Geometric Invariants and Object Recognition.
1992-08-01
University of Chicago Press. Maybank , S.J. [1992], "The Projection of Two Non-coplanar Conics", in Geometric Invariance in Machine Vision, eds. J.L...J.L. Mundy and A. Zisserman, MIT Press, Cambridge, MA. Mundy, J.L., Kapur, .. , Maybank , S.J., and Quan, L. [1992a] "Geometric Inter- pretation of
Geometrical dynamics of Born-Infeld objects
Energy Technology Data Exchange (ETDEWEB)
Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Col. Villas San Sebastian, Colima (Mexico); Rojas, Efrain [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)
2007-03-21
We present a geometrically inspired study of the dynamics of Dp-branes. We focus on the usual non-polynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent. We take a closer look at the classical Hamiltonian analysis which is supported by the ADM framework of general relativity. The constraints and their algebra are identified as well as the geometrical role they play in phase space. In order to illustrate our results, we review the dynamics of a D1-brane immersed in a AdS{sub 3} x S{sup 3} background spacetime. We exhibit the mechanical properties of Born-Infeld objects paving the way to a consistent quantum formulation.
Geometrical dynamics of Born-Infeld objects
International Nuclear Information System (INIS)
Cordero, Ruben; Molgado, Alberto; Rojas, Efrain
2007-01-01
We present a geometrically inspired study of the dynamics of Dp-branes. We focus on the usual non-polynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent. We take a closer look at the classical Hamiltonian analysis which is supported by the ADM framework of general relativity. The constraints and their algebra are identified as well as the geometrical role they play in phase space. In order to illustrate our results, we review the dynamics of a D1-brane immersed in a AdS 3 x S 3 background spacetime. We exhibit the mechanical properties of Born-Infeld objects paving the way to a consistent quantum formulation
Geometric Operators on Boolean Functions
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall; Falster, Peter
In truth-functional propositional logic, any propositional formula represents a Boolean function (according to some valuation of the formula). We describe operators based on Decartes' concept of constructing coordinate systems, for translation of a propositional formula to the image of a Boolean...... function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propositional reasoning. In other words, we can capture all kinds of inference in propositional logic by means...... of a few geometric operators working on the images of Boolean functions. The operators we describe, arise from the niche area of array-based logic and have previously been tightly bound to an array-based representation of Boolean functions. We redefine the operators in an abstract form to make them...
Edit propagation using geometric relationship functions
Guerrero, Paul; Jeschke, Stefan; Wimmer, Michael; Wonka, Peter
2014-01-01
We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations. © 2014 ACM 0730-0301/2014/03- ART15 $15.00.
Edit propagation using geometric relationship functions
Guerrero, Paul
2014-04-15
We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations. © 2014 ACM 0730-0301/2014/03- ART15 $15.00.
Recognition of Simple 3D Geometrical Objects under Partial Occlusion
Barchunova, Alexandra; Sommer, Gerald
In this paper we present a novel procedure for contour-based recognition of partially occluded three-dimensional objects. In our approach we use images of real and rendered objects whose contours have been deformed by a restricted change of the viewpoint. The preparatory part consists of contour extraction, preprocessing, local structure analysis and feature extraction. The main part deals with an extended construction and functionality of the classifier ensemble Adaptive Occlusion Classifier (AOC). It relies on a hierarchical fragmenting algorithm to perform a local structure analysis which is essential when dealing with occlusions. In the experimental part of this paper we present classification results for five classes of simple geometrical figures: prism, cylinder, half cylinder, a cube, and a bridge. We compare classification results for three classical feature extractors: Fourier descriptors, pseudo Zernike and Zernike moments.
Improved Object Proposals with Geometrical Features for Autonomous Driving
Directory of Open Access Journals (Sweden)
Yiliu Feng
2017-01-01
Full Text Available This paper aims at generating high-quality object proposals for object detection in autonomous driving. Most existing proposal generation methods are designed for the general object detection, which may not perform well in a particular scene. We propose several geometrical features suited for autonomous driving and integrate them into state-of-the-art general proposal generation methods. In particular, we formulate the integration as a feature fusion problem by fusing the geometrical features with existing proposal generation methods in a Bayesian framework. Experiments on the challenging KITTI benchmark demonstrate that our approach improves the existing methods significantly. Combined with a convolutional neural net detector, our approach achieves state-of-the-art performance on all three KITTI object classes.
Geometric function theory in higher dimension
2017-01-01
The book collects the most relevant outcomes from the INdAM Workshop “Geometric Function Theory in Higher Dimension” held in Cortona on September 5-9, 2016. The Workshop was mainly devoted to discussions of basic open problems in the area, and this volume follows the same line. In particular, it offers a selection of original contributions on Loewner theory in one and higher dimensions, semigroups theory, iteration theory and related topics. Written by experts in geometric function theory in one and several complex variables, it focuses on new research frontiers in this area and on challenging open problems. The book is intended for graduate students and researchers working in complex analysis, several complex variables and geometric function theory.
Geometric optimization and sums of algebraic functions
Vigneron, Antoine E.
2014-01-01
We present a new optimization technique that yields the first FPTAS for several geometric problems. These problems reduce to optimizing a sum of nonnegative, constant description complexity algebraic functions. We first give an FPTAS for optimizing such a sum of algebraic functions, and then we apply it to several geometric optimization problems. We obtain the first FPTAS for two fundamental geometric shape-matching problems in fixed dimension: maximizing the volume of overlap of two polyhedra under rigid motions and minimizing their symmetric difference. We obtain the first FPTAS for other problems in fixed dimension, such as computing an optimal ray in a weighted subdivision, finding the largest axially symmetric subset of a polyhedron, and computing minimum-area hulls.
DEFF Research Database (Denmark)
Raket, Lars Lau
We propose a direction it the field of statistics which we will call functional object analysis. This subfields considers the analysis of functional objects defined on continuous domains. In this setting we will focus on model-based statistics, with a particularly emphasis on mixed......-effect formulations, where the observed functional signal is assumed to consist of both fixed and random functional effects. This thesis takes the initial steps toward the development of likelihood-based methodology for functional objects. We first consider analysis of functional data defined on high...
Reasoning about Function Objects
Nordio, Martin; Calcagno, Cristiano; Meyer, Bertrand; Müller, Peter; Tschannen, Julian
Modern object-oriented languages support higher-order implementations through function objects such as delegates in C#, agents in Eiffel, or closures in Scala. Function objects bring a new level of abstraction to the object-oriented programming model, and require a comparable extension to specification and verification techniques. We introduce a verification methodology that extends function objects with auxiliary side-effect free (pure) methods to model logical artifacts: preconditions, postconditions and modifies clauses. These pure methods can be used to specify client code abstractly, that is, independently from specific instantiations of the function objects. To demonstrate the feasibility of our approach, we have implemented an automatic prover, which verifies several non-trivial examples.
A generic algorithm for constructing hierarchical representations of geometric objects
International Nuclear Information System (INIS)
Xavier, P.G.
1995-01-01
For a number of years, robotics researchers have exploited hierarchical representations of geometrical objects and scenes in motion-planning, collision-avoidance, and simulation. However, few general techniques exist for automatically constructing them. We present a generic, bottom-up algorithm that uses a heuristic clustering technique to produced balanced, coherent hierarchies. Its worst-case running time is O(N 2 logN), but for non-pathological cases it is O(NlogN), where N is the number of input primitives. We have completed a preliminary C++ implementation for input collections of 3D convex polygons and 3D convex polyhedra and conducted simple experiments with scenes of up to 12,000 polygons, which take only a few minutes to process. We present examples using spheres and convex hulls as hierarchy primitives
Random geometric graphs with general connection functions
Dettmann, Carl P.; Georgiou, Orestis
2016-03-01
In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H (r ) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.
Geometrical scaling in charm structure function ratios
International Nuclear Information System (INIS)
Boroun, G.R.; Rezaei, B.
2014-01-01
By using a Laplace-transform technique, we solve the next-to-leading-order master equation for charm production and derive a compact formula for the ratio R c =F L cc ¯ /F 2 cc ¯ , which is useful for extracting the charm structure function from the reduced charm cross section, in particular, at DESY HERA, at small x. Our results show that this ratio is independent of x at small x. In this method of determining the ratios, we apply geometrical scaling in charm production in deep inelastic scattering (DIS). Our analysis shows that the renormalization scales have a sizable impact on the ratio R c at high Q 2 . Our results for the ratio of the charm structure functions are in a good agreement with some phenomenological models
Geometric objects related to the potential of electric charges
International Nuclear Information System (INIS)
Mozrzymas, J.
1995-01-01
We derive explicit formulas for curvature and torsion of a line of the field of n electric charges. These formulas show that in general the torsion of a field line is not zero if n≥3. We also propose a geometric interpretation of the derived formulas. In the second part of the paper we present an outline of a new description of equipotential surfaces of two and three electric charges. In this description the golden section appears in a natural way when two electric charges are equal. This approach also relates an equipotential surface of three charges to the classic surface containing twenty seven straight lines. (author)
Probabilistic active recognition of multiple objects using Hough-based geometric matching features
CSIR Research Space (South Africa)
Govender, N
2015-01-01
Full Text Available be recognized simultaneously, and occlusion and clutter (through distracter objects) is common. We propose a representation for object viewpoints using Hough transform based geometric matching features, which are robust in such circumstances. We show how...
Energy Technology Data Exchange (ETDEWEB)
Yuan, Rong [Univ. of California, Berkeley, CA (United States)
2007-01-01
Linear elastic fracture mechanics is widely used in industry because it established simple and explicit relationships between the permissible loading conditions and the critical crack size that is allowed in a structure. Stress intensity factors are the above-mentioned functional expressions that relate load with crack size through geometric functions or weight functions. Compliance functions are to determine the crack/flaw size in a structure when optical inspection is inconvenient. As a result, geometric functions, weight functions and compliance functions have been intensively studied to determine the stress intensity factor expressions for different geometries. However, the relations between these functions have received less attention. This work is therefore to investigate the intrinsic relationships between these functions. Theoretical derivation was carried out and the results were verified on single-edge cracked plate under tension and bending. It is found out that the geometric function is essentially the non-dimensional weight function at the loading point. The compliance function is composed of two parts: a varying part due to crack extension and a constant part from the intact structure if no crack exists. The derivative of the compliance function at any location is the product of the geometric function and the weight function at the evaluation point. Inversely, the compliance function can be acquired by the integration of the product of the geometric function and the weight function with respect to the crack size. The integral constant is just the unchanging compliance from the intact structure. Consequently, a special application of the relations is to obtain the compliance functions along a crack once the geometric function and weight functions are known. Any of the three special functions can be derived once the other two functions are known. These relations may greatly simplify the numerical process in obtaining either geometric functions, weight
Controlling Object Heat Release Rate using Geometrical Features
Kraft, Stefan Marc
2017-01-01
An experimental study was conducted to determine the effect of complex geometries on the burning rate of materials made using additive manufacturing. Controlling heat release rate has applicability in limiting fire hazards as well as for designing fuels for optimal burning rate. The burning rate of a structure is a function of the material properties as well as the airflow through it, which is dictated by the geometry. This burning rate is generally proportional to the porosity for obj...
Geometrical objects architecture and the mathematical sciences 1400-1800
2014-01-01
This volume explores the mathematical character of architectural practice in diverse pre- and early modern contexts. It takes an explicitly interdisciplinary approach, which unites scholarship in early modern architecture with recent work in the history of science, in particular, on the role of practice in the scientific revolution. As a contribution to architectural history, the volume contextualizes design and construction in terms of contemporary mathematical knowledge, attendant forms of mathematical practice, and relevant social distinctions between the mathematical professions. As a contribution to the history of science, the volume presents a series of micro-historical studies that highlight issues of process, materiality, and knowledge production in specific, situated, practical contexts. Our approach sees the designer’s studio, the stone-yard, the drawing floor, and construction site not merely as places where the architectural object takes shape, but where mathematical knowledge itself is depl...
THE METHOD OF GEOMETRIC CALIBRATION OF OPTOELECTRONIC SYSTEMS BASED ON ELECTRONIC TEST OBJECT
Directory of Open Access Journals (Sweden)
D. A. Kozhevnikov
2017-01-01
Full Text Available Designing remote sensing of the Earth devices is requires a lot of attention to evaluation lens distortion level and providing the required accuracy values of geometric calibration of optoelectronic systems at all. Test- objects known as most common tools for optical systems geometric calibration. The purpose of the research was creating an automatically method of distortion correction coefficients calculating with a 3 μm precision in the measurement process. The method of geometric calibration of the internal orientation elements of the optical system based on the electronic test object is proposed. The calculation of the test string brightness image from its multispectral image and filtered signal extrema position determination are presented. Ratio of magnitude of the distortion and interval center is given. Three variants of electronic test-objects with different step and element size are considered. Оptimal size of calibration element was defined as 3×3 pixels due to shape of the subpixels with the aspect ratio of the radiating areas about 1 : 3. It is advisable to use IPS as an electronic test object template. An experimental test and measurement stand functional diagram based on the collimator and optical bench «OSK-2CL» is showed. It was determined that test objects with a grid spacing of 4 and 8 pixels can’t provide tolerable image because of non-collimated emission of active sites and scattering on optical surfaces – the shape of the elements is substantially disrupted. Test-object with a 12 pixels grid spacing was used to distortion level analyzing as most suitable.Ratio of coordinate increment and element number graphs for two photographic lenses (Canon EF-S 17-85 f/4-5.6 IS USM and EF-S 18-55 f/3.5-5.6 IS II are presented. A calculation of the distortion values in edge zones was held, which were respectively 43 μm and 51.6 μm. The technique and algorithm of software implementation is described. Possible directions of the
Piecewise Geometric Estimation of a Survival Function.
1985-04-01
Langberg (1982). One of the by- products of the estimation process is an estimate of the failure rate function: here, another issue is raised. It is evident...envisaged as the infinite product probability space that may be constructed in the usual way from the sequence of probability spaces corresponding to the...received 6 MP (a mercaptopurine used in the treatment of leukemia). The ordered remis- sion times in weeks are: 6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13, 16
Geometric optical transfer function and tis computation method
International Nuclear Information System (INIS)
Wang Qi
1992-01-01
Geometric Optical Transfer Function formula is derived after expound some content to be easily ignored, and the computation method is given with Bessel function of order zero and numerical integration and Spline interpolation. The method is of advantage to ensure accuracy and to save calculation
Dynamics of inequalities in geometric function theory
Directory of Open Access Journals (Sweden)
Reich Simeon
2001-01-01
Full Text Available A domain in the complex plane which is star-like with respect to a boundary point can be approximated by domains which are star-like with respect to interior points. This approximation process can be viewed dynamically as an evolution of the null points of the underlying holomorphic functions from the interior of the open unit disk towards a boundary point. We trace these dynamics analytically in terms of the Alexander–Nevanlinna and Robertson inequalities by using the framework of complex dynamical systems and hyperbolic monotonicity.
Geometric theory of functions of a complex variable
Goluzin, G M
1969-01-01
This book is based on lectures on geometric function theory given by the author at Leningrad State University. It studies univalent conformal mapping of simply and multiply connected domains, conformal mapping of multiply connected domains onto a disk, applications of conformal mapping to the study of interior and boundary properties of analytic functions, and general questions of a geometric nature dealing with analytic functions. The second Russian edition upon which this English translation is based differs from the first mainly in the expansion of two chapters and in the addition of a long survey of more recent developments. The book is intended for readers who are already familiar with the basics of the theory of functions of one complex variable.
Model-based recognition of 3-D objects by geometric hashing technique
International Nuclear Information System (INIS)
Severcan, M.; Uzunalioglu, H.
1992-09-01
A model-based object recognition system is developed for recognition of polyhedral objects. The system consists of feature extraction, modelling and matching stages. Linear features are used for object descriptions. Lines are obtained from edges using rotation transform. For modelling and recognition process, geometric hashing method is utilized. Each object is modelled using 2-D views taken from the viewpoints on the viewing sphere. A hidden line elimination algorithm is used to find these views from the wire frame model of the objects. The recognition experiments yielded satisfactory results. (author). 8 refs, 5 figs
Geometrical exploration of a flux-optimised sodium receiver through multi-objective optimisation
Asselineau, Charles-Alexis; Corsi, Clothilde; Coventry, Joe; Pye, John
2017-06-01
A stochastic multi-objective optimisation method is used to determine receiver geometries with maximum second law efficiency, minimal average temperature and minimal surface area. The method is able to identify a set of Pareto optimal candidates that show advantageous geometrical features, mainly in being able to maximise the intercepted flux within the geometrical boundaries set. Receivers with first law thermal efficiencies ranging from 87% to 91% are also evaluated using the second law of thermodynamics and found to have similar efficiencies of over 60%, highlighting the influence that the geometry can play in the maximisation of the work output of receivers by influencing the distribution of the flux from the concentrator.
Geometric function theory: a modern view of a classical subject
International Nuclear Information System (INIS)
Crowdy, Darren
2008-01-01
Geometric function theory is a classical subject. Yet it continues to find new applications in an ever-growing variety of areas such as modern mathematical physics, more traditional fields of physics such as fluid dynamics, nonlinear integrable systems theory and the theory of partial differential equations. This paper surveys, with a view to modern applications, open problems and challenges in this subject. Here we advocate an approach based on the use of the Schottky–Klein prime function within a Schottky model of compact Riemann surfaces. (open problem)
Area collapse algorithm computing new curve of 2D geometric objects
Buczek, Michał Mateusz
2017-06-01
The processing of cartographic data demands human involvement. Up-to-date algorithms try to automate a part of this process. The goal is to obtain a digital model, or additional information about shape and topology of input geometric objects. A topological skeleton is one of the most important tools in the branch of science called shape analysis. It represents topological and geometrical characteristics of input data. Its plot depends on using algorithms such as medial axis, skeletonization, erosion, thinning, area collapse and many others. Area collapse, also known as dimension change, replaces input data with lower-dimensional geometric objects like, for example, a polygon with a polygonal chain, a line segment with a point. The goal of this paper is to introduce a new algorithm for the automatic calculation of polygonal chains representing a 2D polygon. The output is entirely contained within the area of the input polygon, and it has a linear plot without branches. The computational process is automatic and repeatable. The requirements of input data are discussed. The author analyzes results based on the method of computing ends of output polygonal chains. Additional methods to improve results are explored. The algorithm was tested on real-world cartographic data received from BDOT/GESUT databases, and on point clouds from laser scanning. An implementation for computing hatching of embankment is described.
Functional geometric method for solving free boundary problems for harmonic functions
Energy Technology Data Exchange (ETDEWEB)
Demidov, Aleksander S [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)
2010-01-01
A survey is given of results and approaches for a broad spectrum of free boundary problems for harmonic functions of two variables. The main results are obtained by the functional geometric method. The core of these methods is an interrelated analysis of the functional and geometric characteristics of the problems under consideration and of the corresponding non-linear Riemann-Hilbert problems. An extensive list of open questions is presented. Bibliography: 124 titles.
Evaluation of Geometrical Modulation Transfer Function in Optical Lens System
Directory of Open Access Journals (Sweden)
Cheng-Mu Tsai
2015-01-01
Full Text Available This paper presents ray tracing algorithms to evaluate the geometrical modulation transfer function (GMTF of optical lens system. There are two kinds of ray tracings methods that can be applied to help simulate the point spread function (PSF in the image plane, for example, paraxial optics and real ray tracings. The paraxial optics ray tracing is used to calculate the first-order properties such as the effective focal length (EFL and the entrance pupil position through less cost of computation. However, the PSF could have a large tolerance by only using paraxial optics ray tracing for simulation. Some formulas for real ray tracing are applied in the sagittal and tangential line spread function (LSF. The algorithms are developed to demonstrate the simulation of LSF. Finally, the GMTF is evaluated after the fast Fourier transform (FFT of the LSF.
Modifications of Geometric Truncation of the Scattering Phase Function
Radkevich, A.
2017-12-01
Phase function (PF) of light scattering on large atmospheric particles has very strong peak in forward direction constituting a challenge for accurate numerical calculations of radiance. Such accurate (and fast) evaluations are important in the problems of remote sensing of the atmosphere. Scaling transformation replaces original PF with a sum of the delta function and a new regular smooth PF. A number of methods to construct such a PF were suggested. Delta-M and delta-fit methods require evaluation of the PF moments which imposes a numerical problem if strongly anisotropic PF is given as a function of angle. Geometric truncation keeps the original PF unchanged outside the forward peak cone replacing it with a constant within the cone. This approach is designed to preserve the asymmetry parameter. It has two disadvantages: 1) PF has discontinuity at the cone; 2) the choice of the cone is subjective, no recommendations were provided on the choice of the truncation angle. This choice affects both truncation fraction and the value of the phase function within the forward cone. Both issues are addressed in this study. A simple functional form of the replacement PF is suggested. This functional form allows for a number of modifications. This study consider 3 versions providing continuous PF. The considered modifications also bear either of three properties: preserve asymmetry parameter, provide continuity of the 1st derivative of the PF, and preserve mean scattering angle. The second problem mentioned above is addressed with a heuristic approach providing unambiguous criterion of selection of the truncation angle. The approach showed good performance on liquid water and ice clouds with different particle size distributions. Suggested modifications were tested on different cloud PFs using both discrete ordinates and Monte Carlo methods. It was showed that the modifications provide better accuracy of the radiance computation compare to the original geometric truncation.
Fibre bundles associated with fields of geometric objects and a structure tensor
International Nuclear Information System (INIS)
Konderak, J.
1987-08-01
A construction of a k th structure tensor of a field of geometric objects is presented here (k is a non-negative integer). For a given field σ we construct a vector bundle H k,2 (σ). The k th structure tensor is defined as a section of H k,2 (σ) generated by the torsion of σ. It is then shown that vanishing of the k th structure tensor is a necessary and sufficient condition for the field to be (k + 1)-flat. (author). 16 refs
Physics in schools: the geometrical behaviour of large objects moving with relativistic velocities
Energy Technology Data Exchange (ETDEWEB)
Ormicki, M
1977-01-01
In the special relativity theory time and place are transformed from one inertia system to a second inertia system which is in motion in relation to the first, using the Lorentz transformation equations. Since in general the Lorentz abbreviations are only used for distances between a number of individual points, this may lead to a lack of understanding of how larger objects behave geometrically when they have relative velocities to each other. A model is considered to illustrate the operation of the Lorentz transformation in such cases, with results which can be handled on a mini-computer.
Braian, Michael; Jönsson, David; Kevci, Mir; Wennerberg, Ann
2018-04-06
To evaluate the accuracy and precision of objects produced by additive manufacturing systems (AM) for use in dentistry and to compare with subtractive manufacturing systems (SM). Ten specimens of two geometrical objects were produced by five different AM machines and one SM machine. Object A mimics an inlay-shaped object, while object B imitates a four-unit bridge model. All the objects were sorted into different measurement dimensions (x, y, z), linear distances, angles and corner radius. None of the additive manufacturing or subtractive manufacturing groups presented a perfect match to the CAD file with regard to all parameters included in the present study. Considering linear measurements, the precision for subtractive manufacturing group was consistent in all axes for object A, presenting results of additive manufacturing groups had consistent precision in the x-axis and y-axis but not in the z-axis. With regard to corner radius measurements, the SM group had the best overall accuracy and precision for both objects A and B when compared to the AM groups. Within the limitations of this in vitro study, the conclusion can be made that subtractive manufacturing presented overall precision on all measurements below 0.050mm. The AM machines also presented fairly good precision, additive techniques are now being implemented. Thus all these production techniques need to be tested, compared and validated. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Development of Large Concrete Object Geometrical Model Based on Terrestrial Laser Scanning
Directory of Open Access Journals (Sweden)
Zaczek-Peplinska Janina
2015-02-01
Full Text Available The paper presents control periodic measurements of movements and survey of concrete dam on Dunajec River in Rożnów, Poland. Topographical survey was conducted using laser scanning technique. The goal of survey was data collection and creation of a geometrical model. Acquired cross- and horizontal sections were utilised to create a numerical model of object behaviour at various load depending of changing level of water in reservoir. Modelling was accomplished using finite elements technique. During the project an assessment was conducted to terrestrial laser scanning techniques for such type of research of large hydrotechnical objects such as gravitational water dams. Developed model can be used to define deformations and displacement prognosis.
Effect of geometrical features various objects on the data quality obtained with measured by TLS
Pawłowicz, J. A.
2017-08-01
Collecting data on different building structures using Terrestrial Laser Scanning (TLS) has become in recent years a very popular due to minimize the time required to complete the task as compared to traditional methods. Technical parameters of 3D scanning devices (digitizers) are increasingly being improved, and the accuracy of the data collected allows you to play not only the geometry of an existing object in a digital image, but also enables the assessment of his condition. This is possible thanks to the digitalization of existing objects e.g., a 3D laser scanner, with which is obtained a digital data base is presented in the form of a cloud of points and by using reverse engineering. Measurements using laser scanners depends to a large extent, on the quality of the returning beam reflected from the target surface, towards the receiver. High impact on the strength and quality of the beam returning to the geometric features of the object. These properties may contribute to the emergence of some, sometimes even serious errors during scanning of various shapes. The study defined the effect of the laser beam distortion during the measurement objects with the same material but with different geometrical features on their three-dimensional imaging obtained from measurements made using TLS. We present the problem of data quality, dependent on the deflection of the beam intensity and shape of the object selected examples. The knowledge of these problems allows to obtain valuable data necessary for the implementation of digitization and the visualization of virtually any building structure made of any materials. The studies has been proven that the increase in the density of scanning does not affect the values of mean square error. The increase in the angle of incidence of the beam onto a flat surface, however, causes a decrease in the intensity of scattered radiation that reaches the receiver. The article presents an analysis of the laser beam reflected from broken at
EVALUATION OF RATIONAL FUNCTION MODEL FOR GEOMETRIC MODELING OF CHANG'E-1 CCD IMAGES
Directory of Open Access Journals (Sweden)
Y. Liu
2012-08-01
Full Text Available Rational Function Model (RFM is a generic geometric model that has been widely used in geometric processing of high-resolution earth-observation satellite images, due to its generality and excellent capability of fitting complex rigorous sensor models. In this paper, the feasibility and precision of RFM for geometric modeling of China's Chang'E-1 (CE-1 lunar orbiter images is presented. The RFM parameters of forward-, nadir- and backward-looking CE-1 images are generated though least squares solution using virtual control points derived from the rigorous sensor model. The precision of the RFM is evaluated by comparing with the rigorous sensor model in both image space and object space. Experimental results using nine images from three orbits show that RFM can precisely fit the rigorous sensor model of CE-1 CCD images with a RMS residual error of 1/100 pixel level in image space and less than 5 meters in object space. This indicates that it is feasible to use RFM to describe the imaging geometry of CE-1 CCD images and spacecraft position and orientation. RFM will enable planetary data centers to have an option to supply RFM parameters of orbital images while keeping the original orbit trajectory data confidential.
The geometric $\\beta$-function in curved space-time under operator regularization
Agarwala, Susama
2009-01-01
In this paper, I compare the generators of the renormalization group flow, or the geometric $\\beta$-functions for dimensional regularization and operator regularization. I then extend the analysis to show that the geometric $\\beta$-function for a scalar field theory on a closed compact Riemannian manifold is defined on the entire manifold. I then extend the analysis to find the generator of the renormalization group flow for a conformal scalar-field theories on the same manifolds. The geometr...
Liu, Hong; Zhu, Jingping; Wang, Kai
2015-08-24
The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.
Directory of Open Access Journals (Sweden)
Cai Ligang
2017-01-01
Full Text Available Instead improving the accuracy of machine tool by increasing the precision of key components level blindly in the production process, the method of combination of SNR quality loss function and machine tool geometric error correlation analysis to optimize five-axis machine tool geometric errors will be adopted. Firstly, the homogeneous transformation matrix method will be used to build five-axis machine tool geometric error modeling. Secondly, the SNR quality loss function will be used for cost modeling. And then, machine tool accuracy optimal objective function will be established based on the correlation analysis. Finally, ISIGHT combined with MATLAB will be applied to optimize each error. The results show that this method is reasonable and appropriate to relax the range of tolerance values, so as to reduce the manufacturing cost of machine tools.
The geometric β-function in curved space-time under operator regularization
Energy Technology Data Exchange (ETDEWEB)
Agarwala, Susama [Mathematical Institute, Oxford University, Oxford OX2 6GG (United Kingdom)
2015-06-15
In this paper, I compare the generators of the renormalization group flow, or the geometric β-functions, for dimensional regularization and operator regularization. I then extend the analysis to show that the geometric β-function for a scalar field theory on a closed compact Riemannian manifold is defined on the entire manifold. I then extend the analysis to find the generator of the renormalization group flow to conformally coupled scalar-field theories on the same manifolds. The geometric β-function in this case is not defined.
The geometric β-function in curved space-time under operator regularization
International Nuclear Information System (INIS)
Agarwala, Susama
2015-01-01
In this paper, I compare the generators of the renormalization group flow, or the geometric β-functions, for dimensional regularization and operator regularization. I then extend the analysis to show that the geometric β-function for a scalar field theory on a closed compact Riemannian manifold is defined on the entire manifold. I then extend the analysis to find the generator of the renormalization group flow to conformally coupled scalar-field theories on the same manifolds. The geometric β-function in this case is not defined
Ishii, Keiko; Miyamoto, Yuri; Rule, Nicholas O; Toriyama, Rie
2014-02-01
We examined how cultural values of harmony and uniqueness are represented and maintained through physical media (i.e., colorings of geometric patterns) and how individuals play an active role in selecting and maintaining such cultural values. We found that colorings produced by European American adults and children were judged as more unique, whereas colorings produced by Japanese adults and children were judged as more harmonious, reflecting cultural differences in values. Harmony undergirded Japanese participants' preferences for colorings, whereas uniqueness undergirded European American participants' preferences for colorings. These cultural differences led participants to prefer own-culture colorings over other-culture colorings. Moreover, bicultural participants' preferences acculturated according to their identification with their host culture. Furthermore, child rearers in Japan and Canada gave feedback about the children's colorings that were consistent with their culture's values. These findings suggest that simple geometric patterns can embody cultural values that are socialized and reinforced from an early age.
A Geometric Approach to Visualization of Variability in Functional Data
Xie, Weiyi
2016-12-19
We propose a new method for the construction and visualization of boxplot-type displays for functional data. We use a recent functional data analysis framework, based on a representation of functions called square-root slope functions, to decompose observed variation in functional data into three main components: amplitude, phase, and vertical translation. We then construct separate displays for each component, using the geometry and metric of each representation space, based on a novel definition of the median, the two quartiles, and extreme observations. The outlyingness of functional data is a very complex concept. Thus, we propose to identify outliers based on any of the three main components after decomposition. We provide a variety of visualization tools for the proposed boxplot-type displays including surface plots. We evaluate the proposed method using extensive simulations and then focus our attention on three real data applications including exploratory data analysis of sea surface temperature functions, electrocardiogram functions and growth curves.
A Geometric Approach to Visualization of Variability in Functional Data
Xie, Weiyi; Kurtek, Sebastian; Bharath, Karthik; Sun, Ying
2016-01-01
observed variation in functional data into three main components: amplitude, phase, and vertical translation. We then construct separate displays for each component, using the geometry and metric of each representation space, based on a novel definition
Geometrically non linear analysis of functionally graded material ...
African Journals Online (AJOL)
user
when compared to the other engineering materials (Akhavan and Hamed, 2010). However, FGM plates under mechanical loading may undergo elastic instability. Hence, the non-linear behavior of functionally graded plates has to be understood for their optimum design. Reddy (2000) proposed the theoretical formulation ...
Identification of geometric faces in hand-sketched 3D objects containing curved lines
El-Sayed, Ahmed M.; Wahdan, A. A.; Youssif, Aliaa A. A.
2017-07-01
The reconstruction of 3D objects from 2D line drawings is regarded as one of the key topics in the field of computer vision. The ongoing research is mainly focusing on the reconstruction of 3D objects that are mapped only from 2D straight lines, and that are symmetric in nature. Commonly, this approach only produces basic and simple shapes that are mostly flat or rather polygonized in nature, which is normally attributed to inability to handle curves. To overcome the above-mentioned limitations, a technique capable of handling non-symmetric drawings that encompass curves is considered. This paper discusses a novel technique that can be used to reconstruct 3D objects containing curved lines. In addition, it highlights an application that has been developed in accordance with the suggested technique that can convert a freehand sketch to a 3D shape using a mobile phone.
Programming Scala Scalability = Functional Programming + Objects
Wampler, Dean
2009-01-01
Learn how to be more productive with Scala, a new multi-paradigm language for the Java Virtual Machine (JVM) that integrates features of both object-oriented and functional programming. With this book, you'll discover why Scala is ideal for highly scalable, component-based applications that support concurrency and distribution. Programming Scala clearly explains the advantages of Scala as a JVM language. You'll learn how to leverage the wealth of Java class libraries to meet the practical needs of enterprise and Internet projects more easily. Packed with code examples, this book provides us
DEFF Research Database (Denmark)
Jørgensen, Troels Bo; Buch, Anders Glent; Kraft, Dirk
2015-01-01
descriptor allows for both fast computation and fast processing by having a low dimension, while still producing highly reliable edge detections. Lastly, we use our features in a 3D object recognition application using a well-established benchmark. We show that our edge features allow for significant...
Methods of geometric function theory in classical and modern problems for polynomials
International Nuclear Information System (INIS)
Dubinin, Vladimir N
2012-01-01
This paper gives a survey of classical and modern theorems on polynomials, proved using methods of geometric function theory. Most of the paper is devoted to results of the author and his students, established by applying majorization principles for holomorphic functions, the theory of univalent functions, the theory of capacities, and symmetrization. Auxiliary results and the proofs of some of the theorems are presented. Bibliography: 124 titles.
Akçakin, Veysel
2018-01-01
The purpose of this study is to investigate the effects of using geometric functions approach on 9th grade students' motivation levels toward mathematics in functions unit. Participants of this study were 87 students who were ongoing in the first year of high school in Turkey. In this research, pretest and posttest control group quasiexperimental…
International Nuclear Information System (INIS)
Yamasaki, K; Iwayama, T; Yajima, T
2011-01-01
The Okubo-Weiss field, frequently used for partitioning incompressible two-dimensional (2D) fluids into coherent and incoherent regions, corresponds to the Gaussian curvature of the stream function. Therefore, we consider the differential geometric structures of stream functions and calculate the Gaussian curvatures of some basic flows. We find the following. (I) The vorticity corresponds to the mean curvature of the stream function. Thus, the stream-function surface for an irrotational flow and that for a parallel shear flow correspond to the minimal surface and a developable surface, respectively. (II) The relationship between the coherency and the magnitude of the vorticity is interpreted by the curvatures. (III) Using the Gaussian curvature, stability of single and double point vortex streets is analyzed. The results of this analysis are compared with the well-known linear stability analysis. (IV) Conformal mapping in fluid mechanics is the physical expression of the geometric fact that the sign of the Gaussian curvature does not change in conformal mapping. These findings suggest that the curvatures of stream functions are useful for understanding the geometric structure of an incompressible 2D flow.
Effect of objective function on multi-objective inverse planning of radiation therapy
International Nuclear Information System (INIS)
Li Guoli; Wu Yican; Song Gang; Wang Shifang
2006-01-01
There are two kinds of objective functions in radiotherapy inverse planning: dose distribution-based and Dose-Volume Histogram (DVH)-based functions. The treatment planning in our days is still a trial and error process because the multi-objective problem is solved by transforming it into a single objective problem using a specific set of weights for each object. This work investigates the problem of objective function setting based on Pareto multi-optimization theory, and compares the effect on multi-objective inverse planning of those two kinds of objective functions including calculation time, converge speed, etc. The basis of objective function setting on inverse planning is discussed. (authors)
Wu, Chensheng; Nelson, William; Davis, Christopher C.
2014-10-01
Plenoptic functions are functions that preserve all the necessary light field information of optical events. Theoretical work has demonstrated that geometric based plenoptic functions can serve equally well in the traditional wave propagation equation known as the "scalar stochastic Helmholtz equation". However, in addressing problems of 3D turbulence simulation, the dominant methods using phase screen models have limitations both in explaining the choice of parameters (on the transverse plane) in real-world measurements, and finding proper correlations between neighboring phase screens (the Markov assumption breaks down). Though possible corrections to phase screen models are still promising, the equivalent geometric approach based on plenoptic functions begins to show some advantages. In fact, in these geometric approaches, a continuous wave problem is reduced to discrete trajectories of rays. This allows for convenience in parallel computing and guarantees conservation of energy. Besides the pairwise independence of simulated rays, the assigned refractive index grids can be directly tested by temperature measurements with tiny thermoprobes combined with other parameters such as humidity level and wind speed. Furthermore, without loss of generality one can break the causal chain in phase screen models by defining regional refractive centers to allow rays that are less affected to propagate through directly. As a result, our work shows that the 3D geometric approach serves as an efficient and accurate method in assessing relevant turbulence problems with inputs of several environmental measurements and reasonable guesses (such as Cn 2 levels). This approach will facilitate analysis and possible corrections in lateral wave propagation problems, such as image de-blurring, prediction of laser propagation over long ranges, and improvement of free space optic communication systems. In this paper, the plenoptic function model and relevant parallel algorithm computing
Hyde, M W; Schmidt, J D; Havrilla, M J
2009-11-23
A polarimetric bidirectional reflectance distribution function (pBRDF), based on geometrical optics, is presented. The pBRDF incorporates a visibility (shadowing/masking) function and a Lambertian (diffuse) component which distinguishes it from other geometrical optics pBRDFs in literature. It is shown that these additions keep the pBRDF bounded (and thus a more realistic physical model) as the angle of incidence or observation approaches grazing and better able to model the behavior of light scattered from rough, reflective surfaces. In this paper, the theoretical development of the pBRDF is shown and discussed. Simulation results of a rough, perfect reflecting surface obtained using an exact, electromagnetic solution and experimental Mueller matrix results of two, rough metallic samples are presented to validate the pBRDF.
Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa
2012-12-20
A study on the variation of the spectral bidirectional reflectance distribution function (BRDF) of four diffuse reflectance standards (matte ceramic, BaSO(4), Spectralon, and white Russian opal glass) is accomplished through this work. Spectral BRDF measurements were carried out and, using principal components analysis, its spectral and geometrical variation respect to a reference geometry was assessed from the experimental data. Several descriptors were defined in order to compare the spectral BRDF variation of the four materials.
International Nuclear Information System (INIS)
Mandrosov, V I
2008-01-01
The possibility of using Young-Michelson and Brown-Twiss interferometers for measuring the angular dimensions and parameters of the surface shape of remote passively scattering and self-luminous nonplanar rough objects by optical radiation propagating from them is substantiated. The analysis is based on the properties of approximate transverse functions of field coherence B t and B t ' and intensity coherence B ti and B ti ' formed by the time averaging of the products of fields and intensities taken at two points of a receiving aperture (the prime denotes self-luminous objects). The averaging time is set to be much longer than the coherence time of radiation propagating from an object. It is shown that for the radiation coherence length much smaller than the depth of the visible region of the object, the functions B t and B t ' are proportional to the Fourier transform of the intensity distribution in the image of a remote object, which is the generalisation of the Van Cittert-Zernicke theorem to the case of a nonplanar object, while functions B ti and B ti ' are proportional to the squares of the modulus of the Fourier transform of this distribution. It is also shown that the recording of functions B t and B t ' with a Young-Michelson interferometer gives only the angular dimensions of the visible region of objects, whereas the recording of functions B ti and B ti ' with a Brown-Twiss interferometer allows one to find these dimensions and the radius of curvature of the object surface. (laser radiation scattering)
Tagging the didactic functionality of learning objects
DEFF Research Database (Denmark)
Hansen, Per Skafte; Brostroem, Stig
2002-01-01
From a components-in-a-network point of view, the most important issues are: a didactically based typing of the learning objects themselves; the entire design superstructure, into which the learning objects must be fitted; and the symmetry of the interfaces, as seen by each pair of the triad...
On Approximation of Hyper-geometric Function Values of a Special Class
Directory of Open Access Journals (Sweden)
P. L. Ivankov
2017-01-01
Full Text Available Investigations of arithmetic properties of the hyper-geometric function values make it possible to single out two trends, namely, Siegel’s method and methods based on the effective construction of a linear approximating form. There are also methods combining both approaches mentioned. The Siegel’s method allows obtaining the most general results concerning the abovementioned problems. In many cases it was used to establish the algebraic independence of the values of corresponding functions. Although the effective methods do not allow obtaining propositions of such generality they have nevertheless some advantages. Among these advantages one can distinguish at least two: a higher precision of the quantitative results obtained by effective methods and a possibility to study the hyper-geometric functions with irrational parameters.In this paper we apply the effective construction to estimate a measure of the linear independence of the hyper-geometric function values over the imaginary quadratic field. The functions themselves were chosen by a special way so that it could be possible to demonstrate a new approach to the effective construction of a linear approximating form. This approach makes it possible also to extend the well-known effective construction methods of the linear approximating forms for poly-logarithms to the functions of more general type.To obtain the arithmetic result we had to establish a linear independence of the functions under consideration over the field of rational functions. It is apparently impossible to apply directly known theorems containing sufficient (and in some cases needful and sufficient conditions for the system of functions appearing in the theorems mentioned. For this reason, a special technique has been developed to solve this problem.The paper presents the obtained arithmetic results concerning the values of integral functions, but, with appropriate alterations, the theorems proved can be adapted to
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Borot, Gaëtan; Orantin, Nicolas
We propose a general theory whose main component are functorial assignments ∑→Ω∑ ∈ E (∑), for a large class of functors E from a certain category of bordered surfaces (∑'s) to a suitable a target category of topological vector spaces. The construction is done by summing appropriate compositions...... as Poisson structures on the moduli space of flat connections. The theory has a wider scope than that and one expects that many functorial objects in low-dimensional geometry and topology should have a GR construction. The geometric recursion has various projections to topological recursion (TR) and we...... in particular show it retrieves all previous variants and applications of TR. We also show that, for any initial data for topological recursion, one can construct initial data for GR with values in Frobenius algebra-valued continuous functions on Teichmueller space, such that the ωg,n of TR are obtained...
Sadjadi, Seyed Jafar; Hamidi Hesarsorkh, Aghil; Mohammadi, Mehdi; Bonyadi Naeini, Ali
2015-06-01
Coordination and harmony between different departments of a company can be an important factor in achieving competitive advantage if the company corrects alignment between strategies of different departments. This paper presents an integrated decision model based on recent advances of geometric programming technique. The demand of a product considers as a power function of factors such as product's price, marketing expenditures, and consumer service expenditures. Furthermore, production cost considers as a cubic power function of outputs. The model will be solved by recent advances in convex optimization tools. Finally, the solution procedure is illustrated by numerical example.
