared the same partial 16S rDNA sequence and showed black pigmentation on Dichloran Rose Bengal Chloramphenicol agar. Inoculation of one pigment-producing P. azotoformans isolate into HTST-pasteurized fluid milk led to development of gray milk after 14 d of storage at 6°C, but only in containers that had half of the total volume filled with milk (∼500 mL of milk in ∼1,000-mL bottles). We conclusively demonstrate that Pseudomonas can cause a color defect in fluid milk that manifests in gray discoloration, adding to the palette of color defects known to be caused by Pseudomonas. This information is of considerable interest to the dairy industry, because dairy processors and others may not typically associate black or gray colors in fluid milk with the presence of microbial contaminants but rather with product tampering (e.g., addition of ink) or other inadvertent chemical contamination. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Improved Fluid Perturbation Theory: Equation of state for Fluid Xenon

    OpenAIRE

    Li, Qiong; Liu, Hai-Feng; Zhang, Gong-Mu; Zhao, Yan-Hong; Tian, Ming-Feng; Song, Hai-Feng

    2016-01-01

    The traditional fluid perturbation theory is improved by taking electronic excitations and ionizations into account, in the framework of average ion spheres. It is applied to calculate the equation of state for fluid Xenon, which turns out in good agreement with the available shock data.

  4. Valuing Attributes of Fluid Milk in Laos

    OpenAIRE

    Jae Won Lee; Taeyoon Kim; Viengsakoun Napasirth

    2017-01-01

    This study estimates the random utility function of fluid milk using 1,165 survey responses in Laos. It finds that both products’ attributes and individual characteristics affect consumers’ preference for the milk and the hypothetical brand of Laos-Korea has a potential compared to four real dairy products. Results also show that calories have a positive relationship with consumer’s preference while the price and fat content have a negative one. The decision for choosing each brand is signifi...

  5. Numerical study of shear thickening fluid with discrete particles embedded in a base fluid

    Directory of Open Access Journals (Sweden)

    W Zhu

    2016-09-01

    Full Text Available The Shear Thickening Fluid (STF is a dilatant material, which displays non-Newtonian characteristics in its unique ability to transit from a low viscosity fluid to a high viscosity fluid. The research performed investigates the STF behavior by modeling and simulation of the interaction between the base flow and embedded rigid particles when subjected to shear stress. The model considered the Lagrangian description of the rigid particles and the Eulerian description of fluid flow. The numerical analysis investigated key parameters such as applied flow acceleration, particle distribution and arrangement, volume concentration of particles, particle size, shape and their behavior in a Newtonian and non-Newtonian fluid base. The fluid-particle interaction model showed that the arrangement, size, shape and volume concentration of the particles had a significant effect on the behavior of the STF. Although non-conclusive, the addition of particles in non-Newtonian fluids showed a promising trend of improved shear thickening effects at high shear strain rates.

  6. On-line monitoring of fluid bed granulation by photometric imaging.

    Science.gov (United States)

    Soppela, Ira; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko

    2014-11-01

    This paper introduces and discusses a photometric surface imaging approach for on-line monitoring of fluid bed granulation. Five granule batches consisting of paracetamol and varying amounts of lactose and microcrystalline cellulose were manufactured with an instrumented fluid bed granulator. Photometric images and NIR spectra were continuously captured on-line and particle size information was extracted from them. Also key process parameters were recorded. The images provided direct real-time information on the growth, attrition and packing behaviour of the batches. Moreover, decreasing image brightness in the drying phase was found to indicate granule drying. The changes observed in the image data were also linked to the moisture and temperature profiles of the processes. Combined with complementary process analytical tools, photometric imaging opens up possibilities for improved real-time evaluation fluid bed granulation. Furthermore, images can give valuable insight into the behaviour of excipients or formulations during product development. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Fluid Mechanics of the Vascular Basement Membrane in the Brain

    Science.gov (United States)

    Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David

    2013-11-01

    Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.

  8. Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components

    Science.gov (United States)

    Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.

    1989-12-01

    Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.

  9. Conformal symmetry and non-relativistic second-order fluid dynamics

    International Nuclear Information System (INIS)

    Chao Jingyi; Schäfer, Thomas

    2012-01-01

    We study the constraints imposed by conformal symmetry on the equations of fluid dynamics at second order in the gradients of the hydrodynamic variables. At zeroth order, conformal symmetry implies a constraint on the equation of state, E 0 =2/3 P, where E 0 is the energy density and P is the pressure. At first order, conformal symmetry implies that the bulk viscosity must vanish. We show that at second order, conformal invariance requires that two-derivative terms in the stress tensor must be traceless, and that it determines the relaxation of dissipative stresses to the Navier–Stokes form. We verify these results by solving the Boltzmann equation at second order in the gradient expansion. We find that only a subset of the terms allowed by conformal symmetry appear. - Highlights: ► We derive conformal constraints for the stress tensor of a scale invariant fluid. ► We determine the relaxation time in kinetic theory. ► We compute the rate of entropy production in second-order fluid dynamics.

  10. Fluid dynamics and mass transfer in a gas centrifuge

    International Nuclear Information System (INIS)

    Conlisk, A.T.; Foster, M.R.; Walker, J.D.A.

    1982-01-01

    The fluid motion, temperature distribution and the mass-transfer problem of a binary gas mixture in a rapidly rotating centrifuge are investigated. Solutions for the velocity, temperature and mass-fraction fields within the centrifuge are obtained for mechanically or thermally driven centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical boundary layers is required, and, in particular, mass fluxes within the boundary layers are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer problem are obtained for moderately and strongly forced flows in the container; the dependence of the separation (or enrichment) factor on centrifuge configuration, rotational speed and fraction of the volumetric flow rate extracted at the product port (the cut) are predicted. (author)

  11. Simplified Aeroelastic Model for Fluid Structure Interaction between Microcantilever Sensors and Fluid Surroundings.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available Fluid-structural coupling occurs when microcantilever sensors vibrate in a fluid. Due to the complexity of the mechanical characteristics of microcantilevers and lack of high-precision microscopic mechanical testing instruments, effective methods for studying the fluid-structural coupling of microcantilevers are lacking, especially for non-rectangular microcantilevers. Here, we report fluid-structure interactions (FSI of the cable-membrane structure via a macroscopic study. The simplified aeroelastic model was introduced into the microscopic field to establish a fluid-structure coupling vibration model for microcantilever sensors. We used the finite element method to solve the coupled FSI system. Based on the simplified aeroelastic model, simulation analysis of the effects of the air environment on the vibration of the commonly used rectangular microcantilever was also performed. The obtained results are consistent with the literature. The proposed model can also be applied to the auxiliary design of rectangular and non-rectangular sensors used in fluid environments.

  12. Cerebrospinal and Interstitial Fluid Transport via the Glymphatic Pathway Modeled by Optimal Mass Transport

    OpenAIRE

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-01-01

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of M...

  13. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  14. Electrorheological fluids and methods

    Science.gov (United States)

    Green, Peter F.; McIntyre, Ernest C.

    2015-06-02

    Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.

  15. A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Samet Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berry, Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)’s thermal-fluids code) built on top of an other INL’s product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.

  16. A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis

    International Nuclear Information System (INIS)

    Kadioglu, Samet Y.; Berry, Ray; Martineau, Richard

    2016-01-01

    A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)'s thermal-fluids code) built on top of an other INL's product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.

