WorldWideScience

Sample records for geophysical observatory pogo

  1. POGO satellite orbit corrections: an opportunity to improve the quality of the geomagnetic field measurements?

    DEFF Research Database (Denmark)

    Stockmann, Reto; Christiansen, Freddy; Olsen, Nils

    2015-01-01

    We present an attempt to improve the quality of the geomagnetic field measurements from the Polar Orbiting Geophysical Observatory (POGO) satellite missions in the late 1960s. Inaccurate satellite positions are believed to be a major source of errors for using the magnetic observations for field...... modelling. To improve the data, we use aniterative approach consisting of two main parts: one is a main field modelling process to obtain the radial fieldgradient to perturb the orbits and the other is the state-of-the-art GPS orbit modelling software BERNESE to calculatenew physical orbits. We report....... With this approach, weeliminate the orbit discontinuities at midnight but only tiny quality improvements could be achieved forgeomagnetically quiet data. We believe that improvements to the data are probably still possible, but it would require the original tracking observations to be found....

  2. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    Science.gov (United States)

    Uyeda, S.; Nagao, T.; Hattori, K.; Hayakawa, M.; Miyaki, K.; Molchanov, O.; Gladychev, V.; Baransky, L.; Chtchekotov, A.; Fedorov, E.; Pokhotelov, O.; Andreevsky, S.; Rozhnoi, A.; Khabazin, Y.; Gorbatikov, A.; Gordeev, E.; Chebrov, V.; Sinitzin, V.; Lutikov, A.; Yunga, S.; Kosarev, G.; Surkov, V.; Belyaev, G.

    Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity). The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 - 40 Hz) and meteorological recordings, together with seismo-acoustic (∆F = 30 - 1000 Hz) and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 - 30 Hz), three-component electric potential variations ( ∆F < 1.0 Hz), and VLF transmitter's signal perturbations ( ∆F ~ 10 - 40 kHz).

  3. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    Directory of Open Access Journals (Sweden)

    S. Uyeda

    2001-01-01

    Full Text Available Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity. The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 – 40 Hz and meteorological recordings, together with seismo-acoustic (∆F = 30 – 1000 Hz and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 – 30 Hz, three-component electric potential variations ( ∆F 1.0 Hz, and VLF transmitter’s signal perturbations ( ∆F ~ 10 – 40 kHz.

  4. A virtual radiation belt observatory: Looking forward to the electronic geophysical year

    Science.gov (United States)

    Baker, D. N.; Green, J. C.; Kroehl, H. W.; Kihn, E.; Virbo Team

    During the International Geophysical Year (1957-1958), member countries established many new capabilities pursuing the major IGY objectives of collecting geophysical data as widely as possible and providing free access to these data for all scientists around the globe. A key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories. The worldwide scientific community has now endorsed and is promoting an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the 50th anniversary of the IGY in 2007-2008 and would provide a forward impetus to geophysics in the 21st century, similar to that provide by the IGY fifty years ago. The eGY concept advocates the establishment of a series of virtual geophysical observatories now being deployed in cyberspace. We are developing the concept of a Virtual Radiation Belt Observatory (ViRBO) that will bring together near-earth particle and field measurements acquired by NASA, NOAA, DoD, DOE, and other spacecraft. We discuss plans to aggregate these measurements into a readily accessible database along with analysis, visualization, and display tools that will make radiation belt information available and useful both to the scientific community and to the user community. We envision that data from the various agencies along with models being developed under the auspices of the National Science Foundation Center for Integrated Space Weather Modeling (CISM) will help us to provide an excellent `climatology' of the radiation belts over the past several decades. In particular, we would plan to use these data to drive physical models of the radiation belts to form a gridded database which would characterize particle and field properties on solar-cycle (11-year) time scales. ViRBO will also provide up-to-date specification of conditions for event analysis and anomaly resolution. We are even examining the possibilities for near-realtime acquisition of

  5. Determination of Heritage SSME Pogo Suppressor Resistance and Inertance from Waterflow Pulse Testing

    Science.gov (United States)

    McDougal, Chris; Eberhart, Chad; Lee, Erik

    2016-01-01

    Waterflow tests of a heritage Space Shuttle Main Engine pogo suppressor were performed to experimentally quantify the resistance and inertance provided by the suppressor. Measurements of dynamic pressure and flow rate in response to pulsing flow were made throughout the test loop. A unique system identification methodology combined all sensor measurements with a one-dimensional perturbational flow model of the complete water flow loop to spatially translate physical measurements to the device under test. Multiple techniques were then employed to extract the effective resistance and inertance for the pogo suppressor. Parameters such as steady flow rate, perturbational flow rate magnitude, and pulse frequency were investigated to assess their influence on the behavior of the pogo suppressor dynamic response. These results support validation of the RS-25 pogo suppressor performance for use on the Space Launch System Core Stage.

  6. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    International Nuclear Information System (INIS)

    Andersson, V.; Chen, P.; Kamae, T.; Madejski, G.; Mizuno, T.; Ng, J.; Tajima, H.; Thurston, T.; SLAC; Bogaert, G.; Ecole Polytechnique; Fukazawa, Y.; Hiroshima U.; Saito, Y.; Takahashi, T.; Sagamihara, Inst. Space Astron. Sci.; Barbier, L.; Bloser, P.; Harding, A.; Hunter, S.; Krizmanic, J.; Mitchell, J.; Streitmatter, R.; Fernholz, R.; Groth, E.; NASA, Goddard; Princeton U.; Royal Inst. Tech., Kista; Stockholm U.; Tokyo Inst. Tech.; Yamagata U.

    2005-01-01

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (30-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO is designed to detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter consisting of a fast plastic scintillator (the detection part), a slow plastic scintillator (the active collimator) and a BGO scintillator (the bottom anti-counter). PoGO consists of close-packed array of 217 hexagonal well-type phoswich counters and has a narrow field-of-view (∼ 5 deg 2 ) to reduce possible source confusion. A prototype instrument has been tested in the polarized soft gamma-ray beams at Advanced Photon Source (ANL) and at Photon Factory (KEK). On the results, the polarization dependence of EGS4 has been validated and that of Geant4 has been corrected

  7. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, V.; Chen, P.; Kamae, T.; Madejski, G.; Mizuno, T.; Ng, J.; Tajima, H.; Thurston, T.; /SLAC; Bogaert, G.; /Ecole Polytechnique; Fukazawa, Y.; /Hiroshima U.; Saito,; Takahashi, T.; /Sagamihara, Inst. Space Astron. Sci.; Barbier, L.; Bloser, P.; Harding, A.; Hunter, S.; Krizmanic, J.; Mitchell, J.; Streitmatter, R.; Fernholz, R.; Groth, E.; /NASA, Goddard /Princeton U. /Royal Inst. Tech., Kista /Stockholm U. /Tokyo Inst. Tech. /Yamagata U.

    2005-06-30

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (30-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO is designed to detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter consisting of a fast plastic scintillator (the detection part), a slow plastic scintillator (the active collimator) and a BGO scintillator (the bottom anti-counter). PoGO consists of close-packed array of 217 hexagonal well-type phoswich counters and has a narrow field-of-view ({approx} 5 deg{sup 2}) to reduce possible source confusion. A prototype instrument has been tested in the polarized soft gamma-ray beams at Advanced Photon Source (ANL) and at Photon Factory (KEK). On the results, the polarization dependence of EGS4 has been validated and that of Geant4 has been corrected.

  8. Subsurface temporal variation of radon at the Conrad Geophysical Observatory, Austria

    Science.gov (United States)

    Leonhardt, Roman; Steinitz, Gideon; Piatibratova, Oksana

    2015-04-01

    The Conrad Observatory (COBS) housed the national geophysical observatory of Austria and is located 50 km south west of Vienna within the carbonate sequence of the "Wettersteinkalk". Parameters monitored at the facility comprise environmental data, seismic signals, gravity, geomagnetic components and also natural gamma rays. A subsurface tunnel, 150 meters long and oriented E-W is driven into the calcareous sequence at a depth of 50 meters. The tunnel is lined with a concrete carapace, ~20 cm thick. The tunnel observatory is separated from the external atmosphere by 3 tight doors, resulting in a stable temperature of 6.85±0.04°C. A gamma detector (3×3", NaI, SCA) is used measure the variation of the gamma radiation from radon in the air of the tunnel, at a resolution of 1 minute, which is accumulated to form a 15-minute count rate. The sensor is placed on a concrete block at 135 meters. Several SSNTD measurements in the tunnel indicated radon level in the level of 1.5 kBq/m^3. The background gamma radiation, due probably mainly to sources in the concrete is in the order to 2×105 counts (per 15-minutes). A long term variation of radon is reflected as an annual radon signal with large amplitude (2×105 counts) and a maximum in summer. Small to large (2×105 counts) non periodic multi-day signals lasting from two to several tens of days are superimposed. Daily periodic signals of much lower amplitude are observed, with amplitudes generally up to 4×104 counts. The amplitude of the non-periodic multi-day is coupled to amplitude of the annual signal, and the amplitude of the periodic daily signal is modulated by the multi-day variation. The source of the radon in the air of the tunnel is from the concrete lining the floor and walls of the tunnel. The variation patterns and their systematic characteristics cannot be ascribed to local variations of pressure and temperature (stable). These limitations indicate that other driver(s), external to the tunnel, are forcing

  9. New infrastructure at Alboran island (Western Mediterranean): a submarine and on-land Geophysical Observatory

    Science.gov (United States)

    Pazos, Antonio; Martín Davila, José; Buforn, Elisa; Jesús García Fernández, Maria; Bullón, Mercedes; Gárate, Jorge

    2010-05-01

    The Eurasian-African plate boundary crosses the called "Ibero-Maghrebian" region from San Vicente Cape (SW Portugal) to Tunisia including the South of Iberia, Alboran Sea, and northern of Morocco and Algeria. The low convergence rate at this plate boundary produces a continuous moderate seismic activity of low magnitude and shallow depth, where the occurrence of large earthquakes is separated by long time intervals. In this region, there are also intermediate and very deep earthquakes. Since more than hundred years ago San Fernando Naval Observatory (ROA), in collaboration with other Institutes, has deployed different geophysical and geodetic equipment in the Southern Spain - North-western Africa area in order to study this broad deformation. Currently a Broad Band seismic net (Western Mediterranean, WM net), a permanent geodetic GPS net and a Geomagnetic Observatory have been installed by ROA in this area. To complement the available data, since past October a permanent marine-on land geophysical observatory is being installed by ROA in Alboran Island and surrounding marine zones. Till now the following facilities has been installed: • Submarine: 2 km submarine fibre optics cable (power and data transmission); Broad Band Seismometer (CMG-3T, buried); Accelerometer (Guralp 3 channels), buried); Differential Pressure Gauge (DPG); Thermometer. • On land: Permanent geodetic GPS station; Automatic meteorological station; Data acquisition system for submarine equipment; Satellite Data Transmission system. Data are already being transmitted in real time to ROA headquarters via satellite Intranet. The marine part, currently installed in a 50 m depth platform, has been designed to be enlarged by extending the cable to greater depths and/or installing additional submarine equipment, such a way in short an ADCP profiler will be installed. In this work we aim to show the present status, scientific possibilities and the next future plans of this submarine-on land

  10. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    International Nuclear Information System (INIS)

    Blanford, R.

    2005-01-01

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (25-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO will detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter technology used in balloon-borne experiments (Welcome-1) and AstroE2 Hard X-ray Detector. PoGO consists of close-packed array of 397 hexagonal well-type phoswich counters. Each unit is composed of a long thin tube (well) of slow plastic scintillator, a solid rod of fast plastic scintillator, and a short BGO at the base. A photomultiplier coupled to the end of the BGO detects light from all 3 scintillators. The rods with decay times 2 ) strike a fast scintillator, some are Compton scattered. A fraction of the scattered photons are absorbed in another rod (or undergo a second scatter). A valid event requires one clean fast signal of pulse-height compatible with photo-absorption (> 20keV) and one or more compatible with Compton scattering (< 10keV). Studies based on EGS4 (with polarization features) and Geant4 predict excellent background rejection and high sensitivity

  11. The Hollin Hill Landslide Observatory - a decade of geophysical characterization and monitoring

    Science.gov (United States)

    Uhlemann, S.; Wilkinson, P. B.; Meldrum, P.; Smith, A.; Dixon, N.; Merritt, A.; Swift, R. T.; Whiteley, J.; Gunn, D.; Chambers, J. E.

    2017-12-01

    Landslides are major and frequent natural hazards. They shape the Earth's surface, and endanger communities and infrastructure worldwide. Within the last decade, landslides caused more than 28,000 fatalities and direct damage exceeding $1.8 billion. Climate change, causing more frequent weather extremes, is likely to increase occurrences of shallow slope failures worldwide. Thus, there is a need to improve our understanding of these shallow, rainfall-induced landslides. In this context, integrated geophysical characterization and monitoring can play a crucial role by providing volumetric data that can be linked to the hydrological and geotechnical conditions of a slope. This enables understanding of the complex hydrological processes most-often being associated with landslides. Here we present a review of a decade of characterizing and monitoring a complex, inland, clayey landslide - forming the "Hollin Hill Landslide Observatory". Within the last decade, this landslide has experienced different activity characteristics, including creep, flow, and rotational failures - thereby providing an excellent testbed for the development of geophysical and geotechnical monitoring instrumentation and methodologies. These include developments of 4D geoelectrical monitoring techniques to estimate electrode positions from the resistivity data, incorporating these into a time-lapse inversion, and imaging moisture dynamics that control the landslide behaviour. Other developments include acoustic emission monitoring, and active and passive seismic monitoring. This work is underpinned by detailed characterization of the landslide, using geomorphological and geological mapping, geotechnical investigations, and a thorough geoelectrical and seismic characterization of the landslide mass. Hence, the data gained from the Hollin Hill landslide observatory has improved our understanding of the shallow landslide dynamics in response to climate change, their mechanics and evolution. The

  12. Studying Hooke's Law by Using a Pogo Stick

    Science.gov (United States)

    Silva, Nicolas

    2011-01-01

    Perhaps the pogo stick was little Robert Hooke's favorite childhood toy, consisting of a stiff spring inserted in a tube fixed at the upper end and connected to a moveable rod at the other. Hand grips and a foot rest are connected to the tube. The idea is to jump on it taking advantage of the force provided by the spring when it is compressed.…

  13. Results of measurement of tiles and deformations of the earth surface in the Garni geophysical observatory

    International Nuclear Information System (INIS)

    Agalovyan, L.A.; Hakhverdyan, L.A.; Pashayan, R.A.; Harutyunyan, L.V.

    2017-01-01

    The data on tiltmeter-deformational observations carried out in the adit of Garni Geophysical Observatory were given for the period of 2015-2016. The primary processing of tiltmeter-deformational observations aiming to create charts of daily and average daily movements of earth crust in the N-S and E-W direction is done. Potential modern movements of earth crust in the territory of Armenia were revealed as a result of correlation with seismicity of the region

  14. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    Energy Technology Data Exchange (ETDEWEB)

    Blanford, R.

    2005-04-06

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (25-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO will detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter technology used in balloon-borne experiments (Welcome-1) and AstroE2 Hard X-ray Detector. PoGO consists of close-packed array of 397 hexagonal well-type phoswich counters. Each unit is composed of a long thin tube (well) of slow plastic scintillator, a solid rod of fast plastic scintillator, and a short BGO at the base. A photomultiplier coupled to the end of the BGO detects light from all 3 scintillators. The rods with decay times < 10 ns, are used as the active elements; while the wells and BGOs, with decay times {approx}250 ns are used as active anti-coincidence. The fast and slow signals are separated out electronically. When gamma rays entering the field-of-view (fwhm {approx} 3deg{sup 2}) strike a fast scintillator, some are Compton scattered. A fraction of the scattered photons are absorbed in another rod (or undergo a second scatter). A valid event requires one clean fast signal of pulse-height compatible with photo-absorption (> 20keV) and one or more compatible with Compton scattering (< 10keV). Studies based on EGS4 (with polarization features) and Geant4 predict excellent background rejection and high sensitivity.

  15. High-Level Location Based Search Services That Improve Discoverability of Geophysical Data in the Virtual ITM Observatory

    Science.gov (United States)

    Schaefer, R. K.; Morrison, D.; Potter, M.; Barnes, R. J.; Nylund, S. R.; Patrone, D.; Aiello, J.; Talaat, E. R.; Sarris, T.

    2015-12-01

    The great promise of Virtual Observatories is the ability to perform complex search operations across the metadata of a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) has many diverse geophysical datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time. One of the key challenges in improving discoverability is the ability to identify portions of datasets that overlap in time and in location. The difficulty is that location data is not contained in the metadata for datasets produced by satellites and would be extremely large in volume if it were available, making searching for overlapping data very time consuming. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for VITMO and others. The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. These services run in real-time when the user queries for data. These services will allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists, making it easier for future students who come into the field.

  16. Sustainable Geophysical Observatory Networks

    Science.gov (United States)

    Willemann, R. J.; Lerner-Lam, A.; Aster, R.; Beck, S.; Ekstrom, G.; Nyblade, A.; Sandvol, E.

    2007-05-01

    Geophysical networks are defined not only by their technical specifications, but also by the characteristics and needs of the communities that use them. Growing populations supported by more elaborate urban infrastructure with its fine-grained socio-economic interdependencies and relying on global and regional connections for sustainability make new demands for natural hazard risk management. Taking advantage of advances in the underlying science to provide society with accurate risk assessments often requires higher fidelity measurements, entirely new types of observations, and an evolutionary sense of data products and information management. Engineering a high-tech system to address stakeholder needs is difficult, and designing for unpredictable developments requires an emphasis on adaptation. Thus, it is essential to promote formation of organizations or communities that can support evolution of a technological system, imagine new uses, and develop the societal relationships that sustain operations and provide capital for improvement. The owners must have a deep understanding of why the system works in particular ways and how to manage data products for the benefits of stakeholders. To be effective, community promotion must be sustained over a longer period of time than required to build a network and should be aimed at integrating the community into worldwide partnerships. Practices that can promote community formation if they are sustained include repeated training and scientific exchange workshops, extended visits by experts and staff at all levels to and from countries where networks are installed, mechanisms that make timely upgrades realistically possible, and routine exchange and wide dissemination of data in all directions. The combination of international research and educational collaborations, supported by open data exchange, with regionalized and specific assessments of local stakeholder needs and concerns, provides a sustainable model for

  17. GONAF - A Deep Geophysical Observatory at the North Anatolian Fault

    International Nuclear Information System (INIS)

    Bohnhoff, Marco

    2014-01-01

    An outline was given of the GONAF (Deep Geophysical Observatory at the North Anatolian Fault Zone) project operating at the Marmara seismic gap of the North Anatolian Fault Zone. The Princes Island Segment is a part of the North Anatolian Fault Zone in Marmara seismic gap. This segment is a remaining part of the recent rupture of the North Anatolian Fault. Further, the rupture of this part is predicted to occur in the near future. The primary objectives of the project are to collect seismograms of small earthquakes with magnitudes less than zero using borehole observations with low noise, to gain new insight into the physical states of critically stressed fault segments during and after large earthquakes, and to monitor progressive damage evolution at fault asperities. There were explanations about the seismic network in the region, the recent micro-earthquake observation, and the project's PIRES (Princes Islands Real time Permanent Seismic Network). For the GONAF project, a network of eight borehole arrays with five-level seismometers, including a ground surface of 300-m boreholes, is planned. Horizontal arrays on the surface of an island in the Marmara Sea have also been deployed. In addition, deployment of a permanent ocean bottom seismometer is planned as part of the GONAF+ plan in 2014. (author)

  18. Jesuit Geophysical Observatories

    Science.gov (United States)

    Udias, Agustin; Stauder, William

    Jesuits have had ah interest in observing and explaining geophysical phenomena since this religious order, the Society of Jesus, was founded by Ignatius of Loyola in 1540. Three principal factors contributed to this interest: their educational work in colleges and universities, their missionary endeavors to remote lands where they observed interesting and often as yet undocumented natural phenomena, and a network of communication that brought research of other Jesuits readily to their awareness.One of the first and most important Jesuit colleges was the Roman College (today the Gregorian University) founded in 1551 in Rome, which served as a model for many other universities throughout the world. By 1572, Christopher Clavius (1537-1612), professor of mathematics at the Roman College, had already initiated an important tradition of Jesuit research by emphasizing applied mathematics and insisting on the need of serious study of mathematics in the program of studies in the humanities. In 1547 he directed a publication of Euclid's work with commentaries, and published several treatises on mathematics, including Arithmetica Practica [1585], Gnomonicae [1581], and Geometrica Practica [1606]. Clavius was also a Copernican and supported his friend Galileo when he announced the discovery of the satellites of Jupiter.

  19. Significant results from using earth observation satellites for mineral and energy resource exploration

    Science.gov (United States)

    Carter, William D.

    1981-01-01

    A large number of Earth-observation satellites orbit our world several times each day, providing new information about the land and sea surfaces and the overlying thin layer of atmosphere that makes our planet unique. Meteorological satellites have had the longest history of experimental use and most are now considered operational. The geologic information collected by the Landsat, Polar Orbiting Geophysical Observatory (POGO), Magsat, Heat Capacity Mapping Mission (HCMM) and Seasat land and ocean observation systems is being thoroughly tested, and some of these systems are now approaching operational use.

  20. Magnetic observations at Geophysical Observatory Paratunka IKIR FEB RAS: tasks, possibilities and future prospects

    Science.gov (United States)

    Khomutov, Sergey Y.

    2017-10-01

    Continuous magnetic measurements at Geophysical Observatory "Paratunka" (PET) of IKIR FEB RAS are performed since 1967. In the new millennium analogue magnetometers were modernized to digital, the technologies of absolute observations were changed, the data processing was completely transferred to computers, and the status of INTERMAGNET observatory was obtained. Currently, the observatory uses the following magnetometers: (a) for absolute observations - DIflux LEMI-203 (theodolite 3T2KP) and Mag-01 (theodolite Wild-T1), Overhauser magnetometers POS-1 and GSM-19W; (b) for variation measurements - fluxgate magnetometers FGE-DTU, FRG-601 and MAGDAS (installed under international agreements of IKIR), vector magnetometers dIdD GSM-19FD and POS-4 with Overhauser sensors and coil systems, scalar magnetometer GSM-90 and induction magnetometer STELAB. During Spring-Autumn season dIdD also is installed at remote station "Karymshina" at distance of 15 km from Observatory. There is monitoring system for monitoring of conditions in which magnetic observations are performed, including the semi-professional weather stations Davis Vantage Pro2 and WS2000 and a network of digital temperature sensors DS19B20 located at various points in magnetic pavilions and outdoor. All measurements are synchronized with the UTC. The results of observations are collected by the IKIR data server from the recorders and loggers, including in real-time. Specialized software was developed (based on MATLAB and Octave packages), which allows automatic and semi-automatic processing of data, the comparison of the results from different magnetometers and presenting final data in formats, defined by international standards, including INTERMAGNET. Significant efforts of observatory staff are direct to archive (raw) magnetic data, a significant part of which has not been entirely processed, is not presented in international data centers and is still not available to the scientific community. Digital images of

  1. Magnetic observations at Geophysical Observatory Paratunka IKIR FEB RAS: tasks, possibilities and future prospects

    Directory of Open Access Journals (Sweden)

    Khomutov Sergey Y.

    2017-01-01

    Full Text Available Continuous magnetic measurements at Geophysical Observatory “Paratunka” (PET of IKIR FEB RAS are performed since 1967. In the new millennium analogue magnetometers were modernized to digital, the technologies of absolute observations were changed, the data processing was completely transferred to computers, and the status of INTERMAGNET observatory was obtained. Currently, the observatory uses the following magnetometers: (a for absolute observations – DIflux LEMI-203 (theodolite 3T2KP and Mag-01 (theodolite Wild-T1, Overhauser magnetometers POS-1 and GSM-19W; (b for variation measurements – fluxgate magnetometers FGE-DTU, FRG-601 and MAGDAS (installed under international agreements of IKIR, vector magnetometers dIdD GSM-19FD and POS-4 with Overhauser sensors and coil systems, scalar magnetometer GSM-90 and induction magnetometer STELAB. During Spring-Autumn season dIdD also is installed at remote station “Karymshina” at distance of 15 km from Observatory. There is monitoring system for monitoring of conditions in which magnetic observations are performed, including the semi-professional weather stations Davis Vantage Pro2 and WS2000 and a network of digital temperature sensors DS19B20 located at various points in magnetic pavilions and outdoor. All measurements are synchronized with the UTC. The results of observations are collected by the IKIR data server from the recorders and loggers, including in real-time. Specialized software was developed (based on MATLAB and Octave packages, which allows automatic and semi-automatic processing of data, the comparison of the results from different magnetometers and presenting final data in formats, defined by international standards, including INTERMAGNET. Significant efforts of observatory staff are direct to archive (raw magnetic data, a significant part of which has not been entirely processed, is not presented in international data centers and is still not available to the scientific

  2. Geomagnetic Observatory Database February 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) maintains an active database of worldwide geomagnetic observatory...

  3. Looking Forward to the electronic Geophysical Year

    Science.gov (United States)

    Kamide, Y.; Baker, D. N.; Thompson, B.; Barton, C.; Kihn, E.

    2004-12-01

    During the International Geophysical Year (1957-1958), member countries established many new capabilities pursuing the major IGY objectives of collecting geophysical data as widely as possible and providing free access to these data for all scientists around the globe. A key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories. The worldwide scientific community has now endorsed and is promoting an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the 50th anniversary of the IGY in 2007-2008 and would provide a forward impetus to geophysics in the 21st century, similar to that provide by the IGY fifty years ago. The eGY concept advocates the establishment of a series of virtual geophysical observatories now being deployed in cyberspace. We discuss plans to aggregate measurements into a readily accessible database along with analysis, visualization, and display tools that will make information available and useful to the scientific community, to the user community, and to the general public. We are examining the possibilities for near-realtime acquisition of data and utilization of forecast tools in order to provide users with advanced space weather capabilities. This program will provide powerful tools for education and public outreach concerning the connected Sun-Earth System.

  4. Searching the Heavens and the Earth: This History of Jesuit Observatories

    Science.gov (United States)

    Udías, Agustín

    2003-10-01

    Jesuits established a large number of astronomical, geophysical and meteorological observatories during the 17th and 18th centuries and again during the 19th and 20th centuries throughout the world. The history of these observatories has never been published in a complete form. Many early European astronomical observatories were established in Jesuit colleges. During the 17th and 18th centuries Jesuits were the first western scientists to enter into contact with China and India. It was through them that western astronomy was first introduced in these countries. They made early astronomical observations in India and China and they directed for 150 years the Imperial Observatory of Beijing. In the 19th and 20th centuries a new set of observatories were established. Besides astronomy these now included meteorology and geophysics. Jesuits established some of the earliest observatories in Africa, South America and the Far East. Jesuit observatories constitute an often forgotten chapter of the history of these sciences. This volume is aimed at all scientists and students who do not want to forget the Jesuit contributions to science. Link: http://www.wkap.nl/prod/b/1-4020-1189-X

  5. The study of the midlatitude ionospheric response to geomagnetic activity at Nagycenk Geophysical Observatory

    Science.gov (United States)

    Berényi, Kitti; Kis, Árpád; Barta, Veronika; Novák, Attila

    2016-04-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere, causing several physical and chemical atmospheric processes. The changes and phenomena, which can be seen as a result of these processes, generally called ionospheric storm. These processes depend on altitude, term of the day, and the strength of solar activity, the geomagnetic latitude and longitude. The differences between ionospheric regions mostly come from the variations of altitude dependent neutral and ionized atmospheric components, and from the physical parameters of solar radiation. We examined the data of the ground-based radio wave ionosphere sounding instruments of the European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory), called ionosonde, to determine how and what extent a given strength of a geomagnetic disturbance affect the middle latitude ionospheric regions in winter. We chose the storm for the research from November 2012 and March 2015. As the main result of our research, we can show significant differences between the each ionospheric (F1 and F2) layer parameters on quiet and strong stormy days. When we saw, that the critical frequencies (foF2) increase from their quiet day value, then the effect of the ionospheric storm was positive, otherwise, if they drop, they were negative. With our analysis, the magnitude of these changes could be determined. Furthermore we demonstrated, how a full strong geomagnetic storm affects the ionospheric foF2 parameter during different storm phases. It has been showed, how a positive or negative ionospheric storm develop during a geomagnetic storm. For a more completed analysis, we compared also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. Therefore we determined, that the data of the ionosonde at Nagycenk Geophysical Observatory are appropriate, it detects the same state of ionosphere like the

  6. Moving Beyond IGY: An Electronic Geophysical Year (eGY) Concept

    Science.gov (United States)

    Baker, D. N.; Barton, C. E.; Rodger, A. S.; Thompson, B. J.; Fraser, B.; Papitashvili, V.

    2003-12-01

    During the International Geophysical Year (1957-1958), member countries established many new geophysical observatories pursuing the major IGY objectives - to collect geophysical data as widely as possible and to provide free access to these data for all scientists around the globe. Today, geophysics has attained a rather good understanding within traditional regions, i.e., the atmosphere, ionosphere, magnetosphere, and other such geospheres. At the same time, it has become clear that much of the new and important science is coming from the studies of interfaces and coupling between geospheres. Thus, if geophysical data are made `'transparently'' available to a much wider range of scientists and students than to those who do the observations, then new and exciting discoveries can be expected. An International Association of Geomagnetic and Aeronomy (IAGA) task force, recognizing that a key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories, proposes that for the 50th anniversary of IGY, the worldwide scientific community should endorse and promote an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the IGY in 2007-2008 and provide a forward impetus to geophysics in 21st century, similar to that provided by the IGY fifty years ago. The IAGA task force strongly advocates: (1) Securing permission and release of existing data; (2) Creating access to information; and (3) Conversion of relevant analog data to digital form. The eGY concept embraces all available and upcoming geophysical data (e.g., atmospheric, ionospheric, geomagnetic, gravity, etc.) through the establishment of a series of virtual geophysical observatories now being `'deployed'' in cyberspace. The eGY concept is modern, global, and timely; it is attractive, pragmatic, and affordable. The eGY is based on the existing and continually developing computing/networking technologies (e.g., XML, Semantic Web

  7. Development of Geophysical Ideas and Institutions in Ottoman Empire

    Science.gov (United States)

    Ozcep, Ferhat; Ozcep, Tazegul

    2015-04-01

    In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.

  8. An international network of magnetic observatories

    Science.gov (United States)

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  9. Notes on the history of geophysics in the Ottoman Empire

    Science.gov (United States)

    Ozcep, F.; Ozcep, T.

    2014-09-01

    In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.

  10. Prehistory of geophysical service establishment in the National Nuclear Center of the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Vanchugov, A.G.

    2003-01-01

    To look to the future it is necessary, seeing the present, not to forget the past. Obviously it is important to know 'how was it?', 'in the beginning was the word' - the word of the Ministry of the Republic of Kazakhstan of May 15, 1992 about establishment of the National Nuclear Center of the Republic of Kazakhstan. Originally a geophysical service formed the National Nuclear Center RK as Geophysical Party 35 and Borovoe Geophysical Observatory. (author)

  11. Geodetic and geophysical observations in Antarctica an overview in the IPY perspective

    CERN Document Server

    Capra, Alessandro

    2008-01-01

    This book is a collection of papers on various aspects of the geodetic and geophysical investigation and observation techniques. It includes material from the Arctic and Antarctica, as well as covering work from both temporary and permanent observatories.

  12. NOAA carbon dioxide measurements at Mauna Loa Observatory, 1974-1976

    International Nuclear Information System (INIS)

    Peterson, J.T.; Komhyr, W.D.; Harris, T.B.; Chin, J.F.S.

    1977-01-01

    The Geophysical Monitoring for Climatic Change program of NOAA's Environmental Research Laboratories has measured atmospheric carbon dioxide concentrations at Mauna Loa Observatory, Hawaii, continuously since June 1974. The measurements through 1976 have been analyzed for recent secular concentration changes and show a continuing increase of about 0.9 ppm/year

  13. Saint Petersburg magnetic observatory: from Voeikovo subdivision to INTERMAGNET certification

    Science.gov (United States)

    Sidorov, Roman; Soloviev, Anatoly; Krasnoperov, Roman; Kudin, Dmitry; Grudnev, Andrei; Kopytenko, Yury; Kotikov, Andrei; Sergushin, Pavel

    2017-11-01

    Since June 2012 the Saint Petersburg magnetic observatory is being developed and maintained by two institutions of the Russian Academy of Sciences (RAS) - the Geophysical Center of RAS (GC RAS) and the Saint Petersburg branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of RAS (IZMIRAN SPb). On 29 April 2016 the application of the Saint Petersburg observatory (IAGA code SPG) for introduction into the INTERMAGNET network was accepted after approval by the experts of the first definitive dataset over 2015, produced by the GC RAS, and on 9 June 2016 the SPG observatory was officially certified. One of the oldest series of magnetic observations, originating in 1834, was resumed in the 21st century, meeting the highest quality standards and all modern technical requirements. In this paper a brief historical and scientific background of the SPG observatory foundation and development is given, the stages of its renovation and upgrade in the 21st century are described, and information on its current state is provided. The first results of the observatory functioning are discussed and geomagnetic variations registered at the SPG observatory are assessed and compared with geomagnetic data from the INTERMAGNET observatories located in the same region.

  14. Saint Petersburg magnetic observatory: from Voeikovo subdivision to INTERMAGNET certification

    Directory of Open Access Journals (Sweden)

    R. Sidorov

    2017-11-01

    Full Text Available Since June 2012 the Saint Petersburg magnetic observatory is being developed and maintained by two institutions of the Russian Academy of Sciences (RAS – the Geophysical Center of RAS (GC RAS and the Saint Petersburg branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of RAS (IZMIRAN SPb. On 29 April 2016 the application of the Saint Petersburg observatory (IAGA code SPG for introduction into the INTERMAGNET network was accepted after approval by the experts of the first definitive dataset over 2015, produced by the GC RAS, and on 9 June 2016 the SPG observatory was officially certified. One of the oldest series of magnetic observations, originating in 1834, was resumed in the 21st century, meeting the highest quality standards and all modern technical requirements. In this paper a brief historical and scientific background of the SPG observatory foundation and development is given, the stages of its renovation and upgrade in the 21st century are described, and information on its current state is provided. The first results of the observatory functioning are discussed and geomagnetic variations registered at the SPG observatory are assessed and compared with geomagnetic data from the INTERMAGNET observatories located in the same region.

  15. Experimental Investigation and Analysis of an Annular Pogo Accumulator

    Science.gov (United States)

    Peugeot, John; Schwarz, Jordan; Yang, H. Q.; Zoladz, Tom

    2011-01-01

    An experimental investigation was conducted on a scaled annular pogo accumulator for the Ares I Upper Stage. The test article was representative of the LO2 feedline and preliminary accumulator design, and included multiple designs of a perforated ring connecting the accumulator to the core feedline flow. The system was pulse tested in water over a range of pulse frequency and flow rates. Time dependent measurements of pressure at various locations in the test article were used to extract system compliance, inertance, and resistance. Preliminary results indicated a significant deviation from standard orifice flow theory and suggest a strong dependence on feedline average velocity. In addition, several CFD analyses were conducted to investigate the details of the time variant flow field. Both two-dimensional and three-dimensional simulations were performed with time varying boundary conditions used to represent system pulsing. The CFD results compared well with the sub-scale results and demonstrated the influence of feedline average velocity on the flow into and out of the accumulator. This paper presents updated results of the investigation including a parametric design space for determining resistance characteristics. Using the updated experimental results a new scaling relationship has been defined for shear flow over a cavity. A comparison of sub-scale and full scale CFD simulations provided early verification of the scaling of the fluid flowfield and resistance characteristics.

  16. Mapping the earth's magnetic and gravity fields from space Current status and future prospects

    Science.gov (United States)

    Settle, M.; Taranik, J. V.

    1983-01-01

    The principal magnetic fields encountered by earth orbiting spacecraft include the main (core) field, external fields produced by electrical currents within the ionosphere and magnetosphere, and the crustal (anomaly) field generated by variations in the magnetization of the outermost portions of the earth. The first orbital field measurements which proved to be of use for global studies of crustal magnetization were obtained by a series of three satellites launched and operated from 1965 to 1971. Each of the satellites, known as a Polar Orbiting Geophysical Observatory (POGO), carried a rubidium vapor magnetometer. Attention is also given to Magsat launched in 1979, the scalar anomaly field derived from the Magsat measurements, satellite tracking studies in connection with gravity field surveys, radar altimetry, the belt of positive free air gravity anomalies situated along the edge of the Pacific Ocean basin, future technological capabilities, and information concerning data availability.

  17. Improving Discoverability of Geophysical Data using Location Based Services

    Science.gov (United States)

    Morrison, D.; Barnes, R. J.; Potter, M.; Nylund, S. R.; Patrone, D.; Weiss, M.; Talaat, E. R.; Sarris, T. E.; Smith, D.

    2014-12-01

    The great promise of Virtual Observatories is the ability to perform complex search operations across the metadata of a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) has many diverse geophysical datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time. One of the key challenges in improving discoverability is the ability to identify portions of datasets that overlap in time and in location. The difficulty is that location data is not contained in the metadata for datasets produced by satellites and would be extremely large in volume if it were available, making searching for overlapping data very time consuming. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for VITMO and others. The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. These services run in real-time when the user queries for data. They will allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists, making it easier for future students who come into the field.

  18. Geophysical data collection using an interactive personal computer system. Part 1. ; Experimental monitoring of Suwanosejima volcano

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, M. (Kyoto Univerdity, Kyoto (Japan). Disaster Prevention Reserach Institute)

    1991-10-15

    In the article, a computer-communication system was developed in order to collect geophysical data from remote volcanos via a public telephpne network. This system is composed of a host presonal computer at an observatory and several personal computers as terminals at remote stations. Each terminal acquires geophysical data, such as seismic, intrasonic, and ground deformation date. These gara are stored in the terminals temporarily, and transmitted to the host computer upon command from host computer. Experimental monitoring was conducted between Sakurajima Volcanological Observatory and several statins in the Satsunan Islands and southern Kyushu. The seismic and eruptive activities of Suwanosejima volcano were monitored by this system. Consequently, earthquakes and air-shocks accompanied by the explosive activity were observed. B-type earthquakes occurred prio to the relatively prolonged eruptive activity. Intermittent occurrences of volcanic tremors were also clearly recognized from the change in mean amplitubes of seismic waves. 7 refs., 10 figs., 2 tabs.

  19. NEMO-SN-1 the first 'real-time' seafloor observatory of ESONET

    International Nuclear Information System (INIS)

    Favali, Paolo; Beranzoli, Laura; D'Anna, Giuseppe; Gasparoni, Francesco; Gerber, Hans W.

    2006-01-01

    The fruitful collaboration between Italian Research Institutions, particularly Istituto Nazionale di Fisica Nucleare (INFN) and Istituto Nazionale di Geofisica e Vulcanologia (INGV) together with Marine Engineering Companies, led to the development of NEMO-SN-1, the first European cabled seafloor multiparameter observatory. This observatory, deployed at 2060 m w.d. about 12 miles off-shore the Eastern coasts of Sicily (Southern Italy), is in real-time acquisition since January 2005 and addressed to different set of measurements: geophysical and oceanographic. In particular the SN-1 seismological data are integrated in the INGV land-based national seismic network, and they arrive in real-time to the Operative Centre in Rome. In the European Commission (EC) European Seafloor Observatory NETwork (ESONET) project, in connection to the Global Monitoring for Environment and Security (GMES) action plan, the NEMO-SN-1 site has been proposed as an European key area, both for its intrinsic importance for geo-hazards and for the availability of infrastructure as a stepwise development in GMES program. Presently, NEMO-SN-1 is the only ESONET site operative. The paper gives a description of SN-1 observatory with examples of data

  20. Accelerated finite element elastodynamic simulations using the GPU

    Energy Technology Data Exchange (ETDEWEB)

    Huthwaite, Peter, E-mail: p.huthwaite@imperial.ac.uk

    2014-01-15

    An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from (http://www.pogo-fea.com/) to benefit the community. -- Highlights: •A novel memory arrangement approach is discussed for finite elements on the GPU. •The mesh is partitioned then nodes are arranged efficiently within each partition. •Models from ultrasonics, vibrations and geophysics are run. •The code is significantly faster than an equivalent commercial CPU package. •Pogo, the new software package, is released open source.

  1. Accelerated finite element elastodynamic simulations using the GPU

    International Nuclear Information System (INIS)

    Huthwaite, Peter

    2014-01-01

    An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from (http://www.pogo-fea.com/) to benefit the community. -- Highlights: •A novel memory arrangement approach is discussed for finite elements on the GPU. •The mesh is partitioned then nodes are arranged efficiently within each partition. •Models from ultrasonics, vibrations and geophysics are run. •The code is significantly faster than an equivalent commercial CPU package. •Pogo, the new software package, is released open source

  2. The Virtual Wave Observatory (VWO): A Portal to Heliophysics Wave Data

    Science.gov (United States)

    Fung, Shing F.

    2010-01-01

    The Virtual Wave Observatory (VWO) is one of the discipline-oriented virtual observatories that help form the nascent NASA Heliophysics Data environment to support heliophysics research. It focuses on supporting the searching and accessing of distributed heliophysics wave data and information that are available online. Since the occurrence of a natural wave phenomenon often depends on the underlying geophysical -- i.e., context -- conditions under which the waves are generated and propagate, and the observed wave characteristics can also depend on the location of observation, VWO will implement wave-data search-by-context conditions and location, in addition to searching by time and observing platforms (both space-based and ground-based). This paper describes the VWO goals, the basic design objectives, and the key VWO functionality to be expected. Members of the heliophysics community are invited to participate in VWO development in order to ensure its usefulness and success.

  3. Critical zone architecture and processes: a geophysical perspective

    Science.gov (United States)

    Holbrook, W. S.

    2016-12-01

    The "critical zone (CZ)," Earth's near-surface layer that reaches from treetop to bedrock, sustains terrestrial life by storing water and producing nutrients. Despite is central importance, however, the CZ remains poorly understood, due in part to the complexity of interacting biogeochemical and physical processes that take place there, and in part due to the difficulty of measuring CZ properties and processes at depth. Major outstanding questions include: What is the architecture of the CZ? How does that architecture vary across scales and across gradients in climate, lithology, topography, biology and regional states of stress? What processes control the architecture of the CZ? At what depth does weathering initiate, and what controls the rates at which it proceeds? Based on recent geophysical campaigns at seven Critical Zone Observatory (CZO) sites and several other locations, a geophysical perspective on CZ architecture and processes is emerging. CZ architecture can be usefully divided into four layers, each of which has distinct geophysical properties: soil, saprolite, weathered bedrock and protolith. The distribution of those layers across landscapes varies depending on protolith composition and internal structure, topography, climate (P/T) and the regional state of stress. Combined observations from deep CZ drilling, geophysics and geochemistry demonstrate that chemical weathering initiates deep in the CZ, in concert with mechanical weathering (fracturing), as chemical weathering appears concentrated along fractures in borehole walls. At the Calhoun CZO, the plagioclase weathering front occurs at nearly 40 m depth, at the base of a 25-m-thick layer of weathered bedrock. The principal boundary in porosity, however, occurs at the saprolite/weathered bedrock boundary: porosity decreases over an order of magnitude, from 50% to 5% over an 8-m-thick zone at the base of saprolite. Porosity in weathered bedrock is between 2-5%. Future progress will depend on (1

  4. Integration of topological modification within the modeling of multi-physics systems: Application to a Pogo-stick

    Science.gov (United States)

    Abdeljabbar Kharrat, Nourhene; Plateaux, Régis; Miladi Chaabane, Mariem; Choley, Jean-Yves; Karra, Chafik; Haddar, Mohamed

    2018-05-01

    The present work tackles the modeling of multi-physics systems applying a topological approach while proceeding with a new methodology using a topological modification to the structure of systems. Then the comparison with the Magos' methodology is made. Their common ground is the use of connectivity within systems. The comparison and analysis of the different types of modeling show the importance of the topological methodology through the integration of the topological modification to the topological structure of a multi-physics system. In order to validate this methodology, the case of Pogo-stick is studied. The first step consists in generating a topological graph of the system. Then the connectivity step takes into account the contact with the ground. During the last step of this research; the MGS language (Modeling of General System) is used to model the system through equations. Finally, the results are compared to those obtained by MODELICA. Therefore, this proposed methodology may be generalized to model multi-physics systems that can be considered as a set of local elements.

  5. The magnetic field of the earth - Performance considerations for space-based observing systems

    Science.gov (United States)

    Webster, W. J., Jr.; Taylor, P. T.; Schnetzler, C. C.; Langel, R. A.

    1985-01-01

    Basic problems inherent in carrying out observations of the earth magnetic field from space are reviewed. It is shown that while useful observations of the core and crustal fields are possible at the peak of the solar cycle, the greatest useful data volume is obtained during solar minimum. During the last three solar cycles, the proportion of data with a planetary disturbance index of less than 2 at solar maximum was in the range 0.4-0.8 in comparison with solar minimum. It is found that current state of the art orbit determination techniques should eliminate orbit error as a problem in gravitational field measurements from space. The spatial resolution obtained for crustal field anomalies during the major satellite observation programs of the last 30 years are compared in a table. The relationship between observing altitude and the spatial resolution of magnetic field structures is discussed. Reference is made to data obtained using the Magsat, the Polar Orbiting Geophysical Observatory (POGO), and instruments on board the Space Shuttle.

  6. A framework for cross-observatory volcanological database management

    Science.gov (United States)

    Aliotta, Marco Antonio; Amore, Mauro; Cannavò, Flavio; Cassisi, Carmelo; D'Agostino, Marcello; Dolce, Mario; Mastrolia, Andrea; Mangiagli, Salvatore; Messina, Giuseppe; Montalto, Placido; Fabio Pisciotta, Antonino; Prestifilippo, Michele; Rossi, Massimo; Scarpato, Giovanni; Torrisi, Orazio

    2017-04-01

    In the last years, it has been clearly shown how the multiparametric approach is the winning strategy to investigate the complex dynamics of the volcanic systems. This involves the use of different sensor networks, each one dedicated to the acquisition of particular data useful for research and monitoring. The increasing interest devoted to the study of volcanological phenomena led the constitution of different research organizations or observatories, also relative to the same volcanoes, which acquire large amounts of data from sensor networks for the multiparametric monitoring. At INGV we developed a framework, hereinafter called TSDSystem (Time Series Database System), which allows to acquire data streams from several geophysical and geochemical permanent sensor networks (also represented by different data sources such as ASCII, ODBC, URL etc.), located on the main volcanic areas of Southern Italy, and relate them within a relational database management system. Furthermore, spatial data related to different dataset are managed using a GIS module for sharing and visualization purpose. The standardization provides the ability to perform operations, such as query and visualization, of many measures synchronizing them using a common space and time scale. In order to share data between INGV observatories, and also with Civil Protection, whose activity is related on the same volcanic districts, we designed a "Master View" system that, starting from the implementation of a number of instances of the TSDSystem framework (one for each observatory), makes possible the joint interrogation of data, both temporal and spatial, on instances located in different observatories, through the use of web services technology (RESTful, SOAP). Similarly, it provides metadata for equipment using standard schemas (such as FDSN StationXML). The "Master View" is also responsible for managing the data policy through a "who owns what" system, which allows you to associate viewing/download of

  7. Geophysical Tools, Challenges and Perspectives Related to Natural Hazards, Climate Change and Food Security

    Science.gov (United States)

    Fucugauchi, J. U.

    2013-05-01

    In the coming decades a changing climate and natural hazards will likely increase the vulnerability of agricultural and other food production infrastructures, posing increasing treats to industrialized and developing economies. While food security concerns affect us globally, the huge differences among countries in stocks, population size, poverty levels, economy, technologic development, transportation, health care systems and basic infrastructure will pose a much larger burden on populations in the developing and less developed world. In these economies, increase in the magnitude, duration and frequency of droughts, floods, hurricanes, rising sea levels, heat waves, thunderstorms, freezing events and other phenomena will pose severe costs on the population. For this presentation, we concentrate on a geophysical perspective of the problems, tools available, challenges and short and long-term perspectives. In many instances, a range of natural hazards are considered as unforeseen catastrophes, which suddenly affect without warning, resulting in major losses. Although the forecasting capacity in the different situations arising from climate change and natural hazards is still limited, there are a range of tools available to assess scenarios and forecast models for developing and implementing better mitigation strategies and prevention programs. Earth observation systems, geophysical instrumental networks, satellite observatories, improved understanding of phenomena, expanded global and regional databases, geographic information systems, higher capacity for computer modeling, numerical simulations, etc provide a scientific-technical framework for developing strategies. Hazard prevention and mitigation programs will result in high costs globally, however major costs and challenges concentrate on the less developed economies already affected by poverty, famines, health problems, social inequalities, poor infrastructure, low life expectancy, high population growth

  8. SAGE (Summer of Applied Geophysical Experience): Learning Geophysics by Doing Geophysics

    Science.gov (United States)

    Jiracek, G. R.; Baldridge, W. S.; Biehler, S.; Braile, L. W.; Ferguson, J. F.; Gilpin, B. E.; Pellerin, L.

    2005-12-01

    SAGE, a field-based educational program in applied geophysical methods has been an REU site for 16 years and completed its 23rd year of operation in July 2005. SAGE teaches the major geophysical exploration methods (including seismics, gravity, magnetics, and electromagnetics) and applies them to the solution of specific local and regional geologic problems. These include delineating buried hazardous material; mapping archaeological sites; and studying the structure, tectonics, and water resources of the Rio Grande rift in New Mexico. Nearly 600 graduates, undergraduates, and professionals have attended SAGE since 1983. Since 1990 REU students have numbered 219 coming from dozens of different campuses. There have been 124 underrepresented REU students including 100 women, 14 Hispanics, 7 Native Americans, and 3 African Americans. Tracking of former REU students has revealed that 81% have gone on to graduate school. Keys to the success of SAGE are hands-on immersion in geophysics for one month and a partnership between academia, industry, and a federal laboratory. Successful approaches at SAGE include: 1) application of the latest equipment by all students; 2) continued updating of equipment, computers, and software by organizing universities and industry affiliates; 3) close ties with industry who provide supplemental instruction, furnish new equipment and software, and alert students to the current industry trends and job opportunities; 4) two-team, student data analysis structure that simultaneously addresses specific geophysical techniques and their integration; and 5) oral and written reports patterned after professional meetings and journals. An eight member, 'blue ribbon' advisory panel from academia, industry, and the federal government has been set up to maintain the vitality of SAGE by addressing such issues as funding, new faculty, organization, and vision. SAGE is open to students from any university (or organization) with backgrounds including

  9. Data base management system and display software for the National Geophysical Data Center geomagnetic CD-ROM's

    Science.gov (United States)

    Papitashvili, N. E.; Papitashvili, V. O.; Allen, J. H.; Morris, L. D.

    1995-01-01

    The National Geophysical Data Center has the largest collection of geomagnetic data from the worldwide network of magnetic observatories. The data base management system and retrieval/display software have been developed for the archived geomagnetic data (annual means, monthly, daily, hourly, and 1-minute values) and placed on the center's CD-ROM's to provide users with 'user-oriented' and 'user-friendly' support. This system is described in this paper with a brief outline of provided options.

  10. Temperature correction and usefulness of ocean bottom pressure data from cabled seafloor observatories around Japan for analyses of tsunamis, ocean tides, and low-frequency geophysical phenomena

    Science.gov (United States)

    Inazu, D.; Hino, R.

    2011-11-01

    Ocean bottom pressure (OBP) data obtained by cabled seafloor observatories deployed around Japan, are known to be significantly affected by temperature changes. This paper examines the relationship between the OBP and temperature records of six OBP gauges in terms of a regression coefficient and lag at a wide range of frequencies. No significant temperature dependency is recognized in secular variations, while substantial increases, at rates of the order of 1 hPa/year, are commonly evident in the OBP records. Strong temperature dependencies are apparent for periods of hours to days, and we correct the OBP data based on the estimated OBP-temperature relationship. At periods longer than days, the temperature corrections work well for extracting geophysical signals for OBP data at a station off Hokkaido (KPG2), while other corrected data show insufficient signal-to-noise ratios. At a tsunami frequency, the correction can reduce OBP fluctuations, due to rapid temperature changes, by as much as millimeters, and is especially effective for data at a station off Shikoku (MPG2) at which rapid temperature changes most frequently occur. A tidal analysis shows that OBP data at a station off Honshu (TM1), and at KPG2, are useful for studies on the long-term variations of tidal constituents.

  11. Geophysical Field Theory

    International Nuclear Information System (INIS)

    Eloranta, E.

    2003-11-01

    The geophysical field theory includes the basic principles of electromagnetism, continuum mechanics, and potential theory upon which the computational modelling of geophysical phenomena is based on. Vector analysis is the main mathematical tool in the field analyses. Electrostatics, stationary electric current, magnetostatics, and electrodynamics form a central part of electromagnetism in geophysical field theory. Potential theory concerns especially gravity, but also electrostatics and magnetostatics. Solid state mechanics and fluid mechanics are central parts in continuum mechanics. Also the theories of elastic waves and rock mechanics belong to geophysical solid state mechanics. The theories of geohydrology and mass transport form one central field theory in geophysical fluid mechanics. Also heat transfer is included in continuum mechanics. (orig.)