Yang, Zhen; Bogovic, John A; Carass, Aaron; Ye, Mao; Searson, Peter C; Prince, Jerry L
2013-03-13
With the rapid development of microscopy for cell imaging, there is a strong and growing demand for image analysis software to quantitatively study cell morphology. Automatic cell segmentation is an important step in image analysis. Despite substantial progress, there is still a need to improve the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose a fully automatic method for segmenting cells in fluorescence images of confluent cell monolayers. This method addresses several challenges through a combination of ideas. 1) It realizes a fully automatic segmentation process by first detecting the cell nuclei as initial seeds and then using a multi-object geometric deformable model (MGDM) for final segmentation. 2) To deal with different defects in the fluorescence images, the cell junctions are enhanced by applying an order-statistic filter and principal curvature based image operator. 3) The final segmentation using MGDM promotes robust and accurate segmentation results, and guarantees no overlaps and gaps between neighboring cells. The automatic segmentation results are compared with manually delineated cells, and the average Dice coefficient over all distinguishable cells is 0.88.
The Functional Architecture of Visual Object Recognition
1991-07-01
different forms of agnosia can provide clues to the representations underlying normal object recognition (Farah, 1990). For example, the pair-wise...patterns of deficit and sparing occur. In a review of 99 published cases of agnosia , the observed patterns of co- occurrence implicated two underlying
Objectives and functions of ionizing radiation metrology
International Nuclear Information System (INIS)
Rothe, H.
1981-01-01
Proceeding from the fundamental objectives of ionizing radiation metrology, the main tasks of metrological research and assurances of accurate measurements in dosimetry and activity determination are summarized. With a view to the technical performance of these tasks the state-of-the-art and the trends in reproduction and dissemination of dosimetric and activity units are outlined. Problems are derived that should be solved within the framework of the CMEA Standing Commissions on Standardization and on the Peaceful Uses of Atomic Energy. (author)
From Functions to Object-Orientation by Abstraction
Diertens, Bob
2012-01-01
In previous work we developed a framework of computational models for function and object execution. The models on an higher level of abstraction in this framework allow for concurrent execution of functions and objects. We show that the computational model for object execution complies with the fundamentals of object-orientation.
Finsler metrics—a global approach with applications to geometric function theory
Abate, Marco
1994-01-01
Complex Finsler metrics appear naturally in complex analysis. To develop new tools in this area, the book provides a graduate-level introduction to differential geometry of complex Finsler metrics. After reviewing real Finsler geometry stressing global results, complex Finsler geometry is presented introducing connections, Kählerianity, geodesics, curvature. Finally global geometry and complex Monge-Ampère equations are discussed for Finsler manifolds with constant holomorphic curvature, which are important in geometric function theory. Following E. Cartan, S.S. Chern and S. Kobayashi, the global approach carries the full strength of hermitian geometry of vector bundles avoiding cumbersome computations, and thus fosters applications in other fields.
Gasilov, Sergei V; Coan, Paola
2012-09-01
Several x-ray phase contrast extraction algorithms use a set of images acquired along the rocking curve of a perfect flat analyzer crystal to study the internal structure of objects. By measuring the angular shift of the rocking curve peak, one can determine the local deflections of the x-ray beam propagated through a sample. Additionally, some objects determine a broadening of the crystal rocking curve, which can be explained in terms of multiple refraction of x rays by many subpixel-size inhomogeneities contained in the sample. This fact may allow us to differentiate between materials and features characterized by different refraction properties. In the present work we derive an expression for the beam broadening in the form of a linear integral of the quantity related to statistical properties of the dielectric susceptibility distribution function of the object.
Stochastic Geometric Network Models for Groups of Functional and Structural Connectomes
Friedman, Eric J.; Landsberg, Adam S.; Owen, Julia P.; Li, Yi-Ou; Mukherjee, Pratik
2014-01-01
Structural and functional connectomes are emerging as important instruments in the study of normal brain function and in the development of new biomarkers for a variety of brain disorders. In contrast to single-network studies that presently dominate the (non-connectome) network literature, connectome analyses typically examine groups of empirical networks and then compare these against standard (stochastic) network models. Current practice in connectome studies is to employ stochastic network models derived from social science and engineering contexts as the basis for the comparison. However, these are not necessarily best suited for the analysis of connectomes, which often contain groups of very closely related networks, such as occurs with a set of controls or a set of patients with a specific disorder. This paper studies important extensions of standard stochastic models that make them better adapted for analysis of connectomes, and develops new statistical fitting methodologies that account for inter-subject variations. The extensions explicitly incorporate geometric information about a network based on distances and inter/intra hemispherical asymmetries (to supplement ordinary degree-distribution information), and utilize a stochastic choice of networks' density levels (for fixed threshold networks) to better capture the variance in average connectivity among subjects. The new statistical tools introduced here allow one to compare groups of networks by matching both their average characteristics and the variations among them. A notable finding is that connectomes have high “smallworldness” beyond that arising from geometric and degree considerations alone. PMID:25067815
Conflict between object structural and functional affordances in peripersonal space.
Kalénine, Solène; Wamain, Yannick; Decroix, Jérémy; Coello, Yann
2016-10-01
Recent studies indicate that competition between conflicting action representations slows down planning of object-directed actions. The present study aims to assess whether similar conflict effects exist during manipulable object perception. Twenty-six young adults performed reach-to-grasp and semantic judgements on conflictual objects (with competing structural and functional gestures) and non-conflictual objects (with similar structural and functional gestures) presented at difference distances in a 3D virtual environment. Results highlight a space-dependent conflict between structural and functional affordances. Perceptual judgments on conflictual objects were slower that perceptual judgments on non-conflictual objects, but only when objects were presented within reach. Findings demonstrate that competition between structural and functional affordances during object perception induces a processing cost, and further show that object position in space can bias affordance competition. Copyright © 2016 Elsevier B.V. All rights reserved.
IMRT optimization with pseudo-biologic objective function
International Nuclear Information System (INIS)
Yi, B. Y.; Ahn, S. D.; Kim, J. H.; Lee, S. W.; Choi, E. K.
2002-01-01
The pseudo-biologic objective function has been proposed for the IMRT optimization. It is similar to the biological objective function in mathematical shape, but uses physical parameters. The pseudo-biologic objective function concept is consisted of the target coverage index (TCI) and the organ score index (OSI), was introduced. The TCI was expressed as the sum of all of the weighted bins of target dose volume histogram (DVH). The weights were given as the normal distribution of which the average is 100 % and the standard deviation is ±. The OSI was expressed as similar way. The average of the normal distribution was 0% of the dose and that of standard deviation was selected as a function of limiting dose and its importance. The objective function could be calculated as the product of the TCI and OSI's. The RTP Tool Box (RTB) was used for this study. The constraints applied in the optimization was intuitively clinical experience based numbers, while the physical objective function asks just numbers which are not necessarily based on the clinic, and the parameters for the biologic objective functions are uncertain. The OSI's from the pseudo-biological function showed better results than from the physical functions, while TCI's showed similar tendency. We could show that the pseudo-biologic function can be used for an IMRT objective function on behalf of the biological objective function
Directory of Open Access Journals (Sweden)
Şeref Doğuşcan Akbaş
2013-01-01
Full Text Available Geometrically nonlinear static analysis of edge cracked cantilever Timoshenko beams composed of functionally graded material (FGM subjected to a nonfollower transversal point load at the free end of the beam is studied with large displacements and large rotations. Material properties of the beam change in the height direction according to exponential distributions. The cracked beam is modeled as an assembly of two subbeams connected through a massless elastic rotational spring. In the study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The nonlinear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The convergence study is performed for various numbers of finite elements. In the study, the effects of the location of crack, the depth of the crack, and various material distributions on the nonlinear static response of the FGM beam are investigated in detail. Also, the difference between the geometrically linear and nonlinear analysis of edge cracked FGM beam is investigated in detail.
Linear regression methods a ccording to objective functions
Yasemin Sisman; Sebahattin Bektas
2012-01-01
The aim of the study is to explain the parameter estimation methods and the regression analysis. The simple linear regressionmethods grouped according to the objective function are introduced. The numerical solution is achieved for the simple linear regressionmethods according to objective function of Least Squares and theLeast Absolute Value adjustment methods. The success of the appliedmethods is analyzed using their objective function values.
Effect of object functions on tomographic reconstruction a numerical study
International Nuclear Information System (INIS)
Babu Rao, C.; Baldev Raj; Ravichandran, V.S.; Munshi, P.
1996-01-01
Convolution back projection is the most widely used algorithm of computed tomography (CT). Theoretical studies show that under ideal conditions, the error in the reconstruction can be correlated with the second fourier space derivative of filter function and with the Laplacian of the object function. This paper looks into the second aspect of the error function. In this paper a systematic numerical study is presented on the effect to object functions on global and local errors. (author)
Functional imaging of human crossmodal identification and object recognition
Amedi, A; von Kriegstein, K; van Atteveldt, N M; Beauchamp, M S; Naumer, M J
2005-01-01
The perception of objects is a cognitive function of prime importance. In everyday life, object perception benefits from the coordinated interplay of vision, audition, and touch. The different sensory modalities provide both complementary and redundant information about objects, which may improve
Handling of micro objects: investigation of mechanical gripper functional surfaces
DEFF Research Database (Denmark)
Gegeckaite, Asta; Hansen, Hans Nørgaard; De Chiffre, Leonardo
2007-01-01
between the micro object and the gripper do not allow simple picking and releasing of the object. This effect can be overcome by modifying the functional surface of the gripper. The functional surface of the gripper was modified by different machining techniques. The results of this investigation...
Modelling and Order of Acoustic Transfer Functions Due to Reflections from Augmented Objects
Directory of Open Access Journals (Sweden)
Diemer de Vries
2007-01-01
Full Text Available It is commonly accepted that the sound reflections from real physical objects are much more complicated than what usually is and can be modelled by room acoustics modelling software. The main reason for this limitation is the level of detail inherent in the physical object in terms of its geometrical and acoustic properties. In the present paper, the complexity of the sound reflections from a corridor wall is investigated by modelling the corresponding acoustic transfer functions at several receiver positions in front of the wall. The complexity for different wall configurations has been examined and the changes have been achieved by altering its acoustic image. The results show that for a homogenous flat wall, the complexity is significant and for a wall including various smaller objects, the complexity is highly dependent on the position of the receiver with respect to the objects.
Porn, U; Rossmüller, B; Alalp, S; Fischer, S; Dresel, S; Hahn, K
2001-08-01
For assessment of differential renal function (PF) by means of static renal scintigraphy with Tc-99m-dimercaptosuccinic acid (DMSA) the calculation of the geometric mean of counts from the anterior and posterior view is recommended. Of this retrospective study was to find out, if the anterior view is necessary to receive an accurate differential renal function by calculating the geometric mean compared to calculating PF using the counts of the posterior view only. 164 DMSA-scans of 151 children (86 f, 65 m) aged 16 d to 16 a (4.7 +/- 3.9 a) were reviewed. The scans were performed using a dual head gamma camera (Picker Prism 2000 XP, low energy ultra high resolution collimator, matrix 256 x 256, 300 kcts/view, Zoom: 1.6-2.0). Background corrected values from both kidneys anterior and posterior were obtained. Using region of interest technique PF was calculated using the counts of the dorsal view and compared with the calculated geometric mean [SQR(Ctsdors x Ctsventr)]. The differential function of the right kidney was significantly less when compared to the calculation of the geometric mean (p or = 5% (5.0-9.5%) was obtained in only 6/164 scans (3.7%). Three of 6 patients presented with an underestimated PFdors due to dystopic kidneys on the left side in 2 patients and on the right side in one patient. The other 3 patients with a difference > 5% did not show any renal abnormality. The calculation of the PF from the posterior view only will give an underestimated value of the right kidney compared to the calculation of the geometric mean. This effect is not relevant for the calculation of the differential renal function in orthotopic kidneys, so that in these cases the anterior view is not necessary. However, geometric mean calculation to obtain reliable values for differential renal function should be applied in cases with an obvious anatomical abnormality.
Golman, Mikhail; Padovano, William; Shmuylovich, Leonid; Kovács, Sándor J
2018-03-01
Conventional echocardiographic diastolic function (DF) assessment approximates transmitral flow velocity contours (Doppler E-waves) as triangles, with peak (E peak ), acceleration time (AT), and deceleration time (DT) as indexes. These metrics have limited value because they are unable to characterize the underlying physiology. The parametrized diastolic filling (PDF) formalism provides a physiologic, kinematic mechanism based characterization of DF by extracting chamber stiffness (k), relaxation (c), and load (x o ) from E-wave contours. We derive the mathematical relationship between the PDF parameters and E peak , AT, DT and thereby introduce the geometric method (GM) that computes the PDF parameters using E peak , AT, and DT as input. Numerical experiments validated GM by analysis of 208 E-waves from 31 datasets spanning the full range of clinical diastolic function. GM yielded indistinguishable average parameter values per subject vs. the gold-standard PDF method (k: R 2 = 0.94, c: R 2 = 0.95, x o : R 2 = 0.95, p PDF method to quantify DF in terms of physiologic chamber properties.
From tomography to FWI with a single objective function
Alkhalifah, Tariq Ali; Choi, Yun Seok
2013-01-01
Reflections in our seismic data induce serious nonlinear behavior in the objective function of full waveform inversion (FWI). Thus, without a good initial velocity model, that can produce the reflections within a cycle of the frequency used
Assessment of subjective and objective cognitive function in bipolar disorder
DEFF Research Database (Denmark)
Demant, Kirsa M; Vinberg, Maj; Kessing, Lars V
2015-01-01
Cognitive dysfunction is prevalent in bipolar disorder (BD). However, the evidence regarding the association between subjective cognitive complaints, objective cognitive performance and psychosocial function is sparse and inconsistent. Seventy seven patients with bipolar disorder who presented...
Functional geometric morphometric analysis of masticatory system ontogeny in papionin primates.
Singleton, Michelle
2015-01-01
The three-dimensional configuration of the primate masticatory system is constrained by the need to maximize bite forces while avoiding distraction of the temporomandibular joint (TMJ). Within these bounds, shape variation has predictable effects on functional capacities such as mechanical advantage and gape. In this study, geometric morphometric analysis is used to investigate the ontogeny of masticatory function in papionin monkeys and test the hypothesis that biomechanical constraints determine the location of molar eruption. This "constrained eruption hypothesis" predicts that the distalmost molar (DMX) will occupy a consistent location anterior to the TMJ and that jaw adductor muscles will maintain consistent positions relative to both DMX and TMJ. Craniometric landmarks were digitized on cross-sectional ontogenetic series of nine papionin species. Form-space PCA of Procrustes residuals, visualization of Bookstein shape coordinates, and nonparametric ANOVA were used to identify ontogenetic shape trends and test for significant ontogenetic changes in relative landmark positions. In most taxa, DMX maintains a consistent position relative to the TMJ while the anterior dentition migrates anteriorly. Where significant intraspecific ontogenetic differences occur, they involve anterior migration of DMX in later dental stages, likely due to late adolescent growth of the posterior palate. Attachments of the anterior temporalis and deep masseter also maintain consistent positions relative to the TMJ; however, the superficial masseter migrates anteriorly throughout ontogeny. All muscle attachments migrate laterally relative to the TMJ, reflecting positive scaling of adductor PCSA. Overall, results support the constrained eruption hypothesis and suggest mechanisms by which functional capacity is maintained during ontogeny. © 2014 Wiley Periodicals, Inc.
Mapping and Visiting in Functional and Object-oriented Programming
DEFF Research Database (Denmark)
Nørmark, Kurt; Thomsen, Bent; Thomsen, Lone Leth
2008-01-01
Mapping and visiting represent different programming styles for traversals of collections of data. Mapping is rooted in the functional programming paradigm, and visiting is rooted in the object-oriented programming paradigm. This paper explores the similarities and differences between mapping...... and visiting, seen across the traditions in the two different programming paradigms. The paper is concluded with recommendations for mapping and visiting in programming languages that support both the functional and the object-oriented paradigms....
International Nuclear Information System (INIS)
Wortis, R.; Song Yun; Atkinson, W.A.
2008-01-01
With the goal of measuring localization in disordered interacting systems, we examine the finite-size scaling of the geometrically averaged density of states calculated from the local Green's function with finite energy resolution. Our results show that, unlike in a simple energy binning procedure, there is no limit in which the finite energy resolution is irrelevant
Directory of Open Access Journals (Sweden)
Lorena León
2016-04-01
Full Text Available In this article, we showed the features and facilities offered by two new computer programs developed for the treatment and generation of geometric figures and math functions, through a Braille printer designed for visually impaired people. The programs have complete accessible features, in which users with full visual impairments can communicate with the systems via short-keys, and the speech synthesizer. The system sends sound messages that will accompanying the user during all the process to generate geometrical figures or to do a mathematical treatment. Finally, a tactile visualization displays as the results to the person with visual impairment, thus they will can complete their geometry and mathematical studies.
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2004-01-01
This paper presents a model of an active sensor array which can determine the spatial position of a passive object by illuminating the object via a small set of emitters and measure the intensity of the reflection by means of a small set of receivers. All emitters and receivers are located...
Optimizing an objective function under a bivariate probability model
X. Brusset; N.M. Temme (Nico)
2007-01-01
htmlabstractThe motivation of this paper is to obtain an analytical closed form of a quadratic objective function arising from a stochastic decision process with bivariate exponential probability distribution functions that may be dependent. This method is applicable when results need to be
Functional activation of the infant cortex during object processing.
Wilcox, Teresa; Stubbs, Jessica; Hirshkowitz, Amy; Boas, David A
2012-09-01
A great deal is known about the functional organization of the neural structures that mediate visual object processing in the adult observer. These findings have contributed significantly to our conceptual models of object recognition and identification and provided unique insight into the nature of object representations extracted from visual input. In contrast, little is known about the neural basis of object processing in the infant. The current research used near-infrared spectroscopy (NIRS) as a neuroimaging tool to investigate functional activation of the infant cortex during an object processing task that has been used extensively with infants. The neuroimaging data revealed that the infant cortex is functionally specialized for object processing (i.e., individuation-by-feature) early in the first year but that patterns of activation also change between 3 and 12 months. These changes may reflect functional reorganization of the immature cortex or age-related differences in the cognitive processes engaged during the task. Copyright © 2012 Elsevier Inc. All rights reserved.
Classical methods for interpreting objective function minimization as intelligent inference
Energy Technology Data Exchange (ETDEWEB)
Golden, R.M. [Univ. of Texas, Dallas, TX (United States)
1996-12-31
Most recognition algorithms and neural networks can be formally viewed as seeking a minimum value of an appropriate objective function during either classification or learning phases. The goal of this paper is to argue that in order to show a recognition algorithm is making intelligent inferences, it is not sufficient to show that the recognition algorithm is computing (or trying to compute) the global minimum of some objective function. One must explicitly define a {open_quotes}relational system{close_quotes} for the recognition algorithm or neural network which identifies the: (i) sample space, (ii) the relevant sigmafield of events generated by the sample space, and (iii) the {open_quotes}relation{close_quotes} for that relational system. Only when such a {open_quotes}relational system{close_quotes} is properly defined, is it possible to formally establish the sense in which computing the global minimum of an objective function is an intelligent, inference.
Mandrosov, V. I.
The possibility of using Young-Michelson and Brown-Twiss interferometers for measuring the angular dimensions and parameters of the surface shape of remote passively scattering and self-luminous nonplanar rough objects by optical radiation propagating from them is substantiated. The analysis is
Modularity-like objective function in annotated networks
Xie, Jia-Rong; Wang, Bing-Hong
2017-12-01
We ascertain the modularity-like objective function whose optimization is equivalent to the maximum likelihood in annotated networks. We demonstrate that the modularity-like objective function is a linear combination of modularity and conditional entropy. In contrast with statistical inference methods, in our method, the influence of the metadata is adjustable; when its influence is strong enough, the metadata can be recovered. Conversely, when it is weak, the detection may correspond to another partition. Between the two, there is a transition. This paper provides a concept for expanding the scope of modularity methods.
From tomography to FWI with a single objective function
Alkhalifah, Tariq Ali
2013-06-10
Reflections in our seismic data induce serious nonlinear behavior in the objective function of full waveform inversion (FWI). Thus, without a good initial velocity model, that can produce the reflections within a cycle of the frequency used in the inversion, convergence to the solution becomes hard. Such velocity models are usually extracted from migration velocity analysis or traveltime tomography, among other means, that are not guaranteed to adhere to the FWI requirements. As such, we promote an objective function based on the misfit in the instantaneous traveltime between the observed and modeled data. This phase based attribute of the wavefield, along with its phase unwrapping features, provide a frequency dependent traveltime function. With strong damping of the of the synthetic, potentially low frequency, data, this attribute admits first arrival traveltime that could be compared with picked ones from the observed data, like in wave equation tomography. As we relax the damping on the synthetic and observed data, the objective function measures the misfit in the phase, however unwrapped in an FWI type inversion. It, thus, provides a single objective function and a natural transition from traveltime tomography to full waveform inversion. A Marmousi example demonstrates the effectiveness of the approach.
Children's use of comparison and function in novel object categorization.
Kimura, Katherine; Hunley, Samuel B; Namy, Laura L
2018-06-01
Although young children often rely on salient perceptual cues, such as shape, when categorizing novel objects, children eventually shift towards deeper relational reasoning about category membership. This study investigates what information young children use to classify novel instances of familiar categories. Specifically, we investigated two sources of information that have the potential to facilitate the classification of novel exemplars: (1) comparison of familiar category instances, and (2) attention to function information that might direct children's attention to functionally relevant perceptual features. Across two experiments, we found that comparing two perceptually similar category members-particularly when function information was also highlighted-led children to discover non-obvious relational features that supported their categorization of novel category instances. Together, these findings demonstrate that comparison may aid in novel object categorization by heightening the salience of less obvious, yet functionally relevant, relational structures that support conceptual reasoning. Copyright © 2018. Published by Elsevier Inc.
Object Oriented and Functional Programming for Symbolic Manipulation
Vlasov, Alexander Yu.
1999-01-01
The advantages of mixed approach with using different kinds of programming techniques for symbolic manipulation are discussed. The main purpose of approach offered is merge the methods of object oriented programming that convenient for presentation data and algorithms for user with advantages of functional languages for data manipulation, internal presentation, and portability of software.
Objective Integrated Assessment of Functional Outcomes in Reduction Mammaplasty
Passaro, Ilaria; Malovini, Alberto; Faga, Angela; Toffola, Elena Dalla
2013-01-01
Background: The aim of our study was an objective integrated assessment of the functional outcomes of reduction mammaplasty. Methods: The study involved 17 women undergoing reduction mammaplasty from March 2009 to June 2011. Each patient was assessed before surgery and 2 months postoperatively with the original association of 4 subjective and objective assessment methods: a physiatric clinical examination, the Roland Morris Disability Questionnaire, the Berg Balance Scale, and a static force platform analysis. Results: All of the tests proved multiple statistically significant associated outcomes demonstrating a significant improvement in the functional status following reduction mammaplasty. Surgical correction of breast hypertrophy could achieve both spinal pain relief and recovery of performance status in everyday life tasks, owing to a muscular postural functional rearrangement with a consistent antigravity muscle activity sparing. Pain reduction in turn could reduce the antalgic stiffness and improved the spinal range of motion. In our sample, the improvement of the spinal range of motion in flexion matched a similar improvement in extension. Recovery of a more favorable postural pattern with reduction of the anterior imbalance was demonstrated by the static force stabilometry. Therefore, postoperatively, all of our patients narrowed the gap between the actual body barycenter and the ideal one. The static force platform assessment also consistently confirmed the effectiveness of an accurate clinical examination of functional impairment from breast hypertrophy. Conclusions: The static force platform assessment might help the clinician to support the diagnosis of functional impairment from a breast hypertrophy with objectively based data. PMID:25289256
Directory of Open Access Journals (Sweden)
Lars Marcus
2018-04-01
Full Text Available The world is witnessing unprecedented urbanization, bringing extreme challenges to contemporary practices in urban planning and design. This calls for improved urban models that can generate new knowledge and enhance practical skill. Importantly, any urban model embodies a conception of the relation between humans and the physical environment. In urban modeling this is typically conceived of as a relation between human subjects and an environmental object, thereby reproducing a humans-environment dichotomy. Alternative modeling traditions, such as space syntax that originates in architecture rather than geography, have tried to overcome this dichotomy. Central in this effort is the development of new representations of urban space, such as in the case of space syntax, the axial map. This form of representation aims to integrate both human behavior and the physical environment into one and the same description. Interestingly, models based on these representations have proved to better capture pedestrian movement than regular models. Pedestrian movement, as well as other kinds of human flows in urban space, is essential for urban modeling, since increasingly flows of this kind are understood as the driver in urban processes. Critical for a full understanding of space syntax modeling is the ontology of its' representations, such as the axial map. Space syntax theory here often refers to James Gibson's “Theory of affordances,” where the concept of affordances, in a manner similar to axial maps, aims to bridge the subject-object dichotomy by neither constituting physical properties of the environment or human behavior, but rather what emerges in the meeting between the two. In extension of this, the axial map can be interpreted as a representation of how the physical form of the environment affords human accessibility and visibility in urban space. This paper presents a close examination of the form of representations developed in space syntax
Terhune, Claire E
2013-08-01
Functional shape analyses have long relied on the use of shape ratios to test biomechanical hypotheses. This method is powerful because of the ease with which results are interpreted, but these techniques fall short in quantifying complex morphologies that may not have a strong biomechanical foundation but may still be functionally informative. In contrast, geometric morphometric methods are continually being adopted for quantifying complex shapes, but they tend to prove inadequate in functional analyses because they have little foundation in an explicit biomechanical framework. The goal of this study was to evaluate the intersection of these two methods using the great ape temporomandibular joint as a case study. Three-dimensional coordinates of glenoid fossa and mandibular condyle shape were collected using a Microscribe digitizer. Linear distances extracted from these landmarks were analyzed using a series of one-way ANOVAs; further, the landmark configurations were analyzed using geometric morphometric techniques. Results suggest that the two methods are broadly similar, although the geometric morphometric data allow for the identification of shape differences among taxa that were not immediately apparent in the univariate analyses. Furthermore, this study suggests several new approaches for translating these shape data into a biomechanical context by adjusting the data using a biomechanically relevant variable. Copyright © 2013 Wiley Periodicals, Inc.
Executive function in fibromyalgia: Comparing subjective and objective measures.
Gelonch, Olga; Garolera, Maite; Valls, Joan; Rosselló, Lluís; Pifarré, Josep
2016-04-01
There is evidence to suggest the existence of an executive dysfunction in people diagnosed with fibromyalgia, although there are certain inconsistencies between studies. Here, we aim to compare executive performance between patients with fibromyalgia and a control group by using subjective and objective cognitive tests, analyzing the influence of patient mood on the results obtained, and studying associations between the two measures. 82 patients diagnosed with fibromyalgia and 42 healthy controls, matched by age and years of education, were assessed using the Behavioral Rating Inventory of Executive Function - Adult Version (BRIEF-A) as a subjective measure of executive functioning. A selection of objective cognitive tests were also used to measure a series of executive functions and to identify symptoms of depression and anxiety. Patients with fibromyalgia perceived greater difficulties than the control group on all of the BRIEF-A scales. However, after adjustments were made for depression and anxiety the only differences that remained were those associated with the working memory scale and the Metacognition and Global Executive Composite index. In the case of the objective cognitive tests, a significantly worse overall performance was evidenced for the fibromyalgia patients. However, this also disappeared when adjustments were made for depression and anxiety. After this adjustment, fibromyalgia patients only performed significantly worse for the interference effect in the Stroop Test. Although there were no significant associations between most of the objective cognitive tests and the BRIEF-A scales, depression and anxiety exhibited strong associations with almost all of the BRIEF-A scales and with several of the objective cognitive tests. Patients with fibromyalgia showed executive dysfunction in subjective and objective measures, although most of this impairment was associated with mood disturbances. Exceptions to this general rule were observed in the
Automatic processing of unattended object features by functional connectivity
Directory of Open Access Journals (Sweden)
Katja Martina Mayer
2013-05-01
Full Text Available Observers can selectively attend to object features that are relevant for a task. However, unattended task-irrelevant features may still be processed and possibly integrated with the attended features. This study investigated the neural mechanisms for processing both task-relevant (attended and task-irrelevant (unattended object features. The Garner paradigm was adapted for functional magnetic resonance imaging (fMRI to test whether specific brain areas process the conjunction of features or whether multiple interacting areas are involved in this form of feature integration. Observers attended to shape, colour, or non-rigid motion of novel objects while unattended features changed from trial to trial (change blocks or remained constant (no-change blocks during a given block. This block manipulation allowed us to measure the extent to which unattended features affected neural responses which would reflect the extent to which multiple object features are automatically processed. We did not find Garner interference at the behavioural level. However, we designed the experiment to equate performance across block types so that any fMRI results could not be due solely to differences in task difficulty between change and no-change blocks. Attention to specific features localised several areas known to be involved in object processing. No area showed larger responses on change blocks compared to no-change blocks. However, psychophysiological interaction analyses revealed that several functionally-localised areas showed significant positive interactions with areas in occipito-temporal and frontal areas that depended on block type. Overall, these findings suggest that both regional responses and functional connectivity are crucial for processing multi-featured objects.
International Nuclear Information System (INIS)
Fu Jianwei; Yang Xiaoquan; Wang Kan; Luo Qingming; Gong Hui
2011-01-01
universal in FMT and mCT, which could be performed with no restriction on the system geometry, calibration phantoms or imaging objects.
Objective function for the environmental assessment of waste
International Nuclear Information System (INIS)
Toy, A.J.; Boegel, J.; Cohen, J.J.
1976-01-01
Various waste management systems were examined in order to determine what the environmental impacts might be and to rank the relative importance of those impacts. This examination determined that radiation dose to man was the most significant, and probably overriding, impact. This report describes methods of providing an objective function for dose to man. The search for an objective function began with a reading of Federal Regulations and the output of various standard setting councils and committees. Ample guidance was found on maximum allowable doses to individuals but no guidance on dose to large populations or criteria by which systems could be compared or optimized. Several other ways were postulated by which waste management systems could be evaluated besides maximum allowable dose to individuals. 0.1 man-rem per MW(e)-year was selected as the measure of system performance. This unit compares a rational estimate of population dose commitment with the concurrent benefit
Fast, multiple optimizations of quadratic dose objective functions in IMRT
International Nuclear Information System (INIS)
Breedveld, Sebastiaan; Storchi, Pascal R M; Keijzer, Marleen; Heijmen, Ben J M
2006-01-01
Inverse treatment planning for intensity-modulated radiotherapy may include time consuming, multiple minimizations of an objective function. In this paper, methods are presented to speed up the process of (repeated) minimization of the well-known quadratic dose objective function, extended with a smoothing term that ensures generation of clinically acceptable beam profiles. In between two subsequent optimizations, the voxel-dependent importance factors of the quadratic terms will generally be adjusted, based on an intermediate plan evaluation. The objective function has been written in matrix-vector format, facilitating the use of a recently published, fast quadratic minimization algorithm, instead of commonly applied gradient-based methods. This format also reduces the calculation time in between subsequent minimizations, related to adjustment of the voxel-dependent importance factors. Sparse matrices are used to limit the required amount of computer memory. For three patients, comparisons have been made with a gradient method. Mean speed improvements of up to a factor of 37 have been achieved
The perception of geometrical structure from congruence
Lappin, Joseph S.; Wason, Thomas D.
1989-01-01
The principle function of vision is to measure the environment. As demonstrated by the coordination of motor actions with the positions and trajectories of moving objects in cluttered environments and by rapid recognition of solid objects in varying contexts from changing perspectives, vision provides real-time information about the geometrical structure and location of environmental objects and events. The geometric information provided by 2-D spatial displays is examined. It is proposed that the geometry of this information is best understood not within the traditional framework of perspective trigonometry, but in terms of the structure of qualitative relations defined by congruences among intrinsic geometric relations in images of surfaces. The basic concepts of this geometrical theory are outlined.
Nishiyama, Megumi; Kawaguchi, Jun
2014-11-01
To clarify the relationship between visual long-term memory (VLTM) and online visual processing, we investigated whether and how VLTM involuntarily affects the performance of a one-shot change detection task using images consisting of six meaningless geometric objects. In the study phase, participants observed pre-change (Experiment 1), post-change (Experiment 2), or both pre- and post-change (Experiment 3) images appearing in the subsequent change detection phase. In the change detection phase, one object always changed between pre- and post-change images and participants reported which object was changed. Results showed that VLTM of pre-change images enhanced the performance of change detection, while that of post-change images decreased accuracy. Prior exposure to both pre- and post-change images did not influence performance. These results indicate that pre-change information plays an important role in change detection, and that information in VLTM related to the current task does not always have a positive effect on performance. Copyright © 2014 Elsevier Inc. All rights reserved.
Alkhalifah, Tariq Ali
2012-09-25
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Alkhalifah, Tariq Ali; Choi, Yun Seok
2012-01-01
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
The functional neuroanatomy of object agnosia: a case study.
Konen, Christina S; Behrmann, Marlene; Nishimura, Mayu; Kastner, Sabine
2011-07-14
Cortical reorganization of visual and object representations following neural injury was examined using fMRI and behavioral investigations. We probed the visual responsivity of the ventral visual cortex of an agnosic patient who was impaired at object recognition following a lesion to the right lateral fusiform gyrus. In both hemispheres, retinotopic mapping revealed typical topographic organization and visual activation of early visual cortex. However, visual responses, object-related, and -selective responses were reduced in regions immediately surrounding the lesion in the right hemisphere, and also, surprisingly, in corresponding locations in the structurally intact left hemisphere. In contrast, hV4 of the right hemisphere showed expanded response properties. These findings indicate that the right lateral fusiform gyrus is critically involved in object recognition and that an impairment to this region has widespread consequences for remote parts of cortex. Finally, functional neural plasticity is possible even when a cortical lesion is sustained in adulthood. Copyright © 2011 Elsevier Inc. All rights reserved.
JAKEF, Gradient or Jacobian Function from Objective Function or Vector Function
International Nuclear Information System (INIS)
Hillstrom, K.E.
1988-01-01
1 - Description of program or function: JAKEF is a language processor that accepts as input a single- or double-precision ANSI standard 1977 FORTRAN subroutine defining an objective function f(x), or a vector function F(x), and produces as output a single- or double- precision ANSI standard 1977 FORTRAN subroutine defining the gradient of f(x), or the Jacobian of F(x). 2 - Method of solution: JAKEF is a four-pass compiler consisting of a lexical preprocessor, a parser, a tree-building and flow analysis pass, and a differentiator and output construction pass. The lexical preprocessor reworks the input FORTRAN program to give it a recognizable lexical structure. The parser transforms the pre-processed input into a string of tokens in a post-fix representation of the program tree. The tree-building and flow analysis pass constructs a tree out of the post-fix token string. The differentiator identifies relevant assignment statements; then, if necessary, it analyzes them into component statements governed by a single differentiation rule and augments each of these statements with a call to a member of the run-time support package which implements the differentiation rule. After completing the construction of the main body of the routine, JAKEF inserts calls to support package routines that complete the differentiation. This results in a modified program tree in a form compatible with FORTRAN rules. 3 - Restrictions on the complexity of the problem: Statement functions and Equivalence's that involve the independent variables are not handled correctly. Variables, constants, or functions of type COMPLEX are not recognized. Character sub-string expressions and alternate returns are not permitted
The Wigner distribution function and Hamilton's characteristics of a geometric-optical system
Bastiaans, M.J.
1979-01-01
Four system functions have been defined for an optical system; each of these functions describes the system completely in terms of Fourier optics. From the system functions the Wigner distribution function of an optical system has been defined; although derived from Fourier optics, this Wigner
Reichardt, J; Hess, M; Macke, A
2000-04-20
Multiple-scattering correction factors for cirrus particle extinction coefficients measured with Raman and high spectral resolution lidars are calculated with a radiative-transfer model. Cirrus particle-ensemble phase functions are computed from single-crystal phase functions derived in a geometrical-optics approximation. Seven crystal types are considered. In cirrus clouds with height-independent particle extinction coefficients the general pattern of the multiple-scattering parameters has a steep onset at cloud base with values of 0.5-0.7 followed by a gradual and monotonic decrease to 0.1-0.2 at cloud top. The larger the scattering particles are, the more gradual is the rate of decrease. Multiple-scattering parameters of complex crystals and of imperfect hexagonal columns and plates can be well approximated by those of projected-area equivalent ice spheres, whereas perfect hexagonal crystals show values as much as 70% higher than those of spheres. The dependencies of the multiple-scattering parameters on cirrus particle spectrum, base height, and geometric depth and on the lidar parameters laser wavelength and receiver field of view, are discussed, and a set of multiple-scattering parameter profiles for the correction of extinction measurements in homogeneous cirrus is provided.
Models for predicting objective function weights in prostate cancer IMRT
International Nuclear Information System (INIS)
Boutilier, Justin J.; Lee, Taewoo; Craig, Tim; Sharpe, Michael B.; Chan, Timothy C. Y.
2015-01-01
Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR
Models for predicting objective function weights in prostate cancer IMRT
Energy Technology Data Exchange (ETDEWEB)
Boutilier, Justin J., E-mail: j.boutilier@mail.utoronto.ca; Lee, Taewoo [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 (Canada); Craig, Tim [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9, Canada and Department of Radiation Oncology, University of Toronto, 148 - 150 College Street, Toronto, Ontario M5S 3S2 (Canada); Sharpe, Michael B. [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9 (Canada); Department of Radiation Oncology, University of Toronto, 148 - 150 College Street, Toronto, Ontario M5S 3S2 (Canada); Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada); Chan, Timothy C. Y. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada and Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada)
2015-04-15
Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR
Geometrical approach to the distribution of the zeros for the Husimi function
International Nuclear Information System (INIS)
Toscano, Fabricio; Almeida, M. Ozorio de
1999-03-01
We construct a semiclassical expression for the Husimi function of autonomous systems in one degree of freedom, by smoothing with a Gaussian function an expression that captures the essential features of the Wigner function in the semiclassical limit. Our approximation reveals the center and chord structure that the Husimi function inherits from the Wigner function, down to very shallow valleys, where lie the Husimi zeros. This explanation for the distribution of zeros along curves relies on the geometry of the classical torus, rather the complex analytic properties of the WKB method in the Bargmann representation. We evaluate the zeros for several examples. (author)
International Nuclear Information System (INIS)
Panda, Satyajit; Ray, M C
2008-01-01
In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla–Hughes–McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed
Panda, Satyajit; Ray, M. C.
2008-04-01
In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla-Hughes-McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed.
Geometrical comparison of two protein structures using Wigner-D functions.
Saberi Fathi, S M; White, Diana T; Tuszynski, Jack A
2014-10-01
In this article, we develop a quantitative comparison method for two arbitrary protein structures. This method uses a root-mean-square deviation characterization and employs a series expansion of the protein's shape function in terms of the Wigner-D functions to define a new criterion, which is called a "similarity value." We further demonstrate that the expansion coefficients for the shape function obtained with the help of the Wigner-D functions correspond to structure factors. Our method addresses the common problem of comparing two proteins with different numbers of atoms. We illustrate it with a worked example. © 2014 Wiley Periodicals, Inc.
Objective-function Hybridization in Adjoint Seismic Tomography
Yuan, Y. O.; Bozdag, E.; Simons, F.; Gao, F.
2016-12-01
In the realm of seismic tomography, we are at the threshold of a new era of huge seismic datasets. However, how to assimilate as much information as possible from every seismogram is still a challenge. Cross-correlation measurements are generally tailored to some window selection algorithms, such as FLEXWIN (Maggie et al. 2008), to balance amplitude differences between seismic phases. However, these measurements naturally favor maximum picks in selected windows. It is also difficult to select all usable portions of seismograms in an optimum way that lots of information is generally lost, particularly the scattered waves. Instantaneous phase type of misfits extract information from every wiggle without cutting seismograms into small pieces, however, dealing with cycle skips at short periods can be challenging. For this purpose, we introduce a flexible hybrid approach for adjoint seismic tomography, to combine various objective functions. We initially focus on phase measurements and propose using instantaneous phase to take into account relatively small-magnitude scattered waves at long periods while using cross-correlation measurements on FLEXWIN windows to select distinct body-wave arrivals without complicating measurements due to non-linearities at short periods. To better deal with cycle skips and reliably measure instantaneous phases we design a new misfit function that incorporates instantaneous phase information implicitly instead of measuring it explicitly, through using normalized analytic signals. We present in our synthetic experiments how instantaneous phase, cross-correlation and their hybridization affect tomographic results. The combination of two different phase measurements in a hybrid approach constitutes progress towards using "anything and everything" in a data set, addressing data quality and measurement challenges simultaneously. We further extend hybridisation of misfit functions for amplitude measurements such as cross-correlation amplitude
Supplementary Material for: A Geometric Approach to Visualization of Variability in Functional Data
Xie, Weiyi; Kurtek, Sebastian; Bharath, Karthik; Sun, Ying
2016-01-01
We propose a new method for the construction and visualization of boxplot-type displays for functional data. We use a recent functional data analysis framework, based on a representation of functions called square-root slope functions, to decompose observed variation in functional data into three main components: amplitude, phase, and vertical translation. We then construct separate displays for each component, using the geometry and metric of each representation space, based on a novel definition of the median, the two quartiles, and extreme observations. The outlyingness of functional data is a very complex concept. Thus, we propose to identify outliers based on any of the three main components after decomposition. We provide a variety of visualization tools for the proposed boxplot-type displays including surface plots. We evaluate the proposed method using extensive simulations and then focus our attention on three real data applications including exploratory data analysis of sea surface temperature functions, electrocardiogram functions and growth curves.