  17. Rigid Body Sampling and Individual Time Stepping for Rigid-Fluid Coupling of Fluid Simulation

    Directory of Open Access Journals (Sweden)

    Xiaokun Wang

    2017-01-01

    Full Text Available In this paper, we propose an efficient and simple rigid-fluid coupling scheme with scientific programming algorithms for particle-based fluid simulation and three-dimensional visualization. Our approach samples the surface of rigid bodies with boundary particles that interact with fluids. It contains two procedures, that is, surface sampling and sampling relaxation, which insures uniform distribution of particles with less iterations. Furthermore, we present a rigid-fluid coupling scheme integrating individual time stepping to rigid-fluid coupling, which gains an obvious speedup compared to previous method. The experimental results demonstrate the effectiveness of our approach.

  18. Fluid flow and permeabilities in basement fault zones

    Science.gov (United States)

    Hollinsworth, Allan; Koehn, Daniel

    2017-04-01

    Fault zones are important sites for crustal fluid flow, specifically where they cross-cut low permeability host rocks such as granites and gneisses. Fluids migrating through fault zones can cause rheology changes, mineral precipitation and pore space closure, and may alter the physical and chemical properties of the host rock and deformation products. It is therefore essential to consider the evolution of permeability in fault zones at a range of pressure-temperature conditions to understand fluid migration throughout a fault's history, and how fluid-rock interaction modifies permeability and rheological characteristics. Field localities in the Rwenzori Mountains, western Uganda and the Outer Hebrides, north-west Scotland, have been selected for field work and sample collection. Here Archaean-age TTG gneisses have been faulted within the upper 15km of the crust and have experienced fluid ingress. The Rwenzori Mountains are an anomalously uplifted horst-block located in a transfer zone in the western rift of the East African Rift System. The north-western ridge is characterised by a tectonically simple western flank, where the partially mineralised Bwamba Fault has detached from the Congo craton. Mineralisation is associated with hydrothermal fluids heated by a thermal body beneath the Semliki rift, and has resulted in substantial iron oxide precipitation within porous cataclasites. Non-mineralised faults further north contain foliated gouges and show evidence of leaking fluids. These faults serve as an analogue for faults associated with the Lake Albert oil and gas prospects. The Outer Hebrides Fault Zone (OHFZ) was largely active during the Caledonian Orogeny (ca. 430-400 Ma) at a deeper crustal level than the Ugandan rift faults. Initial dry conditions were followed by fluid ingress during deformation that controlled its rheological behaviour. The transition also altered the existing permeability. The OHFZ is a natural laboratory in which to study brittle fault

  19. Equilibrium cluster fluids: Pair interactions via inverse design

    OpenAIRE

    Jadrich, Ryan B.; Bollinger, Jonathan A.; Lindquist, Beth A.; Truskett, Thomas M.

    2015-01-01

    Inverse methods of statistical mechanics are becoming productive tools in the design of materials with specific microstructures or properties. While initial studies have focused on solid-state design targets (e.g, assembly of colloidal superlattices), one can alternatively design fluid states with desired morphologies. This work addresses the latter and demonstrates how a simple iterative Boltzmann inversion strategy can be used to determine the isotropic pair potential that reproduces the ra...

  20. Thermal Fluid Engineering

    International Nuclear Information System (INIS)

    Jang, Byeong Ju

    1984-01-01

    This book is made up of 5 chapters. They are fluid mechanics, fluid machines, Industrial thermodynamics, steam boiler and steam turbine. It introduces hydrostatics, basic theory of fluid movement and law of momentum. It also deals with centrifugal pump, axial flow pump, general hydraulic turbine, and all phenomena happening in the pump. It covers the law of thermodynamics, perfect gas, properties of steam, and flow of gas and steam and water tube boiler. Lastly it explains basic format, theory, loss and performance as well as principle part of steam turbine.

  1. Fluid jet electric discharge source

    Science.gov (United States)

    Bender, Howard A [Ripon, CA

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  2. Supercritical fluid extraction of grape seeds: extract chemical composition, antioxidant activity and inhibition of nitrite production in LPS-stimulated Raw 264.7 cells.

    Science.gov (United States)

    Pérez, Concepción; Ruiz del Castillo, María Luisa; Gil, Carmen; Blanch, Gracia Patricia; Flores, Gema

    2015-08-01

    Grape by-products are a rich source of bioactive compounds having broad medicinal properties, but are usually wasted from juice/wine processing industries. The present study investigates the use of supercritical fluid extraction (SFE) for obtaining an extract rich in bioactive compounds. First, some variables involved in the extraction were applied. SFE conditions were selected based on the oil mass yield, fatty acid profile and total phenolic composition. As a result, 40 °C and 300 bar were selected as operational conditions. The phenolic composition of the grape seed oil was determined using LC-DAD. The antioxidant activity was determined by ABTS and DPPH assays. For the anti-inflammatory activity the inhibition of nitrite production was assessed. The grape seed oil extracted was rich in phenolic compounds and fatty acids with significant antioxidant and anti-inflammatory activities. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly techniques.

  3. Ecotoxicological testing of performance fluids

    International Nuclear Information System (INIS)

    Kallqvist, T.

    1990-05-01

    The report deals with a project comprising the testing of drilling fluids concerning ecotoxicology, biological degradation, and toxicity. Two types of drilling fluids were tested for toxic effects on marine algae and biological degradability. A fluid based on mineral oil was readily degradable (98% DOC removal in 28 days) while an ether based oil degraded more slowly (56% DOC removal in 28 days). The toxicity of both fluids was tested after emulsification of the oils in water and separating the oil and water phase after equilibration. The EC 50 values obtained with this approach were 8.15 g/l for the oil based fluid and 116 g/l for the ether fluid. 9 figs., 8 tabs

  4. Peritoneal fluid culture

    Science.gov (United States)

    Culture - peritoneal fluid ... sent to the laboratory for Gram stain and culture. The sample is checked to see if bacteria ... The peritoneal fluid culture may be negative, even if you have ... diagnosis of peritonitis is based on other factors, in addition ...

  5. Time Independent Fluids

    Science.gov (United States)

    Collyer, A. A.

    1973-01-01

    Discusses theories underlying Newtonian and non-Newtonian fluids by explaining flow curves exhibited by plastic, shear-thining, and shear-thickening fluids and Bingham plastic materials. Indicates that the exact mechanism governing shear-thickening behaviors is a problem of further study. (CC)

  6. Compatibility of manufacturing process fluids with R-134a and polyolester lubricant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cavestri, R.C.; Schooley, D.L. [Imagination Resources, Inc., Dublin, OH (United States)

    1996-07-01

    This report includes a broad list of processing fluids that are known to be used to manufacture air conditioning and refrigeration products. Sixty-four process fluids from this list were selected for compatibility studies with R-134a and ICI EMKARATE RL32H (32 ISO) polyolester lubricant. Solutions or suspensions of the process fluid residues in polyolester lubricant were heated for 14 days at 175{degrees}C (347{degrees}F) in evacuated sealed glass tubes containing only valve steel coupons. Miscibility tests were performed at 90 wt.% R-134a, 10 wt.% polyolester lubricant with process fluid residue contaminate and were scanned in 10{degrees}C (18{degrees}F) increments over a temperature range of ambient to -40{degrees}C (-40{degrees}F). Any sign of turbidity, haze formation or oil separation was considered the immiscibility point.