  12. Fundamentals of Geophysics

    Science.gov (United States)

    Lowrie, William

    1997-10-01

    This unique textbook presents a comprehensive overview of the fundamental principles of geophysics. Unlike most geophysics textbooks, it combines both the applied and theoretical aspects to the subject. The author explains complex geophysical concepts using abundant diagrams, a simplified mathematical treatment, and easy-to-follow equations. After placing the Earth in the context of the solar system, he describes each major branch of geophysics: gravitation, seismology, dating, thermal and electrical properties, geomagnetism, paleomagnetism and geodynamics. Each chapter begins with a summary of the basic physical principles, and a brief account of each topic's historical evolution. The book will satisfy the needs of intermediate-level earth science students from a variety of backgrounds, while at the same time preparing geophysics majors for continued study at a higher level.

  13. One second vector and scalar magnetic measurements at the low-latitude Choutuppal (CPL) magnetic observatory

    Science.gov (United States)

    Phani Chandrasekhar, Nelapatla; Potharaju, Sai Vijay Kumar; Arora, Kusumita; Shakar Rao Kasuba, Chandra; Rakhlin, Leonid; Tymoshyn, Sergey; Merenyi, Laszlo; Chilukuri, Anusha; Bulusu, Jayashree; Khomutov, Sergey

    2017-12-01

    One second measurements of the geomagnetic field variations, which meet INTERMAGNET quality and transmission specifications, require very special conditions to be maintained at the observatories over sustained periods of time, which pose serious challenges for the operators, particularly when infrastructural and environmental conditions are far from ideal. This work presents the progressive steps, which led to the successful setup of such measurements at the new magnetic observatory of the Council of Scientific and Industrial Research (CSIR)-National Geophysical Research Institute (NGRI) in the Choutuppal (CPL) campus, Hyderabad (HYB), India. The 1 s magnetic measurements in trial mode commenced in 2015 using the newly developed observatory-grade 1 s fluxgate magnetometer, GEOMAG-02MO, from Research Centre GEOMAGNET (GM), Ukraine, and the Overhauser proton precession magnetometer, GSM-90F1, along with the data acquisition system, Magrec-4B from Mingeo, Hungary. Iterative tuning of the setup led to the generation of good quality data from 2016 onward. The processes of commissioning this setup in low-latitude conditions, with the aim of producing 1 s definitive data, and the characteristics of the data from this new instrument are presented here.

  14. One second vector and scalar magnetic measurements at the low-latitude Choutuppal (CPL magnetic observatory

    Directory of Open Access Journals (Sweden)

    N. Phani Chandrasekhar

    2017-12-01

    Full Text Available One second measurements of the geomagnetic field variations, which meet INTERMAGNET quality and transmission specifications, require very special conditions to be maintained at the observatories over sustained periods of time, which pose serious challenges for the operators, particularly when infrastructural and environmental conditions are far from ideal. This work presents the progressive steps, which led to the successful setup of such measurements at the new magnetic observatory of the Council of Scientific and Industrial Research (CSIR-National Geophysical Research Institute (NGRI in the Choutuppal (CPL campus, Hyderabad (HYB, India. The 1 s magnetic measurements in trial mode commenced in 2015 using the newly developed observatory-grade 1 s fluxgate magnetometer, GEOMAG-02MO, from Research Centre GEOMAGNET (GM, Ukraine, and the Overhauser proton precession magnetometer, GSM-90F1, along with the data acquisition system, Magrec-4B from Mingeo, Hungary. Iterative tuning of the setup led to the generation of good quality data from 2016 onward. The processes of commissioning this setup in low-latitude conditions, with the aim of producing 1 s definitive data, and the characteristics of the data from this new instrument are presented here.

  15. Private Observatories in South Africa

    Science.gov (United States)

    Rijsdijk, C.

    2016-12-01

    Descriptions of private observatories in South Africa, written by their owners. Positions, equipment descriptions and observing programmes are given. Included are: Klein Karoo Observatory (B. Monard), Cederberg Observatory (various), Centurion Planetary and Lunar Observatory (C. Foster), Le Marischel Observatory (L. Ferreira), Sterkastaaing Observatory (M. Streicher), Henley on Klip (B. Fraser), Archer Observatory (B. Dumas), Overbeek Observatory (A. Overbeek), Overberg Observatory (A. van Staden), St Cyprian's School Observatory, Fisherhaven Small Telescope Observatory (J. Retief), COSPAR 0433 (G. Roberts), COSPAR 0434 (I. Roberts), Weltevreden Karoo Observatory (D. Bullis), Winobs (M. Shafer)

  16. Geophysical borehole logging

    International Nuclear Information System (INIS)

    McCann, D.; Barton, K.J.; Hearn, K.

    1981-08-01

    Most of the available literature on geophysical borehole logging refers to studies carried out in sedimentary rocks. It is only in recent years that any great interest has been shown in geophysical logging in boreholes in metamorphic and igneous rocks following the development of research programmes associated with geothermal energy and nuclear waste disposal. This report is concerned with the programme of geophysical logging carried out on the three deep boreholes at Altnabreac, Caithness, to examine the effectiveness of these methods in crystalline rock. Of particular importance is the assessment of the performance of the various geophysical sondes run in the boreholes in relation to the rock mass properties. The geophysical data can be used to provide additional in-situ information on the geological, hydrogeological and engineering properties of the rock mass. Fracturing and weathering in the rock mass have a considerable effect on both the design parameters for an engineering structure and the flow of water through the rock mass; hence, the relation between the geophysical properties and the degree of fracturing and weathering is examined in some detail. (author)

  17. HMF-Geophysics - An Update

    Science.gov (United States)

    Crook, N.; Knight, R.; Robinson, D.

    2007-12-01

    There is growing recognition of the challenges we face, in many parts of the world, in finding and maintaining clean sources of water for human consumption and agricultural use, while balancing the needs of the natural world. Advancements in hydrologic sciences are needed in order to develop an improved understanding of the controls on the quantity, movement, and quality of water, thus enhancing our ability to better protect and manage our water resources. Geophysical methods can play a central role in these investigations. CUAHSI (Consortium of Universities for the Advancement of Hydrologic Sciences) is developing, with the support of the National Science Foundation, a Hydrologic Measurement Facility (HMF), which contains a Geophysics module, referred to as HMF-Geophysics. The Geophysics module will support and advance the use of geophysics for hydrologic applications. Currently in second year of a 3 year pilot study, the main aim of HMF-Geophysics is to develop the infrastructure necessary to provide geophysical techniques and the expertise to apply them correctly for the hydrological community. The current working model consists of a central HMF-Geophysics facility and a number of volunteer nodes. The latter consists of individuals at universities who have volunteered to be part of HMF-Geophysics by using their equipment, and/or software, and expertise, in research partnerships with hydrologists. In response to an inquiry the central facility takes on the evaluation of the potential of geophysics to the area of research/watershed. The central facility can then undertake a feasibility study to determine how/if geophysical methods could be of use, and to evaluate the "value-added" by geophysics to the science. Once it is clear that the geophysics can contribute in a significant way to addressing the science questions the central facility works with the hydrologist to set up the next step. Our assumption is that at this point, the hydrologist (perhaps with a

  18. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    Science.gov (United States)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  19. Observatories and Telescopes of Modern Times

    Science.gov (United States)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  20. Taurus Hill Observatory Scientific Observations for Pulkova Observatory during the 2016-2017 Season

    Science.gov (United States)

    Hentunen, V.-P.; Haukka, H.; Heikkinen, E.; Salmi, T.; Juutilainen, J.

    2017-09-01

    Taurus Hill Observatory (THO), observatory code A95, is an amateur observatory located in Varkaus, Finland. The observatory is maintained by the local astronomical association Warkauden Kassiopeia. THO research team has observed and measured various stellar objects and phenomena. Observatory has mainly focused on exoplanet light curve measurements, observing the gamma rays burst, supernova discoveries and monitoring. We also do long term monitoring projects.

  1. Geophysics

    CERN Document Server

    Bolt, Bruce

    1973-01-01

    Methods in Computational Physics, Volume 13: Geophysics is a 10-chapter text that focuses with the theoretical solid-earth geophysics. This volume specifically covers the general topics of terrestrial magnetism and electricity, the Earth's gravity field, tidal deformations, dynamics of global spin, spin processing, and convective models for the deep interior. This volume surveys first the construction of mathematical models, such as the representation of the geomagnetic field by assuming arrangements of multipole sources in the core and the fast computer evaluation of two- and three-dimensiona

  2. Advances in geophysics

    CERN Document Server

    Sato, Haruo

    2013-01-01

    The critically acclaimed serialized review journal for over 50 years, Advances in Geophysics is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now in its 54th volume, it contains much material still relevant today--truly an essential publication for researchers in all fields of geophysics.Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field

  3. Oman Drilling Project Phase I Borehole Geophysical Survey

    Science.gov (United States)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.

    2017-12-01

    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for

  4. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    Science.gov (United States)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  5. Pro-Amateur Observatories as a Significant Resource for Professional Astronomers - Taurus Hill Observatory

    Science.gov (United States)

    Haukka, H.; Hentunen, V.-P.; Nissinen, M.; Salmi, T.; Aartolahti, H.; Juutilainen, J.; Vilokki, H.

    2013-09-01

    Taurus Hill Observatory (THO), observatory code A95, is an amateur observatory located in Varkaus, Finland. The observatory is maintained by the local astronomical association of Warkauden Kassiopeia [8]. THO research team has observed and measured various stellar objects and phenomena. Observatory has mainly focuse d on asteroid [1] and exoplanet light curve measurements, observing the gamma rays burst, supernova discoveries and monitoring [2]. We also do long term monitoring projects [3]. THO research team has presented its research work on previous EPSC meetings ([4], [5],[6], [7]) and got very supportive reactions from the European planetary science community. The results and publications that pro-amateur based observatories, like THO, have contributed, clearly demonstrates that pro-amateurs area significant resource for the professional astronomers now and even more in the future.

  6. The Carl Sagan solar and stellar observatories as remote observatories

    Science.gov (United States)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  7. Sustainable urban development and geophysics

    Science.gov (United States)

    Liu, Lanbo; Chan, L. S.

    2007-09-01

    The new millennium has seen a fresh wave of world economic development especially in the Asian-Pacific region. This has contributed to further rapid urban expansion, creating shortages of energy and resources, degradation of the environment, and changes to climatic patterns. Large-scale, new urbanization is mostly seen in developing countries but urban sprawl is also a major social problem for developed nations. Urbanization has been accelerating at a tremendous rate. According to data collected by the United Nations [1], 50 years ago less than 30% of the world population lived in cities. Now, more than 50% are living in urban settings which occupy only about 1% of the Earth's surface. During the period from 1950 to 1995, the number of cities with a population higher than one million increased from 83 to 325. By 2025 it is estimated that more than 60% of 8.3 billion people (the projected world population [1]) will be city dwellers. Urbanization and urban sprawl can affect our living quality both positively and negatively. In recent years geophysics has found significant and new applications in highly urbanized settings. Such applications are conducive to the understanding of the changes and impacts on the physical environment and play a role in developing sustainable urban infrastructure systems. We would like to refer to this field of study as 'urban geophysics'. Urban geophysics is not simply the application of geophysical exploration in the cities. Urbanization has brought about major changes to the geophysical fields of cities, including those associated with electricity, magnetism, electromagnetism and heat. An example is the increased use of electromagnetic waves in wireless communication, transportation, office automation, and computer equipment. How such an increased intensity of electromagnetic radiation affects the behaviour of charged particles in the atmosphere, the equilibrium of ecological systems, or human health, are new research frontiers to be

  8. Astronomical publications of Melbourne Observatory

    Science.gov (United States)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  9. European Southern Observatory

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    Professor A. Blaauw, Director general of the European Southern Observatory, with George Hampton on his right, signs the Agreement covering collaboration with CERN in the construction of the large telescope to be installed at the ESO Observatory in Chile.

  10. Improvements in geomagnetic observatory data quality

    DEFF Research Database (Denmark)

    Reda, Jan; Fouassier, Danielle; Isac, Anca

    2011-01-01

    between observatories and the establishment of observatory networks has harmonized standards and practices across the world; improving the quality of the data product available to the user. Nonetheless, operating a highquality geomagnetic observatory is non-trivial. This article gives a record...... of the current state of observatory instrumentation and methods, citing some of the general problems in the complex operation of geomagnetic observatories. It further gives an overview of recent improvements of observatory data quality based on presentation during 11th IAGA Assembly at Sopron and INTERMAGNET...

  11. ANNALS OF GEOPHYSICS: AD MAJORA

    Directory of Open Access Journals (Sweden)

    Fabio Florindo

    2014-03-01

    Full Text Available Annals of Geophysics is a bimonthly international journal, which publishes scientific papers in the field of geophysics sensu lato. It derives from Annali di Geofisica, which commenced publication in January 1948 as a quarterly periodical devoted to general geophysics, seismology, earth magnetism, and atmospheric studies. The journal was published regularly for a quarter of a century until 1982 when it merged with the French journal Annales de Géophysique to become Annales Geophysicae under the aegis of the European Geophysical Society. In 1981, this journal ceased publication of the section on solid earth geophysics, ending the legacy of Annali di Geofisica. In 1993, the Istituto Nazionale di Geofisica (ING, founder of the journal, decided to resume publication of its own journal under the same name, Annali di Geofisica. To ensure continuity, the first volume of the new series was assigned the volume number XXXVI (following the last issue published in 1982. In 2002, with volume XLV, the name of the journal was translated into English to become Annals of Geophysics and in consequence the journal impact factor counter was restarted. Starting in 2010, in order to improve its status and better serve the science community, Annals of Geophysics has instituted a number of editorial changes including full electronic open access, freely accessible online, the possibility to comment on and discuss papers online, and a board of editors representing Asia and the Americas as well as Europe. [...

  12. Developments in geophysical exploration methods

    CERN Document Server

    1982-01-01

    One of the themes in current geophysical development is the bringing together of the results of observations made on the surface and those made in the subsurface. Several benefits result from this association. The detailed geological knowledge obtained in the subsurface can be extrapolated for short distances with more confidence when the geologi­ cal detail has been related to well-integrated subsurface and surface geophysical data. This is of value when assessing the characteristics of a partially developed petroleum reservoir. Interpretation of geophysical data is generally improved by the experience of seeing the surface and subsurface geophysical expression of a known geological configuration. On the theoretical side, the understanding of the geophysical processes themselves is furthered by the study of the phenomena in depth. As an example, the study of the progress of seismic wave trains downwards and upwards within the earth has proved most instructive. This set of original papers deals with some of ...

  13. Chaos theory in geophysics: past, present and future

    International Nuclear Information System (INIS)

    Sivakumar, B.

    2004-01-01

    The past two decades of research on chaos theory in geophysics has brought about a significant shift in the way we view geophysical phenomena. Research on chaos theory in geophysics continues to grow at a much faster pace, with applications to a wide variety of geophysical phenomena and geophysical problems. In spite of our success in understanding geophysical phenomena also from a different (i.e. chaotic) perspective, there still seems to be lingering suspicions on the scope of chaos theory in geophysics. The goal of this paper is to present a comprehensive account of the achievements and status of chaos theory in geophysics, and to disseminate the hope and scope for the future. A systematic review of chaos theory in geophysics, covering a wide spectrum of geophysical phenomena studied (e.g. rainfall, river flow, sediment transport, temperature, pressure, tree ring series, etc.), is presented to narrate our past achievements not only in understanding and predicting geophysical phenomena but also in improving the chaos identification and prediction techniques. The present state of chaos research in geophysics (in terms of geophysical phenomena, problems, and chaos methods) and potential for future improvements (in terms of where, why and possibly how) are also highlighted. Our popular views of nature (i.e. stochastic and deterministic), and of geophysical phenomena in particular, are discussed, and the usefulness of chaos theory as a bridge between such views is also put forth

  14. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    Science.gov (United States)

    Gurman, Joseph B.

    2007-01-01

    The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."

  15. Developing geophysical monitoring at Mayon volcano, a collaborative project EOS-PHIVOLCS

    Science.gov (United States)

    Hidayat, D.; Laguerta, E.; Baloloy, A.; Valerio, R.; Marcial, S. S.

    2011-12-01

    Mayon is an openly-degassed volcano, producing mostly small, frequent eruptions, most recently in Aug-Sept 2006 and Dec 2009. Mayon volcano status is level 1 with low seismicity dominated mostly local and regional tectonic earthquakes with continuous emission of SO2 from its crater. A research collaboration between Earth Observatory of Singapore-NTU and Philippine Institute of Volcanology and Seismology (PHIVOLCS) have been initiated in 2010 with effort to develop a multi-disciplinary monitoring system around Mayon includes geophysical monitoring, gas geochemical monitoring, and petrologic studies. Currently there are 4 broadband seismographs, 3 short period instruments, and 4 tiltmeters. These instruments will be telemetered to the Lignon Hill Volcano Observatory through radio and 3G broadband internet. We also make use of our self-made low-cost datalogger which has been operating since Jan 2011, performing continuous data acquisition with sampling rate of 20 minute/sample and transmitted through gsm network. First target of this monitoring system is to obtain continuous multi parameter data transmitted in real time to the observatory from different instruments. Tectonically, Mayon is located in the Oas Graben, a northwest-trending structural depression. Previous study using InSAR data, showing evidence of a left-lateral oblique slip movement of the fault North of Mayon. Understanding on what structures active deformation is occurring and how deformation signal is currently partitioned between tectonic and volcanic origin is a key for characterizing magma movement in the time of unrest. Preliminary analysis of the tangential components of tiltmeters (particularly the stations 5 and 7.5 NE from the volcano) shows gradual inflation movement over a few months period. The tangential components for tiltmeters are roughly perpendicular to the fault north of Mayon. This may suggest downward tilting of the graben in the northern side of Mayon. Another possibility is that

  16. Annals of the International Geophysical Year solar radio emission during the International Geophysical Year

    CERN Document Server

    Smerd, S F

    1969-01-01

    Annals of the International Geophysical Year, Volume 34: Solar Radio Emission During the International Geophysical Year covers the significant solar radio emission events observed during the International Geophysical Year (IGY). This book is composed of six chapters, and begins with a summary of tabulated quantities describing solar radio emission during the IGY. The tabulated figures illustrate the method of recording the position of radio sources on the sun, the use of symbols in describing the structure of bursts observed at single frequencies, and the different types used in a spectral

  17. Development from the seafloor to the sea surface of the cabled NEMO-SN1 observatory in the Western Ionian Sea

    Science.gov (United States)

    Sparnocchia, Stefania; Beranzoli, Laura; Borghini, Mireno; Durante, Sara; Favali, Paolo; Giovanetti, Gabriele; Italiano, Francesco; Marinaro, Giuditta; Meccia, Virna; Papaleo, Riccardo; Riccobene, Giorgio; Schroeder, Katrin

    2015-04-01

    A prototype of cabled deep-sea observatory has been operating in real-time since 2005 in Southern Italy (East Sicily, 37°30' N - 15°06'E), at 2100 m water depth, 25 km from the harbor of the city of Catania. It is the first-established real-time node of the "European Multidisciplinary Seafloor and water column Observatory" (EMSO, http://www.emso-eu.org) a research infrastructure of the Sector Environment of ESFRI. In the present configuration it consists of two components: the multi-parametric station NEMO-SN1 (TSN branch) equipped with geophysical and environmental sensors for measurements at the seafloor, and the NEMO-OνDE station (TSS branch) equipped with 4 wideband hydrophones. A 28 km long electro-optical cable connects the observatory to a shore laboratory in the Catania harbor, hosting the data acquisition system and supplying power and data transmission to the underwater instrumentation. The NEMO-SN1 observatory is located in an area particularly suited to multidisciplinary studies. The site is one of the most seismically active areas of the Mediterranean (some of the strongest earthquakes occurred in 1169, 1693 and 1908, also causing very intense tsunami waves) and is close to Mount Etna, one of the largest and most active volcanoes in Europe. The deployment area is also a key site for monitoring deep-water dynamics in the Ionian Sea, connecting the Levantine basin to the southern Adriatic basin where intermediate and deep waters are formed, and finally to the western Mediterranean Sea via the Strait of Sicily. The observatory is being further developed under EMSO MedIT (http://www.emso-medit.it/en/), a structural enhancement project contributing to the consolidation and enhancement of the European research infrastructure EMSO in Italian Convergence Regions. In this framework, a new Junction Box will be connected to the TSN branch and will provide wired and wireless (acoustic connections) for seafloor platforms and moorings. This will allow the

  18. Developments of next generation of seafloor observatories in MARsite project

    Science.gov (United States)

    Italiano, Francesco; Favali, Paolo; Zaffuto, Alfonso; Zora, Marco; D'Anca, Fabio

    2015-04-01

    The development of new generation of autonomous sea-floor observatories is among the aims of the EC supersite project MARsite (MARMARA Supersite; FP7 EC-funded project, grant n° 308417). An approach based on multiparameter seafloor observatories is considered of basic importance to better understand the role of the fluids in an active tectonic system and their behaviour during the development of the seismogenesis. To continuously collect geochemical and geophysical data from the immediate vicinity of the submerged North Anatolian Fault Zone (NAFZ) is one of the possibilities to contribute to the seismic hazard minimization of the Marmara area. The planning of next generation of seafloor observatories for geo-hazard monitoring is a task in one of the MARsite Work Packages (WP8). The activity is carried out combining together either the experience got after years of investigating fluids and their interactions with the seafloor and tectonic structures and the long-term experience on the development and management of permanent seafloor observatories in the main frame of the EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org) Research Infrastructure. The new generation of seafloor observatories have to support the observation of both slow and quick variations, thus allow collecting low and high-frequency signals besides the storage of long-term dataset and/or enable the near-real-time mode data transmission. Improvements of some the seafloor equipments have been done so far within MARsite project in terms of the amount of contemporary active instruments, their interlink with "smart sensor" capacities (threshold detection, triggering), quality of the collected data and power consumption reduction. In order to power the multiparameter sensors the digitizer and the microprocessor, an electronic board named PMS (Power Management System) with multi-master, multi-slave, single-ended, serial bus Inter-Integrated Circuit (I²C) interface

  19. Geophysical images of basement rocks. Geophysical images in the Guianese basement. Airborne geophysical campaign in French Guiana - 1996

    International Nuclear Information System (INIS)

    Delor, C.; Perrin, J.; Truffert, C.; Asfirane, F.; Rossi, Ph.; Bonjoly, D.; Dubreuihl, J.; Chardon, D.

    1998-01-01

    The French Office for Geological and Mining Research (BRGM) has carried out a high sensitivity airborne geophysical survey of northern French Guiana during the second half of 1996. The aim was to realize a high resolution magnetic and gamma spectrometric mapping for future prospecting, land use and environment management. This paper describes in details the geophysical campaign, the material used, the navigation techniques, the processing of magnetic data, the gamma radiation sources used, the spectrometric calibrations and the geologic interpretation of the results. (J.S.)

  20. Introduction to the JEEG Agricultural Geophysics Special Issue

    Science.gov (United States)

    Allred, Barry J.; Smith, Bruce D.

    2010-01-01

    Near-surface geophysical methods have become increasingly important tools in applied agricultural practices and studies. The great advantage of geophysical methods is their potential rapidity, low cost, and spatial continuity when compared to more traditional methods of assessing agricultural land, such as sample collection and laboratory analysis. Agricultural geophysics investigations commonly focus on obtaining information within the soil profile, which generally does not extend much beyond 2 meters beneath the ground surface. Although the depth of interest oftentimes is rather shallow, the area covered by an agricultural geophysics survey can vary widely in scale, from experimental plots (10 s to 100 s of square meters), to farm fields (10 s to 100 s of hectares), up to the size of watersheds (10 s to 100 s of square kilometers). To date, three predominant methods—resistivity, electromagnetic induction (EMI), and ground-penetrating radar (GPR)—have been used to obtain surface-based geophysical measurements within agricultural settings. However, a recent conference on agricultural geophysics (Bouyoucos Conference on Agricultural Geophysics, September 8–10, 2009, Albuquerque, New Mexico; www.ag-geophysics.org) illustrated that other geophysical methods are being applied or developed. These include airborne electromagnetic induction, magnetometry, seismic, and self-potential methods. Agricultural geophysical studies are also being linked to ground water studies that utilize deeper penetrating geophysical methods than normally used.

  1. Geophysical Institute. Biennial report, 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  2. Russian Meteorological and Geophysical Rockets of New Generation

    Science.gov (United States)

    Yushkov, V.; Gvozdev, Yu.; Lykov, A.; Shershakov, V.; Ivanov, V.; Pozin, A.; Afanasenkov, A.; Savenkov, Yu.; Kuznetsov, V.

    2015-09-01

    To study the process in the middle and upper atmosphere, ionosphere and near-Earth space, as well as to monitor the geophysical environment in Russian Federal Service for Hydrology and Environmental Monitoring (ROSHYDROMET) the development of new generation of meteorological and geophysical rockets has been completed. The modern geophysical research rocket system MR-30 was created in Research and Production Association RPA "Typhoon". The basis of the complex MR-30 is a new geophysical sounding rocket MN-300 with solid propellant, Rocket launch takes place at an angle of 70º to 90º from the launcher, which is a farm with a guide rail type required for imparting initial rotation rocket. The Rocket is spin stabilized with a spin rate between 5 and 7 Hz. Launch weight is 1564 kg, and the mass of the payload of 50 to 150 kg. MR-300 is capable of lifting up to 300 km, while the area of dispersion points for booster falling is an ellipse with parameters 37x 60 km. The payload of the rocket MN-300 consists of two sections: a sealed, located below the instrument compartment, and not sealed, under the fairing. Block of scientific equipment is formed on the platform in a modular layout. This makes it possible to solve a wide range of tasks and conduct research and testing technologies using a unique environment of space, as well as to conduct technological experiments testing and research systems and spacecraft equipment. New Russian rocket system MERA (MEteorological Rocket for Atmospheric Research) belongs to so called "dart" technique that provide lifting of small scientific payload up to altitude 100 km and descending with parachute. It was developed at Central Aerological Observatory jointly with State Unitary Enterprise Instrument Design Bureau. The booster provides a very rapid acceleration to about Mach 5. After the burning phase of the buster the dart is separated and continues ballistic flight for about 2 minutes. The dart carries the instrument payload+ parachute

  3. Predictive geophysics: geochemical simulations to geophysical targets

    Science.gov (United States)

    Chopping, R. G.; Cleverley, J.

    2017-12-01

    With an increasing focus on deep exploration for covered targets, new methods are required to target mineral systems under cover. Geophysical responses are driven by physical property contrasts; for example, density contrasts provide a gravity signal, acoustic impedance contrasts provide a seismic reflection signal. In turn, the physical properties for basement, crystalline rocks which host the vast majority of mineral systems are determined almost wholly by the mineralogy of the rocks in question. Mineral systems, through the transport of heat and reactive fluids, will serve to modify the physical properties of country rock as they chemically alter the hosting strata. To understand these changes, we have performed 2D reactive transport modelling that simulates the formation of Archean gold deposits of the Yilgarn Craton, Western Australia. From this, we derive a model of mineralogy that we can use to predict the density, magnetic susceptibility and seismic reflection changes associated with ore formation. It is then possible to predict the gravity, magnetic and seismic reflection responses associated with these deposits. Scenario mapping, such as testing the ability to resolve buried ore bodies or the geophysical survey spacing required to resolve the mineral system, can be performed to produce geophysical targets from these geochemical simulations. We find that there is a gravity response of around 9% of the unaltered response for deposits even buried by 1km of cover, and there is a magnetic spike associated with proximal alteration of the ore system. Finally, seismic reflection response is mostly characterised by additional reflections along faults that plumb the alteration system.

  4. A review of nuclear geophysics

    International Nuclear Information System (INIS)

    Clayton, C.G.; Schweitzer, J.S.

    1992-01-01

    This paper summarizes the development of nuclear geophysics in scientific and technological content and in range from its beginnings early in this century to the present day. We note that the early work in nuclear geophysics was originally referred to under the umbrella of open-quotes isotope applicationsclose quotes and the origin of the term open-quotes nuclear geophysicsclose quotes (which is seen to clarify and to focus work in this area) is exposed in this paper. The current expansion of nuclear geophysics front its original concern with oil well logging is an important trend because much of the underlying science, technology, and instrumentation is common ground. A review of nuclear geophysics would be a barren document without reference to long-term and, in some cases, short-term commercial and economic as well as to technological considerations, since these factors are the principal motivation for further development

  5. Griffith Observatory: Hollywood's Celestial Theater

    Science.gov (United States)

    Margolis, Emily A.; Dr. Stuart W. Leslie

    2018-01-01

    The Griffith Observatory, perched atop the Hollywood Hills, is perhaps the most recognizable observatory in the world. Since opening in 1935, this Los Angeles icon has brought millions of visitors closer to the heavens. Through an analysis of planning documentation, internal newsletters, media coverage, programming and exhibition design, I demonstrate how the Observatory’s Southern California location shaped its form and function. The astronomical community at nearby Mt. Wilson Observatory and Caltech informed the selection of instrumentation and programming, especially for presentations with the Observatory’s Zeiss Planetarium, the second installed in the United States. Meanwhile the Observatory staff called upon some of Hollywood’s best artists, model makers, and scriptwriters to translate the latest astronomical discoveries into spectacular audiovisual experiences, which were enhanced with Space Age technological displays on loan from Southern California’s aerospace companies. The influences of these three communities- professional astronomy, entertainment, and aerospace- persist today and continue to make Griffith Observatory one of the premiere sites of public astronomy in the country.

  6. Geophysical Data Sets in GeoMapApp

    Science.gov (United States)

    Goodwillie, A. M.

    2017-12-01

    GeoMapApp (http://www.geomapapp.org), a free map-based data tool developed at Lamont-Doherty Earth Observatory, provides access to hundreds of integrated geoscience data sets that are useful for geophysical studies. Examples include earthquake and volcano catalogues, gravity and magnetics data, seismic velocity tomographic models, geological maps, geochemical analytical data, lithospheric plate boundary information, geodetic velocities, and high-resolution bathymetry and land elevations. Users can also import and analyse their own data files. Data analytical functions provide contouring, shading, profiling, layering and transparency, allowing multiple data sets to be seamlessly compared. A new digitization and field planning portal allow stations and waypoints to be generated. Sessions can be saved and shared with colleagues and students. In this eLightning presentation we will demonstrate some of GeoMapApp's capabilities with a focus upon subduction zones and tectonics. In the attached screen shot of the Cascadia margin, the contoured depth to the top of the subducting Juan de Fuca slab is overlain on a shear wave velocity depth slice. Geochemical data coloured on Al2O3 and scaled on MgO content is shown as circles. The stack of data profiles was generated along the white line.

  7. US Naval Observatory Hourly Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly observations journal from the National Observatory in Washington DC. The observatory is the first station in the United States to produce hourly observations...

  8. A fractured rock geophysical toolbox method selection tool

    Science.gov (United States)

    Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.

    2016-01-01

    Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.

  9. Informing groundwater models with near-surface geophysical data

    DEFF Research Database (Denmark)

    Herckenrath, Daan

    Over the past decade geophysical methods have gained an increased popularity due to their ability to map hydrologic properties. Such data sets can provide valuable information to improve hydrologic models. Instead of using the measured geophysical and hydrologic data simultaneously in one inversion...... approach, many of the previous studies apply a Sequential Hydrogeophysical Inversion (SHI) in which inverted geophysical models provide information for hydrologic models. In order to fully exploit the information contained in geophysical datasets for hydrological purposes, a coupled hydrogeophysical...... inversion was introduced (CHI), in which a hydrologic model is part of the geophysical inversion. Current CHI-research has been focussing on the translation of simulated state variables of hydrologic models to geophysical model parameters. We refer to this methodology as CHI-S (State). In this thesis a new...

  10. International VLBI Service for Geodesy and Astrometry 2004 Annual Report

    Science.gov (United States)

    Behrend, Dirk (Editor); Baver, Karen D. (Editor)

    2005-01-01

    Contents include the following: Combination Studies using the Cont02 Campaign. Coordinating Center report. Analysis coordinator report. Network coordinator report. IVS Technology coordinator report. Algonquin Radio observatory. Fortaleza Station report for 2004. Gilmore Creek Geophysical Observatory. Goddard Geophysical and Astronomical observatory. Hartebeesthoek Radio Astronomy Observatory (HartRAO). Hbart, Mt Pleasant, station report for 2004. Kashima 34m Radio Telescope. Kashima and Koganei 11-m VLBI Stations. Kokee Park Geophysical Observatory. Matera GGS VLBI Station. The Medicina Station status report. Report of the Mizusawa 10m Telescope. Noto Station Activity. NYAL Ny-Alesund 20 metre Antenna. German Antarctic receiving Station (GARS) O'higgins. The IVS network station Onsala space Observatory. Sheshan VLBI Station report for 2004. 10 Years of Geodetic Experiments at the Simeiz VLBI Station. Svetloe RAdio Astronomical Observatory. JARE Syowa Station 11-m Antenna, Antarctica. Geodetic Observatory TIGO in Concepcion. Tsukuba 32-m VLBI Station. Nanshan VLBI Station Report. Westford Antenna. Fundamental-station Wettzell 20m Radiotelescope. Observatorio Astroonomico Nacional Yebes. Yellowknife Observatory. The Bonn Geodetic VLBI Operation Center. CORE Operation Center Report. U.S. Naval Observatory Operation Center. The Bonn Astro/Geo Mark IV Correlator.

  11. Multiscale geophysical imaging of the critical zone

    Science.gov (United States)

    Parsekian, Andy; Singha, Kamini; Minsley, Burke J.; Holbrook, W. Steven; Slater, Lee

    2015-01-01

    Details of Earth's shallow subsurface—a key component of the critical zone (CZ)—are largely obscured because making direct observations with sufficient density to capture natural characteristic spatial variability in physical properties is difficult. Yet this inaccessible region of the CZ is fundamental to processes that support ecosystems, society, and the environment. Geophysical methods provide a means for remotely examining CZ form and function over length scales that span centimeters to kilometers. Here we present a review highlighting the application of geophysical methods to CZ science research questions. In particular, we consider the application of geophysical methods to map the geometry of structural features such as regolith thickness, lithological boundaries, permafrost extent, snow thickness, or shallow root zones. Combined with knowledge of structure, we discuss how geophysical observations are used to understand CZ processes. Fluxes between snow, surface water, and groundwater affect weathering, groundwater resources, and chemical and nutrient exports to rivers. The exchange of gas between soil and the atmosphere have been studied using geophysical methods in wetland areas. Indirect geophysical methods are a natural and necessary complement to direct observations obtained by drilling or field mapping. Direct measurements should be used to calibrate geophysical estimates, which can then be used to extrapolate interpretations over larger areas or to monitor changing processes over time. Advances in geophysical instrumentation and computational approaches for integrating different types of data have great potential to fill gaps in our understanding of the shallow subsurface portion of the CZ and should be integrated where possible in future CZ research.

  12. Future Mars geophysical observatories for understanding its internal structure, rotation, and evolution

    Science.gov (United States)

    Dehant, Veronique; Banerdt, Bruce; Lognonné, Philippe; Grott, Matthias; Asmar, Sami; Biele, Jens; Breuer, Doris; Forget, François; Jaumann, Ralf; Johnson, Catherine; Knapmeyer, Martin; Langlais, Benoit; Le Feuvre, Mathieu; Mimoun, David; Mocquet, Antoine; Read, Peter; Rivoldini, Attilio; Romberg, Oliver; Schubert, Gerald; Smrekar, Sue; Spohn, Tilman; Tortora, Paolo; Ulamec, Stephan; Vennerstrøm, Susanne

    2012-08-01

    Our fundamental understanding of the interior of the Earth comes from seismology, geodesy, geochemistry, geomagnetism, geothermal studies, and petrology. For the Earth, measurements in those disciplines of geophysics have revealed the basic internal layering of the Earth, its dynamical regime, its thermal structure, its gross compositional stratification, as well as significant lateral variations in these quantities. Planetary interiors not only record evidence of conditions of planetary accretion and differentiation, they exert significant control on surface environments. We present recent advances in possible in-situ investigations of the interior of Mars, experiments and strategies that can provide unique and critical information about the fundamental processes of terrestrial planet formation and evolution. Such investigations applied on Mars have been ranked as a high priority in virtually every set of European, US and international high-level planetary science recommendations for the past 30 years. New seismological methods and approaches based on the cross-correlation of seismic noise by two seismic stations/landers on the surface of Mars and on joint seismic/orbiter detection of meteorite impacts, as well as the improvement of the performance of Very Broad-Band (VBB) seismometers have made it possible to secure a rich scientific return with only two simultaneously recording stations. In parallel, use of interferometric methods based on two Earth-Mars radio links simultaneously from landers tracked from Earth has increased the precision of radio science experiments by one order of magnitude. Magnetometer and heat flow measurements will complement seismic and geodetic data in order to obtain the best information on the interior of Mars. In addition to studying the present structure and dynamics of Mars, these measurements will provide important constraints for the astrobiology of Mars by helping to understand why Mars failed to sustain a magnetic field, by

  13. Integrating Near Fault Observatories (NFO) for EPOS Implementation Phase

    Science.gov (United States)

    Chiaraluce, Lauro

    2015-04-01

    Following the European Plate Observing System (EPOS) project vision aimed at creating a pan-European infrastructure for Earth sciences to support science for a more sustainable society, we are working on the integration of Near-Fault Observatories (NFOs). NFOs are state of the art research infrastructures consisting of advanced networks of multi-parametric sensors continuously monitoring the chemical and physical processes related to the common underlying earth instabilities governing active faults evolution and the genesis of earthquakes. Such a methodological approach, currently applicable only at the local scale (areas of tens to few hundreds of kilometres), is based on extremely dense networks and less common instruments deserving an extraordinary work on data quality control and multi-parameter data description. These networks in fact usually complement regional seismic and geodetic networks (typically with station spacing of 50-100km) with high-density distributions of seismic, geodetic, geochemical and geophysical sensors located typically within 10-20 km of active faults where large earthquakes are expected in the future. In the initial phase of EPOS-IP, seven NFO nodes will be linked: the Alto Tiberina and Irpinia Observatories in Italy, the Corinth Observatory in Greece, the South-Iceland Seismic Zone, the Valais Observatory in Switzerland, Marmara Sea GEO Supersite in Turkey (EU MARSite) and the Vrancea Observatory in Romania. Our work is aimed at establishing standards and integration within this first core group of NFOs while other NFOs are expected to be installed in the next years adopting the standards established and developed within the EPOS Thematic Core Services (TCS). The goal of our group is to build upon the initial development supported by these few key national observatories coordinated under previous EU projects (NERA and REAKT), inclusive and harmonised TCS supporting the installation over the next decade of tens of near

  14. Observatory data and the Swarm mission

    DEFF Research Database (Denmark)

    Macmillan, S.; Olsen, Nils

    2013-01-01

    products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those......The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth’s core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface...... of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data...

  15. Methodological Developments in Geophysical Assimilation Modeling

    Science.gov (United States)

    Christakos, George

    2005-06-01

    This work presents recent methodological developments in geophysical assimilation research. We revisit the meaning of the term "solution" of a mathematical model representing a geophysical system, and we examine its operational formulations. We argue that an assimilation solution based on epistemic cognition (which assumes that the model describes incomplete knowledge about nature and focuses on conceptual mechanisms of scientific thinking) could lead to more realistic representations of the geophysical situation than a conventional ontologic assimilation solution (which assumes that the model describes nature as is and focuses on form manipulations). Conceptually, the two approaches are fundamentally different. Unlike the reasoning structure of conventional assimilation modeling that is based mainly on ad hoc technical schemes, the epistemic cognition approach is based on teleologic criteria and stochastic adaptation principles. In this way some key ideas are introduced that could open new areas of geophysical assimilation to detailed understanding in an integrated manner. A knowledge synthesis framework can provide the rational means for assimilating a variety of knowledge bases (general and site specific) that are relevant to the geophysical system of interest. Epistemic cognition-based assimilation techniques can produce a realistic representation of the geophysical system, provide a rigorous assessment of the uncertainty sources, and generate informative predictions across space-time. The mathematics of epistemic assimilation involves a powerful and versatile spatiotemporal random field theory that imposes no restriction on the shape of the probability distributions or the form of the predictors (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated) and accounts rigorously for the uncertainty features of the geophysical system. In the epistemic cognition context the assimilation concept may be used to

  16. In Brief: Deep-sea observatory

    Science.gov (United States)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  17. An astronomical observatory for Peru

    Science.gov (United States)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  18. Daily variation characteristics at polar geomagnetic observatories

    Science.gov (United States)

    Lepidi, S.; Cafarella, L.; Pietrolungo, M.; Di Mauro, D.

    2011-08-01

    This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French-Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D'Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.

  19. Observatories of Sawai Jai Singh II

    Science.gov (United States)

    Johnson-Roehr, Susan N.

    Sawai Jai Singh II, Maharaja of Amber and Jaipur, constructed five observatories in the second quarter of the eighteenth century in the north Indian cities of Shahjahanabad (Delhi), Jaipur, Ujjain, Mathura, and Varanasi. Believing the accuracy of his naked-eye observations would improve with larger, more stable instruments, Jai Singh reengineered common brass instruments using stone construction methods. His applied ingenuity led to the invention of several outsize masonry instruments, the majority of which were used to determine the coordinates of celestial objects with reference to the local horizon. During Jai Singh's lifetime, the observatories were used to make observations in order to update existing ephemerides such as the Zīj-i Ulugh Begī. Jai Singh established communications with European astronomers through a number of Jesuits living and working in India. In addition to dispatching ambassadorial parties to Portugal, he invited French and Bavarian Jesuits to visit and make use of the observatories in Shahjahanabad and Jaipur. The observatories were abandoned after Jai Singh's death in 1743 CE. The Mathura observatory was disassembled completely before 1857. The instruments at the remaining observatories were restored extensively during the nineteenth and twentieth centuries.

  20. Byurakan Astrophysical Observatory as Cultural Centre

    Science.gov (United States)

    Mickaelian, A. M.; Farmanyan, S. V.

    2017-07-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts. Keywords: Byurakan Astrophysical Observatory, architecture, botanic garden, tourism, Cultural Astronomy.

  1. 36 CFR 902.59 - Geological and geophysical information.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical information. 902.59 Section 902.59 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... Geological and geophysical information. Any geological or geophysical information and data (including maps...

  2. JANNAF Lessons Learned Panel: Selected Saturn V History

    Science.gov (United States)

    Urquhart, Skip

    2010-01-01

    Pogo occurs when the natural frequency of a propellant feed line comes close to a readily excited rocket longitudinal structural vibration natural frequency. Maximum Pogo response corresponds to close tuning of the structural and hydraulic frequencies. On Saturn V, accelerations up to 17 g's (Zero To Peak) at the Launch Vehicle/Payload Interface and up to 34 g's at an Engine have been observed. Nicknamed Pogo because it causes the Rocket to stretch and compress like a Pogo stick. First recognized with the Titan II in 1962, Pogo remains a prime consideration in design of launch vehicles today

  3. The Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Hojvat, C.

    1997-03-01

    The Pierre Auger Observatory is an international collaboration for the detailed study of the highest energy cosmic rays. It will operate at two similar sites, one in the northern hemisphere and one in the southern hemisphere. The Observatory is designed to collect a statistically significant data set of events with energies greater than 10 19 eV and with equal exposures for the northern and southern skies

  4. 25 CFR 211.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 211.56 Section 211.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations and Appeals § 211.56 Geological and geophysical permits. Permits to conduct geological and geophysical operations on Indian lands which do not...

  5. Lessons Learned From 104 Years of Mobile Observatories

    Science.gov (United States)

    Miller, S. P.; Clark, P. D.; Neiswender, C.; Raymond, L.; Rioux, M.; Norton, C.; Detrick, R.; Helly, J.; Sutton, D.; Weatherford, J.

    2007-12-01

    As the oceanographic community ventures into a new era of integrated observatories, it may be helpful to look back on the era of "mobile observatories" to see what Cyberinfrastructure lessons might be learned. For example, SIO has been operating research vessels for 104 years, supporting a wide range of disciplines: marine geology and geophysics, physical oceanography, geochemistry, biology, seismology, ecology, fisheries, and acoustics. In the last 6 years progress has been made with diverse data types, formats and media, resulting in a fully-searchable online SIOExplorer Digital Library of more than 800 cruises (http://SIOExplorer.ucsd.edu). Public access to SIOExplorer is considerable, with 795,351 files (206 GB) downloaded last year. During the last 3 years the efforts have been extended to WHOI, with a "Multi-Institution Testbed for Scalable Digital Archiving" funded by the Library of Congress and NSF (IIS 0455998). The project has created a prototype digital library of data from both institutions, including cruises, Alvin submersible dives, and ROVs. In the process, the team encountered technical and cultural issues that will be facing the observatory community in the near future. Technological Lessons Learned: Shipboard data from multiple institutions are extraordinarily diverse, and provide a good training ground for observatories. Data are gathered from a wide range of authorities, laboratories, servers and media, with little documentation. Conflicting versions exist, generated by alternative processes. Domain- and institution-specific issues were addressed during initial staging. Data files were categorized and metadata harvested with automated procedures. With our second-generation approach to staging, we achieve higher levels of automation with greater use of controlled vocabularies. Database and XML- based procedures deal with the diversity of raw metadata values and map them to agreed-upon standard values, in collaboration with the Marine Metadata

  6. 25 CFR 212.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 212.56 Section 212.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations, and Appeals § 212.56 Geological and geophysical permits. (a) Permits to conduct geological and geophysical operations on Indian lands which do not...

  7. Rapid Geophysical Surveyor

    International Nuclear Information System (INIS)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques

  8. Seafloor Observatory Science: a Review

    Directory of Open Access Journals (Sweden)

    L. Beranzoli

    2006-06-01

    Full Text Available The ocean exerts a pervasive influence on Earth’s environment. It is therefore important that we learn how this system operates (NRC, 1998b; 1999. For example, the ocean is an important regulator of climate change (e.g., IPCC, 1995. Understanding the link between natural and anthropogenic climate change and ocean circulation is essential for predicting the magnitude and impact of future changes in Earth’s climate. Understanding the ocean, and the complex physical, biological, chemical, and geological systems operating within it, should be an important goal for the opening decades of the 21st century. Another fundamental reason for increasing our understanding of ocean systems is that the global economy is highly dependent on the ocean (e.g., for tourism, fisheries, hydrocarbons, and mineral resources (Summerhayes, 1996. The establishment of a global network of seafloor observatories will help to provide the means to accomplish this goal. These observatories will have power and communication capabilities and will provide support for spatially distributed sensing systems and mobile platforms. Sensors and instruments will potentially collect data from above the air-sea interface to below the seafloor. Seafloor observatories will also be a powerful complement to satellite measurement systems by providing the ability to collect vertically distributed measurements within the water column for use with the spatial measurements acquired by satellites while also providing the capability to calibrate remotely sensed satellite measurements (NRC, 2000. Ocean observatory science has already had major successes. For example the TAO array has enabled the detection, understanding and prediction of El Niño events (e.g., Fujimoto et al., 2003. This paper is a world-wide review of the new emerging “Seafloor Observatory Science”, and describes both the scientific motivations for seafloor observatories and the technical solutions applied to their architecture. A

  9. Unleashing Geophysics Data with Modern Formats and Services

    Science.gov (United States)

    Ip, Alex; Brodie, Ross C.; Druken, Kelsey; Bastrakova, Irina; Evans, Ben; Kemp, Carina; Richardson, Murray; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2016-04-01

    Geoscience Australia (GA) is the national steward of large volumes of geophysical data extending over the entire Australasian region and spanning many decades. The volume and variety of data which must be managed, coupled with the increasing need to support machine-to-machine data access, mean that the old "click-and-ship" model delivering data as downloadable files for local analysis is rapidly becoming unviable - a "big data" problem not unique to geophysics. The Australian Government, through the Research Data Services (RDS) Project, recently funded the Australian National Computational Infrastructure (NCI) to organize a wide range of Earth Systems data from diverse collections including geoscience, geophysics, environment, climate, weather, and water resources onto a single High Performance Data (HPD) Node. This platform, which now contains over 10 petabytes of data, is called the National Environmental Research Data Interoperability Platform (NERDIP), and is designed to facilitate broad user access, maximise reuse, and enable integration. GA has contributed several hundred terabytes of geophysical data to the NERDIP. Historically, geophysical datasets have been stored in a range of formats, with metadata of varying quality and accessibility, and without standardised vocabularies. This has made it extremely difficult to aggregate original data from multiple surveys (particularly un-gridded geophysics point/line data) into standard formats suited to High Performance Computing (HPC) environments. To address this, it was decided to use the NERDIP-preferred Hierarchical Data Format (HDF) 5, which is a proven, standard, open, self-describing and high-performance format supported by extensive software tools, libraries and data services. The Network Common Data Form (NetCDF) 4 API facilitates the use of data in HDF5, whilst the NetCDF Climate & Forecasting conventions (NetCDF-CF) further constrain NetCDF4/HDF5 data so as to provide greater inherent interoperability

  10. Description of geophysical data in the SKB database GEOTAB

    International Nuclear Information System (INIS)

    Sehlstedt, S.

    1988-02-01

    For the storage of different types of data collected by SKB a database called Geotab has been created. The following data are stored in the database: Background data, geological data, geophysical data, hydrogeological data, hydrochemical data. This report describes the data flow for different types of geophysical measurements. The descriptions start with measurements and end with the storage of data in Geotab. Each process and the resulting data volume is presented separately. The geophysical measurements have been divided into the following subjects: Geophysical ground surface measurements, profile measurements; geophysical ground surface measurements, grid net measurements; geophysical borehole logging; petrophysical measurements. Each group of measurements is described in an individual chapter. In each chapter several measuring techniques are described and each method has a data table and a flyleaf table in Geotab. (orig.)

  11. ESO's Two Observatories Merge

    Science.gov (United States)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  12. Multi-scale geophysical study to model the distribution and development of fractures in relation to the knickpoint in the Luquillo Critical Zone Observatory (Puerto Rico)

    Science.gov (United States)

    Comas, X.; Wright, W. J.; Hynek, S. A.; Ntarlagiannis, D.; Terry, N.; Job, M. J.; Fletcher, R. C.; Brantley, S.

    2017-12-01

    Previous studies in the Rio Icacos watershed in the Luquillo Mountains (Puerto Rico) have shown that regolith materials are rapidly developed from the alteration of quartz diorite bedrock, and create a blanket on top of the bedrock with a thickness that decreases with proximity to the knickpoint. The watershed is also characterized by a system of heterogeneous fractures that likely drive bedrock weathering and the formation of corestones and associated spheroidal fracturing and rindlets. Previous efforts to characterize the spatial distribution of fractures were based on aerial images that did not account for the architecture of the critical zone below the subsurface. In this study we use an array of near-surface geophysical methods at multiple scales to better understand how the spatial distribution and density of fractures varies with topography and proximity to the knickpoint. Large km-scale surveys using ground penetrating radar (GPR), terrain conductivity, and capacitively coupled resistivity, were combined with smaller scale surveys (10-100 m) using electrical resistivity imaging (ERI), and shallow seismics, and were directly constrained with boreholes from previous studies. Geophysical results were compared to theoretical models of compressive stress as due to gravity and regional compression, and showed consistency at describing increased dilation of fractures with proximity to the knickpoint. This study shows the potential of multidisciplinary approaches to model critical zone processes at multiple scales of measurement and high spatial resolution. The approach can be particularly efficient at large km-scales when applying geophysical methods that allow for rapid data acquisition (i.e. walking pace) at high spatial resolution (i.e. cm scales).

  13. Worldwide R&D of Virtual Observatory

    Science.gov (United States)

    Cui, C. Z.; Zhao, Y. H.

    2008-07-01

    Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in the late 1990s to meet the challenges brought up with data avalanche in astronomy. In the paper, current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects are reviewed, a brief introduction of Chinese Virtual Observatory is given.

  14. Calibration and Confirmation in Geophysical Models

    Science.gov (United States)

    Werndl, Charlotte

    2016-04-01

    For policy decisions the best geophysical models are needed. To evaluate geophysical models, it is essential that the best available methods for confirmation are used. A hotly debated issue on confirmation in climate science (as well as in philosophy) is the requirement of use-novelty (i.e. that data can only confirm models if they have not already been used before. This talk investigates the issue of use-novelty and double-counting for geophysical models. We will see that the conclusions depend on the framework of confirmation and that it is not clear that use-novelty is a valid requirement and that double-counting is illegitimate.

  15. Fundamentals of Geophysics

    Science.gov (United States)

    Frohlich, Cliff

    Choosing an intermediate-level geophysics text is always problematic: What should we teach students after they have had introductory courses in geology, math, and physics, but little else? Fundamentals of Geophysics is aimed specifically at these intermediate-level students, and the author's stated approach is to construct a text “using abundant diagrams, a simplified mathematical treatment, and equations in which the student can follow each derivation step-by-step.” Moreover, for Lowrie, the Earth is round, not flat—the “fundamentals of geophysics” here are the essential properties of our Earth the planet, rather than useful techniques for finding oil and minerals. Thus this book is comparable in both level and approach to C. M. R. Fowler's The Solid Earth (Cambridge University Press, 1990).

  16. Geophysical and geochemical techniques for exploration of hydrocarbons and minerals

    International Nuclear Information System (INIS)

    Sittig, M.

    1980-01-01

    The detailed descriptive information in this book is based on 389 US patents that deal with geophysical and geochemical techniques useful for the exploration of hydrocarbons and minerals. Where it was necessary to round out the complete technological picture, a few paragraphs from cited government reports have been included. These techniques are used in prospecting for oil, coal, oil shale, tar sand and minerals. The patents are grouped under the following chapters: geochemical prospecting; geobiological prospecting; geophysical exploration; magnetic geophysical prospecting; gravitational geophysical prospecting; electrical geophysical prospecting; nuclear geophysical prospecting; seismic geophysical prospecting; and exploratory well drilling. This book serves a double purpose in that it supplies detailed technical information and can be used as a guide to the US patent literature in this field. By indicating all the information that is significant, and eliminating legal jargon and juristic phraseology, this book presents an advanced, industrially oriented review of modern methods of geophysical and geochemical exploration techniques

  17. Early German plans for southern observatories

    Science.gov (United States)

    Wolfschmidt, G.