Functional morphology and integration of corvid skulls – a 3D geometric morphometric approach
Directory of Open Access Journals (Sweden)
Gunz Philipp
2009-01-01
Full Text Available Abstract Background Sympatric corvid species have evolved differences in nesting, habitat choice, diet and foraging. Differences in the frequency with which corvid species use their repertoire of feeding techniques is expected to covary with bill-shape and with the frontal binocular field. Species that frequently probe are expected to have a relatively longer bill and more sidewise oriented orbits in contrast to species that frequently peck. We tested this prediction by analyzing computed tomography scans of skulls of six corvid species by means of three-dimensional geometric morphometrics. We (1 explored patterns of major variation using principal component analysis, (2 compared within and between species relationships of size and shape and (3 quantitatively compared patterns of morphological integration between bill and cranium by means of partial least squares (singular warp analysis. Results Major shape variation occurs at the bill, in the orientation of orbits, in the position of the foramen magnum and in the angle between bill and cranium. The first principal component correlated positively with centroid-size, but within-species allometric relationships differed markedly. Major covariation between the bill and cranium lies in the difference in orbit orientation relative to bill-length and in the angle between bill and cranium. Conclusion Corvid species show pronounced differences in skull shape, which covary with foraging mode. Increasing bill-length, bill-curvature and sidewise orientation of the eyes is associated with an increase in the observed frequency in probing (vice versa in pecking. Hence, the frequency of probing, bill-length, bill-curvature and sidewise orientation of the eyes is progressively increased from jackdaw, to Eurasian jay, to black-billed magpie, to hooded crow, to rook and to common raven (when feeding on carcasses is considered as probing. Our results on the morphological integration suggest that most of the
Effects of functional training on geometric indices of heart rate variability
Directory of Open Access Journals (Sweden)
Marianne P.C. de Rezende Barbosa
2016-06-01
Conclusion: Functional training had a beneficial impact on autonomic modulation, as characterized by increased parasympathetic activity and overall variability, thus highlighting the clinical usefulness of this type of training.
Geometrical approach to the discrete Wigner function in prime power dimensions
International Nuclear Information System (INIS)
Klimov, A B; Munoz, C; Romero, J L
2006-01-01
We analyse the Wigner function in prime power dimensions constructed on the basis of the discrete rotation and displacement operators labelled with elements of the underlying finite field. We separately discuss the case of odd and even characteristics and analyse the algebraic origin of the non-uniqueness of the representation of the Wigner function. Explicit expressions for the Wigner kernel are given in both cases
Daston, Lorraine
2010-01-01
Objectivity has a history, and it is full of surprises. In Objectivity, Lorraine Daston and Peter Galison chart the emergence of objectivity in the mid-nineteenth-century sciences--and show how the concept differs from its alternatives, truth-to-nature and trained judgment. This is a story of lofty epistemic ideals fused with workaday practices in the making of scientific images. From the eighteenth through the early twenty-first centuries, the images that reveal the deepest commitments of the empirical sciences--from anatomy to crystallography--are those featured in scientific atlases, the compendia that teach practitioners what is worth looking at and how to look at it. Galison and Daston use atlas images to uncover a hidden history of scientific objectivity and its rivals. Whether an atlas maker idealizes an image to capture the essentials in the name of truth-to-nature or refuses to erase even the most incidental detail in the name of objectivity or highlights patterns in the name of trained judgment is a...
Controlled short-linkage assembly of functional nano-objects
Energy Technology Data Exchange (ETDEWEB)
Chaudhary, Shilpi; Kamra, Tripta [Division of Pure and Applied Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden); ENI AB, Malmö (Sweden); Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Uddin, Khan Mohammad Ahsan [Division of Pure and Applied Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden); Snezhkova, Olesia [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Jayawardena, H. Surangi N. [Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854 (United States); Yan, Mingdi [Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854 (United States); Department of Chemistry, KTH – Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm (Sweden); Montelius, Lars [ENI AB, Malmö (Sweden); Schnadt, Joachim, E-mail: joachim.schnadt@sljus.lu.se [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Ye, Lei, E-mail: lei.ye@tbiokem.lth.se [Division of Pure and Applied Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden)
2014-05-01
Graphical abstract: - Highlights: • Fast photoconjugation of nanoparticles on surface. • Non-destructive feature guarantees intact function of nanoparticles. • Direct contact between nano-objects allows efficient photon and electron transfer. • Possibility of generating patterned nanoparticle assemblies on surface. • Open new opportunities for assembling chemical sensors. - Abstract: In this work, we report a method that allows the deterministic, photo-controlled covalent assembly of nanoparticles directly on surface. As a model system, we study the conjugation of molecularly imprinted polymer (MIP) nanoparticles on a glass surface and confirm that the immobilized nanoparticles maintain their molecular recognition functionality. The glass slide was first modified with perfluorophenylazide and then used to bind MIP nanoparticles under UV irradiation. After each step the surface was analyzed by water contact angle measurement, fluorescence microscopy, scanning electron microscopy, and/or synchrotron-based X-ray photoelectron spectroscopy. The MIP nanoparticles immobilized on the glass surface remained stable and maintained specific binding for the template molecule, propranolol. The method developed in this work allows MIP nanoparticles to be directly coupled to a flat surface, offering a straightforward means to construct robust chemical sensors. Using the reported photo conjugation method, it is possible to generate patterned assembly of nanoparticles using a photomask. Since perfluorophenylazide-based photochemistry works with all kinds of organic material, the method developed in this work is expected to enable immobilization of not only MIPs but also other kinds of organic and inorganic–organic core–shell particles for various applications involving photon or electron transfer.
Controlled short-linkage assembly of functional nano-objects
International Nuclear Information System (INIS)
Chaudhary, Shilpi; Kamra, Tripta; Uddin, Khan Mohammad Ahsan; Snezhkova, Olesia; Jayawardena, H. Surangi N.; Yan, Mingdi; Montelius, Lars; Schnadt, Joachim; Ye, Lei
2014-01-01
Graphical abstract: - Highlights: • Fast photoconjugation of nanoparticles on surface. • Non-destructive feature guarantees intact function of nanoparticles. • Direct contact between nano-objects allows efficient photon and electron transfer. • Possibility of generating patterned nanoparticle assemblies on surface. • Open new opportunities for assembling chemical sensors. - Abstract: In this work, we report a method that allows the deterministic, photo-controlled covalent assembly of nanoparticles directly on surface. As a model system, we study the conjugation of molecularly imprinted polymer (MIP) nanoparticles on a glass surface and confirm that the immobilized nanoparticles maintain their molecular recognition functionality. The glass slide was first modified with perfluorophenylazide and then used to bind MIP nanoparticles under UV irradiation. After each step the surface was analyzed by water contact angle measurement, fluorescence microscopy, scanning electron microscopy, and/or synchrotron-based X-ray photoelectron spectroscopy. The MIP nanoparticles immobilized on the glass surface remained stable and maintained specific binding for the template molecule, propranolol. The method developed in this work allows MIP nanoparticles to be directly coupled to a flat surface, offering a straightforward means to construct robust chemical sensors. Using the reported photo conjugation method, it is possible to generate patterned assembly of nanoparticles using a photomask. Since perfluorophenylazide-based photochemistry works with all kinds of organic material, the method developed in this work is expected to enable immobilization of not only MIPs but also other kinds of organic and inorganic–organic core–shell particles for various applications involving photon or electron transfer
Geometric description of a discrete power function associated with the sixth Painlevé equation.
Joshi, Nalini; Kajiwara, Kenji; Masuda, Tetsu; Nakazono, Nobutaka; Shi, Yang
2017-11-01
In this paper, we consider the discrete power function associated with the sixth Painlevé equation. This function is a special solution of the so-called cross-ratio equation with a similarity constraint. We show in this paper that this system is embedded in a cubic lattice with [Formula: see text] symmetry. By constructing the action of [Formula: see text] as a subgroup of [Formula: see text], i.e. the symmetry group of P VI , we show how to relate [Formula: see text] to the symmetry group of the lattice. Moreover, by using translations in [Formula: see text], we explain the odd-even structure appearing in previously known explicit formulae in terms of the τ function.
Energy Technology Data Exchange (ETDEWEB)
Ebata, T [Tohoku Univ., Sendai (Japan). Coll. of General Education
1976-06-01
The geometrical distribution inferred from the inelastic cross section is assumed to be proportional to the partial waves. The precocious scaling and the Q/sup 2/-dependence of various quantities are treated from the geometrical point of view. It is shown that the approximate conservation of the orbital angular momentum may be a very practical rule to understand the helicity structure of various hadronic and electromagnetic reactions. The rule can be applied to inclusive reactions as well. The model is also applied to large angle processes. Through the discussion, it is suggested that many peculiar properties of the quark-parton can be ascribed to the geometrical effects.
International Nuclear Information System (INIS)
Arruda, Tiago Jose; Silva Gonzalez, Rodrigo; Sangaletti Tercariol, Cesar Augusto; Souto Martinez, Alexandre
2008-01-01
One-parameter generalizations of the logarithmic and exponential functions have been obtained as well as algebraic operators to retrieve extensivity. Analytical expressions for the successive applications of the sum or product operators on several values of a variable are obtained here. Applications of the above formalism are considered
Embedding objects during 3D printing to add new functionalities.
Yuen, Po Ki
2016-07-01
A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication
Bray, Hubert L; Mazzeo, Rafe; Sesum, Natasa
2015-01-01
This volume includes expanded versions of the lectures delivered in the Graduate Minicourse portion of the 2013 Park City Mathematics Institute session on Geometric Analysis. The papers give excellent high-level introductions, suitable for graduate students wishing to enter the field and experienced researchers alike, to a range of the most important areas of geometric analysis. These include: the general issue of geometric evolution, with more detailed lectures on Ricci flow and Kähler-Ricci flow, new progress on the analytic aspects of the Willmore equation as well as an introduction to the recent proof of the Willmore conjecture and new directions in min-max theory for geometric variational problems, the current state of the art regarding minimal surfaces in R^3, the role of critical metrics in Riemannian geometry, and the modern perspective on the study of eigenfunctions and eigenvalues for Laplace-Beltrami operators.
Kerstens, Kristiaan; Mounier, Amine; Van de Woestyne, Ignace
2008-01-01
The literature suggests that investors prefer portfolios based on mean, variance and skewness rather than portfolios based on mean-variance (MV) criteria solely. Furthermore, a small variety of methods have been proposed to determine mean-variance-skewness (MVS) optimal portfolios. Recently, the shortage function has been introduced as a measure of efficiency, allowing to characterize MVS optimalportfolios using non-parametric mathematical programming tools. While tracing the MV portfolio fro...
Freud, Erez; Ganel, Tzvi; Avidan, Galia; Gilaie-Dotan, Sharon
2016-03-01
According to the two visual systems model, the cortical visual system is segregated into a ventral pathway mediating object recognition, and a dorsal pathway mediating visuomotor control. In the present study we examined whether the visual control of action could develop normally even when visual perceptual abilities are compromised from early childhood onward. Using his fingers, LG, an individual with a rare developmental visual object agnosia, manually estimated (perceptual condition) the width of blocks that varied in width and length (but not in overall size), or simply picked them up across their width (grasping condition). LG's perceptual sensitivity to target width was profoundly impaired in the manual estimation task compared to matched controls. In contrast, the sensitivity to object shape during grasping, as measured by maximum grip aperture (MGA), the time to reach the MGA, the reaction time and the total movement time were all normal in LG. Further analysis, however, revealed that LG's sensitivity to object shape during grasping emerged at a later time stage during the movement compared to controls. Taken together, these results demonstrate a dissociation between action and perception of object shape, and also point to a distinction between different stages of the grasping movement, namely planning versus online control. Moreover, the present study implies that visuomotor abilities can develop normally even when perceptual abilities developed in a profoundly impaired fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Density functional study of graphene antidot lattices: Roles of geometrical relaxation and spin
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Pedersen, Thomas Garm; Brandbyge, Mads
2009-01-01
thereof. We find from DFT that all structures investigated have band gaps ranging from 0.2 to 1.5 eV. Band gap sizes and general trends are well captured by DFTB with band gaps agreeing within about 0.2 eV even for very small structures. A combination of the two methods is found to offer a good trade...... properties. In this work, we perform calculations of the band structure for various hydrogen-passivated hole geometries using both spin-polarized density functional theory (DFT) and DFT based tight-binding (DFTB) and address the importance of relaxation of the structures using either method or a combination......-off between computational cost and accuracy. Both methods predict nondegenerate midgap states for certain antidot hole symmetries. The inclusion of spin results in a spin-splitting of these states as well as magnetic moments obeying the Lieb theorem. The local-spin texture of both magnetic and nonmagnetic...
Niethammer, Marc; Hart, Gabriel L; Pace, Danielle F; Vespa, Paul M; Irimia, Andrei; Van Horn, John D; Aylward, Stephen R
2011-01-01
Standard image registration methods do not account for changes in image appearance. Hence, metamorphosis approaches have been developed which jointly estimate a space deformation and a change in image appearance to construct a spatio-temporal trajectory smoothly transforming a source to a target image. For standard metamorphosis, geometric changes are not explicitly modeled. We propose a geometric metamorphosis formulation, which explains changes in image appearance by a global deformation, a deformation of a geometric model, and an image composition model. This work is motivated by the clinical challenge of predicting the long-term effects of traumatic brain injuries based on time-series images. This work is also applicable to the quantification of tumor progression (e.g., estimating its infiltrating and displacing components) and predicting chronic blood perfusion changes after stroke. We demonstrate the utility of the method using simulated data as well as scans from a clinical traumatic brain injury patient.
Robustness of Multiple Objective Decision Analysis Preference Functions
National Research Council Canada - National Science Library
Klimack, William
2002-01-01
.... The impact of these differences was examined to improve implementation efficiency. The robustness of the decision model was examined with respect to the preference functions to reduce the time burden imposed on the decision maker...
Quantifying Functional Reuse from Object Oriented Requirements Specifications
Condori-Fernandez, Nelly; Condori-Fernández, N.; Pastor, O; Daneva, Maia; Abran, A.; Castro, J.; Quer, C.; Carvallo, J. B.; Fernandes da Silva, L.
2008-01-01
Software reuse is essential in improving efficiency and productivity in the software development process. This paper analyses reuse within requirements engineering phase by taking and adapting a standard functional size measurement method, COSMIC FFP. Our proposal attempts to quantify reusability
Nandan, R; Nanda, K K
2017-08-31
Geometrical tunability offers sharp edges and an open-armed structure accompanied with a high electrochemical active surface area to ensure the efficient and effective utilization of materials by exposing the electrochemical active sites for facile accessibility of reactant species. Herein, we report a one-step, single-pot, surfactant-free, electroless, and economic route to synthesize palladium sulfide nanostructures with different geometries at mild temperatures and their catalytic properties towards the oxygen reduction reaction (ORR) and methanol electro-oxidation (MOR). For ORR, the positive on-set, half wave potentials, smaller Tafel slope, high electrochemical active surface area, large roughness factor, and better cyclic stability of the proposed nanostructures as compared to those of the commercial state-of-the-art Pt-C/PdS catalysts suggest their superiority in an alkaline medium. In addition, high mass activity (J f ∼ 715 mA mg -1 ), in comparison with that of the commercial state-of-the-art Pt-C/PdS catalysts (J f ∼ 138/41 mA mg -1 , respectively), and high J f /J b (1.52) along with the superior operational stability of the multi-arm palladium sulfide nanostructures towards MOR advocates the bi-functional behavior of the catalyst and its potential as a promising Pt-free anode/cathode electrocatalyst in fuel cells.
Directory of Open Access Journals (Sweden)
Elizabeth Rincón Santana
2017-09-01
Full Text Available ABSTRACT The article shows the results of a doctoral investigation related to the development of the understanding of the objects of plane geometry by students of Mathematics at the Education major, at the Autonomous University of Santo Domingo (UASD. Its objective is to offer levels of achievement and criteria to evaluate the development of understanding processes of the objects of the plane geometry. There were used different scientific methods and techniques such as framework construction to determine the levels and criteria, and the analysis and synthesis to contextualize them to the didactic demands of Mathematics teachers’ training.
Brandenburg, Jan Gerit; Alessio, Maristella; Civalleri, Bartolomeo; Peintinger, Michael F; Bredow, Thomas; Grimme, Stefan
2013-09-26
We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys-Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. (J. Chem. Phys. 2012, 137, 054103) and refined by Tkatchenko et al. (J. Chem. Phys. 2013, 139, 024705). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and -43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.
Monotone Approximations of Minimum and Maximum Functions and Multi-objective Problems
International Nuclear Information System (INIS)
Stipanović, Dušan M.; Tomlin, Claire J.; Leitmann, George
2012-01-01
In this paper the problem of accomplishing multiple objectives by a number of agents represented as dynamic systems is considered. Each agent is assumed to have a goal which is to accomplish one or more objectives where each objective is mathematically formulated using an appropriate objective function. Sufficient conditions for accomplishing objectives are derived using particular convergent approximations of minimum and maximum functions depending on the formulation of the goals and objectives. These approximations are differentiable functions and they monotonically converge to the corresponding minimum or maximum function. Finally, an illustrative pursuit-evasion game example with two evaders and two pursuers is provided.
Monotone Approximations of Minimum and Maximum Functions and Multi-objective Problems
Energy Technology Data Exchange (ETDEWEB)
Stipanovic, Dusan M., E-mail: dusan@illinois.edu [University of Illinois at Urbana-Champaign, Coordinated Science Laboratory, Department of Industrial and Enterprise Systems Engineering (United States); Tomlin, Claire J., E-mail: tomlin@eecs.berkeley.edu [University of California at Berkeley, Department of Electrical Engineering and Computer Science (United States); Leitmann, George, E-mail: gleit@berkeley.edu [University of California at Berkeley, College of Engineering (United States)
2012-12-15
In this paper the problem of accomplishing multiple objectives by a number of agents represented as dynamic systems is considered. Each agent is assumed to have a goal which is to accomplish one or more objectives where each objective is mathematically formulated using an appropriate objective function. Sufficient conditions for accomplishing objectives are derived using particular convergent approximations of minimum and maximum functions depending on the formulation of the goals and objectives. These approximations are differentiable functions and they monotonically converge to the corresponding minimum or maximum function. Finally, an illustrative pursuit-evasion game example with two evaders and two pursuers is provided.
International Nuclear Information System (INIS)
Zhou, Junle; Chen, Lingen; Ding, Zemin; Sun, Fengrui
2016-01-01
Ecological performance of a single resonance ESE heat engine with heat leakage is conducted by applying finite time thermodynamics. By introducing Nielsen function and numerical calculations, expressions about power output, efficiency, entropy generation rate and ecological objective function are derived; relationships between ecological objective function and power output, between ecological objective function and efficiency as well as between power output and efficiency are demonstrated; influences of system parameters of heat leakage, boundary energy and resonance width on the optimal performances are investigated in detail; a specific range of boundary energy is given as a compromise to make ESE heat engine system work at optimal operation regions. Comparing performance characteristics with different optimization objective functions, the significance of selecting ecological objective function as the design objective is clarified specifically: when changing the design objective from maximum power output into maximum ecological objective function, the improvement of efficiency is 4.56%, while the power output drop is only 2.68%; when changing the design objective from maximum efficiency to maximum ecological objective function, the improvement of power output is 229.13%, and the efficiency drop is only 13.53%. - Highlights: • An irreversible single resonance energy selective electron heat engine is studied. • Heat leakage between two reservoirs is considered. • Power output, efficiency and ecological objective function are derived. • Optimal performance comparison for three objective functions is carried out.
Directory of Open Access Journals (Sweden)
Radović Sanja
2017-01-01
Full Text Available The Iris flower is a complex morphological structure composed of two trimerous whorls of functionally distinct petaloid organs (the falls and the standards, one whorl of the stamens and one tricarpellary gynoecium. The petal-like style arms of the carpels are banded over the basal part of the falls, forming three pollination tunnels, each of which is perceived by the Iris pollinators as a single bilaterally symmetrical flower. Apart from the stamens, all petaloid floral organs are preferentially involved in advertising rewards to potential pollinators. Here we used the methods of geometric morphometrics to explore the shape variation in falls, standards and style arms of the Iris pumila flowers and to disentangle the symmetric and the asymmetric component of the total shape variance. Our results show that symmetric variation contributes mostly to the total shape variance in each of the three floral organs. Fluctuating asymmetry (FA was the dominant component of the asymmetric shape variation in the falls and the standards, but appeared to be marginally significant in the style arms. The values of FA indexes for the shape of falls (insects’ landing platforms and for the shape of standards (long-distance reward signals were found to be two orders of magnitude greater compared to that of the style arms. Directional asymmetry appeared to be very low, but highly statistically significant for all analyzed floral organs. Because floral symmetry can reliably indicate the presence of floral rewards, an almost perfect symmetry recorded for the style arm shape might be the outcome of pollinator preferences for symmetrical pollination units. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 173007
Directory of Open Access Journals (Sweden)
Ryszard Uklejewski
2017-01-01
Full Text Available The multispiked connecting scaffold (MSC-Scaffold prototype, inspired by the biological system of anchorage of the articular cartilage in the periarticular trabecular bone by means of subchondral bone interdigitations, is the essential innovation in fixation of the bone in resurfacing arthroplasty (RA endoprostheses. The biomimetic MSC‐Scaffold, due to its complex geometric structure, can be manufactured only using additive technology, for example, selective laser melting (SLM. The major purpose of this work is determination of constructional possibilities for the structural-geometric functionalization of SLM‐manufactured MSC‐Scaffold prototype, compensating the reduced ability—due to the SLM technological limitations—to accommodate the ingrowing bone filling the interspike space of the prototype, which is important for the prototype bioengineering design. Confocal microscopy scanning of components of the SLM‐manufactured prototype of total hip resurfacing arthroplasty (THRA endoprosthesis with the MSC‐Scaffold was performed. It was followed by the geometric measurements of a variety of specimens designed as the fragments of the MSC-Scaffold of both THRA endoprosthesis components. The reduced ability to accommodate the ingrowing bone tissue in the SLM‐manufactured prototypes versus that in the corresponding CAD models has been quantitatively determined. Obtained results enabled to establish a way of compensatory structural‐geometric functionalization, allowing the MSC‐Scaffold adequate redesigning and manufacturing in additive SLM technology.
Geometric approximation algorithms
Har-Peled, Sariel
2011-01-01
Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.
Robust Optimization Using Supremum of the Objective Function for Nonlinear Programming Problems
International Nuclear Information System (INIS)
Lee, Se Jung; Park, Gyung Jin
2014-01-01
In the robust optimization field, the robustness of the objective function emphasizes an insensitive design. In general, the robustness of the objective function can be achieved by reducing the change of the objective function with respect to the variation of the design variables and parameters. However, in conventional methods, when an insensitive design is emphasized, the performance of the objective function can be deteriorated. Besides, if the numbers of the design variables are increased, the numerical cost is quite high in robust optimization for nonlinear programming problems. In this research, the robustness index for the objective function and a process of robust optimization are proposed. Moreover, a method using the supremum of linearized functions is also proposed to reduce the computational cost. Mathematical examples are solved for the verification of the proposed method and the results are compared with those from the conventional methods. The proposed approach improves the performance of the objective function and its efficiency
International Nuclear Information System (INIS)
Porn, U.; Alalp, S.; Fischer, S.; Dresel, S.; Rossmueller, B.; Hahn, K.
2001-01-01
For assessment of differential renal function (PF) by means of static renal scintigraphy with Tc-99m-dimercaptosuccinic acid (DMSA) the calculation of the geometric mean of counts from the anterior and posterior view is recommended. Aim of this retrospective study was to find out, if the anterior view is necessary to receive an accurate differential renal function by calculating the geometric mean compared to calculating PF using the counts of the posterior view only. Methods: 164 DMSA-scans of 151 children (86 f, 65 m) aged 16 d to 16 a (4.7 ± 3.9 a) were reviewed. The scans were performed using a dual head gamma camera (Picker Prism 2000 XP, low energy ultra high resolution collimator, matrix 256 x 256, 300 kcts/view, Zoom: 1.6-2.0). Background corrected values from both kidneys anterior and posterior were obtained. Using region of interest technique PF was calculated using the counts of the dorsal view and compared with the calculated geometric mean [SQR(Cts dors x Cts ventr )]. Results: The differential function of the right kidney was significantly less when compared to the calculation of the geometric mean (p geom and the PF dors was 1.5 ± 1.4%. A difference ≥5% (5.0-9.5%) was obtained in only 6/164 scans (3.7%). Three of 6 patients presented with an underestimated PF dors due to dystopic kidneys on the left side in 2 patients and on the right side in one patient. The other 3 patients with a difference >5% did not show any renal abnormality. Conclusion: The calculation of the PF from the posterior view only will give an underestimated value of the right kidney compared to the calculation of the geometric mean. This effect is not relevant for the calculation of the differential renal function in orthotopic kidneys, so that in these cases the anterior view is not necessary. However, geometric mean calculation to obtain reliable values for differential renal function should be applied in cases with an obvious anatomical abnormality. (orig.) [de
Selection of Objective Function For Imbalanced Classification: An Industrial Case Study
DEFF Research Database (Denmark)
Khan, Abdul Rauf; Schiøler, Henrik; Kulahci, Murat
2017-01-01
In this article we discuss the issue of selecting suitable objective function for Genetic Algorithm to solve an imbalanced classification problem. More precisely, first we discuss the need of specialized objective function to solve a real classification problem from our industrial partner and the...... and then we compare the results of our proposed objective function with commonly used candidates to serve this purpose. Our comparison is based on the analysis of real data collected during the quality control stages of the manufacturing process....
Geometrical framework for robust portfolio optimization
Bazovkin, Pavel
2014-01-01
We consider a vector-valued multivariate risk measure that depends on the user's profile given by the user's utility. It is constructed on the basis of weighted-mean trimmed regions and represents the solution of an optimization problem. The key feature of this measure is convexity. We apply the measure to the portfolio selection problem, employing different measures of performance as objective functions in a common geometrical framework.
DEFF Research Database (Denmark)
Mahmood, Faisal; Gehl, Julie
2011-01-01
and genes to intracranial tumors in humans, and demonstrate a method to optimize the design (i.e. geometry) of the electrode device prototype to improve both clinical performance and geometrical tolerance (robustness). We have employed a semiempirical objective function based on constraints similar to those...... sensitive to random geometrical deviations. The method is readily applicable to other electrode configurations....
Semantic and functional relationships among objects increase the capacity of visual working memory.
O'Donnell, Ryan E; Clement, Andrew; Brockmole, James R
2018-04-12
Visual working memory (VWM) has a limited capacity of approximately 3-4 visual objects. Current theories of VWM propose that a limited pool of resources can be flexibly allocated to objects, allowing them to be represented at varying levels of precision. Factors that influence the allocation of these resources, such as the complexity and perceptual grouping of objects, can thus affect the capacity of VWM. We sought to identify whether semantic and functional relationships between objects could influence the grouping of objects, thereby increasing the functional capacity of VWM. Observers viewed arrays of 8 to-be-remembered objects arranged into 4 pairs. We manipulated both the semantic association and functional interaction between the objects, then probed participants' memory for the arrays. When objects were semantically related, participants' memory for the arrays improved. Participants' memory further improved when semantically related objects were positioned to interact with each other. However, when we increased the spacing between the objects in each pair, the benefits of functional but not semantic relatedness were eliminated. These findings suggest that action-relevant properties of objects can increase the functional capacity of VWM, but only when objects are positioned to directly interact with each other. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Geometrical primitives reconstruction from image sequence in an interactive context
International Nuclear Information System (INIS)
Monchal, L.; Aubry, P.
1995-01-01
We propose a method to recover 3D geometrical shape from image sequence, in a context of man machine co-operation. The human operator has to point out the edges of an object in the first image and choose a corresponding geometrical model. The algorithm tracks each relevant 2D segments describing surface discontinuities or limbs, in the images. Then, knowing motion of the camera between images, the positioning and the size of the virtual object are deduced by minimising a function. The function describes how well the virtual objects is linked to the extracted segments of the sequence, its geometrical model and pieces of information given by the operator. (author). 13 refs., 7 figs., 8 tabs
On the convex hull of the simple integer recourse objective function
Klein Haneveld, Willem K.; Stougie, L.; van der Vlerk, Maarten H.
1995-01-01
We consider the objective function of a simple integer recourse problem with fixed technology matrix. Using properties of the expected value function, we prove a relation between the convex hull of this function and the expected value function of a continuous simple recourse program. We present an
Studies on combined model based on functional objectives of large scale complex engineering
Yuting, Wang; Jingchun, Feng; Jiabao, Sun
2018-03-01
As various functions were included in large scale complex engineering, and each function would be conducted with completion of one or more projects, combined projects affecting their functions should be located. Based on the types of project portfolio, the relationship of projects and their functional objectives were analyzed. On that premise, portfolio projects-technics based on their functional objectives were introduced, then we studied and raised the principles of portfolio projects-technics based on the functional objectives of projects. In addition, The processes of combined projects were also constructed. With the help of portfolio projects-technics based on the functional objectives of projects, our research findings laid a good foundation for management of large scale complex engineering portfolio management.
Infants' Developing Sensitivity to Object Function: Attention to Features and Feature Correlations
Baumgartner, Heidi A.; Oakes, Lisa M.
2011-01-01
When learning object function, infants must detect relations among features--for example, that squeezing is associated with squeaking or that objects with wheels roll. Previously, Perone and Oakes (2006) found 10-month-old infants were sensitive to relations between object appearances and actions, but not to relations between appearances and…
The Slippery Road from Actions on Objects to Functions and Variables
Paz, Tamar; Leron, Uri
2009-01-01
Functions are all around us, disguised as actions on concrete objects. Composition of functions, too, is all around us, because these actions can be performed in succession, the output of one serving as the input for the next. In terms of Gray and Tall's (2001) "embodied objects" or Lakoff and Nunez's (2000) "mathematical idea…
Monomial geometric programming with an arbitrary fuzzy relational inequality
Directory of Open Access Journals (Sweden)
E. Shivanian
2015-11-01
Full Text Available In this paper, an optimization model with geometric objective function is presented. Geometric programming is widely used; many objective functions in optimization problems can be analyzed by geometric programming. We often encounter these in resource allocation and structure optimization and technology management, etc. On the other hand, fuzzy relation equalities and inequalities are also used in many areas. We here present a geometric programming model with a monomial objective function subject to the fuzzy relation inequality constraints with an arbitrary function. The feasible solution set is determined and compared with some common results in the literature. A necessary and sufficient condition and three other necessary conditions are presented to conceptualize the feasibility of the problem. In general a lower bound is always attainable for the optimal objective value by removing the components having no effect on the solution process. By separating problem to non-decreasing and non-increasing function to prove the optimal solution, we simplify operations to accelerate the resolution of the problem.
Geometric information provider platform
Directory of Open Access Journals (Sweden)
Meisam Yousefzadeh
2015-07-01
Full Text Available Renovation of existing buildings is known as an essential stage in reduction of the energy loss. Considerable part of renovation process depends on geometric reconstruction of building based on semantic parameters. Following many research projects which were focused on parameterizing the energy usage, various energy modelling methods were developed during the last decade. On the other hand, by developing accurate measuring tools such as laser scanners, the interests of having accurate 3D building models are rapidly growing. But the automation of 3D building generation from laser point cloud or detection of specific objects in that is still a challenge. The goal is designing a platform through which required geometric information can be efficiently produced to support energy simulation software. Developing a reliable procedure which extracts required information from measured data and delivers them to a standard energy modelling system is the main purpose of the project.
Directory of Open Access Journals (Sweden)
Cynthia Collette
2016-08-01
Full Text Available Object semantics include object function and manipulation knowledge. Function knowledge refers to the goal attainable by using an object (e.g. the function of a key is to open or close a door while manipulation knowledge refers to gestures one has to execute to use an object appropriately (e.g. a key is held between the thumb and the index, inserted into the door lock and then turned.To date, several studies have assessed function and manipulation knowledge in brain lesion patients as well as in healthy adult populations. In patients with left brain damage, a double dissociation between these two types of knowledge has been reported; on the other hand, behavioral studies in healthy adults show that function knowledge is processed faster than manipulation knowledge. Empirical evidence has shown that object interaction in children differs from that in adults, suggesting that the access to function and manipulation knowledge in children might also differ.To investigate the development of object function and manipulation knowledge, 51 typically developing 8-9-10 year-old children and 17 healthy young adults were tested on a naming task associated with a semantic priming paradigm (190-ms SOA; prime duration: 90 ms in which a series of line drawings of manipulable objects were used. Target objects could be preceded by three priming contexts: related (e.g. knife-scissors for function; key-screwdriver for manipulation, unrelated but visually similar (e.g. glasses-scissors; baseball bat-screwdriver, and purely unrelated (e.g. die-scissors; tissue-screwdriver.Results showed a different developmental pattern of function and manipulation priming effects. Function priming effects were not present in children and emerged only in adults, with faster naming responses for targets preceded by objects sharing the same function. In contrast, manipulation priming effects were already present in 8-year-olds with faster naming responses for targets preceded by objects
Geometric Programming Approach to an Interactive Fuzzy Inventory Problem
Directory of Open Access Journals (Sweden)
Nirmal Kumar Mandal
2011-01-01
Full Text Available An interactive multiobjective fuzzy inventory problem with two resource constraints is presented in this paper. The cost parameters and index parameters, the storage space, the budgetary cost, and the objective and constraint goals are imprecise in nature. These parameters and objective goals are quantified by linear/nonlinear membership functions. A compromise solution is obtained by geometric programming method. If the decision maker is not satisfied with this result, he/she may try to update the current solution to his/her satisfactory solution. In this way we implement man-machine interactive procedure to solve the problem through geometric programming method.
Transmuted Complementary Weibull Geometric Distribution
Directory of Open Access Journals (Sweden)
Ahmed Z. A fify
2014-12-01
Full Text Available This paper provides a new generalization of the complementary Weibull geometric distribution that introduced by Tojeiro et al. (2014, using the quadratic rank transmutation map studied by Shaw and Buckley (2007. The new distribution is referred to as transmuted complementary Weibull geometric distribution (TCWGD. The TCWG distribution includes as special cases the complementary Weibull geometric distribution (CWGD, complementary exponential geometric distribution(CEGD,Weibull distribution (WD and exponential distribution (ED. Various structural properties of the new distribution including moments, quantiles, moment generating function and RØnyi entropy of the subject distribution are derived. We proposed the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the exibility of the transmuted version versus the complementary Weibull geometric distribution.
Energy Technology Data Exchange (ETDEWEB)
Lee, Eun Byeul; Ahn, Sung Min [Dept. of Radiological Science, Gachon University, Incheon (Korea, Republic of); Lee, Wang Hui [Dept. of Nuclear Medicine, Gil-Hospital, Incheon (Korea, Republic of)
2016-06-15
99mTc-MAG{sub 3} Renal scan is a method that acquires dynamic renal scan image by using 99mTc-MAG{sub 3} and dynamically visualizes process of radioactive agent being absorbed to kidney and excreted continuously. Once the test starts, ratio in both kidneys in 1-2.5 minutes was measured to obtain split renal function and split renal function can be expressed in ratio based on overall renal function. This study is based on compares split renal function obtained from data acquired from posterior detector, which is a conventional renal function test method, with split renal function acquired from the geometric mean of values obtained from anterior and posterior detectors, and studies utility of attenuation compensation depending on difference in geometric mean kidney depth. From July, 2015 to February 2016, 33 patients who undertook 99mTc-MAG{sub 3} Renal scan(13 male, 20 female, average age of 44.66 with range of 5-70, average height of 160.40 cm, average weight of 55.40 kg) were selected as subjects. Depth of kidney was shown to be 65.82 mm at average for left and 71.62 mm at average for right. In supine position, 30 out of 33 patients showed higher ratio of deep-situated kidney and lower ratio of shallow-situated kidney. Such result is deemed to be due to correction by attenuation between deep-situated kidney and detector and in case where there is difference between the depth of both kidneys such as, lesions in or around kidney, spine malformation, and ectopic kidney, ratio of deep-situated kidney must be compensated for more accurate calculation of split renal function, when compared to the conventional test method (posterior detector counting)
International Nuclear Information System (INIS)
Lee, Eun Byeul; Ahn, Sung Min; Lee, Wang Hui
2016-01-01
99mTc-MAG 3 Renal scan is a method that acquires dynamic renal scan image by using 99mTc-MAG 3 and dynamically visualizes process of radioactive agent being absorbed to kidney and excreted continuously. Once the test starts, ratio in both kidneys in 1-2.5 minutes was measured to obtain split renal function and split renal function can be expressed in ratio based on overall renal function. This study is based on compares split renal function obtained from data acquired from posterior detector, which is a conventional renal function test method, with split renal function acquired from the geometric mean of values obtained from anterior and posterior detectors, and studies utility of attenuation compensation depending on difference in geometric mean kidney depth. From July, 2015 to February 2016, 33 patients who undertook 99mTc-MAG 3 Renal scan(13 male, 20 female, average age of 44.66 with range of 5-70, average height of 160.40 cm, average weight of 55.40 kg) were selected as subjects. Depth of kidney was shown to be 65.82 mm at average for left and 71.62 mm at average for right. In supine position, 30 out of 33 patients showed higher ratio of deep-situated kidney and lower ratio of shallow-situated kidney. Such result is deemed to be due to correction by attenuation between deep-situated kidney and detector and in case where there is difference between the depth of both kidneys such as, lesions in or around kidney, spine malformation, and ectopic kidney, ratio of deep-situated kidney must be compensated for more accurate calculation of split renal function, when compared to the conventional test method (posterior detector counting)
2010-01-01
The authors studied functional state before and after the working shift in workers at objects for chemical weapons destruction, analyzed changes in central and peripheral hemodynamics parameters, vegetative regulation of heart rhythm, stabilographic and psychophysiologic values.
Waveform inversion with exponential damping using a deconvolution-based objective function
Choi, Yun Seok; Alkhalifah, Tariq Ali
2016-01-01
The lack of low frequency components in seismic data usually leads full waveform inversion into the local minima of its objective function. An exponential damping of the data, on the other hand, generates artificial low frequencies, which can
Interactive Preference Learning of Utility Functions for Multi-Objective Optimization
Dewancker, Ian; McCourt, Michael; Ainsworth, Samuel
2016-01-01
Real-world engineering systems are typically compared and contrasted using multiple metrics. For practical machine learning systems, performance tuning is often more nuanced than minimizing a single expected loss objective, and it may be more realistically discussed as a multi-objective optimization problem. We propose a novel generative model for scalar-valued utility functions to capture human preferences in a multi-objective optimization setting. We also outline an interactive active learn...
Cowell, Rosemary A.; Bussey, Timothy J.; Saksida, Lisa M.
2010-01-01
We examined the organization and function of the ventral object processing pathway. The prevailing theoretical approach in this field holds that the ventral object processing stream has a modular organization, in which visual perception is carried out in posterior regions and visual memory is carried out, independently, in the anterior temporal…
Directory of Open Access Journals (Sweden)
Delaram Houshmand Kouchi
2017-05-01
Full Text Available The successful application of hydrological models relies on careful calibration and uncertainty analysis. However, there are many different calibration/uncertainty analysis algorithms, and each could be run with different objective functions. In this paper, we highlight the fact that each combination of optimization algorithm-objective functions may lead to a different set of optimum parameters, while having the same performance; this makes the interpretation of dominant hydrological processes in a watershed highly uncertain. We used three different optimization algorithms (SUFI-2, GLUE, and PSO, and eight different objective functions (R2, bR2, NSE, MNS, RSR, SSQR, KGE, and PBIAS in a SWAT model to calibrate the monthly discharges in two watersheds in Iran. The results show that all three algorithms, using the same objective function, produced acceptable calibration results; however, with significantly different parameter ranges. Similarly, an algorithm using different objective functions also produced acceptable calibration results, but with different parameter ranges. The different calibrated parameter ranges consequently resulted in significantly different water resource estimates. Hence, the parameters and the outputs that they produce in a calibrated model are “conditioned” on the choices of the optimization algorithm and objective function. This adds another level of non-negligible uncertainty to watershed models, calling for more attention and investigation in this area.
A two-level parallel direct search implementation for arbitrarily sized objective functions
Energy Technology Data Exchange (ETDEWEB)
Hutchinson, S.A.; Shadid, N.; Moffat, H.K. [Sandia National Labs., Albuquerque, NM (United States)] [and others
1994-12-31
In the past, many optimization schemes for massively parallel computers have attempted to achieve parallel efficiency using one of two methods. In the case of large and expensive objective function calculations, the optimization itself may be run in serial and the objective function calculations parallelized. In contrast, if the objective function calculations are relatively inexpensive and can be performed on a single processor, then the actual optimization routine itself may be parallelized. In this paper, a scheme based upon the Parallel Direct Search (PDS) technique is presented which allows the objective function calculations to be done on an arbitrarily large number (p{sub 2}) of processors. If, p, the number of processors available, is greater than or equal to 2p{sub 2} then the optimization may be parallelized as well. This allows for efficient use of computational resources since the objective function calculations can be performed on the number of processors that allow for peak parallel efficiency and then further speedup may be achieved by parallelizing the optimization. Results are presented for an optimization problem which involves the solution of a PDE using a finite-element algorithm as part of the objective function calculation. The optimum number of processors for the finite-element calculations is less than p/2. Thus, the PDS method is also parallelized. Performance comparisons are given for a nCUBE 2 implementation.
Khashan, Raed; Zheng, Weifan; Tropsha, Alexander
2012-08-01
Accurate prediction of the structure of protein-protein complexes in computational docking experiments remains a formidable challenge. It has been recognized that identifying native or native-like poses among multiple decoys is the major bottleneck of the current scoring functions used in docking. We have developed a novel multibody pose-scoring function that has no theoretical limit on the number of residues contributing to the individual interaction terms. We use a coarse-grain representation of a protein-protein complex where each residue is represented by its side chain centroid. We apply a computational geometry approach called Almost-Delaunay tessellation that transforms protein-protein complexes into a residue contact network, or an undirectional graph where vertex-residues are nodes connected by edges. This treatment forms a family of interfacial graphs representing a dataset of protein-protein complexes. We then employ frequent subgraph mining approach to identify common interfacial residue patterns that appear in at least a subset of native protein-protein interfaces. The geometrical parameters and frequency of occurrence of each "native" pattern in the training set are used to develop the new SPIDER scoring function. SPIDER was validated using standard "ZDOCK" benchmark dataset that was not used in the development of SPIDER. We demonstrate that SPIDER scoring function ranks native and native-like poses above geometrical decoys and that it exceeds in performance a popular ZRANK scoring function. SPIDER was ranked among the top scoring functions in a recent round of CAPRI (Critical Assessment of PRedicted Interactions) blind test of protein-protein docking methods. Copyright © 2012 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
S.M. Günay
2016-12-01
Full Text Available Rheumatoid arthritis (RA often results in impairments in upper extremities, especially in the small joints of hand. Involvement of hand brings limitations in activities of daily living. However, it is commonly observed that patient-reported functional status of hand does not always corresponds to their actual physical performance in the clinical setting. The aim of this pilot study is to investigate the relationship between patient self-reported and objectively measured hand functions in patients with RA. Twenty-six patients (51±13 years with RA diagnosis participated in the study. Hand grip and pinch (lateral, bipod, tripod strengths were measured and Jebsen Hand Function Test (JHFT was performed for objective functional performance. Duruöz Hand Index and Beck Depression Inventory - Turkish version were completed by patients. Grip and all three-pinch strength results significantly correlated with Duruöz Hand Index scores (p<0.05. JHFT results except the sentence writing also correlated with the Duruöz scores (p<0.05. Our results showed that self-reported outcome scales might be used for determining functional level of hand in patients with RA in rheumatology practice. Objective quantitative functional tests are the best methods in evaluating functional level of hand, but require valid and reliable equipment with accurate calibration. Therefore, in case of unavailability of objective assessment tools, patient-reported scales may also reflect the real status of hand functions.