  7. Editorial Special Issue on Fluid Mechanics and Fluid Power (FMFP ...

    Indian Academy of Sciences (India)

    a shark is more efficient than a propeller; the notoriously complicated and nonlinear Navier–. Stokes equations governing fluid motion provide fertile ground for research to both applied and pure mathematicians. There is the phenomenon of turbulence in fluid flows. A statement in 1932, attributed to Horace Lamb, author of ...

  8. Acoustic Velocity and Attenuation in Magnetorhelogical fluids based on an effective density fluid model

    Directory of Open Access Journals (Sweden)

    Shen Min

    2016-01-01

    Full Text Available Magnetrohelogical fluids (MRFs represent a class of smart materials whose rheological properties change in response to the magnetic field, which resulting in the drastic change of the acoustic impedance. This paper presents an acoustic propagation model that approximates a fluid-saturated porous medium as a fluid with a bulk modulus and effective density (EDFM to study the acoustic propagation in the MRF materials under magnetic field. The effective density fluid model derived from the Biot’s theory. Some minor changes to the theory had to be applied, modeling both fluid-like and solid-like state of the MRF material. The attenuation and velocity variation of the MRF are numerical calculated. The calculated results show that for the MRF material the attenuation and velocity predicted with this effective density fluid model are close agreement with the previous predictions by Biot’s theory. We demonstrate that for the MRF material acoustic prediction the effective density fluid model is an accurate alternative to full Biot’s theory and is much simpler to implement.

  9. Coupling ground penetrating radar and fluid flow modeling for oilfield monitoring applications

    NARCIS (Netherlands)

    Miorali, M.; Zhou, F.; Slob, E.C.; Arts, R.

    2011-01-01

    The recent introduction of smart well technology allows for new geophysical monitoring opportunities. Smart wells, which allow zonal production control, combined with monitoring techniques capable of capturing the arrival of undesired fluids, have the potential to significantly increase the oil

  10. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  11. Assessment of magnetic fluid stability in non-homogeneous magnetic field of a single-tooth magnetic fluid sealer

    Energy Technology Data Exchange (ETDEWEB)

    Arefyev, I.M.; Demidenko, O.V.; Saikin, M.S.

    2017-06-01

    A special experimental stand has been developed and made to test magnetic fluid. It represents a single-tooth magnetic fluid sealer. The type of dependence of the pressure differential on magnetic fluid sealer operation time is used as a criterion to determine magnetic fluid stability and magnetic fluid sealer service life under such conditions. The siloxane-based magnetic fluid was used as the test sample. The colloidal stability as well as stability of the synthesized magnetic fluid in magnetic fields in static mode were determined. It has been found that the obtained magnetic fluid is stable in static mode and, consequently, can be used to conduct necessary tests on stand. Short-term and life tests on stand have shown that MF remains stable and efficient for at least 360 days of continuous utilization. - Highlights: • An experimental single-tooth magnetic fluid sealer has been developed and made. • The magnetic fluid based on siloxane liquid was used as the test sample. • Short-term and life tests of the magnetic fluid were conducted. • The magnetic fluid stability was determined by necessary tests on stand.

  12. Supercritical fluid extraction (SFE) and gas chromatographic (GC) analysis of products from irradiated foods containing fat

    International Nuclear Information System (INIS)

    Adam, S.T.

    1993-01-01

    Official analytical methods specify the use of organic liquid solvents which may be hazardous to human health. Non-toxic chlorinated fluorocarbons (CFC) which are still recommended for extracting soil samples are known to be detrimental to the stratospheric ozone layer and therefore subject to the ''FCKW-Halon-Verbots-Verordnung''. Therefore, alternative extraction methods using solvents in the supercritical state are currently being developed (Supercritical Fluid Extraction (SFE)). Their low viscosity and the high diffusivity of solutes in the fluids allow selective, efficient and timesaving extractions. Carbon dioxide (CO 2 ) is the fluid of choice in many applications because its critical parameters permit mild operating conditions. CO 2 of high purity is available at low cost, it is neither inflammable nor explosive, physiologically harmless and part of natural cycle processes. Furthermore, it is simply removed from the matrix without any residues left. The combination of SFE and sorptive collection of the extracted substances has been found to lead to high enrichment factors for the analytes. Distillative concentration and solid phase elution steps, required in the classical solvent extraction procedure, are no longer necessary. Loss of analytes occurring in cryogenic or solvent traps is completeley avoided. Plugging of the restrictor as a consequence of the Joule Thomson effect was not observed in the presented method. (orig./vhe)

  13. Tumor interstitial fluid

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J.

    2013-01-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical...

  14. Fluid mechanics. Vol. 2

    International Nuclear Information System (INIS)

    Truckenbrodt, E.

    1980-01-01

    The second volume contains the chapter 4 to 6. Whereas chapter 1 deals with the introduction into the mechanics of fluids and chapter 2 with the fundamental laws of fluid and thermal fluid dynamics, in chapter 3 elementary flow phenomena in fluids with constant density are treated. Chapter 4 directly continues chapter 3 and describes elementary flow phenomena in fluids with varying density. Fluid statics again is treated as a special case. If compared with the first edition the treatment of unsteady laminar flow and of pipe flow for a fluid with varying density were subject to a substantial extension. In chapter 5 rotation-free and rotating potential flows are presented together. By this means it is achieved to explain the behaviour of the multidimensional fictionless flow in closed form. A subchapter describes some related problems of potential theory like the flow along a free streamline and seepage flow through a porous medium. The boundary layer flows in chapter 6 are concerned with the flow and temperature boundary layer in laminar and turbulent flows at a fired wall. In it differential and integral methods are applied of subchapter reports on boundary layer flows without a fixed boundary, occurring e.g. in an open jet and in a wake flow. The problems of intermittence and of the Coanda effect are briefly mentioned. (orig./MH)

  15. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  16. Seismic chimneys in the Southern Viking Graben - Implications for palaeo fluid migration and overpressure evolution

    Science.gov (United States)

    Karstens, Jens; Berndt, Christian

    2015-02-01

    Detailed understanding of natural fluid migration systems is essential to minimize risks during hydrocarbon exploration and to evaluate the long-term efficiency of the subsurface storage of waste water and gas from hydrocarbon production as well as CO2. The Southern Viking Graben (SVG) hosts numerous focused fluid flow structures in the shallow (expressions of vertical fluid conduits are variously known as seismic chimneys or pipes. Seismic pipes are known to form large clusters. Seismic chimneys have so far been described as solitary structures. Here, we show that the study area in the SVG hosts more than 46 large-scale vertical chimney structures, which can be divided in three categories implying different formation processes. Our analysis reveals that seal-weakening, formation-wide overpressure and the presence of free gas are required to initiate the formation of vertical fluid conduits in the SVG. The presence of numerous vertical fluid conduits implies inter-stratigraphic hydraulic connectivity, which significantly affects the migration of fluids in the subsurface. Chimney structures are important for understanding the transfer of pore pressure anomalies to the shallow parts of the basin.