    2002-07-01

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century, Heidelberg and Potsdam astronomers proposed a southern observatory. Then Göttingen astronomers suggested building an observatory in Windhoek for photographing the sky and measuring the solar constant. In 1910 Karl Schwarzschild (1873-1916), after a visit to observatories in the United States, pointed out the usefulness of an observatory in South West Africa, in a climate superior to that in Germany, giving German astronomers access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhoek to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963.

  18. Marine geophysical data management and presentation system

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.

    ) of the National Institute of Oceanography, Goa, India. GPDMPS is designed for the computerized storage retrieval and presentation of marine geophysical data and information. For the systematic management of geophysical data and information, GPDMPS is subdivided...

  19. The Malaysian Robotic Solar Observatory (P29)

    Science.gov (United States)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  20. To Measure Probable Physical Changes On The Earth During Total Solar Eclipse Using Geophysical Methods

    International Nuclear Information System (INIS)

    Gocmen, C.

    2007-01-01

    When the total solar eclipse came into question, people connected the eclipse with the earthquake dated 17.08.1999. We thought if any physical parameters change during total solar eclipse on the earth, we could measure this changing and we did the project 'To Measure Probable Physical Changes On The Earth During Total Solar Eclipse Using Geophysical Methods' We did gravity, magnetic and self-potential measurements at Konya and Ankara during total solar eclipse (29, March, 2006) and the day before eclipse and the day after eclipse. The measurements went on three days continuously twenty-four hours at Konya and daytime in Ankara. Bogazici University Kandilli Observatory gave us magnetic values in Istanbul and we compare the values with our magnetic values. Turkish State Meteorological Service sent us temperature and air pressure observations during three days, in Konya and Ankara. We interpreted all of them

  1. The Fram Strait integrated ocean observatory

    Science.gov (United States)

    Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.

    2012-04-01

    A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision

  2. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  3. 195-Year History of Mykolayiv Observatory: Events and People

    Directory of Open Access Journals (Sweden)

    Shulga, O.V.

    2017-01-01

    Full Text Available The basic stages of the history of the Mykolaiv Astronomical Observatory are shown. The main results of the Observatory activities are presented by the catalogs of star positions, major and minor planets in the Solar system, space objects in the Earth orbit. The information on the qualitative and quantitative structure of the Observatory, cooperation with the observatories of Ukraine and foreign countries as well as major projects carried out in the Observatory is provided.

  4. The MicroObservatory Net

    Science.gov (United States)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used

  5. The Astrophysical Multimessenger Observatory Network (AMON)

    Science.gov (United States)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; hide

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  6. Early German Plans for a Southern Observatory

    Science.gov (United States)

    Wolfschmidt, Gudrun

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century the Heidelberg astronomer Max Wolf (1863-1932) proposed a southern observatory. In 1907 Hermann Carl Vogel (1841-1907), director of the Astrophysical Observatory Potsdam, suggested a southern station in Spain. His ideas for building an observatory in Windhuk for photographing the sky and measuring the solar constant were taken over by the Göttingen astronomers. In 1910 Karl Schwarzschild (1873-1916), after having visited the observatories in America, pointed out the usefulness of an observatory in South West Africa, where it would have better weather than in Germany and also give access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhuk to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963, as is well described by Blaauw (1991). Blaauw, Adriaan: ESO's Early History. The European Southern Observatory from Concept to Reality. Garching bei München: ESO 1991.

  7. A Green Robotic Observatory for Astronomy Education

    Science.gov (United States)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  8. Artificial intelligence and dynamic systems for geophysical applications

    CERN Document Server

    Gvishiani, Alexei

    2002-01-01

    The book presents new clustering schemes, dynamical systems and pattern recognition algorithms in geophysical, geodynamical and natural hazard applications. The original mathematical technique is based on both classical and fuzzy sets models. Geophysical and natural hazard applications are mostly original. However, the artificial intelligence technique described in the book can be applied far beyond the limits of Earth science applications. The book is intended for research scientists, tutors, graduate students, scientists in geophysics and engineers

  9. Radioactivity and geophysics

    International Nuclear Information System (INIS)

    Radvanyi, P.

    1992-01-01

    The paper recalls a few steps of the introduction of radioactivity in geophysics and astrophysics: contribution of radioelements to energy balance of the Earth, age of the Earth based on radioactive disintegration and the discovery of cosmic radiations

  10. Review of geophysical characterization methods used at the Hanford Site

    International Nuclear Information System (INIS)

    GV Last; DG Horton

    2000-01-01

    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ''all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts

  11. Geophysical data fusion for subsurface imaging

    International Nuclear Information System (INIS)

    Hoekstra, P.; Vandergraft, J.; Blohm, M.; Porter, D.

    1993-08-01

    A geophysical data fusion methodology is under development to combine data from complementary geophysical sensors and incorporate geophysical understanding to obtain three dimensional images of the subsurface. The research reported here is the first phase of a three phase project. The project focuses on the characterization of thin clay lenses (aquitards) in a highly stratified sand and clay coastal geology to depths of up to 300 feet. The sensor suite used in this work includes time-domain electromagnetic induction (TDEM) and near surface seismic techniques. During this first phase of the project, enhancements to the acquisition and processing of TDEM data were studied, by use of simulated data, to assess improvements for the detection of thin clay layers. Secondly, studies were made of the use of compressional wave and shear wave seismic reflection data by using state-of-the-art high frequency vibrator technology. Finally, a newly developed processing technique, called ''data fusion,'' was implemented to process the geophysical data, and to incorporate a mathematical model of the subsurface strata. Examples are given of the results when applied to real seismic data collected at Hanford, WA, and for simulated data based on the geology of the Savannah River Site

  12. Use of new and old technologies and methods by the Alaska Volcano Observatory during the 2006 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Murray, T. L.; Nye, C. J.; Eichelberger, J. C.

    2006-12-01

    The recent eruption of Augustine Volcano was the first significant volcanic event in Cook Inlet, Alaska since 1992. In contrast to eruptions at remote Alaskan volcanoes that mainly affect aviation, ash from previous eruptions of Augustine has affected communities surrounding Cook Inlet, home to over half of Alaska's population. The 2006 eruption validated much of AVO's advance preparation, underscored the need to quickly react when a problem or opportunity developed, and once again demonstrated that while technology provides us with wonderful tools, professional relationships, especially during times of crisis, are still important. Long-term multi-parametric instrumental monitoring and background geological and geophysical studies represent the most fundamental aspect of preparing for any eruption. Once significant unrest was detected, AVO augmented the existing real-time network with additional instrumentation including web cameras. GPS and broadband seismometers that recorded data on site were also quickly installed as their data would be crucial for post-eruption research. Prior to 2006, most of most of AVO's eruption response plans and protocols had focused on the threat to aviation rather than ground-based hazards. However, the relationships and protocols developed for the aviation threat were sufficient to be adapted to the ash fall hazard, though it is apparent that more work, both scientific and with response procedures, is needed. Similarly, protocols were quickly developed for warning of a flank- collapse induced tsunami. Information flow within the observatory was greatly facilitated by an internal web site that had been developed and refined specifically for eruption response. Because AVO is a partnership of 3 agencies (U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys) with offices in both Fairbanks and Anchorage, web and internet-facing data servers provided

  13. Field Geophysics at SAGE: Strategies for Effective Education

    Science.gov (United States)

    Braile, L. W.; Baldridge, W. S.; Jiracek, G. R.; Biehler, S.; Ferguson, J. F.; Pellerin, L.; McPhee, D. K.; Bedrosian, P. A.; Snelson, C. M.; Hasterok, D. P.

    2011-12-01

    SAGE (Summer of Applied Geophysical Experience) is a unique program of education and research in geophysical field methods for undergraduate and graduate students from any university and for professionals. The core program is held for 4 weeks each summer in New Mexico and for an additional week in the following academic year in San Diego for U.S. undergraduates supported by the NSF Research Experience for Undergraduates (REU) program. Since SAGE was initiated in 1983, 730 students have participated in the program. NSF REU funding for SAGE began in 1990 and 319 REU students have completed SAGE through 2011. The primary objectives of SAGE are to teach the major geophysical exploration methods (seismic, gravity, magnetics, electromagnetics); apply these methods to the solution of specific problems (environmental, archaeological, hydrologic, geologic structure and stratigraphy); gain experience in processing, modeling and interpretation of geophysical data; and integrate the geophysical models and interpretations with geology. Additional objectives of SAGE include conducting research on the Rio Grande rift of northern New Mexico, and providing information on geophysics careers and professional development experiences to SAGE participants. Successful education, field and research strategies that we have implemented over the years include: 1. learn by doing; 2. mix lecture/discussion, field work, data processing and analysis, modeling and interpretation, and presentation of results; 3. a two-tier team approach - method/technique oriented teams and interpretation/integration teams (where each team includes persons representing different methods), provides focus, in-depth study, opportunity for innovation, and promotes teamwork and a multi-disciplinary approach; 4. emphasis on presentations/reports - each team (and all team members) make presentation, each student completes a written report; 5. experiment design discussion - students help design field program and consider

  14. TENCompetence Competence Observatory

    NARCIS (Netherlands)

    Vervenne, Luk

    2010-01-01

    Vervenne, L. (2007) TENCompetence Competence Observatory. Sources available http://tencompetence.cvs.sourceforge.net/viewvc/tencompetence/wp8/org.tencompetence.co/. Available under the three clause BSD license, copyright TENCompetence Foundation.

  15. The Farid and Moussa Raphael Observatory

    International Nuclear Information System (INIS)

    Hajjar, R

    2017-01-01

    The Farid and Moussa Raphael Observatory (FMRO) at Notre Dame University Louaize (NDU) is a teaching, research, and outreach facility located at the main campus of the university. It located very close to the Lebanese coast, in an urbanized area. It features a 60-cm Planewave CDK telescope, and instruments that allow for photometric and spetroscopic studies. The observatory currently has one thinned, back-illuminated CCD camera, used as the main imager along with Johnson-Cousin and Sloan photometric filters. It also features two spectrographs, one of which is a fiber fed echelle spectrograph. These are used with a dedicated CCD. The observatory has served for student projects, and summer schools for advanced undergraduate and graduate students. It is also made available for use by the regional and international community. The control system is currently being configured for remote observations. A number of long-term research projects are also being launched at the observatory. (paper)

  16. Geophysical Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  17. Review of geophysical characterization methods used at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    GV Last; DG Horton

    2000-03-23

    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ``all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts.

  18. Solar Wind Monitor--A School Geophysics Project

    Science.gov (United States)

    Robinson, Ian

    2018-01-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth's field in…

  19. Electricity and gas market observatory. 2. Quarter 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). The present observatory is dedicated only to eligible customers before 1 July 2007, i.e. non-residential customers. Statistics related to residential customers will be published in the next observatory (1 December 2007). Content: A - The electricity market: The retail electricity market (Introduction, Non-residential customer segments and their respective weights, Status at July 1, 2007, Dynamic analysis: 2. Quarter 2007); The wholesale electricity market (Introduction, Wholesale market activity in France, Wholesale market activity in France, Prices on the French wholesale market and European comparison, Import and export volumes, Concentration of the French electricity market, Striking fact of the second quarter 2007); B - The gas market: The retail gas market (Introduction, The non-residential customer segments and their respective weights, Status at July 1, 2007); The wholesale gas market (Gas pricing and gas markets in Europe, The wholesale market in France); C - Appendices: Electricity and gas market observatories combined glossary, Specific electricity market observatory glossary, Specific gas market observatory glossary

  20. Report of the Cerro Chato ultrabasic geophysical studies

    International Nuclear Information System (INIS)

    Cicalese, H.; Mari, C.; Lema, F.; Valverde, C.; Haut, R.

    1987-01-01

    This report refers to the obtained results of geophysical practiced during the year 1985 in the area of the ultrabasic of Cerro Chato, located in the area called Puntas del Malbajar in Durazno province. The aim was rehearsed an answer of an ultrabasic behaviour of the geophysical prospecting methods.They were carried out studies in magnetometry, induced polarization, electromagnetism and resistivity measurements in electric vertical sound. As well conclusions as recommendations express that applied geophysical methods allow to make ultrabasic charts or maps.

  1. Application of nuclear-geophysical methods to reserves estimation

    International Nuclear Information System (INIS)

    Bessonova, T.B.; Karpenko, I.A.

    1980-01-01

    On the basis of the analysis of reports dealing with calculations of mineral reserves considered are shortcomings in using nuclear-geophysical methods and in assessment of the reliability of geophysical sampling. For increasing efficiency of nuclear-geophysical investigations while prospecting ore deposits, it is advisable to introduce them widely instead of traditional geological sampling methods. For this purpose it is necessary to increase sensitivity and accuracy of radioactivity logging methods, to provide determination of certain elements in ores by these methods

  2. Groundwater geophysics. A tool for hydrology. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Reinhard (ed.) [Landesamt fuer Natur und Umwelt, Flintbek (Germany). Abt. Geologie/Boden

    2009-07-01

    Access to clean water is a human right and a basic requirement for economic development. The safest kind of water supply is the use of groundwater. Since groundwater normally has a natural protection against pollution by the covering layers, only minor water treatment is required. Detailed knowledge on the extent, hydraulic properties, and vulnerability of groundwater reservoirs is necessary to enable a sustainable use of the resources. This book addresses students and professionals in Geophysics and Hydrogeology. The aim of the authors is to demonstrate the application of geophysical techniques to provide a database for hydrogeological decisions like drillhole positioning or action plans for groundwater protection. Physical fundamentals and technical aspects of modern geophysical reconnaissance methods are discussed in the first part of the book. Beside 'classical' techniques like seismic, resistivity methods, radar, magnetic, and gravity methods emphasis is on relatively new techniques like complex geoelectric, radiomagnetotellurics, vertical groundwater flow determination, or nuclear magnetic resonance. An overview of direct push techniques is given which can fill the gap between surface and borehole geophysics. The applications of these techniques for hydrogeological purposes are illustrated in the second part of the book. The investigation of pore aquifers is demonstrated by case histories from Denmark, Germany, and Egypt. Examples for the mapping of fracture zone and karst aquifers as well as for saltwater intrusions leading to reduced groundwater quality are shown. The assessment of hydraulic conductivities of aquifers by geophysical techniques is discussed with respect to the use of porosity - hydraulic conductivity relations and to geophysical techniques like NMR or SIP which are sensitive to the effective porosity of the material. The classification of groundwater protective layers for vulnerability maps as required by the EU water framework

  3. Compton Gamma-Ray Observatory

    Science.gov (United States)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  4. Space astrophysical observatory 'Orion-2'

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.; Jarakyan, A.L.; Krmoyan, M.N.; Kashin, A.L.; Loretsyan, G.M.; Ohanesyan, J.B.

    1976-01-01

    Ultraviolet spectrograms of a large number of faint stars up to 13sup(m) were obtained in the wavelengths 2000-5000 A by means of the space observatory 'Orion-2' installed in the spaceship 'Soyuz-13' with two spacemen on board. The paper deals with a description of the operation modes of this observatory, the designs and basic schemes of the scientific and auxiliary device and the method of combining the work of the flight engineer and the automation system of the observatory itself. It also treats of the combination of the particular parts of 'Orion-2' observatory on board the spaceship and the measures taken to provide for its normal functioning in terms of the space flight. A detailed description is given of the optical, electrical and mechanical schemes of the devices - meniscus telescope with an objective prism, stellar diffraction spectrographs, single-coordinate and two-coordinate stellar and solar transducers, control panel, control systems, etc. The paper also provides the functional scheme of astronavigation, six-wheel stabilization, the design of mounting (assembling) the stabilized platform carrying the telescopes and the drives used in it. Problems relating to the observation program in orbit, the ballistic provision of initial data, and control of the operation of the observatory are also dealt with. In addition, the paper carries information of the photomaterials used, the methods of their energy calibration, standardization and the like. Matters of pre-start tests of apparatus, the preparation of the spacemen for conducting astronomical observations with the given devices, etc. are likewise dwelt on. The paper ends with a brief survey of the results obtained and the elaboration of the observed material. (Auth.)

  5. The University of Montana's Blue Mountain Observatory

    Science.gov (United States)

    Friend, D. B.

    2004-12-01

    The University of Montana's Department of Physics and Astronomy runs the state of Montana's only professional astronomical observatory. The Observatory, located on nearby Blue Mountain, houses a 16 inch Boller and Chivens Cassegrain reflector (purchased in 1970), in an Ash dome. The Observatory sits just below the summit ridge, at an elevation of approximately 6300 feet. Our instrumentation includes an Op-Tec SSP-5A photoelectric photometer and an SBIG ST-9E CCD camera. We have the only undergraduate astronomy major in the state (technically a physics major with an astronomy option), so our Observatory is an important component of our students' education. Students have recently carried out observing projects on the photometry of variable stars and color photometry of open clusters and OB associations. In my poster I will show some of the data collected by students in their observing projects. The Observatory is also used for public open houses during the summer months, and these have become very popular: at times we have had 300 visitors in a single night.

  6. Robotic Software for the Thacher Observatory

    Science.gov (United States)

    Lawrence, George; Luebbers, Julien; Eastman, Jason D.; Johnson, John A.; Swift, Jonathan

    2018-06-01

    The Thacher Observatory—a research and educational facility located in Ojai, CA—uses a 0.7 meter telescope to conduct photometric research on a variety of targets including eclipsing binaries, exoplanet transits, and supernovae. Currently, observations are automated using commercial software. In order to expand the flexibility for specialized scientific observations and to increase the educational value of the facility on campus, we are adapting and implementing the custom observatory control software and queue scheduling developed for the Miniature Exoplanet Radial Velocity Array (MINERVA) to the Thacher Observatory. We present the design and implementation of this new software as well as its demonstrated functionality on the Thacher Observatory.

  7. Application of surface geophysics to ground-water investigations

    Science.gov (United States)

    Zohdy, Adel A.R.; Eaton, Gordon P.; Mabey, Don R.

    1974-01-01

    This manual reviews the standard methods of surface geophysics applicable to ground-water investigations. It covers electrical methods, seismic and gravity methods, and magnetic methods. The general physical principles underlying each method and its capabilities and limitations are described. Possibilities for non-uniqueness of interpretation of geophysical results are noted. Examples of actual use of the methods are given to illustrate applications and interpretation in selected geohydrologic environments. The objective of the manual is to provide the hydrogeologist with a sufficient understanding of the capabilities, imitations, and relative cost of geophysical methods to make sound decisions as to when to use of these methods is desirable. The manual also provides enough information for the hydrogeologist to work with a geophysicist in designing geophysical surveys that differentiate significant hydrogeologic changes.

  8. Operations of and Future Plans for the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Auger Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.

  9. Solar Imagery - Photosphere - Sunspot Drawings - McMath-Hulbert Observatory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The McMath-Hulbert Observatory is a decommissioned solar observatory in Lake Angelus, Michigan, USA. It was established in 1929 as a private observatory by father...

  10. Geophysical background and as-built target characteristics

    International Nuclear Information System (INIS)

    Allen, J.W.

    1994-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) has provided a facility for DOE, other Government agencies, and the private sector to evaluate and document the utility of specific geophysical measurement techniques for detecting and defining cultural and environmental targets. This facility is the Rabbit Valley Geophysics Performance Evaluation Range (GPER). Geophysical surveys prior to the fiscal year (FY) 1994 construction of new test cells showed the primary test area to be relatively homogeneous and free from natural or man-made artifacts, which would generate spurious responses in performance evaluation data. Construction of nine new cell areas in Rabbit Valley was completed in June 1994 and resulted in the emplacement of approximately 150 discrete targets selected for their physical and electrical properties. These targets and their geophysical environment provide a broad range of performance evaluation parameters from ''very easy to detect'' to ''challenging to the most advanced systems.'' Use of nonintrusive investigative techniques represents a significant improvement over intrusive characterization methods, such as drilling or excavation, because there is no danger of exposing personnel to possible hazardous materials and no risk of releasing or spreading contamination through the characterization activity. Nonintrusive geophysical techniques provide the ability to infer near-surface structure and waste characteristics from measurements of physical properties associated with those targets

  11. Rapid geophysical surveyor

    International Nuclear Information System (INIS)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved

  12. Addressing the social dimensions of citizen observatories: The Ground Truth 2.0 socio-technical approach for sustainable implementation of citizen observatories

    Science.gov (United States)

    Wehn, Uta; Joshi, Somya; Pfeiffer, Ellen; Anema, Kim; Gharesifard, Mohammad; Momani, Abeer

    2017-04-01

    Owing to ICT-enabled citizen observatories, citizens can take on new roles in environmental monitoring, decision making and co-operative planning, and environmental stewardship. And yet implementing advanced citizen observatories for data collection, knowledge exchange and interactions to support policy objectives is neither always easy nor successful, given the required commitment, trust, and data reliability concerns. Many efforts are facing problems with the uptake and sustained engagement by citizens, limited scalability, unclear long-term sustainability and limited actual impact on governance processes. Similarly, to sustain the engagement of decision makers in citizen observatories, mechanisms are required from the start of the initiative in order to have them invest in and, hence, commit to and own the entire process. In order to implement sustainable citizen observatories, these social dimensions therefore need to be soundly managed. We provide empirical evidence of how the social dimensions of citizen observatories are being addressed in the Ground Truth 2.0 project, drawing on a range of relevant social science approaches. This project combines the social dimensions of citizen observatories with enabling technologies - via a socio-technical approach - so that their customisation and deployment is tailored to the envisaged societal and economic impacts of the observatories. The projects consists of the demonstration and validation of six scaled up citizen observatories in real operational conditions both in the EU and in Africa, with a specific focus on flora and fauna as well as water availability and water quality for land and natural resources management. The demonstration cases (4 EU and 2 African) cover the full 'spectrum' of citizen-sensed data usage and citizen engagement, and therefore allow testing and validation of the socio-technical concept for citizen observatories under a range of conditions.

  13. The Paris Observatory has 350 years

    Science.gov (United States)

    Lequeux, James

    2017-01-01

    The Paris Observatory is the oldest astronomical observatory that has worked without interruption since its foundation to the present day. The building due to Claude Perrault is still in existence with few modifications, but of course other buildings have been added all along the centuries for housing new instruments and laboratories. In particular, a large dome has been built on the terrace in 1847, with a 38-cm diameter telescope completed in 1857: both are still visible. The main initial purpose of the Observatory was to determine longitudes. This was achieved by Jean-Dominique Cassini using the eclipses of the satellites of Jupiter: a much better map of France was the produced using this method, which unfortunately does not work at sea. Incidentally, the observation of these eclipses led to the discovery in 1676 of the finite velocity of light by Cassini and Rømer. Cassini also discovered the differential rotation of Jupiter and four satellites of Saturn. Then, geodesy was to be the main activity of the Observatory for more than a century, culminating in the famous Cassini map of France completed around 1790. During the first half of the 19th century, under François Arago, the Observatory was at the centre of French physics, which then developed very rapidly. Arago initiated astrophysics in 1810 by showing that the Sun and stars are made of incandescent gas. In 1854, the new director, Urbain Le Verrier, put emphasis on astrometry and celestial mechanics, discovering in particular the anomalous advance of the perihelion of Mercury, which was later to be a proof of General Relativity. In 1858, Leon Foucault built the first modern reflecting telescopes with their silvered glass mirror. Le Verrier created on his side modern meteorology, including some primitive forecasts. The following period was not so bright, due to the enormous project of the Carte du Ciel, which took much of the forces of the Observatory for half a century with little scientific return. In

  14. A Solar Station for Education and Research on Solar Activity at a National University in Peru

    Science.gov (United States)

    Ishitsuka, J. K.

    2006-11-01

    pepe@geo.igp.gob.pe Beginning in 1937, the Carnegie Institution of Washington made active regional observations with a spectro-helioscope at the Huancayo Observatory. In 1957, during the celebration of the International Geophysical Year Mutsumi Ishitsuka arrived at the Geophysical Institute of Peru and restarted solar observations from the Huancayo Observatory. Almost 69 years have passed and many contributions for the geophysical and solar sciences have been made. Now the Instituto Geofisico del Peru (IGP), in cooperation with the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA), and with the support of the National Astronomical Observatory of Japan, are planning to construct a solar station refurbishing a coelostat that worked for many years at the Huancayo Observatory. A 15 cm refractor telescope is already installed at the university, for the observation of sunspots. A solar Flare Monitor Telescope (FMT) from Hida Observatory of Kyoto University could be sent to Peru and installed at the solar station at UNICA. As the refurbished coelostat, FMT will become a good tool to improve education and research in sciences.

  15. Geophysical investigations in Jordan

    Science.gov (United States)

    Kovach, R.L.; Andreasen, G.E.; Gettings, M.E.; El-Kaysi, K.

    1990-01-01

    A number of geophysical investigations have been undertaken in the Hashemite Kingdom of Jordan to provide data for understanding the tectonic framework, the pattern of seismicity, earthquake hazards and geothermal resources of the country. Both the historical seismic record and the observed recent seismicity point to the dominance of the Dead Sea Rift as the main locus of seismic activity but significant branching trends and gaps in the seismicity pattern are also seen. A wide variety of focal plane solutions are observed emphasizing the complex pattern of fault activity in the vicinity of the rift zone. Geophysical investigations directed towards the geothermal assessment of the prominent thermal springs of Zerga Ma'in and Zara are not supportive of the presence of a crustal magmatic source. ?? 1990.

  16. The First Astronomical Observatory in Cluj-Napoca

    Science.gov (United States)

    Szenkovits, Ferenc

    2008-09-01

    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.

  17. Visits to La Plata Observatory

    Science.gov (United States)

    Feinstein, A.

    1985-03-01

    La Plata Observatory will welcome visitors to ESO-La Silla that are willing to make a stop at Buenos Aires on their trip to Chile or on their way back. There is a nice guesthouse at the Observatory that can be used, for a couple of days or so, by astronomers interested in visiting the Observatory and delivering talks on their research work to the Argentine colleagues. No payments can, however, be made at present. La Plata is at 60 km from Buenos Aires. In the same area lie the Instituto de Astronomia y Fisica dei Espacio (IAFE), in Buenos Aires proper, and the Instituto Argentino de Radioastronomia (IAR). about 40 km from Buenos Aires on the way to La Plata. Those interested should contacl: Sr Decano Prof. Cesar A. Mondinalli, or Dr Alejandro Feinstein, Observatorio Astron6mico, Paseo dei Bosque, 1900 La Plata, Argentina. Telex: 31216 CESLA AR.

  18. Norwegian Ocean Observatory Network (NOON)

    Science.gov (United States)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  19. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1982-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...

  20. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1979-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...

  1. Responsibilities, opportunities and challenges in geophysical exploration

    International Nuclear Information System (INIS)

    Rytle, R.J.

    1982-01-01

    Geophysical exploration for engineering purposes is conducted to decrease the risk in encountering site uncertainties in construction of underground facilities. Current responsibilities, opportunities and challenges for those with geophysical expertise are defined. These include: replacing the squiggly line format, developing verification sites for method evaluations, applying knowledge engineering and assuming responsibility for crucial national problems involving rock mechanics expertise

  2. Electricity and gas market observatory. 3. Quarter 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). Since the 1 of July 2007, all customers can choose their gas and electricity suppliers. The present observatory is including residential customer's statistics. Content: A - The electricity market: The retail electricity market (Introduction, Customer segments and their respective weight, Status at September 30, 2007, Dynamic analysis: 3. Quarter 2007); The wholesale electricity market (Introduction, Wholesale market activity in France, Wholesale market activity in France, Prices on the French wholesale market and European comparison, Import and export volumes, Concentration of the French electricity market); B - The gas market: The retail gas market (Introduction, Customer segments and their respective weight, Status on September 30, 2007, Dynamic analysis: 3. Quarter 2007); The wholesale gas market (Gas pricing and gas markets in Europe, The wholesale market in France); C - Appendices: Electricity and gas market observatories combined glossary, Specific electricity market observatory glossary, Specific gas market observatory glossary

  3. Global status of and prospects for protection of terrestrial geophysical diversity.

    Science.gov (United States)

    Sanderson, Eric W; Segan, Daniel B; Watson, James E M

    2015-06-01

    Conservation of representative facets of geophysical diversity may help conserve biological diversity as the climate changes. We conducted a global classification of terrestrial geophysical diversity and analyzed how land protection varies across geophysical diversity types. Geophysical diversity was classified in terms of soil type, elevation, and biogeographic realm and then compared to the global distribution of protected areas in 2012. We found that 300 (45%) of 672 broad geophysical diversity types currently meet the Convention on Biological Diversity's Aichi Target 11 of 17% terrestrial areal protection, which suggested that efforts to implement geophysical diversity conservation have a substantive basis on which to build. However, current protected areas were heavily biased toward high elevation and low fertility soils. We assessed 3 scenarios of protected area expansion and found that protection focused on threatened species, if fully implemented, would also protect an additional 29% of geophysical diversity types, ecoregional-focused protection would protect an additional 24%, and a combined scenario would protect an additional 42%. Future efforts need to specifically target low-elevation sites with productive soils for protection and manage for connectivity among geophysical diversity types. These efforts may be hampered by the sheer number of geophysical diversity facets that the world contains, which makes clear target setting and prioritization an important next step. © 2015 Society for Conservation Biology.

  4. Quartz tube extensometer for observation of Earth tides and local tectonic deformations at the Sopronbanfalva Geodynamic Observatory, Hungary

    International Nuclear Information System (INIS)

    Mentes, Gy.

    2010-01-01

    In May 1990, a quartz tube extensometer was installed in the Sopronbanfalva Geodynamic Observatory of the Geodetic and Geophysical Research Institute (GGRI) of the Hungarian Academy of Sciences for recording Earth tides and recent tectonic movements. The paper describes the construction of the extensometer and a portable calibrator used for the in situ calibration of the instrument. The extensometer is very sensitive. Its scale factor is 2.093±0.032 nm/mV according to the highly precise calibration method developed at the GGRI. Since the stability of extensometers is strongly influenced by the geological structure and properties of the rocks in the vicinity of the recording site, the observatory instrument system was tested by coherence analysis between theoretical (as the input signal) and measured tidal data series (as the output signal). In the semidiurnal tidal frequency band the coherence is better than 0.95, while in the diurnal band it is about 0.8. Probably this is due to the fact that the noise is higher in the diurnal band (0.4-0.5 nstr) than in the semidiurnal band (0.19-0.22 nstr). Coherence analysis between theoretical and measured data corrected for barometric changes yielded a small improvement of coherence in both frequency bands, while using temperature data correction, no observable improvement was obtained. Results of the tidal analysis also show that the observatory instrument system is suitable for recording very small tectonic movements. The 18 years of continuous data series measured by the extensometer prove the high quality of the extensometer. On the basis of investigations, it was pointed out that further efforts should be done to improve the barometric correction method and that correction for ocean load, as well as considering topographic and cavity effects are necessary to increase the accuracy of determining tidal parameters.

  5. Science Potential of a Deep Ocean Antineutrino Observatory

    International Nuclear Information System (INIS)

    Dye, S.T.

    2007-01-01

    This paper presents science potential of a deep ocean antineutrino observatory being developed at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and θ 13 . At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle

  6. Integrated Interpretation of Geophysical, Geotechnical, and Environmental Monitoring Data to Define Precursors for Landslide Activation

    Science.gov (United States)

    Uhlemann, S.; Chambers, J.; Merritt, A.; Wilkinson, P.; Meldrum, P.; Gunn, D.; Maurer, H.; Dixon, N.

    2014-12-01

    To develop a better understanding of the failure mechanisms leading to first time failure or reactivation of landslides, the British Geological Survey is operating an observatory on an active, shallow landslide in North Yorkshire, UK, which is a typical example of slope failure in Lias Group mudrocks. This group and the Whitby Mudstone Formation in particular, show one of the highest landslide densities in the UK. The observatory comprises geophysical (i.e., ERT and self-potential monitoring, P- and S-wave tomography), geotechnical (i.e. acoustic emission and inclinometer), and hydrological and environmental monitoring (i.e. weather station, water level, soil moisture, soil temperature), in addition to movement monitoring using real-time kinematic GPS. In this study we focus on the reactivation of the landslide at the end of 2012, after an exceptionally wet summer. We present an integrated interpretation of the different data streams. Results show that the two lobes (east and west), which form the main focus of the observatory, behave differently. While water levels, and hence pore pressures, in the eastern lobe are characterised by a continuous increase towards activation resulting in significant movement (i.e. metres), water levels in the western lobe are showing frequent drainage events and thus lower pore pressures and a lower level of movement (i.e. tens of centimetres). This is in agreement with data from the geoelectrical monitoring array. During the summer season, resistivities generally increase due to decreasing moisture levels. However, during the summer of 2012 this seasonal pattern was interrupted, with the reactivated lobe displaying strongly decreasing resistivities (i.e. increasing moisture levels). The self-potential and soil moisture data show clear indications of moisture accumulation prior to the reactivation, followed by continuous discharge towards the base of the slope. Using the different data streams, we present 3D volumetric images of

  7. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth

    Directory of Open Access Journals (Sweden)

    S. L. Brantley

    2017-12-01

    Full Text Available The critical zone (CZ, the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earth's materials are unweathered. The network of nine CZ observatories supported by the US National Science Foundation has made advances in three broad areas of CZ research relating to the co-evolving surfaces. First, monitoring has revealed how natural and anthropogenic inputs at the vegetation canopy and ground surface cause subsurface responses in water, regolith structure, minerals, and biotic activity to considerable depths. This response, in turn, impacts aboveground biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface of the CZ varies across landscapes, which in turn influences aboveground ecosystems. Third, several new mechanistic models now provide quantitative predictions of the spatial structure of the subsurface of the CZ.Many countries fund critical zone observatories (CZOs to measure the fluxes of solutes, water, energy, gases, and sediments in the CZ and some relate these observations to the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each US observatory has succeeded in (i synthesizing research across disciplines into convergent approaches; (ii providing long-term measurements to compare across sites; (iii testing and developing models; (iv collecting and measuring baseline data for comparison to catastrophic events; (v stimulating new process-based hypotheses; (vi catalyzing development of new techniques and instrumentation; (vii informing the public about the CZ; (viii mentoring students and teaching about emerging multidisciplinary CZ science; and (ix discovering new insights about the CZ. Many

  8. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth

    Science.gov (United States)

    Brantley, Susan L.; McDowell, William H.; Dietrich, William E.; White, Timothy S.; Kumar, Praveen; Anderson, Suzanne P.; Chorover, Jon; Lohse, Kathleen Ann; Bales, Roger C.; Richter, Daniel D.; Grant, Gordon; Gaillardet, Jérôme

    2017-12-01

    The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earth's materials are unweathered. The network of nine CZ observatories supported by the US National Science Foundation has made advances in three broad areas of CZ research relating to the co-evolving surfaces. First, monitoring has revealed how natural and anthropogenic inputs at the vegetation canopy and ground surface cause subsurface responses in water, regolith structure, minerals, and biotic activity to considerable depths. This response, in turn, impacts aboveground biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface of the CZ varies across landscapes, which in turn influences aboveground ecosystems. Third, several new mechanistic models now provide quantitative predictions of the spatial structure of the subsurface of the CZ.Many countries fund critical zone observatories (CZOs) to measure the fluxes of solutes, water, energy, gases, and sediments in the CZ and some relate these observations to the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each US observatory has succeeded in (i) synthesizing research across disciplines into convergent approaches; (ii) providing long-term measurements to compare across sites; (iii) testing and developing models; (iv) collecting and measuring baseline data for comparison to catastrophic events; (v) stimulating new process-based hypotheses; (vi) catalyzing development of new techniques and instrumentation; (vii) informing the public about the CZ; (viii) mentoring students and teaching about emerging multidisciplinary CZ science; and (ix) discovering new insights about the CZ. Many of these

  9. Brief overview of geophysical probing technology

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Lytle, R.J.

    1982-01-01

    An evaluation of high-resolution geophysical techniques which can be used to characterize a nulcear waste disposal site is being conducted by the Lawrence Livermore National Laboratory (LLNL) at the request of the US Nuclear Regulatory Commisson (NRC). LLNL is involved in research work aimed at evaluating the current capabilities and limitations of geophysical methods used for site selection. This report provides a brief overview of the capabilities and limitations associated with this technology and explains how our work addresses some of the present limitations. We are examining both seismic and electromagnetic techniques to obtain high-resolution information. We are also assessing the usefulness of geotomography in mapping fracture zones remotely. Finally, we are collecting core samples from a site in an effort to assess the capability of correlating such geophysical data with parameters of interest such as fracture continuity, orientation, and fracture density

  10. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    Science.gov (United States)

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  11. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  12. Science requirements and the design of cabled ocean observatories

    Directory of Open Access Journals (Sweden)

    H. Mikada

    2006-06-01

    Full Text Available The ocean sciences are beginning a new phase in which scientists will enter the ocean environment and adaptively observe the Earth-Ocean system through remote control of sensors and sensor platforms. This new ocean science paradigm will be implemented using innovative facilities called ocean observatories which provide unprecedented levels of power and communication to access and manipulate real-time sensor networks deployed within many different environments in the ocean basins. Most of the principal design drivers for ocean observatories differ from those for commercial submarine telecommunications systems. First, ocean observatories require data to be input and output at one or more seafloor nodes rather than at a few land terminuses. Second, ocean observatories must distribute a lot of power to the seafloor at variable and fluctuating rates. Third, the seafloor infrastructure for an ocean observatory inherently requires that the wet plant be expandable and reconfigurable. Finally, because the wet communications and power infrastructure is comparatively complex, ocean observatory infrastructure must be designed for low life cycle cost rather than zero maintenance. The origin of these differences may be understood by taking a systems engineering approach to ocean observatory design through examining the requirements derived from science and then going through the process of iterative refinement to yield conceptual and physical designs. This is illustrated using the NEPTUNE regional cabled observatory power and data communications sub-systems.

  13. The South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1988-01-01

    The geographical position, climate and equipment at the South African Astronomical Observatory (SAAO), together with the enthusiasm and efforts of SAAO scientific and technical staff and of visiting scientists, have enabled the Observatory to make a major contribution to the fields of astrophysics and cosmology. During 1987 the SAAO has been involved in studies of the following: supernovae; galaxies, including Seyfert galaxies; celestial x-ray sources; magellanic clouds; pulsating variables; galatic structure; binary star phenomena; nebulae; interstellar matter and stellar astrophysics

  14. Setting-up a small observatory from concept to construction

    CERN Document Server

    Arditti, David

    2008-01-01

    Every amateur astronomer who is considering a purpose-built observatory will find this book absolutely invaluable during both the planning and the construction stages. Drawing on David Arditti’s practical experience and that of many other amateur astronomers, it gives invaluable help in making all the important decisions. To begin with, Setting up a Small Observatory addresses what you really need from an observatory, whether to build or buy, what designs you should consider, and where you should site it. Uniquely, it also considers the aesthetics of an amateur observatory: how to make it fit in with your home, garden, and yard, even disguising it as a more common garden building if necessary. There’s also a wealth of practical details for constructing and equipping your small observatory – everything from satisfying local planning laws and building codes through to making sure that your completed observatory is well-equipped, convenient, and comfortable to use. Whether you are considering a simple low-...

  15. Modeling geophysical complexity: a case for geometric determinism

    Directory of Open Access Journals (Sweden)

    C. E. Puente

    2007-01-01

    Full Text Available It has been customary in the last few decades to employ stochastic models to represent complex data sets encountered in geophysics, particularly in hydrology. This article reviews a deterministic geometric procedure to data modeling, one that represents whole data sets as derived distributions of simple multifractal measures via fractal functions. It is shown how such a procedure may lead to faithful holistic representations of existing geophysical data sets that, while complementing existing representations via stochastic methods, may also provide a compact language for geophysical complexity. The implications of these ideas, both scientific and philosophical, are stressed.

  16. Ten years of the Spanish Virtual Observatory

    Science.gov (United States)

    Solano, E.

    2015-05-01

    The main objective of the Virtual Observatory (VO) is to guarantee an easy and efficient access and analysis of the information hosted in astronomical archives. The Spanish Virtual Observatory (SVO) is a project that was born in 2004 with the goal of promoting and coordinating the VO-related activities at national level. SVO is also the national contact point for the international VO initiatives, in particular the International Virtual Observatory Alliance (IVOA) and the Euro-VO project. The project, led by Centro de Astrobiología (INTA-CSIC), is structured around four major topics: a) VO compliance of astronomical archives, b) VO-science, c) VO- and data mining-tools, and d) Education and outreach. In this paper I will describe the most important results obtained by the Spanish Virtual Observatory in its first ten years of life as well as the future lines of work.

  17. Geophysics comes of age in oil sands development

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, P. [WorleyParsons Komex, Calgary, AB (Canada); Birch, R.; Parker, D.; Andrews, B. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2008-07-01

    This paper discussed geophysical techniques developed for oil sands exploration and production applications in Alberta's oil sands region. Geophysical methods are playing an important role in mine planning, tailings containment, water supply, and land reclamation activities. Geophysics techniques are used to estimate the volume of muskeg that needs to be stripped and stored for future reclamation activities as well as to site muskeg piles and delineate the thickness of clay Clearwater formations overlying Cretaceous oil-bearing sands. 2-D electrical resistivity mapping is used to map river-connected deep bedrock Pleistocene paleovalleys in the region. Geophysical studies are also used to investigate the interiors of dikes and berms as well as to monitor salt migration within tailings piles. Sonic and density logs are used to create synthetic seismograms for mapping the Devonian surface in the region. The new applications included the calculation of bitumen saturation from surface sands and shales; muskeg thickness mapping; and non-intrusive monitoring of leachate plumes. Geophysical techniques included 2-D electrical resistivity imaging; transient electromagnetic (EM) technologies; ground penetrating radar; and high-resolution seismic reflections. Polarization, surface nuclear magnetic resonance and push-probe sensing techniques were also discussed. Techniques were discussed in relation to Alberta's Athabasca oil sands deposits. 4 refs.

  18. The application actualities and prospects of geophysical methods to uranium prospecting

    International Nuclear Information System (INIS)

    Liu Qingcheng

    2010-01-01

    Basic principles of geophysical methods to uranium prospect are briefly introduced, and the effects as well as problems in using those methods are analysed respectively. Combining with the increasing demand of uranium resources for Chinese nuclear power development and the higher requirements of geophysical techniques, the developing directions and the thoughts of geophysical techniques in uranium prospecting were proposed. A new pattern with producing, teaching and researching together is brought forward to develop advancing uranium prospecting key technologies and to break through technological bottlenecks depending on independent innovation. Integrated geophysical methods for prospecting uranium deposits are suggested. The method includes geophysical techniques as follows: gravity, magnetic, seismic, radioactive, remote sensing, and geochemical method in some proving grounds. Based on the experimental research, new uranium deposits prospecting models with efficient integrated geophysical methods can be established. (authors)

  19. Science Potential of a Deep Ocean Antineutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.T. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu, Hawaii, 96822 (United States); College of Natural Sciences, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, Hawaii 96744 (United States)

    2007-06-15

    This paper presents science potential of a deep ocean antineutrino observatory being developed at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and {theta}{sub 13}. At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle.

  20. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course

    Science.gov (United States)

    Duncan, D.; Davis, M. B.; Goff, J. A.; Gulick, S. P. S.; McIntosh, K. D.; Saustrup, S., Sr.

    2014-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers a three-week marine geology and geophysics field course during the spring-summer intersession. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples. Students participate in an initial three days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas, and Galveston, TX, and Grand Isle, LA, provide ideal locations for students to investigate coastal processes of the Gulf Coast and continental shelf through application of geophysical techniques in an exploratory mode. At sea, students assist with survey design and instrumentation set up while learning about acquisition parameters, data quality control, trouble-shooting, and safe instrument deployment and retrieval. In teams of four, students work in onshore field labs preparing sediment samples for particle size analysis and data processing. During the course's final week, teams return to the classroom where they integrate, interpret, and visualize data in a final project using industry-standard software such as Echos, Landmark, Caris, and Fledermaus. The course concludes with a series of final presentations and discussions in which students examine geologic history and/or sedimentary processes represented by the Gulf Coast continental shelf with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen

  1. Basic elements of nuclear geophysics

    International Nuclear Information System (INIS)

    Nordemann, D.J.R.; Pereira, E.B.

    1984-01-01

    Nuclear Geophysics applies the nuclear radiation detection methodology to the geosciences, specially to study the dynamical processes of the lithosphere, the hydrosphere and the atmosphere as well as some aspects of planetology and astrophysics. Here the main methods are described: alpha-ray and gamma-ray spectrometry, the interaction of alpha and gamma radiation with matter and the detectors used (grid chambers, surface barrier silicon detector for alpha radiation; and sodium iodide thallium activated phosphors, hyperpure and lithium drifted germanium semiconductor detectors for gamma radiation). The principal applications of Nuclear Geophysics are given as examples to ilustrate the use of the methods described. (AUthor) [pt

  2. The geology and geophysics of the Oslo rift

    Science.gov (United States)

    Ruder, M. E.

    1981-01-01

    The regional geology and geophysical characteristics of the Oslo graben are reviewed. The graben is part of a Permian age failed continental rift. Alkali olivine, tholefitic, and monzonitic intrusives as well as basaltic lavas outline the extent of the graben. Geophysical evidence indicates that rifting activity covered a much greater area in Skagerrak Sea as well as the Paleozoic time, possibly including the northern Skagerrak Sea as well as the Oslo graben itself. Much of the surficial geologic characteristics in the southern part of the rift have since been eroded or covered by sedimentation. Geophysical data reveal a gravity maximum along the strike of the Oslo graben, local emplacements of magnetic material throughout the Skagerrak and the graben, and a slight mantle upward beneath the rift zone. Petrologic and geophysical maps which depict regional structure are included in the text. An extensive bibliography of pertinent literature published in English between 1960 and 1980 is also provided.

  3. Geophysical characterisation of the groundwater-surface water interface

    Science.gov (United States)

    McLachlan, P. J.; Chambers, J. E.; Uhlemann, S. S.; Binley, A.

    2017-11-01

    Interactions between groundwater (GW) and surface water (SW) have important implications for water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies, the GW-SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and water between GW systems and SW environments. However, geological, hydrological, and biogeochemical heterogeneity in the GW-SW interface makes it difficult to characterise with direct observations. Over the past two decades geophysics has been increasingly used to characterise spatial and temporal variability throughout the GW-SW interface. Geophysics is a powerful tool in evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological processes. Geophysics should be used alongside traditional hydrological and biogeochemical methods to provide additional information about the subsurface. Further integration of commonly used geophysical techniques, and adoption of emerging techniques, has the potential to improve understanding of the properties and processes of the GW-SW interface, and ultimately the implications for water quality and environmental health.

  4. Site characterization and validation - geophysical single hole logging

    International Nuclear Information System (INIS)

    Andersson, Per

    1989-05-01

    A total of 15 boreholes have been drilled for preliminary characterization of a previously unexplored site at the 360 and 385 m level in the Stripa mine. To adequately described the rock mass in the vicinity of these boreholes, a comprehensive program utilizing a large number of geophysical borehole methods has been carried out in 10 of these boreholes. The specific geophysical character of the rock mass and the major deformed units distinguished in the vicinity of the boreholes are recognized, and in certain cases also correlated between the boreholes. A general conclusion based on the geophysical logging results, made in this report, is that the preliminary predictions made in stage 2, of the site characterization and validation project (Olsson et.al, 1988), are adequate. The results from the geophysical logging can support the four predicted fracture/ fracture zones GHa, GHb, GA and GB whereas the predicted zones GC and GI are hard to confirm from the logging results. (author)

  5. Development of Armenian-Georgian Virtual Observatory

    Science.gov (United States)

    Mickaelian, Areg; Kochiashvili, Nino; Astsatryan, Hrach; Harutyunian, Haik; Magakyan, Tigran; Chargeishvili, Ketevan; Natsvlishvili, Rezo; Kukhianidze, Vasil; Ramishvili, Giorgi; Sargsyan, Lusine; Sinamyan, Parandzem; Kochiashvili, Ia; Mikayelyan, Gor

    2009-10-01

    The Armenian-Georgian Virtual Observatory (ArGVO) project is the first initiative in the world to create a regional VO infrastructure based on national VO projects and regional Grid. The Byurakan and Abastumani Astrophysical Observatories are scientific partners since 1946, after establishment of the Byurakan observatory . The Armenian VO project (ArVO) is being developed since 2005 and is a part of the International Virtual Observatory Alliance (IVOA). It is based on the Digitized First Byurakan Survey (DFBS, the digitized version of famous Markarian survey) and other Armenian archival data. Similarly, the Georgian VO will be created to serve as a research environment to utilize the digitized Georgian plate archives. Therefore, one of the main goals for creation of the regional VO is the digitization of large amounts of plates preserved at the plate stacks of these two observatories. The total amount of plates is more than 100,000 units. Observational programs of high importance have been selected and some 3000 plates will be digitized during the next two years; the priority is being defined by the usefulness of the material for future science projects, like search for new objects, optical identifications of radio, IR, and X-ray sources, study of variability and proper motions, etc. Having the digitized material in VO standards, a VO database through the regional Grid infrastructure will be active. This partnership is being carried out in the framework of the ISTC project A-1606 "Development of Armenian-Georgian Grid Infrastructure and Applications in the Fields of High Energy Physics, Astrophysics and Quantum Physics".

  6. Geophysical investigations in the Syyry area, Finland

    International Nuclear Information System (INIS)

    Heikkinen, E.; Kurimo, M.

    1992-12-01

    Investigations were carried out at the Syyry site at Sievi using geological, geophysical, geohydrological and geochemical methods in 1987-1991 to determine the suitability of the bedrock for the final disposal of spent nuclear fuel. In this survey airborne, ground and borehole geophysical methods were used to study the rock type distribution, fracturing and hydraulic conductivity of the bedrock to a depth of one kilometre

  7. Geophysical investigations in the Olkiluoto area, Finland

    International Nuclear Information System (INIS)

    Heikkinen, E.; Paananen, M.

    1992-12-01

    Investigations were carried out at the Olkiluoto site at Eurajoki using geological, geophysical, geohydrological and geochemical methods in 1987-1992 to determine the suitability of the bedrock for the final disposal of spent nuclear fuel. In this survey airborne, ground and borehole geophysical methods were used to study the rock type distribution, fracturing and hydraulic conductivity of the bedrock to a depth of one kilometre

  8. Geophysical investigations in the Kivetty area, Finland

    International Nuclear Information System (INIS)

    Heikkinen, E.; Paananen, M.; Oehberg, A.; Front, K.; Okko, O.; Pitkaenen, P.

    1992-09-01

    Investigations were carried out at Kivetty site in Konginkangas, in central Finland, by geological, geophysical, geohydrological and geochemical methods in 1987-1991 to determine the suitability of the bedrock for the final disposal of spent nuclear fuel. Airborne, ground and borehole geophysical methods were used to study the rock type distribution, fracturing and hydraulic conductivity of the bedrock to a depth of one kilometre

  9. Broadening and Enhancing Geophysical Software to Study the Internal Structure of the Sun

    Science.gov (United States)

    Dimech, C.; Tong, V.; D'auria, L.; Corciulo, M.; ozeren, M. S.; Zollo, A.

    2013-12-01

    The acquisition of high resolution helioseismic data from Hinode and the Solar Dynamics Observatory have yielded significant efforts in developing software to study the internal structure and dynamics of active regions and particularly the associated sunspots. The solar active regions trigger the emissions of strong flares and coronal mass ejections that affect our lives on Earth. As the computational techniques involved in studying the solar interior share a lot of similarities with terrestrial tomography, it is important to focus on the commonalities of the computational tasks by reusing various geophysical codes so they can operate consistently with helioseismic data and with each other. We present a project that brings together various concepts and best practices from the software industry to produce a generic framework that enables the expansion and enhancement of the numerical capabilities of geophysical software to solar physics. The source code is developed as free software, utilizing a completely free GNU computer system. Test tools are provided to help validate the code on both terrestrial and solar data for various algorithms. Contrary to older versions, the display results adopt greater functionality so that one can readily infer the program structure and understand the details of the computations. We provide examples of unit tesing and show how they simplify the validation of the code through every phase of the development process. Through a series of tools and common vocabulary, the added functionality accomodates new interdisciplinary collaboration in both solar and terrestrial seismology by helping track the various input and control parameters available and make debugging easier should things go wrong. We conclude with a discussion on how high impact research software should be communicated, peer reviewed, and made openly available as an official free software package having a dedicated mailing and bug-reporting list dedicated to open exchange of

  10. Astronomical Research with the MicroObservatory Net

    Science.gov (United States)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1997-05-01

    We have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. The MicroObservatory Net consists of five of these telescopes. They are currently being deployed around the world at widely distributed longitudes. Remote access to the MicroObservatories over the Internet has now been implemented. Software for computer control, pointing, focusing, filter selection as well as pattern recognition have all been developed as part of the project. The telescopes can be controlled in real time or in delay mode, from a Macintosh, PC or other computer using Web-based software. The Internet address of the telescopes is http://cfa- www.harvard.edu/cfa/sed/MicroObservatory/MicroObservatory.html. In the real-time mode, individuals have access to all of the telescope control functions without the need for an `on-site' operator. Users can sign up for a specific period of ti me. In the batch mode, users can submit requests for delayed telescope observations. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. The telescopes were designed for classroom instruction, as well as for use by students and amateur astronomers for original scientific research projects. We are currently examining a variety of technical and educational questions about the use of the telescopes including: (1) What are the best approaches to scheduling real-time versus batch mode observations? (2) What criteria should be used for allocating telescope time? (3) With deployment of more than one telescope, is it advantageous for each telescope to be used for just one type of observation, i.e., some for photometric use, others for imaging? And (4) What are the most valuable applications of the MicroObservatories in astronomical research? Support for the MicroObservatory

  11. Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    Ewan, G.T.; Evans, H.C.; Lee, H.W.