Regularized Laplace-Fourier-Domain Full Waveform Inversion Using a Weighted l 2 Objective Function
Jun, Hyunggu; Kwon, Jungmin; Shin, Changsoo; Zhou, Hongbo; Cogan, Mike
2017-03-01
Full waveform inversion (FWI) can be applied to obtain an accurate velocity model that contains important geophysical and geological information. FWI suffers from the local minimum problem when the starting model is not sufficiently close to the true model. Therefore, an accurate macroscale velocity model is essential for successful FWI, and Laplace-Fourier-domain FWI is appropriate for obtaining such a velocity model. However, conventional Laplace-Fourier-domain FWI remains an ill-posed and ill-conditioned problem, meaning that small errors in the data can result in large differences in the inverted model. This approach also suffers from certain limitations related to the logarithmic objective function. To overcome the limitations of conventional Laplace-Fourier-domain FWI, we introduce a weighted l 2 objective function, instead of the logarithmic objective function, as the data-domain objective function, and we also introduce two different model-domain regularizations: first-order Tikhonov regularization and prior model regularization. The weighting matrix for the data-domain objective function is constructed to suitably enhance the far-offset information. Tikhonov regularization smoothes the gradient, and prior model regularization allows reliable prior information to be taken into account. Two hyperparameters are obtained through trial and error and used to control the trade-off and achieve an appropriate balance between the data-domain and model-domain gradients. The application of the proposed regularizations facilitates finding a unique solution via FWI, and the weighted l 2 objective function ensures a more reasonable residual, thereby improving the stability of the gradient calculation. Numerical tests performed using the Marmousi synthetic dataset show that the use of the weighted l 2 objective function and the model-domain regularizations significantly improves the Laplace-Fourier-domain FWI. Because the Laplace-Fourier-domain FWI is improved, the
Energy Technology Data Exchange (ETDEWEB)
Fernandes, D.H.; Medeiros, A.R. [Subsea7, Niteroi, RJ (Brazil); Jacob, B.P.; Lima, B.S.L.P.; Albrecht, C.H. [Universidade Federaldo Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao de Programas de Pos-graduacao em Engenharia
2009-07-01
This work presents studies regarding the determination of optimal pipeline routes for offshore applications. The assembly of an objective function is presented; this function can be later associated with Evolutionary Algorithm to implement a computational tool for the automatic determination of the most advantageous pipeline route for a given scenario. This tool may reduce computational overheads, avoid mistakes with route interpretation, and minimize costs with respect to submarine pipeline design and installation. The following aspects can be considered in the assembly of the objective function: Geophysical and geotechnical data obtained from the bathymetry and sonography; the influence of the installation method, total pipeline length and number of free spans to be mitigated along the routes as well as vessel time for both cases. Case studies are presented to illustrate the use of the proposed objective function, including a sensitivity analysis intended to identify the relative influence of selected parameters in the evaluation of different routes. (author)
Geometric modeling in probability and statistics
Calin, Ovidiu
2014-01-01
This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader...
Directory of Open Access Journals (Sweden)
Wei Xu
2013-09-01
Full Text Available Purpose: To ascertain the relationship between the operation system function goal decision making and customer demand and competition strategy, can better discover and integrate all available resources (including important capital resources to achieve business opportunities, the establishment of sustainable competitive ability. Because, to achieve business development lead policymakers take great uncertainty, which led to the investment behavior required for the operational activities of resources also bear the enormous risks. Design/methodology/approach: Through principal component analysis on the data collected by questionnaires, the manuscript obtains dominant factors for customer demand, competitive strategy and manufacturing system functional objectives respectively. By these factors, it tests its three hypotheses with the data from northeast of China and draws some conclusions. Findings: The results show that customer demand have a significant positive effect on competitive strategy; competitive strategy have positive influence on manufacturing system functional objectives; customer demand affect the functional objectives, by competitive strategy. Research limitations/implications: In this research, competitive strategy and manufacturing system functional objectives are influenced by customer demand. The conclusion of the research can provide theoretical guidance for Chinese enterprises which carry out manufacturing system functional objectives. Originality/value: In this research, a new measure questionnaire of competition strategy, customer satisfaction and operating system function goal was used, analyzed the influence factors of time, quality, cost, efficiency, service and environment, on the operation of the system. The study shows that the effect of competition strategy and customer demand has a direct impact on the operating system functions, customer demand through competitive strategy of indirect effects operating system functions.
International Nuclear Information System (INIS)
Muldoon, Frank H.; Kuhlmann, Hendrik C.
2015-01-01
Highlights: • Suppression of oscillations in a thermocapillary flow is addressed by optimization. • The gradient of the objective function is obtained by solving the adjoint equations. • The issue of choosing an objective function is investigated. - Abstract: The problem of suppressing flow oscillations in a thermocapillary flow is addressed using a gradient-based control strategy. The physical problem addressed is the “open boat” process of crystal growth, the flow in which is driven by thermocapillary and buoyancy effects. The problem is modeled by the two-dimensional unsteady incompressible Navier–Stokes and energy equations under the Boussinesq approximation. The goal of the control is to suppress flow oscillations which arise when the driving forces are such that the flow becomes unsteady. The control is a spatially and temporally varying temperature gradient boundary condition at the free surface. The control which minimizes the flow oscillations is found using a conjugate gradient method, where the gradient of the objective function with respect to the control variables is obtained from solving a set of adjoint equations. The issue of choosing an objective function that can be both optimized in a computationally efficient manner and optimization of which provides control that damps the flow oscillations is investigated. Almost complete suppression of the flow oscillations is obtained for certain choices of the objective function.
On bivariate geometric distribution
Directory of Open Access Journals (Sweden)
K. Jayakumar
2013-05-01
Full Text Available Characterizations of bivariate geometric distribution using univariate and bivariate geometric compounding are obtained. Autoregressive models with marginals as bivariate geometric distribution are developed. Various bivariate geometric distributions analogous to important bivariate exponential distributions like, Marshall-Olkin’s bivariate exponential, Downton’s bivariate exponential and Hawkes’ bivariate exponential are presented.
Visualizing the Geometric Series.
Bennett, Albert B., Jr.
1989-01-01
Mathematical proofs often leave students unconvinced or without understanding of what has been proved, because they provide no visual-geometric representation. Presented are geometric models for the finite geometric series when r is a whole number, and the infinite geometric series when r is the reciprocal of a whole number. (MNS)
Croke, B. F.
2008-12-01
The role of performance indicators is to give an accurate indication of the fit between a model and the system being modelled. As all measurements have an associated uncertainty (determining the significance that should be given to the measurement), performance indicators should take into account uncertainties in the observed quantities being modelled as well as in the model predictions (due to uncertainties in inputs, model parameters and model structure). In the presence of significant uncertainty in observed and modelled output of a system, failure to adequately account for variations in the uncertainties means that the objective function only gives a measure of how well the model fits the observations, not how well the model fits the system being modelled. Since in most cases, the interest lies in fitting the system response, it is vital that the objective function(s) be designed to account for these uncertainties. Most objective functions (e.g. those based on the sum of squared residuals) assume homoscedastic uncertainties. If model contribution to the variations in residuals can be ignored, then transformations (e.g. Box-Cox) can be used to remove (or at least significantly reduce) heteroscedasticity. An alternative which is more generally applicable is to explicitly represent the uncertainties in the observed and modelled values in the objective function. Previous work on this topic addressed the modifications to standard objective functions (Nash-Sutcliffe efficiency, RMSE, chi- squared, coefficient of determination) using the optimal weighted averaging approach. This paper extends this previous work; addressing the issue of serial correlation. A form for an objective function that includes serial correlation will be presented, and the impact on model fit discussed.
Directory of Open Access Journals (Sweden)
Chan Jason
2011-12-01
Full Text Available Abstract Introduction Pectus excavatum is the most common congenital deformity of the anterior chest wall that, under certain conditions, may pose functional problems due to cardiopulmonary compromise and exercise intolerance. Case presentation We present the case of an otherwise physically-adept 21-year-old Chinese sportsman with idiopathic pectus excavatum, whose symptoms manifested only on bearing a loaded body vest and backpack during physical exercise. Corroborative objective evidence was obtained via load-stressed pulmonary function testing, which demonstrated restrictive lung function. Conclusion This report highlights the possible detrimental synergism of thoracic load stress and pectus excavatum on cardiopulmonary function. Thoracic load-stressed pulmonary function testing provides objective evidence in support of such a synergistic relationship.
Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A
2014-01-01
Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.
Geometric Reasoning for Automated Planning
Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel
2012-01-01
An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.
Geometric database maintenance using CCTV cameras and overlay graphics
Oxenberg, Sheldon C.; Landell, B. Patrick; Kan, Edwin
1988-01-01
An interactive graphics system using closed circuit television (CCTV) cameras for remote verification and maintenance of a geometric world model database has been demonstrated in GE's telerobotics testbed. The database provides geometric models and locations of objects viewed by CCTV cameras and manipulated by telerobots. To update the database, an operator uses the interactive graphics system to superimpose a wireframe line drawing of an object with known dimensions on a live video scene containing that object. The methodology used is multipoint positioning to easily superimpose a wireframe graphic on the CCTV image of an object in the work scene. An enhanced version of GE's interactive graphics system will provide the object designation function for the operator control station of the Jet Propulsion Laboratory's telerobot demonstration system.
A new geometrical gravitational theory
International Nuclear Information System (INIS)
Obata, T.; Chiba, J.; Oshima, H.
1981-01-01
A geometrical gravitational theory is developed. The field equations are uniquely determined apart from one unknown dimensionless parameter ω 2 . It is based on an extension of the Weyl geometry, and by the extension the gravitational coupling constant and the gravitational mass are made to be dynamical and geometrical. The fundamental geometrical objects in the theory are a metric gsub(μν) and two gauge scalars phi and psi. The theory satisfies the weak equivalence principle, but breaks the strong one generally. u(phi, psi) = phi is found out on the assumption that the strong one keeps holding good at least for bosons of low spins. Thus there is the simple correspondence between the geometrical objects and the gravitational objects. Since the theory satisfies the weak one, the inertial mass is also dynamical and geometrical in the same way as is the gravitational mass. Moreover, the cosmological term in the theory is a coscalar of power -4 algebraically made of psi and u(phi, psi), so it is dynamical, too. Finally spherically symmetric exact solutions are given. The permissible range of the unknown parameter ω 2 is experimentally determined by applying the solutions to the solar system. (author)
DERIVATIVE OF SET MEASURE FUNCTIONS AND ITS APPLICATION (THEORETICAL BASES OF INVESTMENT OBJECTIVES
Directory of Open Access Journals (Sweden)
A. A. Bosov
2014-04-01
Full Text Available Purpose. It is necessary to develop the theoretical fundamentals for solving the investment objectives presented in the form of set function as vector optimization tasks or tasks of constrained extremum. Methodology. Set functions and their derivatives of measure are used as research of investment objectives. Necessary condition of set function minimum is proved. In the tasks for constrained extremum the method of Lagrange is used. It is shown that this method can also be used for the set function. It is used the measure for proof, which generalizes the Lebesgue measure, and the concept of set sequence limit is introduced. It is noted that the introduced limit over a measure coincides with the classical Borel limit and can be used in order to prove the existence of derivative from set function over a measure on convergent of sets sequence. Findings. An algorithm of solving the investment objective for constrained extremum in relation to investment objectives was offered. Originality. Scientific novelty lies in the fact that in multivariate objects for constrained extremum one can refuse from immediate enumeration. One can use the proposed algorithm of constructing (selection of options that allow building a convex linear envelope of Pareto solutions. This envelope will let the person who makes a decision (DM, select those options that are "better" from a position of DM, and consider some of the criteria, the formalization of which are difficult or can not be described in mathematical terms. Practical value. Results of the study provide the necessary theoretical substantiation of decision-making in investment objectives, when there is a significant number of an investment objects and immediate enumeration of options is very difficult on time costs even for modern computing techniques.
A study of objective functions for organs with parallel and serial architecture
International Nuclear Information System (INIS)
Stavrev, P.V.; Stavreva, N.A.; Round, W.H.
1997-01-01
An objective function analysis when target volumes are deliberately enlarged to account for tumour mobility and consecutive uncertainty in the tumour position in external beam radiotherapy has been carried out. The dose distribution inside the tumour is assumed to have logarithmic dependence on the tumour cell density which assures an iso-local tumour control probability. The normal tissue immediately surrounding the tumour is irradiated homogeneously at a dose level equal to the dose D(R)) delivered at the edge of the tumour The normal tissue in the high dose field is modelled as being organized in identical functional subunits (FSUs) composed of a relatively large number of cells. Two types of organs - having serial and parallel architecture are considered. Implicit averaging over intrapatient normal tissue radiosensitivity variations is done. A function describing the normal tissue survival probability S 0 is constructed. The objective function is given as a product of the total tumour control probability (TCP) and the normal tissue survival probability S 0 . The values of the dose D(R)) which result in a maximum of the objective function are obtained for different combinations of tumour and normal tissue parameters, such as tumour and normal tissue radiosensitivities, number of cells constituting a normal tissue functional unit, total number of normal cells under high dose (D(R)) exposure and functional reserve for organs having parallel architecture. The corresponding TCP and S 0 values are computed and discussed. (authors)
Mobile Watermarking against Geometrical Distortions
Directory of Open Access Journals (Sweden)
Jing Zhang
2015-08-01
Full Text Available Mobile watermarking robust to geometrical distortions is still a great challenge. In mobile watermarking, efficient computation is necessary because mobile devices have very limited resources due to power consumption. In this paper, we propose a low-complexity geometrically resilient watermarking approach based on the optimal tradeoff circular harmonic function (OTCHF correlation filter and the minimum average correlation energy Mellin radial harmonic (MACE-MRH correlation filter. By the rotation, translation and scale tolerance properties of the two kinds of filter, the proposed watermark detector can be robust to geometrical attacks. The embedded watermark is weighted by a perceptual mask which matches very well with the properties of the human visual system. Before correlation, a whitening process is utilized to improve watermark detection reliability. Experimental results demonstrate that the proposed watermarking approach is computationally efficient and robust to geometrical distortions.
International Nuclear Information System (INIS)
Buendia, M.; Salvador, R.; Cibrian, R.; Sotoca, J.M.; Laguia, M.
1999-01-01
The projection of structured light is a technique frequently used to determine the surface shape of an object. In this paper, a new procedure is described that efficiently resolves the correspondence between the knots of the projected grid and those obtained on the object when the projection is made. The method is based on the use of three images of the projected grid. In two of them the grid is projected over a flat surface placed, respectively, before and behind the object; both images are used for calibration. In the third image the grid is projected over the object. It is not reliant on accurate determination of the camera and projector pair relative to the grid and object. Once the method is calibrated, we can obtain the surface function by just analysing the projected grid on the object. The procedure is especially suitable for the study of objects without discontinuities or large depth gradients. It can be employed for determining, in a non-invasive way, the patient's back surface function. Symmetry differences permit a quantitative diagnosis of spinal deformities such as scoliosis. (author)
MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly
2016-12-01
The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Ninety-two children aged 3 to 5 years old (M age = 4.31 years) were recruited to participate. Comprehensive measures of visual-motor integration skills, object manipulation skills, executive function, and social behaviors were administered in the fall and spring of the preschool year. Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores (B = 0.47 [0.20], p gender, Head Start status, and site location, but not after controlling for children's baseline levels of executive function. In addition, children who demonstrated better object manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control (B - 0.03 [0.00], p social behavior in the fall and other covariates. Children's visual-motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness.
Tran, Van Tan; Nguyen, Minh Thao; Tran, Quoc Tri
2017-10-12
Density functional theory and the multiconfigurational CASSCF/CASPT2 method have been employed to study the low-lying states of VGe n -/0 (n = 1-4) clusters. For VGe -/0 and VGe 2 -/0 clusters, the relative energies and geometrical structures of the low-lying states are reported at the CASSCF/CASPT2 level. For the VGe 3 -/0 and VGe 4 -/0 clusters, the computational results show that due to the large contribution of the Hartree-Fock exact exchange, the hybrid B3LYP, B3PW91, and PBE0 functionals overestimate the energies of the high-spin states as compared to the pure GGA BP86 and PBE functionals and the CASPT2 method. On the basis of the pure GGA BP86 and PBE functionals and the CASSCF/CASPT2 results, the ground states of anionic and neutral clusters are defined, the relative energies of the excited states are computed, and the electron detachment energies of the anionic clusters are evaluated. The computational results are employed to give new assignments for all features in the photoelectron spectra of VGe 3 - and VGe 4 - clusters.
Davids, Roeliena C. D.; Groen, Yvonne; Berg, Ina J.; Tucha, Oliver M.; van Balkom, Ingrid D. C.
Although deficits in Executive Functioning (EF) are reported frequently in young individuals with Autism Spectrum Disorders (ASD), they remain relatively unexplored later in life (> 50 years). We studied objective performance on EF measures (Tower of London, Zoo map, phonetic/semantic fluency) as
Stienen, Martin N; Smoll, Nicolas R; Joswig, Holger; Corniola, Marco V; Schaller, Karl; Hildebrandt, Gerhard; Gautschi, Oliver P
2017-05-01
OBJECTIVE The Timed Up and Go (TUG) test is a simple, objective, and standardized method to measure objective functional impairment (OFI) in patients with lumbar degenerative disc disease (DDD). The objective of the current work was to validate the OFI baseline severity stratification (BSS; with levels of "none," "mild," "moderate," and "severe"). METHODS Data were collected in a prospective IRB-approved 2-center study. Patients were assessed with a comprehensive panel of scales for measuring pain (visual analog scale [VAS] for back and leg pain), functional impairment (Roland-Morris Disability Index [RMDI] and Oswestry Disability Index [ODI]), and health-related quality of life (HRQOL; EQ-5D and SF-12). OFI BSS was determined using age- and sex-adjusted cutoff values. RESULTS A total of 375 consecutive patients scheduled for lumbar spine surgery were included. Each 1-step increase on the OFI BSS corresponded to an increase of 0.53 in the back pain VAS score, 0.69 in the leg pain VAS score, 1.81 points in the RMDI, and 5.93 points in the ODI, as well as to a decrease in HRQOL of -0.073 in the EQ-5D, -1.99 in the SF-12 physical component summary (PCS), and -1.62 in the SF-12 mental component summary (MCS; all p measure of functional impairment for use in daily clinical practice. The presence of OFI indicates the presence of significant functional impairment on subjective outcome measures.
Matzke, Orville R.
The purpose of this study was to formulate a linear programming model to simulate a foundation type support program and to apply this model to a state support program for the public elementary and secondary school districts in the State of Iowa. The model was successful in producing optimal solutions to five objective functions proposed for…
MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly
2016-01-01
Purpose: The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Method: Ninety-two children aged 3 to 5 years old (M[subscript age] = 4.31 years) were…
Pant, Anup D; Dorairaj, Syril K; Amini, Rouzbeh
2018-07-01
Quantifying the mechanical properties of the iris is important, as it provides insight into the pathophysiology of glaucoma. Recent ex vivo studies have shown that the mechanical properties of the iris are different in glaucomatous eyes as compared to normal ones. Notwithstanding the importance of the ex vivo studies, such measurements are severely limited for diagnosis and preclude development of treatment strategies. With the advent of detailed imaging modalities, it is possible to determine the in vivo mechanical properties using inverse finite element (FE) modeling. An inverse modeling approach requires an appropriate objective function for reliable estimation of parameters. In the case of the iris, numerous measurements such as iris chord length (CL) and iris concavity (CV) are made routinely in clinical practice. In this study, we have evaluated five different objective functions chosen based on the iris biometrics (in the presence and absence of clinical measurement errors) to determine the appropriate criterion for inverse modeling. Our results showed that in the absence of experimental measurement error, a combination of iris CL and CV can be used as the objective function. However, with the addition of measurement errors, the objective functions that employ a large number of local displacement values provide more reliable outcomes.
Vergence, Vision, and Geometric Optics
Keating, Michael P.
1975-01-01
Provides a definition of vergence in terms of the curvature of the wave fronts, and gives examples to illustrate the advantages of this approach. The vergence treatment of geometrical optics provides both conceptual and algebraic advantages, particularly for the life science student, over the traditional object distance-image distance-focal length…
Waveform inversion with exponential damping using a deconvolution-based objective function
Choi, Yun Seok
2016-09-06
The lack of low frequency components in seismic data usually leads full waveform inversion into the local minima of its objective function. An exponential damping of the data, on the other hand, generates artificial low frequencies, which can be used to admit long wavelength updates for waveform inversion. Another feature of exponential damping is that the energy of each trace also exponentially decreases with source-receiver offset, where the leastsquare misfit function does not work well. Thus, we propose a deconvolution-based objective function for waveform inversion with an exponential damping. Since the deconvolution filter includes a division process, it can properly address the unbalanced energy levels of the individual traces of the damped wavefield. Numerical examples demonstrate that our proposed FWI based on the deconvolution filter can generate a convergent long wavelength structure from the artificial low frequency components coming from an exponential damping.
Choi, Yun Seok
2017-05-26
Full waveform inversion (FWI) using an energy-based objective function has the potential to provide long wavelength model information even without low frequency in the data. However, without the back-propagation method (adjoint-state method), its implementation is impractical for the model size of general seismic survey. We derive the gradient of the energy-based objective function using the back-propagation method to make its FWI feasible. We also raise the energy signal to the power of a small positive number to properly handle the energy signal imbalance as a function of offset. Examples demonstrate that the proposed FWI algorithm provides a convergent long wavelength structure model even without low-frequency information, which can be used as a good starting model for the subsequent conventional FWI.
Directory of Open Access Journals (Sweden)
Xuchu Wang
2014-01-01
that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness.
Validity of single-cycle objective functions for multicycle reload design optimization
International Nuclear Information System (INIS)
Kropaczek, D.J.; McElroy, J.; Turinsky, P.J.
1993-01-01
Beyond the equilibrium cycle scoping calculations used for determining numbers of feed assemblies and enrichment estimates, multicycle reload design currently consists of stagewise optimization of single-cycle core loading patterns, typically extending over a short-term planning horizon of perhaps three reload cycles. Particularly in transition cycles, however, optimizing a loading pattern over a single cycle for a stated objective, such as minimum core leakage, may have an adverse impact on subsequent cycles. The penalties paid may be in the form of reduced thermal margin or an increase in feed enrichment due to insufficient reactivity carryover from the open-quotes optimizedclose quotes cycle. In view of current practices, a study was performed that examined the behavior of the loading pattern as a function of the objective functions selected as implemented in the stagewise optimization of single-cycle core loading patterns from initial transition cycle through equilibrium using the FORMOSA-P code. The objective functions studied were region average discharge burnup maximization (with enrichment search) and feed enrichment minimization. It is noted at the beginning that the maximization of region average discharge has no meaning for the equilibrium cycle because region average discharge burnup is explicitly set by the feed size and cycle length independent of the loading pattern. In the nonequilibrium cycle, however, it was reasoned that this objective would provide the maximum reactivity carryover throughout the transition and thus have a direct effect on minimizing the multicycle levelized fuel cost
Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...
The motivational function of an objective in physical activity and sport
Directory of Open Access Journals (Sweden)
Mariusz Lipowski
2017-12-01
Full Text Available Background As a conscious activity of an individual, physical activity (PA constitutes an element of the free-time dimension. The type of goal allows us to distinguish between sport and PA: sport performance vs. psychophysical health. Drawing on the theory of the motivational function of an objective, this study examined the motivational function of an objective in physical activity and sport. Participants and procedures The sample consisted of 2141 individuals: 1163 women aged 16-64 years (M = 23.90, SD = 8.30 and 978 men aged 16-66 years (M = 24.50, SD = 9.40 who completed the Inventory of Physical Activity Objectives (IPAO, which includes the following scales: 1 motivational value, 2 time management, 3 persistence in action, and 4 motivational conflict. There are also questions that allow one to control for variables such as the variety of forms, duration, and frequency of PA, and socio-demographic variables. Results Males presented different motives of physical activity than females. Motives related to shapely body and health were more important for females. The most important motives for males were physical fitness and shapely body. The gender of participants moderates the motivational value of the specific objectives of physical activity and persistence in action. Conclusions With knowledge about the purposefulness of actions, it is possible to support and shape additional motivation experienced by an individual, by setting new, realistic objectives.
Functional Activation in the Ventral Object Processing Pathway during the First Year
Directory of Open Access Journals (Sweden)
Teresa eWilcox
2016-01-01
Full Text Available Infants' capacity to represent objects in visual working memory changes substantially during the first year of life. There is a growing body of research focused on identifying neural mechanisms that support this emerging capacity, and the extent to which visual object processing elicits different patterns of cortical activation in the infant as compared to the adult. Recent studies have identified areas in temporal and occipital cortex that mediate infants' developing capacity to track objects on the basis of their featural properties. The current research (Experiments 1 and 2 assessed patterns of activation in posterior temporal cortex and occipital cortex using fNIRS in infants 3 to 13 months of age as they viewed occlusion events. In the occlusion events, either the same object or featurally distinct objects emerged to each side of a screen. The outcome of these studies, combined, revealed that in infants 3 to 6 months, posterior temporal cortex was activated to all events, regardless of the featural properties of the objects and whether the event involved one object or two (featurally distinct objects. Infants 7 to 8 infants months showed a waning posterior temporal response and by 10 to 13 months this response was negligible. Additional analysis showed that the age groups did not differ in their visual attention to the events and that changes in HbO were better explained by age in days than head circumference. In contrast to posterior temporal cortex, robust activation was obtained in occipital cortex across all ages tested. One interpretation of these results is that they reflect pruning of the visual object-processing network during the first year. The functional contribution of occipital and posterior temporal cortex, along with higher-level temporal areas, to infants' capacity to keep track of distinct entities in visual working memory is discussed.
Predicting objective function weights from patient anatomy in prostate IMRT treatment planning
International Nuclear Information System (INIS)
Lee, Taewoo; Hammad, Muhannad; Chan, Timothy C. Y.; Craig, Tim; Sharpe, Michael B.
2013-01-01
Purpose: Intensity-modulated radiation therapy (IMRT) treatment planning typically combines multiple criteria into a single objective function by taking a weighted sum. The authors propose a statistical model that predicts objective function weights from patient anatomy for prostate IMRT treatment planning. This study provides a proof of concept for geometry-driven weight determination. Methods: A previously developed inverse optimization method (IOM) was used to generate optimal objective function weights for 24 patients using their historical treatment plans (i.e., dose distributions). These IOM weights were around 1% for each of the femoral heads, while bladder and rectum weights varied greatly between patients. A regression model was developed to predict a patient's rectum weight using the ratio of the overlap volume of the rectum and bladder with the planning target volume at a 1 cm expansion as the independent variable. The femoral head weights were fixed to 1% each and the bladder weight was calculated as one minus the rectum and femoral head weights. The model was validated using leave-one-out cross validation. Objective values and dose distributions generated through inverse planning using the predicted weights were compared to those generated using the original IOM weights, as well as an average of the IOM weights across all patients. Results: The IOM weight vectors were on average six times closer to the predicted weight vectors than to the average weight vector, usingl 2 distance. Likewise, the bladder and rectum objective values achieved by the predicted weights were more similar to the objective values achieved by the IOM weights. The difference in objective value performance between the predicted and average weights was statistically significant according to a one-sided sign test. For all patients, the difference in rectum V54.3 Gy, rectum V70.0 Gy, bladder V54.3 Gy, and bladder V70.0 Gy values between the dose distributions generated by the
Some Hermite–Hadamard Type Inequalities for Geometrically Quasi ...
Indian Academy of Sciences (India)
Abstract. In the paper, we introduce a new concept 'geometrically quasi-convex function' and establish some Hermite–Hadamard type inequalities for functions whose derivatives are of geometric quasi-convexity.
From tomography to full-waveform inversion with a single objective function
Alkhalifah, Tariq Ali
2014-02-17
In full-waveform inversion (FWI), a gradient-based update of the velocity model requires an initial velocity that produces synthetic data that are within a half-cycle, everywhere, from the field data. Such initial velocity models are usually extracted from migration velocity analysis or traveltime tomography, among other means, and are not guaranteed to adhere to the FWI requirements for an initial velocity model. As such, we evaluated an objective function based on the misfit in the instantaneous traveltime between the observed and modeled data. This phase-based attribute of the wavefield, along with its phase unwrapping characteristics, provided a frequency-dependent traveltime function that was easy to use and quantify, especially compared to conventional phase representation. With a strong Laplace damping of the modeled, potentially low-frequency, data along the time axis, this attribute admitted a first-arrival traveltime that could be compared with picked ones from the observed data, such as in wave equation tomography (WET). As we relax the damping on the synthetic and observed data, the objective function measures the misfit in the phase, however unwrapped. It, thus, provided a single objective function for a natural transition from WET to FWI. A Marmousi example demonstrated the effectiveness of the approach.
Objectively-measured outdoor time and physical and psychological function among older adults.
Harada, Kazuhiro; Lee, Sangyoon; Lee, Sungchul; Bae, Seongryu; Harada, Kenji; Suzuki, Takao; Shimada, Hiroyuki
2017-10-01
Objective measurements of outdoor time are essential to establishing evidence about the health benefits of going outdoors among older adults. To better understanding the health benefits of going outdoors, clarification of potential mediators to connect going outdoors with health benefits is necessary. The present study aimed to investigate associations of objectively-measured outdoor time with older adults' physical and psychological function, and examine the mediating role of physical activity on these associations. Baseline data from a randomized control trial of physical activity among older adults with global cognitive impairment was used. Data from 192 participants were analyzed. Measures included steps-per-day, objectively-measured outdoor time per day using global positioning systems, physical function (cardiorespiratory fitness, lower-extremity strength), psychological function (depression, well-being) and basic factors. Path analysis showed that outdoor time was significantly associated with steps-per-day (path coefficient = 0.23) and depression (path coefficient = -0.16). Outdoor time was not directly associated with cardiorespiratory fitness, lower-extremity strength and well-being. However, steps-per-day was associated with cardiorespiratory fitness (path coefficient = 0.18), lower-extremity strength (path coefficient = -0.22) and well-being (path coefficient = 0.14). We found that objectively-measured outdoor time was indirectly associated with physical function, and both directly and indirectly with psychological function through physical activity among older adults. This finding indicates that going outdoors influences older adults' health outcomes, and is mainly mediated by physical activity. Geriatr Gerontol Int 2017; 17: 1455-1462. © 2016 Japan Geriatrics Society.
International Nuclear Information System (INIS)
Urry, C.M.; Padovani, P.
1991-01-01
In a previous paper, Urry and Shafer (1984) showed that the observed luminosity function (LF) of objects that have part or all of their emission relativistically beamed was a double power law, flat at the faint end and steep at the bright end, so that the ratio of beamed sources to parents was a strong function of luminosity. These calculations are extended here for more realistic LFs required for actual tests of a unified theory of AGN. The observed LF of the beam-dominated objects is generally flatter than the parent LF, so that the number density ratio is a strong function of luminosity and can easily be greater than unity at high luminosities, even for gradual low-luminosity cutoffs in the parent LF. Several characteristic break points can be identified depending on the details of the parent LF. The calculations can be used to test unified theories by predicting the observed LF for aligned objects from the LF of the proposed parent population. 6 refs
Directory of Open Access Journals (Sweden)
Yinghua Yu
2018-01-01
Full Text Available In the somatosensory system, it is well known that the bilateral secondary somatosensory cortex (SII receives projections from the unilateral primary somatosensory cortex (SI, and the SII, in turn, sends feedback projections to SI. Most neuroimaging studies have clearly shown bilateral SII activation using only unilateral stimulation for both anatomical and functional connectivity across SII subregions. However, no study has unveiled differences in the functional connectivity of the contra- and ipsilateral SII network that relates to frontoparietal areas during tactile object recognition. Therefore, we used event-related functional magnetic resonance imaging (fMRI and a delayed match-to-sample (DMS task to investigate the contributions of bilateral SII during tactile object recognition. In the fMRI experiment, 14 healthy subjects were presented with tactile angle stimuli on their right index finger and asked to encode three sample stimuli during the encoding phase and one test stimulus during the recognition phase. Then, the subjects indicated whether the angle of test stimulus was presented during the encoding phase. The results showed that contralateral (left SII activity was greater than ipsilateral (right SII activity during the encoding phase, but there was no difference during the recognition phase. A subsequent psycho-physiological interaction (PPI analysis revealed distinct connectivity from the contra- and ipsilateral SII to other regions. The left SII functionally connected to the left SI and right primary and premotor cortex, while the right SII functionally connected to the left posterior parietal cortex (PPC. Our findings suggest that in situations involving unilateral tactile object recognition, contra- and ipsilateral SII will induce an asymmetrical functional connectivity to other brain areas, which may occur by the hand contralateral effect of SII.
Maes, J.H.R.; Fontanari, L.; Regolin, L.
2009-01-01
Rats were used in a spatial reorientation task to assess their ability to use geometric and non-geometric, featural, information. Experimental conditions differed in the size of the arena (small, medium, or large) and whether the food-baited corner was near or far from a visual feature. The main
Reiss, Katie L; Bonnan, Matthew F
2010-07-01
The shark heterocercal caudal fin and its contribution to locomotion are of interest to biologists and paleontologists. Current hydrodynamic data show that the stiff dorsal lobe leads the ventral lobe, both lobes of the tail are synchronized during propulsion, and tail shape reflects its overall locomotor function. Given the difficulties surrounding the analysis of shark caudal fins in vivo, little is known about changes in tail shape related to ontogeny and sex in sharks. A quantifiable analysis of caudal fin shape may provide an acceptable proxy for inferring gross functional morphology where direct testing is difficult or impossible. We examined ontogenetic and sex-related shape changes in the caudal fins of 115 Squalus acanthias museum specimens, to test the hypothesis that significant shape changes in the caudal fin shape occur with increasing size and between the sexes. Using linear and geometric morphometrics, we examined caudal shape changes within the context of current hydrodynamic models. We found no statistically significant linear or shape difference between sexes, and near-isometric scaling trends for caudal dimensions. These results suggest that lift and thrust increase linearly with size and caudal span. Thin-plate splines results showed a significant allometric shape change associated with size and caudal span: the dorsal lobe elongates and narrows, whereas the ventral lobe broadens and expands ventrally. Our data suggest a combination of caudal fin morphology with other body morphology aspects, would refine, and better elucidate the hydrodynamic factors (if any) that underlie the significant shape changes we report here for S. acanthias.
Ingram, Kieran I M; Häller, L Jonas L; Kaltsoyannis, Nikolas
2006-05-28
Gradient corrected density functional theory has been used to calculate the geometric and electronic structures of the family of molecules [UO2(H2O)m(OH)n](2 - n) (n + m = 5). Comparisons are made with previous experimental and theoretical structural and spectroscopic data. r(U-O(yl)) is found to lengthen as water molecules are replaced by hydroxides in the equatorial plane, and the nu(sym) and nu(asym) uranyl vibrational wavenumbers decrease correspondingly. GGA functionals (BP86, PW91 and PBE) are generally found to perform better for the cationic complexes than for the anions. The inclusion of solvent effects using continuum models leads to spurious low frequency imaginary vibrational modes and overall poorer agreement with experimental data for nu(sym) and nu(asym). Analysis of the molecular orbital structure is performed in order to trace the origin of the lengthening and weakening of the U-O(yl) bond as waters are replaced by hydroxides. No evidence is found to support previous suggestions of a competition for U 6d atomic orbitals in U-O(yl) and U-O(hydroxide)pi bonding. Rather, the lengthening and weakening of U-O(yl) is attributed to reduced ionic bonding generated in part by the sigma-donating ability of the hydroxide ligands.
A comparison of functional and object-orientedprogramming paradigms in JavaScript
Svensson Sand, Kim; Eliasson, Tord
2017-01-01
There are multiple programming paradigms that have their own set rules forhow code should be written. Programming languages utilize one or multiple ofthese paradigms. In this thesis, we will compare object-oriented programming,that is the most used today with languages such as C++ and Java, and functionalprogramming. Functional programming was introduced in the 1950's butsuered from performance issues, and has not been used much except for in theacademic world. However, for its ability to han...
International Nuclear Information System (INIS)
Miller, J.; Fuller, M.; Vinod, S.; Holloway, L.
2009-01-01
Full text: A Clinician's discrimination between radiation therapy treatment plans is traditionally a subjective process, based on experience and existing protocols. A more objective and quantitative approach to distinguish between treatment plans is to use radiobiological or dosimetric objective functions, based on radiobiological or dosimetric models. The efficacy of models is not well understood, nor is the correlation of the rank of plans resulting from the use of models compared to the traditional subjective approach. One such radiobiological model is the Normal Tissue Complication Probability (NTCP). Dosimetric models or indicators are more accepted in clinical practice. In this study, three radiobiological models, Lyman NTCP, critical volume NTCP and relative seriality NTCP, and three dosimetric models, Mean Lung Dose (MLD) and the Lung volumes irradiated at lOGy (V|0) and 20 G y (V20), were used to rank a series of treatment plans using, harm to normal (Lung) tissue as the objective criterion. None of the models considered in this study showed consistent correlation with the Radiation Oncologists plan ranking. If radiobiological or dosimetric models are to be used in objective functions for lung treatments, based on this study it is recommended that the Lyman NTCP model be used because it will provide most consistency with traditional clinician ranking.
Dissociable intrinsic functional networks support noun-object and verb-action processing.
Yang, Huichao; Lin, Qixiang; Han, Zaizhu; Li, Hongyu; Song, Luping; Chen, Lingjuan; He, Yong; Bi, Yanchao
2017-12-01
The processing mechanism of verbs-actions and nouns-objects is a central topic of language research, with robust evidence for behavioral dissociation. The neural basis for these two major word and/or conceptual classes, however, remains controversial. Two experiments were conducted to study this question from the network perspective. Experiment 1 found that nodes of the same class, obtained through task-evoked brain imaging meta-analyses, were more strongly connected with each other than nodes of different classes during resting-state, forming segregated network modules. Experiment 2 examined the behavioral relevance of these intrinsic networks using data from 88 brain-damaged patients, finding that across patients the relative strength of functional connectivity of the two networks significantly correlated with the noun-object vs. verb-action relative behavioral performances. In summary, we found that verbs-actions and nouns-objects are supported by separable intrinsic functional networks and that the integrity of such networks accounts for the relative noun-object- and verb-action-selective deficits. Copyright © 2017 Elsevier Inc. All rights reserved.
Influences of Economic Theories on Accounting Theory: the case of the Objective Function of the Firm
Directory of Open Access Journals (Sweden)
Lineker Costa Passos
2016-10-01
Full Text Available This essay aims to establish the relationship between the theoretical precepts that guide the accounting disclosure procedures for its stakeholders, both internal and external, and the two main theoretical trends that address the firm’s objective function: the Shareholder theory and the Stakeholder theory. In the perspective of the Shareholder theory, the firm has to define a single objective, which is to maximize shareholder wealth. In the context of Stakeholders theory, the firm must establish a multiple objective, which is to meet the interests of all those involved with its activities. We discuss to what extent theories, standards and accounting practices emanate from the concepts of the two models, especially regarding the users’ demand for useful and relevant information. There is a predominance of Shareholder theory in influencing accounting principles that guide the disclosure of information, although different accounting reports are already discussed and presented, oriented to the Stakeholders of the firm, without establishing a set of concepts that explain and justify them within the scope of Accounting theory. Additionally, it is argued that, all things taken into consideration, both currents of the Economic theory point in the same direction: to seek the wellbeing of the firm’s stakeholders. The research contributes to the accounting literature, in the sense of clarifying the impacts arising from the two economic models that deal with the objective function of the firm in the evolution of Accounting theory, not yet captured directly in the discussion of the fundamentals of accounting theory.
A cross-correlation objective function for least-squares migration and visco-acoustic imaging
Dutta, Gaurav
2014-08-05
Conventional acoustic least-squares migration inverts for a reflectivity image that best matches the amplitudes of the observed data. However, for field data applications, it is not easy to match the recorded amplitudes because of the visco-elastic nature of the earth and inaccuracies in the estimation of source signature and strength at different shot locations. To relax the requirement for strong amplitude matching of least-squares migration, we use a normalized cross-correlation objective function that is only sensitive to the similarity between the predicted and the observed data. Such a normalized cross-correlation objective function is also equivalent to a time-domain phase inversion method where the main emphasis is only on matching the phase of the data rather than the amplitude. Numerical tests on synthetic and field data show that such an objective function can be used as an alternative to visco-acoustic least-squares reverse time migration (Qp-LSRTM) when there is strong attenuation in the subsurface and the estimation of the attenuation parameter Qp is insufficiently accurate.
A cross-correlation objective function for least-squares migration and visco-acoustic imaging
Dutta, Gaurav; Sinha, Mrinal; Schuster, Gerard T.
2014-01-01
Conventional acoustic least-squares migration inverts for a reflectivity image that best matches the amplitudes of the observed data. However, for field data applications, it is not easy to match the recorded amplitudes because of the visco-elastic nature of the earth and inaccuracies in the estimation of source signature and strength at different shot locations. To relax the requirement for strong amplitude matching of least-squares migration, we use a normalized cross-correlation objective function that is only sensitive to the similarity between the predicted and the observed data. Such a normalized cross-correlation objective function is also equivalent to a time-domain phase inversion method where the main emphasis is only on matching the phase of the data rather than the amplitude. Numerical tests on synthetic and field data show that such an objective function can be used as an alternative to visco-acoustic least-squares reverse time migration (Qp-LSRTM) when there is strong attenuation in the subsurface and the estimation of the attenuation parameter Qp is insufficiently accurate.
Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.
Arrieta, Jorge; Cartwright, Julyan H E; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan
2015-01-01
Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.
Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.
Directory of Open Access Journals (Sweden)
Jorge Arrieta
Full Text Available Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.
Height and Tilt Geometric Texture
DEFF Research Database (Denmark)
Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas
2009-01-01
compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...
Krause, Christina Miles
2008-01-01
Preschool children's (N = 64) ability to use tactile information and function cues on less-realistic and more-realistic food-appearing, deceptive objects was examined before and after training on the function of deceptive objects. They also responded to appearance and reality questions about deceptive objects. Half of the children (F-S:…
Asymptotic geometric analysis, part I
Artstein-Avidan, Shiri
2015-01-01
The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen
Geometrization of quantum physics
International Nuclear Information System (INIS)
Ol'khov, O.A.