  17. Supercritical fluid assisted production of chitosan oligomers micrometric powders.

    Science.gov (United States)

    Du, Zhe; Shen, Yu-Bin; Tang, Chuan; Guan, Yi-Xin; Yao, Shan-Jing; Zhu, Zi-Qiang

    2014-02-15

    Chitosan oligomers (O-chitosan) micrometric particles were produced from aqueous solution using a novel process, i.e. supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer (SAA-HCM). Hydrodynamic cavitation was introduced to enhance mass transfer and facilitate the mixing between SC-CO2 and liquid solution for fine particles formation. Well defined, separated and spherical microparticles were obtained, and the particles size could be well controlled with narrow distribution ranging from 0.5 μm to 3 μm. XRD patterns showed amorphous structure of O-chitosan microparticles. FTIR, TGA and DSC analyses confirmed that no change in molecular structure and thermal stability after SAA-HCM processing, while the water content was between 5.8% and 8.4%. Finally, tap densities were determined to be below 0.45 g/cm(3) indicating hollow or porous structures of microparticles. By tuning process parameters, theoretical mass median aerodynamic sizes lied inside respirable range of 1-2 μm, which presented the potential of the O-chitosan microparticles in application as inhaled dry powders. SAA-HCM was demonstrated to be very useful in particle size engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Instrumentation, measurements, and experiments in fluids

    CERN Document Server

    Rathakrishnan, E

    2007-01-01

    NEED AND OBJECTIVE OF EXPERIMENTAL STUDY Some Fluid Mechanics MeasurementsMeasurement SystemsSome of the Important Quantities Associated with FluidFlow MeasurementsFUNDAMENTALS OF FLUID MECHANICSProperties of FluidsThermodynamic PropertiesSurface TensionAnalysis of Fluid FlowBasic and Subsidiary Laws for Continuous MediaKinematics of Fluid FlowStreamlinesPotential FlowViscous FlowsGas DynamicsWIND TUNNELSLow-Speed Wind TunnelsPower Losses in a Wind TunnelHigh-Speed Wind TunnelsHypersonic TunnelsInstrume

  19. Controlled capillary assembly of magnetic Janus Particles at fluid-fluid interfaces

    NARCIS (Netherlands)

    Xie, Q.; Davies, G.B.; Harting, J.D.R.

    2016-01-01

    Capillary interactions can be used to direct assembly of particles adsorbed at fluid-fluid interfaces. Precisely controlling the magnitude and direction of capillary interactions to assemble particles into favoured structures for materials science purposes is desirable but challenging. In this

  20. Magnetic power piston fluid compressor

    Science.gov (United States)

    Gasser, Max G. (Inventor)

    1994-01-01

    A compressor with no moving parts in the traditional sense having a housing having an inlet end allowing a low pressure fluid to enter and an outlet end allowing a high pressure fluid to exit is described. Within the compressor housing is at least one compression stage to increase the pressure of the fluid within the housing. The compression stage has a quantity of magnetic powder within the housing, is supported by a screen that allows passage of the fluid, and a coil for selectively providing a magnetic field across the magnetic powder such that when the magnetic field is not present the individual particles of the powder are separated allowing the fluid to flow through the powder and when the magnetic field is present the individual particles of the powder pack together causing the powder mass to expand preventing the fluid from flowing through the powder and causing a pressure pulse to compress the fluid.

  1. Noncommutative geometry and fluid dynamics

    International Nuclear Information System (INIS)

    Das, Praloy; Ghosh, Subir

    2016-01-01

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  2. Noncommutative geometry and fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy; Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)

    2016-11-15

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  3. Acoustic concentration of particles in fluid flow

    Science.gov (United States)

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  4. Acoustic concentration of particles in fluid flow

    Science.gov (United States)

    Ward, Michael W.; Kaduchak, Gregory

    2017-08-15

    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  5. Extended Sleeve Products Allow Control and Monitoring of Process Fluid Flows Inside Shielding, Behind Walls and Beneath Floors - 13041

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Mark W. [Flowserve Corporation, 1978 Foreman Drive Cookeville, TN 38506 (United States)

    2013-07-01

    Throughout power generation, delivery and waste remediation, the ability to control process streams in difficult or impossible locations becomes increasingly necessary as the complexity of processes increases. Example applications include radioactive environments, inside concrete installations, buried in dirt, or inside a shielded or insulated pipe. In these situations, it is necessary to implement innovative solutions to tackle such issues as valve maintenance, valve control from remote locations, equipment cleaning in hazardous environments, and flow stream analysis. The Extended Sleeve family of products provides a scalable solution to tackle some of the most challenging applications in hazardous environments which require flow stream control and monitoring. The Extended Sleeve family of products is defined in three groups: Extended Sleeve (ESV), Extended Bonnet (EBV) and Instrument Enclosure (IE). Each of the products provides a variation on the same requirements: to provide access to the internals of a valve, or to monitor the fluid passing through the pipeline through shielding around the process pipe. The shielding can be as simple as a grout filled pipe covering a process pipe or as complex as a concrete deck protecting a room in which the valves and pipes pass through at varying elevations. Extended Sleeves are available between roughly 30 inches and 18 feet of distance between the pipeline centerline and the top of the surface to which it mounts. The Extended Sleeve provides features such as ± 1.5 inches of adjustment between the pipeline and deck location, internal flush capabilities, automatic alignment of the internal components during assembly and integrated actuator mounting pads. The Extended Bonnet is a shorter fixed height version of the Extended Sleeve which has a removable deck flange to facilitate installation through walls, and is delivered fully assembled. The Instrument Enclosure utilizes many of the same components as an Extended Sleeve

  6. A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2014-01-01

    A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.

  7. Materials processing using supercritical fluids

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.

    2005-01-01

    Full Text Available One of the most interesting areas of supercritical fluids applications is the processing of novel materials. These new materials are designed to meet specific requirements and to make possible new applications in Pharmaceuticals design, heterogeneous catalysis, micro- and nano-particles with unique structures, special insulating materials, super capacitors and other special technical materials. Two distinct possibilities to apply supercritical fluids in processing of materials: synthesis of materials in supercritical fluid environment and/or further processing of already obtained materials with the help of supercritical fluids. By adjusting synthesis parameters the properties of supercritical fluids can be significantly altered which further results in the materials with different structures. Unique materials can be also obtained by conducting synthesis in quite specific environments like reversed micelles. This paper is mainly devoted to processing of previously synthesized materials which are further processed using supercritical fluids. Several new methods have been developed to produce micro- and nano-particles with the use of supercritical fluids. The following methods: rapid expansion of supercritical solutions (RESS supercritical anti-solvent (SAS, materials synthesis under supercritical conditions and encapsulation and coating using supercritical fluids were recently developed.

  8. Review of computational fluid dynamics applications in biotechnology processes.

    Science.gov (United States)

    Sharma, C; Malhotra, D; Rathore, A S

    2011-01-01

    Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years. © 2011 American Institute of Chemical Engineers

  9. “Unfriending” IV fluids. Where are we currently with fluid ...

    African Journals Online (AJOL)

    What end-points do we target once we decide to give fluids? • At what rate should fluid be administered? ... South African market, has been ascribed to many factors, including strong marketing. This marketing was ... However much of this work comes from severe sepsis and ongoing critical care. It is probably reasonable to ...