    1986-10-01

    This report is a supplement to a report (SNO-85-3 (Sudbury Neutrino Observatory)) which contained the results of a feasibility study on the construction of a deep underground neutrino observatory based on a 1000 ton heavy water Cerenkov detector. Neutrinos carry detailed information in their spectra on the reactions taking place deep in the interstellar interior and also provide information on supernova explosions. In addition to their role as astrophysical probes, a knowledge of the properties of neutrinos is crucial to theories of grand unification. The Sudbury Neutrino Observatory is unique in its high sensitivity to electron neutrinos and its ability to detect all other types of neutrinos of energy greater than 2.2 MeV. The results of the July 1985 study indicated that the project is technically feasible in that the proposed detector can measure the direction and energy of electron neutrinos above 7 MeV and the scientific programs will make significant contributions to physics and astrophysics. This present report contains new information obtained since the 1985 feasibility study. The enhanced conversion of neutrinos in the sun and the new physics that could be learned using the heavy water detector are discussed in the physics section. The other sections will discuss progress in the areas of practical importance in achieving the physics objectives such as new techniques to measure, monitor and remove low levels of radioactivity in detector components, ideas on calibration of the detector and so forth. The section entitled Administration contains a membership list of the working groups within the SNO collaboration

  12. Long Baseline Observatory (LBO)

    Data.gov (United States)

    Federal Laboratory Consortium — The Long Baseline Observatory (LBO) comprises ten radio telescopes spanning 5,351 miles. It's the world's largest, sharpest, dedicated telescope array. With an eye...

  13. Electricity and gas market observatory. 2. Quarter 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). Since the 1 of July 2007, all customers can choose their gas and electricity suppliers. Content: A - The electricity market: The retail electricity market (Introduction, Customer segments and their respective weight, Status at June 30, 2008, Dynamic analysis: 2. Quarter 2008); The wholesale electricity market (Introduction, Wholesale market activity in France, Prices on the French wholesale market and European comparison, Import and export volumes, Concentration of the French electricity market); B - The gas market: The retail gas market (Introduction, Customer segments and their respective weight, Status on June 30, 2008, Dynamic analysis: 2. Quarter 2008); The wholesale gas market (Gas pricing and gas markets in Europe, The wholesale market in France); C - Appendices: Electricity and gas market observatories combined glossary, Specific electricity market observatory glossary, Specific gas market observatory glossary

  14. Social Media Programs at the National Optical Astronomy Observatory

    Science.gov (United States)

    Sparks, Robert T.; Walker, Constance Elaine; Pompea, Stephen M.

    2015-08-01

    Observatories and other science research organizations want to share their research and activities with the public. The last several years, social media has become and increasingly important venue for communicating information about observatory activities, research and education and public outreach.The National Optical Astronomy Observatory (NOAO) uses a wide variety of social media to communicate with different audiences. NOAO is active on social media platforms including Facebook, Twitter, Google+ and Pinterest. Our social media accounts include those for the National Optical Astronomy Observatory, Cerro Tololo Inter-American Observatory, Kitt Peak National Observatory and our dark skies conservation program Globe at Night.Our social media programs have a variety of audiences. NOAO uses social media to announce and promote NOAO sponsored meetings, observatory news and proposal deadlines to the professional astronomical community. Social media accounts are used to disseminate NOAO press releases, images from the observatory and other science using data from NOAO telescopes.Social media is important in our Education and Public Outreach programs (EPO). Globe at Night has very active facebook and twitter accounts encouraging people to become involved in preserving dark skies. Social media plays a role in recruiting teachers for professional development workshops such as Project Astro.NOAO produces monthly podcasts for the 365 Days of Astronomy podcast featuring interviews with NOAO astronomers. Each podcast highlights the science of an NOAO astronomer, an NOAO operated telescope or instrument, or an NOAO program. A separate series of podcasts is produced for NOAO’s Dark Skies Education programs. All the podcasts are archived at 365daysofastronomy.org.

  15. Sierra Stars Observatory Network: An Accessible Global Network

    Science.gov (United States)

    Williams, Richard; Beshore, Edward

    2011-03-01

    The Sierra Stars Observatory Network (SSON) is a unique partnership among professional observatories that provides its users with affordable high-quality calibrated image data. SSON comprises observatories in the Northern and Southern Hemisphere and is in the process of expanding to a truly global network capable of covering the entire sky 24 hours a day in the near future. The goal of SSON is to serve the needs of science-based projects and programs. Colleges, universities, institutions, and individuals use SSON for their education and research projects. The mission of SSON is to promote and expand the use of its facilities among the thousands of colleges and schools worldwide that do not have access to professional-quality automated observatory systems to use for astronomy education and research. With appropriate leadership and guidance educators can use SSON to help teach astronomy and do meaningful scientific projects. The relatively small cost of using SSON for this type of work makes it affordable and accessible for educators to start using immediately. Remote observatory services like SSON need to evolve to better support education and research initiatives of colleges, institutions and individual investigators. To meet these needs, SSON is developing a sophisticated interactive scheduling system to integrate among the nodes of the observatory network. This will enable more dynamic observations, including immediate priority interrupts, acquiring moving objects using ephemeris data, and more.

  16. Geophysical characterization from Itu intrusive suite

    International Nuclear Information System (INIS)

    Pascholati, M.E.

    1989-01-01

    The integrated use of geophysical, geological, geochemical, petrographical and remote sensing data resulted in a substantial increase in the knowledge of the Itu Intrusive Suite. The main geophysical method was gamma-ray spectrometry together with fluorimetry and autoradiography. Three methods were used for calculation of laboratory gamma-ray spectrometry data. For U, the regression method was the best one. For K and Th, equations system and absolute calibration presented the best results. Surface gamma-ray spectrometry allowed comparison with laboratory data and permitted important contribution to the study of environmental radiation. (author)

  17. A portable marine geophysical data access and management system

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Narvekar, P.

    Geophysical Oracle Database Management System (GPODMS) that is residing on UNIX True 64 Compaq Alpha server. GPODMS is a stable Oracle database system for longterm storage and systematic management of geophysical data and information of various disciplines...

  18. Rožňava ore field - geophysical works

    Directory of Open Access Journals (Sweden)

    Géczy Július

    1998-12-01

    Full Text Available The article prowides a review of geophysical works in the ore field Rožňava conducted up to date. Magnetometric and geoelectric methods and gravimetric measurements have been used. Geophysical works were focused to the solving regional problems whose contribution to the prospecting of vein deposits is not essential.

  19. Astronomical Virtual Observatories Through International Collaboration

    Directory of Open Access Journals (Sweden)

    Masatoshi Ohishi

    2010-03-01

    Full Text Available Astronomical Virtual Observatories (VOs are emerging research environment for astronomy, and 16 countries and a region have funded to develop their VOs based on international standard protocols for interoperability. The 16 funded VO projects have established the International Virtual Observatory Alliance (http://www.ivoa.net/ to develop the standard interoperable interfaces such as registry (meta data, data access, query languages, output format (VOTable, data model, application interface, and so on. The IVOA members have constructed each VO environment through the IVOA interfaces. National Astronomical Observatory of Japan (NAOJ started its VO project (Japanese Virtual Observatory - JVO in 2002, and developed its VO system. We have succeeded to interoperate the latest JVO system with other VOs in the USA and Europe since December 2004. Observed data by the Subaru telescope, satellite data taken by the JAXA/ISAS, etc. are connected to the JVO system. Successful interoperation of the JVO system with other VOs means that astronomers in the world will be able to utilize top-level data obtained by these telescopes from anywhere in the world at anytime. System design of the JVO system, experiences during our development including problems of current standard protocols defined in the IVOA, and proposals to resolve these problems in the near future are described.

  20. Geophysical investigations at ORNL solid waste storage area 3

    International Nuclear Information System (INIS)

    Rothschild, E.R.; Switek, J.; Llopis, J.L.; Farmer, C.D.

    1985-07-01

    Geophysical investigations at ORNL solid waste storage area 3 have been carried out. The investigations included very-low-frequency-electromagnetic resistivity (VLF-EM), electrical resistivity, and seismic refraction surveys. The surveys resulted in the measurement of basic geophysical rock properties, as well as information on the depth of weathering and the configuration of the bedrock surface beneath the study area. Survey results also indicate that a number of geophysical anomalies occur in the shallow subsurface at the site. In particular, a linear feature running across the geologic strike in the western half of the waste disposal facility has been identified. This feature may conduct water in the subsurface. The geophysical investigations are part of an ongoing effort to characterize the site's hydrogeology, and the data presented will be valuable in directing future drilling and investigations at the site. 10 refs., 6 figs

  1. Automated observatory in Antarctica: real-time data transfer on constrained networks in practice

    Science.gov (United States)

    Bracke, Stephan; Gonsette, Alexandre; Rasson, Jean; Poncelet, Antoine; Hendrickx, Olivier

    2017-08-01

    In 2013 a project was started by the geophysical centre in Dourbes to install a fully automated magnetic observatory in Antarctica. This isolated place comes with specific requirements: unmanned station during 6 months, low temperatures with extreme values down to -50 °C, minimum power consumption and satellite bandwidth limited to 56 Kbit s-1. The ultimate aim is to transfer real-time magnetic data every second: vector data from a LEMI-25 vector magnetometer, absolute F measurements from a GEM Systems scalar proton magnetometer and absolute magnetic inclination-declination (DI) measurements (five times a day) with an automated DI-fluxgate magnetometer. Traditional file transfer protocols (for instance File Transfer Protocol (FTP), email, rsync) show severe limitations when it comes to real-time capability. After evaluation of pro and cons of the available real-time Internet of things (IoT) protocols and seismic software solutions, we chose to use Message Queuing Telemetry Transport (MQTT) and receive the 1 s data with a negligible latency cost and no loss of data. Each individual instrument sends the magnetic data immediately after capturing, and the data arrive approximately 300 ms after being sent, which corresponds with the normal satellite latency.

  2. The Pierre Auger Cosmic Ray Observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Grygar, Jiří; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2015-01-01

    Roč. 798, Oct (2015), s. 172-213 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * high energy cosmic rays * hybrid observatory * water Cherenkov detectors * air fluorescence detectors Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.200, year: 2015

  3. uranium and thorium exploration by geophysical methods

    International Nuclear Information System (INIS)

    Yueksel, F.A.; Kanli, A.I.

    1997-01-01

    Radioactivity is often measured from the ground in mineral exploration. If large areas have to be investigated, it is often unsuitable to carry out the measurements with ground-bound expeditions. A geophysical method of gamma-ray spectrometry is generally applied for uranium exploration. Exploration of uranium surveys were stopped after the year of 1990 in Turkey. Therefore the real potential of uranium in Turkey have to be investigated by using the geophysical techniques

  4. Geomagnetic Observatory Annual Means Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) / World Data Center, Boulder maintains an active database of...

  5. The Importance of Marine Observatories and of RAIA in Particular

    Directory of Open Access Journals (Sweden)

    Luísa Bastos

    2016-08-01

    Full Text Available Coastal and Oceanic Observatories are important tools to provide information on ocean state, phenomena and processes. They meet the need for a better understanding of coastal and ocean dynamics, revealing regional characteristics and vulnerabilities. These observatories are extremely useful to guide human actions in response to natural events and potential climate change impacts, anticipating the occurrence of extreme weather and oceanic events and helping to minimize consequent personal and material damages and costs.International organizations and local governments have shown an increasing interest in operational oceanography and coastal, marine and oceanic observations, which resulted in substantial investments in these areas. A variety of physical, chemical and biological data have been collected to better understand the specific characteristics of each ocean area and its importance in the global context. Also the general public’s interest in marine issues and observatories has been raised, mainly in relation to vulnerability, sustainability and climate change issues. Data and products obtained by an observatory are hence useful to a broad range of stakeholders, from national and local authorities to the population in general.An introduction to Ocean Observatories, including their national and regional importance, and a brief analysis of the societal interest in these observatories and related issues are presented. The potential of a Coastal and Ocean Observatory is then demonstrated using the RAIA observatory as example. This modern and comprehensive observatory is dedicated to improve operational oceanography, technology and marine science for the North Western Iberian coast, and to provide services to a large range of stakeholders.

  6. Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range

    International Nuclear Information System (INIS)

    Koppenjan, S.; Martinez, M.

    1994-01-01

    The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteria for the development of geophysical technologies and techniques. The US DOE's Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a ''chirped'' FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site

  7. Education and public engagement in observatory operations

    Science.gov (United States)

    Gabor, Pavel; Mayo, Louis; Zaritsky, Dennis

    2016-07-01

    Education and public engagement (EPE) is an essential part of astronomy's mission. New technologies, remote observing and robotic facilities are opening new possibilities for EPE. A number of projects (e.g., Telescopes In Education, MicroObservatory, Goldstone Apple Valley Radio Telescope and UNC's Skynet) have developed new infrastructure, a number of observatories (e.g., University of Arizona's "full-engagement initiative" towards its astronomy majors, Vatican Observatory's collaboration with high-schools) have dedicated their resources to practical instruction and EPE. Some of the facilities are purpose built, others are legacy telescopes upgraded for remote or automated observing. Networking among institutions is most beneficial for EPE, and its implementation ranges from informal agreements between colleagues to advanced software packages with web interfaces. The deliverables range from reduced data to time and hands-on instruction while operating a telescope. EPE represents a set of tasks and challenges which is distinct from research applications of the new astronomical facilities and operation modes. In this paper we examine the experience with several EPE projects, and some lessons and challenges for observatory operation.

  8. Comparison study of selected geophysical and geotechnical parameters

    DEFF Research Database (Denmark)

    Nissen, Randi Warncke; Poulsen, Søren Erbs

    Successful foundation of constructions relies on accurate characterization of the geotechnical properties of the subsurface. By implementing data from geophysical surveys, the placement of geotechnical drillings can be significantly improved, potentially reducing the number of required drillings....... This case study is mainly to compare geophysical investigations (MEP/IP) with existing PACES data and information from geotechnical drillings....

  9. Testing how geophysics can reduce the uncertainty of groundwater model predictions

    DEFF Research Database (Denmark)

    Christensen, Nikolaj Kruse; Christensen, Steen; Ferre, Ty

    2014-01-01

    Geophysical data are increasingly used to construct groundwater models. Such data are collected at lower cost and much higher density than the traditionally used geological, hydraulic, and hydrological data. The geophysical data are often inverted independently and used together with geological......, respectively. There is also complete flexibility in the choice of relationships between hydraulic and geophysical properties. Noise can be added to the synthetic hydrologic and geophysical datasets and these exhaustive data sets can be down sampled to represent realistic data sets of varying measurement...... with and covered by layered glaciofluvial and glacial deposits. The hydrological data consist of 35 hydraulic head measurements and one river discharge measurement, while the geophysical data consist of 77 TEM soundings. The data are inverted sequentially and jointly. Through this example, we highlight the value...

  10. Description of geophysical data in the SKB database GEOTAB. Version 2

    International Nuclear Information System (INIS)

    Sehlstedt, S.

    1991-01-01

    For the storage of different types of data collected by SKB a database called GEOTAB has been created. The following data is stored in the database: Background data, geological data, geophysical data, hydrogeological and meteorological data, hydrochemical data, and tracer tests. This report describes the data flow for different types of geophysical measurement. The descriptions start with measurement and end with the storage of data in GEOTAB. Each process and the resulting data volume is presented separately. The geophysical measurements have been divided into the following subjects: Geophysical ground surface measurements, geophysical borehole logging, and petrophysical measurements. Each group of measurements is described in an individual chapter. In each chapter several measuring techniques are described and each method has a data table and a flyleaf table in GEOTAB. (author)

  11. Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    Ewan, G.T.; Mak, H.B.; Robertson, B.C.

    1985-07-01

    This report discusses the proposal to construct a unique neutrino observatory. The observatory would contain a Cerenkov detector which would be located 2070 m below the earth's surface in an INCO mine at Creighton near Sudbury and would contain 1000 tons of D20 which is an excellent target material. Neutrinos carry detailed information in their spectra on the reactions taking place deep in the interstellar interior and also provide information on supernova explosions. In addition to their role as astrophysical probes a knowledge of the properties of neutrinos is crucial to theories of grand unification. There are three main objectives of the laboratory. The prime objective will be to study B electron neutrinos from the sun by a direct counting method that will measure their energy and direction. The second major objective will be to establish if electron neutrinos change into other neutrino species in transit from the sun to the earth. Finally it is hoped to be able to observe a supernova with the proposed detector. The features of the Sudbury Neutrino Observatory which make it unique are its high sensitivity to electron neutrinos and its ability to detect all other types of neutrinos of energy greater than 2.2 MeV. In section II of this proposal the major physics objectives are discussed in greater detail. A conceptual design for the detector, and measurements and calculations which establish the feasibility of the neutrino experiments are presented in section III. Section IV is comprised of a discussion on the possible location of the laboratory and Section V contains a brief indication of the main areas to be studied in Phase II of the design study

  12. Electricity and gas market observatory. 4. Quarter 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). Since the 1 of July 2007, all customers can choose their gas and electricity suppliers. Content: A - The electricity market: The retail electricity market (Introduction, Customer segments and their respective weight, Status on December 31, 2008, Dynamic analysis: 4. Quarter 2008); The wholesale electricity market (Introduction, Wholesale market activity in France, Prices on the French wholesale market and European comparison, Import and export volumes, Concentration of the French electricity market); B - The gas market: The retail gas market (Introduction, Customer segments and their respective weight, Status on December 31, 2008, Dynamic analysis: 4. Quarter 2008); The wholesale gas market (Gas pricing and gas markets in Europe, The wholesale market in France, Prices on the French wholesale market and European comparison, Concentration of the French gas market); C - Appendices: Electricity and gas market observatories combined glossary, Specific electricity market observatory glossary, Specific gas market observatory glossary

  13. Electricity and gas market observatory. 1. Quarter 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). Since the 1. of July 2007, all customers can choose their gas and electricity suppliers. Content: A - The electricity market: The retail electricity market (Introduction, Customer segments and their respective weight, Status at March 31, 2007, Dynamic analysis: 1. Quarter 2008); The wholesale electricity market (Introduction, Wholesale market activity in France, Prices on the French wholesale market and European comparison, Import and export volumes, Concentration of the French electricity market); B - The gas market: The retail gas market (Introduction, Customer segments and their respective weight, Status on March 31, 2008, Dynamic analysis: 1. Quarter 2008); The wholesale gas market (Gas pricing and gas markets in Europe, The wholesale market in France, Striking fact of the first quarter 2008); C - Appendices: Electricity and gas market observatories combined glossary, Specific electricity market observatory glossary, Specific gas market observatory glossary

  14. Electricity and gas market observatory. 4. Quarter 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). Since the 1. of July 2007, all customers can choose their gas and electricity suppliers. Content: A - The electricity market: The retail electricity market (Introduction, Customer segments and their respective weight, Status at December 31, 2007, Dynamic analysis: 4. Quarter 2007); The wholesale electricity market (Introduction, Wholesale market activity in France, Prices on the French wholesale market and European comparison, Import and export volumes, Concentration of the French electricity market, Striking fact of the fourth quarter 2007); B - The gas market: The retail gas market (Introduction, Customer segments and their respective weight, Status on December 31. 2007, Dynamic analysis: 4. Quarter 2007); The wholesale gas market (Gas pricing and gas markets in Europe, The wholesale market in France, Striking fact of the fourth quarter 2007); C - Appendices: Electricity and gas market observatories combined glossary, Specific electricity market observatory glossary, Specific gas market observatory glossary

  15. Availability and Access to Data from Kakioka Magnetic Observatory, Japan

    Directory of Open Access Journals (Sweden)

    Yasuhiro Minamoto

    2013-06-01

    Full Text Available The Japan Meteorological Agency (JMA is operating four geomagnetic observatories in Japan. Kakioka Magnetic Observatory (KMO, commissioned in 1913, is the oldest. The hourly records at KMO cover over almost 100 years. KMO is JMA's headquarters for geomagnetic and geoelectric observations. Almost all data are available at the KMO website free of charge for researchers. KMO and two other observatories have been certified as INTERMAGNET observatories, and quasi-real-time geomagnetic data from them are available at the INTERMAGNET website.

  16. The Science and Design of the AGIS Observatory

    Science.gov (United States)

    Schroedter, Martin

    2010-02-01

    The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100 GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05^o diameter) camera. The instrument is designed to provide millicrab sensitivity over a wide (8^o diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. I will describe science drivers behind the AGIS observatory and the design and status of the project. )

  17. Technical Note: Calibration and validation of geophysical observation models

    NARCIS (Netherlands)

    Salama, M.S.; van der Velde, R.; van der Woerd, H.J.; Kromkamp, J.C.; Philippart, C.J.M.; Joseph, A.T.; O'Neill, P.E.; Lang, R.H.; Gish, T.; Werdell, P.J.; Su, Z.

    2012-01-01

    We present a method to calibrate and validate observational models that interrelate remotely sensed energy fluxes to geophysical variables of land and water surfaces. Coincident sets of remote sensing observation of visible and microwave radiations and geophysical data are assembled and subdivided

  18. Astronomical Observatory of Belgrade from 1924 to 1955

    Science.gov (United States)

    Radovanac, M.

    2014-12-01

    History of the Astronomical Observatory in Belgrade, as the presentation is done here, become the field of interest to the author of the present monograph in early 2002. Then, together with Luka C. Popovic, during the Conference "Development of Astronomy among Serbs II" held in early April of that year, he prepared a paper entitled "Astronomska opservatorija tokom Drugog Svetskog rata" (Astronomical Observatory in the Second World War). This paper was based on the archives material concerning the Astronomical Observatory which has been professionally bearing in mind the author's position the subject of his work.

  19. University Observatory, Ludwig-Maximilians-Universität

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    The University Observatory of Ludwig-Maximilians-Universität was founded in 1816. Astronomers who worked or graduated at the Munich Observatory include: Fraunhofer, Soldner, Lamont, Seeliger and Karl Schwarzschild. At present four professors and ten staff astronomers work here. Funding comes from the Bavarian Government, the German Science Foundation, and other German and European research progra...

  20. MLS/Aura Level 2 Diagnostics, Geophysical Parameter Grid V004

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2DGG is the EOS Aura Microwave Limb Sounder (MLS) product containing geophysical diagnostic quantities pertaining directly to the standard geophysical data...

  1. Integrated geophysical-geochemical methods for archaeological prospecting

    OpenAIRE

    Persson, Kjell

    2005-01-01

    A great number of field measurements with different methods and instruments were conducted in attempts to develop a method for an optimal combination of various geochemical and geophysical methods in archaeological prospecting. The research presented in this thesis focuses on a study of how different anthropogenic changes in the ground can be detected by geochemical and geophysical mapping and how the results can be presented. A six-year pilot project, Svealand in Vendel and Viking periods (S...

  2. Activities and Plan of the Center for Geophysics (Beijing from WDC to WDS

    Directory of Open Access Journals (Sweden)

    Fenglin Peng

    2013-01-01

    Full Text Available In this report we introduce the development of the WDC for Geophysics, Beijing included our activities in the electronic Geophysical Year (eGY and in the transition period from WDC to WDS. We also present our future plans. We have engaged in the development of geophysical informatics and related data science. We began the data visualization of geomagnetic fields in the GIS system. Our database has been expanded from geomagnetic data to the data of solid geophysics, including geothermal data, gravity data, and the records of aurora sightings in ancient China. We also joined the study of the history of the development of geophysics in China organized by the Chinese Geophysical Society (CGS.

  3. Remote observatories for amateur astronomers using high-powered telescopes from home

    CERN Document Server

    Hubbell, Gerald R; Billard, Linda M

    2015-01-01

    Amateur astronomers who want to enhance their capabilities to contribute to science need look no farther than this guide to using remote observatories.  The contributors cover how to build your own remote observatory as well as the existing infrastructure of commercial networks of remote observatories that are available to the amateur. They provide specific advice on which programs to use based on your project objectives and offer practical project suggestions. Remotely controlled observatories have many advantages—the most obvious that the observer does not have to be physically present to carry out observations. Such an observatory can also be used more fully because its time can be scheduled and usefully shared among several astronomers working on different observing projects. More and more professional-level observatories are open to use by amateurs in this way via the Internet, and more advanced amateur astronomers can even build their own remote observatories for sharing among members of a society ...

  4. MMS Observatory TV Results Contamination Summary

    Science.gov (United States)

    Rosecrans, Glenn; Brieda, Lubos; Errigo, Therese

    2014-01-01

    The Magnetospheric Multiscale (MMS) mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earth's magnetosphere. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. In this paper, we report on the extensive thermal vacuum testing campaign. The testing was performed at the Naval Research Laboratory utilizing the "Big Blue" vacuum chamber. A total of ten thermal vacuum tests were performed, including two chamber certifications, three dry runs, and five tests of the individual MMS observatories. During the test, the observatories were enclosed in a thermal enclosure known as the "hamster cage". The enclosure allowed for a detailed thermal control of various observatory zone, but at the same time, imposed additional contamination and system performance requirements. The environment inside the enclosure and the vacuum chamber was actively monitored by several QCMs, RGA, and up to 18 ion gauges. Each spacecraft underwent a bakeout phase, which was followed by 4 thermal cycles. Unique aspects of the TV campaign included slow pump downs with a partial represses, thruster firings, Helium identification, and monitoring pressure spikes with ion gauges. Selected data from these TV tests is presented along with lessons learned.

  5. Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion

    Energy Technology Data Exchange (ETDEWEB)

    Hinnell, A.C.; Ferre, T.P.A.; Vrugt, J.A.; Huisman, J.A.; Moysey, S.; Rings, J.; Kowalsky, M.B.

    2009-11-01

    There is increasing interest in the use of multiple measurement types, including indirect (geophysical) methods, to constrain hydrologic interpretations. To date, most examples integrating geophysical measurements in hydrology have followed a three-step, uncoupled inverse approach. This approach begins with independent geophysical inversion to infer the spatial and/or temporal distribution of a geophysical property (e.g. electrical conductivity). The geophysical property is then converted to a hydrologic property (e.g. water content) through a petrophysical relation. The inferred hydrologic property is then used either independently or together with direct hydrologic observations to constrain a hydrologic inversion. We present an alternative approach, coupled inversion, which relies on direct coupling of hydrologic models and geophysical models during inversion. We compare the abilities of coupled and uncoupled inversion using a synthetic example where surface-based electrical conductivity surveys are used to monitor one-dimensional infiltration and redistribution.

  6. An Integral, Multidisciplinary and Global Geophysical Field Experience for Undergraduates

    Science.gov (United States)

    Vázquez, O.; Carrillo, D. J.; Pérez-Campos, X.

    2007-05-01

    The udergraduate program of Geophysical Engineering at the School of Engineering, of the Univesidad Nacional Autónoma de México (UNAM), went through an update process that concluded in 2006. As part of the program, the student takes three geophysical prospecting courses (gravity and magnetics, electric, electromagnetics, and seismic methods). The older program required a three-week field experience for each course in order to gradute. The new program considers only one extended field experience. This work stresses the importance of international academic exchange, where undergraduate students could participate, such as the Summer of Applied Geophysical Experience (SAGE), and interaction with research programs, such as the MesoAmerican Subduction Experiment (MASE). Also, we propose a scheeme for this activity based on those examples; both of them have in common real geophysical problems, from which students could benefit. Our proposal covers academic and logistic aspects to be taken into account, enhancing the relevance of interaction between other academic institutions, industry, and UNAM, in order to obtain a broader view of geophysics.

  7. Urania in the Marketplace: Observatories as Holiday Destinations

    Science.gov (United States)

    Rumstay, Kenneth S.

    2015-01-01

    During the twentieth century astronomical imagery was frequently incorporated, by manufacturers of industrial and consumer goods, into advertisements which appeared in popular magazines in America. The domes and telescopes of major observatories were often featured. In some cases, particularly within the Golden State of California, major astronomical facilities (notably the Lick and Mt. Wilson Observatories) were touted as tourist attractions and were publicized as such by tourist bureaus, railroads, and hotels.A particularly interesting example is provided by the Hotel Vendome in San Jose. With completion of the Lick Observatory (and the 36-inch Great Refractor) in 1887, the local business community felt that the city needed a first-class resort hotel. The architectural firm of Jacob Lenzen & Son was hired to design a grand hotel, comparable to those found in locales such as Monterey and Pasadena. The resulting four-story, 150-room structure cost 250,000, a phenomenal sum in those days. Yet, within just fourteen years, tourist demand led to the construction of a 36-room annex. Of course, a great resort hotel would not be complete without the opportunity for excursion, and the Mt. Hamilton Stage Company offered daily trips to the famous Lick Observatory.Farther south, the Mt. Wilson Observatory began construction of its own hotel in 1905.The original structure was destroyed by fire in 1913, and replaced by a second which was used by visitors until 1966.Early examples of advertisements for these observatories, recalling the heyday of astronomical tourism, are presented. A few more recent ones for Arecibo and Palomar are included for comparison.

  8. From research institution to astronomical museum: a history of the Stockholm Observatory

    Science.gov (United States)

    Yaskell, Steven Haywood

    2008-07-01

    The Royal Swedish Academy of Sciences (RSAS) (or Kungliga Vetenskapsakademien [KvA] in Swedish) founded 1739, opened its first permanent building, an astronomical and meteorological observatory, on 20 September 1753. This was situated at Brunkebergsåsen (formerly Observatorie Lunden, or Observatory Hill), on a high terrace in a northern quarter of Stockholm. This historic building is still sometimes called Gamla Observatoriet (the Old Observatory) and now is formally the Observatory Museum. This paper reviews the history of the Observatory from its function as a scientific astronomical institution to its relatively-recent relegation to museum status.

  9. Astronomical Research Using Virtual Observatories

    Directory of Open Access Journals (Sweden)

    M Tanaka

    2010-01-01

    Full Text Available The Virtual Observatory (VO for Astronomy is a framework that empowers astronomical research by providing standard methods to find, access, and utilize astronomical data archives distributed around the world. VO projects in the world have been strenuously developing VO software tools and/or portal systems. Interoperability among VO projects has been achieved with the VO standard protocols defined by the International Virtual Observatory Alliance (IVOA. As a result, VO technologies are now used in obtaining astronomical research results from a huge amount of data. We describe typical examples of astronomical research enabled by the astronomical VO, and describe how the VO technologies are used in the research.

  10. The South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1989-01-01

    The research work discussed in this report covers a wide range, from work on the nearest stars to studies of the distant quasars, and the astronomers who have carried out this work come from universities and observatories spread around the world as well as from South African universities and from the South African Astronomical Observatory (SAAO) staff itself. A characteristic of much of this work has been its collaborative character. SAAO studies in 1989 included: supernovae 1987A; galaxies; ground-based observations of celestial x-ray sources; the Magellanic Clouds; pulsating variables; galactic structure; binary star phenomena; the provision of photometric standards; nebulous matter; stellar astrophysics, and astrometry

  11. PREFACE: Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI

    Science.gov (United States)

    Rosandi, Y.; Urbassek, H. M.; Yamanaka, H.

    2016-01-01

    This issue of IOP Conference Series: Earth and Environmental Science contains selected papers presented at the Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI. The meeting was held from June 8 to 10, 2015, at the Bale-Sawala of Universitas Padjadjaran in Jatinangor, Indonesia. The PEDISGI is a symposium to accommodate communication between researchers, in particular geophysicists and related scientists, and to enable sharing of knowledge and research findings concerning local and global geophysical issues. The symposium was attended by 126 participants and 64 contributors from Indonesian universities and the neighbouring countries in four categories, viz. Theoretical and Computational Geophysics, Environmental Geophysics, Geophysical Explorations, and Geophysical Instrumentations and Methods. The symposium was accompanied by a dialog, discussing a chosen topic regarding environmental and geological problems of relevance for the Indonesian archipelago and the surrounding regions. For this first event the topic was ''The formation of Bandung-Basin between myths and facts: Exemplary cultural, geological and geophysical study on the evolution of the earth surface'', presented by invited speakers and local experts. This activity was aimed at extending our knowledge on this particular subject, which may have global impact. This topic was augmented by theoretical background lectures on the earth's surface formation, presented by the invited speakers of the symposium. The meeting would not have been successful without the assistance of the local organizing committee. We want to specially thank Irwan A. Dharmawan for managing the programme, Anggie Susilawati and Mia U. Hasanah for the conference administration, and Dini Fitriani for financial management. We also thank the National Geographic Indonesia for its support via the Business to Business Collaboration Program. The conference photograph can be viewed in the PDF.

  12. The Lowell Observatory Predoctoral Fellowship Program

    Science.gov (United States)

    Prato, Lisa A.; Shkolnik, E.

    2014-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Fellowship Program. Now beginning its seventh year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. The Observatory's new 4.3 meter Discovery Channel Telescope has successfully begun science operations and we anticipate the commissioning of several new instruments in 2014, making this a particularly exciting time to do research at Lowell. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2014 are due by May 1, 2014.

  13. Multinational History of Strasbourg Astronomical Observatory

    CERN Document Server

    Heck, André

    2005-01-01

    Strasbourg Astronomical Observatory is quite an interesting place for historians: several changes of nationality between France and Germany, high-profile scientists having been based there, big projects born or installed in its walls, and so on. Most of the documents circulating on the history of the Observatory and on related matters have however been so far poorly referenced, if at all. This made necessary the compilation of a volume such as this one, offering fully-documented historical facts and references on the first decades of the Observatory history, authored by both French and German specialists. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy nor in the details of European history. After an introductory chapter by the Editor, contributions by Wolfschmidt and by Duerbeck respectively deal extensively with the German periods and review people and instrumentation, while another paper by Duerbeck is more...

  14. Electricity and gas market observatory 1. Quarter 2009

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). Since the 1. of July 2007, all customers can choose their gas and electricity suppliers. Content: A - The electricity market: The retail electricity market (Introduction, Customer segments and their respective weight, Status on March 31, 2009, Dynamic analysis: 1. Quarter 2009), The wholesale electricity market (Introduction, Wholesale market activity in France, Prices on the French wholesale market and European comparison, Import and export volumes, Concentration of the French electricity market). B - The gas market: The retail gas market (Introduction, Customer segments and their respective weight, Status on March 31. 2009, Dynamic analysis: 1. Quarter 2009), The wholesale gas market (Main steps in the French Wholesale gas market, Gas pricing and gas markets in Europe, The wholesale market in France, Prices on the French wholesale market and European comparison, Concentration of the French gas market) C - Appendices: Electricity and gas market observatories combined glossary, Specific electricity market observatory glossary, Specific gas market observatory glossary

  15. Electricity and gas market observatory. 2. quarter 2007

    International Nuclear Information System (INIS)

    2007-01-01

    Since July 1, 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web-site (www.cre.fr). It presents: The electricity market; The retail electricity market: Non-residential customer segments and their respective weights, Status at July 1, 2007, Dynamic analysis: 2. Quarter 2007; The wholesale electricity market: Wholesale market activity in France, Prices on the French wholesale market and European comparison, Import and export volumes, Concentration of the French electricity market, Striking facts of the second quarter 2007; The gas market; The retail gas market: The non-residential customer segments and their respective weights, Status at July 1. 2007; The wholesale gas market: Gas pricing and gas markets in Europe,The wholesale market in France. Some glossaries are attached to the document: Electricity and gas market observatories combined glossary; Specific electricity market observatory glossary; Specific gas market observatory glossary

  16. Electricity and gas market observatory. 1. quarter 2007

    International Nuclear Information System (INIS)

    2007-01-01

    Since July 1, 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web-site (www.cre.fr). It presents: The electricity market; The retail electricity market: Eligible customer segments and their respective weights, Status at April 1, 2007, Dynamic analysis: 1. Quarter 2007; The wholesale electricity market: Traded volumes on the French wholesale electricity market and comparison with European markets, Prices on the French wholesale electricity market and European comparison, Import and export volumes, Concentration of the French electricity market, Striking facts of the 1. 2007 quarter; The gas market; The retail gas market: The eligible customer segments and their respective weights, Status at April 1. 2007; The wholesale gas market: Gas pricing and gas markets in Europe,The wholesale market in France. Some glossaries are attached to the document: Electricity and gas market observatories combined glossary; Specific electricity market observatory glossary; Specific gas market observatory glossary

  17. Electricity and gas market observatory. 4. quarter 2006

    International Nuclear Information System (INIS)

    2007-01-01

    Since July 1, 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web-site (www.cre.fr). It presents: The electricity market; The retail electricity market: Eligible customer segments and their respective weights, Status at January 1, 2007, Dynamic analysis: 4. Quarter 2007; The wholesale electricity market: Traded volumes on the French wholesale electricity market and comparison with European markets, Prices on the French wholesale electricity market and European comparison, Import and export volumes, Concentration of the French electricity market, Striking facts of the 4. 2006 quarter; The gas market; The retail gas market: The eligible customer segments and their respective weights, Status at January 1. 2007; The wholesale gas market: Gas pricing and gas markets in Europe,The wholesale market in France. Some glossaries are attached to the document: Electricity and gas market observatories combined glossary; Specific electricity market observatory glossary; Specific gas market observatory glossary

  18. Electricity and gas market observatory. 2. quarter 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Since July 1, 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web-site (www.cre.fr). It presents: The electricity market; The retail electricity market: Non-residential customer segments and their respective weights, Status at July 1, 2007, Dynamic analysis: 2. Quarter 2007; The wholesale electricity market: Wholesale market activity in France, Prices on the French wholesale market and European comparison, Import and export volumes, Concentration of the French electricity market, Striking facts of the second quarter 2007; The gas market; The retail gas market: The non-residential customer segments and their respective weights, Status at July 1. 2007; The wholesale gas market: Gas pricing and gas markets in Europe,The wholesale market in France. Some glossaries are attached to the document: Electricity and gas market observatories combined glossary; Specific electricity market observatory glossary; Specific gas market observatory glossary.

  19. Electricity and gas market observatory. 1. quarter 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Since July 1, 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web-site (www.cre.fr). It presents: The electricity market; The retail electricity market: Eligible customer segments and their respective weights, Status at April 1, 2007, Dynamic analysis: 1. Quarter 2007; The wholesale electricity market: Traded volumes on the French wholesale electricity market and comparison with European markets, Prices on the French wholesale electricity market and European comparison, Import and export volumes, Concentration of the French electricity market, Striking facts of the 1. 2007 quarter; The gas market; The retail gas market: The eligible customer segments and their respective weights, Status at April 1. 2007; The wholesale gas market: Gas pricing and gas markets in Europe,The wholesale market in France. Some glossaries are attached to the document: Electricity and gas market observatories combined glossary; Specific electricity market observatory glossary; Specific gas market observatory glossary.

  20. Electricity and gas market observatory. 4. quarter 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Since July 1, 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web-site (www.cre.fr). It presents: The electricity market; The retail electricity market: Eligible customer segments and their respective weights, Status at January 1, 2007, Dynamic analysis: 4. Quarter 2007; The wholesale electricity market: Traded volumes on the French wholesale electricity market and comparison with European markets, Prices on the French wholesale electricity market and European comparison, Import and export volumes, Concentration of the French electricity market, Striking facts of the 4. 2006 quarter; The gas market; The retail gas market: The eligible customer segments and their respective weights, Status at January 1. 2007; The wholesale gas market: Gas pricing and gas markets in Europe,The wholesale market in France. Some glossaries are attached to the document: Electricity and gas market observatories combined glossary; Specific electricity market observatory glossary; Specific gas market observatory glossary.

  1. Geophysical methods in protected environments. Electrical resistivity tomography

    International Nuclear Information System (INIS)

    Rubio Sánchez-Aguililla, F.M.; Ramiro-Camacho, A.; Ibarra Torre, P.

    2017-01-01

    There is a strong interest in protecting the environment with the aim of its long term preservation. Sometimes the heritage value of these natural areas is related to their biodiversity as there are restricted ecosystems that depend directly on them. In other cases there a singular geological record might exist, essential for the understanding of certain processes affecting the planet, such as volcanic events or glacial periods. To achieve the protection and conservation of these areas it is necessary to generate knowledge about the distribution of geological materials and groundwater masses, to study the parameters that dominate the behaviour of these systems and then define those elements that require special protection or attention. In these protected environments, research methods with a minimal environmental impact should be used. Therefore, indirect methods, such as geophysical techniques, are reliable and complementary tools with a minimum environmental impact and are therefore useful for research these unique areas. The IGME has conducted several geophysical surveys in different protected environments in Spain with the aim of achieving a better understanding, and thus facilitate their preservation and exploitation in a sustainable manner. In this paper we present a review of some case studies where geophysical methods have been used. In all the cases electrical resistivity tomography has been the axis of the geophysical research and stands out due to its great effectiveness. The main objective of this communication is to divulgate and increase awareness of the important role that these geophysical methods can play in the sustainable study of these unique places. [es

  2. Borehole geophysics in nuclear power plant siting

    International Nuclear Information System (INIS)

    Crosby, J.W.; Scott, J.D.

    1979-01-01

    Miniaturized borehole geophysical equipment designed for use in ground-water investigations can be adapted to investigations of nuclear power plant sites. This equipment has proved to be of value in preliminary and comprehensive studies of interior basins where thick sequences of Quaternary clastic sediment, occasionally with associated volcanic rocks, pose problems of stratigraphic correlation. The unconsolidated nature of the deposits generally requires that exploratory holes be cased, which ordinarily restricts the borehole geophysical studies to the radiation functions--natural gamma, gamma-gamma, neutron-gamma, and neutron-epithermal neutron logs. Although a single log response may be dominant in a given area, correlations derive from consideration of all log responses as a composite group. Because major correlations usually are based upon subtle differences in the physical properties of the penetrated sediment, high-resolution logging procedures are employed with some sacrifice of the quantitative perameters important to petroleum technology. All geophysical field data are recorded as hard copy and as digital information on punched paper tape

  3. Unified Geophysical Cloud Platform (UGCP) for Seismic Monitoring and other Geophysical Applications.

    Science.gov (United States)

    Synytsky, R.; Starovoit, Y. O.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.

    2016-12-01

    We present Unified Geophysical Cloud Platform (UGCP) or UniGeoCloud as an innovative approach for geophysical data processing in the Cloud environment with the ability to run any type of data processing software in isolated environment within the single Cloud platform. We've developed a simple and quick method of several open-source widely known software seismic packages (SeisComp3, Earthworm, Geotool, MSNoise) installation which does not require knowledge of system administration, configuration, OS compatibility issues etc. and other often annoying details preventing time wasting for system configuration work. Installation process is simplified as "mouse click" on selected software package from the Cloud market place. The main objective of the developed capability was the software tools conception with which users are able to design and install quickly their own highly reliable and highly available virtual IT-infrastructure for the organization of seismic (and in future other geophysical) data processing for either research or monitoring purposes. These tools provide access to any seismic station data available in open IP configuration from the different networks affiliated with different Institutions and Organizations. It allows also setting up your own network as you desire by selecting either regionally deployed stations or the worldwide global network based on stations selection form the global map. The processing software and products and research results could be easily monitored from everywhere using variety of user's devices form desk top computers to IT gadgets. Currents efforts of the development team are directed to achieve Scalability, Reliability and Sustainability (SRS) of proposed solutions allowing any user to run their applications with the confidence of no data loss and no failure of the monitoring or research software components. The system is suitable for quick rollout of NDC-in-Box software package developed for State Signatories and aimed for

  4. East Chestnut Ridge hydrogeologic characterization: A geophysical study of two karst features

    International Nuclear Information System (INIS)

    1991-01-01

    Permitting and site selection activities for the proposed East Chestnut Ridge landfill, located on the Oak Ridge Reservation, have required additional hydrogeologic studies of two karst features. Geophysical testing methods were utilized for investigating these karst features. The objectives of the geophysical testing was to determine the feasibility of geophysical techniques for locating subsurface karst features and to determine if subsurface anomalies exist at the proposed landfill site. Two karst features, one lacking surface expression (sinkhole) but with a known solution cavity at depth (from previous hydrologic studies), and the other with surface expression were tested with surface geophysical methods. Four geophysical profiles, two crossing and centered over each karst feature were collected using both gravimetric and electrical resistivity techniques

  5. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  6. Governance of a regional observatory - Technical Guidebook nr. 6

    International Nuclear Information System (INIS)

    Bardinal, Marc; Blais, Thomas; Phillips, Celine; Girault, Maurice; Guedon, Matthieu; Kampetenga, Ghislaine; Mora, Lucie; Riey, Benedicte; Mairet, Nicolas; Falque-Masset, Marie-Laure

    2011-06-01

    Whereas survey is one of the key for action for local actors in the field of energy management and of struggle against climate change, setting up a regional observatory is a way to get an insight on energy consumptions and productions within a territory, and to follow-up its greenhouse gas emissions. Moreover, the Grenelle de l'Environnement imposed on communities, and firstly regions, new obligations for the follow-up and reduction of greenhouse gas emissions with the elaboration of Regional Climate Air Energy Schemes (SRCAE). This guide therefore aims at proposing a framework of objectives and missions for such a regional observatory of energy and emissions, and at illustrating the variety of possible models through a synthesis of regional arrangements. Thus, it presents and discusses general principles regarding the definition of objectives and missions of an observatory (objectives, functions, scope), the setting up and organisation of an observatory with its funding documents, and mobilised financial means and tools. It also presents what can be produced and published by these observatories

  7. Measuring wintertime surface fluxes at the Tiksi observatory in northern Sakha (Yakutia)

    Science.gov (United States)

    Laurila, Thomas; Aurela, Mika; Hatakka, Juha; Tuovinen, Juha-Pekka; Asmi, Eija; Kondratyev, Vladimir; Ivakhov, Victor; Reshetnikov, Alexander; Makshtas, Alexander; Uttal, Taneil

    2013-04-01

    Tiksi hydrometeorological observatory has been equipped by new instrumentation for meteorology, turbulence, trace gas and aerosols studies as a joint effort by National Oceanic and Atmospheric Administration (NOAA), Roshydromet (Yakutian Hydrometeorological Service, Arctic and Antarctic Research Institute and Voeikov Main Geophysical Observatory units) and the Finnish Meteorological Institute (FMI). The site is close to the coast of the Laptev Sea on deep permafrost soil with low tundra vegetation and patches of arctic semidesert. Near-by terrain is gently sloping to the south. Further away they are hills in the NE- and W-directions. Turbulence (3-d wind components and sonic temperature) was measured at 10 Hz by USA-1Scientific sonic by Metek, Gmbh. Concentrations of CO2 and H2O were measured by LiCor LI7000 analyzer and CH4 concentrations by Los Gatos RMT200 analyzer. Measurement height was 2.5m. Active layer freeze up took place in extended October period. Methane and carbon dioxide emissions were observed up to early December. Emissions to the atmosphere were enhanced by turbulence created by high wind speeds. Midwinter conditions existed from the end of October to the beginning of April based on rather constant negative net radiation between 20-30 Wm-2 that cools the surface and forms highly stable stratification. Weather conditions are characterized by either low or high wind speed modes. Roughly half of the time wind speed was low, below 2 ms-1. Then, katabatic winds were common and air temperature was between -40..-30°C. High wind speeds, up to 24 ms-1, were observed during synoptic disturbances which lasted typically a few days. In this presentation we will show climatology of surface layer characteristics in late autumn and winter. We will show frequency of well-developed turbulence vs. katabatic low wind speed conditions and related atmospheric stability. The effect of wind speed on methane and carbon dioxide emissions during the freezing period will be

  8. Equatorial secondary cosmic ray observatory to study space weather and terrestrial events

    Science.gov (United States)

    Vichare, Geeta; Bhaskar, Ankush; Datar, Gauri; Raghav, Anil; Nair, K. U.; Selvaraj, C.; Ananthi, M.; Sinha, A. K.; Paranjape, M.; Gawade, T.; Anil Kumar, C. P.; Panneerselvam, C.; Sathishkumar, S.; Gurubaran, S.

    2018-05-01

    Recently, equatorial secondary cosmic ray observatory has been established at Equatorial Geophysical Research Laboratory (EGRL), Tirunelveli, (Geographic Coordinates: 8.71°N, 77.76°E), to study secondary cosmic rays (SCR) produced due to the interaction of primary cosmic rays with the Earth's atmosphere. EGRL is a regional center of Indian Institute of Geomagnetism (IIG), located near the equator in the Southern part of India. Two NaI(Tl) scintillation detectors are installed inside the temperature controlled environment. One detector is cylindrical in shape of size 7.62 cm × 7.62 cm and another one is rectangular cuboid of 10.16 cm × 10.16 cm × 40.64 cm size. Besides NaI(Tl) detectors, various other research facilities such as the Geomagnetic observatory, Medium Frequency Radar System, Digital Ionosonde, All-sky airglow imager, Atmospheric electricity laboratory to measure the near-Earth atmospheric electric fields are also available at EGRL. With the accessibility of multi- instrument facilities, the objective is set to understand the relationship between SCR and various atmospheric and ionospheric processes, during space weather and terrestrial events. For gamma-ray spectroscopy, it is important to test the performance of the NaI(Tl) scintillation detectors and to calibrate the gamma-ray spectrum in terms of energy. The present article describes the details of the experimental setup installed near the equator to study cosmic rays, along with the performance testing and calibration of the detectors under various conditions. A systematic shift in the gain is observed with varying temperature of the detector system. It is found that the detector's response to the variations in the temperature is not just linear or non-linear type, but it depends on the history of the variation, indicating temperature hysteresis effects on NaI detector and PMT system. This signifies the importance of isothermal environment while studying SCR flux using NaI(Tl) detectors

  9. Marine Geology and Geophysics Field Course Offered by The University of Texas Institute for Geophysics

    Science.gov (United States)

    Duncan, D.; Davis, M. B.; Allison, M. A.; Gulick, S. P.; Goff, J. A.; Saustrup, S.

    2012-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in year six, the course provides hands-on instruction and training for graduate and upper-level undergraduate students in data acquisition, processing, interpretation, and visualization. Techniques covered include high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students participate in an initial period of classroom instruction designed to communicate geological context of the field area (which changes each year) along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas and Galveston, Texas, and Grand Isle, Louisiana, have provided ideal locations for students to investigate coastal and sedimentary processes of the Gulf Coast and continental shelf through application of geophysical techniques. In the field, students rotate between two research vessels: one vessel, the 22' aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, and is used primarily for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibrocoring. While at sea, students assist with survey design, learn instrumentation set up, acquisition parameters, data quality control, and safe instrument deployment and retrieval. In teams of three, students work in onshore field labs preparing sediment samples for

  10. NASA Names Premier X-Ray Observatory and Schedules Launch

    Science.gov (United States)

    1998-12-01

    NASA's Advanced X-ray Astrophysics Facility has been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel laureate, Subrahmanyan Chandrasekhar. The telescope is scheduled to be launched no earlier than April 8, 1999 aboard the Space Shuttle Columbia mission STS-93, commanded by astronaut Eileen Collins. Chandrasekhar, known to the world as Chandra, which means "moon" or "luminous" in Sanskrit, was a popular entry in a recent NASA contest to name the spacecraft. The contest drew more than six thousand entries from fifty states and sixty-one countries. The co-winners were a tenth grade student in Laclede, Idaho, and a high school teacher in Camarillo, CA. The Chandra X-ray Observatory Center (CXC), operated by the Smithsonian Astrophysical Observatory, will control science and flight operations of the Chandra X-ray Observatory for NASA from Cambridge, Mass. "Chandra is a highly appropriate name," said Harvey Tananbaum, Director of the CXC. "Throughout his life Chandra worked tirelessly and with great precision to further our understanding of the universe. These same qualities characterize the many individuals who have devoted much of their careers to building this premier X-ray observatory." "Chandra probably thought longer and deeper about our universe than anyone since Einstein," said Martin Rees, Great Britain's Astronomer Royal. "Chandrasekhar made fundamental contributions to the theory of black holes and other phenomena that the Chandra X-ray Observatory will study. His life and work exemplify the excellence that we can hope to achieve with this great observatory," said NASA Administrator Dan Goldin. Widely regarded as one of the foremost astrophysicists of the 20th century, Chandrasekhar won the Nobel Prize in 1983 for his theoretical studies of physical processes important to the structure and evolution of stars. He and his wife immigrated from India to the U.S. in 1935. Chandrasekhar served on the faculty of the University of

  11. Overview of Effective Geophysical Methods Used in the Study of ...

    African Journals Online (AJOL)

    Abstract. The Application of various Geophysical Techniques for the assessment of the extent of ... ineffective Geophysical Method may not give true picture of the overall level of pollution in the .... stations shut down or maintenance which halt ...

  12. A New Observatory for Eastern College: A Dream Realized

    Science.gov (United States)

    Bradstreet, D. H.