2009-01-01
It is shown that the Dirac equation for a free particle can be considered as a description of specific distortion of the space Euclidean geometry (space topological defect). This approach is based on the possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such a concept explains all so-called 'strange' properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of the suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There are no any particles a priory, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device
Geometrization of quantum physics
Ol'Khov, O. A.
2009-12-01
It is shown that the Dirac equation for free particle can be considered as a description of specific distortion of the space euclidean geometry (space topological defect). This approach is based on possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such concept explains all so called “strange” properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There is no any particles a priori, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device.
Wang, Dong; Wang, Haifeng; Hu, P
2015-01-21
Using density functional theory calculations with HSE 06 functional, we obtained the structures of spin-polarized radicals on rutile TiO2(110), which is crucial to understand the photooxidation at the atomic level, and further calculate the thermodynamic stabilities of these radicals. By analyzing the results, we identify the structural features for hole trapping in the system, and reveal the mutual effects among the geometric structures, the energy levels of trapped hole states and their hole trapping capacities. Furthermore, the results from HSE 06 functional are compared to those from DFT + U and the stability trend of radicals against the number of slabs is tested. The effect of trapped holes on two important steps of the oxygen evolution reaction, i.e. water dissociation and the oxygen removal, is investigated and discussed.
Field, Charlotte; Allen, Melissa L.; Lewis, Charlie
2016-01-01
We investigate the function bias--generalising words to objects with the same function--in typically developing (TD) children, children with autism spectrum disorder (ASD) and children with other developmental disorders. Across four trials, a novel object was named and its function was described and demonstrated. Children then selected the other…
Clinical history and biologic age predicted falls better than objective functional tests.
Gerdhem, Paul; Ringsberg, Karin A M; Akesson, Kristina; Obrant, Karl J
2005-03-01
Fall risk assessment is important because the consequences, such as a fracture, may be devastating. The objective of this study was to find the test or tests that best predicted falls in a population-based sample of elderly women. The fall-predictive ability of a questionnaire, a subjective estimate of biologic age and objective functional tests (gait, balance [Romberg and sway test], thigh muscle strength, and visual acuity) were compared in 984 randomly selected women, all 75 years of age. A recalled fall was the most important predictor for future falls. Only recalled falls and intake of psycho-active drugs independently predicted future falls. Women with at least five of the most important fall predictors (previous falls, conditions affecting the balance, tendency to fall, intake of psychoactive medication, inability to stand on one leg, high biologic age) had an odds ratio of 11.27 (95% confidence interval 4.61-27.60) for a fall (sensitivity 70%, specificity 79%). The more time-consuming objective functional tests were of limited importance for fall prediction. A simple clinical history, the inability to stand on one leg, and a subjective estimate of biologic age were more important as part of the fall risk assessment.
Real-time Pipeline for Object Modeling and Grasping Pose Selection via Superquadric Functions
Directory of Open Access Journals (Sweden)
Giulia Vezzani
2017-11-01
Full Text Available This work provides a novel real-time pipeline for modeling and grasping of unknown objects with a humanoid robot. Such a problem is of great interest for the robotic community, since conventional approaches fail when the shape, dimension, or pose of the objects are missing. Our approach reconstructs in real-time a model for the object under consideration and represents the robot hand both with proper and mathematically usable models, i.e., superquadric functions. The volume graspable by the hand is represented by an ellipsoid and is defined a priori, because the shape of the hand is known in advance. The superquadric representing the object is obtained in real-time from partial vision information instead, e.g., one stereo view of the object under consideration, and provides an approximated 3D full model. The optimization problem we formulate for the grasping pose computation is solved online by using the Ipopt software package and, thus, does not require off-line computation or learning. Even though our approach is for a generic humanoid robot, we developed a complete software architecture for executing this approach on the iCub humanoid robot. Together with that, we also provide a tutorial on how to use this framework. We believe that our work, together with the available code, is of a strong utility for the iCub community for three main reasons: object modeling and grasping are relevant problems for the robotic community, our code can be easily applied on every iCub, and the modular structure of our framework easily allows extensions and communications with external code.
Directory of Open Access Journals (Sweden)
V.V. Vitomskiy
2017-04-01
Full Text Available Purpose: to assess dynamic of bio-geometric profile quantitative indicators in children with functionally one ventricular at stages of physical rehabilitation. Material: 35 patients were examined during hospital stay and when leaving hospital. Indicators were registered with the help of photo metering and program Ergotherapy. Results: in children we registered great number of posture disorders in frontal (94.3% and sagittal planes (97.1%. In frontal plane the angles, pointing at significant asymmetry of upper limbs in respect to horizontal plane, were increased. In sagittal plane we received angles, which pointed at presence of thoracic kyphosis and lumbar lordosis. After surgery and stationary stage of rehabilitation static changes were registered in insignificant quantity of the studied angles. After post-clinical physical rehabilitation stage we registered reduction of angles’ values and their approaching to norm. Conclusions: physical rehabilitation at stationary and port clinical stages with the help of correcting exercises positively influence on restoration of posture after surgery and its improvement in the future.
Gholami, Raheb; Ansari, Reza
2018-02-01
This article presents an attempt to study the nonlinear resonance of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) annular sector plates excited by a uniformly distributed harmonic transverse load. To this purpose, first, the extended rule of mixture including the efficiency parameters is employed to approximately obtain the effective material properties of FG-CNTRC annular sector plates. Then, the focus is on presenting the weak form of discretized mathematical formulation of governing equations based on the variational differential quadrature (VDQ) method and Hamilton's principle. The geometric nonlinearity and shear deformation effects are considered based on the von Kármán assumptions and Reddy's third-order shear deformation plate theory, respectively. The discretization process is performed via the generalized differential quadrature (GDQ) method together with numerical differential and integral operators. Then, an efficient multi-step numerical scheme is used to obtain the nonlinear dynamic behavior of the FG-CNTRC annular sector plates near their primary resonance as the frequency-response curve. The accuracy of the present results is first verified and then a parametric study is presented to show the impacts of CNT volume fraction, CNT distribution pattern, geometry of annular sector plate and sector angle on the nonlinear frequency-response curve of FG-CNTRC annular sector plates with different edge supports.
Objective Function and Learning Algorithm for the General Node Fault Situation.
Xiao, Yi; Feng, Rui-Bin; Leung, Chi-Sing; Sum, John
2016-04-01
Fault tolerance is one interesting property of artificial neural networks. However, the existing fault models are able to describe limited node fault situations only, such as stuck-at-zero and stuck-at-one. There is no general model that is able to describe a large class of node fault situations. This paper studies the performance of faulty radial basis function (RBF) networks for the general node fault situation. We first propose a general node fault model that is able to describe a large class of node fault situations, such as stuck-at-zero, stuck-at-one, and the stuck-at level being with arbitrary distribution. Afterward, we derive an expression to describe the performance of faulty RBF networks. An objective function is then identified from the formula. With the objective function, a training algorithm for the general node situation is developed. Finally, a mean prediction error (MPE) formula that is able to estimate the test set error of faulty networks is derived. The application of the MPE formula in the selection of basis width is elucidated. Simulation experiments are then performed to demonstrate the effectiveness of the proposed method.
An objective measure of physical function of elderly outpatients. The Physical Performance Test.
Reuben, D B; Siu, A L
1990-10-01
Direct observation of physical function has the advantage of providing an objective, quantifiable measure of functional capabilities. We have developed the Physical Performance Test (PPT), which assesses multiple domains of physical function using observed performance of tasks that simulate activities of daily living of various degrees of difficulty. Two versions are presented: a nine-item scale that includes writing a sentence, simulated eating, turning 360 degrees, putting on and removing a jacket, lifting a book and putting it on a shelf, picking up a penny from the floor, a 50-foot walk test, and climbing stairs (scored as two items); and a seven-item scale that does not include stairs. The PPT can be completed in less than 10 minutes and requires only a few simple props. We then tested the validity of PPT using 183 subjects (mean age, 79 years) in six settings including four clinical practices (one of Parkinson's disease patients), a board-and-care home, and a senior citizens' apartment. The PPT was reliable (Cronbach's alpha = 0.87 and 0.79, interrater reliability = 0.99 and 0.93 for the nine-item and seven-item tests, respectively) and demonstrated concurrent validity with self-reported measures of physical function. Scores on the PPT for both scales were highly correlated (.50 to .80) with modified Rosow-Breslau, Instrumental and Basic Activities of Daily Living scales, and Tinetti gait score. Scores on the PPT were more moderately correlated with self-reported health status, cognitive status, and mental health (.24 to .47), and negatively with age (-.24 and -.18). Thus, the PPT also demonstrated construct validity. The PPT is a promising objective measurement of physical function, but its clinical and research value for screening, monitoring, and prediction will have to be determined.
A novel approach for optimum allocation of FACTS devices using multi-objective function
International Nuclear Information System (INIS)
Gitizadeh, M.; Kalantar, M.
2009-01-01
This paper presents a novel approach to find optimum type, location, and capacity of flexible alternating current transmission systems (FACTS) devices in a power system using a multi-objective optimization function. Thyristor controlled series compensator (TCSC) and static var compensator (SVC) are utilized to achieve these objectives: active power loss reduction, new introduced FACTS devices cost reduction, increase the robustness of the security margin against voltage collapse, and voltage deviation reduction. The operational and controlling constraints as well as load constraints are considered in the optimum allocation procedure. Here, a goal attainment method based on simulated annealing is used to approach the global optimum. In addition, the estimated annual load profile has been utilized to the optimum siting and sizing of FACTS devices to approach a practical solution. The standard IEEE 14-bus test system is used to validate the performance and effectiveness of the proposed method
Babier, Aaron; Boutilier, Justin J.; Sharpe, Michael B.; McNiven, Andrea L.; Chan, Timothy C. Y.
2018-05-01
We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate ‘inverse plans’ that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to
Kim, J; Eberl, S; Feng, D
2004-01-01
Segmentation of multi-dimensional functional positron emission tomography (PET) studies into regions of interest (ROI) exhibiting similar temporal behavior is useful in diagnosis and evaluation of neurological images. Quantitative evaluation plays a crucial role in measuring the segmentation algorithm's performance. Due to the lack of "ground truth" available for evaluating segmentation of clinical images, automated segmentation results are usually compared with manual delineation of structures which is, however, subjective, and is difficult to perform. Alternatively, segmentation of co-registered anatomical images such as magnetic resonance imaging (MRI) can be used as the ground truth to the PET segmentation. However, this is limited to PET studies which have corresponding MRI. In this study, we introduce a framework for the objective and quantitative evaluation of functional PET study segmentation without the need for manual delineation or registration to anatomical images of the patient. The segmentation ...
Improvements in the sensibility of MSA-GA tool using COFFEE objective function
International Nuclear Information System (INIS)
Amorim, A R; Zafalon, G F D; Neves, L A; Valêncio, C R; Machado, J M; Pinto, A R
2015-01-01
The sequence alignment is one of the most important tasks in Bioinformatics, playing an important role in the sequences analysis. There are many strategies to perform sequence alignment, since those use deterministic algorithms, as dynamic programming, until those ones, which use heuristic algorithms, as Progressive, Ant Colony (ACO), Genetic Algorithms (GA), Simulated Annealing (SA), among others. In this work, we have implemented the objective function COFFEE in the MSA-GA tool, in substitution of Weighted Sum-of-Pairs (WSP), to improve the final results. In the tests, we were able to verify the approach using COFFEE function achieved better results in 81% of the lower similarity alignments when compared with WSP approach. Moreover, even in the tests with more similar sets, the approach using COFFEE was better in 43% of the times
Wave drag as the objective function in transonic fighter wing optimization
Phillips, P. S.
1984-01-01
The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.
Objective Provision Trees of Reactivity Control Safety Function for Sodium-Cooled Fast Reactor
International Nuclear Information System (INIS)
Kang, Bongsuk; Yang, Huichang; Suh, Namduk
2014-01-01
The purpose of this OPT is first to assure the DiD design during the licensing of Sf, but it will also contribute in evaluating the completeness of regulatory requirements under development by Korea Institute of Nuclear Safety (KINS). Based on the definition of Defense-in-Depth (DiD) levels and safety functions for KALIMER Sodium-Cooled Fast Reactor (SFR), suggested in the reference and, Objective Provision Trees (OPTs) of reactivity control function for level 1, 2, 3 and 4 DiD were developed and suggested in this paper. The challenges and mechanisms and provisions were briefly explained in this paper. Comparing the mechanisms and provisions with the requirements will contribute in identifying the missing requirements. Since the design of Prototype Gen-IV Sf (PGSFR) is not mature yet, the OPT is developed for KALIMER design. Developed level 1 to 4 OPTs in this study can be used for the identification of potential design vulnerabilities. When detailed identification of provisions in terms of design features were achieved through the next step of this study, it can contribute to the establishment of defense-in-depth evaluation frame for the regulatory reviews for the licensing process. In the next stage of this study, other safety function will be researched and findings can be suggested as recommendations for the safety improvement
Objective Provision Trees of Reactivity Control Safety Function for Sodium-Cooled Fast Reactor
Energy Technology Data Exchange (ETDEWEB)
Kang, Bongsuk; Yang, Huichang [TUEV Rheinland Korea Ltd., Seoul (Korea, Republic of); Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2014-05-15
The purpose of this OPT is first to assure the DiD design during the licensing of Sf, but it will also contribute in evaluating the completeness of regulatory requirements under development by Korea Institute of Nuclear Safety (KINS). Based on the definition of Defense-in-Depth (DiD) levels and safety functions for KALIMER Sodium-Cooled Fast Reactor (SFR), suggested in the reference and, Objective Provision Trees (OPTs) of reactivity control function for level 1, 2, 3 and 4 DiD were developed and suggested in this paper. The challenges and mechanisms and provisions were briefly explained in this paper. Comparing the mechanisms and provisions with the requirements will contribute in identifying the missing requirements. Since the design of Prototype Gen-IV Sf (PGSFR) is not mature yet, the OPT is developed for KALIMER design. Developed level 1 to 4 OPTs in this study can be used for the identification of potential design vulnerabilities. When detailed identification of provisions in terms of design features were achieved through the next step of this study, it can contribute to the establishment of defense-in-depth evaluation frame for the regulatory reviews for the licensing process. In the next stage of this study, other safety function will be researched and findings can be suggested as recommendations for the safety improvement.
Geometric quantization and general relativity
International Nuclear Information System (INIS)
Souriau, J.-M.
1977-01-01
The purpose of geometric quantization is to give a rigorous mathematical content to the 'correspondence principle' between classical and quantum mechanics. The main tools are borrowed on one hand from differential geometry and topology (differential manifolds, differential forms, fiber bundles, homology and cohomology, homotopy), on the other hand from analysis (functions of positive type, infinite dimensional group representations, pseudo-differential operators). Some satisfactory results have been obtained in the study of dynamical systems, but some fundamental questions are still waiting for an answer. The 'geometric quantization of fields', where some further well known difficulties arise, is still in a preliminary stage. In particular, the geometric quantization on the gravitational field is still a mere project. The situation is even more uncertain due to the fact that there is no experimental evidence of any quantum gravitational effect which could give us a hint towards what we are supposed to look for. The first level of both Quantum Theory, and General Relativity describes passive matter: influence by the field without being a source of it (first quantization and equivalence principle respectively). In both cases this is only an approximation (matter is always a source). But this approximation turns out to be the least uncertain part of the description, because on one hand the first quantization avoids the problems of renormalization and on the other hand the equivalence principle does not imply any choice of field equations (it is known that one can modify Einstein equations at short distances without changing their geometrical properties). (Auth.)
Transition curves for highway geometric design
Kobryń, Andrzej
2017-01-01
This book provides concise descriptions of the various solutions of transition curves, which can be used in geometric design of roads and highways. It presents mathematical methods and curvature functions for defining transition curves. .
Rough Music and Skimmington in Navarre during the Old Regime: Functions and Objectives
Directory of Open Access Journals (Sweden)
Javier Ruiz Astiz
2013-12-01
Full Text Available During the Old Regime rough musics ones acted in the majority of the occasions like control mechanisms and repression of the collective behaviors. In them their causes were worth of a series of instruments to heighten their activities, being tried this way to legitimize their actions. The present article has as an aim to study these events rendering a special attention to its functions and objectives. Nevertheless, the main task will consist of deepening in the cases seen in the kingdom of Navarre, organizing them in two groups: 1. weedings; 2. immoral behaviors; 3. government actions. All this with the intention to understand of a satisfactory way these practices of communitarian justice.
Directory of Open Access Journals (Sweden)
Paige M Siper
Full Text Available There is a critical need to identify biomarkers and objective outcome measures that can be used to understand underlying neural mechanisms in autism spectrum disorder (ASD. Visual evoked potentials (VEPs offer a noninvasive technique to evaluate the functional integrity of neural mechanisms, specifically visual pathways, while probing for disease pathophysiology.Transient VEPs (tVEPs were obtained from 96 unmedicated children, including 37 children with ASD, 36 typically developing (TD children, and 23 unaffected siblings (SIBS. A conventional contrast-reversing checkerboard condition was compared to a novel short-duration condition, which was developed to enable objective data collection from severely affected populations who are often excluded from electroencephalographic (EEG studies.Children with ASD showed significantly smaller amplitudes compared to TD children at two of the earliest critical VEP components, P60-N75 and N75-P100. SIBS showed intermediate responses relative to ASD and TD groups. There were no group differences in response latency. Frequency band analyses indicated significantly weaker responses for the ASD group in bands encompassing gamma-wave activity. Ninety-two percent of children with ASD were able to complete the short-duration condition compared to 68% for the standard condition.The current study establishes the utility of a short-duration tVEP test for use in children at varying levels of functioning and describes neural abnormalities in children with idiopathic ASD. Implications for excitatory/inhibitory balance as well as the potential application of VEP for use in clinical trials are discussed.
Kendall, Katherine A; Ellerston, Julia; Heller, Amanda; Houtz, Daniel R; Zhang, Chong; Presson, Angela P
2016-08-01
Quantitative, reliable measures of swallowing physiology can be made from an modified barium swallowing study. These quantitative measures have not been previously employed to study large dysphagic patient populations. The present retrospective study of 139 consecutive patients with dysphagia seen in a university tertiary voice and swallowing clinic sought to use objective measures of swallowing physiology to (1) quantify the most prevalent deficits seen in the patient population, (2) identify commonly associated diagnoses and describe the most prevalent swallowing deficits, and (3) determine any correlation between objective deficits and Eating Assessment Tool (EAT-10) scores and body mass index. Poor pharyngeal constriction (34.5 %) and airway protection deficits (65.5 %) were the most common swallowing abnormalities. Reflux-related dysphagia (36 %), nonspecific pharyngeal dysphagia (24 %), Parkinson disease (16 %), esophageal abnormality (13 %), and brain insult (10 %) were the most common diagnoses. Poor pharyngeal constriction was significantly associated with an esophageal motility abnormality (p dysphagia symptoms as determined by the EAT-10 did not correlate with swallowing function abnormalities. This preliminary study indicates that reflux disease is common in patients with dysphagia and that associated esophageal abnormalities are common in dysphagic populations and may be associated with specific pharyngeal swallowing abnormalities. However, symptom scores from the EAT-10 did not correspond to swallowing pathophysiology.
Structure Optimization of Stand-Alone Renewable Power Systems Based on Multi Object Function
Directory of Open Access Journals (Sweden)
Jae-Hoon Cho
2016-08-01
Full Text Available This paper presents a methodology for the size optimization of a stand-alone hybrid PV/wind/diesel/battery system while considering the following factors: total annual cost (TAC, loss of power supply probability (LPSP, and the fuel cost of the diesel generator required by the user. A new optimization algorithm and an object function (including a penalty method are also proposed; these assist with designing the best structure for a hybrid system satisfying the constraints. In hybrid energy system sources such as photovoltaic (PV, wind, diesel, and energy storage devices are connected as an electrical load supply. Because the power produced by PV and wind turbine sources is dependent on the variation of the resources (sun and wind and the load demand fluctuates, such a hybrid system must be able to satisfy the load requirements at any time and store the excess energy for use in deficit conditions. Therefore, reliability and cost are the two main criteria when designing a stand-alone hybrid system. Moreover, the operation of a diesel generator is important to achieve greater reliability. In this paper, TAC, LPSP, and the fuel cost of the diesel generator are considered as the objective variables and a hybrid teaching–learning-based optimization algorithm is proposed and used to choose the best structure of a stand-alone hybrid PV/wind/diesel/battery system. Simulation results from MATLAB support the effectiveness of the proposed method and confirm that it is more efficient than conventional methods.
On chromatic and geometrical calibration
DEFF Research Database (Denmark)
Folm-Hansen, Jørgen
1999-01-01
The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... the correct interpolation method is described. For the chromatic issues of calibration we present the acquisition of colour and multi-spectral images, the chromatic aberrations and the various lens/camera based non-uniformities of the illumination of the image plane. It is described how the monochromatic...... to design calibration targets for both geometrical and chromatic calibration are described. We present some possible systematical errors on the detection of the objects in the calibration targets, if viewed in a non orthogonal angle, if the intensities are uneven or if the image blurring is uneven. Finally...
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-06
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Druţu, Cornelia
2018-01-01
The key idea in geometric group theory is to study infinite groups by endowing them with a metric and treating them as geometric spaces. This applies to many groups naturally appearing in topology, geometry, and algebra, such as fundamental groups of manifolds, groups of matrices with integer coefficients, etc. The primary focus of this book is to cover the foundations of geometric group theory, including coarse topology, ultralimits and asymptotic cones, hyperbolic groups, isoperimetric inequalities, growth of groups, amenability, Kazhdan's Property (T) and the Haagerup property, as well as their characterizations in terms of group actions on median spaces and spaces with walls. The book contains proofs of several fundamental results of geometric group theory, such as Gromov's theorem on groups of polynomial growth, Tits's alternative, Stallings's theorem on ends of groups, Dunwoody's accessibility theorem, the Mostow Rigidity Theorem, and quasiisometric rigidity theorems of Tukia and Schwartz. This is the f...
Geometric and engineering drawing
Morling, K
2010-01-01
The new edition of this successful text describes all the geometric instructions and engineering drawing information that are likely to be needed by anyone preparing or interpreting drawings or designs with plenty of exercises to practice these principles.
Differential geometric structures
Poor, Walter A
2007-01-01
This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.
Geometric ghosts and unitarity
International Nuclear Information System (INIS)
Ne'eman, Y.
1980-09-01
A review is given of the geometrical identification of the renormalization ghosts and the resulting derivation of Unitarity equations (BRST) for various gauges: Yang-Mills, Kalb-Ramond, and Soft-Group-Manifold
Asymptotic and geometrical quantization
International Nuclear Information System (INIS)
Karasev, M.V.; Maslov, V.P.
1984-01-01
The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered
Doehrmann, Oliver; Weigelt, Sarah; Altmann, Christian F; Kaiser, Jochen; Naumer, Marcus J
2010-03-03
Information integration across different sensory modalities contributes to object recognition, the generation of associations and long-term memory representations. Here, we used functional magnetic resonance imaging adaptation to investigate the presence of sensory integrative effects at cortical levels as early as nonprimary auditory and extrastriate visual cortices, which are implicated in intermediate stages of object processing. Stimulation consisted of an adapting audiovisual stimulus S(1) and a subsequent stimulus S(2) from the same basic-level category (e.g., cat). The stimuli were carefully balanced with respect to stimulus complexity and semantic congruency and presented in four experimental conditions: (1) the same image and vocalization for S(1) and S(2), (2) the same image and a different vocalization, (3) different images and the same vocalization, or (4) different images and vocalizations. This two-by-two factorial design allowed us to assess the contributions of auditory and visual stimulus repetitions and changes in a statistically orthogonal manner. Responses in visual regions of right fusiform gyrus and right lateral occipital cortex were reduced for repeated visual stimuli (repetition suppression). Surprisingly, left lateral occipital cortex showed stronger responses to repeated auditory stimuli (repetition enhancement). Similarly, auditory regions of interest of the right middle superior temporal gyrus and sulcus exhibited repetition suppression to auditory repetitions and repetition enhancement to visual repetitions. Our findings of crossmodal repetition-related effects in cortices of the respective other sensory modality add to the emerging view that in human subjects sensory integrative mechanisms operate on earlier cortical processing levels than previously assumed.
On geometrized gravitation theories
International Nuclear Information System (INIS)
Logunov, A.A.; Folomeshkin, V.N.
1977-01-01
General properties of the geometrized gravitation theories have been considered. Geometrization of the theory is realized only to the extent that by necessity follows from an experiment (geometrization of the density of the matter Lagrangian only). Aor a general case the gravitation field equations and the equations of motion for matter are formulated in the different Riemann spaces. A covariant formulation of the energy-momentum conservation laws is given in an arbitrary geometrized theory. The noncovariant notion of ''pseudotensor'' is not required in formulating the conservation laws. It is shown that in the general case (i.e., when there is an explicit dependence of the matter Lagrangian density on the covariant derivatives) a symmetric energy-momentum tensor of the matter is explicitly dependent on the curvature tensor. There are enlisted different geometrized theories that describe a known set of the experimental facts. The properties of one of the versions of the quasilinear geometrized theory that describes the experimental facts are considered. In such a theory the fundamental static spherically symmetrical solution has a singularity only in the coordinate origin. The theory permits to create a satisfactory model of the homogeneous nonstationary Universe
Biddle, Daniel J; Naismith, Sharon L; Griffiths, Kathleen M; Christensen, Helen; Hickie, Ian B; Glozier, Nicholas S
2017-06-01
To examine whether poor objective and subjective sleep quality are differentially associated with cognitive function. Cross-sectional. Participants were recruited from primary and secondary care, and directly from the community, in Sydney, Australia. The sample consisted of 74 men 50years and older (mean [SD], 58.4 [6.2] years), with comorbid depression and above-threshold insomnia symptoms, participating in a trial of online cognitive behavioral therapy for insomnia. Insomnia severity and depression severity were assessed via self-report. Objective sleep efficiency and duration were measured using actigraphy. Objective cognitive function was measured using 3 subtests of a computerized neuropsychological battery. Poor objective sleep efficiency was associated with slower reaction time (r=-0.249, P=.033) and poorer executive functioning (odds ratio, 4.14; 95% confidence interval, 1.35-12.69), but not memory. These associations remained after adjusting for age, education, depression severity, cardiovascular risk, and medication. Subjective sleep quality was not related to cognitive function. Among older men with depression and insomnia, objectively measured poor sleep efficiency may be associated with worse cognitive function, independent of depression severity. Objective poor sleep may be underpinned by neurobiological correlates distinct from those underlying subjective poor sleep and depression, and represent a potentially effective modifiable mechanism in interventions to improve cognitive functioning in this population. This supports the use of objective measures of sleep in diagnostic assessments and care. Copyright © 2017 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.
A new hybrid genetic algorithm for optimizing the single and multivariate objective functions
Energy Technology Data Exchange (ETDEWEB)
Tumuluru, Jaya Shankar [Idaho National Laboratory; McCulloch, Richard Chet James [Idaho National Laboratory
2015-07-01
In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the most improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.
Geometric Algorithms for Part Orienting and Probing
Panahi, F.
2015-01-01
In this thesis, detailed solutions are presented to several problems dealing with geometric shape and orientation of an object in the field of robotics and automation. We first have considered a general model for shape variations that allows variation along the entire boundary of an object, both in
International Nuclear Information System (INIS)
Olsen, A.; Skjerpe, P.
1989-01-01
This report describes a computer program which is useful in high resolution microscopy. The program is written in EBASIC and calculates the weak phase object contrast transfer function as function of instrumental and imaging parameters. The function is plotted on the PC graphics screen, and by a Print Screen command the function can be copied to the printer. The program runs on both the Hercules graphic card and the IBM CGA card. 2 figs
Alvarez-Segura, T; Gómez-Díaz, A; Ortiz-Bolsico, C; Torres-Lapasió, J R; García-Alvarez-Coque, M C
2015-08-28
Getting useful chemical information from samples containing many compounds is still a challenge to analysts in liquid chromatography. The highest complexity corresponds to samples for which there is no prior knowledge about their chemical composition. Computer-based methodologies are currently considered as the most efficient tools to optimise the chromatographic resolution, and further finding the optimal separation conditions. However, most chromatographic objective functions (COFs) described in the literature to measure the resolution are based on mathematical models fitted with the information obtained from standards, and cannot be applied to samples with unknown compounds. In this work, a new COF based on the automatic measurement of the protruding part of the chromatographic peaks (or peak prominences) that indicates the number of perceptible peaks and global resolution, without the need of standards, is developed. The proposed COF was found satisfactory with regard to the peak purity criterion when applied to artificial peaks and simulated chromatograms of mixtures built using the information of standards. The approach was applied to mixtures of drugs containing unknown impurities and degradation products and to extracts of medicinal herbs, eluted with acetonitrile-water mixtures using isocratic and gradient elution. Copyright © 2015 Elsevier B.V. All rights reserved.
Torres-Lapasió, J R; Pous-Torres, S; Ortiz-Bolsico, C; García-Alvarez-Coque, M C
2015-01-16
The optimisation of the resolution in high-performance liquid chromatography is traditionally performed attending only to the time information. However, even in the optimal conditions, some peak pairs may remain unresolved. Such incomplete resolution can be still accomplished by deconvolution, which can be carried out with more guarantees of success by including spectral information. In this work, two-way chromatographic objective functions (COFs) that incorporate both time and spectral information were tested, based on the peak purity (analyte peak fraction free of overlapping) and the multivariate selectivity (figure of merit derived from the net analyte signal) concepts. These COFs are sensitive to situations where the components that coelute in a mixture show some spectral differences. Therefore, they are useful to find out experimental conditions where the spectrochromatograms can be recovered by deconvolution. Two-way multivariate selectivity yielded the best performance and was applied to the separation using diode-array detection of a mixture of 25 phenolic compounds, which remained unresolved in the chromatographic order using linear and multi-linear gradients of acetonitrile-water. Peak deconvolution was carried out using the combination of orthogonal projection approach and alternating least squares. Copyright © 2014 Elsevier B.V. All rights reserved.
Geometrical optics and optimal transport.
Rubinstein, Jacob; Wolansky, Gershon
2017-10-01
The Fermat principle is generalized to a system of rays. It is shown that all the ray mappings that are compatible with two given intensities of a monochromatic wave, measured at two planes, are stationary points of a canonical functional, which is the weighted average of the actions of all the rays. It is further shown that there exist at least two stationary points for this functional, implying that in the geometrical optics regime the phase from intensity problem has inherently more than one solution. The caustic structures of all the possible ray mappings are analyzed. A number of simulations illustrate the theoretical considerations.
Hsu, Ching-Chi; Lin, Jinn; Chao, Ching-Kong
2011-12-01
Optimizing the orthopaedic screws can greatly improve their biomechanical performances. However, a methodical design optimization approach requires a long time to search the best design. Thus, the surrogate objective functions of the orthopaedic screws should be accurately developed. To our knowledge, there is no study to evaluate the strengths and limitations of the surrogate methods in developing the objective functions of the orthopaedic screws. Three-dimensional finite element models for both the tibial locking screws and the spinal pedicle screws were constructed and analyzed. Then, the learning data were prepared according to the arrangement of the Taguchi orthogonal array, and the verification data were selected with use of a randomized selection. Finally, the surrogate objective functions were developed by using either the multiple linear regression or the artificial neural network. The applicability and accuracy of those surrogate methods were evaluated and discussed. The multiple linear regression method could successfully construct the objective function of the tibial locking screws, but it failed to develop the objective function of the spinal pedicle screws. The artificial neural network method showed a greater capacity of prediction in developing the objective functions for the tibial locking screws and the spinal pedicle screws than the multiple linear regression method. The artificial neural network method may be a useful option for developing the objective functions of the orthopaedic screws with a greater structural complexity. The surrogate objective functions of the orthopaedic screws could effectively decrease the time and effort required for the design optimization process. Copyright Â© 2010 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Vladimir E. Kuznetsov
2018-03-01
Full Text Available The current paper studies the influence of geometrical parameters of the fused deposition modeling (FDM—fused filament fabrication (FFF 3D printing process on printed part strength for open source desktop 3D printers and the most popular material used for that purpose—i.e., polylactic acid (PLA. The study was conducted using a set of different nozzles (0.4, 0.6, and 0.8 mm and a range of layer heights from the minimum to maximum physical limits of the machine. To assess print strength, a novel assessment method is proposed. A tubular sample is loaded in the weakest direction (across layers in a three-point bending fixture. Mesostructure evaluation through scanning electronic microscopy (SEM scans of the samples was used to explain the obtained results. We detected a significant influence of geometric process parameters on sample mesostructure, and consequently, on sample strength.
Geometrical formulation of the conformal Ward identity
International Nuclear Information System (INIS)
Kachkachi, M.
2002-08-01
In this paper we use deep ideas in complex geometry that proved to be very powerful in unveiling the Polyakov measure on the moduli space of Riemann surfaces and lead to obtain the partition function of perturbative string theory for 2, 3, 4 loops. Indeed, a geometrical interpretation of the conformal Ward identity in two dimensional conformal field theory is proposed: the conformal anomaly is interpreted as a deformation of the complex structure of the basic Riemann surface. This point of view is in line with the modern trend of geometric quantizations that are based on deformations of classical structures. Then, we solve the conformal Ward identity by using this geometrical formalism. (author)
Kuusikko-Gauffin, Sanna; Jansson-Verkasalo, Eira; Carter, Alice; Pollock-Wurman, Rachel; Jussila, Katja; Mattila, Marja-Leena; Rahko, Jukka; Ebeling, Hanna; Pauls, David; Moilanen, Irma
2011-01-01
Children with Autism Spectrum Disorders (ASDs) have reported to have impairments in face, recognition and face memory, but intact object recognition and object memory. Potential abnormalities, in these fields at the family level of high-functioning children with ASD remains understudied despite, the ever-mounting evidence that ASDs are genetic and…
Kruse, Holger; Grimme, Stefan
2012-04-21
A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model
Kruse, Holger; Grimme, Stefan
2012-04-01
A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model
International Nuclear Information System (INIS)
Villeret, O.
1985-04-01
An algorithm is developed for the purpose of compter treatment planning of electron therapy. The method uses experimental absorbed dose distribution data in the irradiated medium for electron beams in the 8-20 MeV range delivered by the Sagittaire linear accelerator (study of central axis depth dose, beam profiles) in various geometrical conditions. Experimental verification of the computer program showed agreement with 2% between dose measurement and computer calculation [fr
International Nuclear Information System (INIS)
Chun-Mei, Tang; Wei-Hua, Zhu; Kai-Ming, Deng
2010-01-01
This paper uses the generalised gradient approximation based on density functional theory to analyse the geometric structure and properties of the 3d transition metal atom doped endohedral fullerene M@C 20 F 20 (M = Sc–Ni). The geometric optimization shows that the cage centre is the most stable position for M, forming the structure named as M@C 20 F 20 -4. The inclusion energy, zero-point energy, and energy gap calculations tell us that N@C 20 F 20 -4 should be thermodynamically and kinetically stablest. M@C 20 F 20 -4 (M = Sc–Co) possesses high magnetic moments varied from 1 to 6 μ B , while Ni@C 20 F 20 -4 is nonmagnetic. The Ni–C bond in Ni@C 20 F 20 -4 contains both the covalent and ionic characters
International Nuclear Information System (INIS)
Choi, Bo Yoon; Lee, Jong Seok; Lee, Joon Woo; Myung, Jae Sung; Sim, Jung Suk; Seong, Chang Kyu; Kim, Seung Hyup; Choi, Guk Myeong; Chi, Seong Whi
2000-01-01
To correlate the degree of renal cortical enhancement, objectively evaluated by means of spiral CT with the serum level of creatinine, and to determine the extent to which this degree of enhancement may be used to detect renal parenchymal disease. Eighty patients (M:F = 50:30; age + 25-19, (mean 53) years) with available serum level of creatinine who underwent spiral CT between September and October 1999 were included in this study. In fifty patients the findings suggested hepatic or biliary diseases such as hepatoma, biliary cancer, or stone, while in thirty, renal diseases such as cyst, hematoma, or stone appeared to be present. Spiral CT imaging of the cortical phase was obtained at 30-40 seconds after the injection of 120 ml of non-ionic media at a rate of 3 ml/sec. The degree of renal cortical enhancement was calculated by dividing the CT attenuation number of renal cortex at the level of the renal hilum by the CT attenuation number of aorta at the same level. The degree of renal cortical enhancement was compared with the serum level of creatinine, and the degree of renal cortical enhancement in renal parenchymal disease with that of the normal group. Among eighty patients there were five with renal parenchymal disease and 75 with normal renal function. The ratio of the CT attenuation number of renal cortex to that of aorta at the level of the renal hilum ranged between 0.49 and 0.99 (mean, 0.79; standard deviation, 0.15). while the serum level of creatinine ranged between 0.6 and 3.2 mg/dl. There was significant correlation (coefficient of -0.346) and a statistically significant probability of 0.002 between the ratio of the CT attenuation numbers and the serum level of creatinine. There was a significant difference (statistically significant probability of less than 0.01) between those with renal parenchymal disease and the normal group. The use of spiral CT to measure the degree of renal cortical enhancement provides not only an effective index for
Povinelli, Daniel J; Frey, Scott H
2016-09-01
Many species exploit immediately apparent dimensions of objects during tool use and manufacture and operate over internal perceptual representations of objects (they move and reorient objects in space, have rules of operation to deform or modify objects, etc). Humans, however, actively test for functionally relevant object properties before such operations begin, even when no previous percepts of a particular object's qualities in the domain have been established. We hypothesize that such prospective diagnostic interventions are a human specialization of cognitive function that has been entirely overlooked in the neuropsychological literature. We presented chimpanzees with visually identical rakes: one was functional for retrieving a food reward; the other was non-functional (its base was spring-loaded). Initially, they learned that only the functional tool could retrieve a distant reward. In test 1, we explored if they would manually test for the rakes' rigidity during tool selection, but before using it. We found no evidence of such behavior. In test 2, we obliged the apes to deform the non-functional tool's base before using it, in order to evaluate whether this would cause them to switch rakes. It did not. Tests 3-6 attempted to focus the apes' attention on the functionally relevant property (rigidity). Although one ape eventually learned to abandon the non-functional rake before using it, she still did not attempt to test the rakes for rigidity prior to use. While these results underscore the ability of chimpanzees to use novel tools, at the same time they point toward a fundamental (and heretofore unexplored) difference in causal reasoning between humans and apes. We propose that this behavioral difference reflects a human specialization in how object properties are represented, which could have contributed significantly to the evolution of our technological culture. We discuss developing a new line of evolutionarily motivated neuropsychological research on
Snyder, A.; Dietterich, T.; Selker, J. S.
2017-12-01
Many regions of the world lack ground-based weather data due to inadequate or unreliable weather station networks. For example, most countries in Sub-Saharan Africa have unreliable, sparse networks of weather stations. The absence of these data can have consequences on weather forecasting, prediction of severe weather events, agricultural planning, and climate change monitoring. The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to place weather stations within each country. We should consider how we can create accurate spatio-temporal maps of weather data and how to balance the desired accuracy of each weather variable of interest (precipitation, temperature, relative humidity, etc.). We can express this problem as a joint optimization of multiple weather variables, given a fixed number of weather stations. We use reanalysis data as the best representation of the "true" weather patterns that occur in the region of interest. For each possible combination of sites, we interpolate the reanalysis data between selected locations and calculate the mean average error between the reanalysis ("true") data and the interpolated data. In order to formulate our multi-variate optimization problem, we explore different methods of weighting each weather variable in our objective function. These methods include systematic variation of weights to determine which weather variables have the strongest influence on the network design, as well as combinations targeted for specific purposes. For example, we can use computed evapotranspiration as a metric that combines many weather variables in a way that is meaningful for agricultural and hydrological applications. We compare the errors of the weather station networks produced by each optimization problem formulation. We also compare these
Schönbach, Etienne M; Chaikitmongkol, Voraporn; Annam, Rachel; McDonnell, Emma C; Wolfson, Yulia; Fletcher, Emily; Scholl, Hendrik P N
2017-01-01
We present the multifocal electroretinogram (mfERG) with a 7-hexagon array as an objective test of macular function that can be recorded in 14 s. We provide normal values and investigate its reproducibility and validity. Healthy participants underwent mfERG testing according to International Society for Clinical Electrophysiology of Vision (ISCEV) standards using the Espion Profile/D310 multifocal ERG system (Diagnosys, LLC, Lowell, MA, USA). One standard recording of a 61-hexagon array and 2 repeated recordings of a custom 7-hexagon array were obtained. A total of 13 subjects (mean age 46.9 years) were included. The median response densities were 12.5 nV/deg2 in the center and 5.2 nV/deg2 in the periphery. Intereye correlations were strong in both the center (ρCenter = 0.821; p < 0.0001) and the periphery (ρPeriphery = 0.862; p < 0.0001). Intraeye correlations were even stronger: ρCenter = 0.904 with p < 0.0001 and ρPeriphery = 0.955 with p < 0.0001. Bland-Altman plots demonstrated an acceptable retest mean difference in both the center and periphery, and narrow limits of agreement. We found strong correlations of the center (ρCenter = 0.826; p < 0.0001) and periphery (ρPeriphery = 0.848; p < 0.0001), with recordings obtained by the 61-hexagon method. The 7-hexagon mfERG provides reproducible results in agreement with results obtained according to the ISCEV standard. © 2017 S. Karger AG, Basel.
A functional analysis of photo-object matching skills of severely retarded adolescents.
Dixon, L S
1981-01-01
Matching-to-sample procedures were used to assess picture representation skills of severely retarded, nonverbal adolescents. Identity matching within the classes of objects and life-size, full-color photos of the objects was first used to assess visual discrimination, a necessary condition for picture representation. Picture representation was then assessed through photo-object matching tasks. Five students demonstrated visual discrimination (identity matching) within the two classes of photo...
Riemannian geometry and geometric analysis
Jost, Jürgen
2017-01-01
This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...
A functional analysis of photo-object matching skills of severely retarded adolescents.
Dixon, L S
1981-01-01
Matching-to-sample procedures were used to assess picture representation skills of severely retarded, nonverbal adolescents. Identity matching within the classes of objects and life-size, full-color photos of the objects was first used to assess visual discrimination, a necessary condition for picture representation. Picture representation was then assessed through photo-object matching tasks. Five students demonstrated visual discrimination (identity matching) within the two classes of photos and the objects. Only one student demonstrated photo-object matching. The results of the four students who failed to demonstrate photo-object matching suggested that physical properties of photos (flat, rectangular) and depth dimensions of objects may exert more control over matching than the similarities of the objects and images within the photos. An analysis of figure-ground variables was conducted to provide an empirical basis for program development in the use of pictures. In one series of tests, rectangular shape and background were removed by cutting out the figures in the photos. The edge shape of the photo and the edge shape of the image were then identical. The results suggest that photo-object matching may be facilitated by using cut-out figures rather than the complete rectangular photo.