  10. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    Science.gov (United States)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    of permanent, time-independent (plastic) rock deformation significantly increases the pore space compressibility (compaction), which becomes a leading term in the total compressibility. Inclusion of rock and fluid compressibilities in the model can explain both linear and nonlinear leak­off. In particular, inclusion of rock compaction and decompaction may be important for description of naturally fractured and tight gas reservoirs for which very strong dependence of permeability on porosity has been reported. Carter R.D. Derivation of the general equation for estimating the extent of the fractured area. Appendix I of "Optimum fluid characteristics for fracture extension", Drilling and Production Practice, G.C. Howard and C.R.Fast, New York, New York, USA, American Petroleum Institute (1957), 261-269.

  11. Fundamental Issues of Nano-fluid Behavior

    International Nuclear Information System (INIS)

    Williams, Wesley C.

    2006-01-01

    This paper will elucidate some of the behaviors of nano-fluids other than the abnormal conductivity enhancement, which are of importance to the experimental and engineering use of nano-fluids. Nano-fluid is the common name of any sol colloid involving nano-scale (less than 100 nm) sized particles dispersed within a base fluid. It has been shown previously that the dispersion of nano-particulate metallic oxides into water can increase thermal conductivity up to 30-40% over that of the base fluid and anomalously more than the mere weighed average of the colloid. There is a great potential for the use of nano-fluids as a way to enhance fluid/thermal energy transfer systems. Due to the recentness of nano-fluid science, there are still many issues which have not been fully investigated. This paper should act as a primer for the basic understanding of nano-fluid behavior. Particle size and colloid stability are of key importance to the functionality of nano-fluids. The pH and concentration/loading of nano-fluids can alter the size of the nano-particles and also the stability of the fluids. It will be shown through experiment and colloid theory the importance of these parameters. Furthermore, most of the existing literature uses volume percentage as the measure of particle loading, which can often be misleading. There will be discussion of this and other misleading ideas in nano-fluid science. (author)

  12. A novel approach to mitigating sulphur dioxide emissions and producing a mercury sorbent material using oil-sands fluid coke

    International Nuclear Information System (INIS)

    Morris, E.; Jia, C.Q.; Tong, S.

    2008-01-01

    Pyrometallurgical smelting operations are a major source of sulphur dioxide (SO 2 ) which is a precursor to acid rain and increased levels of UV-B penetration in boreal lakes. Mercury is also released in copper smelter off-gas, which can bioaccumulate and cause neurological disorders and death in humans. Fluid coke is produced in massive quantities as a by-product of bitumen upgrading at Syncrude Canada's facility in Fort McMurray, Alberta. Oilsands fluid coke can be used to reduce SO 2 and produce elemental sulphur as a co-product. This process was dubbed SOactive. The reaction physically activates the fluid coke to produce a sulphur-impregnated activated carbon (SIAC) which is known as ECOcarbon. Some studies have indicated that SIAC is well suited for the removal of vapour phase mercury, mainly due to the formation of stable mercuric sulphide species. This paper discussed the findings made to date in relation to the SOactive process and the characterization of ECOcarbons. The paper discussed the use of fluid coke for reducing SO 2 emissions while producing elemental sulphur as well as coke-SO 2 -oxygen (O 2 ) and coke-SO 2 -water (H 2 O) systems. The paper also examined the production of SIAC products for use in capturing vapour phase mercury. The paper presented the materials and methodology, including an illustration of the apparatus used in reduction of SO 2 and activation of fluid coke. It was concluded that more work is still needed to analyse the effect of O 2 and SO 2 reduction and SIAC properties under smelter flue gas conditions. 10 refs., 1 tab., 8 figs

  13. Fluid Mechanics An Introduction to the Theory of Fluid Flows

    CERN Document Server

    Durst, Franz

    2008-01-01

    Advancements of fluid flow measuring techniques and of computational methods have led to new ways to treat laminar and turbulent flows. These methods are extensively used these days in research and engineering practise. This also requires new ways to teach the subject to students at higher educational institutions in an introductory manner. The book provides the knowledge to students in engineering and natural science needed to enter fluid mechanics applications in various fields. Analytical treatments are provided, based on the Navier-Stokes equations. Introductions are also given into numerical and experimental methods applied to flows. The main benefit the reader will derive from the book is a sound introduction into all aspects of fluid mechanics covering all relevant subfields.

  14. Hazards of organic working fluids

    International Nuclear Information System (INIS)

    Silberstein, S.

    1977-08-01

    We present several brief reviews on working fluids proposed for use in organic Rankine and bi-phase bottoming cycles. There are several general problems with many organic working fluids: flammability, toxicity, and a tendency to leak through seals. Besides, two of the proposed working fluids are to be used at temperatures above the manufacturer's maximum recommended temperature, and one is to be used in a way different from its customary usage. It may, in some cases, be more profitable to first seek alternative working fluids before committing large amounts of time and money to research projects on unsafe working fluids

  15. Pleural fluid smear

    Science.gov (United States)

    ... into the space around the lungs, called the pleural space. As fluid drains into a collection bottle, you may cough a bit. This is because your lung re-expands to fill the space where fluid had been. This sensation lasts for a few hours after the test.

  16. Fluid control valves

    International Nuclear Information System (INIS)

    Rankin, J.

    1980-01-01

    A fluid control valve is described in which it is not necessary to insert a hand or a tool into the housing to remove the valve seat. Such a valve is particularly suitable for the control of radioactive fluids since maintenance by remote control is possible. (UK)

  17. Should Workers Avoid Consumption of Chilled Fluids in a Hot and Humid Climate?

    Directory of Open Access Journals (Sweden)

    Matt B. Brearley

    2017-12-01

    Full Text Available Despite provision of drinking water as the most common method of occupational heat stress prevention, there remains confusion in hydration messaging to workers. During work site interactions in a hot and humid climate, workers commonly report being informed to consume tepid fluids to accelerate rehydration. When questioned on the evidence supporting such advice, workers typically cite that fluid absorption is delayed by ingestion of chilled beverages. Presumably, delayed absorption would be a product of fluid delivery from the gut to the intestines, otherwise known as gastric emptying. Regulation of gastric emptying is multifactorial, with gastric volume and beverage energy density the primary factors. If gastric emptying is temperature dependent, the impact of cooling is modest in both magnitude and duration (≤ 5 minutes due to the warming of fluids upon ingestion, particularly where workers have elevated core temperature. Given that chilled beverages are most preferred by workers, and result in greater consumption than warm fluids during and following physical activity, the resultant increased consumption of chilled fluids would promote gastric emptying through superior gastric volume. Hence, advising workers to avoid cool/cold fluids during rehydration appears to be a misinterpretation of the research. More appropriate messaging to workers would include the thermal benefits of cool/cold fluid consumption in hot and humid conditions, thereby promoting autonomy to trial chilled beverages and determine personal preference. In doing so, temperature-based palatability would be maximized and increase the likelihood of workers maintaining or restoring hydration status during and after their work shift. Keywords: Fluid consumption, gastric emptying, hot and humid conditions, hydration, occupational

  18. A Novel CO2-Responsive Viscoelastic Amphiphilic Surfactant Fluid for Fracking in Enhanced Oil/Gas Recovery

    Science.gov (United States)

    Zhong, L.; Wu, X.; Dai, C.