    1996-12-01

    The Eastern College Observatory began as a rooftop observing deck with one Celestron 8 telescope in 1976 as the workhorse instrument of the observational astronomy lab within the core curriculum. For 20 years the observing deck served as the crude observatory, being augmented through the years by other computerized Celestron 8's and a 17.5" diameter Dobsonian with computerized setting circles. The lab consisted primarily of visual observations and astrophotography. In 1987 plans were set into motion to raise money to build a permanent Observatory on the roof of the main classroom building. Fundraising efforts included three Jog-A-Thons (raising more than $40,000) and many donations from individuals and foundations. The fundraising was completed in 1996 and a two telescope observatory was constructed in the summer of 1996 complete with warm room, CCD cameras, computers, spectrograph, video network, and computerized single channel photometer. The telescopes are computerized 16" diameter Meade LX200 Schmidt-Cassegrains, each coupled to Gateway Pentium Pro 200 MHz computers. SBIG ST-8 CCD cameras were also secured for each telescope and an Optec SSP-7 photometer and Optomechanics Research 10C Spectrograph were also purchased. A Daystar H-alpha solar filter and Thousand Oaks visual light solar filter have expanded the Observatory's functionality to daytime observing as well. This is especially useful for the thousands of school children who frequent the Planetarium each year. The Observatory primarily serves the core astronomy lab where students must observe and photograph a prescribed number of celestial objects in a semester. Advanced students can take directed studies where they conduct photometry on eclipsing binaries or other variable stars or search for new asteroids. In addition, the Observatory and Planetarium are open to the public. Interested members of the community can reserve time on the telescopes and receive training and supervision from lab assistants

  13. The teaching of geophysics in Latin America: An updated assessment

    Science.gov (United States)

    Valencio, Daniel A.; Schneider, Otto

    The situation of geophysics in developing countries has been the subject of discussions and analysis by diverse international organizations. It was also discussed in some articles in Eos [e.g., Lomnitz, 1982; Urrutia Fucugauchi, 1982; Bolt, 1982]. We have been requested to contribute a current evaluation of the problem, with particular reference to geophysical education in Latin America.In the following report on specialized training of geophysicists in Latin American countries, we consider the “exact earth sciences” in the broader sense, i.e., the mathematical and physical (and, to a certain extent, chemical) aspects of the planet earth as a whole, including its fluid portions, as opposed to the more restricted concept of just solid earth geophysics. In other words, our inquiry follows the scope of both AGU and the International Union of Geodesy and Geophysics (IUGG), so geodesy, although not explicitly covered, will still be mentioned occasionally. We will also consider the applied branches, especially exploration geophysics, since these areas furnish powerful motivation for fostering our sciences, both in the governmental circles of developing countries and among the young people looking for a promising professional future.

  14. Astronomy and astrophysics communication in the UCM Observatory

    Science.gov (United States)

    Crespo-Chacón, I.; de Castro, E.; Díaz, C.; Gallego, J.; Gálvez, M. C.; Hernán-Obispo, M.; López-Santiago, J.; Montes, D.; Pascual, S.; Verdet, A.; Villar, V.; Zamorano, J.

    We present a summary of the last activities of science communication that have taken place in the Observatorio de la Universidad Complutense de Madrid (UCM Observatory) on the occasion of the Third Science Week of the Comunidad Autónoma de Madrid (3-16 November 2003), including guided tours through the observatory facilities, solar observations, and several talks. Moreover the current telescopes, instruments and tools of the UCM Observatory have allowed us to organize other communicating activities such as the live observation, together with its internet broadcast, of total lunar eclipses and other exceptional astronomical events as the Venus transit that took place in 8 June 2004.

  15. Boscovich and the Brera Observatory .

    Science.gov (United States)

    Antonello, E.

    In the mid 18th century both theoretical and practical astronomy were cultivated in Milan by Barnabites and Jesuits. In 1763 Boscovich was appointed to the chair of mathematics of the University of Pavia in the Duchy of Milan, and the following year he designed an observatory for the Jesuit Collegium of Brera in Milan. The Specola was built in 1765 and it became quickly one of the main european observatories. We discuss the relation between Boscovich and Brera in the framework of a short biography. An account is given of the initial research activity in the Specola, of the departure of Boscovich from Milan in 1773 and his coming back just before his death.

  16. The University of Texas Institute for Geophysics' Marine Geology and Geophysics Field Course: A Hand-On Education Approach to Applied Geophysics

    Science.gov (United States)

    Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez, R.; Duncan, D.; Saustrup, S.

    2016-12-01

    The University of Texas Institute for Geophysics, Jackson School of Geosciences, offers a 3-week marine geology and geophysics field course. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, and sediment sampling and analysis. Students first participate in 3 days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work at locations that provide an opportunity to investigate coastal and continental shelf processes. Teams of students rotate between UTIG's 26' R/V Scott Petty and NOAA's 82' R/V Manta. They assist with survey design, instrumentation set up, and learn about acquisition, quality control, and safe instrument deployment. Teams also process data and analyze samples in onshore field labs. During the final week teams integrate, interpret, and visualize data in a final project using industry-standard software. The course concludes with team presentations on their interpretations with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and high instructor/student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course (to our knowledge) remains the only one of its kind, satisfies field experience requirements for some degree programs, and provides an alternative to land-based field courses. Alumni note the course's applicability to energy, environmental, and geotechnical industries as well as coastal restoration/management fields.

  17. Mobile geophysics for searching and exploration of Domanic hydrocarbon deposits

    Science.gov (United States)

    Borovsky, M. Ya; Uspensky, B. V.; Valeeva, S. E.; Borisov, A. S.

    2018-05-01

    There are noted features of shale hydrocarbons occurrence. It is shown the role of geophysical prospecting in the geological prospecting process for non-traditional sources of hydrocarbon. There are considered the possibilities of non-seismic methods for forecasting, prospecting, exploration and preparation of Domanikovian hydrocarbons accumulations for exploration. It is emphasized the need for geophysical studies of tectonic disturbances. Modern aerogeophysical instrumentation and methodological support allows to combine high-precision magneto-prospecting with gravimetric and gamma spectrometry. This combination of geophysical methods contributes to the diagnosis of active and latent faults.

  18. Geophysical Investigations in the Caucasus (1925 - 2012): Initial, Basic and Modern Stages

    Science.gov (United States)

    Eppelbaum, L. V.

    2012-04-01

    The Caucasian Mountains occupy an area of about 440,000 km2. A number of important mineral resources are concentrated there. Geophysical data on the geological structure of Caucasus can shed light on the basic principles of evolution of the Earth, the distribution of minerals and seismic activity. However, geophysical surveys under complex conditions are generally riddled by poor accessibility to certain mountainous regions, the unevenness of observation surfaces, as well as by a great variety and frequent changes of tectonic structures and geological bodies with variable physical properties. These factors either restrict geophysical surveys in difficult environments or confine the scope of useful information drawn from the results obtained. This has led to the development of special techniques in geophysical surveys, data processing and interpretation that draws heavily on the experience accumulated in the specific conditions of these mountainous regions. First applied geophysical observations in the Caucasus region - thermal measurements in boreholes - were carried out by Bazevich (1881) in the Absheron Peninsula. At the same time, start of the initial stage is usually referred to as the mid 20-s of the XX century, when the rare, but systematic geophysical observations (mainly gravity and magnetic) were begun in some Caucasian areas. Somewhat later began to apply the resistivity method. Mid 30-s is characterized by the beginning of application of borehole geophysics and seismic prospecting. The marine seismics firstly in the former Soviet Union was tested in the Caspian Sea. In general, the initial stage is characterized by slow, but steady rise (except during World War II) lasted until 1960. A basic stage (1960-1991) is characterized by very intensive employment of geophysical methods (apparently, any possible geophysical methods were tested in this region). At this time the Caucasus region is considered in the former Soviet Union as a geophysical polygon for

  19. Geophysical methods for evaluation of plutonic rocks

    International Nuclear Information System (INIS)

    Gibb, R.A.; Scott, J.S.

    1986-04-01

    Geophysical methods are systematically described according to the physical principle and operational mode of each method, the type of information produced, limitations of a technical and/or economic nature, and the applicability of the method to rock-mass evaluation at Research Areas of the Nuclear Fuel Waste Management Program. The geophysical methods fall into three categories: (1) airborne and other reconnaissance surveys, (2) detailed or surface (ground) surveys, and (3) borehole or subsurface surveys. The possible roles of each method in the site-screening and site-evaluation processes of disposal vault site selection are summarized

  20. Geophysical experiments at Mariano Lake uranium orebody

    International Nuclear Information System (INIS)

    Thompson, D.T.

    1980-01-01

    Several geophysical experiments were performed over the Mariano Lake orebody before mining. Surface self-potential methods, surface-to-hole induced-polarization methods, and reflection-seismic methods were used. These geophysical techniques provided data which relate to the conceptual model of this orebody. Currents generated in the productive formation by oxidation-reduction reactions do not generate measurable potential anomalies at the surface. Surface-to-hole induced-polarization measurements apparently can detect an oxidation-reduction front in the vicinity of an exploration borehole. Reflection-seismic techniques can provide information concening the paleostructure of the area

  1. Geophysical mapping of complex glaciogenic large-scale structures

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie

    2013-01-01

    This thesis presents the main results of a four year PhD study concerning the use of geophysical data in geological mapping. The study is related to the Geocenter project, “KOMPLEKS”, which focuses on the mapping of complex, large-scale geological structures. The study area is approximately 100 km2...... data types and co-interpret them in order to improve our geological understanding. However, in order to perform this successfully, methodological considerations are necessary. For instance, a structure indicated by a reflection in the seismic data is not always apparent in the resistivity data...... information) can be collected. The geophysical data are used together with geological analyses from boreholes and pits to interpret the geological history of the hill-island. The geophysical data reveal that the glaciotectonic structures truncate at the surface. The directions of the structures were mapped...

  2. Geophysical Exploration. New site exploration method

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Tsuneo; Otomo, Hideo; Sakayama, Toshihiko

    1988-07-25

    Geophysical exploration is used for geologic survey to serve purposes in civil engineering. New methods are being developed inside and outside Japan and are used to serve various purposes. This paper discusses recently developed techniques based on the measurement of seismic waves and electric potential. It also explains seismic tomography, radar tomography, and resistivity tomography which are included in the category of geotomography. At present, effort is being made to apply geophysical exploration technology to problems which were considered to be unsuitable for conventional exploration techniques. When such effort proceeds successfully, it is necessary to develop technology for presenting results quickly and exploration equipment which can work in various conditions. (10 figs, 15 refs)

  3. History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    International Nuclear Information System (INIS)

    Borns, D.J.

    1997-01-01

    A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have supported characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program supported experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Site Characterization; Castile Brine Reservoirs; Rustler/Dewey Lake Hydrogeology; Salado Hydrogeology; and Excavation Effects. The nature of geophysics programs for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). The geophysics program primarily supported larger characterization and experimental programs. Funding was not available for the complete documentation and interpretation. Therefore, a great deal of the geophysics survey information resides in contractor reports

  4. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  5. The Magnetic Observatory Buildings at the Royal Observatory, Cape

    Science.gov (United States)

    Glass, I. S.

    2015-10-01

    During the 1830s there arose a strong international movement, promoted by Carl Friedrich Gauss and Alexander von Humboldt, to characterise the earth's magnetic field. By 1839 the Royal Society in London, driven by Edward Sabine, had organised a "Magnetic Crusade" - the establishment of a series of magnetic and meteorological observatories around the British Empire, including New Zealand, Australia, St Helena and the Cape. This article outlines the history of the latter installation, its buildings and what became of them.

  6. Some case studies of geophysical exploration of archaeological sites in Yugoslavia

    Science.gov (United States)

    Komatina, Snezana; Timotijevic, Zoran

    1999-03-01

    One of the youngest branches of environmental geophysics application is the preservation of national heritage. Numerous digital techniques developed for exploration directed to urban planning can also be applied to investigations of historic buildings. In identifying near-surface layers containing objects of previous civilizations, various sophisticated geophysical methods are used. In the paper, application of geophysics in quantification of possible problems necessary to be carried out in order to get an archaeological map of some locality is discussed [Komatina, S., 1996]. Sophisticated geophysical methods in the preservation of national heritage. Proc. of Int. Conf. Architecture and Urbanism at the turn of the Millenium, Beograd, pp. 39-44. Finally, several examples of archaeogeophysical exploration at Divostin, Bedem and Kalenic monastery localities (Serbia, Yugoslavia) are presented.

  7. Evidence for a critical Earth: the New Geophysics

    Science.gov (United States)

    Crampin, Stuart; Gao, Yuan

    2015-04-01

    Phenomena that are critical-systems verging on criticality with 'butterfly wings' sensitivity are common - the weather, climate change; stellar radiation; the New York Stock Exchange; population explosions; population collapses; the life cycle of fruit-flies; and many more. It must be expected that the Earth, an archetypal complex heterogeneous interactive phenomena, is a critical-system, hence there is a New Geophysics imposing fundamentally new properties on conventional sub-critical geophysics. We shall show that, despite shear waves and shear-wave splitting (SWS) being observationally neglected, azimuthally-varying stress-aligned SWS is nearly universally observed throughout the Earth's crust and uppermost ~400km of the mantle. Caused by stress-aligned fluid-saturated microcracks (intergranular films of hydrolysed melt in the mantle), the microcracks are so closely-spaced that they verge on failure in fracturing and earthquakes. Phenomena that verge on failure in this way are critical-systems which impose a range of fundamental-new properties on conventional sub-critical geophysics including: self-similarity; monitorability; calculability; predictability; controllability; universality; and butterfly wings' sensitivity. We shall show how these phenomena have been consistently observed along millions of source-to-receiver ray paths confirming the New Geophysics. New Geophysics helps to explain many otherwise inexplicable observations including a number of geophysical conundrums such as the Gutenberg-Richter relationship which is used to describe the behaviour of conventional classic geophysics despite being massively non-linear. The great advantage of the critical Earth is that, unlike other critical-systems, the progress towards criticality can be monitored at almost any point within the deep interior of the material, by analysing observations of seismic SWS. This gives an unrivalled understanding of the detailed behaviour of a particular critical-system. This

  8. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    Science.gov (United States)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving

  9. Radioecological Observatories - Breeding Grounds for Innovative Research

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Martin; Urso, Laura; Wichterey, Karin; Willrodt, Christine [Bundesamt fuer Strahlenschutz - BfS, Willy-Brandt-Strasse 5, 38226 Salzgitter (Germany); Beresford, Nicholas A.; Howard, Brenda [NERC Centre for Ecology and Hydrology - CEH, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom); Bradshaw, Clare; Stark, Karolina [Stockholms Universitet - SU, Universitetsvaegen 10, SE-10691 Stockholm (Sweden); Dowdall, Mark; Liland, Astrid [Norwegian Radiation Protection Authority - NRPA, P.O. Box 55, NO-1332 Oesteraas (Norway); Eyrolle- Boyer, Frederique; Guillevic, Jerome; Hinton, Thomas [Institut de Radioprotection et de Surete Nucleaire - IRSN, 31, Avenue de la Division Leclerc, 92260 Fontenay-aux-Roses (France); Gashchak, Sergey [Chornobyl Center for Nuclear Safety, Radioactive Waste and Radioecology - Chornobyl Center, 77th Gvardiiska Dyviiya str.7/1, 07100 Slavutych (Ukraine); Hutri, Kaisa-Leena; Ikaeheimonen, Tarja; Muikku, Maarit; Outola, Iisa [Radiation and Nuclear Safety Authority - STUK, P.O. Box 14, 00881 Helsinki (Finland); Michalik, Boguslaw [Glowny Instytut Gornictwa - GIG, Plac Gwarkow 1, 40-166 Katowice (Poland); Mora, Juan Carlos; Real, Almudena; Robles, Beatriz [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas - CIEMAT, Avenida complutense, 40, 28040 Madrid (Spain); Oughton, Deborah; Salbu, Brit [Norwegian University of Life Sciences - NMBU, P.O. Box 5003, NO-1432 Aas (Norway); Sweeck, Lieve [Studiecentrum voor Kernenergie/Centre d' Etude de l' Energie Nucleaire (SCK.CEN), Avenue Herrmann- Debroux 40, BE-1160 Brussels (Belgium); Yoschenko, Vasyl [National University of Life and Environmental Sciences of Ukraine (NUBiP of Ukraine), Herojiv Obrony st., 15, Kyiv-03041 (Ukraine)

    2014-07-01

    Within the EC-funded (FP7) Network of Excellence STAR (Strategy for Allied Radioecology, www.star-radioecology.org) the concept of Radioecological Observatories is currently being implemented on a European level for the first time. Radioecological Observatories are radioactively (and chemically) contaminated field sites that will provide a focus for joint long-term radioecological research. The benefit of this innovative approach is to create synergistic research collaborations by sharing expertise, ideas, data and resources. Research at the Radioecological Observatories will primarily focus on radioecological challenges outlined in the Strategic Research Agenda (SRA). Mechanisms to use these sites will be established under the EC-funded project COMET (Coordination and Implementation of a Pan-European Instrument for Radioecology, www.comet-radioecology.org). The European Radioecological Observatory sites were selected using a structured, progressive approach that was transparent, consistent and objective. A first screening of potential candidate sites was conducted based on the following exclusion criteria: long-term perspective for shared field work and suitability for addressing the radioecological challenges of the SRA. The proposed sites included former uranium mining and milling sites in France and Germany, the Chernobyl Exclusion Zone (CEZ) in Ukraine/Belarus and the Upper Silesian Coal Basin (USCB) in Poland. All candidate sites were prioritized based on evaluation criteria which comprised scientific issues, available infrastructure, administrative/legal constraints and financial considerations. Multi-criteria decision analysis, group discussions and recommendations provided by external experts were combined to obtain a preference order among the suggested sites. Using this approach, the Upper Silesian Coal Basin (USCB) in Poland and the Chernobyl Exclusion Zone (CEZ) were selected as Radioecological Observatories. The two sites have similar multi

  10. Automated observatory in Antarctica: real-time data transfer on constrained networks in practice

    Directory of Open Access Journals (Sweden)

    S. Bracke

    2017-08-01

    Full Text Available In 2013 a project was started by the geophysical centre in Dourbes to install a fully automated magnetic observatory in Antarctica. This isolated place comes with specific requirements: unmanned station during 6 months, low temperatures with extreme values down to −50 °C, minimum power consumption and satellite bandwidth limited to 56 Kbit s−1. The ultimate aim is to transfer real-time magnetic data every second: vector data from a LEMI-25 vector magnetometer, absolute F measurements from a GEM Systems scalar proton magnetometer and absolute magnetic inclination–declination (DI measurements (five times a day with an automated DI-fluxgate magnetometer. Traditional file transfer protocols (for instance File Transfer Protocol (FTP, email, rsync show severe limitations when it comes to real-time capability. After evaluation of pro and cons of the available real-time Internet of things (IoT protocols and seismic software solutions, we chose to use Message Queuing Telemetry Transport (MQTT and receive the 1 s data with a negligible latency cost and no loss of data. Each individual instrument sends the magnetic data immediately after capturing, and the data arrive approximately 300 ms after being sent, which corresponds with the normal satellite latency.

  11. Inverse problems of geophysics

    International Nuclear Information System (INIS)

    Yanovskaya, T.B.

    2003-07-01

    This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given

  12. SPASE and the Heliophysics Virtual Observatories

    Directory of Open Access Journals (Sweden)

    J R Thieman

    2010-02-01

    Full Text Available The Space Physics Archive Search and Extract (SPASE project has developed an information model for interoperable access and retrieval of data within the Heliophysics (also known as space and solar physics science community. The diversity of science data archives within this community has led to the establishment of many virtual observatories to coordinate the data pathways within Heliophysics subdisciplines, such as magnetospheres, waves, radiation belts, etc. The SPASE information model provides a semantic layer and common language for data descriptions so that searches might be made across the whole of the heliophysics data environment, especially through the virtual observatories.

  13. Monitoring Global Geophysical Fluids by Space Geodesy

    Science.gov (United States)

    Chao, Benjamin F.; Dehant, V.; Gross, R. S.; Ray, R. D.; Salstein, D. A.; Watkins, M.

    1999-01-01

    Since its establishment on 1/1/1998 by the International Earth Rotation Service, the Coordinating Center for Monitoring Global Geophysical Fluids (MGGF) and its seven Special Bureaus have engaged in an effort to support and facilitate the understanding of the geophysical fluids in global geodynamics research. Mass transports in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") will cause the following geodynamic effects on a broad time scale: (1) variations in the solid Earth's rotation (in length-of-day and polar motion/nutation) via the conservation of angular momentum and effected by torques at the fluid-solid Earth interface; (2) changes in the global gravitational field according to Newton's gravitational law; and (3) motion in the center of mass of the solid Earth relative to that of the whole Earth ("geocenter") via the conservation of linear momentum. These minute signals have become observable by space geodetic techniques, primarily VLBI, SLR, GPS, and DORIS, with ever increasing precision/accuracy and temporal/spatial resolution. Each of the seven Special Bureaus within MGGF is responsible for calculations related to a specific Earth component or aspect -- Atmosphere, Ocean, Hydrology, Ocean Tides, Mantle, Core, and Gravity/Geocenter. Angular momenta and torques, gravitational coefficients, and geocenter shift will be computed for geophysical fluids based on global observational data, and from state-of-the-art models, some of which assimilate such data. The computed quantities, algorithm and data formats are standardized. The results are archived and made available to the scientific research community. This paper reports the status of the MGGF activities and current results.

  14. Electricity and gas market observatory. 1. Quarter 2007

    International Nuclear Information System (INIS)

    2007-01-01

    Since July 1, 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). It completes the information already published by CRE: - practical information for eligible customers: consumer guide, list of suppliers, - communications regarding markets running; CRE's annual activity report. Content: A - The electricity market: The retail electricity market (Introduction, Eligible customer segments and their respective weights, Status at April 1, 2007, Dynamic analysis: 1. Quarter 2007); The wholesale electricity market (Introduction, Traded volumes on the French wholesale electricity market and comparison with European markets, Prices on the French wholesale electricity market and European comparison, Import and export volumes, Concentration of the French electricity market, Striking facts of the 1. 2007 quarter); B - The gas market: The retail gas market (Introduction, The eligible customer segments and their respective weights, Status at April 1, 2007); The wholesale gas market (Gas pricing and gas markets in Europe, The wholesale market in France); C - Appendices: Electricity and gas market observatories combined glossary, Specific electricity market observatory glossary, Specific gas market observatory glossary

  15. Electricity and gas market observatory. 4. Quarter 2006

    International Nuclear Information System (INIS)

    2006-01-01

    Since July 1, 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). It completes the information already published by CRE: - practical information for eligible customers: consumer guide, list of suppliers, - communications regarding markets running; CRE's annual activity report. Content: A - The electricity market: The retail electricity market (Introduction, Eligible customer segments and their respective weights, Status at January 1, 2007, Dynamic analysis: 4. Quarter 2006); The wholesale electricity market (Introduction, Traded volumes on the French wholesale electricity market and comparison with European markets, Prices on the French wholesale electricity market and European comparison, Import and export volumes, Concentration of the French electricity market, Striking facts of the 4. 2006 quarter); B - The gas market: The retail gas market (Introduction, The eligible customer segments and their respective weights, Status at January 1, 2007); The wholesale gas market (Gas pricing and gas markets in Europe, The wholesale market in France); C - Appendices: Electricity and gas market observatories combined glossary, Specific electricity market observatory glossary, Specific gas market observatory glossary

  16. History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    International Nuclear Information System (INIS)

    Borns, D.J.

    1997-01-01

    A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have used support characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program was focused on support of experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Issue 1: Site Characterization; Issue 2: Castile Brine Reservoirs; Issue 3: Rustler /Dewey Lake Hydrogeology; Issue 4: Salado Hydrogeology; and Issue 5: Excavation Effects. The nature of geophysics program for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). An effect of being a support program is that as new project priorities arose the funding for the geophysics program was limited and withdrawn. An outcome is that much of the geophysics survey information resides in contractor reports since final interpretation reports were not funded

  17. Solar wind monitor—a school geophysics project

    Science.gov (United States)

    Robinson, Ian

    2018-05-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth’s field in real-time uploading data and graphs to a website every few minutes. Modular design encourages construction and testing by teams of students as well as expansion and refinement. The system has been tested running unattended for months at a time. Both the hardware design and software is published as open-source [1, 10].

  18. Geomagnetic Observatory Data for Real-Time Applications

    Science.gov (United States)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  19. Common interests bind AGU and geophysical groups around the globe

    Science.gov (United States)

    McEntee, Christine

    2012-02-01

    In continuation of our work to strengthen alliances with key organizations in the Earth and space science community, AGU president Michael McPhaden, president-elect Carol Finn, and I held a series of meetings with leaders from other science societies during the 2011 Fall Meeting. Over the course of 2 days we met with leaders from the Geophysical Society of America, European Geosciences Union, Japan Geosciences Union, Ethiopian Geophysical Union, Asia Oceania Geosciences Society, Chinese Geophysical Society, and Asociación Latinoamericana de Geofísica Espacial. This gave us a valued opportunity to discuss the common interests and challenges we all face and to learn from each other's experience. The meetings allowed AGU to strengthen existing cooperative agreements and reach new levels of understanding between us and other societies. Additionally, we met with representatives from the Korean Ocean Research and Development Institute to discuss their intention to establish a geophysical union modeled after AGU.

  20. Astronomical virtual observatory and the place and role of Bulgarian one

    Science.gov (United States)

    Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen

    2009-07-01

    Virtual observatory could be defined as a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that combine existing databases from ground-based and orbiting observatories, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies has been compiled from observations in a variety of wavelengths-optical, radio, infrared, gamma ray, X-ray and more. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. During the autumn of the 2001 (26.09.2001) six organizations from Europe put the establishment of the Astronomical Virtual Observatory (AVO)-ESO, ESA, Astrogrid, CDS, CNRS, Jodrell Bank (Dolensky et al., 2003). Its aims have been outlined as follows: - To provide comparative analysis of large sets of multiwavelength data; - To reuse data collected by a single source; - To provide uniform access to data; - To make data available to less-advantaged communities; - To be an educational tool. The Virtual observatory includes: - Tools that make it easy to locate and retrieve data from catalogues, archives, and databases worldwide; - Tools for data analysis, simulation, and visualization; - Tools to compare observations with results obtained from models, simulations and theory; - Interoperability: services that can be used regardless of the clients computing platform, operating system and software capabilities; - Access to data in near real-time, archived data and historical data; - Additional information - documentation, user-guides, reports

  1. Geophysical and solar activity indices

    Science.gov (United States)

    Bossy, L.; Lemaire, J.

    1984-04-01

    A large number of geophysicists try to correlate their observations with one or even a series of different geophysical or solar activity indices. Yet the right choice of the most appropriate index with which to correlate depends mainly on our understanding of the physical cause-effect relationship between the new set of observations and the index chosen. This best choice will therefore depend on our good understanding of the methods of measurement and derivation of the adopted index in such correlative studies. It relies also on our awareness of the range of applicability of the indices presently available as well as on our understanding of their limitations. It was to achieve these goals that a series of general lectures on geophysical and solar activity indices was organized by L. Bossy and J. Lemaire (Institut d'Aeronomie Spatiale de Belgique (IASB), Brussels), March 26-29, 1984 at Han-sur-Lesse, Belgium.

  2. International observatory on mental health systems: structure and operation

    Directory of Open Access Journals (Sweden)

    Minas Harry

    2009-04-01

    Full Text Available Abstract Introduction Sustained cooperative action is required to improve the mental health of populations, particularly in low and middle-income countries where meagre mental health investment and insufficient human and other resources result in poorly performing mental health systems. The Observatory The International Observatory on Mental Health Systems is a mental health systems research, education and development network that will contribute to the development of high quality mental health systems in low and middle-income countries. The work of the Observatory will be done by mental health systems research, education and development groups that are located in and managed by collaborating organisations. These groups will be supported by the IOMHS Secretariat, the International IOMHS Steering Group and a Technical Reference Group. Summary The International Observatory on Mental Health Systems is: 1 the mental health systems research, education and development groups; 2 the IOMHS Steering Group; 3 the IOMHS Technical Reference Group; and 4 the IOMHS Secretariat. The work of the Observatory will depend on free and open collaboration, sharing of knowledge and skills, and governance arrangements that are inclusive and that put the needs and interests of people with mental illness and their families at the centre of decision-making. We welcome contact from individuals and institutions that wish to contribute to achieving the goals of the Observatory. Now is the time to make it happen where it matters, by turning scientific knowledge into effective action for people's health. (J.W. Lee, in his acceptance speech on his appointment as the Director-General of the World Health Organization 1.

  3. Comparison of broad band time series recorded parallel by FGI type interferometric water level and Lippmann type pendulum tilt meters at Conrad observatory, Austria

    Science.gov (United States)

    Ruotsalainen, Hannu; Papp, Gabor; Leonhardt, Roman; Ban, Dora; Szücs, Eszter; Benedek, Judith

    2016-04-01

    The Finnish Geodetic Institute (FGI) the progenitor of Finnish Geospatial Research Institute of NLS designed and built a 5.5m long prototype of interferometric water level tiltmeter (iWT) in early 2014. Geodetic and Geophysical Institute (GGI), Sopron, Hungary bought the instrument and started tilt measurement in August 2014 at the Conrad observatory (COBS), Austria to monitor geodynamical phenomena like microseisms, free oscillations of the Earth, earth tides, mass loading effects and crustal deformations in cooperation with Austrian Central Institute for Meteorology and Geodynamics (ZAMG) and the FGI. On the July 16 2015 a Lippmann-type 2D tilt sensor (LTS) was also installed by GGI on the 6 m long pier where iWT was set up previously. This situation opens a possibility to do broad band (from secular to seismic variations up to 15 Hz) geophysical signal analysis comparing the responses of long (several meters) and short (a few decimeters) base instruments implementing different physical principles (relative height change of a level surface and inclination change of the plumb line). The characteristics of the sensors are studied by the evaluation of the spectra of recorded signals dominated by microseisms. The iWT has internal interferometric calibration and it can be compared to Lippmanns tilt meter one. Both instruments show good long term ( > 1 day) stability when earth tides and ocean and air mass loading tilts are modelled.

  4. Invited Review Article: The Chandra X-ray Observatory

    Science.gov (United States)

    Schwartz, Daniel A.

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  5. The Marseille Observatory 1860-1920: missed opportunities and elebrated achievements

    Science.gov (United States)

    Caplan, James

    2001-10-01

    After summarizing the early history of the Marseille Observatory (founded by the Jesuits and operational in 1702), I describe the circumstances leading to the takeover by Le Verrier in the 1860s. The observatory was rebuilt on the Plateau Longchamp and new instruments were installed, most notably the 80-cm Foucault glass-mirror telescope. The work of the new observatory is then presented, and the instruments described, starting with the Le Verrier period and continuing through the long directorship of Stephan, and then Bourget. The overall success of the observatory in its Longchamp site was due in part to the assiduous pursuit of routine observations and to the discovery of comets and asteroids, combined with the `exploratory' observations of `nebulae' by Stephan. In addition, the first stellar interferometry observations, and the first applications of the Fabry-Perot interferometer to nebular observations, were important achievements. On the other hand, the failure in the beginning of the twentieth century to adapt the telescopes to photography condemned the observatory to a long period of missed opportunities, from which it did not recover for several decades.

  6. Astronomy Against Terrorism: an Educational Astronomical Observatory Project in Peru

    Science.gov (United States)

    Ishitsuka, M.; Montes, H.; Kuroda, T.; Morimoto, M.; Ishitsuka, J.

    2003-05-01

    The Cosmos Coronagraphic Observatory was completely destroyed by terrorists in 1988. In 1995, in coordination with the Minister of Education of Peru, a project to construct a new Educational Astronomical Observatory has been executed. The main purpose of the observatory is to promote an interest in basic space sciences in young students from school to university levels, through basic astronomical studies and observations. The planned observatory will be able to lodge 25 visitors; furthermore an auditorium, a library and a computer room will be constructed to improve the interest of people in astronomy. Two 15-cm refractor telescopes, equipped with a CCD camera and a photometer, will be available for observations. Also a 6-m dome will house a 60-cm class reflector telescope, which will be donated soon, thanks to a fund collected and organized by the Nishi-Harima Astronomical Observatory in Japan. In addition a new modern planetarium donated by the Government of Japan will be installed in Lima, the capital of Peru. These installations will be widely open to serve the requirements of people interested in science.

  7. Geophysical logging for groundwater investigations in Southern Thailand

    Directory of Open Access Journals (Sweden)

    Phongpiyah Klinmanee

    2012-09-01

    Full Text Available In Thailand the Department of Groundwater Resources is drilling to find vital aquifers. Sometimes groundwater formations cannot be identified clearly during drilling; therefore, geophysical logging was applied after drilling and before casing.The tool used here is measuring nine parameters in one run, natural gamma ray, spontaneous potential, single point resistance, normal resistivity (AM 8’’, 16’’, 32’’, and 64’’, mud temperature and resistivity. Cutting was used to support the geophysical interpretations. In many cases the groundwater bearing zones could be clearly identified. The combination of andthe possibility choosing from nine parameters measured provided the necessary data base to identify groundwater bearingzones in different environments. It has been demonstrated that in different wells different tools are favorable than others.Based on the conclusions of this study geophysical logging in groundwater exploration is recommended as a normalstandard technique that should be applied in every new well drilled.

  8. Current Status of Carl Sagan Observatory in Mexico

    Science.gov (United States)

    Sanchez-Ibarra, A.

    The current status of Observatory "Carl Sagan" (OCS) of University of Sonora is presented. This project was born in 1996 focused to build a small solar-stellar observatory completely operated by remote control. The observatory will be at "Cerro Azul", a 2480 m peak in one of the best regions in the world for astronomical observation, at the Sonora-Arizona desert. The OCS, with three 16 cm solar telescopes and a 55 cm stellar telescope is one of the cheapest observatories, valuated in US200,000 Added to its scientific goals to study solar coronal holes and Supernovae Type 1A, the OCS has a strong educative and cultural program in Astronomy to all levels. At the end of 2001, we started the Program "Constelacion", to build small planetariums through all the countries with a cost of only US80,000. Also, the webcast system for transmission of the solar observations from the prototype OCS at the campus, was expanded to webcast educational programs in Astronomy since July of this year, including courses and diplomats for Latin American people. All of these advances are exposed here.

  9. Interactive 3D visualization for theoretical virtual observatories

    Science.gov (United States)

    Dykes, T.; Hassan, A.; Gheller, C.; Croton, D.; Krokos, M.

    2018-06-01

    Virtual observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of data sets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2D or volume rendering in 3D. We analyse the current state of 3D visualization for big theoretical astronomical data sets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3D visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based data sets, allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.

  10. Interactive 3D Visualization for Theoretical Virtual Observatories

    Science.gov (United States)

    Dykes, Tim; Hassan, A.; Gheller, C.; Croton, D.; Krokos, M.

    2018-04-01

    Virtual Observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of datasets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2d or volume rendering in 3d. We analyze the current state of 3d visualization for big theoretical astronomical datasets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3d visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based datasets allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.

  11. A robotic observatory in the city

    Science.gov (United States)

    Ruch, Gerald T.; Johnston, Martin E.

    2012-05-01

    The University of St. Thomas (UST) Observatory is an educational facility integrated into UST's undergraduate curriculum as well as the curriculum of several local schools. Three characteristics combine to make the observatory unique. First, the telescope is tied directly to the support structure of a four-story parking ramp instead of an isolated pier. Second, the facility can be operated remotely over an Internet connection and is capable of performing observations without a human operator. Third, the facility is located on campus in the heart of a metropolitan area where light pollution is severe. Our tests indicate that, despite the lack of an isolated pier, vibrations from the ramp do not degrade the image quality at the telescope. The remote capability facilitates long and frequent observing sessions and allows others to use the facility without traveling to UST. Even with the high background due to city lights, the sensitivity and photometric accuracy of the system are sufficient to fulfill our pedagogical goals and to perform a variety of scientific investigations. In this paper, we outline our educational mission, provide a detailed description of the observatory, and discuss its performance characteristics.

  12. LAGO: The Latin American giant observatory

    Science.gov (United States)

    Sidelnik, Iván; Asorey, Hernán; LAGO Collaboration

    2017-12-01

    The Latin American Giant Observatory (LAGO) is an extended cosmic ray observatory composed of a network of water-Cherenkov detectors (WCD) spanning over different sites located at significantly different altitudes (from sea level up to more than 5000 m a.s.l.) and latitudes across Latin America, covering a wide range of geomagnetic rigidity cut-offs and atmospheric absorption/reaction levels. The LAGO WCD is simple and robust, and incorporates several integrated devices to allow time synchronization, autonomous operation, on board data analysis, as well as remote control and automated data transfer. This detection network is designed to make detailed measurements of the temporal evolution of the radiation flux coming from outer space at ground level. LAGO is mainly oriented to perform basic research in three areas: high energy phenomena, space weather and atmospheric radiation at ground level. It is an observatory designed, built and operated by the LAGO Collaboration, a non-centralized collaborative union of more than 30 institutions from ten countries. In this paper we describe the scientific and academic goals of the LAGO project - illustrating its present status with some recent results - and outline its future perspectives.

  13. Observatory Sponsoring Astronomical Image Contest

    Science.gov (United States)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  14. Preliminary evaluation of alterant geophysical tomography in welded tuff

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Daily, W.D.

    1985-01-01

    The ability of alterant geophysical tomography to delineate flow paths in a welded tuff rock mass has been preliminarily evaluated based on the results of a field experiment. Electromagnetic measurements were made before, during and after a water-based, dye tracer flowed through the rock mass. Alterant geophysical tomographs were generated and compared with independent evidence - borescope logs, neutron logs and dyed rock samples. Anomalies present in the tomograph match the location and orientation of fractures mapped with a borescope. The location of tracer-stained fractures coincides with the location of some image anomalies; other geophysical anomalies exist where tracer-stained fractures were not observed, perhaps due to poor core recovery. Additional drilling to locate stained flow paths and other experiments are planned so that the applicability of the technique can be further evaluated

  15. The South African astronomical observatory

    International Nuclear Information System (INIS)

    Feast, M.

    1985-01-01

    A few examples of the activities of the South African Astronomical Observatory are discussed. This includes the studying of stellar evolution, dust around stars, the determination of distances to galaxies and collaboration with space experiments

  16. Joint inversion of geophysical and hydrological data for improved subsurface characterization

    International Nuclear Information System (INIS)

    Kowalsky, Michael B.; Chen, Jinsong; Hubbard, Susan S.

    2006-01-01

    Understanding fluid distribution and movement in the subsurface is critical for a variety of subsurface applications, such as remediation of environmental contaminants, sequestration of nuclear waste and CO2, intrusion of saline water into fresh water aquifers, and the production of oil and gas. It is well recognized that characterizing the properties that control fluids in the subsurface with the accuracy and spatial coverage needed to parameterize flow and transport models is challenging using conventional borehole data alone. Integration of conventional borehole data with more spatially extensive geophysical data (obtained from the surface, between boreholes, and from surface to boreholes) shows promise for providing quantitative information about subsurface properties and processes. Typically, estimation of subsurface properties involves a two-step procedure in which geophysical data are first inverted and then integrated with direct measurements and petrophysical relationship information to estimate hydrological parameters. However, errors inherent to geophysical data acquisition and inversion approaches and errors associated with petrophysical relationships can decrease the value of geophysical data in the estimation procedure. In this paper, we illustrate using two examples how joint inversion approaches, or simultaneous inversion of geophysical and hydrological data, offer great potential for overcoming some of these limitations

  17. Operation of the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Rodriguez Martino, Julio

    2011-01-01

    While the work to make data acquisition fully automatic continues, both the Fluorescence Detectors and the Surface Detectors of the Pierre Auger Observatory need some kind of attention from the local staff. In the first case, the telescopes are operated and monitored during the moonless periods. The ground array only needs monitoring, but the larger number of stations implies more variables to consider. AugerAccess (a high speed internet connection) will give the possibility of operating and monitoring the observatory from any place in the world. This arises questions about secure access, better control software and alarms. Solutions are already being tested and improved.

  18. Public relations for a national observatory

    Science.gov (United States)

    Finley, David G.

    The National Radio Astronomy Observatory (NRAO) is a government-funded organization providing state-of-the art observational facilities to the astronomical community on a peer-reviewed basis. In this role, the NRAO must address three principal constituencies with its public-relations efforts. These are: the astronomical community; the funding and legislative bodies of the Federal Government; and the general public. To serve each of these constituencies, the Observatory has developed a set of public-relations initiatives supported by public-relations and outreach professionals as well as by management and scientific staff members. The techniques applied and the results achieved in each of these areas are described.

  19. Optimizing fixed observational assets in a coastal observatory

    Science.gov (United States)

    Frolov, Sergey; Baptista, António; Wilkin, Michael

    2008-11-01

    Proliferation of coastal observatories necessitates an objective approach to managing of observational assets. In this article, we used our experience in the coastal observatory for the Columbia River estuary and plume to identify and address common problems in managing of fixed observational assets, such as salinity, temperature, and water level sensors attached to pilings and moorings. Specifically, we addressed the following problems: assessing the quality of an existing array, adding stations to an existing array, removing stations from an existing array, validating an array design, and targeting of an array toward data assimilation or monitoring. Our analysis was based on a combination of methods from oceanographic and statistical literature, mainly on the statistical machinery of the best linear unbiased estimator. The key information required for our analysis was the covariance structure for a field of interest, which was computed from the output of assimilated and non-assimilated models of the Columbia River estuary and plume. The network optimization experiments in the Columbia River estuary and plume proved to be successful, largely withstanding the scrutiny of sensitivity and validation studies, and hence providing valuable insight into optimization and operation of the existing observational network. Our success in the Columbia River estuary and plume suggest that algorithms for optimal placement of sensors are reaching maturity and are likely to play a significant role in the design of emerging ocean observatories, such as the United State's ocean observation initiative (OOI) and integrated ocean observing system (IOOS) observatories, and smaller regional observatories.

  20. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    Science.gov (United States)

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  1. Developing an academia-based public health observatory: the new global public health observatory with emphasis on urban health at Johns Hopkins Bloomberg School of Public Health

    Directory of Open Access Journals (Sweden)

    Carlos Castillo-Salgado

    2015-11-01

    Full Text Available Abstract Health observatories may differ according to their mission, institutional setting, topical emphasis or geographic coverage. This paper discusses the development of a new urban-focused health observatory, and its operational research and training infrastructure under the academic umbrella of the Department of Epidemiology and the Institute of Urban Health at the Johns Hopkins Bloomberg School of Public Health (BSPH in Baltimore, USA. Recognizing the higher education mission of the BSPH, the development of a new professional training in public health was an important first step for the development of this observatory. This new academia-based observatory is an innovative public health research and training platform offering faculty, investigators, professional epidemiology students and research partners a physical and methodological infrastructure for their operational research and training activities with both a local urban focus and a global reach. The concept of a public health observatory and its role in addressing social health inequalities in local urban settings is discussed.

  2. Developing an academia-based public health observatory: the new global public health observatory with emphasis on urban health at Johns Hopkins Bloomberg School of Public Health.

    Science.gov (United States)

    Castillo-Salgado, Carlos

    2015-11-01

    Health observatories may differ according to their mission, institutional setting, topical emphasis or geographic coverage. This paper discusses the development of a new urban-focused health observatory, and its operational research and training infrastructure under the academic umbrella of the Department of Epidemiology and the Institute of Urban Health at the Johns Hopkins Bloomberg School of Public Health (BSPH) in Baltimore, USA. Recognizing the higher education mission of the BSPH, the development of a new professional training in public health was an important first step for the development of this observatory. This new academia-based observatory is an innovative public health research and training platform offering faculty, investigators, professional epidemiology students and research partners a physical and methodological infrastructure for their operational research and training activities with both a local urban focus and a global reach. The concept of a public health observatory and its role in addressing social health inequalities in local urban settings is discussed.

  3. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    Science.gov (United States)

    2001-12-01

    Vast Databanks at the Astronomers' Fingertips Summary A new European initiative called the Astrophysical Virtual Observatory (AVO) is being launched to provide astronomers with a breathtaking potential for new discoveries. It will enable them to seamlessly combine the data from both ground- and space-based telescopes which are making observations of the Universe across the whole range of wavelengths - from high-energy gamma rays through the ultraviolet and visible to the infrared and radio. The aim of the Astrophysical Virtual Observatory (AVO) project, which started on 15 November 2001, is to allow astronomers instant access to the vast databanks now being built up by the world's observatories and which are forming what is, in effect, a "digital sky" . Using the AVO, astronomers will, for example, be able to retrieve the elusive traces of the passage of an asteroid as it passes near the Earth and so enable them to predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded so adding invaluable data to the study of the evolution of stars. Background information on the Astrophysical Virtual Observatory is available in the Appendix. PR Photo 34a/01 : The Astrophysical Virtual Observatory - an artist's impression. The rapidly accumulating database ESO PR Photo 34a/01 ESO PR Photo 34a/01 [Preview - JPEG: 400 x 345 pix - 90k] [Normal - JPEG: 800 x 689 pix - 656k] [Hi-Res - JPEG: 3000 x 2582 pix - 4.3M] ESO PR Photo 34a/01 shows an artist's impression of the Astrophysical Virtual Observatory . Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data - corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being

  4. Electricity and gas market Observatory - 1. Quarter of 2012

    International Nuclear Information System (INIS)

    2012-03-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  5. Electricity and gas market Observatory - 4. Quarter of 2011

    International Nuclear Information System (INIS)

    2011-12-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  6. Electricity and gas market Observatory - 3. Quarter of 2011

    International Nuclear Information System (INIS)

    2011-09-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  7. Electricity and gas market Observatory - 2. Quarter of 2011

    International Nuclear Information System (INIS)

    2011-06-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  8. Electricity and gas market Observatory - 4. Quarter of 2010

    International Nuclear Information System (INIS)

    2010-12-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  9. Electricity and gas market Observatory - 3. Quarter of 2012

    International Nuclear Information System (INIS)

    2012-09-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  10. Electricity and gas market Observatory - 2. Quarter of 2012

    International Nuclear Information System (INIS)

    2012-06-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  11. Electricity and gas market Observatory - 4. Quarter of 2012

    International Nuclear Information System (INIS)

    2012-12-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  12. Electricity and gas market Observatory - 1. Quarter of 2011

    International Nuclear Information System (INIS)

    2011-03-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  13. Geophysical interpretation using integral equations

    CERN Document Server

    Eskola, L

    1992-01-01

    Along with the general development of numerical methods in pure and applied to apply integral equations to geophysical modelling has sciences, the ability improved considerably within the last thirty years or so. This is due to the successful derivation of integral equations that are applicable to the modelling of complex structures, and efficient numerical algorithms for their solution. A significant stimulus for this development has been the advent of fast digital computers. The purpose of this book is to give an idea of the principles by which boundary-value problems describing geophysical models can be converted into integral equations. The end results are the integral formulas and integral equations that form the theoretical framework for practical applications. The details of mathematical analysis have been kept to a minimum. Numerical algorithms are discussed only in connection with some illustrative examples involving well-documented numerical modelling results. The reader is assu­ med to have a back...

  14. 150th Anniversary of the Astronomical Observatory Library of Sciences

    Science.gov (United States)

    Solntseva, T.

    The scientific library of the Astronomical observatory of Kyiv Taras Shevchenko University is one of the oldest ones of such a type in Ukraine. Our Astronomical Observatory and its scientific library will celebrate 150th anniversary of their foundation. 900 volumes of duplicates of Olbers' private library underlay our library. These ones were acquired by Russian Academy of Sciences for Poulkovo observatory in 1841 but according to Struve's order were transmitted to Kyiv Saint Volodymyr University. These books are of great value. There are works edited during Copernicus', Kepler's, Galilei's, Newton's, Descartes' lifetime. Our library contains more than 100000 units of storage - monographs, periodical astronomical editions from the first (Astronomische Nachrichten, Astronomical journal, Monthly Notices etc.), editions of the majority of the astronomical observatories and institutions of the world, unique astronomical atlases and maps

  15. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    Science.gov (United States)

    2001-12-01

    N° 73-2001 - Paris, 5 December 2001 The aim of AVO is to give astronomers instant access to the vast databanks now being built up by the world's observatories and forming what is in effect a "digital sky". Using AVO astronomers will be able, for example, to retrieve the elusive traces of the passage of an asteroid as it passes the Earth and so predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded, adding invaluable data to the study of the evolution of stars. Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data -corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being digitally reconstructed in the databanks. The volume and complexity of data and information available to astronomers are overwhelming. Hence the problem of how astronomers can possibly manage, distribute and analyse this great wealth of data. The Astrophysical Virtual Observatory will enable them to meet the challenge and "put the Universe online". AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The Commission has awarded a contract valued at EUR 4m for the project, starting on 15 November. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the "real" sky would, in comparison, both be prohibitively costly and take far too long. Towards a Global Virtual Observatory The

  16. Creation of an instrument maintenance program at W. M. Keck Observatory

    Science.gov (United States)

    Hill, G. M.; Kwok, S. H.; Mader, J. A.; Wirth, G. D.; Dahm, S. E.; Goodrich, R. W.

    2014-08-01

    Until a few years ago, the W. M. Keck Observatory (WMKO) did not have a systematic program of instrument maintenance at a level appropriate for a world-leading observatory. We describe the creation of such a program within the context of WMKO's lean operations model which posed challenges but also guided the design of the system and resulted in some unique and notable capabilities. These capabilities and the flexibility of the system have led to its adoption across the Observatory for virtually all PM's. The success of the Observatory in implementing the program and its impact on instrument reliability are presented. Lessons learned are reviewed and strategic implications discussed.

  17. Archaeological Feedback as a Research Methodology in Near-Surface Geophysics

    Science.gov (United States)

    Maillol, J.; Ortega-Ramírez, J.; Berard, B.

    2005-05-01

    A unique characteristic of archaeological geophysics is to present the researchers in applied geophysics with the opportunity to verify their interpretation of geophysical data through the direct observation of often extremely detailed excavations. This is usually known as archaeological feedback. Archaeological materials have been slowly buried over periods ranging from several hundreds to several thousands of years, undergoing natural sedimentary and soil-forming processes. Once excavated, archaeological features therefore constitute more realistic test subjects than the targets artifically buried in common geophysical test sites. We are presenting the outcome of several such verification tests aimed at clarifying issues in geometry and spatial resolution of ground penetrating radar (GPR) images. On the site of a Roman villa in SE Portugal 500 Mhz GPR images are shown to depict very accurately the position and geometry of partially excavated remains. In the Maya city of Palenque, Mexico, 900 Mhz data allows the depth of tombs and natural cavities to be determined with cm accuracy. The predicted lateral extent of the cavities is more difficult to match with the reality due to the cluttering caused by high frequency. In the rainforest of Western Africa, 500 MHz GPR was used to prospect for stone tool sites. When very careful positioning and high density data sampling is achieved, stones can be accurately located and retrieved at depths exceeding 1 m with maximum positioning errors of 12cm horizontally and 2 cm vertically. In more difficult data collection conditions however, errors in positioning are shown to actually largely exceed the predictions based on quantitative theoretical resolution considerations. Geophysics has long been recognized as a powerful tool for prospecting and characterizing archaeological sites. Reciprocally, these results show that archaeology is an unparalleled test environment for the assesment and development of high resolution

  18. Building a roll-off roof or dome observatory a complete guide for design and construction

    CERN Document Server

    Hicks, John Stephen

    2016-01-01

    Almost every practical astronomer eventually aspires to have a fixed, permanent observatory for his or her telescope. A roll-off roof or dome observatory is the answer for the most popular home observatory design.  Almost every practical astronomer eventually aspires to have a fixed, permanent observatory for his or her telescope. A roll-off roof or dome observatory is the answer for the most popular home observatory design. Building a Roll-Off or Dome Observatory will help you decide whether to embark on the venture and will certainly increase your enthusiasm for the project. The author, both an amateur astronomer and a professional landscape architect, answers many of the common questions asked about observatory construction, covering the following topics: • Zoning, and by-law requirements common to most states, towns and municipalities • Where to locate the observatory • How to tailor the observatory for your particular needs • Tools and structural components required • Possible variations in de...

  19. Astronomical databases of Nikolaev Observatory

    Science.gov (United States)

    Protsyuk, Y.; Mazhaev, A.

    2008-07-01

    Several astronomical databases were created at Nikolaev Observatory during the last years. The databases are built by using MySQL search engine and PHP scripts. They are available on NAO web-site http://www.mao.nikolaev.ua.

  20. Addressing the difficulty of changing fields in geophysics

    Science.gov (United States)

    Civilini, F.; Savage, M. K.

    2014-12-01

    Geophysics is a wonderfully diverse field of study, encompassing a variety of disciplines greatly different from one other. Even within the same discipline, various branches of study can have drastically different vocabulary and methodologies. The difficulty of breaking this "jargon" barrier is also an important reminder for scientists of how critical it is to clearly and concisely convey information. This presentation will focus on strategies that students can focus on to ease a transition between fields in geophysics. I believe that a student changing disciplines should proceed in the following steps: [1] Do a cursory literature review to find a review paper of the desired topic and work backwards through the details until a level of understanding or recognition is reached, [2] Obtain a clear physical understanding of the data and methods of the proposed study, and [3] Establish a support network through the research group or elsewhere which will recognize the areas in which the student is behind and offer remedies in a supportive and productive manner. These strategies are based on my own personal experience changing from music to geophysics in my undergrad and working on projects spanning various subdisciplines of geophysics during my Masters and PhD. It is worthwhile for research groups to spend the time to mentor students switching from other disciplines because those students will in time be able to observe the research in a different way than their peers, and easily adapt to changes of direction within the research.