Geometrical optical illusionists.
Wade, Nicholas J
2014-01-01
Geometrical optical illusions were given this title by Oppel in 1855. Variants on such small distortions of visual space were illustrated thereafter, many of which bear the names of those who first described them. Some original forms of the geometrical optical illusions are shown together with 'perceptual portraits' of those who described them. These include: Roget, Chevreul, Fick, Zöllner, Poggendorff, Hering, Kundt, Delboeuf Mach, Helmholtz, Hermann, von Bezold, Müller-Lyer, Lipps, Thiéry, Wundt, Münsterberg, Ebbinghaus, Titchener, Ponzo, Luckiesh, Sander, Ehrenstein, Gregory, Heard, White, Shepard, and. Lingelbach. The illusions are grouped under the headings of orientation, size, the combination of size and orientation, and contrast. Early theories of illusions, before geometrical optical illusions were so named, are mentioned briefly.
DEFF Research Database (Denmark)
Svendsen, Anne M; Kessing, Lars V; Munkholm, Klaus
2012-01-01
.01) but there were no differences between patient groups (P > 0.1). We found no correlation between subjectively experienced and objectively measured cognitive dysfunction in BD (P = 0.7), and a non-significant trend towards a correlation in UD (P = 0.06), which disappeared when controlling for gender (P = 0......Background: Patients with affective disorders experience cognitive dysfunction in addition to their affective symptoms. The relationship between subjectively experienced and objectively measured cognitive function is controversial with several studies reporting no correlation between subjective...... and objective deficits. Aims: To investigate whether there is a correlation between subjectively reported and objectively measured cognitive function in patients with affective disorders, and whether subjective complaints predict objectively measured dysfunction. Methods: The study included 45 participants; 15...
Directory of Open Access Journals (Sweden)
Cherry J.
2000-01-01
Full Text Available There are many methods for separating and purifying proteins from dilute solutions, such as salting out/precipitation, adsorption/chromatography, foam fractionation, and droplet fractionation. In order to determine the optimal condition for a selected separation and purification process, an objective function is developed. The objective function consists of three parameters, which are the protein mass recovery, the separation ratio, and the enzymatic activity ratio. In this paper the objective function is determined as a function of the pH of the bulk solution for egg albumin, cellulase, and sporamin (for foam fractionation and invertase ( for droplet fractionation. It is found that the optimal pH for all the systems except for cellulase is near their isoelectric point.
Wilcox, Teresa; Woods, Rebecca; Chapa, Catherine
2008-01-01
There is evidence for developmental hierarchies in the type of information to which infants attend when reasoning about objects. Investigators have questioned the origin of these hierarchies and how infants come to identify new sources of information when reasoning about objects. The goal of the present experiments was to shed light on this debate…
Geometric Rationalization for Freeform Architecture
Jiang, Caigui
2016-06-20
The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First, aesthetic constraints are important because the buildings have to be visually impressive. Sec- ond, functional constraints are important for the performance of a building and its e cient construction. This thesis contributes to the area of architectural geometry. Specifically, we are interested in the geometric rationalization of freeform architec- ture with the goal of combining aesthetic and functional constraints and construction requirements. Aesthetic requirements typically come from designers and architects. To obtain visually pleasing structures, they favor smoothness of the building shape, but also smoothness of the visible patterns on the surface. Functional requirements typically come from the engineers involved in the construction process. For exam- ple, covering freeform structures using planar panels is much cheaper than using non-planar ones. Further, constructed buildings have to be stable and should not collapse. In this thesis, we explore the geometric rationalization of freeform archi- tecture using four specific example problems inspired by real life applications. We achieve our results by developing optimization algorithms and a theoretical study of the underlying geometrical structure of the problems. The four example problems are the following: (1) The design of shading and lighting systems which are torsion-free structures with planar beams based on quad meshes. They satisfy the functionality requirements of preventing light from going inside a building as shad- ing systems or reflecting light into a building as lighting systems. (2) The Design of freeform honeycomb structures that are constructed based on hex-dominant meshes with a planar beam mounted along each edge. The beams intersect without
Analyser-based phase contrast image reconstruction using geometrical optics
International Nuclear Information System (INIS)
Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A
2007-01-01
Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 μm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser
Analyser-based phase contrast image reconstruction using geometrical optics.
Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A
2007-07-21
Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.
Thali, Michael J; Braun, Marcel; Buck, Ursula; Aghayev, Emin; Jackowski, Christian; Vock, Peter; Sonnenschein, Martin; Dirnhofer, Richard
2005-03-01
Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.
International Nuclear Information System (INIS)
La, H.
1992-01-01
A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint
A Geometric Dissection Problem
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 7. A Geometric Dissection Problem. M N Deshpande. Think It Over Volume 7 Issue 7 July 2002 pp 91-91. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/07/0091-0091. Author Affiliations.
Geometric statistical inference
International Nuclear Information System (INIS)
Periwal, Vipul
1999-01-01
A reparametrization-covariant formulation of the inverse problem of probability is explicitly solved for finite sample sizes. The inferred distribution is explicitly continuous for finite sample size. A geometric solution of the statistical inference problem in higher dimensions is outlined
Geometric Series via Probability
Tesman, Barry
2012-01-01
Infinite series is a challenging topic in the undergraduate mathematics curriculum for many students. In fact, there is a vast literature in mathematics education research on convergence issues. One of the most important types of infinite series is the geometric series. Their beauty lies in the fact that they can be evaluated explicitly and that…
Pragmatic geometric model evaluation
Pamer, Robert
2015-04-01
Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to
Directory of Open Access Journals (Sweden)
Heidi J Syväoja
Full Text Available Low levels of physical activity among children have raised concerns over the effects of a physically inactive lifestyle, not only on physical health but also on cognitive prerequisites of learning. This study examined how objectively measured and self-reported physical activity and sedentary behavior are associated with cognitive functions in school-aged children. The study population consisted of 224 children from five schools in the Jyväskylä school district in Finland (mean age 12.2 years; 56% girls, who participated in the study in the spring of 2011. Physical activity and sedentary time were measured objectively for seven consecutive days using the ActiGraph GT1M/GT3X accelerometer. Self-reported moderate to vigorous physical activity (MVPA and screen time were evaluated with the questions used in the "WHO Health Behavior in School-aged Children" study. Cognitive functions including visual memory, executive functions and attention were evaluated with a computerized Cambridge Neuropsychological Test Automated Battery by using five different tests. Structural equation modeling was applied to examine how objectively measured and self-reported MVPA and sedentary behavior were associated with cognitive functions. High levels of objectively measured MVPA were associated with good performance in the reaction time test. High levels of objectively measured sedentary time were associated with good performance in the sustained attention test. Objectively measured MVPA and sedentary time were not associated with other measures of cognitive functions. High amount of self-reported computer/video game play was associated with weaker performance in working memory test, whereas high amount of computer use was associated with weaker performance in test measuring shifting and flexibility of attention. Self-reported physical activity and total screen time were not associated with any measures of cognitive functions. The results of the present study propose
Ilmer, Steven; And Others
1981-01-01
The study assessed object permanence construct performance in 20 severely handicapped students (4 to 14 years old) who were differentiated by treatment (prompt) condition and motor ability level. Results revealed a trait (motor ability) x treatment interaction. (Author/SB)
International Nuclear Information System (INIS)
Rukolaine, Sergey A.
2010-01-01
Optimal shape design problems of steady-state radiative heat transfer are considered. The optimal shape design problem (in the three-dimensional space) is formulated as an inverse one, i.e., in the form of an operator equation of the first kind with respect to a surface to be optimized. The operator equation is reduced to a minimization problem via a least-squares objective functional. The minimization problem has to be solved numerically. Gradient minimization methods need the gradient of a functional to be minimized. In this paper the shape gradient of the least-squares objective functional is derived with the help of the shape sensitivity analysis and adjoint problem method. In practice a surface to be optimized may be (or, most likely, is to be) given in a parametric form by a finite number of parameters. In this case the objective functional is, in fact, a function in a finite-dimensional space and the shape gradient becomes an ordinary gradient. The gradient of the objective functional, in the case that the surface to be optimized is given in a finite-parametric form, is derived from the shape gradient. A particular case, that a surface to be optimized is a 'two-dimensional' polyhedral one, is considered. The technique, developed in the paper, is applied to a synthetic problem of designing a 'two-dimensional' radiant enclosure.
Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm
Energy Technology Data Exchange (ETDEWEB)
Najafi, Hamidreza; Najafi, Behzad [K. N. Toosi University of Technology, Department of Mechanical Engineering, Tehran (Iran)
2010-06-15
In the present paper, a plate and frame heat exchanger is considered. Multi-objective optimization using genetic algorithm is developed in order to obtain a set of geometric design parameters, which lead to minimum pressure drop and the maximum overall heat transfer coefficient. Vividly, considered objective functions are conflicting and no single solution can satisfy both objectives simultaneously. Multi-objective optimization procedure yields a set of optimal solutions, called Pareto front, each of which is a trade-off between objectives and can be selected by the user, regarding the application and the project's limits. The presented work takes care of numerous geometric parameters in the presence of logical constraints. A sensitivity analysis is also carried out to study the effects of different geometric parameters on the considered objective functions. Modeling the system and implementing the multi-objective optimization via genetic algorithm has been performed by MATLAB. (orig.)
Design of New Test Function Model Based on Multi-objective Optimization Method
Directory of Open Access Journals (Sweden)
Zhaoxia Shang
2017-01-01
Full Text Available Space partitioning method, as a new algorism, has been applied to planning and decision-making of investment portfolio more and more often. But currently there are so few testing function for this algorism, which has greatly restrained its further development and application. An innovative test function model is designed in this paper and is used to test the algorism. It is proved that for evaluation of space partitioning method in certain applications, this test function has fairly obvious advantage.
Directory of Open Access Journals (Sweden)
Jens G. Balchen
1984-10-01
Full Text Available The problem of systematic derivation of a quasi-dynamic optimal control strategy for a non-linear dynamic process based upon a non-quadratic objective function is investigated. The wellknown LQG-control algorithm does not lead to an optimal solution when the process disturbances have non-zero mean. The relationships between the proposed control algorithm and LQG-control are presented. The problem of how to constrain process variables by means of 'penalty' - terms in the objective function is dealt with separately.
Directory of Open Access Journals (Sweden)
Jungwook Kim
2018-05-01
Full Text Available The objective function is usually used for verification of the optimization process between observed and simulated flows for the parameter estimation of rainfall–runoff model. However, it does not focus on peak flow and on representative parameter for various rain storm events of the basin, but it can estimate the optimal parameters by minimizing the overall error of observed and simulated flows. Therefore, the aim of this study is to suggest the objective functions that can fit peak flow in hydrograph and estimate the representative parameter of the basin for the events. The Streamflow Synthesis And Reservoir Regulation (SSARR model was employed to perform flood runoff simulation for the Mihocheon stream basin in Geum River, Korea. Optimization was conducted using three calibration methods: genetic algorithm, pattern search, and the Shuffled Complex Evolution method developed at the University of Arizona (SCE-UA. Two objective functions of the Sum of Squared of Residual (SSR and the Weighted Sum of Squared of Residual (WSSR suggested in this study for peak flow optimization were applied. Since the parameters estimated using a single rain storm event do not represent the parameters for various rain storms in the basin, we used the representative objective function that can minimize the sum of objective functions of the events. Six rain storm events were used for the parameter estimation. Four events were used for the calibration and the other two for validation; then, the results by SSR and WSSR were compared. Flow runoff simulation was carried out based on the proposed objective functions, and the objective function of WSSR was found to be more useful than that of SSR in the simulation of peak flow runoff. Representative parameters that minimize the objective function for each of the four rain storm events were estimated. The calibrated observed and simulated flow runoff hydrographs obtained from applying the estimated representative
Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Vanmeter, John
2011-01-01
Near-infrared spectroscopy (NIRS) is a developing technology for low-cost noninvasive functional brain imaging. With multichannel optical instruments, it becomes possible to measure not only local changes in hemoglobin concentrations but also temporal correlations of those changes in different brain regions which gives an optical analog of functional connectivity traditionally measured by fMRI. We recorded hemodynamic activity during the Go-NoGo task from 11 right-handed subjects with probes placed bilaterally over prefrontal areas. Subjects were detecting animals as targets in natural scenes pressing a mouse button. Data were low-pass filtered right versus left hemisphere. Intra- and interhemispheric functional connectivity was also significantly stronger during the task compared to baseline. Functional connectivity between the inferior and the middle frontal regions was significantly stronger in the right hemisphere. Our results demonstrate that optical methods can be used to detect transient changes in functional connectivity during rapid cognitive processes.
Exponentiated Lomax Geometric Distribution: Properties and Applications
Directory of Open Access Journals (Sweden)
Amal Soliman Hassan
2017-09-01
Full Text Available In this paper, a new four-parameter lifetime distribution, called the exponentiated Lomax geometric (ELG is introduced. The new lifetime distribution contains the Lomax geometric and exponentiated Pareto geometric as new sub-models. Explicit algebraic formulas of probability density function, survival and hazard functions are derived. Various structural properties of the new model are derived including; quantile function, Re'nyi entropy, moments, probability weighted moments, order statistic, Lorenz and Bonferroni curves. The estimation of the model parameters is performed by maximum likelihood method and inference for a large sample is discussed. The flexibility and potentiality of the new model in comparison with some other distributions are shown via an application to a real data set. We hope that the new model will be an adequate model for applications in various studies.
Spherical projections and liftings in geometric tomography
DEFF Research Database (Denmark)
Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang
2011-01-01
We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad......We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies...... and to radial functions of star bodies. We then investigate averages of lifted projections and show that they correspond to self-adjoint intertwining operators. We obtain formulas for the eigenvalues of these operators and use them to ascertain circumstances under which tomographic measurements determine...... the original bodies. This approach via mean lifted projections leads us to some unexpected relationships between seemingly disparate geometric constructions....
DEFF Research Database (Denmark)
Holsgaard-Larsen, Anders; Jensen, Carsten; Aagaard, Per
2014-01-01
) subscales (Sport/Rec and QOL) in ACL-reconstructed patients. METHODS: 23 hamstring auto-graft ACL-reconstructed men (mean age: 27.2 standard deviation 7.5years, BMI: 25.4 standard deviation 3.2 time since surgery: 27 standard deviation 7months) completed KOOS-questionnaire and an objective test-battery: (i...
Functional Requirements: 2014 No Child Left Behind--Annual Measurable Achievement Objectives
Minnesota Department of Education, 2014
2014-01-01
This document describes the Minnesota No Child Left Behind (NCLB) calculation as it relates to measuring Title III districts for Annual Measurable Achievement Objectives (AMAO). In 2012, a new assessment was used to measure language proficiency skills for English Learners. New AMAO targets were created, and new values for determining individual…
Robust Geometric Control of a Distillation Column
DEFF Research Database (Denmark)
Kymmel, Mogens; Andersen, Henrik Weisberg
1987-01-01
A frequency domain method, which makes it possible to adjust multivariable controllers with respect to both nominal performance and robustness, is presented. The basic idea in the approach is that the designer assigns objectives such as steady-state tracking, maximum resonance peaks, bandwidth, m...... is used to examine and improve geometric control of a binary distillation column....
Dynamics in geometrical confinement
Kremer, Friedrich
2014-01-01
This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...
Bestvina, Mladen; Vogtmann, Karen
2014-01-01
Geometric group theory refers to the study of discrete groups using tools from topology, geometry, dynamics and analysis. The field is evolving very rapidly and the present volume provides an introduction to and overview of various topics which have played critical roles in this evolution. The book contains lecture notes from courses given at the Park City Math Institute on Geometric Group Theory. The institute consists of a set of intensive short courses offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The courses begin at an introductory level suitable for graduate students and lead up to currently active topics of research. The articles in this volume include introductions to CAT(0) cube complexes and groups, to modern small cancellation theory, to isometry groups of general CAT(0) spaces, and a discussion of nilpotent genus in the context of mapping class groups and CAT(0) gro...
Lectures in geometric combinatorics
Thomas, Rekha R
2006-01-01
This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the state polytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics. The connections rely on Gr�bner bases of toric ideals and other methods from commutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational as...
Frè, Pietro Giuseppe
2013-01-01
‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed account of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations. Differe...
Ruffino, Fabio Ferrari
2013-01-01
Given a cohomology theory, there is a well-known abstract way to define the dual homology theory using the theory of spectra. In [4] the author provides a more geometric construction of the homology theory, using a generalization of the bordism groups. Such a generalization involves in its definition the vector bundle modification, which is a particular case of the Gysin map. In this paper we provide a more natural variant of that construction, which replaces the vector bundle modification wi...
Waerden, B
1996-01-01
From the reviews: "... Federer's timely and beautiful book indeed fills the need for a comprehensive treatise on geometric measure theory, and his detailed exposition leads from the foundations of the theory to the most recent discoveries. ... The author writes with a distinctive style which is both natural and powerfully economical in treating a complicated subject. This book is a major treatise in mathematics and is essential in the working library of the modern analyst." Bulletin of the London Mathematical Society.
Developing geometrical reasoning
Brown, Margaret; Jones, Keith; Taylor, Ron; Hirst, Ann
2004-01-01
This paper summarises a report (Brown, Jones & Taylor, 2003) to the UK Qualifications and Curriculum Authority of the work of one geometry group. The group was charged with developing and reporting on teaching ideas that focus on the development of geometrical reasoning at the secondary school level. The group was encouraged to explore what is possible both within and beyond the current requirements of the UK National Curriculum and the Key Stage 3 strategy, and to consider the whole atta...
Geometrically Consistent Mesh Modification
Bonito, A.
2010-01-01
A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.
Geometric theory of information
2014-01-01
This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition, and natural language treatment which are also substantially relevant for the industry.
Graphene geometric diodes for terahertz rectennas
International Nuclear Information System (INIS)
Zhu Zixu; Joshi, Saumil; Grover, Sachit; Moddel, Garret
2013-01-01
We demonstrate a new thin-film graphene diode called a geometric diode that relies on geometric asymmetry to provide rectification at 28 THz. The geometric diode is coupled to an optical antenna to form a rectenna that rectifies incoming radiation. This is the first reported graphene-based antenna-coupled diode working at 28 THz, and potentially at optical frequencies. The planar structure of the geometric diode provides a low RC time constant, on the order of 10 −15 s, required for operation at optical frequencies, and a low impedance for efficient power transfer from the antenna. Fabricated geometric diodes show asymmetric current–voltage characteristics consistent with Monte Carlo simulations for the devices. Rectennas employing the geometric diode coupled to metal and graphene antennas rectify 10.6 µm radiation, corresponding to an operating frequency of 28 THz. The graphene bowtie antenna is the first demonstrated functional antenna made using graphene. Its response indicates that graphene is a suitable terahertz resonator material. Applications for this terahertz diode include terahertz-wave and optical detection, ultra-high-speed electronics and optical power conversion. (paper)
Geometric leaf placement strategies
International Nuclear Information System (INIS)
Fenwick, J D; Temple, S W P; Clements, R W; Lawrence, G P; Mayles, H M O; Mayles, W P M
2004-01-01
Geometric leaf placement strategies for multileaf collimators (MLCs) typically involve the expansion of the beam's-eye-view contour of a target by a uniform MLC margin, followed by movement of the leaves until some point on each leaf end touches the expanded contour. Film-based dose-distribution measurements have been made to determine appropriate MLC margins-characterized through an index d 90 -for multileaves set using one particular strategy to straight lines lying at various angles to the direction of leaf travel. Simple trigonometric relationships exist between different geometric leaf placement strategies and are used to generalize the results of the film work into d 90 values for several different strategies. Measured d 90 values vary both with angle and leaf placement strategy. A model has been derived that explains and describes quite well the observed variations of d 90 with angle. The d 90 angular variations of the strategies studied differ substantially, and geometric and dosimetric reasoning suggests that the best strategy is the one with the least angular variation. Using this criterion, the best straightforwardly implementable strategy studied is a 'touch circle' approach for which semicircles are imagined to be inscribed within leaf ends, the leaves being moved until the semicircles just touch the expanded target outline
Studies in geometric quantization
International Nuclear Information System (INIS)
Tuynman, G.M.
1988-01-01
This thesis contains five chapters, of which the first, entitled 'What is prequantization, and what is geometric quantization?', is meant as an introduction to geometric quantization for the non-specialist. The second chapter, entitled 'Central extensions and physics' deals with the notion of central extensions of manifolds and elaborates and proves the statements made in the first chapter. Central extensions of manifolds occur in physics as the freedom of a phase factor in the quantum mechanical state vector, as the phase factor in the prequantization process of classical mechanics and it appears in mathematics when studying central extension of Lie groups. In this chapter the connection between these central extensions is investigated and a remarkable similarity between classical and quantum mechanics is shown. In chapter three a classical model is given for the hydrogen atom including spin-orbit and spin-spin interaction. The method of geometric quantization is applied to this model and the results are discussed. In the final chapters (4 and 5) an explicit method to calculate the operators corresponding to classical observables is given when the phase space is a Kaehler manifold. The obtained formula are then used to quantise symplectic manifolds which are irreducible hermitian symmetric spaces and the results are compared with other quantization procedures applied to these manifolds (in particular to Berezin's quantization). 91 refs.; 3 tabs
Sudan-decoding generalized geometric Goppa codes
DEFF Research Database (Denmark)
Heydtmann, Agnes Eileen
2003-01-01
Generalized geometric Goppa codes are vector spaces of n-tuples with entries from different extension fields of a ground field. They are derived from evaluating functions similar to conventional geometric Goppa codes, but allowing evaluation in places of arbitrary degree. A decoding scheme...... for these codes based on Sudan's improved algorithm is presented and its error-correcting capacity is analyzed. For the implementation of the algorithm it is necessary that the so-called increasing zero bases of certain spaces of functions are available. A method to obtain such bases is developed....
Geometrical approach to fluid models
International Nuclear Information System (INIS)
Kuvshinov, B.N.; Schep, T.J.
1997-01-01
Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notion of invariance is introduced in terms of Lie derivatives and a general procedure for the construction of local and integral fluid invariants is presented. The solutions of the equations for invariant fields can be written in terms of Lagrange variables. A generalization of the Hamiltonian formalism for finite-dimensional systems to continuous media is proposed. Analogously to finite-dimensional systems, Hamiltonian fluids are introduced as systems that annihilate an exact two-form. It is shown that Euler and ideal, charged fluids satisfy this local definition of a Hamiltonian structure. A new class of scalar invariants of Hamiltonian fluids is constructed that generalizes the invariants that are related with gauge transformations and with symmetries (Noether). copyright 1997 American Institute of Physics
Faxén Sepanian, Varoojan; Paulsson-Björnsson, Liselotte; Kjellberg, Heidrun
2014-01-01
The aims of this study were to 1) evaluate the objective success rate of Class II malocclusion treatment with functional appliances five years after completion of treatment and 2) to compare the remaining objective treatment need with an untreated control group. Records of all listed patients between 18-20 years (n=1054) treated in a general practice were reviewed for the purpose of finding treatments with removable functional appliances. Among all subjects (n=61) who previously had been treated, 58 accepted to participate in the study.The test group was matched with an orthodontically untreated group with no history of objective treatment need. Clinical examination was performed and study casts and photos were taken from both groups.The objective treatment need was evaluated through clinical examination and study cast analysis with weighted Peer Assessment Rating index (wPAR). Twenty patients, (34.5%) (mean wPAR 13.8), succeeded with the functional appliance treatment.The wPAR score (mean 15.0) of the entire test group was significantly higher than the one of the control group (mean 7.3).The group that was treated exclusively with functional appliances had a mean wPAR score of 17.4. Eighteen patients (31.0%) who received retreatment with fixed appliances had a slightly higher mean wPAR (8.6) than the control group. Treatments with functional appliances in a general practice showed a high failure rate and a remaining treatment need. It is the treating dentist's responsibility to motivate the patient to cooperate to the treatment, because as it previously has been shown the treatment with functional appliances is a well-functioning treatment alternative with the cooperation of the patient being sufficient. It is also of importance, already before starting treatment, to estimate the child's cooperation ability and to avoid treatment with removable appliances if the child or parents are reluctant about such a treatment.
Geometrical model of multiple production
International Nuclear Information System (INIS)
Chikovani, Z.E.; Jenkovszky, L.L.; Kvaratshelia, T.M.; Struminskij, B.V.
1988-01-01
The relation between geometrical and KNO-scaling and their violation is studied in a geometrical model of multiple production of hadrons. Predictions concerning the behaviour of correlation coefficients at future accelerators are given
Geometric Computing for Freeform Architecture
Wallner, J.; Pottmann, Helmut
2011-01-01
Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area
Geometrically Induced Interactions and Bifurcations
Binder, Bernd
2010-01-01
In order to evaluate the proper boundary conditions in spin dynamics eventually leading to the emergence of natural and artificial solitons providing for strong interactions and potentials with monopole charges, the paper outlines a new concept referring to a curvature-invariant formalism, where superintegrability is given by a special isometric condition. Instead of referring to the spin operators and Casimir/Euler invariants as the generator of rotations, a curvature-invariant description is introduced utilizing a double Gudermann mapping function (generator of sine Gordon solitons and Mercator projection) cross-relating two angular variables, where geometric phases and rotations arise between surfaces of different curvature. Applying this stereographic projection to a superintegrable Hamiltonian can directly map linear oscillators to Kepler/Coulomb potentials and/or monopoles with Pöschl-Teller potentials and vice versa. In this sense a large scale Kepler/Coulomb (gravitational, electro-magnetic) wave dynamics with a hyperbolic metric could be mapped as a geodesic vertex flow to a local oscillator singularity (Dirac monopole) with spherical metrics and vice versa. Attracting fixed points and dynamic constraints are given by special isometries with magic precession angles. The nonlinear angular encoding directly provides for a Shannon mutual information entropy measure of the geodesic phase space flow. The emerging monopole patterns show relations to spiral Fresnel holography and Berry/Aharonov-Bohm geometric phases subject to bifurcation instabilities and singularities from phase ambiguities due to a local (entropy) overload. Neutral solitons and virtual patterns emerging and mediating in the overlap region between charged or twisted holographic patterns are visualized and directly assigned to the Berry geometric phase revealing the role of photons, neutrons, and neutrinos binding repulsive charges in Coulomb, strong and weak interaction.
Stiffness design of geometrically nonlinear structures using topology optimization
DEFF Research Database (Denmark)
Buhl, Thomas; Pedersen, Claus B. Wittendorf; Sigmund, Ole
2000-01-01
of the objective functions are found with the adjoint method and the optimization problem is solved using the Method of Moving Asymptotes. A filtering scheme is used to obtain checkerboard-free and mesh-independent designs and a continuation approach improves convergence to efficient designs. Different objective......The paper deals with topology optimization of structures undergoing large deformations. The geometrically nonlinear behaviour of the structures are modelled using a total Lagrangian finite element formulation and the equilibrium is found using a Newton-Raphson iterative scheme. The sensitivities...... functions are tested. Minimizing compliance for a fixed load results in degenerated topologies which are very inefficient for smaller or larger loads. The problem of obtaining degenerated "optimal" topologies which only can support the design load is even more pronounced than for structures with linear...
Nasehi, Mohammad; Alaghmandan-Motlagh, Niyousha; Ebrahimi-Ghiri, Mohaddeseh; Nami, Mohammad; Zarrindast, Mohammad-Reza
2017-10-01
Previous studies have postulated functional links between GABA and cannabinoid systems in the hippocampus. The aim of the present study was to investigate any possible interaction between these systems in spatial change and object novelty discrimination memory consolidation in the dorsal hippocampus (CA1 region) of NMRI mice. Assessment of the spatial change and object novelty discrimination memory function was carried out in a non-associative task. The experiment comprised mice exposure to an open field containing five objects followed by the examination of their reactivity to object displacement (spatial change) and object substitution (object novelty) after three sessions of habituation. Our results showed that the post-training intraperitoneal administration of the higher dose of ACPA (0.02 mg/kg) impaired both spatial change and novelty discrimination memory functions. Meanwhile, the higher dose of GABA-B receptor agonist, baclofen, impaired the spatial change memory by itself. Moreover, the post-training intra-CA1 microinjection of a subthreshold dose of baclofen increased the ACPA effect on spatial change and novelty discrimination memory at a lower and higher dose, respectively. On the other hand, the lower and higher but not mid-level doses of GABA-B receptor antagonist, phaclofen, could reverse memory deficits induced by ACPA. However, phaclofen at its mid-level dose impaired the novelty discrimination memory and whereas the higher dose impaired the spatial change memory. Based on our findings, GABA-B receptors in the CA1 region appear to modulate the ACPA-induced cannabinoid CB1 signaling upon spatial change and novelty discrimination memory functions.
Directory of Open Access Journals (Sweden)
Yong Ma
2013-01-01
Full Text Available We present one algorithm based on particle swarm optimization (PSO with penalty function to determine the conflict-free path for mobile objects in four-dimension (three spatial and one-time dimensions with obstacles. The shortest path of the mobile object is set as goal function, which is constrained by conflict-free criterion, path smoothness, and velocity and acceleration requirements. This problem is formulated as a calculus of variation problem (CVP. With parametrization method, the CVP is converted to a time-varying nonlinear programming problem (TNLPP. Constraints of TNLPP are transformed to general TNLPP without any constraints through penalty functions. Then, by using a little calculations and applying the algorithm PSO, the solution of the CVP is consequently obtained. Approach efficiency is confirmed by numerical examples.
Nawrocka, Agnieszka; Mynarski, Władysław; Cholewa, Jarosław
2017-12-23
Physical activity is an important factor in maintaining the health and functional fitness of elderly people. The aim of the study was to determine the number of senior women meeting the physical activity guidelines, and their level of functional fitness in comparison to women who are not sufficiently physically active. The study involved 61 women, aged 60-75. Physical activity was monitored on seven consecutive days of the week, using a triaxial accelerometer ActiGraph GT3X. Results of the assessment of physical activity were verified against the Global Recommendations of Physical Activity for Health. The Senior Fitness Test (Fullerton Test) was used to evaluate functional fitness. In the studied group, 36.1% achieved the recommended level of physical activity. All those examined mainly undertook physical activity of low intensity. Vigorous physical activity during the week was noted in only 6 seniors. Women who met the recommendations of physical activity achieved significantly better results in test trials, e.g. Chair Stands, Up and Go, Six Minute Step Test. Adherence to physical activity guidelines was associated with better functional fitness of older women. However, less than half of the examined seniors met the Global Recommendations on Physical Activity for Health.
Liu, Xu-long; Hong, Wen-xue; Song, Jia-lin; Wu, Zhen-ying
2012-03-01
The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some lesions of facial nerve function are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to capture the alteration of the infrared thermal distribution. This paper presents a new method of analysis of the thermal asymmetry named effective thermal area ratio, which is a product of two variables. The first variable is mean temperature difference between the specific facial region and its contralateral region. The second variable is a ratio, which is equal to the area of the abnormal region divided by the total area. Using this new method, we performed a controlled trial to assess the facial nerve function of the healthy subjects and the patients with Bell's palsy respectively. The results show: that the mean specificity and sensitivity of this method are 0.90 and 0.87 respectively, improved by 7% and 26% compared with conventional methods. Spearman correlation coefficient between effective thermal area ratio and the degree of facial nerve function is an average of 0.664. Hence, concerning the diagnosis and assessment of facial nerve function, infrared thermography is a powerful tool; while the effective ther mal area ratio is an efficient clinical indicator.
Determination of the Reliability Function of Nonredundant Element of Power Object
International Nuclear Information System (INIS)
Namgaladze, D.; Kiziria, T.
2007-01-01
At considering the reliability indices of the system element with recovery, the time of operation and recovery is usually accounted for. But, in practice, there often occur the situations when, after the failure of the system (or its element), it takes considerable time to begin repairing (time for revealing the damages, time for organization of repairing work, delivery of spare parts etc.). The total dead time is called the waiting time. In the present work, the reliability indices of the element of power object with account for the waiting time are determined analytically by using Markovian processes. (author)
Geometric Constructions with the Computer.
Chuan, Jen-chung
The computer can be used as a tool to represent and communicate geometric knowledge. With the appropriate software, a geometric diagram can be manipulated through a series of animation that offers more than one particular snapshot as shown in a traditional mathematical text. Geometric constructions with the computer enable the learner to see and…
Mediating objects: scientific and public functions of models in nineteenth-century biology.
Ludwig, David
2013-01-01
The aim of this article is to examine the scientific and public functions of two- and three-dimensional models in the context of three episodes from nineteenth-century biology. I argue that these models incorporate both data and theory by presenting theoretical assumptions in the light of concrete data or organizing data through theoretical assumptions. Despite their diverse roles in scientific practice, they all can be characterized as mediators between data and theory. Furthermore, I argue that these different mediating functions often reflect their different audiences that included specialized scientists, students, and the general public. In this sense, models in nineteenth-century biology can be understood as mediators between theory, data, and their diverse audiences.
Guinchard, A-C; Ghazaleh, Naghmeh; Saenz, M; Fornari, E; Prior, J O; Maeder, P; Adib, S; Maire, R
2016-11-01
We studied possible brain changes with functional MRI (fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) in a patient with a rare, high-intensity "objective tinnitus" (high-level SOAEs) in the left ear of 10 years duration, with no associated hearing loss. This is the first case of objective cochlear tinnitus to be investigated with functional neuroimaging. The objective cochlear tinnitus was measured by Spontaneous Otoacoustic Emissions (SOAE) equipment (frequency 9689 Hz, intensity 57 dB SPL) and is clearly audible to anyone standing near the patient. Functional modifications in primary auditory areas and other brain regions were evaluated using 3T and 7T fMRI and FDG-PET. In the fMRI evaluations, a saturation of the auditory cortex at the tinnitus frequency was observed, but the global cortical tonotopic organization remained intact when compared to the results of fMRI of healthy subjects. The FDG-PET showed no evidence of an increase or decrease of activity in the auditory cortices or in the limbic system as compared to normal subjects. In this patient with high-intensity objective cochlear tinnitus, fMRI and FDG-PET showed no significant brain reorganization in auditory areas and/or in the limbic system, as reported in the literature in patients with chronic subjective tinnitus. Copyright © 2016 Elsevier B.V. All rights reserved.
The Correlation between Subjective and Objective Visual Function Test in Optic Neuropathy Patients
Directory of Open Access Journals (Sweden)
Ungsoo Kim
2012-10-01
Full Text Available Purpose: To investigate the correlation between visual acuity and quantitative measurements of visual evoked potentials (VEP, optical coherence tomography (OCT, and visual field test (VF in optic neuropathy patients. Methods: We evaluated 28 patients with optic neuropathy. Patients who had pale disc, visual acuity of less than 0.5 and abnormal visual field defect were included. At the first visit, we performed visual acuity and VF as subjective methods and OCT and VEP as objective methods. In the spectral domain OCT, rim volume, average and temporal quadrant retinal nerve fiber layer (RNFL thickness were measured. And pattern VEP (N75, P100, N135 latency, and P100 amplitude and Humphrey 24-2 visual field test (mean deviation and pattern standard deviation were obtained. Using Spearman's correlation coefficient, the correlation between visual acuity and various techniques were assessed. Results: Visual acuity was most correlated with the mean deviation of Humphrey perimetry.
Corrochano, Eduardo Bayro
2010-01-01
This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int
Geometric multipartite entanglement measures
International Nuclear Information System (INIS)
Paz-Silva, Gerardo A.; Reina, John H.
2007-01-01
Within the framework of constructions for quantifying entanglement, we build a natural scenario for the assembly of multipartite entanglement measures based on Hopf bundle-like mappings obtained through Clifford algebra representations. Then, given the non-factorizability of an arbitrary two-qubit density matrix, we give an alternate quantity that allows the construction of two types of entanglement measures based on their arithmetical and geometrical averages over all pairs of qubits in a register of size N, and thus fully characterize its degree and type of entanglement. We find that such an arithmetical average is both additive and strongly super additive
Geometric correlations and multifractals
International Nuclear Information System (INIS)
Amritkar, R.E.
1991-07-01
There are many situations where the usual statistical methods are not adequate to characterize correlations in the system. To characterize such situations we introduce mutual correlation dimensions which describe geometric correlations in the system. These dimensions allow us to distinguish between variables which are perfectly correlated with or without a phase lag, variables which are uncorrelated and variables which are partially correlated. We demonstrate the utility of our formalism by considering two examples from dynamical systems. The first example is about the loss of memory in chaotic signals and describes auto-correlations while the second example is about synchronization of chaotic signals and describes cross-correlations. (author). 19 refs, 6 figs
Bortolozo, Cassiano Antonio; Bokhonok, Oleg; Porsani, Jorge Luís; Monteiro dos Santos, Fernando Acácio; Diogo, Liliana Alcazar; Slob, Evert
2017-11-01
Ambiguities in geophysical inversion results are always present. How these ambiguities appear in most cases open to interpretation. It is interesting to investigate ambiguities with regard to the parameters of the models under study. Residual Function Dispersion Map (RFDM) can be used to differentiate between global ambiguities and local minima in the objective function. We apply RFDM to Vertical Electrical Sounding (VES) and TEM Sounding inversion results. Through topographic analysis of the objective function we evaluate the advantages and limitations of electrical sounding data compared with TEM sounding data, and the benefits of joint inversion in comparison with the individual methods. The RFDM analysis proved to be a very interesting tool for understanding the joint inversion method of VES/TEM. Also the advantage of the applicability of the RFDM analyses in real data is explored in this paper to demonstrate not only how the objective function of real data behaves but the applicability of the RFDM approach in real cases. With the analysis of the results, it is possible to understand how the joint inversion can reduce the ambiguity of the methods.
Morphing of geometric composites via residual swelling.
Pezzulla, Matteo; Shillig, Steven A; Nardinocchi, Paola; Holmes, Douglas P
2015-08-07
Understanding and controlling the shape of thin, soft objects has been the focus of significant research efforts among physicists, biologists, and engineers in the last decade. These studies aim to utilize advanced materials in novel, adaptive ways such as fabricating smart actuators or mimicking living tissues. Here, we present the controlled growth-like morphing of 2D sheets into 3D shapes by preparing geometric composite structures that deform by residual swelling. The morphing of these geometric composites is dictated by both swelling and geometry, with diffusion controlling the swelling-induced actuation, and geometric confinement dictating the structure's deformed shape. Building on a simple mechanical analog, we present an analytical model that quantitatively describes how the Gaussian and mean curvatures of a thin disk are affected by the interplay among geometry, mechanics, and swelling. This model is in excellent agreement with our experiments and numerics. We show that the dynamics of residual swelling is dictated by a competition between two characteristic diffusive length scales governed by geometry. Our results provide the first 2D analog of Timoshenko's classical formula for the thermal bending of bimetallic beams - our generalization explains how the Gaussian curvature of a 2D geometric composite is affected by geometry and elasticity. The understanding conferred by these results suggests that the controlled shaping of geometric composites may provide a simple complement to traditional manufacturing techniques.
Early patient-reported outcomes versus objective function after total hip and knee arthroplasty
DEFF Research Database (Denmark)
Luna, I E; Kehlet, H; Peterson, B
2017-01-01
AIMS: The purpose of this study was to assess early physical function after total hip or knee arthroplasty (THA/TKA), and the correlation between patient-reported outcome measures, physical performance and actual physical activity (measured by actigraphy). PATIENTS AND METHODS: A total of 80...... patients aged 55 to 80 years undergoing THA or TKA for osteoarthritis were included in this prospective cohort study. The main outcome measure was change in patient reported hip or knee injury and osteoarthritis outcome score (HOOS/KOOS) from pre-operatively until post-operative day 13 (THA) or 20 (TKA...
Geometric convergence of some two-point Pade approximations
International Nuclear Information System (INIS)
Nemeth, G.
1983-01-01
The geometric convergences of some two-point Pade approximations are investigated on the real positive axis and on certain infinite sets of the complex plane. Some theorems concerning the geometric convergence of Pade approximations are proved, and bounds on geometric convergence rates are given. The results may be interesting considering the applications both in numerical computations and in approximation theory. As a specific case, the numerical calculations connected with the plasma dispersion function may be performed. (D.Gy.)
Levchuk, Georgiy; Bobick, Aaron; Jones, Eric
2010-04-01
In this paper, we describe results from experimental analysis of a model designed to recognize activities and functions of moving and static objects from low-resolution wide-area video inputs. Our model is based on representing the activities and functions using three variables: (i) time; (ii) space; and (iii) structures. The activity and function recognition is achieved by imposing lexical, syntactic, and semantic constraints on the lower-level event sequences. In the reported research, we have evaluated the utility and sensitivity of several algorithms derived from natural language processing and pattern recognition domains. We achieved high recognition accuracy for a wide range of activity and function types in the experiments using Electro-Optical (EO) imagery collected by Wide Area Airborne Surveillance (WAAS) platform.
Permutation flow-shop scheduling problem to optimize a quadratic objective function
Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu
2017-09-01
A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.
Directory of Open Access Journals (Sweden)
CARAIMAN ADRIAN-COSMIN
2015-12-01
Full Text Available As Radu said (2009, pag. 91 [6] logical approach developed by accounting, presentation of an exact image of the heritage, the financial situation and financial results, based on a rational thought, a gradual knowledge domain investigated, concepts, tools and processes that allow a better understanding of the essence of economic phenomena and processes. Theoretical framework brings together a number of concepts that are considered fundamental to regulatory or accounting systems applied at the level of the entity to have clearly specified the coordinates of the base and are able to achieve cohesion between the objective of financial statements as true and fair view, financial information and policy characteristics and estimation techniques as a form of expression towards the recognition and presentation of economic reality. The author considers, in the context of the defined system applied within the accounting entities in general, that principles, presents not only a crucial premise, as well as needed necessity in order to show an exact image of the performance and financial position of the entity.