    2017-12-01

    Over the past decade, the rapid rise of unconventional shale gas and tight sandstone oil development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources. Hydraulic fracturing fluids play very important roles in enhanced oil/gas recovery. However, damage to the reservoir rock and environmental contamination caused by hydraulic fracturing flowback fluids has raised serious concerns. The development of reservoir rock friendly and environmental benign fracturing fluids is in immediate demand. Studies to improve properties of hydraulic fracturing fluids have found that viscoelastic surfactant (VES) fracturing fluid can increase the productivity of gas/oil and be efficiently extracted after fracturing. Compared to conventional polymer fracturing fluid, VES fracturing fluid has many advantages, such as few components, easy preparation, good proppant transport capacity, low damage to cracks and formations, and environment friendly. In this work, we are developing a novel CO2-responsive VES fracking fluid that can readily be reused. This fluid has a gelling-breaking process that can be easily controlled by the presence of CO2 and its pressure. We synthesized erucamidopropyl dimethylamine (EA) as a thickening agent for hydraulic fracturing fluid. The influence of temperature, presence of CO2 and pressure on the viscoelastic behavior of this fluid was then investigated through rheological measurements. The fracturing fluid performance and recycle property were lastly studied using core flooding tests. We expect this fluid finds applications not only in enhanced oil/gas recovery, but also in areas such as controlling groundwater pollution and microfluidics.

  19. Fluid flow in gas condensate reservoirs. The interplay of forces and their relative strengths

    Energy Technology Data Exchange (ETDEWEB)

    Ursin, Jann-Rune [Stavanger University College, Department of Petroleum Engineering, PO Box 8002, Stavanger, 4068 (Norway)

    2004-02-01

    Natural production from gas condensate reservoirs is characterized by gas condensation and liquid dropout in the reservoir, first in the near wellbore volume, then as a cylindrical shaped region, dynamically developing into the reservoir volume. The effects of liquid condensation are reduced productivity and loss of production. Successful forecast of well productivity and reservoir production depends on detailed understanding of the effect of various forces acting on fluid flow in time and space. The production form gas condensate reservoirs is thus indirectly related to the interplay of fundamental forces, such as the viscosity, the capillary, the gravitational and the inertial force and their relative strengths, demonstrated by various dimensionless numbers. Dimensionless numbers are defined and calculated for all pressure and space coordinates in a test reservoir. Various regions are identified where certain forces are more important than others. Based on reservoir pressure development, liquid condensation and the numerical representation of dimensionless numbers, a conceptual understanding of a varying reservoir permeability has been reached.The material balance, the reservoir fluid flow and the wellbore flow calculations are performed on a cylindrical reservoir model. The ratios between fundamental forces are calculated and dimensionless numbers defined. The interplay of forces, demonstrated by these numbers, are calculated as function of radial dimension and reservoir pressure.

  20. Recording fluid currents by holography

    Science.gov (United States)

    Heflinger, L. O.; Wuerker, R. F.

    1980-01-01

    Convection in fluids can be studied with aid of holographic apparatus that reveals three-dimensional motion of liquid. Apparatus eliminates images of fixed particles such as dust on windows and lenses, which might mask behavior of moving fluid particles. Holographic apparatus was developed for experiments on fluid convection cells under zero gravity. Principle is adaptable to study of fluid processes-for example, electrochemical plating and combustion in automotive engines.

  1. Urinary Analysis of Fluid Retention in the General Population: A Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Robert G Hahn

    Full Text Available Renal conservation (retention of fluid might affect the outcome of hospital care and can be indicated by increased urinary concentrations of metabolic waste products. We obtained a reference material for further studies by exploring the prevalence of fluid retention in a healthy population.Spot urine sampling was performed in 300 healthy hospital workers. A previously validated algorithm summarized the urine-specific gravity, osmolality, creatinine, and color to a fluid retention index (FRI, where 4.0 is the cut-off for fluid retention consistent with dehydration. In 50 of the volunteers, we also studied the relationships between FRI, plasma osmolality, and water-retaining hormones.The cut-off for fluid retention (FRI ≥ 4.0 was reached by 38% of the population. No correlation was found between the FRI and the time of the day of urine sample collection, and the FRI was only marginally correlated with the time period spent without fluid intake. Volunteers with fluid retention were younger, generally men, and more often had albuminuria (88% vs. 34%, P < 0.001. Plasma osmolality and plasma sodium were somewhat higher in those with a high FRI (mean 294.8 vs. 293.4 mosmol/kg and 140.3 vs. 139.9 mmol/l. Plasma vasopressin was consistently below the limit of detection, and the plasma cortisol, aldosterone, and renin concentrations were similar in subjects with a high or low FRI. The very highest FRI values (≥ 5.0, N = 61 were always accompanied by albuminuria.Fluid retention consistent with moderate dehydration is common in healthy staff working in a Swedish hospital.

  2. Smart Fluid System Dually Responsive to Light and Electric Fields: An Electrophotorheological Fluid.

    Science.gov (United States)

    Yoon, Chang-Min; Jang, Yoonsun; Noh, Jungchul; Kim, Jungwon; Jang, Jyongsik

    2017-10-24

    Electrophotorheological (EPR) fluids, whose rheological activity is dually responsive to light and electric fields (E fields), is formulated by mixing photosensitive spiropyran-decorated silica (SP-sSiO 2 ) nanoparticles with zwitterionic lecithin and mineral oil. A reversible photorheological (PR) activity of the EPR fluid is developed via the binding and releasing mechanism of lecithin and merocyanine (MC, a photoisomerized form of SP) under ultraviolet (UV) and visible (VIS) light applications. Moreover, the EPR fluid exhibits an 8-fold higher electrorheological (ER) performance compared to the SP-sSiO 2 nanoparticle-based ER fluid (without lecithin) under an E field, which is attributed to the enhanced dielectric properties facilitated by the binding of the lecithin and SP molecules. Upon dual application of UV light and an E field, the EPR fluid exhibits high EPR performance (ca. 115.3 Pa) that far exceeds its separate PR (ca. 0.8 Pa) and ER (ca. 57.5 Pa) activities, because of the synergistic contributions of the PR and ER effects through rigid and fully connected fibril-like structures. Consequently, this study offers a strategy on formulation of dual-stimuli responsive smart fluid systems.

  3. Flexibility, stroke, and dimensionless parameters: the importance of telling the whole story for swimming micro-organisms in complex fluids

    Science.gov (United States)

    Thomases, Becca; Guy, Robert

    2015-11-01

    The question of how fluid elasticity affects the swimming performance of micro-organisms is complicated and has been the subject of many recent experimental and theoretical studies. The Deborah number, De = λω , is typically used to characterize the strength of the fluid elasticity in these studies, and for swimmers is expressed as the product of the elastic relaxation time and the frequency of the swimmer stroke. In simulations of undulatory flexible swimmers in an Oldroyd-B-type fluid, we find that varying the frequency of the stroke and varying the relaxation time separately results in a significantly different dependence of swimming speed for the same De . Thus the elastic effects on swimming cannot be characterized by a single dimensionless number. The Weissenberg number, defined as the product of elastic relaxation time and characteristic strain rate (Wi = λγ˙), is another dimensionless parameter useful for describing complex fluids. For a fixed swimmer frequency, varying the relaxation time will also vary the Weissenberg number. We conjecture that the different behavior is a consequence of a Weissenberg-number transition in the fluid, which additionally depends on the amplitude of the swimmer stroke.

  4. Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS

    Science.gov (United States)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.

    2000-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.