  1. Improving geomagnetic observatory data in the South Atlantic Anomaly

    Science.gov (United States)

    Matzka, Jürgen; Morschhauser, Achim; Brando Soares, Gabriel; Pinheiro, Katia

    2016-04-01

    The Swarm mission clearly proofs the benefit of coordinated geomagnetic measurements from a well-tailored constellation in order to recover as good as possible the contributions of the various geomagnetic field sources. A similar truth applies to geomagnetic observatories. Their scientific value can be maximised by properly arranging the position of individual observatories with respect to the geometry of the external current systems in the ionosphere and magnetosphere, with respect to regions of particular interest for secular variation, and with respect to regions of anomalous electric conductivity in the ground. Here, we report on our plans and recent efforts to upgrade geomagnetic observatories and to recover unpublished data from geomagnetic observatories at low latitudes in the South Atlantic Anomaly. In particular, we target the magnetic equator with the equatorial electrojet and low latitudes to characterise the Sq- and ring current. The observatory network that we present allows also to study the longitudinal structure of these external current systems. The South Atlantic Anomaly region is very interesting due to its secular variation. We will show newly recovered data and comparisons with existing data sets. On the technical side, we introduce low-power data loggers. In addition, we use mobile phone data transfer, which is rapidly evolving in the region and allows timely data access and quality control at remote sites that previously were not connected to the internet.

  2. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    Science.gov (United States)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  3. Object-Oriented Programming When Developing Software in Geology and Geophysics

    Science.gov (United States)

    Ahmadulin, R. K.; Bakanovskaya, L. N.

    2017-01-01

    The paper reviews the role of object-oriented programming when developing software in geology and geophysics. Main stages have been identified at which it is worthwhile to apply principles of object-oriented programming when developing software in geology and geophysics. The research was based on a number of problems solved in Geology and Petroleum Production Institute. Distinctive features of these problems are given and areas of application of the object-oriented approach are identified. Developing applications in the sphere of geology and geophysics has shown that the process of creating such products is simplified due to the use of object-oriented programming, firstly when designing structures for data storage and graphical user interfaces.

  4. NASA X-Ray Observatory Completes Tests Under Harsh Simulated Space Conditions

    Science.gov (United States)

    1998-07-01

    NASA's most powerful X-ray observatory has successfully completed a month-long series of tests in the extreme heat, cold, and airless conditions it will encounter in space during its five-year mission to shed new light on some of the darkest mysteries of the universe. The Advanced X-ray Astrophysics Facility was put through the rigorous testing as it was alternately heated and cooled in a special vacuum chamber at TRW Space and Electronics Group in Redondo Beach, Calif., NASA's prime contractor for the observatory. "Successful completion of thermal vacuum testing marks a significant step in readying the observatory for launch aboard the Space Shuttle in January," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "The observatory is a complex, highly sophisticated, precision instrument," explained Wojtalik. "We are pleased with the outcome of the testing, and are very proud of the tremendous team of NASA and contractor technicians, engineers and scientists that came together and worked hard to meet this challenging task." Testing began in May after the observatory was raised into the 60-foot thermal vacuum chamber at TRW. Testing was completed on June 20. During the tests the Advanced X-ray Astrophysics Facility was exposed to 232 degree heat and 195 degree below zero Fahrenheit cold. During four temperature cycles, all elements of the observatory - the spacecraft, telescope, and science instruments - were checked out. Computer commands directing the observatory to perform certain functions were sent from test consoles at TRW to all Advanced X-ray Astrophysics Facility components. A team of contractor and NASA engineers and scientists monitored and evaluated the results. Commands were also sent from, and test data monitored at, the Advanced X-ray Astrophysics Facility Operations Control Center in Cambridge, Mass., as part of the test series. The observatory will be managed and controlled from

  5. The brazilian indigenous planetary-observatory

    Science.gov (United States)

    Afonso, G. B.

    2003-08-01

    We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.

  6. Brazil to Join the European Southern Observatory

    Science.gov (United States)

    2010-12-01

    The Federative Republic of Brazil has yesterday signed the formal accession agreement paving the way for it to become a Member State of the European Southern Observatory (ESO). Following government ratification Brazil will become the fifteenth Member State and the first from outside Europe. On 29 December 2010, at a ceremony in Brasilia, the Brazilian Minister of Science and Technology, Sergio Machado Rezende and the ESO Director General, Tim de Zeeuw signed the formal accession agreement aiming to make Brazil a Member State of the European Southern Observatory. Brazil will become the fifteen Member State and the first from outside Europe. Since the agreement means accession to an international convention, the agreement must now be submitted to the Brazilian Parliament for ratification [1]. The signing of the agreement followed the unanimous approval by the ESO Council during an extraordinary meeting on 21 December 2010. "Joining ESO will give new impetus to the development of science, technology and innovation in Brazil as part of the considerable efforts our government is making to keep the country advancing in these strategic areas," says Rezende. The European Southern Observatory has a long history of successful involvement with South America, ever since Chile was selected as the best site for its observatories in 1963. Until now, however, no non-European country has joined ESO as a Member State. "The membership of Brazil will give the vibrant Brazilian astronomical community full access to the most productive observatory in the world and open up opportunities for Brazilian high-tech industry to contribute to the European Extremely Large Telescope project. It will also bring new resources and skills to the organisation at the right time for them to make a major contribution to this exciting project," adds ESO Director General, Tim de Zeeuw. The European Extremely Large Telescope (E-ELT) telescope design phase was recently completed and a major review was

  7. The Observatory Health Report

    Directory of Open Access Journals (Sweden)

    Laura Murianni

    2008-06-01

    Full Text Available

    Background: The number of indicators aiming to provide a clear picture of healthcare needs and the quality and efficiency of healthcare systems and services has proliferated in recent years. The activity of the National Observatory on Health Status in the Italian Regions is multidisciplinary, involving around 280 public health care experts, clinicians, demographers, epidemiologists, mathematicians, statisticians and economists who with their different competencies, and scientific interests aim to improve the collective health of individuals and their conditions through the use of “core indicators”. The main outcome of the National Observatory on Health Status in the Italian Regions is the “Osservasalute Report – a report on health status and the quality of healthcare assistance in the Italian Regions”.

    Methods: The Report adopts a comparative analysis, methodology and internationally validated indicators.

    Results: The results of Observatory Report show it is necessary:

    • to improve the monitoring of primary health care services (where the chronic disease could be cared through implementation of clinical path;

     • to improve in certain areas of hospital care such as caesarean deliveries, as well as the average length of stay in the pre-intervention phase, etc.;

    • to try to be more focused on the patients/citizens in our health care services; • to practice more geographical interventions to reduce the North-South divide as well as reduce gender inequity.

    Conclusions: The health status of Italian people is good with positive results and outcomes, but in the meantime some further efforts should be done especially in the South that still has to improve the quality and the organization of health care services. There are huge differences in accuracy and therefore usefulness of the reported data, both between diseases and between

  8. Application of the geophysical and geochemical methods to the research for uranium

    International Nuclear Information System (INIS)

    Gangloff, A.M.; Collin, C.R.; Grimbert, A.; Sanselme, H.

    1958-01-01

    Since 1954, at the Commissariat a l'energie atomique, geophysics and geochemistry have been added to routine geological surveying and radiometric observations. Geophysical prospecting reveals the tectonic structures linked with French uranium deposits and gives an idea of favorable zones. Geochemistry adds to the geophysical indirect methods further details on the distribution of uranium traces in the soils. This method is direct and specific. Uranium assay in waters and alluvial deposits find its use in preliminary exploration. (author) [fr

  9. Chicago's Dearborn Observatory: a study in survival

    Science.gov (United States)

    Bartky, Ian R.

    2000-12-01

    The Dearborn Observatory, located on the Old University of Chicago campus from 1863 until 1888, was America's most promising astronomical facility when it was founded. Established by the Chicago Astronomical Society and directed by one of the country's most gifted astronomers, it boasted the largest telescope in the world and virtually unlimited operating funds. The Great Chicago Fire of 1871 destroyed its funding and demolished its research programme. Only via the sale of time signals and the heroic efforts of two amateur astronomers did the Dearborn Observatory survive.

  10. The origin of the Hawaiian Volcano Observatory

    International Nuclear Information System (INIS)

    Dvorak, John

    2011-01-01

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  11. The Architectural and Instrumental Heritage of the Strasbourg University Observatory

    Science.gov (United States)

    Davoigneau, Jean

    When, in 1872, Alsace was handed over to Germany, Empperor Wilhelm I decided to make Strasbourg the showcase of his empire, and in particular to build a prestigious university and an observatory. The construction of the observatory was entrusted to the astronomer August Winnecke (1835-1897), former director of the Pulkovo observatory, and to the Baumeister Hermann Eggert. Begun in 1876, the work was completed in 1880. The astronomical instruments, ordered from German makers, were installed during the winter of 1880-1881, and the observatory was inaugurated on September 22, 1881 at the general assembly of the Astronomische Gesellschaft, the international association of astronomers, whose secretary was Winnecke. Marking the south-eastern extremity of the ‘imperial axis’, the architecture of the university observatory harmonizes perfectly with the new German city built on the former French parade grounds. The astronomical heritage operation conducted at the beginning of the present decade provides a richly docurnented and illustrated inventory of both the architecture and instruments of this institution. This work has also highlighted the unique quality of the collection of instruments, befitting the long and complex history of this institution.

  12. Deep Space Climate Observatory (DSCOVR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Deep Space Climate ObserVatoRy (DSCOVR) satellite is a NOAA operated asset at the first Lagrange (L1) point. The primary space weather instrument is the PlasMag...

  13. Survey of geophysical techniques for site characterization in basalt, salt and tuff

    International Nuclear Information System (INIS)

    Jones, G.M.; Blackey, M.E.; Rice, J.E.; Murphy, V.J.; Levine, E.N.; Fisk, P.S.; Bromery, R.W.

    1987-07-01

    Geophysical techniques may help determine the nature and extent of faulting in the target areas, along with structural information that would be relevant to questions concerning the future integrity of a high-level-waste repository. Chapters focus on particular geophysical applications to four rock types - basalt, bedded salt, domal salt and tuff - characteristic of the sites originally proposed for site characterization. No one geophysical method can adequately characterize the geological structure beneath any site. The seismic reflection method, which is generally considered to be the most incisive of the geophysical techniques, has to date provided only marginal information on structure at the depth of the proposed repository at the Hanford, Washington, site, and no useful results at all at the Yucca Mountain, Nevada, site. This result is partially due to geological complexity beneath these sites, but may also be partially attributed to the use of inappropriate acquisition and processing parameters. To adequately characterize a site using geophysics, modifications will have to be made to standard techniques to emphasize structural details at the depths of interest. 137 refs., 43 figs., 4 tabs

  14. An integrated geophysical and geochemical exploration of critical zone weathering on opposing montane hillslope

    Science.gov (United States)

    Singha, K.; Navarre-Sitchler, A.; Bandler, A.; Pommer, R. E.; Novitsky, C. G.; Holbrook, S.; Moore, J.

    2017-12-01

    Quantifying coupled geochemical and hydrological properties and processes that operate in the critical zone is key to predicting rock weathering and subsequent transmission and storage of water in the shallow subsurface. Geophysical data have the potential to elucidate geochemical and hydrologic processes across landscapes over large spatial scales that are difficult to achieve with point measurements alone. Here, we explore the connections between weathering and fracturing, as measured from integrated geochemical and geophysical borehole data and seismic velocities on north- and south-facing aspects within one watershed in the Boulder Creek Critical Zone Observatory. We drilled eight boreholes up to 13 m deep on north- and south-facing aspects within Upper Gordon Gulch, and surface seismic refraction data were collected near these wells to explore depths of regolith and bedrock, as well as anisotropic characteristics of the subsurface material due to fracturing. Optical televiewer data were collected in these wells to infer the dominant direction of fracturing and fracture density in the near surface to corroborate with the seismic data. Geochemical samples were collected from four of these wells and a series of shallow soil pits for bulk chemistry, clay fraction, and exchangeable cation concentrations to identify depths of chemically altered saprolite. Seismic data show that depth to unweathered bedrock, as defined by p-wave seismic velocity, is slightly thicker on the north-facing slopes. Geochemical data suggest that the depth to the base of saprolite ranges from 3-5 m, consistent with a p-wave velocity value of 1200 m/s. Based on magnitude and anisotropy of p-wave velocities together with optical televiewer data, regolith on north-facing slopes is thought to be more fractured than south-facing slopes, while geochemical data indicate that position on the landscape is another important characteristic in determining depths of weathering. We explore the importance

  15. Using the Critical Zone Observatory Network to Put Geology into Environmental Science

    Science.gov (United States)

    Brantley, S. L.

    2017-12-01

    The use of observatories to study the environment in the U.S.A. arguably began in 1910. Since then, many environmental observatories were set up to study impacts of land use change. At that time, observatories did not emphasize geological structure. Around 2004, scientists in the U.S.A. began to emphasize the need to study the Earth's surface as one integrated system that includes the geological underpinnings. In 2007, the Geosciences Directorate within the U.S. National Science Foundation established the Critical Zone Observatory (CZO) program. Today the CZO network has grown to 9 observatories, and 45 countries now host such observatories. A CZO is an observatory that promotes the study of the entire layer of Earth's surface from vegetation canopy to groundwater as one entity. The observatories are somewhat similar to other NSF-funded observatories such as Long Term Ecological Research (LTER) sites but they differ in that they emphasize the history of the landscape and how it mediates today's fluxes. LTERs largely focus on ecological science. The concepts of CZ science and CZOs - developed by the Geosciences Directorate - have been extraordinarily impactful: we now have deeper understanding of how surficial processes respond to tectonic, climatic, and anthropogenic drivers. One reason CZOs succeed is that they host scientists who make measurements in one place that cross timescales from that of the meteorologist to the geologist. The NSF Geosciences Directorate has thus promoted insights showing that many of the unexplained mysteries of "catchment science" or "ecosystem science" can be explained by the underlying geological story of a site. The scientific challenges of this endeavor are dwarfed, however, by cultural challenges. Specifically, while both CZOs and observatories such as LTERs struggle to publish many types of data from different disciplines in a continually changing cyber-world, only CZO scientists find they must repeatedly explain why such

  16. Confusion about a little observatory: the history of the first high school observatory (German Title: Verwirrung um eine kleine Sternwarte: Die Geschichte der ersten Chemnitzer Schulsternwarte )

    Science.gov (United States)

    Pfitzner, Elvira

    By means of a small watercolor, painted by a musicologist, the existence of the highschool observatory of Chemnitz was rediscovered. The small observatory was build in 1893 by means of funds and a donation: after WW I it was also used for popular education. During Nazi times, the observatory fell into neglect, and the mechanical damage made it impossible to put it back into operation after WW II The building was torn down in 1964 and forgotten.

  17. The Legacy of Benoit Mandelbrot in Geophysics

    Science.gov (United States)

    Turcotte, D. L.

    2001-12-01

    The concept of fractals (fractional dimension) was introduced by Benoit Mandelbrot in his famous 1967 Science paper. The initial application was to the length of the coastline of Britain. A milestone in the appreciation of the fractal concept by geophysicists was the Union session of the AGU on fractals led off by Benoit in 1986. Although fractals have found important applications in almost every branch of the physical, biological, and social sciences, fractals have been particularly useful in geophysics. Drainage networks are fractal. The frequency-magnitude distribution of earthquakes is fractal. The scale invariance of landscapes and many other geological processes is due to the applicability of power-law (fractal) distributions. Clouds are often fractal. Porosity distributions are fractal. In an almost independent line of research, Benoit in collaboration with James Wallace and others developed the concept of self-affine fractals. The original applications were primarily to time series in hydrology and built on the foundation laid by Henry Hurst. Fractional Gaussian noises and fractional Brownian motions are ubiquitous in geophysics. These are expressed in terms of the power-law relation between the power-spectral density S and frequency f, S ~ f{ β }, examples are β = 0 (white noise), β = 1 (1/f noise), β = 2 (Brownian motion). Of particular importance in geophysics are fractional noises with β = 0.5, these are stationary but have long-range persistent and have a Hurst exponent H = 0.7. Examples include river flows, tree rings, sunspots, varves, etc. Two of Benoit Mandelbrot's major contributions in geophysics as in other fields are: (1) an appreciation of the importance of fat-tail, power-law (fractal) distributions and (2) an appreciation of the importance of self-similar long-range persistence in both stationary time series (noises) and nonstationary time series (walks).

  18. Geophysical investigation, Salmon Site, Lamar County, Mississippi

    International Nuclear Information System (INIS)

    1995-02-01

    Geophysical surveys were conducted in 1992 and 1993 on 21 sites at the Salmon Site (SS) located in Lamar County, Mississippi. The studies are part of the Remedial Investigation/Feasibility Study (RI/FS) being conducted by IT Corporation for the U.S. Department of Energy (DOE). During the 1960s, two nuclear devices and two chemical tests were detonated 826 meters (in) (2710 feet [ft]) below the ground surface in the salt dome underlying the SS. These tests were part of the Vela Uniform Program conducted to improve the United States capability to detect, identify, and locate underground nuclear detonations. The RI/FS is being conducted to determine if any contamination is migrating from the underground shot cavity in the salt dome and if there is any residual contamination in the near surface mud and debris disposal pits used during the testing activities. The objective of the surface geophysical surveys was to locate buried debris, disposal pits, and abandoned mud pits that may be present at the site. This information will then be used to identify the locations for test pits, cone penetrometer tests, and drill hole/monitor well installation. The disposal pits were used during the operation of the test site in the 1960s. Vertical magnetic gradient (magnetic gradient), electromagnetic (EM) conductivity, and ground-penetrating radar (GPR) surveys were used to accomplish these objectives. A description of the equipment used and a theoretical discussion of the geophysical methods are presented Appendix A. Because of the large number of figures relative to the number of pages of text, the geophysical grid-location maps, the contour maps of the magnetic-gradient data, the contour maps of the EM conductivity data, and the GPR traverse location maps are located in Appendix B, Tabs I through 22. In addition, selected GPR records are located in Appendix C

  19. Spanish Jesuits in the Philippines: geophysical research and synergies between science, education and trade, 1865-1898.

    Science.gov (United States)

    Anduaga, Aitor

    2014-10-01

    In 1865, Spanish Jesuits founded the Manila Observatory, the earliest of the Far East centres devoted to typhoon and earthquake studies. Also on Philippine soil and under the direction of the Jesuits, in 1884 the Madrid government inaugurated the first Meteorological Service in the Spanish Kingdom, and most probably in the Far East. Nevertheless, these achievements not only went practically unnoticed in the historiography of science, but neither does the process of geophysical dissemination that unfolded fit in with the two types of transmitter of knowledge identified by historians in the missionary diffusion of the exact sciences in colonial contexts. Rather than regarding science as merely a stimulus to their functionary and missionary tasks, Spanish Jesuits used their overseas posting to produce and publish original research--feature that would place them within the typology of the 'seeker' rather than the 'functionary' (in stark contrast to what the standard typology sustains). This paper also analyses examples of synergies between science, education and trade, which denotes, inter alia, the existence of a broad and solid educational structure in the Manila Mission that sustained the strength of research enterprise.

  20. Recent results from the Compton Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Michelson, P.F.; Hansen, W.W. [Stanford Univ., CA (United States)

    1994-12-01

    The Compton Observatory is an orbiting astronomical observatory for gamma-ray astronomy that covers the energy range from about 30 keV to 30 GeV. The Energetic Gamma Ray Experiment Telescope (EGRET), one of four instruments on-board, is capable of detecting and imaging gamma radiation from cosmic sources in the energy range from approximately 20 MeV to 30 GeV. After about one month of tests and calibration following the April 1991 launch, a 15-month all sky survey was begun. This survey is now complete and the Compton Observatory is well into Phase II of its observing program which includes guest investigator observations. Among the highlights from the all-sky survey discussed in this presentation are the following: detection of five pulsars with emission above 100 MeV; detection of more than 24 active galaxies, the most distant at redshift greater than two; detection of many high latitude, unidentified gamma-ray sources, some showing significant time variability; detection of at least two high energy gamma-ray bursts, with emission in one case extending to at least 1 GeV. EGRET has also detected gamma-ray emission from solar flares up to energies of at least 2 GeV and has observed gamma-rays from the Large Magellanic Cloud.

  1. Motivations underlying the existence of Latin American media observatories

    Directory of Open Access Journals (Sweden)

    Dra. Susana Herrera Damas

    2006-01-01

    Full Text Available Recently appeared, media observatories are media supervision instances that overlook media activity. Even though little has been systematized about their activity, they are realities that grow in a slow but progressive manner. The present paper objective is to justify the reason for being of Latinamerican observatories, describe the context in which they are born and show how in their essence they house a true and legitimate service vocation. The manuscript aims to explain that media observatories appear in Latinamerica because of two reasons: first, someone has to oversee those who oversee, and secondly it may no be suitable any more that fact that those who keep an eye on may also commit mistakes.

  2. Electricity and gas market Observatory - 1. Quarter of 2013

    International Nuclear Information System (INIS)

    2013-03-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. Since 2013, it also covers the wholesale CO 2 market. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  3. Integrated application of the database for airborne geophysical survey achievement information

    International Nuclear Information System (INIS)

    Ji Zengxian; Zhang Junwei

    2006-01-01

    The paper briefly introduces the database of information for airborne geophysical survey achievements. This database was developed on the platform of Microsoft Windows System with the technical methods of Visual C++ 6.0 and MapGIS. It is an information management system concerning airborne geophysical surveying achievements with perfect functions in graphic display, graphic cutting and output, query of data, printing of documents and reports, maintenance of database, etc. All information of airborne geophysical survey achievements in nuclear industry from 1972 to 2003 was embedded in. Based on regional geological map and Meso-Cenozoic basin map, the detailed statistical information of each airborne survey area, each airborne radioactive anomalous point and high field point can be presented visually by combining geological or basin research result. The successful development of this system will provide a fairly good base and platform for management of archives and data of airborne geophysical survey achievements in nuclear industry. (authors)

  4. Institute of Geophysics, Planetary Physics, and Signatures

    Data.gov (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  5. Large-Scale Science Observatories: Building on What We Have Learned from USArray

    Science.gov (United States)

    Woodward, R.; Busby, R.; Detrick, R. S.; Frassetto, A.

    2015-12-01

    With the NSF-sponsored EarthScope USArray observatory, the Earth science community has built the operational capability and experience to tackle scientific challenges at the largest scales, such as a Subduction Zone Observatory. In the first ten years of USArray, geophysical instruments were deployed across roughly 2% of the Earth's surface. The USArray operated a rolling deployment of seismic stations that occupied ~1,700 sites across the USA, made co-located atmospheric observations, occupied hundreds of sites with magnetotelluric sensors, expanded a backbone reference network of seismic stations, and provided instruments to PI-led teams that deployed thousands of additional seismic stations. USArray included a comprehensive outreach component that directly engaged hundreds of students at over 50 colleges and universities to locate station sites and provided Earth science exposure to roughly 1,000 landowners who hosted stations. The project also included a comprehensive data management capability that received, archived and distributed data, metadata, and data products; data were acquired and distributed in real time. The USArray project was completed on time and under budget and developed a number of best practices that can inform other large-scale science initiatives that the Earth science community is contemplating. Key strategies employed by USArray included: using a survey, rather than hypothesis-driven, mode of observation to generate comprehensive, high quality data on a large-scale for exploration and discovery; making data freely and openly available to any investigator from the very onset of the project; and using proven, commercial, off-the-shelf systems to ensure a fast start and avoid delays due to over-reliance on unproven technology or concepts. Scope was set ambitiously, but managed carefully to avoid overextending. Configuration was controlled to ensure efficient operations while providing consistent, uniform observations. Finally, community

  6. Geomagnetic secular variation at the African observatories

    International Nuclear Information System (INIS)

    Haile, T.

    2002-10-01

    Geomagnetic data from ten observatories in the African continent with time series data length of more than three decades have been analysed. All-day annual mean values of the D, H and Z components were used to study secular variations in the African region. The residuals in D, H and Z components obtained after removing polynomial fits have been examined in relation to the sunspot cycle. The occurrence of the 1969-1970 worldwide geomagnetic impulse in each observatory is studied. It is found that the secular variation in the field can be represented for most of the observatories with polynomials of second or third degree. Departures from these trends are observed over the Southern African region where strong local magnetic anomalies have been observed. The residuals in the geomagnetic field components have been shown to exhibit parallelism with the periods corresponding to double solar cycle for some of the stations. A clear latitudinal distribution in the geomagnetic component that exhibits the 1969-70 jerk is shown. The jerk appears in the plots of the first differences in H for the southern most observatories of Hermanus, Hartebeesthoek, and Tsuemb, while the Z plots show the jerk for near equatorial and equatorial stations of Antananarivo, Luanda Belas, Bangui and Addis Ababa. There is some indication for this jerk in the first difference plots of D for the northern stations of M'Bour and Tamanrasset. The plots of D rather strongly suggest the presence of a jerk around 1980 at most of the stations. (author)

  7. Reengineering observatory operations for the time domain

    Science.gov (United States)

    Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.

    2014-07-01

    Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.

  8. Airborne Geophysical/Geological Mineral Inventory CIP Program

    National Research Council Canada - National Science Library

    1999-01-01

    The Airborne-Geophysical/Geological Mineral Inventory project is a special multi-year investment to expand the knowledge base of Alaska's mineral resources and catalyze private-sector mineral development...

  9. Critical Zone structure inferred from multiscale near surface geophysical and hydrological data across hillslopes at the Eel River CZO

    Science.gov (United States)

    Lee, S. S.; Rempe, D. M.; Holbrook, W. S.; Schmidt, L.; Hahm, W. J.; Dietrich, W. E.

    2017-12-01

    Except for boreholes and road cut, landslide, and quarry exposures, the subsurface structure of the critical zone (CZ) of weathered bedrock is relatively invisible and unmapped, yet this structure controls the short and long term fluxes of water and solutes. Non-invasive geophysical methods such as seismic refraction are widely applied to image the structure of the CZ at the hillslope scale. However, interpretations of such data are often limited due to heterogeneity and anisotropy contributed from fracturing, moisture content, and mineralogy on the seismic signal. We develop a quantitative framework for using seismic refraction tomography from intersecting geophysical surveys and hydrologic data obtained at the Eel River Critical Zone Observatory (ERCZO) in Northern California to help quantify the nature of subsurface structure across multiple hillslopes of varying topography in the area. To enhance our understanding of modeled velocity gradients and boundaries in relation to lithological properties, we compare refraction tomography results with borehole logs of nuclear magnetic resonance (NMR), gamma and neutron density, standard penetration testing, and observation drilling logs. We also incorporate laboratory scale rock characterization including mineralogical and elemental analyses as well as porosity and density measurements made via pycnometry, helium and mercury porosimetry, and laboratory scale NMR. We evaluate the sensitivity of seismically inferred saprolite-weathered bedrock and weathered-unweathered bedrock boundaries to various velocity and inversion parameters in relation with other macro scale processes such as gravitational and tectonic forces in influencing weathered bedrock velocities. Together, our sensitivity analyses and multi-method data comparison provide insight into the interpretation of seismic refraction tomography for the quantification of CZ structure and hydrologic dynamics.

  10. Exploring the oceans- The geophysical way

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.

    The evolution of the eastern continental margin of India (ECMI), the Bengal Fan and the Central Indian Basin (CIB) is a consequence of the breakup of India from the eastern Gondwanaland in Late Jurassic to Early Cretaceous. Recent marine geophysical...

  11. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Aab, Alexander [Univ. Siegen (Germany); et al.

    2016-04-12

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.

  12. The origin of the Hawaiian Volcano Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, John [University of Hawaii' s Institute for Astronomy (United States)

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  13. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delay of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.

  14. Averaging and sampling for magnetic-observatory hourly data

    Directory of Open Access Journals (Sweden)

    J. J. Love

    2010-11-01

    Full Text Available A time and frequency-domain analysis is made of the effects of averaging and sampling methods used for constructing magnetic-observatory hourly data values. Using 1-min data as a proxy for continuous, geomagnetic variation, we construct synthetic hourly values of two standard types: instantaneous "spot" measurements and simple 1-h "boxcar" averages. We compare these average-sample types with others: 2-h average, Gaussian, and "brick-wall" low-frequency-pass. Hourly spot measurements provide a statistically unbiased representation of the amplitude range of geomagnetic-field variation, but as a representation of continuous field variation over time, they are significantly affected by aliasing, especially at high latitudes. The 1-h, 2-h, and Gaussian average-samples are affected by a combination of amplitude distortion and aliasing. Brick-wall values are not affected by either amplitude distortion or aliasing, but constructing them is, in an operational setting, relatively more difficult than it is for other average-sample types. It is noteworthy that 1-h average-samples, the present standard for observatory hourly data, have properties similar to Gaussian average-samples that have been optimized for a minimum residual sum of amplitude distortion and aliasing. For 1-h average-samples from medium and low-latitude observatories, the average of the combination of amplitude distortion and aliasing is less than the 5.0 nT accuracy standard established by Intermagnet for modern 1-min data. For medium and low-latitude observatories, average differences between monthly means constructed from 1-min data and monthly means constructed from any of the hourly average-sample types considered here are less than the 1.0 nT resolution of standard databases. We recommend that observatories and World Data Centers continue the standard practice of reporting simple 1-h-average hourly values.

  15. The STELLA Robotic Observatory on Tenerife

    Directory of Open Access Journals (Sweden)

    Klaus G. Strassmeier

    2010-01-01

    Full Text Available The Astrophysical Institute Potsdam (AIP and the Instituto de Astrofísica de Canarias (IAC inaugurated the robotic telescopes STELLA-I and STELLA-II (STELLar Activity on Tenerife on May 18, 2006. The observatory is located on the Izaña ridge at an elevation of 2400 m near the German Vacuum Tower Telescope. STELLA consists of two 1.2 m alt-az telescopes. One telescope fiber feeds a bench-mounted high-resolution echelle spectrograph while the other telescope feeds a wide-field imaging photometer. Both scopes work autonomously by means of artificial intelligence. Not only that the telescopes are automated, but the entire observatory operates like a robot, and does not require any human presence on site.

  16. Geophysical survey aimed at selecting the radioactive waste repository site (Czech republic

    Directory of Open Access Journals (Sweden)

    Dušan Dostál

    2007-01-01

    Full Text Available G IMPULS Praha has been executing a set of geophysical measurements for the Radioactive Waste Repository Authority of the Czech Republic from 2001 (the work continues to be carried out. The measurements are aimed at studying the behaviour of the rock massif, focusing on the Excavation Damaged or Disturbed Zone (EDZ and on selecting an appropriate area for the radioactive material repository site. The geophysical studies use a complex of methods as follows: Airborne geophysical measurement (regional studies, Seismic measurement (detailed studies, G.P.R. (detailed studies, Resistivity tomography (detailed studies, Geoelectric measurement and magnetic survey (stray earth currents. The paper informs about first results and conclusions. The airborne work was executed as a part of the complex study of „GEOBARIERA“ the group and the geophysical measurements of EDZ were executed in co-operation with the Czech Geological Survey.

  17. Learning about hydrothermal volcanic activity by modeling induced geophysical changes

    Science.gov (United States)

    Currenti, Gilda M.; Napoli, Rosalba

    2017-05-01

    Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern

  18. Learning about Hydrothermal Volcanic Activity by Modeling Induced Geophysical Changes

    Directory of Open Access Journals (Sweden)

    Gilda M. Currenti

    2017-05-01

    Full Text Available Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical, which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e., deformation, gravity, and magnetic fields to hydrothermal activity on the basis of a sound geological framework (e.g., distribution and pathways of the flows, the presence of fractured zones, caprock. A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii the elastostatic equation for the deformation field and (iii the Poisson's equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that, being above the accuracies of

  19. Plans for a Northern Cascadia Subduction Zone Observatory

    Science.gov (United States)

    Heesemann, M.; Wang, K.; Davis, E.; Chadwell, C. D.; Nissen, E.; Moran, K.; Scherwath, M.

    2017-12-01

    To accurately assess earthquake and tsunami hazards posed by the Cascadia Subduction Zone, it is critically important to know which area of the plate interface is locked and whether or not part of the energy is being released aseismically by slow creep on the fault. Deeper locking that extends further to the coast produces stronger shaking in population centers. Shallow locking, on the other hand, leads to bigger tsunamis. We will report on and discuss plans for a new amphibious Northern Cascadia Subduction Zone Observatory (NCSZO) that will leverage the existing NEPTUNE cabled seafloor observatory, which is operated by Ocean Networks Canada (ONC), and the onshore network of geodetic stations, which is operated by Natural Resources Canada (NRCan). To create a NCSZO we plan to (1) add a network of seven GPS-Acoustic (GPS-A) sites offshore Vancouver Island, (2) establish a Deformation Front Observatory, and (3) improve the existing onshore geodetic network (see Figure below). The GPS-A stations will provide the undisturbed motion of the Juan de Fuca (JdF) Plate (1), deformation of the JdF plate (2), deformation of the overriding plate (3-7) and a cabled laboratory to study the potential for continuous GPS-A measurements (6). The Deformation Front Observatory will be used to study possible transient slip events using seafloor pressure and tilt instruments and fluid flux meters.

  20. The Expanding Marketplace for Applied Geophysics

    Science.gov (United States)

    Carlson, N.; Sirles, P.

    2012-12-01

    While the image of geophysics for the proverbial "layman" often seems limited to volcanoes and earthquakes, and to the geoscientist this image enlarges to include oil or minerals exploration and whole earth studies, there has been a steady increase in the application of geophysics into the realm of "daily life", such as real estate deals, highway infrastructure, and flood protection. This expansion of applications can be attributed to the improved economics from advances in equipment and interpretation. Traditional geophysical methods that at one time often only fit within the budgets of oil, gas, and minerals exploration programs can now be economically applied to much smaller scale needs like contaminant mapping, landfill delineation, and levee investigations. A real-world, economic example of this expanding marketplace is our company, which began very small and was aimed almost exclusively at the minerals exploration market. Most of our growth has been in the last 10 years, when we have expanded to five offices and a staff with almost 40 geoscientist degrees (21 in geophysics); much of this growth has been in the non-oil, non-minerals arenas. While much of our work still includes minerals exploration, other projects this year include wind-farm foundation studies, cavity detection above underground nuclear tests, landfill studies, acid mine drainage problems, and leaks in evaporation ponds. A methodology example of this expanding market is the induced polarization (IP) survey, once primarily used for minerals exploration, particularly large porphyry copper deposits, but now efficient enough to also use in environmental studies. The IP method has been particularly useful in delineating and characterizing old, poorly documented landfills, and recent research suggests it may also be useful in monitoring the accelerated biodegradation processes used in some cases to rehabilitate the sites. Compared to temperature monitoring systems, IP may be more useful in providing

  1. Fifth national outdoor action conference on aquifer restoration, ground water monitoring, and geophysical methods

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book presents papers on technology in ground water sampling, monitoring, and remediation and geophysical techniques. The section on monitoring and remediation covers monitoring case studies, monitoring waste disposal sites, petroleum recovery, techniques in aquifer remediation, mathematical analysis of remedial techniques, vacuum extraction, bioremediation, and monitoring techniques. The section on sampling covers measurement variability, microbial sampling, vadose zone sampling, sampling with hydraulic probes, unusual sampling problems and equipment, and data management. A section on geophysics covers geophysics and site characterization, and geophysics and mining. The focus is on hazardous organic compounds. Individual articles are abstracted separately

  2. Tabletop Models for Electrical and Electromagnetic Geophysics.

    Science.gov (United States)

    Young, Charles T.

    2002-01-01

    Details the use of tabletop models that demonstrate concepts in direct current electrical resistivity, self-potential, and electromagnetic geophysical models. Explains how data profiles of the models are obtained. (DDR)

  3. The Nirex Sellafield site investigation: the role of geophysical interpretation

    International Nuclear Information System (INIS)

    Muir Wood, R.; Woo, G.; MacMillan, G.

    1992-01-01

    This report reviews the methods by which geophysical data are interpreted, and used to characterize the 3-D geology of a site for potential storage of radioactive waste. The report focuses on the NIREX site investigation at Sellafield, for which geophysical observations provide a significant component of the structural geological understanding. In outlining the basic technical principles of seismic data processing and interpretation, and borehole logging, an attempt has been made to identify errors, uncertainties, and the implicit use of expert judgement. To enhance the reliability of a radiological probabilistic risk assessment, recommendations are proposed for independent use of the primary NIREX geophysical site investigation data in characterizing the site geology. These recommendations include quantitative procedures for undertaking an uncertainty audit using a combination of statistical analysis and expert judgement. (author)

  4. Evaluation of some Geophysical and Physicochemical ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2018-04-18

    Apr 18, 2018 ... spill point parallel to the pipeline right of way. A research work carried ... of soils has been known to affect soil physio-chemical properties, which in .... The results of the geophysical analysis from the study area are presented ...

  5. 36 CFR 1256.62 - Geological and geophysical information relating to wells.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical... MATERIALS General Restrictions § 1256.62 Geological and geophysical information relating to wells. (a) In accordance with 5 U.S.C. 552(b)(9), NARA may withhold information in records that relates to geological and...

  6. A conceptual approach to a citizens' observatory--supporting community-based environmental governance.

    Science.gov (United States)

    Liu, Hai-Ying; Kobernus, Mike; Broday, David; Bartonova, Alena

    2014-12-12

    In recent years there has been a trend to view the Citizens' Observatory as an increasingly essential tool that provides an approach for better observing, understanding, protecting and enhancing our environment. However, there is no consensus on how to develop such a system, nor is there any agreement on what a Citizens' Observatory is and what results it could produce. The increase in the prevalence of Citizens' Observatories globally has been mirrored by an increase in the number of variables that are monitored, the number of monitoring locations and the types of participating citizens. This calls for a more integrated approach to handle the emerging complexities involved in this field, but before this can be achieved, it is essential to establish a common foundation for Citizens' Observatories and their usage. There are many aspects to a Citizens' Observatory. One view is that its essence is a process that involves environmental monitoring, information gathering, data management and analysis, assessment and reporting systems. Hence, it requires the development of novel monitoring technologies and of advanced data management strategies to capture, analyse and survey the data, thus facilitating their exploitation for policy and society. Practically, there are many challenges in implementing the Citizens' Observatory approach, such as ensuring effective citizens' participation, dealing with data privacy, accounting for ethical and security requirements, and taking into account data standards, quality and reliability. These concerns all need to be addressed in a concerted way to provide a stable, reliable and scalable Citizens' Observatory programme. On the other hand, the Citizens' Observatory approach carries the promise of increasing the public's awareness to risks in their environment, which has a corollary economic value, and enhancing data acquisition at low or no cost. In this paper, we first propose a conceptual framework for a Citizens' Observatory

  7. Geophysical and atmospheric evolution of habitable planets.

    Science.gov (United States)

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  8. Geophysical contribution for Folha Patos (PI, Brazil)

    International Nuclear Information System (INIS)

    Rodrigues, J.C.; Mota, A.C.; Metelo, M.J.; Vasconcelos, R.M. de

    1990-01-01

    As a part of PLGB (Brazilian Geologic reconnaissance program), executed in 1986-1989 period by Companhia de Pesquisa de Recursos Minerais - CPRM to the Departamento Nacional da Producao Mineral - DNPM, geophysical studies were carried out in the Patos Quadrangle (SB. 24-Y-C-V). Gravimetric, magnetometric and scintillometric methods were performed over selected profiles, and the interpretation of aerial gamma-spectrometric maps (total, potassium, uranium and thorium channels) were integrated with geologic data. Computer programs Magpoly and Gravpoly were utilized in modelling geophysical surface data. Results of theses studies were auxiliary to the geological mapping of that area, specially in localizing lithological contacts and differentiations, tectonic structures, and revealed the structural compartimentation among crustal segments with distinct metamorphic grades. (author)

  9. AfricaArray International Geophysics Field School: Applications of Near Surface Geophysics to challenges encountered in mine planning

    Science.gov (United States)

    Webb, S. J.; Jones, M. Q.; Durrheim, R. J.; Nyblade, A.; Snyman, Q.

    2012-12-01

    Hard rock exploration and mining presents many opportunities for the effective use of near surface geophysics. For over 10 years the AfricaArray international geophysics field school has been hosted at a variety of mines in South Africa. While the main objective of the field school is practical training for the next generation of geophysicists, being hosted at a mine has allowed us to investigate applications of near surface geophysics in the early stages of mine planning and development as geophysics is often cheaper and faster than drilling. Several applications include: detailed delineation of dykes and stringer dykes, physical property measurements on drill core for modeling and marker horizons, determination of overburden thickness, locations of water and faults. Dolerite dykes are usually magnetic and are associated with loss of ground (i.e. where the dyke replaces the ore and thus reduces the amount of ore available) and safety/stability concerns. Thus the accurate mapping of dykes and narrow stringers that are associated with them are crucial to the safe planning of a mine. We have acquired several case studies where ground magnetic surveys have greatly improved on the resolution and detail of airborne magnetic surveys in regions of complicated dyke swarms. In many cases, thin stringer dykes of less than 5 cm have been detected. Physical property measurements of these dykes can be used to distinguish between different ages of dykes. It is important to accurately determine overburden thickness when planning an open pit mine as this directly affects the cost of development. Depending on the nature of the overburden, both refraction seismic and or DC resistivity can provide continuous profiling in the area of interest that fills in gaps between boreholes. DC resistivity is also effective for determining water associated with dykes and structures that may affect mine planning. The field school mainly addresses the training of a variety of students. The core

  10. Part of an observatory of opinions on risks

    International Nuclear Information System (INIS)

    Brenot, J.

    1999-01-01

    An observatory of opinions about risks constitutes the frame in which can be developed exchanges between research workers, engineers, experts, persons in charge of authorities and societies managers for who the way whom the public takes into account the risks constitutes an element of the management, the decision or the communication. The Institute of Protection and Nuclear Safety (I.P.S.N.) has, with the passing of the years, build a such observatory whom activities are developed according to several directions. (N.C.)

  11. The LAGO (Large Aperture GRB Observatory) in Peru

    Science.gov (United States)

    Tueros-Cuadros, E.; Otiniano, L.; Chirinos, J.; Soncco, C.; Guevara-Day, W.

    2012-07-01

    The Large Aperture GRBs Observatory is a continental-wide observatory devised to detect high energy (around 100 GeV) component of Gamma Ray Bursts (GRBs), by using the single particle technique in arrays of Water Cherenkov Detectors (WCDs) at high mountain sites of Argentina, Bolivia, Colombia, Guatemala, Mexico, Venezuela and Peru. Details of the instalation and operation of the detectors in Marcapomacocha in Peru at 4550 m.a.s.l. are given. The detector calibration method will also be shown.

  12. Magdalena Ridge Observatory Interferometer: Status Update

    National Research Council Canada - National Science Library

    Creech-Eakman, M. J; Bakker, E. J; Buscher, D. F; Coleman, T. A; Haniff, C. A; Jurgenson, C. A; Klinglesmith, III, D. A; Parameswariah, C. B; Romero, V. D; Shtromberg, A. V; Young, J. S

    2006-01-01

    The Magdalena Ridge Observatory Interferometer (MROI) is a ten element optical and near-infrared imaging interferometer being built in the Magdalena mountains west of Socorro, NM at an altitude of 3230 m...

  13. Building a Roll-Off Roof Observatory A Complete Guide for Design and Construction

    CERN Document Server

    Hicks, John

    2009-01-01

    Almost every practical astronomer who takes the pursuit to its second level aspires to a fixed, permanent housing for his telescope, permitting its rapid and comfortable use and avoiding hours of setting-up time for each observing session. A roll-off roof observatory is the simplest and by far the most popular observatory design for today’s practical astronomers. Building a Roll-off Roof Observatory will help you decide whether to embark on the venture and will certainly provoke your enthusiasm for the project. The author, both an amateur astronomer and professional landscape architect, answers many of the common questions asked around observatory construction covering the following topics: Site planning, zoning, and by-law requirements common to most states, towns and municipalities Opportunities for locating the observatory Tailoring the observatory for your particular use Tools and structural components required to build it Variations in footing design to suit your soil conditions Variations possible in ...

  14. A comprehensive model of the quiet-time, near-Earth magnetic field: phase 3

    DEFF Research Database (Denmark)

    Sabaka, T.J.; Olsen, Nils; Langel, R.A.

    2002-01-01

    been modelled simultaneously, with fields from other sources being modelled separately. Such a scheme, however, can introduce spurious features, especially when the spatial and temporal scales of the fields overlap. A new model, designated CM3 (Comprehensive Model: phase 3), is the third in a series...... of efforts to coestimate fields from all of these sources. This model has been derived from quiet-time Magsat and POGO satellite and observatory hourly means measurements for the period 1960-1985. It represents a significant advance in the treatment of the aforementioned field sources over previous attempts...... parametrization and estimation of the lithospheric field. The result is a model that describes well the 591 432 data with 16 594 parameters, implying a data-to-parameter ratio of 36, which is larger than several popular field models....

  15. The Role of Project Science in the Chandra X-Ray Observatory

    Science.gov (United States)

    O'Dell, Stephen L.; Weisskopf, Martin C.

    2006-01-01

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.

  16. Karst aquifer characterization using geophysical remote sensing of dynamic recharge events

    Science.gov (United States)

    Grapenthin, R.; Bilek, S. L.; Luhmann, A. J.

    2017-12-01

    Geophysical monitoring techniques, long used to make significant advances in a wide range of deeper Earth science disciplines, are now being employed to track surficial processes such as landslide, glacier, and river flow. Karst aquifers are another important hydrologic resource that can benefit from geophysical remote sensing, as this monitoring allows for safe, noninvasive karst conduit measurements. Conduit networks are typically poorly constrained, let alone the processes that occur within them. Geophysical monitoring can also provide a regionally integrated analysis to characterize subsurface architecture and to understand the dynamics of flow and recharge processes in karst aquifers. Geophysical signals are likely produced by several processes during recharge events in karst aquifers. For example, pressure pulses occur when water enters conduits that are full of water, and experiments suggest seismic signals result from this process. Furthermore, increasing water pressure in conduits during recharge events increases the load applied to conduit walls, which deforms the surrounding rock to yield measureable surface displacements. Measureable deformation should also occur with mass loading, with subsidence and rebound signals associated with increases and decreases of water mass stored in the aquifer, respectively. Additionally, geophysical signals will likely arise with turbulent flow and pore pressure change in the rock surrounding conduits. Here we present seismic data collected during a pilot study of controlled and natural recharge events in a karst aquifer system near Bear Spring, near Eyota, MN, USA as well as preliminary model results regarding the processes described above. In addition, we will discuss an upcoming field campaign where we will use seismometers, tiltmeters, and GPS instruments to monitor for recharge-induced responses in a FL, USA karst system with existing cave maps, coupling these geophysical observations with hydrologic and

  17. Utilizing Internet Technologies in Observatory Control Systems

    Science.gov (United States)

    Cording, Dean

    2002-12-01

    The 'Internet boom' of the past few years has spurred the development of a number of technologies to provide services such as secure communications, reliable messaging, information publishing and application distribution for commercial applications. Over the same period, a new generation of computer languages have also developed to provide object oriented design and development, improved reliability, and cross platform compatibility. Whilst the business models of the 'dot.com' era proved to be largely unviable, the technologies that they were based upon have survived and have matured to the point were they can now be utilized to build secure, robust and complete observatory control control systems. This paper will describe how Electro Optic Systems has utilized these technologies in the development of its third generation Robotic Observatory Control System (ROCS). ROCS provides an extremely flexible configuration capability within a control system structure to provide truly autonomous robotic observatory operation including observation scheduling. ROCS was built using Internet technologies such as Java, Java Messaging Service (JMS), Lightweight Directory Access Protocol (LDAP), Secure Sockets Layer (SSL), eXtendible Markup Language (XML), Hypertext Transport Protocol (HTTP) and Java WebStart. ROCS was designed to be capable of controlling all aspects of an observatory and be able to be reconfigured to handle changing equipment configurations or user requirements without the need for an expert computer programmer. ROCS consists of many small components, each designed to perform a specific task, with the configuration of the system specified using a simple meta language. The use of small components facilitates testing and makes it possible to prove that the system is correct.

  18. Engineering-geophysical criteria for evaluating the development stages of landslides in loess rocks

    Energy Technology Data Exchange (ETDEWEB)

    Abdullayev, S K

    1981-01-01

    As a result of conducting geophysical observations on landslide slopes formed by loess rocks, with their artifical moistening, quantitiative engineering-geophysical criteria were obtained which characterize the basic stages of landslide development. The studies were conducted by surface methods of electrical resistance and seismometry conducted directly in the massif. According to the indicators of moisture content, state of comminution, compactness calculated with the help of geophysical parameters, the stage of preparation and movement of landslides are characterized.

  19. SQUID use for Geophysics: finding billions of dollars

    Science.gov (United States)

    Foley, Catherine

    2014-03-01

    Soon after their discovery, Jim Zimmerman saw the potential of using Superconducting Quantum Interference Devices, SQUIDs, for the study of Geophysics and undertook experiments to understand the magnetic phenomena of the Earth. However his early experiments were not successful. Nevertheless up to the early 1980's, some research effort in the use of SQUIDs for geophysics continued and many ideas of how you could use SQUIDs evolved. Their use was not adopted by the mining industry at that time for a range of reasons. The discovery of high temperature superconductors started a reinvigoration in the interest to use SQUIDs for mineral exploration. Several groups around the world worked with mining companies to develop both liquid helium and nitrogen cooled systems. The realisation of the achievable sensitivity that contributed to successful mineral discoveries and delineation led to real financial returns for miners. By the mid 2000's, SQUID systems for geophysics were finally being offered for sale by several start-up companies. This talk will tell the story of SQUID use in geophysics. It will start with the early work of the SQUID pioneers including that of Jim Zimmerman and John Clarke and will also cover the development since the early 1990's up to today of a number of magnetometers and gradiometers that have been successfully commercialised and used to create significant impact in the global resources industry. The talk will also cover some of the critical technical challenges that had to be overcome to succeed. It will focus mostly on magnetically unshielded systems used in the field although some laboratory-based systems will be discussed.

  20. Geophysical investigations in the 100 Areas: Fiscal year 1991 through December 1993

    Science.gov (United States)

    Mitchell, T. H.

    1994-09-01

    The geophysical investigations identified in this document were conducted by the Westinghouse Hanford Company (WHC) Surface Geophysics Team, Geophysics Group, between October, 1991 and December, 1993. The investigations supported 100-Area activities for the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensations and Liability Act of 1980 (CERCLA). The primary intent of this document is to provide a general map location and the associated document number for investigations that have been conducted as of December, 1993. The results of the individual investigations are not included here. The results of all of these investigations have been previously reported individually in WHC supporting documents. The investigations conducted during Fiscal Year (FY) 1992 are summarized in a single WHC document, WHC-SD-EN-TI-204, Rev. O. A brief summary of some of the successful applications of geophysics in the 100-Areas is included.

  1. Archaeological Geophysics in Israel: Past, Present and Future

    Science.gov (United States)

    Eppelbaum, L. V.

    2009-04-01

    Israel is a country with diverse and rapidly changeable environments where is localized a giant number of archaeological objects of various age, origin and size. The archaeological remains occur in a complex (multi-layered and variable) geological-archaeological media. It is obvious that direct archaeological excavations cannot be employed at all localized and supposed sites taking into account the financial, organizational, ecological and other reasons. Therefore, for delineation of buried archaeological objects, determination their physical-geometrical characteristics and classification, different geophysical methods are widely applied. The number of employed geophysical methodologies is constantly increasing and now Israeli territory may be considered as a peculiar polygon for various geophysical methods testing. The geophysical investigations at archaeological sites in Israel could be tentatively divided on three stages: (1) past [- 1990] (e.g., Batey, 1987; Ben-Menahem, 1979; Dolphin, 1981; Ginzburg and Levanon, 1977; Karcz et al., 1977; Karcz and Kafri, 1978; Tanzi et al., 1983; Shalem, 1949; Willis, 1928), (2) present [1991 - 2008] (e.g., Bauman et al., 2005; Ben-Dor et al., 1999; Ben-Yosef et al., 2008; Berkovitch et al., 2000; Borradaile, 2003; Boyce et al., 2004; Bruins et al., 2003; Daniels et al., 2003; Ellenblum et al., 1998; Eppelbaum, 1999, 2000a, 2000b, 2005, 2007a, 2007b, 2008b; Eppelbaum and Ben-Avraham, 2002; Eppelbaum and Itkis, 2000, 2001; 2003, 2009; Eppelbaum et al., 2000a, 2000b, 2001a, 2001b, 2003a, 2003b, 2004a, 2004b; 2005, 2006a, 2006b, 2006c, 2006d, 2007, 2009a, 2009b; Ezersky et al., 2000; Frumkin et al., 2003; Itkis and Eppelbaum, 1998; Itkis, 2003; Itkis et al., 2002, 2003, 2008; Jol et al., 2003, 2008; Kamai and Hatzor, 2007; Khesin et al., 1996; Korjenkov and Mazor, 1999; Laukin et al., 2001; McDermott et al., 1993; Marco, 2008; Marco et al., 2003; Nahas et al., 2006; Neishtadt et al., 2006; Nur and Ron, 1997; Paparo, 1991; Porat

  2. South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1987-01-01

    Work at the South African Astronomical Observatory (SAAO) in recent years, by both staff and visitors, has made major contributions to the fields of astrophysics and astronomy. During 1986 the SAAO has been involved in studies of the following: galaxies; celestial x-ray sources; magellanic clouds; pulsating variables; galactic structure; binary star phenomena; nebulae and interstellar matter; stellar astrophysics; open clusters; globular clusters, and solar systems

  3. Geophysical applications for oil sand mine tailings management

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.; Bauman, P. [WorleyParsons, Calgary, AB (Canada)

    2009-07-01

    Geophysical techniques are applied throughout a mine's life cycle to facilitate siting, constructing and monitoring of tailings dumps and ponds. This presentation described 3 case studies from the Athabasca region in northeast Alberta that demonstrated some of the concerns associated with oil sand mine tailings, and the information that geophysical surveys can provide. The objectives of these studies were to determine the lateral and depth extents of elevated conductivities of soil and groundwater that have high salt concentration from the tailings sand pore fluid. Due to high chloride concentrations within the tailings material, salt within the root zone may affect vegetation. A terrain conductivity survey was designed to map the lateral extents of salinity impact, while an electrical resistivity tomography (ERT) survey was used to delineate the tailings sand leachate at depth. The proper management of oil sand tailings facilities is vital to the life cycle of a mine. It was concluded that geophysical techniques can be instrumental in managing several engineering and environmental challenges, from Pleistocene channel mapping, to tailings pond settling characteristics, to reclaiming tailings sands. 1 ref., 7 figs.