Vlagsma, Thialda T; Koerts, Janneke; Tucha, Oliver; Dijkstra, Hilde T; Duits, Annelien A; van Laar, Teus; Spikman, Jacoba M
2017-11-01
To determine whether objective (neuropsychological tests) and subjective measures (questionnaires) of executive functions (EFs) are associated in patients with Parkinson disease (PD), and to determine to what extent level of participation and quality of life (QoL) of patients with PD can be predicted by these measures of EFs. Correlational research design (case-control and prediction design). Departments of neuropsychology of 3 medical centers. A sample (N=136) of patients with PD (n=42) and their relatives, and controls without PD (n=94). Not applicable. A test battery measuring EFs. In addition, patients, their relatives, and controls completed the Dysexecutive Questionnaire, Brock Adaptive Functioning Questionnaire, and Barkley Deficits in Executive Functioning Scale - time management questionnaires measuring complaints about EFs. Participation and QoL were measured with the Impact on Participation and Autonomy scale and the Parkinson's Disease Questionnaire-39, respectively. Patients with PD showed impairments in EFs on objective tests and reported significantly more complaints about EFs than did controls without PD. No associations were found between patients' performances on objective and subjective measures of EFs. However, both objective and subjective measures predicted patients' level of participation. In addition, subjective measures of EFs predicted QoL in patients with PD. These findings show that objective and subjective measures of EFs are not interchangeable and that both approaches predict level of participation and QoL in patients with PD. However, within this context, sex needs to be taken into account. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Villalba-Morales, Jesús Daniel; Laier, José Elias
2014-01-01
Structural damage detection has become an important research topic in certain segments of the engineering community. These methodologies occasionally formulate an optimization problem by defining an objective function based on dynamic parameters, with metaheuristics used to find the solution. In this study, damage localization and quantification is performed by an Adaptive Differential Evolution algorithm, which solves the associated optimization problem. Furthermore, this paper looks at the ...
Directory of Open Access Journals (Sweden)
M. Satheesh
2014-01-01
Full Text Available The high pressure differential across the wall of pressure vessels is potentially dangerous and has caused many fatal accidents in the history of their development and operation. For this reason the structural integrity of weldments is critical to the performance of pressure vessels. In recent years much research has been conducted to the study of variations in welding parameters and consumables on the mechanical properties of pressure vessel steel weldments to optimize weld integrity and ensure pressure vessels are safe. The quality of weld is a very important working aspect for the manufacturing and construction industries. Because of high quality and reliability, Submerged Arc Welding (SAW is one of the chief metal joining processes employed in industry. This paper addresses the application of desirability function approach combined with fuzzy logic analysis to optimize the multiple quality characteristics (bead reinforcement, bead width, bead penetration and dilution of submerged arc welding process parameters of SA 516 Grade 70 steels(boiler steel. Experiments were conducted using Taguchi’s L27 orthogonal array with varying the weld parameters of welding current, arc voltage, welding speed and electrode stickout. By analyzing the response table and response graph of the fuzzy reasoning grade, optimal parameters were obtained. Solutions from this method can be useful for pressure vessel manufacturers and operators to search an optimal solution of welding condition.
MM Algorithms for Geometric and Signomial Programming.
Lange, Kenneth; Zhou, Hua
2014-02-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.
Geometric phases and hidden local gauge symmetry
International Nuclear Information System (INIS)
Fujikawa, Kazuo
2005-01-01
The analysis of geometric phases associated with level crossing is reduced to the familiar diagonalization of the Hamiltonian in the second quantized formulation. A hidden local gauge symmetry, which is associated with the arbitrariness of the phase choice of a complete orthonormal basis set, becomes explicit in this formulation (in particular, in the adiabatic approximation) and specifies physical observables. The choice of a basis set which specifies the coordinate in the functional space is arbitrary in the second quantization, and a subclass of coordinate transformations, which keeps the form of the action invariant, is recognized as the gauge symmetry. We discuss the implications of this hidden local gauge symmetry in detail by analyzing geometric phases for cyclic and noncyclic evolutions. It is shown that the hidden local symmetry provides a basic concept alternative to the notion of holonomy to analyze geometric phases and that the analysis based on the hidden local gauge symmetry leads to results consistent with the general prescription of Pancharatnam. We however note an important difference between the geometric phases for cyclic and noncyclic evolutions. We also explain a basic difference between our hidden local gauge symmetry and a gauge symmetry (or equivalence class) used by Aharonov and Anandan in their definition of generalized geometric phases
Dorband, J. E.
2017-12-01
The D-Wave 2X has successfully been used for regression analysis to derive carbon flux data from OCO-2 CO2 concentration using neural networks. The samples returned from the D-Wave should represent the minimum of an objective function presented to it. An accurate as possible minimum function value is needed for this analysis. Samples from the D-Wave are near minimum, but seldom are the global minimum of the function due to quantum noise. Two methods for improving the accuracy of minimized values represented by the samples returned from the D-Wave are presented. The first method finds a new sample with a minimum value near each returned D-Wave sample. The second method uses all the returned samples to find a more global minimum sample. We present three use-cases performed using the former method. In the first use case, it is demonstrated that an objective function with random qubits and coupler coefficients had an improved minimum. In the second use case, the samples corrected by the first method can improve the training of a Boltzmann machine neural network. The third use case demonstrated that using the first method can improve virtual qubit accuracy.The later method was also performed on the first use case.
Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper
2016-01-01
Objective To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. Methods This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Results Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all Pperformance in mathematics and reading comprehension. Conclusions The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality of these associations. PMID:27560512
International Nuclear Information System (INIS)
Noga, M.T.
1984-01-01
This thesis addresses a number of important problems that fall within the framework of the new discipline of Computational Geometry. The list of topics covered includes sorting and selection, convex hull algorithms, the L 1 hull, determination of the minimum encasing rectangle of a set of points, the Euclidean and L 1 diameter of a set of points, the metric traveling salesman problem, and finding the superrange of star-shaped and monotype polygons. The main theme of all the work was to develop a set of very fast state-of-the-art algorithms that supersede any rivals in terms of speed and ease of implementation. In some cases existing algorithms were refined; for others new techniques were developed that add to the present database of fast adaptive geometric algorithms. What emerges is a collection of techniques that is successful at merging modern tools developed in analysis of algorithms with those of classical geometry
Havelka, Jan
2008-01-01
Tato diplomová práce se zabývá akcelerací geometrických transformací obrazu s využitím GPU a architektury NVIDIA (R) CUDA TM. Časově kritické části kódu jsou přesunuty na GPU a vykonány paralelně. Jedním z výsledků je demonstrační aplikace pro porovnání výkonnosti obou architektur: CPU, a GPU v kombinaci s CPU. Pro referenční implementaci jsou použity vysoce optimalizované algoritmy z knihovny OpenCV, od firmy Intel. This master's thesis deals with acceleration of geometrical image transfo...
Jiang, Runqing
Intensity-modulated radiation therapy (IMRT) uses non-uniform beam intensities within a radiation field to provide patient-specific dose shaping, resulting in a dose distribution that conforms tightly to the planning target volume (PTV). Unavoidable geometric uncertainty arising from patient repositioning and internal organ motion can lead to lower conformality index (CI) during treatment delivery, a decrease in tumor control probability (TCP) and an increase in normal tissue complication probability (NTCP). The CI of the IMRT plan depends heavily on steep dose gradients between the PTV and organ at risk (OAR). Geometric uncertainties reduce the planned dose gradients and result in a less steep or "blurred" dose gradient. The blurred dose gradients can be maximized by constraining the dose objective function in the static IMRT plan or by reducing geometric uncertainty during treatment with corrective verification imaging. Internal organ motion and setup error were evaluated simultaneously for 118 individual patients with implanted fiducials and MV electronic portal imaging (EPI). A Gaussian probability density function (PDF) is reasonable for modeling geometric uncertainties as indicated by the 118 patients group. The Gaussian PDF is patient specific and group standard deviation (SD) should not be used for accurate treatment planning for individual patients. In addition, individual SD should not be determined or predicted from small imaging samples because of random nature of the fluctuations. Frequent verification imaging should be employed in situations where geometric uncertainties are expected. Cumulative PDF data can be used for re-planning to assess accuracy of delivered dose. Group data is useful for determining worst case discrepancy between planned and delivered dose. The margins for the PTV should ideally represent true geometric uncertainties. The measured geometric uncertainties were used in this thesis to assess PTV coverage, dose to OAR, equivalent
Geometric phases for nonlinear coherent and squeezed states
International Nuclear Information System (INIS)
Yang Dabao; Chen Ying; Chen Jingling; Zhang Fulin
2011-01-01
The geometric phases for standard coherent states which are widely used in quantum optics have attracted considerable attention. Nevertheless, few physicists consider the counterparts of nonlinear coherent states, which are useful in the description of the motion of a trapped ion. In this paper, the non-unitary and non-cyclic geometric phases for two nonlinear coherent and one squeezed states are formulated, respectively. Moreover, some of their common properties are discussed, such as gauge invariance, non-locality and nonlinear effects. The nonlinear functions have dramatic impacts on the evolution of the corresponding geometric phases. They speed the evolution up or down. So this property may have an application in controlling or measuring geometric phase. For the squeezed case, when the squeezed parameter r → ∞, the limiting value of the geometric phase is also determined by a nonlinear function at a given time and angular velocity. In addition, the geometric phases for standard coherent and squeezed states are obtained under a particular condition. When the time evolution undergoes a period, their corresponding cyclic geometric phases are achieved as well. And the distinction between the geometric phases of the two coherent states may be regarded as a geometric criterion.
Dronova, I.; Gong, P.; Wang, L.; Clinton, N.; Fu, W.; Qi, S.
2011-12-01
Remote sensing-based vegetation classifications representing plant function such as photosynthesis and productivity are challenging in wetlands with complex cover and difficult field access. Recent advances in object-based image analysis (OBIA) and machine-learning algorithms offer new classification tools; however, few comparisons of different algorithms and spatial scales have been discussed to date. We applied OBIA to delineate wetland plant functional types (PFTs) for Poyang Lake, the largest freshwater lake in China and Ramsar wetland conservation site, from 30-m Landsat TM scene at the peak of spring growing season. We targeted major PFTs (C3 grasses, C3 forbs and different types of C4 grasses and aquatic vegetation) that are both key players in system's biogeochemical cycles and critical providers of waterbird habitat. Classification results were compared among: a) several object segmentation scales (with average object sizes 900-9000 m2); b) several families of statistical classifiers (including Bayesian, Logistic, Neural Network, Decision Trees and Support Vector Machines) and c) two hierarchical levels of vegetation classification, a generalized 3-class set and more detailed 6-class set. We found that classification benefited from object-based approach which allowed including object shape, texture and context descriptors in classification. While a number of classifiers achieved high accuracy at the finest pixel-equivalent segmentation scale, the highest accuracies and best agreement among algorithms occurred at coarser object scales. No single classifier was consistently superior across all scales, although selected algorithms of Neural Network, Logistic and K-Nearest Neighbors families frequently provided the best discrimination of classes at different scales. The choice of vegetation categories also affected classification accuracy. The 6-class set allowed for higher individual class accuracies but lower overall accuracies than the 3-class set because
Choi, Yun Seok
2017-11-15
Full waveform inversion (FWI) suffers from the cycle-skipping problem when the available frequency-band of data is not low enough. We apply an exponential damping to the data to generate artificial low frequencies, which helps FWI avoid cycle skipping. In this case, the least-square misfit function does not properly deal with the exponentially damped wavefield in FWI, because the amplitude of traces decays almost exponentially with increasing offset in a damped wavefield. Thus, we use a deconvolution-based objective function for FWI of the exponentially damped wavefield. The deconvolution filter includes inherently a normalization between the modeled and observed data, thus it can address the unbalanced amplitude of a damped wavefield. We, specifically, normalize the modeled data with the observed data in the frequency-domain to estimate the deconvolution filter and selectively choose a frequency-band for normalization that mainly includes the artificial low frequencies. We calculate the gradient of the objective function using the adjoint-state method. The synthetic and benchmark data examples show that our FWI algorithm generates a convergent long wavelength structure without low frequency information in the recorded data.
Choi, Yun Seok; Alkhalifah, Tariq Ali
2017-01-01
Full waveform inversion (FWI) suffers from the cycle-skipping problem when the available frequency-band of data is not low enough. We apply an exponential damping to the data to generate artificial low frequencies, which helps FWI avoid cycle skipping. In this case, the least-square misfit function does not properly deal with the exponentially damped wavefield in FWI, because the amplitude of traces decays almost exponentially with increasing offset in a damped wavefield. Thus, we use a deconvolution-based objective function for FWI of the exponentially damped wavefield. The deconvolution filter includes inherently a normalization between the modeled and observed data, thus it can address the unbalanced amplitude of a damped wavefield. We, specifically, normalize the modeled data with the observed data in the frequency-domain to estimate the deconvolution filter and selectively choose a frequency-band for normalization that mainly includes the artificial low frequencies. We calculate the gradient of the objective function using the adjoint-state method. The synthetic and benchmark data examples show that our FWI algorithm generates a convergent long wavelength structure without low frequency information in the recorded data.
Chirality: a relational geometric-physical property.
Gerlach, Hans
2013-11-01
The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term. © 2013 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Porn, U.; Alalp, S.; Fischer, S.; Dresel, S. [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum der Ludwig-Maximilians-Univ. Muenchen (Germany); Rossmueller, B. [Inst. fuer Radiologische Diagnostik, Klinikum der Ludwig-Maximilians-Univ. Muenchen (Germany); Hahn, K. [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum der Ludwig-Maximilians-Univ. Muenchen (Germany); Inst. fuer Radiologische Diagnostik, Klinikum der Ludwig-Maximilians-Univ. Muenchen (Germany)
2001-08-01
For assessment of differential renal function (PF) by means of static renal scintigraphy with Tc-99m-dimercaptosuccinic acid (DMSA) the calculation of the geometric mean of counts from the anterior and posterior view is recommended. Aim of this retrospective study was to find out, if the anterior view is necessary to receive an accurate differential renal function by calculating the geometric mean compared to calculating PF using the counts of the posterior view only. Methods: 164 DMSA-scans of 151 children (86 f, 65 m) aged 16 d to 16 a (4.7 {+-} 3.9 a) were reviewed. The scans were performed using a dual head gamma camera (Picker Prism 2000 XP, low energy ultra high resolution collimator, matrix 256 x 256, 300 kcts/view, Zoom: 1.6-2.0). Background corrected values from both kidneys anterior and posterior were obtained. Using region of interest technique PF was calculated using the counts of the dorsal view and compared with the calculated geometric mean [SQR(Cts{sub dors} x Cts{sub ventr})]. Results: The differential function of the right kidney was significantly less when compared to the calculation of the geometric mean (p<0.01). The mean difference between the PF{sub geom} and the PF{sub dors} was 1.5 {+-} 1.4%. A difference {>=}5% (5.0-9.5%) was obtained in only 6/164 scans (3.7%). Three of 6 patients presented with an underestimated PF{sub dors} due to dystopic kidneys on the left side in 2 patients and on the right side in one patient. The other 3 patients with a difference >5% did not show any renal abnormality. Conclusion: The calculation of the PF from the posterior view only will give an underestimated value of the right kidney compared to the calculation of the geometric mean. This effect is not relevant for the calculation of the differential renal function in orthotopic kidneys, so that in these cases the anterior view is not necessary. However, geometric mean calculation to obtain reliable values for differential renal function should be applied in
International Nuclear Information System (INIS)
Boutilier, J; Chan, T; Lee, T; Craig, T; Sharpe, M
2014-01-01
Purpose: To develop a statistical model that predicts optimization objective function weights from patient geometry for intensity-modulation radiotherapy (IMRT) of prostate cancer. Methods: A previously developed inverse optimization method (IOM) is applied retrospectively to determine optimal weights for 51 treated patients. We use an overlap volume ratio (OVR) of bladder and rectum for different PTV expansions in order to quantify patient geometry in explanatory variables. Using the optimal weights as ground truth, we develop and train a logistic regression (LR) model to predict the rectum weight and thus the bladder weight. Post hoc, we fix the weights of the left femoral head, right femoral head, and an artificial structure that encourages conformity to the population average while normalizing the bladder and rectum weights accordingly. The population average of objective function weights is used for comparison. Results: The OVR at 0.7cm was found to be the most predictive of the rectum weights. The LR model performance is statistically significant when compared to the population average over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and mean voxel dose to the bladder, rectum, CTV, and PTV. On average, the LR model predicted bladder and rectum weights that are both 63% closer to the optimal weights compared to the population average. The treatment plans resulting from the LR weights have, on average, a rectum V70Gy that is 35% closer to the clinical plan and a bladder V70Gy that is 43% closer. Similar results are seen for bladder V54Gy and rectum V54Gy. Conclusion: Statistical modelling from patient anatomy can be used to determine objective function weights in IMRT for prostate cancer. Our method allows the treatment planners to begin the personalization process from an informed starting point, which may lead to more consistent clinical plans and reduce overall planning time
Energy Technology Data Exchange (ETDEWEB)
Boutilier, J; Chan, T; Lee, T [University of Toronto, Toronto, Ontario (Canada); Craig, T; Sharpe, M [University of Toronto, Toronto, Ontario (Canada); The Princess Margaret Cancer Centre - UHN, Toronto, ON (Canada)
2014-06-15
Purpose: To develop a statistical model that predicts optimization objective function weights from patient geometry for intensity-modulation radiotherapy (IMRT) of prostate cancer. Methods: A previously developed inverse optimization method (IOM) is applied retrospectively to determine optimal weights for 51 treated patients. We use an overlap volume ratio (OVR) of bladder and rectum for different PTV expansions in order to quantify patient geometry in explanatory variables. Using the optimal weights as ground truth, we develop and train a logistic regression (LR) model to predict the rectum weight and thus the bladder weight. Post hoc, we fix the weights of the left femoral head, right femoral head, and an artificial structure that encourages conformity to the population average while normalizing the bladder and rectum weights accordingly. The population average of objective function weights is used for comparison. Results: The OVR at 0.7cm was found to be the most predictive of the rectum weights. The LR model performance is statistically significant when compared to the population average over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and mean voxel dose to the bladder, rectum, CTV, and PTV. On average, the LR model predicted bladder and rectum weights that are both 63% closer to the optimal weights compared to the population average. The treatment plans resulting from the LR weights have, on average, a rectum V70Gy that is 35% closer to the clinical plan and a bladder V70Gy that is 43% closer. Similar results are seen for bladder V54Gy and rectum V54Gy. Conclusion: Statistical modelling from patient anatomy can be used to determine objective function weights in IMRT for prostate cancer. Our method allows the treatment planners to begin the personalization process from an informed starting point, which may lead to more consistent clinical plans and reduce overall planning time.
McLelland, Victoria C.; Chan, David; Ferber, Susanne; Barense, Morgan D.
2014-01-01
Recent research suggests that the medial temporal lobe (MTL) is involved in perception as well as in declarative memory. Amnesic patients with focal MTL lesions and semantic dementia patients showed perceptual deficits when discriminating faces and objects. Interestingly, these two patient groups showed different profiles of impairment for familiar and unfamiliar stimuli. For MTL amnesics, the use of familiar relative to unfamiliar stimuli improved discrimination performance. By contrast, patients with semantic dementia—a neurodegenerative condition associated with anterolateral temporal lobe damage—showed no such facilitation from familiar stimuli. Given that the two patient groups had highly overlapping patterns of damage to the perirhinal cortex, hippocampus, and temporal pole, the neuroanatomical substrates underlying their performance discrepancy were unclear. Here, we addressed this question with a multivariate reanalysis of the data presented by Barense et al. (2011), using functional connectivity to examine how stimulus familiarity affected the broader networks with which the perirhinal cortex, hippocampus, and temporal poles interact. In this study, healthy participants were scanned while they performed an odd-one-out perceptual task involving familiar and novel faces or objects. Seed-based analyses revealed that functional connectivity of the right perirhinal cortex and right anterior hippocampus was modulated by the degree of stimulus familiarity. For familiar relative to unfamiliar faces and objects, both right perirhinal cortex and right anterior hippocampus showed enhanced functional correlations with anterior/lateral temporal cortex, temporal pole, and medial/lateral parietal cortex. These findings suggest that in order to benefit from stimulus familiarity, it is necessary to engage not only the perirhinal cortex and hippocampus, but also a network of regions known to represent semantic information. PMID:24624075
Directory of Open Access Journals (Sweden)
M. C. Demirel
2018-02-01
Full Text Available Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the
Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon
2018-02-01
Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex
Directory of Open Access Journals (Sweden)
R. Kaden
2012-07-01
Full Text Available Virtual 3D city models are integrated complex compositions of spatial data of different themes, origin, quality, scale, and dimensions. Within this paper, we address the problem of spatial compatibility of geodata aiming to provide support for ad-hoc integration of virtual 3D city models including geodata of different sources and themes like buildings, terrain, and city furniture. In contrast to related work which is dealing with the integration of redundant geodata structured according to different data models and ontologies, we focus on the integration of complex 3D models of the same representation (here: CityGML but regarding to the geometric-topological consistent matching of non-homologous objects, e.g. a building is connected to a road, and their geometric homogenisation. Therefore, we present an approach including a data model for a Geodata Join and the general concept of an integration procedure using the join information. The Geodata Join aims to bridge the lack of information between fragmented geodata by describing the relationship between adjacent objects from different datasets. The join information includes the geometrical representation of those parts of an object, which have a specific/known topological or geometrical relationship to another object. This part is referred to as a Connector and is either described by points, lines, or surfaces of the existing object geometry or by additional join geometry. In addition, the join information includes the specification of the connected object in the other dataset and the description of the topological and geometrical relationship between both objects, which is used to aid the matching process. Furthermore, the Geodata Join contains object-related information like accuracy values and restrictions of movement and deformation which are used to optimize the integration process. Based on these parameters, a functional model including a matching algorithm, transformation methods, and
Harmonic and geometric analysis
Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao
2015-01-01
This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights. The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...
Unconstrained Finite Element for Geometrical Nonlinear Dynamics of Shells
Directory of Open Access Journals (Sweden)
Humberto Breves Coda
2009-01-01
Full Text Available This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors' knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples.
Regular Polygons and Geometric Series.
Jarrett, Joscelyn A.
1982-01-01
Examples of some geometric illustrations of limits are presented. It is believed the limit concept is among the most important topics in mathematics, yet many students do not have good intuitive feelings for the concept, since it is often taught very abstractly. Geometric examples are suggested as meaningful tools. (MP)
Geertsen, Svend Sparre; Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper
2016-01-01
To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all Pmotor skills (all Pmotor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality of these associations.
Problems in Geometrical Optics
Joyce, L. S.
1973-01-01
Ten laboratory exercises on optics are described to clarify concepts involving point objects and converging lenses producing real images. Mathematical treatment is kept to a minimum to stress concepts involved. (PS)
CENTRE FOR GEOMETRICAL METROLOGY
DEFF Research Database (Denmark)
De Chiffre, Leonardo
The objective of this Annual Report is to give a general introduction to CGM as well as to give an account of the tasks carried out using the facilities of CGM's Instrument Centre during 1998 and 1999.......The objective of this Annual Report is to give a general introduction to CGM as well as to give an account of the tasks carried out using the facilities of CGM's Instrument Centre during 1998 and 1999....
Peroz, Roshan; Holmström, Mats; Mani, Maria
2017-05-01
The present study aimed to evaluate the potential correlations between objective measurements of nasal function and self-assessed nasal symptoms or clinical findings at nasal examination among adults treated for unilateral cleft lip and palate (UCLP), respectively. All UCLP patients born between 1960 and 1987 (n = 109) treated at a tertiary referring center were invited. Participation rate was 76% (n = 83) at a mean of 37 years after the initial surgery. All participants completed the same study protocol including acoustic rhinometry (AR), rhinomanometry (RM), anterior rhinoscopy, and questionnaires regarding self-experienced nasal symptoms. A reduced volume of the anterior nasal cavity on the operated side (measured by AR) correlated to an expressed wish by the patient to change the function of the nose. A similar correlation was seen for the minimal cross-sectional area of anterior nasal cavity on the operated side. Furthermore, correlations were found between smaller volume and area of nasal cavity and a greater frequency of nasal obstruction. No further correlations were found. Objective measurements partly correlate to the clinical picture among adults treated for UCLP. However, these need to be combined with findings at clinical examination and patient self-assessment to represent the complete clinical picture. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Habay, T; Majzoub, S; Perrault, O; Rousseau, C; Pisella, P J
2014-03-01
To assess the functional impact of the severity of dry eye on the quality of vision by measuring an Objective Scatter Index (OSI) using double pass aberrometry. Twenty-eight patients (56 eyes) with dry eye syndromes of varying severity participated in this study. A double-pass aberrometer was used to measure the dynamic changes in the OSI for 20 seconds. The mean and standard deviations of the OSI and the number of blinks occurring during the examination were compared as a function of the clinical severity of dry eye disease. The mean OSI increased with the severity of dry eye syndrome with a significant difference for stages 3 (P0.8) or visual acuity (P>0.2). Standard deviation of the OSI also increased with the severity of dry eye disease, with a significant difference for stages 3 (P0.2). The values of the OSI standard deviation represented the dynamic nature of aberrometric changes related to the instability of the tear film. Quality of vision of patients deteriorated in relation to the severity of their dry eye. The analysis of OSI standard deviation appears to be an objective way to assess the intensity of subjective visual disturbances reported by patients with dry eye syndrome. It also provides a new tool to assess the severity of damage to the ocular surface. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Matsumoto, Naoya; Okazaki, Shigetoshi; Takamoto, Hisayoshi; Inoue, Takashi; Terakawa, Susumu
2014-02-01
We propose a method for high precision modulation of the pupil function of a microscope objective lens to improve the performance of multifocal multi-photon microscopy (MMM). To modulate the pupil function, we adopt a spatial light modulator (SLM) and place it at the conjugate position of the objective lens. The SLM can generate an arbitrary number of spots to excite the multiple fluorescence spots (MFS) at the desired positions and intensities by applying an appropriate computer-generated hologram (CGH). This flexibility allows us to control the MFS according to the photobleaching level of a fluorescent protein and phototoxicity of a specimen. However, when a large number of excitation spots are generated, the intensity distribution of the MFS is significantly different from the one originally designed due to misalignment of the optical setup and characteristics of the SLM. As a result, the image of a specimen obtained using laser scanning for the MFS has block noise segments because the SLM could not generate a uniform MFS. To improve the intensity distribution of the MFS, we adaptively redesigned the CGH based on the observed MFS. We experimentally demonstrate an improvement in the uniformity of a 10 × 10 MFS grid using a dye solution. The simplicity of the proposed method will allow it to be applied for calibration of MMM before observing living tissue. After the MMM calibration, we performed laser scanning with two-photon excitation to observe a real specimen without detecting block noise segments.
International Nuclear Information System (INIS)
Kwon, Jin Gyu; Kim, Tae Ho; Park, Hyun Sun; Cha, Jae Eun; Kim, Moo Hwan
2016-01-01
Highlights: • Suggest the Nusselt number and Fanning friction factor correlation for airfoil-type PCHE. • Show that cost-based optimization is available to airfoil-type PCHE. • Suggest the recuperator design for SCIEL test loop at KAERI by cost-based objective function with correlations from numerical analysis. - Abstract: Supercritical carbon dioxide (SCO_2) Brayton cycle gives high efficiency of power cycle with small size. Printed circuit heat exchangers (PCHE) are proper selection for the Brayton cycle because their operability at high temperature and high pressure with small size. Airfoil fin PCHE was suggested by Kim et al. (2008b), it can provide high heat transfer-like zigzag channel PCHE with low pressure drop-like straight channel PCHE. Optimization of the airfoil fin PCHE was not performed like the zigzag channel PCHE. For optimization of the airfoil fin PCHE, the operating condition of the recuperator of SCO_2 Integral Experiment Loop (SCIEL) Brayton cycle test loop at Korea Atomic Energy Research Institute (KAERI) was used. We performed CFD analysis for various airfoil fin configurations using ANSYS CFX 15.0, and made correlations for predicting the Nusselt number and the Fanning friction factor. The recuperator was designed by the simple energy balance code with our correlations. Using the cost-based objective function with production cost and operation cost from size and pressure drop of the recuperator, we evaluated airfoil fin configuration by using total cost and suggested the optimization configuration of the airfoil fin PCHE.
International Nuclear Information System (INIS)
1982-03-01
The NWTS-33 series, of which this document is a part, provides guidance for the National Waste Terminal Storage (NWTS) program in the development and implementation of licensed mined geologic disposal systems for solidified high-level and TRU wastes. Program objectives, functional requirements, and system performance criteria are found in this document. At the present time final criteria have not been issued by the Nuclear Regulatory Commission (NRC) and Environmental Protection Agency (EPA). The criteria in these documents have been developed on the basis of DOE's judgment of what is required to protect the health and safety of the public and the quality of the environment. It is expected that these criteria will be consistent with regulatory standards. The criteria will be re-evaluated on a periodic basis to ensure that they remain consistent with national waste management policy and regulatory requirements. A re-evaluation will be made when final criteria are promulgated by the NRC and EPA. A background section that briefly describes the mined geologic disposal system and explains the hierarchy and application of the NWTS criteria is included in Section 2.0. Secton 3.0 presents the program objectives, Section 4.0 functional requirements, Secton 5.0 the system performance criteria, and Section 6.0 quality assurance and standards. A draft of this document was issued for public comment in April 1981. Appendix A contains the DOE responses to the comments received. Appendix B is a glossary
International Nuclear Information System (INIS)
Martin-del-Campo, C.; Francois, J.L.; Barragan, A.M.; Palomera, M.A.
2005-01-01
In this paper we develop a methodology based on the use of the Fuzzy Logic technique to build multi-objective functions to be used in optimization processes applied to in-core nuclear fuel management. As an example, we selected the problem of determining optimal radial fuel enrichment and gadolinia distributions in a typical 'Boiling Water Reactor (BWR)' fuel lattice. The methodology is based on the use of the mathematical capability of Fuzzy Logic to model nonlinear functions of arbitrary complexity. The utility of Fuzzy Logic is to map an input space into an output space, and the primary mechanism for doing this is a list of if-then statements called rules. The rules refer to variables and adjectives that describe those variables and, the Fuzzy Logic technique interprets the values in the input vectors and, based on the set of rules assigns values to the output vector. The methodology was developed for the radial optimization of a BWR lattice where the optimization algorithm employed is Tabu Search. The global objective is to find the optimal distribution of enrichments and burnable poison concentrations in a 10*10 BWR lattice. In order to do that, a fuzzy control inference system was developed using the Fuzzy Logic Toolbox of Matlab and it has been linked to the Tabu Search optimization process. Results show that Tabu Search combined with Fuzzy Logic performs very well, obtaining lattices with optimal fuel utilization. (authors)
Energy Technology Data Exchange (ETDEWEB)
Kwon, Jin Gyu [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Tae Ho [Department of Mechanical Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)
2016-03-15
Highlights: • Suggest the Nusselt number and Fanning friction factor correlation for airfoil-type PCHE. • Show that cost-based optimization is available to airfoil-type PCHE. • Suggest the recuperator design for SCIEL test loop at KAERI by cost-based objective function with correlations from numerical analysis. - Abstract: Supercritical carbon dioxide (SCO{sub 2}) Brayton cycle gives high efficiency of power cycle with small size. Printed circuit heat exchangers (PCHE) are proper selection for the Brayton cycle because their operability at high temperature and high pressure with small size. Airfoil fin PCHE was suggested by Kim et al. (2008b), it can provide high heat transfer-like zigzag channel PCHE with low pressure drop-like straight channel PCHE. Optimization of the airfoil fin PCHE was not performed like the zigzag channel PCHE. For optimization of the airfoil fin PCHE, the operating condition of the recuperator of SCO{sub 2} Integral Experiment Loop (SCIEL) Brayton cycle test loop at Korea Atomic Energy Research Institute (KAERI) was used. We performed CFD analysis for various airfoil fin configurations using ANSYS CFX 15.0, and made correlations for predicting the Nusselt number and the Fanning friction factor. The recuperator was designed by the simple energy balance code with our correlations. Using the cost-based objective function with production cost and operation cost from size and pressure drop of the recuperator, we evaluated airfoil fin configuration by using total cost and suggested the optimization configuration of the airfoil fin PCHE.
Koszul Information Geometry and Souriau Geometric Temperature/Capacity of Lie Group Thermodynamics
Directory of Open Access Journals (Sweden)
Frédéric Barbaresco
2014-08-01
Full Text Available The François Massieu 1869 idea to derive some mechanical and thermal properties of physical systems from “Characteristic Functions”, was developed by Gibbs and Duhem in thermodynamics with the concept of potentials, and introduced by Poincaré in probability. This paper deals with generalization of this Characteristic Function concept by Jean-Louis Koszul in Mathematics and by Jean-Marie Souriau in Statistical Physics. The Koszul-Vinberg Characteristic Function (KVCF on convex cones will be presented as cornerstone of “Information Geometry” theory, defining Koszul Entropy as Legendre transform of minus the logarithm of KVCF, and Fisher Information Metrics as hessian of these dual functions, invariant by their automorphisms. In parallel, Souriau has extended the Characteristic Function in Statistical Physics looking for other kinds of invariances through co-adjoint action of a group on its momentum space, defining physical observables like energy, heat and momentum as pure geometrical objects. In covariant Souriau model, Gibbs equilibriums states are indexed by a geometric parameter, the Geometric (Planck Temperature, with values in the Lie algebra of the dynamical Galileo/Poincaré groups, interpreted as a space-time vector, giving to the metric tensor a null Lie derivative. Fisher Information metric appears as the opposite of the derivative of Mean “Moment map” by geometric temperature, equivalent to a Geometric Capacity or Specific Heat. We will synthetize the analogies between both Koszul and Souriau models, and will reduce their definitions to the exclusive Cartan “Inner Product”. Interpreting Legendre transform as Fourier transform in (Min,+ algebra, we conclude with a definition of Entropy given by a relation mixing Fourier/Laplace transforms: Entropy = (minus Fourier(Min,+ o Log o Laplace(+,X.
Energy Technology Data Exchange (ETDEWEB)
Kang, Eun Ju; Lee, Ki Nam; Cho, Won Jin; Kim, Young Dae [College of Medicine, Dong-A University, Busan (Korea, Republic of); Shin, Kyung Min; Lim, Jae Kwang; Lee, Jong Min [Dept. of Radiology, Kyungpook National University, Daegu (Korea, Republic of)
2017-08-01
To assess the normal reference values of left ventricle (LV) functional parameters in Korean adults on coronary CT angiography (CCTA) with a 320-detector-row CT scanner, and to analyze sex-related differences and correlations with various clinical characteristics. This study retrospectively enrolled 172 subjects (107 men and 65 women; age, 58 ± 10.9 years; body surface area [BSA], 1.75 ± 0.2 m{sup 2}) who underwent CCTA without any prior history of cardiac disease. The following parameters were measured by post-processing the CT data: LV volume, LV functional parameters (ejection fraction, stroke volume, cardiac output, etc.), LV myocardial mass, LV inner diameter, and LV myocardial thickness (including septal wall thickness [SWT], posterior wall thickness [PWT], and relative wall thickness [RWT = 2 × PWT / LV inner diameter]). All of the functional or volumetric parameters were normalized using the BSA. The general characteristics and co-morbidities for the enrolled subjects were recorded, and the correlations between these factors and the LV parameters were then evaluated. The LV myocardial thickness (SWT, 1.08 ± 0.18 cm vs. 0.90 ± 0.17 cm, p < 0.001; PWT, 0.91 ± 0.15 cm vs. 0.78 ± 0.10 cm, p < 0.001; RWT, 0.38 ± 0.08 cm vs. 0.33 ± 0.05 cm, p < 0.001), LV volume (LV end-diastolic volume, 112.9 ± 26.1 mL vs. 98.2 ± 21.0 mL, p < 0.001; LV end-systolic volume, 41.7 ± 14.7 mL vs. 33.7 ± 12.2 mL, p = 0.001) and mass (145.0 ± 29.1 g vs. 107.9 ± 20.0 g, p < 0.001) were significantly greater in men than in women. However, these differences were not significant after normalization using BSA, except for the LV mass (LV mass index, 79.6 ± 14.0 g/m{sup 2} vs. 66.2 ± 11.0 g/m{sup 2},p < 0.001). The cardiac output and ejection fraction were not significantly different between the men and women (cardiac output, 4.3 ± 1.0 L/min vs. 4.2 ± 0.9 L/min, p = 0.452; ejection fraction, 63.4 ± 7.7% vs. 66.4 ± 7.6%, p = 0.079). Most of the LV parameters were
Directory of Open Access Journals (Sweden)
Silvia Pancani
Full Text Available Neck muscle weakness and head drop are well recognised in patients with Amyotrophic lateral sclerosis (ALS, but an objective characterisation of the consequent head movement impairment is lacking. The aim of this study was to quantitatively characterise head movements in ALS compared to aged matched controls.We evaluated two groups, one of thirteen patients with ALS and one of thirteen age-matched controls, during the execution of a series of controlled head movements, performed while wearing two inertial sensors attached on the forehead and sternum, respectively. We quantified the differences between the two groups from the sensor data using indices of velocity, smoothness and movement coupling (intended as a measure of undesired out of plane movements.Results confirmed a general limitation in the ability of the ALS patients to perform and control head movements. High inter-patient variability was observed due to a wide range of observed functional impairment levels. The ability to extend the head backward and flex it laterally were the most compromised, with significantly lower angular velocity (P 0.8, reduced smoothness and greater presence of coupled movements with respect to the controls. A significant reduction of angular velocity (P 0.8 in extension, axial rotation and lateral flexion was observed when patients were asked to perform the movements as fast as possible.This pilot study is the first study providing a functional objective quantification of head movements in ALS. Further work involving different body areas and correlation with existing methods of evaluating neuromuscular function, such as dynamometry and EMG, is needed to explore the use of this approach as a marker of disease progression in ALS.
Geometrical tile design for complex neighborhoods.
Czeizler, Eugen; Kari, Lila
2009-01-01
Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a "tall" von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 x 5 "filled" rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 x (2k + 1) rectangle.
Geometrical scaling and the real part of the Pomeron
International Nuclear Information System (INIS)
Dias de Deus, J.
1975-07-01
Consequences of the hypothesis of geometrical scaling of the inelastic overlap function applied to the Pomeron amplitude are discussed. From analiticity and crossing symmetry some predictions are given for the asymptotic real part of the Pomeron. (author)
Directory of Open Access Journals (Sweden)
Svend Sparre Geertsen
Full Text Available To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests.This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls. Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C. Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension.Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all P<0.001, whereas exercise capacity was only associated with better sustained attention (P<0.046 and spatial working memory (P<0.038. Fine and gross motor skills (all P<0.001, exercise capacity and cognitive functions such as working memory, episodic memory, sustained attention and processing speed were all associated with better performance in mathematics and reading comprehension.The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the
Pagano, Anthony S; Laitman, Jeffrey T
2015-01-01
The nasopharynx is a centrally located but understudied upper respiratory tract component. This study tested hypotheses related to the functional integration of the nasopharyngeal boundaries with the facial skeleton and external basicranium over the course of development in humans and nonhuman hominoids. It was hypothesized that facial morphology (width, length, and kyphosis) is related to nasopharyngeal width and choanal morphology, whereas relative external basicranial proportions are related to nasopharyngeal depth. Human infants were used as models of extreme orthognathy and external basicranial retroflexion, whereas nonhuman hominoids were used to model greater relative prognathism and external basicranial retroflexion. Both of these groups were contrasted against adult humans, who exhibit both extreme orthognathy and external basicranial flexion. Three-dimensional landmark coordinate data were collected from age-graded series of Homo, Pan, Gorilla, Pongo, and Hylobates. Generalized Procrustes Analysis was performed, and multivariate shape differences were evaluated via principal components analysis. Additionally, linear measures were extracted from the Procrustes-corrected sets of landmark data. Results indicate that human adults are indeed distinct from all groups in possessing a relatively shallow nasopharyngeal roof and shorter, more flexed external basicranial axis. Human adults and infants both exhibit greater relative choanal and nasopharyngeal width. Nonhuman hominoid faces tended to become airorhynch into adulthood, whereas humans exhibited the opposite trend. When pooling all the hominoids, facial width and palate length were strongly correlated with choanal and nasopharyngeal width, whereas facial kyphosis was strongly correlated with choanal orientation. The hypotheses were supported as the results indicated a morphologic relationship among nasopharyngeal boundaries, the facial skeleton, and the external basicranium. © 2014 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Gagne, Nolan L.; Leonard, Kara L.; Rivard, Mark J.
2012-01-01
Purpose: Clinical optimization of Collaborative Ocular Melanoma Study (COMS) eye plaque brachytherapy is currently limited to tumor coverage, consensus prescription dosage, and dose calculations to ocular structures. The biologically effective dose (BED) of temporary brachytherapy treatments is a function of both chosen radionuclide R and implant duration T. This study endeavored to evaluate BED delivered to the tumor volume and surrounding ocular structures as a function of plaque position P, prescription dose, R, and T. Methods: Plaque-heterogeneity-corrected dose distributions were generated with MCNP5 for the range of currently available COMS plaques loaded with sources using three available low-energy radionuclides. These physical dose distributions were imported into the PINNACLE 3 treatment planning system using the TG-43 hybrid technique and used to generate dose volume histograms for a T = 7 day implant within a reference eye geometry including the ciliary body, cornea, eyelid, foveola, lacrimal gland, lens, optic disc, optic nerve, retina, and tumor at eight standard treatment positions. The equation of Dale and Jones was employed to create biologically effective dose volume histograms (BEDVHs), allowing for BED volumetric analysis of all ROIs. Isobiologically effective prescription doses were calculated for T = 5 days down to 0.01 days, with BEDVHs subsequently generated for all ROIs using correspondingly reduced prescription doses. Objective functions were created to evaluate the BEDVHs as a function of R and T. These objective functions are mathematically accessible and sufficiently general to be applied to temporary or permanent brachytherapy implants for a variety of disease sites. Results: Reducing T from 7 to 0.01 days for a 10 mm plaque produced an average BED benefit of 26%, 20%, and 17% for 103 Pd, 125 I, and 131 Cs, respectively, for all P; 16 and 22 mm plaque results were more position-dependent. 103 Pd produced a 16%–35% BED benefit over
Paul, M.; Negahban-Azar, M.