  5. A plan to reduce volatile organic compound emissions from consumer products in Canada (excluding windshield washer fluid and surface coatings) : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This report highlights the recommendations made by the Canadian Council of Ministers of the Environment for the development of a guideline to provide a means by which to reduce (VOC) emissions from consumer products (excluding windshield washer fluid and surface coatings) in Canada. VOCs and nitrogen oxides react photochemically in the presence of sunlight to create ground-level ozone, a primary component of urban smog which has a detrimental effect on human health, agricultural crops and building materials. In recent years, most urban areas of Canada have shown an annual increase in the maximum acceptable air quality levels for ground level ozone. Reducing emissions of volatile organic compounds (VOCs) from consumer products was first suggested in 1990 by the Canadian Council of Ministers of the Environment in phase one of their program entitled the 'Management plan for nitrogen oxides and volatile organic compounds'. Phase 2 of the program was implemented in 1997 to harmonize the emissions reduction program with the United States Environmental Protection Agency regulations. The Canadian Environmental Protection Agency (CEPA) recommended the following control options: (1) a CEPA guideline should be developed which states the maximum VOC and high-volatility organic compound (HVOC) content in Canadian consumer products including hair care products, herbicides, insecticides, air fresheners, deodorants, fungicides, surface cleaners, fragrance products, anti-microbial agents, laundry products and automotive detailing products. These limits should be identical to those found in the 1998 U.S. Final Rule for Consumer Products, (2) the CEPA guideline should require that records specifying VOC content in weight-per cent be maintained for a period of three years, (3) the CEPA guideline should include a declaration procedure for Canadian importers and manufacturers of consumer products to report to Environment Canada regarding the VOC content of their products, and

  6. Micro Products - Product Development and Design

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Innovation within the field of micro and nano technology is to a great extent characterized by cross-disciplinary skills. The traditional disciplines like e.g. physics, biology, medicine and engineering are united in a common development process that can only take place in the presence of multi......-disciplinary competences. One example is sensors for chemical analysis of fluids, where chemistry, biology and flow mechanics all influence the design of the product and thereby the industrial fabrication of the product [1]. On the technological side the development has moved very fast, primarily driven by the need...... of the electronics industry to create still smaller chips with still larger capacity. Therefore the manufacturing technologies connected with micro/nano products in silicon are relatively highly developed compared to the technologies used for manufacturing micro products in metals, polymers and ceramics. For all...

  7. In vitro gas production in rumen fluid of buffalo as affected by urea-calcium mixture in high-quality feed block.

    Science.gov (United States)

    Cherdthong, Anusorn; Wanapat, Metha

    2014-04-01

    This study aimed to determine the effect of urea-calcium sulphate mixture (U-cas) levels in high-quality feed block (HQFB) on ruminal digestibility, fermentation and gas kinetics in rumen fluid of swamp buffalo by using in vitro techniques. The treatments were seven levels of U-cas incorporated in HQFB at 0, 3, 6, 9, 12, 15 and 18% and the experimental design was a completely randomized design. Gas production rate constants for the insoluble fraction, potential extent of gas and cumulative gas were linearly increased with increasing levels of U-cas in HQFB. The in vitro dry matter digestibility, in vitro organic matter digestibility, true digestibility and microbial mass were altered by treatments and were greatest at 18% U-cas supplementation. Concentrations of propionate were linearly increased with increasing levels of U-cas and was highest with U-cas supplementation at 18%. The NH3 -N concentration was highest when urea was added in the HQFB while NH3 -N concentration tended to be reduced with increasing level of U-cas. The findings suggest supplementation of 18% U-cas in HQFB improves kinetics of gas production, rumen fermentation, digestibility and microbial mass as well as controlling the rate of N degradation in the rumen of swamp buffalo. © 2014 Japanese Society of Animal Science.

  8. Cryogenic Fluid Management Technology for Moon and Mars Missions

    Science.gov (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  9. Viscoelastic gravel-pack carrier fluid

    International Nuclear Information System (INIS)

    Nehmer, W.L.

    1988-01-01

    The ability of a fluid to flow adequately into the formation during gravel-pack treatments is critical to achieving a good pack. Recent studies have indicated ''fish-eyes'' and/or ''microgels'' present in many polymer gelled carrier fluids will plug pore throats, leading to impaired leakoff and causing formation damage. Intensive manipulation of the polymer gelled fluid using shear and filter devices will help remove the particles, but it adds to the cost of the treatment in terms of equipment and manpower. Excessive shear will degrade the polymer leading to poor gravel suspension, while too little shear will cause filtration problems. A gelled carried fluid using a viscoelastic surfactant system has been found to leak off very efficiently to the formation, and cause no formation damage, without the use of shear/filter devices. Viscoelastic surfactant-base gelled fluids develop viscosity because of the association of surfactant moloecules into large rod-shaped aggregates. There is no hydration of polymer involved, so fish-eyes and microgels will not be formed in the viscoelastic fluid. A surfactant-base system having a yield point allows the gravel carrying properties to be much better than fluids gelled with conventional polymer systems (hydroxyethylcellulose [HEC]). For example, a gravel carried fluid gelled with 80 lb HEC/1,000 gal has a viscosity of about 400 cp at 170 sec/sup -1/; a viscoelastic surfactant-base system having only one-half the viscosity still flows into cores about four times more efficiently than the HEC-base fluid. The rheology, leakoff, formation damage and mixing properties of a viscoelastic, surfactant-base, gravel-pack carrier fluid are discussed

  10. Raman spectroscopic signature of vaginal fluid and its potential application in forensic body fluid identification.

    Science.gov (United States)

    Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; Lednev, Igor K

    2012-03-10

    Traces of human body fluids, such as blood, saliva, sweat, semen and vaginal fluid, play an increasingly important role in forensic investigations. However, a nondestructive, easy and rapid identification of body fluid traces at the scene of a crime has not yet been developed. The obstacles have recently been addressed in our studies, which demonstrated the considerable potential of Raman spectroscopy. In this study, we continued to build a full library of body fluid spectroscopic signatures. The problems concerning vaginal fluid stain identification were addressed using Raman spectroscopy coupled with advanced statistical analysis. Calculated characteristic Raman and fluorescent spectral components were used to build a multidimensional spectroscopic signature of vaginal fluid, which demonstrated good specificity and was able to handle heterogeneous samples from different donors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Relativistic thermodynamics of fluids

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-05-01

    The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr

  12. Comparison of various pretreatments for ethanol production enhancement from solid residue after rumen fluid digestion of rice straw.

    Science.gov (United States)

    Zhang, Haibo; Zhang, Panyue; Ye, Jie; Wu, Yan; Liu, Jianbo; Fang, Wei; Xu, Dong; Wang, Bei; Yan, Li; Zeng, Guangming

    2018-01-01

    The rumen digested residue of rice straw contains high residual carbohydrates, which makes it a potential cellulosic ethanol feedstock. This study evaluated the feasibility and effectiveness of applying microwave assisted alkali (MAP), ultrasound assisted alkali (UAP), and ball milling pretreatment (BMP) to enhance ethanol production from two digested residues (2.5%-DR and 10%-DR) after rumen fluid digestion of rice straw at 2.5% and 10.0% solid content. Results revealed that 2.5%-DR and 10%-DR had a cellulose content of 36.4% and 41.7%, respectively. MAP and UAP improved enzymatic hydrolysis of digested residue by removing the lignin and hemicellulose, while BMP by decreasing the particle size and crystallinity. BMP was concluded as the suitable pretreatment, resulting in an ethanol yield of 116.65 and 147.42mgg -1 for 2.5%-DR and 10%-DR, respectively. The integrated system including BMP for digested residue at 2.5% solid content achieved a maximum energy output of 7010kJkg -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Assessment of fluid-to-fluid modelling of critical heat flux in horizontal 37-element bundle flows

    International Nuclear Information System (INIS)

    Yang, S.K.