  4. Applied geophysics for civil engineering and mining engineering. 2. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Militzer, H.; Schoen, J.; Stoetzner, U.

    1986-01-01

    In the process of geological and geotechnical prospecting for the exploration and exploitation of deposits, as well as for engineering structures, the knowledge contributed by geophysics is of significance in order to ensure an objective assessment of geological and geotechnical conditions of a given site, and to promote economic efficiency in the field of civil engineering and mining. For this reason, engineering and mining geophysics has become an important special subject field. The present second edition of the textbook offers enhanced information about practical applications of available methods and measuring techniques, and about the information to be obtained by civil and mining engineers from the geophysical science. The material has been arranged with a view to practice, facilitating an overview over potential applications and efficiencies as well as limits of geophysical methods. The methods are also explained in terms of suitability for the various steps of civil engineering or mining geological activities and studies. A major extension of the first edition's material consists of the chapter on basic principles and aspects of well geophysics for shallow well drilling. (orig./HP) [de

  5. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    Science.gov (United States)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    The advantages of astronomical observations made above Earth's atmosphere have long been understood: free access to spectral regions inaccessible from Earth (e.g., UV) or affected by the atmosphere's content (e.g., IR). Most robotic, space-based telescopes maintain large angular separation between the Sun and an observational target in order to avoid accidental damage to instruments from the Sun. For most astronomical targets, this possibility is easily avoided by waiting until objects are visible away from the Sun. For the Solar System objects inside Earth's orbit, this is never the case. Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. Commercial suborbital spacecraft are largely expected to go to ~100 km altitude above Earth, providing a limited amount of time for astronomical observations. The unique scientific advantage to these observations is the ability to point close to the Sun: if a suborbital spacecraft accidentally turns too close to the Sun and fries an instrument, it is easy to land the spacecraft and repair the hardware for the next flight. Objects uniquely observed during the short observing window include inner-Earth asteroids, Mercury, Venus, and Sun-grazing comets. Both open-FOV and target-specific observations are possible. Despite many space probes to the inner Solar System, scientific questions remain. These include inner-Earth asteroid size and bulk density informing Solar System evolution studies and efforts to develop methods of mitigation against imminent impactors to Earth; chemistry and dynamics of Venus' atmosphere addressing physical phenomena such as greenhouse effect, atmospheric super-rotation and global resurfacing on Venus. With the Atsa Suborbital Observatory, we combine the strengths of both ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with both in-house facility

  6. Borehole geophysics in nuclear power plant siting

    International Nuclear Information System (INIS)

    Crosby, J.W.; Scott, J.D.

    1979-01-01

    Miniaturized borehole geophysical equipment designed for use in ground-water investigations can be adapted to investigations of nuclear power plant sites. This equipment has proved to be of value in preliminary and comprehensive studies of interior basins where thick sequences of Quaternary clastic sediment, occasionally with associated volcanic rocks, pose problems of stratigraphic correlation. The unconsolidated nature of the deposits generally requires that exploratory holes be cased, which ordinarily restricts the borehole geophysical studies to the radiation functions--natural gamma, gamma-gamma, neutron-gamma, and neutron-epithermal neutron logs. Although a single log response may be dominant in a given area, correlations derive from consideration of all log responses as a composite group. Because major correlations usually are based upon subtle differences in the physical properties of the penetrated sediment, high-resolution logging procedures are employed with some sacrifice of the quantitative parameters important to petroleum technology. All geophysical field data are recorded as hard copy and as digital information on punched paper tape. Digital data are subsequently computer processed and plotted to scales that enhance the stratigraphic data being correlated. Retention of the data in analog format permits rapid review, whereas computer plotting allows playback and detailed examination of log sections and sequences that may be attenuated on hard copy because of the logarithmic nature of the response to the physical property being examined

  7. Geoelectric monitoring at the Boulder magnetic observatory

    Directory of Open Access Journals (Sweden)

    C. C. Blum

    2017-11-01

    Full Text Available Despite its importance to a range of applied and fundamental studies, and obvious parallels to a robust network of magnetic-field observatories, long-term geoelectric field monitoring is rarely performed. The installation of a new geoelectric monitoring system at the Boulder magnetic observatory of the US Geological Survey is summarized. Data from the system are expected, among other things, to be used for testing and validating algorithms for mapping North American geoelectric fields. An example time series of recorded electric and magnetic fields during a modest magnetic storm is presented. Based on our experience, we additionally present operational aspects of a successful geoelectric field monitoring system.

  8. High Energy Astronomy Observatory (HEAO)-2

    Science.gov (United States)

    1982-01-01

    This artist's concept depicts the High Energy Astronomy Observatory (HEAO)-2 in orbit. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  9. Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis

    Science.gov (United States)

    2014-09-01

    ER-200717) Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis...N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data...8 2.1.2 The Geophysical Signatures of Bioremediation ......................................... 8 2.2 PRIOR

  10. Development of nuclear physics and its connections to borehole geophysics

    International Nuclear Information System (INIS)

    Loetzsch, W.

    1990-01-01

    Starting from the discovery of radioactivity, the development of nuclear physics and its close connections to geoscience, especially to borehole geophysics, are outlined. The discovery of a nuclear physical phenomenon is always followed by an examination for its applications in nuclear geophysics, which since about 1960 has developed into a special discipline of applied geophysics. As an example for this development in the GDR the application of neutron capture γ-ray spectroscopy for iron ore exploration is described. A table listing important present-day nuclear well logging techniques with detectable elements and their detection limits is presented. Examples of measurements with some of these logging techniques reveal their particularities and show their element-specific character and the nuclear physical mechanisms involved. Finally the state of art of nuclear well logging and prospects in this field are outlined. (author)

  11. Managing overseas E and P in the age of the Internet

    International Nuclear Information System (INIS)

    Tobias, S.M.

    1996-01-01

    Global communications combined with a managed integrated project approach has allowed Pogo to mobilize decades of proven domestic know-how for overseas operations. Pogo's Tantawan development experience shows that it is possible for a mid-sized independent to project expertise overseas in a timely and efficient manner. This can only be accomplished through the development of an integrated communications and database system. The basic requirements for such a system are attainable by most companies: integrated software packages, Internet access, and appropriately trained and motivated in-house and contract personnel. Lean, mean, and evergreen: the work environment for Pogo's international E and P operations has changed forever

  12. Jantar Mantar: Observatories of Jai Singh (with pop-up pages)

    Indian Academy of Sciences (India)

    BOOK REVIEW. Jantar Mantar: Observatories of Jai. Singh (with pop-up pages). Biman Nath. Jantar Mantar: Observatories of Jai Singh. By: B S Shylaja and V S S Sastry. Bilingual Edition: English and Kannada. Published by Bangalore Association for. Science Education, Price:|500. Most of us have looked at the giant ...

  13. Airborne geophysics in Australia: the government contribution

    International Nuclear Information System (INIS)

    Denham, D.

    1997-01-01

    Airborne geophysical data sets provide important cost-effective information for resource exploration and land management. Improved techniques, developed recently, now enable high-resolution aeromagnetic and gamma-ray surveys to be used extensively by the resource industries to improve the cost effectiveness of exploration and by governments to encourage resource development and sustainable management of natural resources. Although airborne geophysical techniques have been used extensively and are now used almost routinely by mineral explorers, it is only in the last few years that governments have been involved as major players in the acquisition of data. The exploration industry pioneered the imaging of high-resolution airborne geophysical data sets in the early 1980s and, at the same time, the Northern Territory Government started a modest program of flying the Northern Territory, at 500 m flight-line spacing, to attract mineral exploration. After the start of the National Geoscience Mapping Accord in 1990, the then BMR and its State/Territory counterparts used the new high-resolution data as an essential ingredient to underpin mapping programs. These new data sets proved so valuable that, starting in 1992/93, the annual expenditure by the Commonwealth and States/Northern Territory increased from roughly $2 million per year to a massive $10 million per year. These investments by governments, although unlikely to be permanently sustainable, have been made to encourage and expand exploration activity by providing new high-quality data sets in industry at very low cost. There are now approximately 11 million line-km of airborne geophysical data available in databases held by the Commonwealth, States and Northern Territory. The results so far have seen a significant increase in exploration activity in States that have embarked on this course (e.g. South Australia and Victoria), and the information provided from these surveys is proving crucial to understanding the

  14. Cosmic-Ray Extremely Distributed Observatory: a global cosmic ray detection framework

    Science.gov (United States)

    Sushchov, O.; Homola, P.; Dhital, N.; Bratek, Ł.; Poznański, P.; Wibig, T.; Zamora-Saa, J.; Almeida Cheminant, K.; Alvarez Castillo, D.; Góra, D.; Jagoda, P.; Jałocha, J.; Jarvis, J. F.; Kasztelan, M.; Kopański, K.; Krupiński, M.; Michałek, M.; Nazari, V.; Smelcerz, K.; Smolek, K.; Stasielak, J.; Sułek, M.

    2017-12-01

    The main objective of the Cosmic-Ray Extremely Distributed Observatory (CREDO) is the detection and analysis of extended cosmic ray phenomena, so-called super-preshowers (SPS), using existing as well as new infrastructure (cosmic-ray observatories, educational detectors, single detectors etc.). The search for ensembles of cosmic ray events initiated by SPS is yet an untouched ground, in contrast to the current state-of-the-art analysis, which is focused on the detection of single cosmic ray events. Theoretical explanation of SPS could be given either within classical (e.g., photon-photon interaction) or exotic (e.g., Super Heavy Dark Matter decay or annihilation) scenarios, thus detection of SPS would provide a better understanding of particle physics, high energy astrophysics and cosmology. The ensembles of cosmic rays can be classified based on the spatial and temporal extent of particles constituting the ensemble. Some classes of SPS are predicted to have huge spatial distribution, a unique signature detectable only with a facility of the global size. Since development and commissioning of a completely new facility with such requirements is economically unwarranted and time-consuming, the global analysis goals are achievable when all types of existing detectors are merged into a worldwide network. The idea to use the instruments in operation is based on a novel trigger algorithm: in parallel to looking for neighbour surface detectors receiving the signal simultaneously, one should also look for spatially isolated stations clustered in a small time window. On the other hand, CREDO strategy is also aimed at an active engagement of a large number of participants, who will contribute to the project by using common electronic devices (e.g., smartphones), capable of detecting cosmic rays. It will help not only in expanding the geographical spread of CREDO, but also in managing a large manpower necessary for a more efficient crowd-sourced pattern recognition scheme to

  15. Solar Geophysical Data (SGD) Reports (1955-2009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Solar-Geophysical Data (SGD) reports were a comprehensive compilation of many different kinds of observational data of the sun's activity and its effects on the...

  16. The role of the geophysical template and environmental regimes in controlling stream-living trout populations

    Science.gov (United States)

    Penaluna, Brooke E.; Railsback, Steve F.; Dunham, Jason B.; Johnson, S.; Bilby, Richard E.; Skaugset, Arne E.

    2015-01-01

    The importance of multiple processes and instream factors to aquatic biota has been explored extensively, but questions remain about how local spatiotemporal variability of aquatic biota is tied to environmental regimes and the geophysical template of streams. We used an individual-based trout model to explore the relative role of the geophysical template versus environmental regimes on biomass of trout (Oncorhynchus clarkii clarkii). We parameterized the model with observed data from each of the four headwater streams (their local geophysical template and environmental regime) and then ran 12 simulations where we replaced environmental regimes (stream temperature, flow, turbidity) of a given stream with values from each neighboring stream while keeping the geophysical template fixed. We also performed single-parameter sensitivity analyses on the model results from each of the four streams. Although our modeled findings show that trout biomass is most responsive to changes in the geophysical template of streams, they also reveal that biomass is restricted by available habitat during seasonal low flow, which is a product of both the stream’s geophysical template and flow regime. Our modeled results suggest that differences in the geophysical template among streams render trout more or less sensitive to environmental change, emphasizing the importance of local fish–habitat relationships in streams.

  17. A small Internet controllable observatory for research and education at the University of North Dakota

    Science.gov (United States)

    Hardersen, P. S.; de Silva, S.; Reddy, V.; Cui, P.; Kumar, S.; Gaffey, M. J.

    2006-06-01

    One of the challenges in astronomy education today is to introduce college students to the real-world practice and science of observational astronomy. Along with a good theoretical background, college students can gain an earlier, deeper understanding of the astronomy profession through direct observational and data reduction experience. However, building and managing a modest observatory is still too costly for many colleges and universities. Fortunately, advances in commercial astronomical hardware and software now allow universities to build and operate small Internet controllable observatories for a modest investment. The advantages of an Internet observatory include: 1) remote operation from a comfortable location, 2) immediate data access, 3) telescope control via a web browser, and 4) allowing both on-campus and distance education students the ability to conduct a variety of observing projects. Internet capabilities vastly expand the number of students who will be able to use the observatory, thus exposing them to astronomy as a science and as a potential career. In September 2005, the University of North Dakota (UND) Department of Space Studies began operating a small, recently renovated Internet controllable observatory. Housed within a roll-off roof 10 miles west of UND, the observatory includes a Meade 16-inch, f/10 Schmidt-Cassegrain telescope, an SBIG STL-6303e CCD with broadband filters, ACP observatory control software, focuser, and associated equipment. The observatory cost \\25,000 to build in 1996; 2005 renovation costs total \\28,000. An observatory operator prepares the telescope for use each night. Through remote operation, the roof is opened and the telescope/CCD power is turned on. The telescope is then aligned and focused before allowing students to access the observatory. Students communicate with the observatory operator via an online chat room and via telephone, if necessary, to answer questions and resolve any problems. Additional

  18. EXPLORATION BY MEANS OF GEOPHYSICAL METHODS OF GEOTHERMAL FIELDS AND CASE STUDIES

    Directory of Open Access Journals (Sweden)

    Züheyr KAMACI

    1997-01-01

    Full Text Available Geothermal energy which is one of the reuseable energy resources, can save as much as 77 million barrels of petroleum equivalent annually when used in the production of electricity and heating-environment. Geophysical exploration methods plays in important role in the fields of geothermal exploration, development and observational studies. Thermal and geoelectrical methods are the most effective methods which shows the temperature variation anomalies and mechanical drilling places. But, when the other methods of gravity, magnetic, radiometric, well geophysics and well logs can be used in conjunction with seismic tomography, apart from the mentioned geophysical exploration method, better results could be obtained. From the above mentioned facts various case history reports are given from our country and worldwide to determine geothermal energy resources by using geophysical exploration technique application. From these results of studies a 55 °C hot water artessian aquifer is found in the Uşak-Banaz geothermal field by applying geoelectrical methods.

  19. Hydrate research activities that both support and derive from the monitoring station/sea-floor Observatory, Mississippi Canyon 118, northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lutken, Carol [Univ. of Mississippi, Oxford, MS (United States). Center for Marine Resources and Environmental Technology (CMRET)

    2013-07-31

    A permanent observatory has been installed on the seafloor at Federal Lease Block, Mississippi Canyon 118 (MC118), northern Gulf of Mexico. Researched and designed by the Gulf of Mexico Hydrates Research Consortium (GOM-HRC) with the geological, geophysical, geochemical and biological characterization of in situ gas hydrates systems as the research goal, the site has been designated by the Bureau of Ocean Energy Management as a permanent Research Reserve where studies of hydrates and related ocean systems may take place continuously and cooperatively into the foreseeable future. The predominant seafloor feature at MC118 is a carbonate-hydrate complex, officially named Woolsey Mound for the founder of both the GOM-HRC and the concept of the permanent seafloor hydrates research facility, the late James Robert “Bob” Woolsey. As primary investigator of the overall project until his death in mid-2008, Woolsey provided key scientific input and served as chief administrator for the Monitoring Station/ Seafloor Observatory (MS-SFO). This final technical report presents highlights of research and accomplishments to date. Although not all projects reached the status originally envisioned, they are all either complete or positioned for completion at the earliest opportunity. All Department of Energy funds have been exhausted in this effort but, in addition, leveraged to great advantage with additional federal input to the project and matched efforts and resources. This report contains final reports on all subcontracts issued by the University of Mississippi, Administrators of the project, Hydrate research activities that both support and derive from the monitoring station/sea-floor Observatory, Mississippi Canyon 118, northern Gulf of Mexico, as well as status reports on the major components of the project. All subcontractors have fulfilled their primary obligations. Without continued funds designated for further project development, the Monitoring Station

  20. A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets

    Science.gov (United States)

    JafarGandomi, Arash; Binley, Andrew

    2013-09-01

    We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is

  1. The lithospheric structure beneath Ireland and surrounding areas from integrated geophysical-petrological modelling of magnetic and other geophysical data

    Science.gov (United States)

    Baykiev, E.; Guerri, M.; Fullea, J.

    2017-12-01

    The availability of unprecedented resolution aeromagnetic data in Ireland (Tellus project, http://www.tellus.ie/) in conjunction with new satellite magnetic data (e.g., ESÁs Swarm mission) has opened the possibility of detailed modelling of the Irish subsurface magnetic structure. A detailed knowledge of the magnetic characteristics (susceptibility, magnetite content) of the crust is relevant for a number of purposes, including geological mapping and mineral and geothermal energy prospection. In this work we model the magnetic structure of Ireland and surrounding areas using primarily aeromagnetic and satellite observations but also other geophysical data sets. To this aim we use a geophysical-petrological modelling tool (LitMod) in which key properties of rocks (i.e., density, electrical conductivity and seismic velocities) that can be inferred from geophysical data (gravity, seismic, EM) are self consistently determined based on the thermochemical conditions (using the software Perple_X). In contrast to the mantle, where thermodynamic equilibrium is prevalent, in the crust metastable conditions are dominant, i.e. rock properties may not be representative of the current, in situ, temperature and pressure conditions. Instead, the rock properties inferred from geophysical data may be reflecting the mineralogy stable at rock formation conditions. In addition, temperature plays a major role in the distribution of the long wavelength crustal magnetic anomalies. Magnetite retains its magnetic properties below its Curie temperature (585 ºC) and the depth of Curie's isotherm provides an estimate of the thickness of the magnetic crust. Hence, a precise knowledge of the crustal geotherm is required to consistently model crustal magnetic anomalies. In this work LitMod has been modified to account for metastable crustal lithology, to predict susceptibility in the areas below Curie's temperature, and to compute magnetic anomalies based on a magnetic tesseroid approach. The

  2. Expanding the HAWC Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Johanna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-17

    The High Altitude Water Cherenkov Gamma-Ray Observatory is expanding its current array of 300 water tanks to include 350 outrigger tanks to increase sensitivity to gamma rays above 10 TeV. This involves creating and testing hardware with which to build the new tanks, including photomultiplier tubes, high voltage supply units, and flash analog to digital converters. My responsibilities this summer included preparing, testing and calibrating that equipment.

  3. Citizen Observatories and the New Earth Observation Science

    Directory of Open Access Journals (Sweden)

    Alan Grainger

    2017-02-01

    Full Text Available Earth observation is diversifying, and now includes new types of systems, such as citizen observatories, unmanned aerial vehicles and wireless sensor networks. However, the Copernicus Programme vision of a seamless chain from satellite data to usable information in the hands of decision makers is still largely unrealized, and remote sensing science lacks a conceptual framework to explain why. This paper reviews the literatures on citizen science, citizen observatories and conceptualization of remote sensing systems. It then proposes a Conceptual Framework for Earth Observation which can be used in a new Earth observation science to explain blockages in the chain from collecting data to disseminating information in any Earth observation system, including remote sensing systems. The framework differs from its predecessors by including social variables as well as technological and natural ones. It is used here, with evidence from successful citizen science projects, to compare the factors that are likely to influence the effectiveness of satellite remote sensing systems and citizen observatories. The paper finds that constraints on achieving the seamless “Copernicus Chain” are not solely technical, as assumed in the new Space Strategy for Europe, but include social constraints too. Achieving the Copernicus Chain will depend on the balance between: (a the ‘forward’ momentum generated by the repetitive functioning of each component in the system, as a result of automatic operation or human institutions, and by the efficiency of interfaces between components; and (b the ‘backward’ flow of information on the information needs of end users. Citizen observatories will face challenges in components which for satellite remote sensing systems are: (a automatic or straightforward, e.g., sensor design and launch, data collection, and data products; and (b also challenging, e.g., data processing. Since citizen observatories will rely even more on

  4. Press Meeting 20 January 2003: First Light for Europe's Virtual Observatory

    Science.gov (United States)

    2002-12-01

    Imagine you are an astronomer with instant, fingertip access to all existing observations of a given object and the opportunity to sift through them at will. In just a few moments, you can have information on all kinds about objects out of catalogues all over the world, including observations taken at different times. Over the next two years this scenario will become reality as Europe's Astrophysical Virtual Observatory (AVO) develops. Established only a year ago (cf. ESO PR 26/01), the AVO already offers astronomers a unique, prototype research tool that will lead the way to many outstanding new discoveries. Journalists are invited to a live demonstration of the capabilities of this exciting new initiative in astronomy. The demonstration will take place at the Jodrell Bank Observatory in Manchester, in the United Kingdom, on 20 January 2003, starting at 11:00. Sophisticated AVO tools will help scientists find the most distant supernovae - objects that reveal the cosmological makeup of our Universe. The tools are also helping astronomers measure the rate of birth of stars in extremely red and distant galaxies. Journalists will also have the opportunity to discuss the project with leading astronomers from across Europe. The new AVO website has been launched today, explaining the progress being made in this European Commission-funded project: URL: http://www.euro-vo.org/ To register your intention to attend the AVO First Light Demonstration, please provide your name and affiliation by January 13, 2003, to: Ian Morison, Jodrell Bank Observatory (full contact details below). Information on getting to the event is included on the webpage above. Programme for the AVO First Light Demonstration 11:00 Welcome, Phil Diamond (University of Manchester/Jodrell Bank Observatory) 11:05 Short introduction to Virtual Observatories, Piero Benvenuti (ESA/ST-ECF) 11:15 Q&A 11:20 Short introduction to the Astrophysical Virtual Observatory, Peter Quinn (ESO) 11:30 Q&A 11:35 Screening of

  5. The Cosmic Ray Energy Spectrum and Related Measurements with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the cosmic ray energy spectrum above 10{sup 18} eV with the Pierre Auger Observatory; (2) The cosmic ray flux observed at zenith angles larger than 60 degrees with the Pierre Auger Observatory; (3) Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory; (4) Exposure of the Hybrid Detector of The Pierre Auger Observatory; and (5) Energy scale derived from Fluorescence Telescopes using Cherenkov Light and Shower Universality.

  6. rights reserved Geophysical Identification of Hydrothermally Altered

    African Journals Online (AJOL)

    ADOWIE PERE

    Geophysical Identification of Hydrothermally Altered Structures That Favour .... aircraft. Total line kilometers of 36,500 were covered in the survey. Magnetic ... tie lines occur at about 2000 metres interval in the ... visual inspection of the map.

  7. Smartphones - the Geophysics Lab in Your Students' Pocket

    Science.gov (United States)

    Salaree, A.; Stein, S.; Saloor, N.; Elling, R. P.

    2017-12-01

    Many interesting topics are hard to demonstrate in geophysics classes without costly equipment and logistic hassles. For instance, the speed of P-waves in the Earth's crust is usually calculated using printed seismic sections from published studies, giving students little insight into the recording process. This is mainly due to the complex, costly, and weather-dependent logistics of conducting seismic reflection experiments using arrays of - either purchased or borrowed - expensive seismometers and recording units. Smartphones, which students own and are (perhaps unduly) comfortable with, have many otherwise expensive instruments as built-in sensors. These instruments are nifty tools that make labs easier, faster, and more fun. We use smartphones in several labs in an introductory geophysics class. In one, students use their phones to measure the latitude and longitude of a point on campus. Combining the data shows a nice spread of positions illustrating the precision of measurements, spatial trends in the scatter, and even differences between Android and iPhone data. Hence concepts about data that are often presented with ideal theoretical examples emerge from the students' measurements. Another uses the phones' accelerometers and available software to measure the speed of P-waves using a linear array of smartphones/seismometers along a table, similar to the procedure used in reflection seismology. In a third, students used their smartphones in an elevator to measure the acceleration of gravity in a moving reference frame, and thus explore key concepts that arise in many geophysical applications. These three applications illustrate the potential for using smartphones in a wide variety of geophysics teaching, much as their value is being increasingly recognized in other educational applications. Here are some links to an instructions document and a video from the seismic experiment: Instructions: http://www.earth.northwestern.edu/ amir/202/smartphone

  8. WLS software for the Los Alamos geophysical instrumentation truck

    International Nuclear Information System (INIS)

    Ideker, C.D.; LaDelfe, C.M.

    1985-01-01

    Los Alamos National Laboratory's capabilities for special downhole geophysical well logging has increased steadily over the past few years. Software was developed originally for each individual tool as it became operational. With little or no standardization for tool software modules, software development became redundant, time consuming, and cost ineffective. With long-term use and the rapid evolution of well logging capacity in mind. Los Alamos and EG and G personnel decided to purchase a software system. The system was designed to offer: wide-range use and programming flexibility; standardization subroutines for tool module development; user friendly operation which would reduce training time; operator error checking and alarm activation; maximum growth capacity for new tools as they are added to the inventory; and the ability to incorporate changes made to the computer operating system and hardware. The end result is a sophisticated and flexible software tool and for transferring downhole geophysical measurement data to computer disk files. This paper outlines the need, design, development, and implementation of the WLS software for geophysical data acquisition. A demonstration and working examples are included in the presentation

  9. Role of the Chandra X-Ray Observatory Observations for the Study of Ionized Plasmas

    Science.gov (United States)

    Weisskopf, Martin C.

    2010-01-01

    The Chandra X-Ray Observatory, launched in 1999, is now beginning its 12-th year of operation. Chandra, the X-ray component of NASA s Great Observatory program, continues to operate efficiently, somewhat remarkable considering that the Observatory was designed for three years of operation with a goal of five. The Observatory features X-ray optics with sub-arcsecond angular resolution and a small suite of instruments, including transmission gratings, which allow for high-resolution spectroscopy of point sources. We will detail the capabilities of the Observatory for making such spectroscopic measurements and discuss a number of examples of what has been learned about the astrophysical plasmas capable of producing bright X-ray emission.

  10. Integrated geophysical surveys for searching of podiform chromite in Albania

    Energy Technology Data Exchange (ETDEWEB)

    Kospiri, Aleksander; Zajmi, Asim [Geophysical and Geochemical Center, Tirana (Albania)

    1995-12-31

    The purpose of this paper is to describe the application of geophysical methods to the search for chromite in Albania. Albania is well known for its chromite resources and ranks third amongst world producers of high-quality chromite. The ultramafic massif of Bulqiza, is the most important chromite bearing one. Surveying a surface of about 120 square kilometers (30% of massifs area) in that massif with integrated geophysical methods a considerable number of targets has been discovered, from which some are already objects under mine activity. In the integrated methods for chromite exploration in Bulqiza ultramafic massif are included: geological, gravity, magnetic and electrical mapping of the scale 1:2000 with survey grids 40x20m, 20x5m. Based on the interpretations of geophysical exploration were projected drilling which led to the discovery of some big ore deposits. (author). 12 refs., 3 figs

  11. Maraghe Observatory and an Effort towards Retrieval of Architectural Design of Astronomical Units

    Directory of Open Access Journals (Sweden)

    Javad Shekari Niri

    2015-03-01

    Full Text Available Maraghe observatory was built by such engineers as Moayiededdin Orozi etc. under supervision of Khaje Nasireddin Tousi in 7th century AH. The most significant feature associated with Maraghe observatory is the fact that architecture is employed to achieve astronomical purposes in this site. The reason for preferring observatory by astronomers was the fact that these units are superior to wooden and metal instruments with respect to accuracy, no size limitations, etc. Architectural design and function of astronomical units of Maraghe observatory site after discovery of its foundation in the course of explorations before Islamic Revolution remained unclear until recent years. After conducting required studies and investigations, the author managed to find significant cues and after some precise comparisons, he succeeded to recover the main design and function of some astronomical units of this international center. Based on these findings these astronomical structures can reliably be rebuilt. This research showed that every circular or polygonal building cannot be considered as an observatory. For example form and function of cemetery structures are completely different with astronomical ones. Following this research also valuable results were obtained in relation to stone architectural structures present on Maraghe observatory hill. In addition, claims about invention of astronomical units of Maraghe observatory by non-Iranian scientists are rejected and rights of Iranian scientists are rationally defended in this regard.

  12. 76 FR 68720 - Takes of Marine Mammals Incidental to Specified Activities; Low-Energy Marine Geophysical Survey...

    Science.gov (United States)

    2011-11-07

    ... Marine Mammals Incidental to Specified Activities; Low- Energy Marine Geophysical Survey in the Western... conducting a low-energy marine geophysical (i.e., seismic) survey in the western tropical Pacific Ocean... Science Foundation (NSF), and ``Environmental Assessment of a Low-Energy Marine Geophysical Survey by the...

  13. Geophysical analysis for the Ada Tepe region (Bulgaria) - case study

    Science.gov (United States)

    Trifonova, Petya; Metodiev, Metodi; Solakov, Dimcho; Simeonova, Stela; Vatseva, Rumiana

    2013-04-01

    According to the current archeological investigations Ada Tepe is the oldest gold mine in Europe with Late Bronze and Early Iron age. It is a typical low-sulfidation epithermal gold deposit and is hosted in Maastrichtian-Paleocene sedimentary rocks above a detachment fault contact with underlying Paleozoic metamorphic rocks. Ada Tepe (25o.39'E; 41o.25'N) is located in the Eastern Rhodope unit. The region is highly segmented despite the low altitude (470-750 m) due to widespread volcanic and sediment rocks susceptible to torrential erosion during the cold season. Besides the thorough geological exploration focused on identifying cost-effective stocks of mineral resources, a detailed geophysical analysis concernig diferent stages of the gold extraction project was accomplished. We present the main results from the geophysical investigation aimed to clarify the complex seismotectonic setting of the Ada Tepe site region. The overall study methodology consists of collecting, reviewing and estimating geophysical and seismological information to constrain the model used for seismic hazard assessment of the area. Geophysical information used in the present work consists of gravity, geomagnetic and seismological data. Interpretation of gravity data is applied to outline the axes of steep gravity transitions marked as potential axes of faults, flexures and other structures of dislocation. Direct inverse techniques are also utilized to estimate the form and depth of anomalous sources. For the purposes of seismological investigation of the Ada Tepe site region an earthquake catalogue is compiled for the time period 510BC - 2011AD. Statistical parameters of seismicity - annual seismic rate parameter, ?, and the b-value of the Gutenberg-Richter exponential relation for Ada Tepe site region, are estimated. All geophysical datasets and derived results are integrated using GIS techniques ensuring interoperability of data when combining, processing and visualizing obtained

  14. Environmental geophysics and geochemistry for contamination mapping and monitoring 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tai Sup; Lee, Sang Kyu; Hong, Young Kook [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); and others

    1995-12-01

    This study aims to provide the technologies which can be practically used for contamination mapping and monitoring. To accomplish this goal, the geophysical and geochemical expertise and techniques commonly used in the mineral resources exploration are employed. In the first year of the three-year-long project, the purpose of the study is to introduce the optimum methodologies among the geophysical and geochemical techniques to tackle the various cases of environmental contamination. To achieve the purpose, case studies of the developed countries were surveyed and analyzed through the various kinds of literatures. The followings are categorized to be solved by geophysical methods: 1) delineation of water system pollution by acid mine drainage and distributions of waste rocks in the closed mine area, 2) defining boundaries of subsurface contamination due to oil seepage, 3) zoning of sea water intrusion in the seashore or subsurface geology highly containing salt, 4) locating of buried metallic wastes such as pipes and drums which can cause the secondary pollution by corrosion, and 5) outlining of the subsurface area polluted by leachate from the landfill. To experiment the above items, various geophysical methods were applied to the corresponding test sites. From these experiments, the applicabilities of the respective geophysical method were analyzed, and the optimum methods were derived for the various pollution types. Furthermore, electric and electromagnetic surveys data processing software were developed to quantitatively interpret and highly resolve the geology. The environmental assignments which can be solved by geochemical methods include: 1) drainage pollution by coal mine effluents, 2)subsurface contamination of oil-spill, 3) sea water intrusion, 4) dispersion of toxic heavy metallic elements in the metal mines, and 5) radon environmental geochemistry. The appropriate test sites for applying the geochemical methods were selected. (Abstract Truncated)

  15. Data standards for the international virtual observatory

    Directory of Open Access Journals (Sweden)

    R J Hanisch

    2006-11-01

    Full Text Available A primary goal of the International Virtual Observatory Alliance, which brings together Virtual Observatory Projects from 16 national and international development projects, is to develop, evaluate, test, and agree upon standards for astronomical data formatting, data discovery, and data delivery. In the three years that the IVOA has been in existence, substantial progress has been made on standards for tabular data, imaging data, spectroscopic data, and large-scale databases and on managing the metadata that describe data collections and data access services. In this paper, I describe how the IVOA operates and give my views as to why such a broadly based international collaboration has been able to make such rapid progress.

  16. An Observatory to Enhance the Preparation of Future California Teachers

    Science.gov (United States)

    Connolly, L.; Lederer, S.

    2004-12-01

    With a major grant from the W. M. Keck Foundation, California State University, San Bernardino is establishing a state-of-the-art teaching astronomical observatory. The Observatory will be fundamental to an innovative undergraduate physics and astronomy curriculum for Physics and Liberal Studies majors and will be integrated into our General Education program. The critical need for a research and educational observatory is linked to changes in California's Science Competencies for teacher certification. Development of the Observatory will also complement a new infusion of NASA funding and equipment support for our growing astronomy education programs and the University's established Strategic Plan for excellence in education and teacher preparation. The Observatory will consist of two domed towers. One tower will house a 20" Ritchey-Chretien telescope equipped with a CCD camera in conjunction with either UBVRI broadband filters or a spectrometer for evening laboratories and student research projects. The second tower will house the university's existing 12" Schmidt-Cassegrain optical telescope coupled with a CCD camera and an array of filters. A small aperture solar telescope will be attached to the 12" for observing solar prominences while a milar filter can be attached to the 12" for sunspot viewing. We have been very fortunate to receive a challenge grant of \\600,000 from the W. M. Keck Foundation to equip the two domed towers; we continue to seek a further \\800,000 to meet our construction needs. Funding also provided by the California State University, San Bernardino.

  17. Mathematics applied to nuclear geophysics

    International Nuclear Information System (INIS)

    Pereira, E.B.; Nordemann, D.J.R.

    1987-01-01

    One of the powerful auxiliary to nuclear geophysics is the obtention and interpretation of the alpha and gamma radiation spectra. This work discuss, qualitative and quantitative, the lost information problem, motivated by the noise in the process of information codification. The decodification process must be suppield by the appropriate mathematical model on the measure system to recovery the information from nuclear source. (C.D.G.) [pt

  18. Conceptual Design of Geophysical Microsatellite

    Directory of Open Access Journals (Sweden)

    Matviyenko, S.A.

    2014-10-01

    Full Text Available The article covers the issue of Earth gravitational field (EGF parameters measurement from space. The radiophysical method of measurement of gravitational frequency shift of electromagnetic radiation using existent GNSS and its two variants are developed by the author. The designlayout drawing of geophysical microsatellite, which implements the radiophysical method of EGF measurement and provides Earth plasmasphere and magnetosphere monitoring, is offered.

  19. Results of integrated geophysical measurements on a landslide endangered brown coal dump

    Energy Technology Data Exchange (ETDEWEB)

    Militzer, H; Lindner, H; Kaeppler, R

    1984-01-01

    The measurements revealed occurrence of geophysical anomalies across artificial soils with low content of cohesive material. The proven anomalies varied with time with regard to their magnitude and position. Possible relations between the temporal variations of the geophysical fields and a landslide on the boundary of the object are discussed.

  20. The founding charter of the Genomic Observatories Network.

    Science.gov (United States)

    Davies, Neil; Field, Dawn; Amaral-Zettler, Linda; Clark, Melody S; Deck, John; Drummond, Alexei; Faith, Daniel P; Geller, Jonathan; Gilbert, Jack; Glöckner, Frank Oliver; Hirsch, Penny R; Leong, Jo-Ann; Meyer, Chris; Obst, Matthias; Planes, Serge; Scholin, Chris; Vogler, Alfried P; Gates, Ruth D; Toonen, Rob; Berteaux-Lecellier, Véronique; Barbier, Michèle; Barker, Katherine; Bertilsson, Stefan; Bicak, Mesude; Bietz, Matthew J; Bobe, Jason; Bodrossy, Levente; Borja, Angel; Coddington, Jonathan; Fuhrman, Jed; Gerdts, Gunnar; Gillespie, Rosemary; Goodwin, Kelly; Hanson, Paul C; Hero, Jean-Marc; Hoekman, David; Jansson, Janet; Jeanthon, Christian; Kao, Rebecca; Klindworth, Anna; Knight, Rob; Kottmann, Renzo; Koo, Michelle S; Kotoulas, Georgios; Lowe, Andrew J; Marteinsson, Viggó Thór; Meyer, Folker; Morrison, Norman; Myrold, David D; Pafilis, Evangelos; Parker, Stephanie; Parnell, John Jacob; Polymenakou, Paraskevi N; Ratnasingham, Sujeevan; Roderick, George K; Rodriguez-Ezpeleta, Naiara; Schonrogge, Karsten; Simon, Nathalie; Valette-Silver, Nathalie J; Springer, Yuri P; Stone, Graham N; Stones-Havas, Steve; Sansone, Susanna-Assunta; Thibault, Kate M; Wecker, Patricia; Wichels, Antje; Wooley, John C; Yahara, Tetsukazu; Zingone, Adriana

    2014-03-07

    The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms.An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012. The vision for such a network was expanded in a subsequent paper and developed over a series of meetings in Bremen (Germany), Shenzhen (China), Moorea (French Polynesia), Oxford (UK), Pacific Grove (California, USA), Washington (DC, USA), and London (UK). While this community-building process continues, here we express our mutual intent to establish the GOs Network formally, and to describe our shared vision for its future. The views expressed here are ours alone as individual scientists, and do not necessarily represent those of the institutions with which we are affiliated.

  1. Solid state nuclear track detection: a useful geological/geophysical tool

    International Nuclear Information System (INIS)

    Khan, H.A.; Qureshi, A.A.

    1994-01-01

    Solid State Nuclear Track Detection (SSNTD) is a relatively new nuclear particle detection technique. Since its inception, it has found useful application in almost every branch of science. This paper gives a very brief review of the role it has played in solving some geological/geophysical problems. Since the technique has been found useful in a wide spectrum of geological/geophysical applications, it was simply not possible to discuss all of these in this paper due to severe space restrictions. However, an attempt has been made to discuss the salient features of some of the most prominent applications in the geological and geophysical sciences. The paper has been divided into two parts. Firstly, applications based on radon measurements by SSNTDs have been described. These include: Uranium/thorium and mineral exploration, search for geothermal energy sources, study of volcanic processes, location of geological faults and earthquake prediction, for example. Secondly, applications based on the study of spontaneous fission tracks in geological samples have been described briefly. The second group of applications includes: fission track dating (FTD) of geological samples, FTD in the study of emplacement times, provenance studies, and thermal histories of minerals. Necessary references have been provided for detailed studies of (a) the applications cited in this paper, and (b) other important geological/geophysical applications, which unfortunately could not be covered in the present paper. (author)

  2. The Cherenkov Telescope Array Observatory: top level use cases

    Science.gov (United States)

    Bulgarelli, A.; Kosack, K.; Hinton, J.; Tosti, G.; Schwanke, U.; Schwarz, J.; Colomé, P.; Conforti, V.; Khelifi, B.; Goullon, J.; Ong, R.; Markoff, S.; Contreras, J. L.; Lucarelli, F.; Antonelli, L. A.; Bigongiari, C.; Boisson, C.; Bosnjak, Z.; Brau-Nogué, S.; Carosi, A.; Chen, A.; Cotter, G.; Covino, S.; Daniel, M.; De Cesare, G.; de Ona Wilhelmi, E.; Della Volpe, M.; Di Pierro, F.; Fioretti, V.; Füßling, M.; Garczarczyk, M.; Gaug, M.; Glicenstein, J. F.; Goldoni, P.; Götz, D.; Grandi, P.; Heller, M.; Hermann, G.; Inoue, S.; Knödlseder, J.; Lenain, J.-P.; Lindfors, E.; Lombardi, S.; Luque-Escamilla, P.; Maier, G.; Marisaldi, M.; Mundell, C.; Neyroud, N.; Noda, K.; O'Brien, P.; Petrucci, P. O.; Martí Ribas, J.; Ribó, M.; Rodriguez, J.; Romano, P.; Schmid, J.; Serre, N.; Sol, H.; Schussler, F.; Stamerra, A.; Stolarczyk, T.; Vandenbrouck, J.; Vercellone, S.; Vergani, S.; Zech, A.; Zoli, A.

    2016-08-01

    Today the scientific community is facing an increasing complexity of the scientific projects, from both a technological and a management point of view. The reason for this is in the advance of science itself, where new experiments with unprecedented levels of accuracy, precision and coverage (time and spatial) are realised. Astronomy is one of the fields of the physical sciences where a strong interaction between the scientists, the instrument and software developers is necessary to achieve the goals of any Big Science Project. The Cherenkov Telescope Array (CTA) will be the largest ground-based very high-energy gamma-ray observatory of the next decades. To achieve the full potential of the CTA Observatory, the system must be put into place to enable users to operate the telescopes productively. The software will cover all stages of the CTA system, from the preparation of the observing proposals to the final data reduction, and must also fit into the overall system. Scientists, engineers, operators and others will use the system to operate the Observatory, hence they should be involved in the design process from the beginning. We have organised a workgroup and a workflow for the definition of the CTA Top Level Use Cases in the context of the Requirement Management activities of the CTA Observatory. Scientists, instrument and software developers are collaborating and sharing information to provide a common and general understanding of the Observatory from a functional point of view. Scientists that will use the CTA Observatory will provide mainly Science Driven Use Cases, whereas software engineers will subsequently provide more detailed Use Cases, comments and feedbacks. The main purposes are to define observing modes and strategies, and to provide a framework for the flow down of the Use Cases and requirements to check missing requirements and the already developed Use-Case models at CTA sub-system level. Use Cases will also provide the basis for the definition of

  3. A geological and geophysical data collection system

    Digital Repository Service at National Institute of Oceanography (India)

    Sudhakar, T.; Afzulpurkar, S.

    A geological and geophysical data collection system using a Personal Computer is described below. The system stores data obtained from various survey systems typically installed in a charter vessel and can be used for similar applications on any...

  4. TMT approach to observatory software development process

    Science.gov (United States)

    Buur, Hanne; Subramaniam, Annapurni; Gillies, Kim; Dumas, Christophe; Bhatia, Ravinder

    2016-07-01

    The purpose of the Observatory Software System (OSW) is to integrate all software and hardware components of the Thirty Meter Telescope (TMT) to enable observations and data capture; thus it is a complex software system that is defined by four principal software subsystems: Common Software (CSW), Executive Software (ESW), Data Management System (DMS) and Science Operations Support System (SOSS), all of which have interdependencies with the observatory control systems and data acquisition systems. Therefore, the software development process and plan must consider dependencies to other subsystems, manage architecture, interfaces and design, manage software scope and complexity, and standardize and optimize use of resources and tools. Additionally, the TMT Observatory Software will largely be developed in India through TMT's workshare relationship with the India TMT Coordination Centre (ITCC) and use of Indian software industry vendors, which adds complexity and challenges to the software development process, communication and coordination of activities and priorities as well as measuring performance and managing quality and risk. The software project management challenge for the TMT OSW is thus a multi-faceted technical, managerial, communications and interpersonal relations challenge. The approach TMT is using to manage this multifaceted challenge is a combination of establishing an effective geographically distributed software team (Integrated Product Team) with strong project management and technical leadership provided by the TMT Project Office (PO) and the ITCC partner to manage plans, process, performance, risk and quality, and to facilitate effective communications; establishing an effective cross-functional software management team composed of stakeholders, OSW leadership and ITCC leadership to manage dependencies and software release plans, technical complexities and change to approved interfaces, architecture, design and tool set, and to facilitate

  5. Geophysics Under Pressure: Large-Volume Presses Versus the Diamond-Anvil Cell

    Science.gov (United States)

    Hazen, R. M.

    2002-05-01

    Prior to 1970, the legacy of Harvard physicist Percy Bridgman dominated high-pressure geophysics. Massive presses with large-volume devices, including piston-cylinder, opposed-anvil, and multi-anvil configurations, were widely used in both science and industry to achieve a range of crustal and upper mantle temperatures and pressures. George Kennedy of UCLA was a particularly influential advocate of large-volume apparatus for geophysical research prior to his death in 1980. The high-pressure scene began to change in 1959 with the invention of the diamond-anvil cell, which was designed simultaneously and independently by John Jamieson at the University of Chicago and Alvin Van Valkenburg at the National Bureau of Standards in Washington, DC. The compact, inexpensive diamond cell achieved record static pressures and had the advantage of optical access to the high-pressure environment. Nevertheless, members of the geophysical community, who favored the substantial sample volumes, geothermally relevant temperature range, and satisfying bulk of large-volume presses, initially viewed the diamond cell with indifference or even contempt. Several factors led to a gradual shift in emphasis from large-volume presses to diamond-anvil cells in geophysical research during the 1960s and 1970s. These factors include (1) their relatively low cost at time of fiscal restraint, (2) Alvin Van Valkenburg's new position as a Program Director at the National Science Foundation in 1964 (when George Kennedy's proposal for a Nation High-Pressure Laboratory was rejected), (3) the development of lasers and micro-analytical spectroscopic techniques suitable for analyzing samples in a diamond cell, and (4) the attainment of record pressures (e.g., 100 GPa in 1975 by Mao and Bell at the Geophysical Laboratory). Today, a more balanced collaborative approach has been adopted by the geophysics and mineral physics community. Many high-pressure laboratories operate a new generation of less expensive

  6. Practices to enable the geophysical research spectrum: from fundamentals to applications

    Science.gov (United States)

    Kang, S.; Cockett, R.; Heagy, L. J.; Oldenburg, D.

    2016-12-01

    In a geophysical survey, a source injects energy into the earth and a response is measured. These physical systems are governed by partial differential equations and their numerical solutions are obtained by discretizing the earth. Geophysical simulations and inversions are tools for understanding physical responses and constructing models of the subsurface given a finite amount of data. SimPEG (http://simpeg.xyz) is our effort to synthesize geophysical forward and inverse methodologies into a consistent framework. The primary focus of our initial development has been on the electromagnetics (EM) package, with recent extensions to magnetotelluric, direct current (DC), and induced polarization. Across these methods, and applied geophysics in general, we require tools to explore and build an understanding of the physics (behaviour of fields, fluxes), and work with data to produce models through reproducible inversions. If we consider DC or EM experiments, with the aim of understanding responses from subsurface conductors, we require resources that provide multiple "entry points" into the geophysical problem. To understand the physical responses and measured data, we must simulate the physical system and visualize electric fields, currents, and charges. Performing an inversion requires that many moving pieces be brought together: simulation, physics, linear algebra, data processing, optimization, etc. Each component must be trusted, accessible to interrogation and manipulation, and readily combined in order to enable investigation into inversion methodologies. To support such research, we not only require "entry points" into the software, but also extensibility to new situations. In our development of SimPEG, we have sought to use leading practices in software development with the aim of supporting and promoting collaborations across a spectrum of geophysical research: from fundamentals to applications. Designing software to enable this spectrum puts unique

  7. Morro Azul Observatory: A New Center for Teaching and Popularization of Astronomy.

    Science.gov (United States)

    Bretones, Paulo Sergio; Cardoso de Oliveira, Vladimir

    2002-08-01

    In 1999, the Instituto Superior de Ciências Aplicadas (ISCA Faculdades de Limeira) started a project to build an observatory and initiate several astronomy related activities in the city of Limeira and region (São Paulo state) with the aim of teaching and popularizing astronomy. After contracting teachers, a technician and an intern, the Morro Azul Observatory was inaugurated in March 2000 as a part of the geosciences department of ISCA Faculdades. This poster describes the development phases of the Observatory, the activities initiated by the Observatory, and assesses the impact of the project. Several issues will be discussed such as the criteria for choosing the site, buildings, instruments, group visits, and particularly the goals that were reached. The Observatory, as described here, serves as a model for other centers with the same purpose in the country. The achievements of this project include the creation of two astronomical disciplines for the geography course and liaisons with other courses such as tourism, pedagogy, social communication and engineering. New activities were initiated, educational materials created, and the Observatory is now part of the regions teaching network and is in contact with other Brazilian and foreign centers. This poster presents the results from report analyses, visitor records, the local media, goal strategy assessment, and the current state of the project. It concludes with an evaluation of the social commitment of the Observatory, its initiatives for the constant renewal and growth of the project, its policy of maintaining the activities and interchange with other national and international astronomy centers, and the future perspectives in terms of its contribution for the research in science education.

  8. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Notification of the National Radio Astronomy... Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy... Astronomy Observatory, P.O. Box NZ2, Green Bank, West Virginia, 24944, in writing, of the technical...

  9. The Renovation and Future Capabilities of the Thacher Observatory

    Science.gov (United States)

    O'Neill, Katie; Osuna, Natalie; Edwards, Nick; Klink, Douglas; Swift, Jonathan; Vyhnal, Chris; Meyer, Kurt

    2016-01-01

    The Thacher School is in the process of renovating the campus observatory with a new meter class telescope and full automation capabilities for the purpose of scientific research and education. New equipment on site has provided a preliminary site characterization including seeing and V-band sky brightness measurements. These data, along with commissioning data from the MINERVA project (which uses comparable hardware) are used to estimate the capabilities of the observatory once renovation is complete. Our V-band limiting magnitude is expected to be better than 21.3 for a one minute integration time, and we estimate that milli-magnitude precision photometry will be possible for a V=14.5 point source over approximately 5 min timescales. The quick response, autonomous operation, and multi-band photometric capabilities of the renovated observatory will make it a powerful follow-up science facility for exoplanets, eclipsing binaries, near-Earth objects, stellar variability, and supernovae.

  10. An Information Retrieval and Recommendation System for Astronomical Observatories

    Science.gov (United States)

    Mukund, Nikhil; Thakur, Saurabh; Abraham, Sheelu; Aniyan, A. K.; Mitra, Sanjit; Sajeeth Philip, Ninan; Vaghmare, Kaustubh; Acharjya, D. P.

    2018-03-01

    We present a machine-learning-based information retrieval system for astronomical observatories that tries to address user-defined queries related to an instrument. In the modern instrumentation scenario where heterogeneous systems and talents are simultaneously at work, the ability to supply people with the right information helps speed up the tasks for detector operation, maintenance, and upgradation. The proposed method analyzes existing documented efforts at the site to intelligently group related information to a query and to present it online to the user. The user in response can probe the suggested content and explore previously developed solutions or probable ways to address the present situation optimally. We demonstrate natural language-processing-backed knowledge rediscovery by making use of the open source logbook data from the Laser Interferometric Gravitational Observatory (LIGO). We implement and test a web application that incorporates the above idea for LIGO Livingston, LIGO Hanford, and Virgo observatories.

  11. Under the pile. Understanding subsurface dynamics of historical cities trough geophysical models interpretation

    Science.gov (United States)

    Bernardes, Paulo; Pereira, Bruno; Alves, Mafalda; Fontes, Luís; Sousa, Andreia; Martins, Manuela; Magalhães, Fernanda; Pimenta, Mário

    2017-04-01

    Braga is one of the oldest cities of the Iberian NW and as of so, the research team's studying the city's historical core for the past 40 years is often confronted with the unpredictability factor laying beneath an urban site with such a long construction history. In fact, Braga keeps redesigning its urban structure over itself on for the past 2000 years, leaving us with a research object filled with an impressive set of construction footprints from the various planning decisions that were taken in the city along its historical path. Aiming for a predicting understanding of the subsoil, we have used near surface geophysics as an effort of minimizing the areas of intervention for traditional archaeological survey techniques. The Seminário de Santiago integrated geophysical survey is an example of the difficulties of interpreting geophysical models in very complex subsurface scenarios. This geophysical survey was planned in order to aid the requalification project being designed for this set of historical buildings, that are estimated to date back to the 16h century, and that were built over one of the main urban arteries of both roman and medieval layers of Braga. We have used both GPR as well as ERT methods for the geophysical survey, but for the purpose of this article, we will focus in the use of the ERT alone. For the interpretation of the geophysical models we've cross-referenced the dense knowledge existing over the building's construction phases with the complex geophysical data collected, using mathematical processing and volume-based visualization techniques, resorting to the use of Res2Inv©, Paraview© and Voxler® software's. At the same time we tried to pinpoint the noise caused by the past 30 year's infrastructural interventions regarding the replacement of the building's water and sanitation systems and for which we had no design plants, regardless of its recent occurring. The deep impact of this replacement actions revealed by the archaeological

  12. Property and instrumental heritage of the Bordeaux Astronomical Observatory; What future?

    Science.gov (United States)

    de La Noë, J.; Charlot, P.; Grousset, F.