    2006-01-01

    Fluid-to-fluid modelling laws of critical heat flux (CHF) available in the literature were reviewed. The applicability of the fluid-to-fluid modelling laws was assessed using available data ranging from low to high mass fluxes in horizontal 37-element bundles simulating a CANDU fuel string. Correlations consisting of dimensionless similarity groups were derived using modelling fluid data (Freon-12) to predict water CHF data in horizontal 37-element bundles with uniform and non-uniform axial-heat flux distribution (AFD). The results showed that at mass fluxes higher than ∼4,000 kg/m 2 s (water equivalent value), the vertical fluid-to-fluid modelling laws of Ahmad (1973) and Katto (1979) predict water CHF in horizontal 37-element bundles with non-uniform AFD with average errors of 1.4% and 3.0% and RMS errors of 5.9% and 6.1%, respectively. The Francois and Berthoud (2003) fluid-to-fluid modelling law predicts CHF in non-uniformly heated 37-element bundles in the horizontal orientation with an average error of 0.6% and an RMS error of 10.4% over the available range of 2,000 to 6,200 kg/m 2 s. (author)

  14. Supercritical Fluid Extraction of Eucalyptus globulus Bark—A Promising Approach for Triterpenoid Production

    Directory of Open Access Journals (Sweden)

    Carlos M. Silva

    2012-06-01

    Full Text Available Eucalyptus bark contains significant amounts of triterpenoids with demonstrated bioactivity, namely triterpenic acids and their acetyl derivatives (ursolic, betulinic, oleanolic, betulonic, 3-acetylursolic, and 3-acetyloleanolic acids. In this work, the supercritical fluid extraction (SFE of Eucalyptus globulus deciduous bark was carried out with pure and modified carbon dioxide to recover this fraction, and the results were compared with those obtained by Soxhlet extraction with dichloromethane. The effects of pressure (100–200 bar, co-solvent (ethanol content (0, 5 and 8% wt, and multistep operation were studied in order to evaluate the applicability of SFE for their selective and efficient production. The individual extraction curves of the main families of compounds were measured, and the extracts analyzed by GC-MS. Results pointed out the influence of pressure and the important role played by the co-solvent. Ethanol can be used with advantage, since its effect is more important than increasing pressure by several tens of bar. At 160 bar and 40 °C, the introduction of 8% (wt of ethanol greatly improves the yield of triterpenoids more than threefold.

  15. Fluid Mechanics and Fluid Power (FMFP)

    Indian Academy of Sciences (India)

    Amitabh Bhattacharya

    of renewable energy (e.g., via wind, hydrokinetic generators), creating low-cost healthcare ... multiphase flow, turbulence, bio-fluid dynamics, atmospheric flows, microfluidic flows, and ... study the challenging problem of entry of solids in water.

  16. Computer simulation to predict energy use, greenhouse gas emissions and costs for production of fluid milk using alternative processing methods

    Science.gov (United States)

    Computer simulation is a useful tool for benchmarking the electrical and fuel energy consumption and water use in a fluid milk plant. In this study, a computer simulation model of the fluid milk process based on high temperature short time (HTST) pasteurization was extended to include models for pr...

  17. Optimal composition of fluid-replacement beverages.

    Science.gov (United States)

    Baker, Lindsay B; Jeukendrup, Asker E

    2014-04-01

    The objective of this article is to provide a review of the fundamental aspects of body fluid balance and the physiological consequences of water imbalances, as well as discuss considerations for the optimal composition of a fluid replacement beverage across a broad range of applications. Early pioneering research involving fluid replacement in persons suffering from diarrheal disease and in military, occupational, and athlete populations incurring exercise- and/or heat-induced sweat losses has provided much of the insight regarding basic principles on beverage palatability, voluntary fluid intake, fluid absorption, and fluid retention. We review this work and also discuss more recent advances in the understanding of fluid replacement as it applies to various populations (military, athletes, occupational, men, women, children, and older adults) and situations (pathophysiological factors, spaceflight, bed rest, long plane flights, heat stress, altitude/cold exposure, and recreational exercise). We discuss how beverage carbohydrate and electrolytes impact fluid replacement. We also discuss nutrients and compounds that are often included in fluid-replacement beverages to augment physiological functions unrelated to hydration, such as the provision of energy. The optimal composition of a fluid-replacement beverage depends upon the source of the fluid loss, whether from sweat, urine, respiration, or diarrhea/vomiting. It is also apparent that the optimal fluid-replacement beverage is one that is customized according to specific physiological needs, environmental conditions, desired benefits, and individual characteristics and taste preferences.

  18. Insertable fluid flow passage bridgepiece and method

    Science.gov (United States)

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  19. Standard Practices for Sampling for Particles in Aerospace Fluids and Components

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These practices cover sampling procedures for use in determining the particle cleanliness of liquids and liquid samples from components. Three practices, A, B, and C, have been developed on the basis of component geometry in order to encompass the wide variety of configurations. These practices establish guidelines to be used in preparing detailed procedures for sampling specific components. Note 1—The term cleanliness used in these practices refers to solid particles in the liquid. It does not generally cover other foreign matter such as gases, liquids, and products of chemical degradation. Cleanliness with respect to particulate contamination does not necessarily give any indication of the other types of contamination. 1.2 All components, regardless of application, may be tested provided (1) the fluid medium selected is completely compatible with the materials, packing and fluid used in the test component, and test apparatus, and (2) the fluid is handled in accordance with the manufacturer's recom...

  20. Fluid Simulation in the Movies: Navier and Stokes Must Be Circulating in Their Graves

    Science.gov (United States)

    Tessendorf, Jerry

    2010-11-01

    Fluid simulations based on the Incompressible Navier-Stokes equations are commonplace computer graphics tools in the visual effects industry. These simulations mostly come from custom C++ code written by the visual effects companies. Their significant impact in films was recognized in 2008 with Academy Awards to four visual effects companies for their technical achievement. However artists are not fluid dynamicists, and fluid dynamics simulations are expensive to use in a deadline-driven production environment. As a result, the simulation algorithms are modified to limit the computational resources, adapt them to production workflow, and to respect the client's vision of the film plot. Eulerian solvers on fixed rectangular grids use a mix of momentum solvers, including Semi-Lagrangian, FLIP, and QUICK. Incompressibility is enforced with FFT, Conjugate Gradient, and Multigrid methods. For liquids, a levelset field tracks the free surface. Smooth Particle Hydrodynamics is also used, and is part of a hybrid Eulerian-SPH liquid simulator. Artists use all of them in a mix and match fashion to control the appearance of the simulation. Specially designed forces and boundary conditions control the flow. The simulation can be an input to artistically driven procedural particle simulations that enhance the flow with more detail and drama. Post-simulation processing increases the visual detail beyond the grid resolution. Ultimately, iterative simulation methods that fit naturally in the production workflow are extremely desirable but not yet successful. Results from some efforts for iterative methods are shown, and other approaches motivated by the history of production are proposed.