    2009-11-01

    In the years 1870, the Government of the Third Republic decided to develop scientific and technical research. Such an effort contributed to supporting and creating universities and other institutes such as astronomical observatories. The dual wish of the Bordeaux council and professors at the Faculté des Sciences de Bordeaux led to the foundation of the astronomical Observatory of Bordeaux. It was set up by Georges Rayet in the years 1880's. The observatory owns a property of 12 hectares with a dozen of buildings, five domes housing an instrument, a Würzburg radiotelescope, a 2.5 meter radiotelescope, and a large collection of about 250 instruments, 4 500 photographic plates, drawings, slides for teaching astronomy, maps of the Carte du Ciel and 200 files of archives. In addition, the library contains about a thousand books for the period 1600-1950. The future of the observatory is not clear at the present time, when the Laboratoire d'Astrophysique will leave to the campus in a few years.

  13. The relationship of fractals in geophysics to 'the new science'

    International Nuclear Information System (INIS)

    Turcotte, Donald L.

    2004-01-01

    Many phenomena in geophysics satisfy fractal statistics, examples range from the frequency-area statistics of earthquakes to the time series of the earth's magnetic field. Solutions to classical differential equations cannot give this type of behavior. Several 'cellular automata' models have successfully reproduced the observed statistics. For example, the slider-block model for earthquakes. Stephen Wolfram's recent book A New Kind of Science sets forth a 'new science' based on cellular automata. This paper discusses the role of cellular automata in geophysics

  14. A tool for Exploring Geophysical Data: The VGEE-IDV

    Science.gov (United States)

    Pandya, R. E.; Murray, D.

    2002-12-01

    The Visual Geophysical Exploration Environment (VGEE) is a suite of computer tools and accompanying online curricular units that enable students to develop physical insight from geophysical data sets. The VGEE curriculum is inquiry and visualization based. The curriculum begins by asking students to compare visualizations they construct from authentic geosciences data to their own conception of the geophysical phenomenon. This comparison encourages students to identify and challenge their own prior conceptions of the phenomenon, a necessary prerequisite to successful learning. Students then begin building correct understandings by identifying patterns and relationships within their visualizations. Students use idealized concept models that highlight physical principles to explain these patterns and relationships. Research, however, has shown that the physical insight gained from these idealized models isn't often applied to either the real world or to the data visualized. To address this, students can easily embed these idealized concept models into their visualizations; there the idealized models respond to the real physical conditions of the geophysical data. The entire inquiry process is built around multi-dimensional and multi-variable visualizations of real geophysical data. Advantages of visualization include its using a natural human talent and its removing mathematics as a barrier to insight. Multi-dimensional and multi-variable visualizations offer the additional advantage of integrated perspectives; rather than asking learners to mentally combine two-dimensional representations of different variables, the learners can navigate through a three-dimensional time-varying representation and get a holistic view. Finally, learner constructed visualizations offer the students a experience with scientific tools, a chance to tailor their investigation to their own misconceptions, and the potential for more robust understanding than prepared visualizations. The

  15. Ascension and Port Stanley geomagnetic observatories and monitoring the South Atlantic Anomaly

    International Nuclear Information System (INIS)

    Macmillan, S.; Turbitt, C.; Thomson, A.

    2009-01-01

    Our 15-year experience of operating two remote observatories, Ascension and Port Stanley, in the south Atlantic is described. These observatories help monitor the South Atlantic Anomaly (SAA), a region of weak magnetic field which causes considerable problems for spacecraft operators. One-minute and one-second values from these observatories, and other observatories both inside and outside the SAA, are analysed. We investigate whether the SAA, and its growth over time, are having any tangible effect on the observed external field variations. Whilst only able to illustrate the long-term characteristics of the irregular external field related to the solar cycle and not due to any long-term changes in the internal field, we do isolate micro pulsation signals at sites inside the SAA which contain more power than at sites outside.

  16. India-Based Neutrino Observatory (INO)

    Indian Academy of Sciences (India)

    India-Based Neutrino Observatory (INO) · Atmospheric neutrinos – India connection · INO Collaboration · INO Project components · ICAL: The physics goals · Slide 6 · Slide 7 · INO site : Bodi West Hills · Underground Laboratory Layout · Status of activities at INO Site · Slide 11 · Slide 12 · INO-ICAL Detector · ICAL factsheet.

  17. pyGIMLi: An open-source library for modelling and inversion in geophysics

    Science.gov (United States)

    Rücker, Carsten; Günther, Thomas; Wagner, Florian M.

    2017-12-01

    Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time

  18. Increasing diversity in the geosciences through the AfricaArray geophysics field course

    Science.gov (United States)

    Vallejo, G.; Emry, E.; Galindo, B. L.; Carranza, V.; Gomez, C. D.; Ortiz, K.; Castro, J. G.; Guandique, J.; Falzone, C.; Webb, S. J.; Manzi, M.; Mngadi, S. B.; Stephens, K.; Chinamora, B.; Whitehead, R.; de Villiers, D. P.; Tshitlho, K.; Delhaye, R. P.; Smith, J. A.; Nyblade, A.

    2014-12-01

    For the past nine years, the AfricaArray diversity program, sponsored by industry, the National Science Foundation, and several partnering universities have supported outstanding U.S. STEM underrepresented minority undergraduates to gain field experience in near-surface geophysical techniques during an 8-week summer program at Penn State University and the University of Witwatersrand (Wits). The AfricaArray geophysics field school, which is run by Wits, has been teaching field-based geophysics to African students for over a decade. In the first 2-3 weeks of the program, the U.S. students are given basic instruction in near-surface geophysics, South African geology, and South African history and culture. The students then join the Wits AfricaArray geophysics field school - working alongside Wits students and students from several other African universities to map the shallow subsurface in prospective areas of South Africa for platinum mining. In addition to the primary goals of collecting and interpreting gravity, magnetic, resistivity, seismic refraction, seismic reflection, and EM data, students spend time mapping geologic units and gathering information on the physical properties of the rocks in the region (i.e. seismic velocity, density, and magnetic susceptibility). Subsurface targets include mafic dikes, faults, the water table, and overburden thickness. Upon returning to the U.S., students spend 2-3 weeks finalizing their project reports and presentations. The program has been effective at not only providing students with fundamental skills in applied geophysics, but also in fostering multicultural relationships, preparing students for graduate work in the geosciences, and attracting STEM students into the geosciences. Student presenters will discuss their experiences gained through the field school and give their impressions about how the program works towards the goal of increasing diversity in the geosciences in the U.S.

  19. Advancing Knowledge on Fugitive Natural Gas from Energy Resource Development at a Controlled Release Field Observatory

    Science.gov (United States)

    Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.

    2017-12-01

    Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted

  20. Results from the University of Calgary environmental geophysics test range

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, K; Lawton, D.C.; Juigalli, J; Parry, D. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1995-12-31

    The Spy Hill Research Farm, operated by the University of Calgary as a test range site where geophysical equipment and methods related to environmental monitoring can be operated under controlled conditions, was described. The site is used by students in the geophysics courses offered at the University, but it is also intended to be available to other users for equipment tests. The site is underlain by glacial gravels and clays which reach thicknesses in excess of 30 m. Surveys of the site have been completed with the following geophysical systems: Geonics EM-31 and EM-34; Apex Max-Min; Huntec Mk4 IP with Phoenix IP-T1 transmitter; Geometrics Proton Magnetometer; McPhar vertical field Fluxgate magnetometer; Androtex TDR6 IP with Phoenix IP-T1 transmitter; Geometrics 12 channel refraction seismic system; and Pulse Echo Ground Penetrating Radar. The site has proved to be well suited to serve as a test range. The addition of yet more features to the site is being planned.

  1. Electricity, Natural Gas and CO2 markets Observatory - 2. Quarter 2014

    International Nuclear Information System (INIS)

    2014-06-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  2. Auger ACCESS—Remote Controlling and Monitoring the Pierre Auger Observatory

    Science.gov (United States)

    Jejkal, Thomas

    2013-10-01

    Ultra high energy cosmic rays are the most energetic particles in the universe. They are measured to have energies of up to 1020 eV and occur at a rate of about once per square kilometer per century. To increase the probability of detecting one of these events, a huge detector covering a large area is needed. The Pierre Auger Collaboration build up an observatory covering 3000 square kilometers of the Pampa Amarilla close to Malargüe for this purpose. Until now, the Auger Observatory has been controlled exclusively via the local network for security and performance reasons. As local operation is associated with high travel costs, the Auger ACCESS project, started in 2005, has constructed a secure, operable and sustainable solution for remote control and monitoring. The implemented solution includes Grid technologies for secured access and infrastructure virtualization for building up a fully featured testing environment for the Auger Observatory. Measurements showed only a negligible delay for communicating with the observatory in Argentina, which allows the establishment of remote control rooms in the near future for full remote operation and remarkable cost reduction.

  3. Early geophysical maps published by A. Petermann

    Czech Academy of Sciences Publication Activity Database

    Kozák, Jan; Vaněk, Jiří

    2012-01-01

    Roč. 56, č. 4 (2012), s. 1109-1122 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30120515 Keywords : August Petermann * Geographische Mitteilungen * geophysical maps Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.975, year: 2012

  4. The spatial data infrastructure for the European Seas Observatory Network (ESONET)

    Science.gov (United States)

    Huber, Robert; Diepenbroek, Michael

    2010-05-01

    ESONET is a Multidisciplinary European Network of Excellence (NoE) in which scientists and engineers from 50 partners and 14 countries cooperate in building the infrastructure for a lasting integration of research and development in deep sea observatories in Europe. This NoE aims to develop strong links between regional nodes of a European network of sub sea observatories and to promote multidiciplinarity and transnationality within each node. Essential for these goals is the provision of an effective data and knowledge infrastructure for both, management and archiving of observatory data as well as knowledge and data sharing among network participants. The ESONET data infrastructure roughly consists of four major components: data policies a common agreement on the data management procedures and prerequisites, data acquisition technologies serve to collect data directly from ESONET observatories, data archives care for long term data management of collected ESONET data and data integration and portal tools which ensure harmonisation of collected data and allow access to the data in a common way. Most critical for ESONET was the development of a spatial data infrastructure (SDI) by using standardised protocols to directly access observatory data in its spatial and temporal context. The ESONET SDI provides means to either access data in quasi real time or harvest locally stored data in order to transfer it to a long term data archive. ESONET SDI largely builds upon the OGC Sensor Web Enablement (SWE) suite of standards. Among those, the Sensor Observation Service (SOS), the Observations & Measurements (O&M), Sensor Markup Language (SensorML) are especially important for the integration of observatory data as well as for the contribution of ESONET data to GEOSS.

  5. Geophysical methods in uranium mining

    International Nuclear Information System (INIS)

    Koehler, K.

    1989-01-01

    In uranium prospecting, exploration, milling, and mining there is an urgent need to have information on the concentration of uranium at all steps of handling uranium containing materials. To gain this information in an effective way modern geophysical methods have to be applied. Publications of the IAEA and NEA in this field are reviewed in order to characterize the state of the art of these methods. 55 refs

  6. Digital Underground (Shh. It's really Applied Geophysics!)

    Science.gov (United States)

    McAdoo, B. G.

    2003-12-01

    Digital Underground (Geology/Physics 241) at Vassar College is an applied geophysics course designed for a liberal arts curriculum, and has nothing to do with Shock G and Tupac Shakur. Applied geophysics courses have a history of using geophysical methods on environmental contamination-type applications (underground storage tanks, leach fields, etc.). Inspired in large part by the Keck Geology Consortium project run by Franklin and Marshall College geophysicist (Robert Sternberg) and archaeologist (James Delle) in an old slave village in Jamaica in 1999, this class examines the history of slavery in New York's Hudson Valley region by way of its forgotten African-American graveyards. This multidisciplinary approach to an issue draws students from across the curriculum- we have had our compliments of geologists and physicists, along with students from sociology, environmental studies, history, and Africana studies. The name of the class and content are designed to attract a non-traditional student of geophysics.- The project-based nature of the class appeals to student yearning for an out-of-classroom experience. The uncontrolled nature of the class demonstrates the complications that occur in real-word situations. The class has in the past broken itself into two teams- a surveying team and an archival research team. Archival research is done (usually by the social scientists in the class) to add a human dimension to the geophysical. The surveying equipment used in delineating these forgotten graveyards includes a Total Station surveyor, an electrical resistivity meter, a magnetometer, and a ground penetrating radar. All students must have a rudimentary understanding of the physics behind the equipment (to the level of where they can explain it to the general public), and the methods used by those studying the archives. This is a project-based class, where the instructor acts as a project manager, and the students make the decisions regarding the survey itself. Every

  7. The Pierre Auger Observatory status and the AugerPrime upgrade program

    Directory of Open Access Journals (Sweden)

    Martello Daniele

    2017-01-01

    Full Text Available The nature and the origin of ultra-high energy cosmic rays (UHECRs, above 1017 eV, are still unknown. The Pierre Auger Observatory with its huge exposure provides us with a large set of high quality data. The analysis of these data has led to major breakthroughs in the last decade, but a coherent interpretation is still missing. To answer the open questions the Observatory has started a major upgrade, with an emphasis on improved mass composition determination using the surface detectors. The latest results and the planned detector upgrade will be presented. The expected performance and the improved physics sensitivity of the Observatory will be discussed.

  8. Streamlined Archaeo-geophysical Data Processing and Integration for DoD Field Use

    Science.gov (United States)

    2012-04-01

    6 Figure 2-3. Flowchart illustrating the old, ad-hoc approach of processing...Figure 2-3. Flowchart illustrating the old, ad-hoc approach of processing and integrating multiple geophysical datasets. Each color represents a... beginner , intermediate, and expert user. Most users agreed that the software is very effective for beginners because: (1) it provides a geophysics

  9. Geophysical investigation programme of Northern Switzerland: Gravimetric measurements 81/82

    International Nuclear Information System (INIS)

    Klingele, E.; Schwendener, H.

    1984-10-01

    Within the frame of the geophysical investigations of the NAGRA in the northern part of Switzerland the Swiss Geophysical Commission has measured 4954 gravity stations. The gravity data were processed and presented as Bouguer-anomaly and residual anomaly maps. The densities used for the corrections were 2.40 and 2.67 g/cm 3 . The residual field showed a negative anomaly along an axis passing through Weiach and Villigen. This anomaly can be interpreted quantitatively in terms of depth of the crystalline basement. (author)

  10. Quetelet, Lambert Adolphe (1796-1874)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Statistician, born in Ghent, Flanders, Belgium, founder (1833) and director of the Brussels Observatory. Studied astronomy at the Paris Observatory under FRANÇOIS ARAGO, and probability under Joseph Fourier and PIERRE LAPLACE. Apart from social statistics (crime, mortality, census taking), he worked on statistical, geophysical and meteorological data, and established statistical methods. Followin...

  11. Geophysical data fusion for subsurface imaging. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This report contains the results of a three year, three-phase project whose long-range goal has been to create a means for the more detailed and accurate definition of the near-surface (0--300 ft) geology beneath a site that had been subjected to environmental pollution. The two major areas of research and development have been: improved geophysical field data acquisition techniques; and analytical tools for providing the total integration (fusion) of all site data. The long-range goal of this project has been to mathematically, integrate the geophysical data that could be derived from multiple sensors with site geologic information and any other type of available site data, to provide a detailed characterization of thin clay layers and geological discontinuities at hazardous waste sites.

  12. Geophysical data fusion for subsurface imaging. Final report

    International Nuclear Information System (INIS)

    1995-10-01

    This report contains the results of a three year, three-phase project whose long-range goal has been to create a means for the more detailed and accurate definition of the near-surface (0--300 ft) geology beneath a site that had been subjected to environmental pollution. The two major areas of research and development have been: improved geophysical field data acquisition techniques; and analytical tools for providing the total integration (fusion) of all site data. The long-range goal of this project has been to mathematically, integrate the geophysical data that could be derived from multiple sensors with site geologic information and any other type of available site data, to provide a detailed characterization of thin clay layers and geological discontinuities at hazardous waste sites

  13. Development and implementation of the software for visualization and analysis of data geophysical loggers

    Science.gov (United States)

    Gordeev, V. F.; Malyshkov, S. Yu.; Botygin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.

    2017-11-01

    The general trend of modern ecological geophysics is changing priorities towards rapid assessment, management and prediction of ecological and engineering soil stability as well as developing brand new geophysical technologies. The article describes researches conducted by using multi-canal geophysical logger MGR-01 (developed by IMCES SB RAS), which allows to measure flux density of very low-frequency electromagnetic radiation. It is shown that natural pulsed electromagnetic fields of the earthen lithosphere can be a source of new information on Earth's crust and processes in it, including earthquakes. The device is intended for logging electromagnetic processes in Earth's crust, geophysical exploration, finding structural and lithological inhomogeneities, monitoring the geodynamic movement of Earth's crust, express assessment of seismic hazards. The data is gathered automatically from observation point network in Siberia

  14. Geophysical considerations of geothermics

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M

    1967-01-01

    The development and utilization of geothermal energy is described from the standpoint of geophysics. The internal temperature of the Earth and the history and composition of magmas are described. Methods of exploration such as gravity, magnetic, thermal and electrical surveys are discussed, as are geochemical and infrared photogrammetric techniques. Examples are provided of how these techniques have been used in Italy and at the Matsukawa geothermal field in Japan. Drilling considerations such as muds, casings and cementing materials are discussed. Solutions are proposed for problems of environmental pollution and plant expansion.

  15. geophysical and geochemical characterization of zango abattoir

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    disposal of hazardous materials, fresh groundwater supplies ... in the groundwater flow system may change considerably the conductivity of the polluted zone; hence the Geo-electric and. Electromagnetic (EM) geophysical methods could effectively be ... this field strength and phase displacement around a fracture zone.

  16. A low-power data acquisition system for geomagnetic observatories and variometer stations

    Science.gov (United States)

    Morschhauser, Achim; Haseloff, Jürgen; Bronkalla, Oliver; Müller-Brettschneider, Carsten; Matzka, Jürgen

    2017-09-01

    A modern geomagnetic observatory must provide data of high stability, continuity, and resolution. The INTERMAGNET network has therefore specified quantitative criteria to ensure a high quality standard of geomagnetic observatories. Here, we present a new data acquisition system which was designed to meet these criteria, in particular with respect to 1 Hz data. This system is based on a Raspberry Pi embedded PC and runs a C+ + data acquisition software. As a result, the data acquisition system is modular, cheap, and flexible, and it can be operated in remote areas with limited power supply. In addition, the system is capable of near-real-time data transmission, using a reverse SSH tunnel to work with any network available. The system hardware was successfully tested at the Niemegk observatory for a period of 1 year and subsequently installed at the Tatuoca observatory in Brazil.

  17. Geophysical Monitoring of Hydrological and Biogeochemical Transformations associated with Cr(VI) Bioremediation

    International Nuclear Information System (INIS)

    Hubbard, Susan; Williams, Kenneth H.; Conrad, Mark E.; Faybishenko, Boris; Peterson, John; Chen, Jinsong; Long, Philip E.; Hazen, Terry C.

    2008-01-01

    Understanding how hydrological and biogeochemical properties change over space and time in response to remedial treatments is hindered by our ability to monitor these processes with sufficient resolution and over field relevant scales. Here, we explored the use of geophysical approaches for monitoring the spatiotemporal distribution of hydrological and biogeochemical transformations associated with a Cr(VI)bioremediation experiment performed at Hanford, WA. We first integrated hydrological wellbore and geophysical tomographic datasets to estimate hydrological zonation at the study site. Using results from laboratory biogeophysical experiments and constraints provided by field geochemical datasets, we then interpreted time-lapse seismic and radar tomographic datasets, collected during thirteen acquisition campaigns over a three year experimental period, in terms of hydrological and biogeochemical transformations. The geophysical monitoring datasets were used to infer: the spatial distribution of injected electron donor; the evolution of gas bubbles; variations in total dissolved solids (nitrate and sulfate) as a function of pumping activity; the formation of precipitates and dissolution of calcites; and concomitant changes in porosity. Although qualitative in nature, the integrated interpretation illustrates how geophysical techniques have the potential to provide a wealth of information about coupled hydrobiogeochemical responses to remedial treatments in high spatial resolution and in a minimally invasive manner. Particularly novel aspects of our study include the use of multiple lines of evidence to constrain the interpretation of a long-term, field-scale geophysical monitoring dataset and the interpretation of the transformations as a function of hydrological heterogeneity and pumping activity

  18. The architecture of Hamburg-Bergedorf Observatory 1906 - 1912, compared with other observatories (German Title: Die Architektur der Hamburg-Bergedorfer Sternwarte 1906 - 1912 im Vergleich mit anderen Observatorien)

    Science.gov (United States)

    Müller, Peter

    The foundation of the astrophysical observatories in Potsdam-Telegrafenberg in 1874, in Meudon near Paris in 1875 and in Mount Hamilton in California in 1875 resulted in a complete change of observatory architecture. Astrometry had become irrelevant; meridian halls, i.e. an exact north-south orientation, were no longer necessary. The location in the centre of a (university) town was disadvantageous, due to vibrations caused by traffic and artificial light at night. New principles were defined: considerable distance (from the city center), secluded and exposed position (on a mountain) and construction of pavilions: inside a park a pavilion was built for each instrument. Other observatories of this type are: Pic du Midi in the French Alps, built as from 1878 as the first permanent observatory in the high mountains; Nice, Mont Gros, (1879); Brussels, Uccle (1883); Edinburgh, Blackford Hill (1892); Heidelberg, Königstuhl (1896); Barcelona, Monte Tibidado (1902). The original Hamburg Observatory was a modest rectangular building near the Millernrtor; in 1833 it became a State institute. As from 1906 erection of a spacious complex in Bergedorf, 20 km northeast of the city center, took place. Except for the unavailable position on a mountain, this complex fulfilled all principles of a modern observatory: in a park pavilion architecture in an elegant neo-baroque style designed by Albert Erbe (architect of the new Hamburger Kunsthalle with cupola). At the Hamburg Observatory the domed structures were cleverly hierarchised leaving an open view to the south. At the beginning astrometry and astrophysics were equally important; there was still a meridian circle. Apart from that, the instruments were manifold: a large refractor 0.60 m (installed by Repsold/Hamburg, 9 m focal length) and a large reflector 1 m (Zeiss/Jena, 3m focal length). Both were the largest instruments of their kind in the German Empire. In addition, there was the Lippert Astrograph on an elegant polar

  19. Cyclic Investigation of Geophysical Studies in the Exploration and Discovery of Natural Resources in Our Country

    International Nuclear Information System (INIS)

    Gonulalan, A. U.

    2007-01-01

    Although the methods of exploration geophysics were first utilized after the discovery of an oil field in 1921, they have also applied in the old centuries. Likewise, the half of the total production in the United States of America is covered by new oil fields discovered by utilizing geophysical methods. The industry's energy necessity increases the interest to oil. The investments in the field of geophysics by the companies which makes large amount of money in order to discover new oil fields, widespread use of computers, the developments of space technology and world-wide nuclear competition even though its great danger for human beings have great share in the development of geophysics. Our country has 18 different types mines which has more than 10 billion $ potential. Geophysical engineers have great Kowledge and labor in the discovery of 1,795 trillion wealth from borax to building stone, and 60 billion $ oil and gas. On the other hand, as 1,5 billion investment in the field of geophysics is only 0.08 % of total investments, the increase of investments will add more contribution

  20. Astronomy projects in ruins as observatory obliterated

    CERN Multimedia

    Bradley, M

    2003-01-01

    Canberra bushfires have gutted the Mount Stromlo Observatory causing the flames destroyed five telescopes, the workshop, eight staff homes and the main dome, causing more than $20 million in damage (1 page).

  1. EGS Richardson AGU Chapman NVAG3 Conference: Nonlinear Variability in Geophysics: scaling and multifractal processes

    OpenAIRE

    D. Schertzer; S. Lovejoy; S. Lovejoy

    1994-01-01

    1. The conference The third conference on "Nonlinear VAriability in Geophysics: scaling and multifractal processes" (NVAG 3) was held in Cargese, Corsica, Sept. 10-17, 1993. NVAG3 was joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first specialist conference jointly sponsored by the two organizations. It followed NVAG1 (Montreal, Aug. 1986), NVAG2 (Paris, June 1988; Schertzer and Lovejoy, 1991), five consecutive annual ...

  2. EGS Richardson AGU Chapman NVAG3 Conference: Nonlinear Variability in Geophysics: scaling and multifractal processes

    OpenAIRE

    Schertzer , D; Lovejoy , S.

    1994-01-01

    International audience; 1. The conference The third conference on "Nonlinear VAriability in Geophysics: scaling and multifractal processes" (NVAG 3) was held in Cargese, Corsica, Sept. 10-17, 1993. NVAG3 was joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first specialist conference jointly sponsored by the two organizations. It followed NVAG1 (Montreal, Aug. 1986), NVAG2 (Paris, June 1988; Schertzer and Lovejoy, 1991), five conse...

  3. The geomagnetic observatory on Tristan da Cunha: Setup, operation and experiences

    DEFF Research Database (Denmark)

    Matzka, Jürgen; Husøy, Bjørn-Ove; Berarducci, Alan

    2011-01-01

    The island Tristan da Cunha is located in the South Atlantic Anomaly, and until recently the area has been one of the largest gaps in the global geomagnetic observatory network. As part of the Danish project SAADAN we set up a geomagnetic observatory on the island. Here we report on how we establ...

  4. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  5. UNMANNED AIRCRAFT SYSTEMS FOR RAPID NEAR SURFACE GEOPHYSICAL MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    J. B. Stoll

    2013-08-01

    Full Text Available This paper looks at some of the unmanned aircraft systems (UAS options and deals with a magnetometer sensor system which might be of interest in conducting rapid near surface geophysical measurements. Few of the traditional airborne geophysical sensors are now capable of being miniaturized to sizes and payload within mini UAS limits (e.g. airborne magnetics, gamma ray spectrometer. Here the deployment of a fluxgate magnetometer mounted on an UAS is presented demonstrating its capability of detecting metallic materials that are buried in the soil. The effectiveness in finding ferrous objects (e.g. UXO, landslides is demonstrated in two case studies.

  6. The Virtual Solar Observatory: Still a Small Box

    Science.gov (United States)

    Gurman, J. B.; Bogart, R. S.; Davey, A. R.; Dimitoglou, G.; Hill, F.; Hourcle, J. A.; Martens, P. C.; Surez-Sola, I.; Tian, K. Q.; Wampler, S.

    2005-01-01

    Two and a half years after a design study began, and a year and a half after development commenced, version 1.0 of the Virtual Solar Observatory (VSO) was released at the 2004 Fall AGU meeting. Although internal elements of the VSO have changed, the basic design has remained the same, reflecting the team's belief in the importance of a simple, robust mechanism for registering data provider holdings, initiating queries at the appropriate provider sites, aggregating the responses, allowing the user to iterate before making a final selection, and enabling the delivery of data directly from the providers. In order to make the VSO transparent, lightweight, and portable, the developers employed XML for the registry, SOAP for communication between a VSO instance and data services, and HTML for the graphic user interface (GUI's). We discuss the internal data model, the API, and user responses to various trial GUI's as typical design issues for any virtual observatory. We also discuss the role of the "small box" of data search, identification, and delivery services provided by the VSO in the larger, Sun-Solar System Connection virtual observatory (VxO) scheme.

  7. Geophysical study of the Peinan Archaeological Site, Taiwan

    Science.gov (United States)

    Tong, Lun-Tao; Lee, Kun-Hsiu; Yeh, Chang-Keng; Hwang, Yan-Tsong; Chien, Jeng-Ming

    2013-02-01

    The Peinan archaeological site is the most intact Neolithic village with slate coffin burial complexes in Taiwan. However, the area that potentially contains significant ancient remains is covered by dense vegetation. No reliable data show the distribution of the ancient village, and no geophysical investigation has been performed at this site. To evaluate various geophysical methods under the geological setting and surface condition of the site, the physical properties of the remains were measured and four geophysical methods involving magnetic, electromagnetic (EM), electrical resistivity tomography (ERT), and ground-penetrating radar (GPR) were tested along three parallel profiles. The results imply that the EM and magnetic methods are much cost-effective and suitable for investigating the entire area. GPR and ERT methods can provide high resolution subsurface image, which are much suitable for subsequently detail investigation. The EM and magnetic surveys were thus conducted over the entire Peinan Cultural Park to understand the distribution of the ancient building remains at the Peinan site. The results of this study were verified by subsequent excavations, which indicate that the EM survey was successful in delineating the majority of the ancient village because the basements of building are highly resistive in comparison to the background sediment. The results of this investigation suggest that the ancient village was broadly distributed over the eastern part of the Peinan Culture Park and extended to the southeast.

  8. Reverberation Mapping Results from MDM Observatory

    DEFF Research Database (Denmark)

    Denney, Kelly D.; Peterson, B. M.; Pogge, R. W.

    2009-01-01

    We present results from a multi-month reverberation mapping campaign undertaken primarily at MDM Observatory with supporting observations from around the world. We measure broad line region (BLR) radii and black hole masses for six objects. A velocity-resolved analysis of the H_beta response show...

  9. Electricity and gas market observatory. 3. quarter 2006

    International Nuclear Information System (INIS)

    2006-01-01

    Since July 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). It completes the information already published by CRE: practical information for eligible customers: consumer guide, list of suppliers, communications regarding markets running, CRE annual activity report. (author)

  10. Electricity and gas market observatory. 1. quarter 2006

    International Nuclear Information System (INIS)

    2006-01-01

    Since July 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). It completes the information already published by CRE: practical information for eligible customers: consumer guide, list of suppliers, communications regarding markets running, CRE annual activity report. (author)

  11. Mass sensitive observables of the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Unger M.

    2013-06-01

    Full Text Available In this article we will discuss measurements of the longitudinal development of air showers at the Pierre Auger Observatory. The longitudinal development of the electromagnetic component can be directly observed by the fluorescence telescopes of the Auger Observatory and we will present the results on the evolution of the average shower maximum and its fluctuations as a function of energy. Moreover, two observables from the surface detector, the asymmetry of the rise time of the station signals and the muon production depth, will be discussed and the measurements will be compared to predictions from air shower simulations for different primary particle types.

  12. Electricity and gas market observatory. 1. 2005 quarter

    International Nuclear Information System (INIS)

    2005-01-01

    Since July 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). It completes the information already published by CRE: practical information for eligible customers: consumer guide, list of suppliers, communications regarding markets running, CRE annual activity report. (author)

  13. Electricity and gas market observatory. 2. quarter 2006

    International Nuclear Information System (INIS)

    2006-01-01

    Since July 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). It completes the information already published by CRE: practical information for eligible customers: consumer guide, list of suppliers, communications regarding markets running, CRE annual activity report. (author)

  14. Electricity and gas market observatory. 4. 2005 quarter

    International Nuclear Information System (INIS)

    2005-01-01

    Since July 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). It completes the information already published by CRE: practical information for eligible customers: consumer guide, list of suppliers, communications regarding markets running, CRE annual activity report. (author)

  15. Electricity and gas market observatory. 2. 2005 quarter

    International Nuclear Information System (INIS)

    2005-01-01

    Since July 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). It completes the information already published by CRE: practical information for eligible customers: consumer guide, list of suppliers, communications regarding markets running, CRE annual activity report. (author)

  16. Electricity and gas market observatory. 3. 2005 quarter

    International Nuclear Information System (INIS)

    2005-01-01

    Since July 2004, all electricity and gas consumers can be eligible according to their consumption site, as long as all or part of the electricity or gas consumed is designed for non-residential use. The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). It completes the information already published by CRE: practical information for eligible customers: consumer guide, list of suppliers, communications regarding markets running, CRE annual activity report. (author)

  17. Development of geophysical and geochemical data processing software based on component GIS

    International Nuclear Information System (INIS)

    Ke Dan; Yu Xiang; Wu Qubo; Han Shaoyang; Li Xi

    2013-01-01

    Based on component GIS and mixed programming techniques, a software which combines the basic GIS functions, conventional and unconventional data process methods for the regional geophysical and geochemical data together, is designed and developed. The software has many advantages, such as friendly interface, easy to use and utility functions and provides a useful platform for regional geophysical and geochemical data processing. (authors)

  18. A Hands-on Approach to Teaching Geophysics through the University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course in the Gulf of Mexico.

    Science.gov (United States)

    Duncan, D.; Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez-Vasquez, R. A.; Saustrup, S.

    2017-12-01

    The three week field course is offered to graduate and upper-level undergraduate students as hands-on instruction and training for marine geology and geophysics applications. Instructors provide theoretical and technical background of high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, and the sedimentology of resulting seabed samples in the initial phase of the course. The class then travels to the Gulf Coast for a week of at-sea field work. Over the last 10 years, field sites at Freeport, Port Aransas, and Galveston, TX, and Grand Isle, LA, have provided ideal locations for students to explore and investigate coastal and continental shelf processes through the application of geophysical techniques. Students with various backgrounds work in teams of four and rotate between two marine vessels: the R/V Scott Petty, a 26' vessel owned and operated by UTIG, and the R/V Manta, an 82' vessel owned and operated by NOAA. They assist with survey design, instrumentation setup and breakdown, data acquisition, trouble-shooting, data quality control, and safe instrumentation deployment and recovery. Teams also process data and sediment samples in an onshore field lab. During the final week, students visualize, integrate and interpret data for a final project using industry software. The course concludes with final presentations and discussions wherein students examine Gulf Coast geological history and sedimentary processes with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course satisfies field experience requirements for

  19. Multi-parameter observations in the Ibero-Moghrebian region: the Western Mediterranean seismic network (WM) and ROA GPS geodynamic network

    Science.gov (United States)

    Pazos, Antonio; Martín Davila, José; Buforn, Elisa; Gárate Pasquín, Jorge; Catalán Morollón, Manuel; Hanka, Winfried; Udías, Agustín.; Benzzeghoud, Mourad; Harnafi, Mimoun

    2010-05-01

    The plate boundary between Eurasia and Africa plates crosses the called "Ibero-Maghrebian" region from the San Vicente Cape (SW Portugal) to Tunisia including the South of Iberia, Alboran Sea, and northern Morocco and Algeria. In this area, the convergence, with a low rate, is accommodated over a wide and diffuse deformation zone, characterized by a significant and widespread moderate seismic activity [Buforn et al., 1995], and the occurrence of large earthquakes is separated by long time intervals. Since more than hundred years ago San Fernando Naval Observatory (ROA), in collaboration with other Institutes, has deployed different geophysical and geodetic equipment in the Southern Spain - North-western Africa area in order to study this broad deformation zone. Currently a Broad Band seismic net (Western Mediterranean, WM net) is deployed, in collaboration with other institutions, around the Gulf of Cádiz and the Alboran sea, with stations in the South of Iberia and in North Africa (at Spanish places and Morocco), together with the seismic stations a permanent geodetic GPS net is co-installed at the same sites. Also, other geophysical instruments have been installed: a Satellite Laser Ranging (SLR) station at San Fernando Observatory Headquarter, a Geomagnetic Observatory in Cádiz bay area and some meteorological stations. These networks have been recently improved with the deployment of a new submarine and on-land geophysical observatory in the Alboran island (ALBO Observatory), where a permanent GPS, a meteorological station were installed on land and a permanent submarine observatory in 50 meters depth was also deploy in last October (with a broad band seismic sensor, a 3 C accelerometer and a DPG). This work shows the present status and the future plans of these networks and some results.

  20. 77 FR 19321 - Geological and Geophysical Exploration on the Atlantic Outer Continental Shelf (OCS)

    Science.gov (United States)

    2012-03-30

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Geological and Geophysical... Statement (PEIS) to evaluate potential environmental effects of multiple Geological and Geophysical (G&G... limited to, seismic surveys, sidescan-sonar surveys, electromagnetic surveys, geological and geochemical...

  1. Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical 37 Cl and 71 Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun

  2. A low-power data acquisition system for geomagnetic observatories and variometer stations

    Directory of Open Access Journals (Sweden)

    A. Morschhauser

    2017-09-01

    Full Text Available A modern geomagnetic observatory must provide data of high stability, continuity, and resolution. The INTERMAGNET network has therefore specified quantitative criteria to ensure a high quality standard of geomagnetic observatories. Here, we present a new data acquisition system which was designed to meet these criteria, in particular with respect to 1 Hz data. This system is based on a Raspberry Pi embedded PC and runs a C+ +  data acquisition software. As a result, the data acquisition system is modular, cheap, and flexible, and it can be operated in remote areas with limited power supply. In addition, the system is capable of near-real-time data transmission, using a reverse SSH tunnel to work with any network available. The system hardware was successfully tested at the Niemegk observatory for a period of 1 year and subsequently installed at the Tatuoca observatory in Brazil.

  3. Study of Seismic Activity Using Geophysical and Radio Physical Equipment for Observation

    Science.gov (United States)

    Kvavadze, N.; Tsereteli, N. S.

    2015-12-01

    One of the most dangerous and destructive natural hazards are earthquakes, which is confirmed by recent earthquakes such as Nepal 2015, Japan and Turkey 2011. Because of this, study of seismic activity is important. Studying any process, it is necessary to use different methods of observation, which allows us to increase accuracy of obtained data. Seismic activity is a complex problem and its study needs different types of observation methods. Two main problems of seismic activity study are: reliable instrumental observations and earthquake short-term predictions. In case of seismic risks it is necessary to have reliable accelerometer data. One of the most promising field in earthquake short-term prediction is very low frequency (VLF) electromagnetic wave propagation in ionosphere observation. To study Seismic activity of Caucasus region, was created observation complex using Accelerometer, Velocimeter and VLF electromagnetic waves received from communication stations (located in different area of the world) reflected from low ionosphere. System is created and operates at Tbilisi State University Ionosphere Observatory, near Tbilisi in Tabakhmela 42.41'70 N, 44.80'92 E, Georgia. Data obtained is sent to a local server located at M. Nodia Institute of Geophysics, TSU, for storage and processing. Diagram for complex is presented. Also data analysis methods were created and preliminary processing was done. In this paper we present some of the results: Earthquake data from ionosphere observations as well as local earthquakes recorded with accelerometer and velocimeter. Complex is first in 6 that will be placed around Georgia this year. We plan on widening network every year.

  4. FixO3: Advancement towards Open Ocean Observatory Data Management Harmonisation

    Science.gov (United States)

    Behnken, Andree; Pagnani, Maureen; Huber, Robert; Lampitt, Richard

    2015-04-01

    Since 2002 there has been a sustained effort, supported as European framework projects, to harmonise both the technology and the data management of Open Ocean fixed observatories run by European nations. FixO3 started in September 2013, and for 3 more years will coordinate the convergence of data management best practice across a constellation of moorings in the Atlantic, in both hemispheres, and in the Mediterranean. To ensure the continued existence of these unique sources of oceanographic data as sustained observatories it is vital to improve access to the data collected, both in terms of methods of presentation, real-time availability, long-term archiving and quality assurance. The data management component of FixO3 improves access to marine observatory data by harmonising data management standards, formats and workflows covering the complete life cycle of data from real time data acquisition to long-term archiving. Legal and data policy aspects have been examined and discussed to identify transnational barriers to open-access to marine observatory data. As a result, a harmonised FixO3 data policy was drafted, which provides a formal basis for data exchange between FixO3 infrastructures, and also enables open access to data for the general public. FixO3 interacts with other European infrastructures such as EMODnet, SeaDataNet, PANGAEA, and especially aims to harmonise efforts with OceanSites and MyOcean. The project landing page (www.fixo3.eu) offers detailed information about every observatory as well as data visualisations and direct downloads. In addition to this, metadata for all FixO3 - relevant data are available from the searchable FixO3 metadata catalogue, which is also accessible from the project web page. This catalogue is hosted by PANGAEA and receives updates in regular intervals. The FixO3 Standards & Services registry ties in with the GEOSS Components and Services Registry (CSR) and provides additional observatory information. The data management

  5. Engineering Geophysical Study of the Convocation Square, Kaduna

    African Journals Online (AJOL)

    Abdullahi et. al

    integrated techniques for engineering site investigations. The applications .... distribution, numerical techniques are more commonly used. For the 1-D case, ... the software, IPIWIN (version 3.0.1) developed by the Geophysics. Group Moscow ...

  6. Exploring the cosmic rays energy frontier with the Auger Observatory

    CERN Document Server

    CERN. Geneva

    2006-01-01

    The existence of cosmic rays with energies in excess of 1020 eV represents a longstanding scientific mystery. Unveileing the mechanism and source of production/acceleration of particles of such enormous energies is a challenging experimental task due to their minute flux, roughly one km2 century. The Pierre Auger Observatory, now nearing completion in Malargue, Mendoza Province, Argentina, is spread over an area of 3000 km2. Two techniques are employed to observe the cosmic ray showers: detection of the shower particles on the ground and detection of fluorescence light produced as the shower particles pass through the atmosphere. I will describe the status of the Observatory and its detectors, and early results from the data recorded while the observatory is reaching its completion.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  7. Strategies for personnel sustainable lifecycle at astronomical observatories and local industry development

    Science.gov (United States)

    Bendek, Eduardo A.; Leatherbee, Michael; Smith, Heather; Strappa, Valentina; Zinnecker, Hans; Perez, Mario

    2014-08-01

    Specialized manpower required to efficiently operate world-class observatories requires large investments in time and resources to train personnel in very specific areas of engineering. Isolation and distances to mayor cities pose a challenge to retain motivated and qualified personnel on the mountain. This paper presents strategies that we believe may be effective for retaining this specific know-how in the astronomy field; while at the same time develop a local support industry for observatory operations and astronomical instrumentation development. For this study we choose Chile as a research setting because it will host more than 60% of the world's ground based astronomical infrastructure by the end of the decade, and because the country has an underdeveloped industry for astronomy services. We identify the astronomical infrastructure that exists in the country as well as the major research groups and industrial players. We further identify the needs of observatories that could be outsourced to the local economy. As a result, we suggest spin-off opportunities that can be started by former observatory employees and therefore retaining the knowhow of experienced people that decide to leave on-site jobs. We also identify tools to facilitate this process such as the creation of a centralized repository of local capabilities and observatory needs, as well as exchange programs within astronomical instrumentation groups. We believe that these strategies will contribute to a positive work environment at the observatories, reduce the operation and development costs, and develop a new industry for the host country.

  8. Synthesis of borehole geophysical data at the Underground Research Laboratory, Manitoba, Canada

    International Nuclear Information System (INIS)

    Keys, W.S.

    1984-07-01

    A suite of borehole-geophysical logs, supported by core data, was used to describe the rock matrix and fractures in a granitic pluton near Lac du Bonnet, Manitoba, Canada. The site is being developed by Atomic Energy of Canada Limited, as an underground research laboratory to conduct geotechnical research and to validate predictive models as part of Canada's nuclear-fuel, waste-management program. However, the site is not planned to be used for waste disposal. Geophysical well logs were used to distinguish and correlate rock types and fractures between drill holes. Two significant fracture zones that are two of the major zones of ground-water movement at the site were identified by acoustic-televiewer logs. A new heat-pulse flowmeter provided repeatable measurements of very low-velocity, vertical flow in drill holes which enabled the identification of specific fractures that were transmitting water. Borehole gamma spectra showed that some fractures are enriched in uranium, and others may be depleted. This study demonstrates some of the advantages of synthesizing available borehole-geophysical logs at a site in fractured plutonic rocks and indicates how this information can contribute to an understanding of the geophysical conditions at the site

  9. INGDB-90. The International Neutron Nuclear Data Base for geophysics applications

    International Nuclear Information System (INIS)

    Kocherov, N.P.; McLaughline, P.K.

    1991-01-01

    This document describes the contents of the International Neutron Nuclear Data Base for applications in nuclear geophysics, such as borehole logging and mineral analysis. It contains neutron cross-section data from 19 elements and their isotopes of primary importance in geophysics, plus a data file with neutron spectra of three frequently used neutron sources. The INGDB-90 file is available, cost free, from the IAEA Nuclear Data Section on PC diskettes or on magnetic tape. (author). 9 refs

  10. Geophysical borehole logging. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Rouhiainen, P.

    1984-01-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 meters in the year 1984. The report deals with geophysical borehole logging methods, which could be used for the studies. The aim of geophysical borehole logging methods is to descripe specially hydrogeological and structural features. Only the most essential methods are dealt with in this report. Attention is paid to the information produced with the methods, derscription of the methods, interpretation and limitations. The feasibility and possibilities for the aims are evaluated. The evaluations are based mainly on the results from Sweden, England, Canada and USA as well as experiencies gained in Finland

  11. Preface: Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics

    Science.gov (United States)

    Mancho, Ana M.; Hernández-García, Emilio; López, Cristóbal; Turiel, Antonio; Wiggins, Stephen; Pérez-Muñuzuri, Vicente

    2018-02-01

    The third edition of the international workshop Nonlinear Processes in Oceanic and Atmospheric Flows was held at the Institute of Mathematical Sciences (ICMAT) in Madrid from 6 to 8 July 2016. The event gathered oceanographers, atmospheric scientists, physicists, and applied mathematicians sharing a common interest in the nonlinear dynamics of geophysical fluid flows. The philosophy of this meeting was to bring together researchers from a variety of backgrounds into an environment that favoured a vigorous discussion of concepts across different disciplines. The present Special Issue on Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics contains selected contributions, mainly from attendants of the workshop, providing an updated perspective on modelling aspects of geophysical flows as well as issues on prediction and assimilation of observational data and novel tools for describing transport and mixing processes in these contexts. More details on these aspects are discussed in this preface.

  12. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    Science.gov (United States)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  13. The Legacy of the Georgetown College Observatory (D.C.)

    Science.gov (United States)

    Caron, Laura; Maglieri, Grace; Seitzer, Patrick

    2018-01-01

    Founded in 1841 as part of a nascent worldwide network of Jesuit-run astronomical observatories, the Georgetown College Observatory of Georgetown University in Washington, D.C. has been home to more than 125 years of astronomical research, from Father Curley’s calculations of the latitude and longitude of D.C. to Father McNally’s award-winning solar eclipse photography. But the impact of the Georgetown astronomy program was not limited to the observatory itself: it reached much further, into the local community and schools, and into the lives of everyone involved. This was never more apparent than under the directorship of Father Francis J Heyden, S.J., who arrived at Georgetown after World War II and stayed for almost three decades. He started a graduate program with over 90 graduates, hosting student researchers from local high schools and colleges, teaching graduate and undergraduate astronomy courses, and speaking at schools in the area, all while simultaneously managing Georgetown’s student radio station and hosting astronomical conferences on campus. Father Heyden’s research focused mainly on solar eclipses for geodetic purposes and planetary spectroscopy. But perhaps even more than research, Father Heyden dedicated his time and energy to the astronomy students, the notable of which include Vera Rubin, John P. Hagen of Project Vanguard, and a generation of Jesuit astronomers including Martin McCarthy, George Coyne, and Richard Boyle. Following the closure of the astronomy department in 1972, Father Heyden returned to Manila, where he had begun his astronomical career, to become Chief of the Solar Division at the Manila Observatory. His dedication to his work and to students serves as an inspiration for academic researchers across fields, and for the Georgetown University Astronomical Society, which, even in the absence of a formal astronomy program at Georgetown, continues his work in education and outreach today. In 1987, almost 150 years after its

  14. High coherence plane breaking packaging for superconducting qubits

    Science.gov (United States)

    Bronn, Nicholas T.; Adiga, Vivekananda P.; Olivadese, Salvatore B.; Wu, Xian; Chow, Jerry M.; Pappas, David P.

    2018-04-01

    We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.

  15. Prospect of Continuous VLBI Measurement of Earth Rotation in Monitoring Geophysical Fluids

    Science.gov (United States)

    Chao, Benjamin F.; Ma, Chopo; Clark, Thomas

    1998-01-01

    Large-scale mass transports in the geophysical fluids of the Earth system excite Earth's rotational variations in both length-of-day and polar motion. The excitation process is via the conservation of angular momentum. Therefore Earth rotation observations contain information about the integrated angular momentum (consisting of both the mass term and the motion term) of the geophysical fluids, which include atmosphere, hydrosphere, mantle, and the outer and inner cores. Such global information is often important and otherwise unattainable depending on the nature of the mass transport, its magnitude and time scale. The last few years have seen great advances in VLBI measurement of Earth rotation in precision and temporal resolution. These advances have opened new. areas in geophysical fluid studies, such as oceanic tidal angular momentum, atmospheric tides, Earth librations, and rapid atmospheric angular momentum fluctuations. Precision of 10 microseconds in UTI and 200 microarcseconds in polar motion can now be achieved on hourly basis. Building upon this heritage, the multi-network geodetic VLBI project, Continuous Observation of the Rotation of the Earth (CORE), promises to further these studies and to make possible studies on elusive but tell-tale geophysical processes such as oscillatory modes in the core and in the atmosphere. Currently the early phase of CORE is underway. Within a few years into the new mellinnium, the upcoming space gravity missions (such as GRACE) will measure the temporal variations in Earth's gravitational field, thus providing complementary information to that from Earth rotation study for a better understanding of global geophysical fluid processes.

  16. The Aula Espazio Gela Observatory: A tool for Solar System Education and Outreach

    Science.gov (United States)

    Rojas, J. F.; Perez-Hoyos, S.; Hueso, R.; Mendikoa, I.; Sanchez-Lavega, A.

    2011-10-01

    We present a summary of the activities undertaken over the first year of operations of the "Aula Espazio Gela Observatory", with teaching and astronomy outreach purposes. The observatory belongs to the Universidad del País Vasco and is a fundamental part of the "Master en Ciencia y Tecnología Espacial" (Space Science and Technology master). It is an urban observatory with the dome located on the roof of the School of Engineering at the Universidad del Pais Vasco in Bilbao (Spain).

  17. Citizen Observatories: A Standards Based Architecture

    Science.gov (United States)

    Simonis, Ingo

    2015-04-01

    A number of large-scale research projects are currently under way exploring the various components of citizen observatories, e.g. CITI-SENSE (http://www.citi-sense.eu), Citclops (http://citclops.eu), COBWEB (http://cobwebproject.eu), OMNISCIENTIS (http://www.omniscientis.eu), and WeSenseIt (http://www.wesenseit.eu). Common to all projects is the motivation to develop a platform enabling effective participation by citizens in environmental projects, while considering important aspects such as security, privacy, long-term storage and availability, accessibility of raw and processed data and its proper integration into catalogues and international exchange and collaboration systems such as GEOSS or INSPIRE. This paper describes the software architecture implemented for setting up crowdsourcing campaigns using standardized components, interfaces, security features, and distribution capabilities. It illustrates the Citizen Observatory Toolkit, a software suite that allows defining crowdsourcing campaigns, to invite registered and unregistered participants to participate in crowdsourcing campaigns, and to analyze, process, and visualize raw and quality enhanced crowd sourcing data and derived products. The Citizen Observatory Toolkit is not a single software product. Instead, it is a framework of components that are built using internationally adopted standards wherever possible (e.g. OGC standards from Sensor Web Enablement, GeoPackage, and Web Mapping and Processing Services, as well as security and metadata/cataloguing standards), defines profiles of those standards where necessary (e.g. SWE O&M profile, SensorML profile), and implements design decisions based on the motivation to maximize interoperability and reusability of all components. The toolkit contains tools to set up, manage and maintain crowdsourcing campaigns, allows building on-demand apps optimized for the specific sampling focus, supports offline and online sampling modes using modern cell phones with

  18. Local Observations, Global Connections: An Educational Program Using Ocean Networks Canada's Community-Based Observatories

    Science.gov (United States)

    Pelz, M.; Hoeberechts, M.; Ewing, N.; Davidson, E.; Riddell, D. J.

    2014-12-01

    Schools on Canada's west coast and in the Canadian Arctic are participating in the pilot year of a novel educational program based on analyzing, understanding and sharing ocean data collected by cabled observatories. The core of the program is "local observations, global connections." First, students develop an understanding of ocean conditions at their doorstep through the analysis of community-based observatory data. Then, they connect that knowledge with the health of the global ocean by engaging with students at other schools participating in the educational program and through supplemental educational resources. Ocean Networks Canada (ONC), an initiative of the University of Victoria, operates cabled ocean observatories which supply continuous power and Internet connectivity to a broad suite of subsea instruments from the coast to the deep sea. This Internet connectivity permits researchers, students and members of the public to download freely available data on their computers anywhere around the globe, in near real-time. In addition to the large NEPTUNE and VENUS cabled observatories off the coast of Vancouver Island, British Columbia, ONC has been installing smaller, community-based cabled observatories. Currently two are installed: one in Cambridge Bay, Nunavut and one at Brentwood College School, on Mill Bay in Saanich Inlet, BC. Several more community-based observatories are scheduled for installation within the next year. The observatories support a variety of subsea instruments, such as a video camera, hydrophone and water quality monitor and shore-based equipment including a weather station and a video camera. Schools in communities hosting an observatory are invited to participate in the program, alongside schools located in other coastal and inland communities. Students and teachers access educational material and data through a web portal, and use video conferencing and social media tools to communicate their findings. A series of lesson plans

  19. Geological characterization in urban areas based on geophysical mapping: A case study from Horsens, Denmark

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Poulsen, Søren Erbs; Thomsen, Peter

    2018-01-01

    Geophysical mapping in urban areas. Detailed 3D geological model of the area. Mapping contaminant plume......Geophysical mapping in urban areas. Detailed 3D geological model of the area. Mapping contaminant plume...

  20. Lights go out at city observatory

    CERN Multimedia

    Armstrong, R

    2003-01-01

    Edinburgh's Royal Observatory is to close its doors to the public due to dwindling visitor numbers. The visitor centre will remain open to the general public for planned lectures and night-time observing sessions, but will cease to be open on a daily basis from next month (1/2 page).