2017-12-01
The hydrologic models usually need to be calibrated against observed streamflow at the outlet of a particular drainage area through a careful model calibration. However, a large number of parameters are required to fit in the model due to their unavailability of the field measurement. Therefore, it is difficult to calibrate the model for a large number of potential uncertain model parameters. This even becomes more challenging if the model is for a large watershed with multiple land uses and various geophysical characteristics. Sensitivity analysis (SA) can be used as a tool to identify most sensitive model parameters which affect the calibrated model performance. There are many different calibration and uncertainty analysis algorithms which can be performed with different objective functions. By incorporating sensitive parameters in streamflow simulation, effects of the suitable algorithm in improving model performance can be demonstrated by the Soil and Water Assessment Tool (SWAT) modeling. In this study, the SWAT was applied in the San Joaquin Watershed in California covering 19704 km2 to calibrate the daily streamflow. Recently, sever water stress escalating due to intensified climate variability, prolonged drought and depleting groundwater for agricultural irrigation in this watershed. Therefore it is important to perform a proper uncertainty analysis given the uncertainties inherent in hydrologic modeling to predict the spatial and temporal variation of the hydrologic process to evaluate the impacts of different hydrologic variables. The purpose of this study was to evaluate the sensitivity and uncertainty of the calibrated parameters for predicting streamflow. To evaluate the sensitivity of the calibrated parameters three different optimization algorithms (Sequential Uncertainty Fitting- SUFI-2, Generalized Likelihood Uncertainty Estimation- GLUE and Parameter Solution- ParaSol) were used with four different objective functions (coefficient of determination
Directory of Open Access Journals (Sweden)
A. A. Bosov
2015-04-01
Full Text Available Purpose. The development of complicated techniques of production and management processes, information systems, computer science, applied objects of systems theory and others requires improvement of mathematical methods, new approaches for researches of application systems. And the variety and diversity of subject systems makes necessary the development of a model that generalizes the classical sets and their development – sets of sets. Multiple objects unlike sets are constructed by multiple structures and represented by the structure and content. The aim of the work is the analysis of multiple structures, generating multiple objects, the further development of operations on these objects in application systems. Methodology. To achieve the objectives of the researches, the structure of multiple objects represents as constructive trio, consisting of media, signatures and axiomatic. Multiple object is determined by the structure and content, as well as represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists and heterogeneous sets (sequences, corteges. Findings. In this paper we study the properties and characteristics of the components of hybrid multiple objects of complex systems, proposed assessments of their complexity, shown the rules of internal and external operations on objects of implementation. We introduce the relation of arbitrary order over multiple objects, we define the description of functions and display on objects of multiple structures. Originality.In this paper we consider the development of multiple structures, generating multiple objects.Practical value. The transition from the abstract to the subject of multiple structures requires the transformation of the system and multiple objects. Transformation involves three successive stages: specification (binding to the domain, interpretation (multiple sites and particularization (goals. The proposed describe systems approach based on hybrid sets
Geometrical method of decoupling
Directory of Open Access Journals (Sweden)
C. Baumgarten
2012-12-01
Full Text Available The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E[over →], B[over →], and P[over →], which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of transformations must be symplectic and hence canonical. When
Towards a theory of geometric graphs
Pach, Janos
2004-01-01
The early development of graph theory was heavily motivated and influenced by topological and geometric themes, such as the Konigsberg Bridge Problem, Euler's Polyhedral Formula, or Kuratowski's characterization of planar graphs. In 1936, when Denes Konig published his classical Theory of Finite and Infinite Graphs, the first book ever written on the subject, he stressed this connection by adding the subtitle Combinatorial Topology of Systems of Segments. He wanted to emphasize that the subject of his investigations was very concrete: planar figures consisting of points connected by straight-line segments. However, in the second half of the twentieth century, graph theoretical research took an interesting turn. In the most popular and most rapidly growing areas (the theory of random graphs, Ramsey theory, extremal graph theory, algebraic graph theory, etc.), graphs were considered as abstract binary relations rather than geometric objects. Many of the powerful techniques developed in these fields have been su...
Geometric inequalities for black holes
International Nuclear Information System (INIS)
Dain, Sergio
2013-01-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
Geometric Computing for Freeform Architecture
Wallner, J.
2011-06-03
Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area, dealing with meshes with planar faces and meshes which allow multilayer constructions (which is related to discrete surfaces and their curvatures), triangles meshes with circle-packing properties (which is related to conformal uniformization), and with the paneling problem. We emphasize the combination of numerical optimization and geometric knowledge.
Optical traps with geometric aberrations
International Nuclear Information System (INIS)
Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.
2006-01-01
We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems
Geometric inequalities for black holes
Energy Technology Data Exchange (ETDEWEB)
Dain, Sergio [Universidad Nacional de Cordoba (Argentina)
2013-07-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
Energy Technology Data Exchange (ETDEWEB)
Dey, Prasenjit; Dad, Ajoy K. [Mechanical Engineering Department, National Institute of Technology, Agartala (India)
2016-12-15
The present study aims to predict the heat transfer characteristics around a square cylinder with different corner radii using multivariate adaptive regression splines (MARS). Further, the MARS-generated objective function is optimized by particle swarm optimization. The data for the prediction are taken from the recently published article by the present authors [P. Dey, A. Sarkar, A.K. Das, Development of GEP and ANN model to predict the unsteady forced convection over a cylinder, Neural Comput. Appl. (2015). Further, the MARS model is compared with artificial neural network and gene expression programming. It has been found that the MARS model is very efficient in predicting the heat transfer characteristics. It has also been found that MARS is more efficient than artificial neural network and gene expression programming in predicting the forced convection data, and also particle swarm optimization can efficiently optimize the heat transfer rate.
International Nuclear Information System (INIS)
Narvaez R, Paulo Cesar; Galeano P, Haiver
2002-01-01
Optimal design problem of liquid distribution systems has been viewed as the selection of pipe sizes and pumps, which will minimize overall costs, accomplishing the flow and pressure constraints. There is a set of methods for least cost design of liquids distribution networks (6). In the last years, some of them have been studied broadly: linear programming (1, 4, 5, 7], non-linear programming [8, 9], and genetic algorithms (3, 10, 13). This paper describes the development of a cost equation and the objective function for liquid distribution networks that together to the mathematical model and the solution method of the flow problem developed by Narvaez (11), were used by in a computer model that involves the application of an genetic algorithm to the problem of least cost design of liquids distribution networks
Directory of Open Access Journals (Sweden)
Zhigalov Kirill
2018-01-01
Full Text Available This article is devoted to the integration of cloud technology functions into 3D IP video surveil-lance systems in order to conduct further video Analytics, incoming real-time data, as well as stored video materials on the server in the «cloud». The main attention is devoted to «cloud technologies» usage optimizing the process of recognition of the desired object by increasing the criteria of flexibility and scalability of the system. Transferring image load from the client to the cloud server, to the virtual part of the system. The development of the issues considered in the article in terms of data analysis, which will significantly improve the effectiveness of the implementation of special tasks facing special units.
Directory of Open Access Journals (Sweden)
Yuji Tsutsui
2017-06-01
Full Text Available Objective(s: We evaluated edge artifacts in relation to phantom diameter and reconstruction parameters in point spread function (PSF-based positron emission tomography (PET image reconstruction.Methods: PET data were acquired from an original cone-shaped phantom filled with 18F solution (21.9 kBq/mL for 10 min using a Biograph mCT scanner. The images were reconstructed using the baseline ordered subsets expectation maximization (OSEM algorithm and the OSEM with PSF correction model. The reconstruction parameters included a pixel size of 1.0, 2.0, or 3.0 mm, 1-12 iterations, 24 subsets, and a full width at half maximum (FWHM of the post-filter Gaussian filter of 1.0, 2.0, or 3.0 mm. We compared both the maximum recovery coefficient (RCmax and the mean recovery coefficient (RCmean in the phantom at different diameters.Results: The OSEM images had no edge artifacts, but the OSEM with PSF images had a dense edge delineating the hot phantom at diameters 10 mm or more and a dense spot at the center at diameters of 8 mm or less. The dense edge was clearly observed on images with a small pixel size, a Gaussian filter with a small FWHM, and a high number of iterations. At a phantom diameter of 6-7 mm, the RCmax for the OSEM and OSEM with PSF images was 60% and 140%, respectively (pixel size: 1.0 mm; FWHM of the Gaussian filter: 2.0 mm; iterations: 2. The RCmean of the OSEM with PSF images did not exceed 100%.Conclusion: PSF-based image reconstruction resulted in edge artifacts, the degree of which depends on the pixel size, number of iterations, FWHM of the Gaussian filter, and object size.
Reconstruction of an InAs nanowire using geometric tomography
DEFF Research Database (Denmark)
Pennington, Robert S.; König, Stefan; Alpers, Andreas
Geometric tomography and conventional algebraic tomography algorithms are used to reconstruct cross-sections of an InAs nanowire from a tilt series of experimental annular dark-field images. Both algorithms are also applied to a test object to assess what factors affect the reconstruction quality....... When using the present algorithms, geometric tomography is faster, but artifacts in the reconstruction may be difficult to recognize....
Zavaglia, Melissa; Hilgetag, Claus C
2016-06-01
Spatial attention is a prime example for the distributed network functions of the brain. Lesion studies in animal models have been used to investigate intact attentional mechanisms as well as perspectives for rehabilitation in the injured brain. Here, we systematically analyzed behavioral data from cooling deactivation and permanent lesion experiments in the cat, where unilateral deactivation of the posterior parietal cortex (in the vicinity of the posterior middle suprasylvian cortex, pMS) or the superior colliculus (SC) cause a severe neglect in the contralateral hemifield. Counterintuitively, additional deactivation of structures in the opposite hemisphere reverses the deficit. Using such lesion data, we employed a game-theoretical approach, multi-perturbation Shapley value analysis (MSA), for inferring functional contributions and network interactions of bilateral pMS and SC from behavioral performance in visual attention studies. The approach provides an objective theoretical strategy for lesion inferences and allows a unique quantitative characterization of regional functional contributions and interactions on the basis of multi-perturbations. The quantitative analysis demonstrated that right posterior parietal cortex and superior colliculus made the strongest positive contributions to left-field orienting, while left brain regions had negative contributions, implying that their perturbation may reverse the effects of contralateral lesions or improve normal function. An analysis of functional modulations and interactions among the regions revealed redundant interactions (implying functional overlap) between regions within each hemisphere, and synergistic interactions between bilateral regions. To assess the reliability of the MSA method in the face of variable and incomplete input data, we performed a sensitivity analysis, investigating how much the contribution values of the four regions depended on the performance of specific configurations and on the
Discrete geometric structures for architecture
Pottmann, Helmut
2010-01-01
. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization
Geometric Rationalization for Freeform Architecture
Jiang, Caigui
2016-01-01
The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First
Geometrical optics in general relativity
Loinger, A.
2006-01-01
General relativity includes geometrical optics. This basic fact has relevant consequences that concern the physical meaning of the discontinuity surfaces propagated in the gravitational field - as it was first emphasized by Levi-Civita.
Geometric and computer-aided spline hob modeling
Brailov, I. G.; Myasoedova, T. M.; Panchuk, K. L.; Krysova, I. V.; Rogoza, YU A.
2018-03-01
The paper considers acquiring the spline hob geometric model. The objective of the research is the development of a mathematical model of spline hob for spline shaft machining. The structure of the spline hob is described taking into consideration the motion in parameters of the machine tool system of cutting edge positioning and orientation. Computer-aided study is performed with the use of CAD and on the basis of 3D modeling methods. Vector representation of cutting edge geometry is accepted as the principal method of spline hob mathematical model development. The paper defines the correlations described by parametric vector functions representing helical cutting edges designed for spline shaft machining with consideration for helical movement in two dimensions. An application for acquiring the 3D model of spline hob is developed on the basis of AutoLISP for AutoCAD environment. The application presents the opportunity for the use of the acquired model for milling process imitation. An example of evaluation, analytical representation and computer modeling of the proposed geometrical model is reviewed. In the mentioned example, a calculation of key spline hob parameters assuring the capability of hobbing a spline shaft of standard design is performed. The polygonal and solid spline hob 3D models are acquired by the use of imitational computer modeling.
Geometric inequalities methods of proving
Sedrakyan, Hayk
2017-01-01
This unique collection of new and classical problems provides full coverage of geometric inequalities. Many of the 1,000 exercises are presented with detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical methods for proving geometric inequalities. .
Yamashita, H; Onodera, S; Imamoto, T; Obara, A; Tanazawa, S; Takashio, T; Morimoto, H; Inoue, H
1989-10-01
To clarify the effects of right ventricular (RV) pressure overload on functional and geometrical interference and interdependency between the right and left ventricle, both ventricular internal diameters were measured by the microcrystal technique during lycopodium induced pulmonary embolization in the dog. By repeated embolization, RV systolic pressure was increased progressively until it reached a peak value of about 60-70 mmHg, then it began to fall. At the same time, the hemodynamics deteriorated progressively resulting in death. During the experiment, gradual leftward displacement of the interventricular septum (IVS) without any change in left ventricular (LV) free wall geometry was observed. In pulmonary embolic shock, which showed a fall in LV pressure to about 60 mmHg and cardiac output to about 40% of control, the leftward displacement of IVS became marked, and the cooperative movement of IVS to LV contraction disappeared. The IVS position during acute RV pressure overload was able to account for the transseptal pressure gradient. The importance of IVS position and motion in cardiac function during acute RV pressure overload was stressed. Furthermore, to establish the theoretical treatment in acute cardiopulmonary resuscitation, ligation of the descending aorta (AoL) or norepinephrine ("N") or isoproterenol ("I") administration were examined in a canine pulmonary embolic shock model. AoL or "N" improved the deteriorated hemodynamics with restoration of biventricular geometry. However, "I" did not restore the biventricular geometry despite the transiently improved hemodynamics, and the experimental animals were unable to survive. These results suggest the importance of the maintainance of systemic pressure for the restoration of failed RV function. Further integrated studies are required to understand biventricular interference and interdependency.
Stienen, Martin N; Smoll, Nicolas R; Joswig, Holger; Snagowski, Jan; Corniola, Marco V; Schaller, Karl; Hildebrandt, Gerhard; Gautschi, Oliver P
2017-06-01
The Timed Up and Go (TUG) test has recently been proposed as a simple and standardized measure for objective functional impairment (OFI) in patients with lumbar degenerative disc disease (DDD). The study aimed to explore the relationship between a patient's mental health status and both patient-reported outcome measures (PROMs) and TUG test results. This is a prospective institutional review board-approved two-center study. The sample was composed of 375 consecutive patients scheduled for lumbar spine surgery and a healthy cohort of 110 control subjects. Patients and control subjects were assessed with the TUG test and a comprehensive panel of subjective PROMs of pain intensity (visual analog scale [VAS]), functional impairment (Roland-Morris Disability Index [RMDI]), Oswestry Disability Index [ODI]), as well as health-related quality of life (hrQoL; Euro-Qol [EQ]-5D). Standardized age- and sex-adjusted TUG test T-scores were calculated. The dependent variable was the short-form (SF)-12 mental component summary (MCS) quartiles, and the independent variables were the TUG T-scores and PROMs. Direct and adjusted analyses of covariance were performed to estimate the interaction between the SF-12 MCS quartiles and the independent variables. In patients, there was a significant decrease in the subjective PROMs, notably the VAS back pain (p=.001) and VAS leg pain (p=.035), as well as significant increase in the RMDI (pmental hrQoL on subjective measures of pain, functional impairment, and hrQoL that might lead to bias when evaluating patients with lumbar DDD who suffer from reduced mental hrQoL. The TUG test appears to be a stable instrument and especially helpful in the evaluation of patients with lumbar DDD and mental health problems. Copyright © 2016 Elsevier Inc. All rights reserved.
Geometric optimization and sums of algebraic functions
Vigneron, Antoine E.
2014-01-01
rigid motions and minimizing their symmetric difference. We obtain the first FPTAS for other problems in fixed dimension, such as computing an optimal ray in a weighted subdivision, finding the largest axially symmetric subset of a polyhedron
Geometric Aspects of Force Controllability for a Swimming Model
International Nuclear Information System (INIS)
Khapalov, A. Y.
2008-01-01
We study controllability properties (swimming capabilities) of a mathematical model of an abstract object which 'swims' in the 2-D Stokes fluid. Our goal is to investigate how the geometric shape of this object affects the forces acting upon it. Such problems are of interest in biology and engineering applications dealing with propulsion systems in fluids
Geometric description of images as topographic maps
Caselles, Vicent
2010-01-01
This volume discusses the basic geometric contents of an image and presents a tree data structure to handle those contents efficiently. The nodes of the tree are derived from connected components of level sets of the intensity, while the edges represent inclusion information. Grain filters, morphological operators simplifying these geometric contents, are analyzed and several applications to image comparison and registration, and to edge and corner detection, are presented. The mathematically inclined reader may be most interested in Chapters 2 to 6, which generalize the topological Morse description to continuous or semicontinuous functions, while mathematical morphologists may more closely consider grain filters in Chapter 3. Computer scientists will find algorithmic considerations in Chapters 6 and 7, the full justification of which may be found in Chapters 2 and 4 respectively. Lastly, all readers can learn more about the motivation for this work in the image processing applications presented in Chapter 8...
Geometrical Description of fractional quantum Hall quasiparticles
Park, Yeje; Yang, Bo; Haldane, F. D. M.
2012-02-01
We examine a description of fractional quantum Hall quasiparticles and quasiholes suggested by a recent geometrical approach (F. D. M. Haldane, Phys. Rev. Lett. 108, 116801 (2011)) to FQH systems, where the local excess electric charge density in the incompressible state is given by a topologically-quantized ``guiding-center spin'' times the Gaussian curvature of a ``guiding-center metric tensor'' that characterizes the local shape of the correlation hole around electrons in the fluid. We use a phenomenological energy function with two ingredients: the shear distortion energy of area-preserving distortions of the fluid, and a local (short-range) approximation to the Coulomb energy of the fluctuation of charge density associated with the Gaussian curvature. Quasiparticles and quasiholes of the 1/3 Laughlin state are modeled as ``punctures'' in the incompressible fluid which then relax by geometric distortion which generates Gaussian curvature, giving rise to the charge-density profile around the topological excitation.
Tsao, Thomas R.; Tsao, Doris
1997-04-01
In the 1980's, neurobiologist suggested a simple mechanism in primate visual cortex for maintaining a stable and invariant representation of a moving object. The receptive field of visual neurons has real-time transforms in response to motion, to maintain a stable representation. When the visual stimulus is changed due to motion, the geometric transform of the stimulus triggers a dual transform of the receptive field. This dual transform in the receptive fields compensates geometric variation in the stimulus. This process can be modelled using a Lie group method. The massive array of affine parameter sensing circuits will function as a smart sensor tightly coupled to the passive imaging sensor (retina). Neural geometric engine is a neuromorphic computing device simulating our Lie group model of spatial perception of primate's primal visual cortex. We have developed the computer simulation and experimented on realistic and synthetic image data, and performed a preliminary research of using analog VLSI technology for implementation of the neural geometric engine. We have benchmark tested on DMA's terrain data with their result and have built an analog integrated circuit to verify the computational structure of the engine. When fully implemented on ANALOG VLSI chip, we will be able to accurately reconstruct a 3D terrain surface in real-time from stereoscopic imagery.
Liu, Qingshan; Wang, Jun
2011-04-01
This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.
Modern Geometric Methods of Distance Determination
Thévenin, Frédéric; Falanga, Maurizio; Kuo, Cheng Yu; Pietrzyński, Grzegorz; Yamaguchi, Masaki
2017-11-01
Building a 3D picture of the Universe at any distance is one of the major challenges in astronomy, from the nearby Solar System to distant Quasars and galaxies. This goal has forced astronomers to develop techniques to estimate or to measure the distance of point sources on the sky. While most distance estimates used since the beginning of the 20th century are based on our understanding of the physics of objects of the Universe: stars, galaxies, QSOs, the direct measures of distances are based on the geometric methods as developed in ancient Greece: the parallax, which has been applied to stars for the first time in the mid-19th century. In this review, different techniques of geometrical astrometry applied to various stellar and cosmological (Megamaser) objects are presented. They consist in parallax measurements from ground based equipment or from space missions, but also in the study of binary stars or, as we shall see, of binary systems in distant extragalactic sources using radio telescopes. The Gaia mission will be presented in the context of stellar physics and galactic structure, because this key space mission in astronomy will bring a breakthrough in our understanding of stars, galaxies and the Universe in their nature and evolution with time. Measuring the distance to a star is the starting point for an unbiased description of its physics and the estimate of its fundamental parameters like its age. Applying these studies to candles such as the Cepheids will impact our large distance studies and calibration of other candles. The text is constructed as follows: introducing the parallax concept and measurement, we shall present briefly the Gaia satellite which will be the future base catalogue of stellar astronomy in the near future. Cepheids will be discussed just after to demonstrate the state of the art in distance measurements in the Universe with these variable stars, with the objective of 1% of error in distances that could be applied to our closest
International Nuclear Information System (INIS)
Hara, Takanori
2003-01-01
Many methods of measuring the section-sensitive profile (SSP) of computed tomography (CT) by the input of a delta function have been reported. In Japan, the bead method is used as a common measurement because of the high flexibility of the multi-purpose method. However, the intensity of the response of the bead method tends to decline, creating a relatively large error in the base of SSPs. A problem is considered to be the accuracy of measurement in evaluating spatial resolution along the z-axis in multi-slice spiral/helical CT (MSCT). We therefore evaluated the modulation transfer function (MTF) by conducting research with the micro-disk method (100 μm thickness and 1.0 mmφ diameter) and the bead method (1.0 mmφ diameter) for the same input width. Moreover, in the micro-disk method, we also examined alignment, circular region of interest (ROI), and the energy characteristic. Our comparison of MTFs obtained by the micro-disk method and the bead method showed that the former resulted in a higher value and lower standard deviation. The difference was significant at p<0.01. Measurement using the micro-disk method did not show significant differences in terms of alignment and ROIs. Moreover, the energy characteristic was not indicated. This research demonstrated that the accuracy of MTF measurement with the micro-disk method was greater than that with the bead method, and it was found that there was no influence on the actual measurement level of the geometric structure with the micro-disk method. (author)
Chu, Chung-Shiang; Sun, I-Wen; Begum, Aysha; Liu, Shen-Ing; Chang, Ching-Jui; Chiu, Wei-Che; Chen, Chin-Hsin; Tang, Hwang-Shen; Yang, Chia-Li; Lin, Ying-Chin; Chiu, Chih-Chiang; Stewart, Robert
2017-01-01
The goal of this study is to investigate associations between subjective memory complaint and objective cognitive performance in older people with previous major depression-a high-risk sample for cognitive impairment and later dementia. A cross-sectional study was carried out in people aged 60 or over with previous major depression but not fulfilling current major depression criteria according to DSM-IV-TR. People with dementia or Mini-Mental State Examination score less than 17 were excluded. Subjective memory complaint was defined on the basis of a score ≧4 on the subscale of Geriatric Mental State schedule, a maximum score of 8. Older people aged equal or over 60 without any psychiatric diagnosis were enrolled as healthy controls. Cognitive function was evaluated using a series of cognitive tests assessing verbal memory, attention/speed, visuospatial function, verbal fluency, and cognitive flexibility in all participants. One hundred and thirteen older people with previous major depression and forty-six healthy controls were enrolled. Subjective memory complaint was present in more than half of the participants with depression history (55.8%). Among those with major depression history, subjective memory complaint was associated with lower total immediate recall and delayed verbal recall scores after adjustment. The associations between subjective memory complaint and worse memory performance were stronger in participants with lower depressive symptoms (Hamilton Depression Rating Scale scorememory complaint may be a valid appraisal of memory performance in older people with previous major depression and consideration should be given to more proactive assessment and follow-up in these clinical samples.
Directory of Open Access Journals (Sweden)
Chung-Shiang Chu
Full Text Available The goal of this study is to investigate associations between subjective memory complaint and objective cognitive performance in older people with previous major depression-a high-risk sample for cognitive impairment and later dementia. A cross-sectional study was carried out in people aged 60 or over with previous major depression but not fulfilling current major depression criteria according to DSM-IV-TR. People with dementia or Mini-Mental State Examination score less than 17 were excluded. Subjective memory complaint was defined on the basis of a score ≧4 on the subscale of Geriatric Mental State schedule, a maximum score of 8. Older people aged equal or over 60 without any psychiatric diagnosis were enrolled as healthy controls. Cognitive function was evaluated using a series of cognitive tests assessing verbal memory, attention/speed, visuospatial function, verbal fluency, and cognitive flexibility in all participants. One hundred and thirteen older people with previous major depression and forty-six healthy controls were enrolled. Subjective memory complaint was present in more than half of the participants with depression history (55.8%. Among those with major depression history, subjective memory complaint was associated with lower total immediate recall and delayed verbal recall scores after adjustment. The associations between subjective memory complaint and worse memory performance were stronger in participants with lower depressive symptoms (Hamilton Depression Rating Scale score<7. The results suggest subjective memory complaint may be a valid appraisal of memory performance in older people with previous major depression and consideration should be given to more proactive assessment and follow-up in these clinical samples.
Geometric and numerical foundations of movements
Mansard, Nicolas; Lasserre, Jean-Bernard
2017-01-01
This book aims at gathering roboticists, control theorists, neuroscientists, and mathematicians, in order to promote a multidisciplinary research on movement analysis. It follows the workshop “ Geometric and Numerical Foundations of Movements ” held at LAAS-CNRS in Toulouse in November 2015[1]. Its objective is to lay the foundations for a mutual understanding that is essential for synergetic development in motion research. In particular, the book promotes applications to robotics --and control in general-- of new optimization techniques based on recent results from real algebraic geometry.
Directory of Open Access Journals (Sweden)
Yibo Chen
2015-08-01
Full Text Available In recent years, IoT (Internet of Things technologies have seen great advances, particularly, the IPv6 Routing Protocol for Low-power and Lossy Networks (RPL, which provides a powerful and flexible routing framework that can be applied in a variety of application scenarios. In this context, as an important role of IoT, Wireless Sensor Networks (WSNs can utilize RPL to design efficient routing protocols for a specific application to increase the ubiquity of networks with resource-constrained WSN nodes that are low-cost and easy to deploy. In this article, our work starts with the description of Agricultural Low-power and Lossy Networks (A-LLNs complying with the LLN framework, and to clarify the requirements of this application-oriented routing solution. After a brief review of existing optimization techniques for RPL, our contribution is dedicated to a Scalable Context-Aware Objective Function (SCAOF that can adapt RPL to the environmental monitoring of A-LLNs, through combining energy-aware, reliability-aware, robustness-aware and resource-aware contexts according to the composite routing metrics approach. The correct behavior of this enhanced RPL version (RPAL was verified by performance evaluations on both simulation and field tests. The obtained experimental results confirm that SCAOF can deliver the desired advantages on network lifetime extension, and high reliability and efficiency in different simulation scenarios and hardware testbeds.
Chen, Yibo; Chanet, Jean-Pierre; Hou, Kun-Mean; Shi, Hongling; de Sousa, Gil
2015-08-10
In recent years, IoT (Internet of Things) technologies have seen great advances, particularly, the IPv6 Routing Protocol for Low-power and Lossy Networks (RPL), which provides a powerful and flexible routing framework that can be applied in a variety of application scenarios. In this context, as an important role of IoT, Wireless Sensor Networks (WSNs) can utilize RPL to design efficient routing protocols for a specific application to increase the ubiquity of networks with resource-constrained WSN nodes that are low-cost and easy to deploy. In this article, our work starts with the description of Agricultural Low-power and Lossy Networks (A-LLNs) complying with the LLN framework, and to clarify the requirements of this application-oriented routing solution. After a brief review of existing optimization techniques for RPL, our contribution is dedicated to a Scalable Context-Aware Objective Function (SCAOF) that can adapt RPL to the environmental monitoring of A-LLNs, through combining energy-aware, reliability-aware, robustness-aware and resource-aware contexts according to the composite routing metrics approach. The correct behavior of this enhanced RPL version (RPAL) was verified by performance evaluations on both simulation and field tests. The obtained experimental results confirm that SCAOF can deliver the desired advantages on network lifetime extension, and high reliability and efficiency in different simulation scenarios and hardware testbeds.
Estévez-López, F.|info:eu-repo/dai/nl/412501031; Álvarez-Gallardo, I.C.; Segura-Jiménez, V.; Soriano-Maldonado, A.; Borges-Cosic, M; Pulido-Martos, M.; Aparicio, V.A.; Carbonell-Baeza, A.; Delgado-Fernández, M.; Geenen, R.|info:eu-repo/dai/nl/087017571
2018-01-01
Purpose: People with fibromyalgia experience a disagreement between patient-reported (i.e., subjective) and performance-based (i.e., objective) status. This study aimed to (i) corroborate the discordance between subjectively and objectively measured physical function and (ii) examine whether
van der Werf-Eldering, Marieke J.; Burger, Huibert; Jabben, Nienke; Holthausen, Esther A. E.; Aleman, Andre; Nolen, Willem A.
Objectives: To investigate the association between cognitive complaints and objective cognitive functioning in bipolar patients, with a focus on the moderating role of depressive symptoms. Methods: The association between cognitive complaints (measured by the total score and four subscales of the
Directory of Open Access Journals (Sweden)
Huiqing Fang
2016-01-01
Full Text Available Based on geometrically exact beam theory, a hybrid interpolation is proposed for geometric nonlinear spatial Euler-Bernoulli beam elements. First, the Hermitian interpolation of the beam centerline was used for calculating nodal curvatures for two ends. Then, internal curvatures of the beam were interpolated with a second interpolation. At this point, C1 continuity was satisfied and nodal strain measures could be consistently derived from nodal displacement and rotation parameters. The explicit expression of nodal force without integration, as a function of global parameters, was founded by using the hybrid interpolation. Furthermore, the proposed beam element can be degenerated into linear beam element under the condition of small deformation. Objectivity of strain measures and patch tests are also discussed. Finally, four numerical examples are discussed to prove the validity and effectivity of the proposed beam element.
Geometric group theory an introduction
Löh, Clara
2017-01-01
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Geometric procedures for civil engineers
Tonias, Elias C
2016-01-01
This book provides a multitude of geometric constructions usually encountered in civil engineering and surveying practice. A detailed geometric solution is provided to each construction as well as a step-by-step set of programming instructions for incorporation into a computing system. The volume is comprised of 12 chapters and appendices that may be grouped in three major parts: the first is intended for those who love geometry for its own sake and its evolution through the ages, in general, and, more specifically, with the introduction of the computer. The second section addresses geometric features used in the book and provides support procedures used by the constructions presented. The remaining chapters and the appendices contain the various constructions. The volume is ideal for engineering practitioners in civil and construction engineering and allied areas.
Georgopoulos, A P; Whang, K; Georgopoulos, M A; Tagaris, G A; Amirikian, B; Richter, W; Kim, S G; Uğurbil, K
2001-01-01
We studied the brain activation patterns in two visual image processing tasks requiring judgements on object construction (FIT task) or object sameness (SAME task). Eight right-handed healthy human subjects (four women and four men) performed the two tasks in a randomized block design while 5-mm, multislice functional images of the whole brain were acquired using a 4-tesla system using blood oxygenation dependent (BOLD) activation. Pairs of objects were picked randomly from a set of 25 oriented fragments of a square and presented to the subjects approximately every 5 sec. In the FIT task, subjects had to indicate, by pushing one of two buttons, whether the two fragments could match to form a perfect square, whereas in the SAME task they had to decide whether they were the same or not. In a control task, preceding and following each of the two tasks above, a single square was presented at the same rate and subjects pushed any of the two keys at random. Functional activation maps were constructed based on a combination of conservative criteria. The areas with activated pixels were identified using Talairach coordinates and anatomical landmarks, and the number of activated pixels was determined for each area. Altogether, 379 pixels were activated. The counts of activated pixels did not differ significantly between the two tasks or between the two genders. However, there were significantly more activated pixels in the left (n = 218) than the right side of the brain (n = 161). Of the 379 activated pixels, 371 were located in the cerebral cortex. The Talairach coordinates of these pixels were analyzed with respect to their overall distribution in the two tasks. These distributions differed significantly between the two tasks. With respect to individual dimensions, the two tasks differed significantly in the anterior--posterior and superior--inferior distributions but not in the left--right (including mediolateral, within the left or right side) distribution. Specifically
An introduction to geometrical physics
Aldrovandi, R
1995-01-01
This book stresses the unifying power of the geometrical framework in bringing together concepts from the different areas of physics. Common underpinnings of optics, elasticity, gravitation, relativistic fields, particle mechanics and other subjects are underlined. It attempts to extricate the notion of space currently in the physical literature from the metric connotation.The book's goal is to present mathematical ideas associated with geometrical physics in a rather introductory language. Included are many examples from elementary physics and also, for those wishing to reach a higher level o
Geometric scaling as traveling waves
International Nuclear Information System (INIS)
Munier, S.; Peschanski, R.
2003-01-01
We show the relevance of the nonlinear Fisher and Kolmogorov-Petrovsky-Piscounov (KPP) equation to the problem of high energy evolution of the QCD amplitudes. We explain how the traveling wave solutions of this equation are related to geometric scaling, a phenomenon observed in deep-inelastic scattering experiments. Geometric scaling is for the first time shown to result from an exact solution of nonlinear QCD evolution equations. Using general results on the KPP equation, we compute the velocity of the wave front, which gives the full high energy dependence of the saturation scale
Geometric integration for particle accelerators
International Nuclear Information System (INIS)
Forest, Etienne
2006-01-01
This paper is a very personal view of the field of geometric integration in accelerator physics-a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling-unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction
Geometrical spin symmetry and spin
International Nuclear Information System (INIS)
Pestov, I. B.
2011-01-01
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Geometric integration for particle accelerators
Forest, Étienne
2006-05-01
This paper is a very personal view of the field of geometric integration in accelerator physics—a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling—unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.
Lattice degeneracies of geometric fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-05-01
We give the minimal numbers of degrees of freedom carried by geometric fermions on all lattices of maximal symmetries in d = 2, 3, and 4 dimensions. These numbers are lattice dependent, but in the (free) continuum limit, part of the degrees of freedom have to escape to infinity by a Wilson mechanism built in, and 2sup(d) survive for any lattice. On self-reciprocal lattices we compare the minimal numbers of degrees of freedom of geometric fermions with the minimal numbers of naive fermions on these lattices and argue that these numbers are equal. (orig.)
Klapa, Przemyslaw; Mitka, Bartosz; Zygmunt, Mariusz
2017-12-01
Capability of obtaining a multimillion point cloud in a very short time has made the Terrestrial Laser Scanning (TLS) a widely used tool in many fields of science and technology. The TLS accuracy matches traditional devices used in land surveying (tacheometry, GNSS - RTK), but like any measurement it is burdened with error which affects the precise identification of objects based on their image in the form of a point cloud. The point’s coordinates are determined indirectly by means of measuring the angles and calculating the time of travel of the electromagnetic wave. Each such component has a measurement error which is translated into the final result. The XYZ coordinates of a measuring point are determined with some uncertainty and the very accuracy of determining these coordinates is reduced as the distance to the instrument increases. The paper presents the results of examination of geometrical stability of a point cloud obtained by means terrestrial laser scanner and accuracy evaluation of solids determined using the cloud. Leica P40 scanner and two different settings of measuring points were used in the tests. The first concept involved placing a few balls in the field and then scanning them from various sides at similar distances. The second part of measurement involved placing balls and scanning them a few times from one side but at varying distances from the instrument to the object. Each measurement encompassed a scan of the object with automatic determination of its position and geometry. The desk studies involved a semiautomatic fitting of solids and measurement of their geometrical elements, and comparison of parameters that determine their geometry and location in space. The differences of measures of geometrical elements of balls and translations vectors of the solids centres indicate the geometrical changes of the point cloud depending on the scanning distance and parameters. The results indicate the changes in the geometry of scanned objects
International Nuclear Information System (INIS)
Wells, Jered R.; Dobbins, James T. III
2012-01-01
Purpose: The modulation transfer function (MTF) of medical imaging devices is commonly reported in the form of orthogonal one-dimensional (1D) measurements made near the vertical and horizontal axes with a slit or edge test device. A more complete description is found by measuring the two-dimensional (2D) MTF. Some 2D test devices have been proposed, but there are some issues associated with their use: (1) they are not generally available; (2) they may require many images; (3) the results may have diminished accuracy; and (4) their implementation may be particularly cumbersome. This current work proposes the application of commonly available 1D test devices for practical and accurate estimation of the 2D presampled MTF of digital imaging systems. Methods: Theory was developed and applied to ensure adequate fine sampling of the system line spread function for 1D test devices at orientations other than approximately vertical and horizontal. Methods were also derived and tested for slit nonuniformity correction at arbitrary angle. Techniques were validated with experimental measurements at ten angles using an edge test object and three angles using a slit test device on an indirect-detection flat-panel system [GE Revolution XQ/i (GE Healthcare, Waukesha, WI)]. The 2D MTF was estimated through a simple surface fit with interpolation based on Delaunay triangulation of the 1D edge-based MTF measurements. Validation by synthesis was also performed with simulated images from a hypothetical direct-detection flat-panel device. Results: The 2D MTF derived from physical measurements yielded an average relative precision error of 0.26% for frequencies below the cutoff (2.5 mm −1 ) and approximate circular symmetry at frequencies below 4 mm −1 . While slit analysis generally agreed with the results of edge analysis, the two showed subtle differences at frequencies above 4 mm −1 . Slit measurement near 45° revealed radial asymmetry in the MTF resulting from the square
Wisneski, Kimberly J; Johnson, Michelle J
2007-03-23
Robotic therapy is at the forefront of stroke rehabilitation. The Activities of Daily Living Exercise Robot (ADLER) was developed to improve carryover of gains after training by combining the benefits of Activities of Daily Living (ADL) training (motivation and functional task practice with real objects), with the benefits of robot mediated therapy (repeatability and reliability). In combining these two therapy techniques, we seek to develop a new model for trajectory generation that will support functional movements to real objects during robot training. We studied natural movements to real objects and report on how initial reaching movements are affected by real objects and how these movements deviate from the straight line paths predicted by the minimum jerk model, typically used to generate trajectories in robot training environments. We highlight key issues that to be considered in modelling natural trajectories. Movement data was collected as eight normal subjects completed ADLs such as drinking and eating. Three conditions were considered: object absent, imagined, and present. This data was compared to predicted trajectories generated from implementing the minimum jerk model. The deviations in both the plane of the table (XY) and the sagittal plane of torso (XZ) were examined for both reaches to a cup and to a spoon. Velocity profiles and curvature were also quantified for all trajectories. We hypothesized that movements performed with functional task constraints and objects would deviate from the minimum jerk trajectory model more than those performed under imaginary or object absent conditions. Trajectory deviations from the predicted minimum jerk model for these reaches were shown to depend on three variables: object presence, object orientation, and plane of movement. When subjects completed the cup reach their movements were more curved than for the spoon reach. The object present condition for the cup reach showed more curvature than in the object
Directory of Open Access Journals (Sweden)
Wisneski Kimberly J
2007-03-01
Full Text Available Abstract Background Robotic therapy is at the forefront of stroke rehabilitation. The Activities of Daily Living Exercise Robot (ADLER was developed to improve carryover of gains after training by combining the benefits of Activities of Daily Living (ADL training (motivation and functional task practice with real objects, with the benefits of robot mediated therapy (repeatability and reliability. In combining these two therapy techniques, we seek to develop a new model for trajectory generation that will support functional movements to real objects during robot training. We studied natural movements to real objects and report on how initial reaching movements are affected by real objects and how these movements deviate from the straight line paths predicted by the minimum jerk model, typically used to generate trajectories in robot training environments. We highlight key issues that to be considered in modelling natural trajectories. Methods Movement data was collected as eight normal subjects completed ADLs such as drinking and eating. Three conditions were considered: object absent, imagined, and present. This data was compared to predicted trajectories generated from implementing the minimum jerk model. The deviations in both the plane of the table (XY and the saggital plane of torso (XZ were examined for both reaches to a cup and to a spoon. Velocity profiles and curvature were also quantified for all trajectories. Results We hypothesized that movements performed with functional task constraints and objects would deviate from the minimum jerk trajectory model more than those performed under imaginary or object absent conditions. Trajectory deviations from the predicted minimum jerk model for these reaches were shown to depend on three variables: object presence, object orientation, and plane of movement. When subjects completed the cup reach their movements were more curved than for the spoon reach. The object present condition for the cup
In Defence of Geometrical Algebra
Blasjo, V.N.E.
The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that
Geometrical interpretation of extended supergravity
International Nuclear Information System (INIS)
Townsend, P.K.; Nieuwenhuizen, P.van
1977-01-01
SO 2 extended supergravity is shown to be a geometrical theory, whose underlying gauge group is OSp(4,2). The couplings which gauge the SO 2 symmetry as well as the accompanying cosmological and masslike terms are directly obtained, and the usual SO 2 model is obtained after a Wigner-Inoenue group contraction. (Auth.)
Geometric scaling in exclusive processes
International Nuclear Information System (INIS)
Munier, S.; Wallon, S.
2003-01-01
We show that according to the present understanding of the energy evolution of the observables measured in deep-inelastic scattering, the photon-proton scattering amplitude has to exhibit geometric scaling at each impact parameter. We suggest a way to test this experimentally at HERA. A qualitative analysis based on published data is presented and discussed. (orig.)
Geometric origin of central charges
International Nuclear Information System (INIS)
Lukierski, J.; Rytel, L.
1981-05-01
The complete set of N(N-1) central charge generators for D=4 N-extended super Poincare algebra is obtained by suitable contraction of OSp (2N; 4) superalgebra. The superspace realizations of the spinorial generators with central charges are derived. The conjugate set of N(N-1) additional bosonic superspace coordinates is introduced in an unique and geometric way. (author)
Geometric phases and quantum computation
International Nuclear Information System (INIS)
Vedral, V.
2005-01-01
Full text: In my lectures I will talk about the notion of the geometric phase and explain its relevance for both fundamental quantum mechanics as well as quantum computation. The phase will be at first introduced via the idea of Pancharatnam which involves interference of three or more light beams. This notion will then be generalized to the evolving quantum systems. I will discuss both pure and mixed states as well as unitary and non-unitary evolutions. I will also show how the concept of the vacuum induced geometric phase arises in quantum optics. A simple measurement scheme involving a Mach Zehnder interferometer will be presented and will be used to illustrate all the concepts in the lecture. Finally, I will expose a simple generalization of the geometric phase to evolving degenerate states. This will be seen to lead to the possibility of universal quantum computation using geometric effects only. Moreover, this contains a promise of intrinsically fault tolerant quantum information processing, whose prospects will be outlined at the end of the lecture. (author)
Cartan's geometrical structure of supergravity
International Nuclear Information System (INIS)
Baaklini, N.S.
1977-06-01
The geometrical partnership of the vierbein and the spin-3/2 field in the structure of the supergravity Lagrangian is emphasized. Both fields are introduced as component of the same matrix differential form. The only local symmetry of the theory is SL(2,C)
Femtosecond pulse shaping using the geometric phase.
Gökce, Bilal; Li, Yanming; Escuti, Michael J; Gundogdu, Kenan
2014-03-15
We demonstrate a femtosecond pulse shaper that utilizes polarization gratings to manipulate the geometric phase of an optical pulse. This unique approach enables circular polarization-dependent shaping of femtosecond pulses. As a result, it is possible to create coherent pulse pairs with orthogonal polarizations in a 4f pulse shaper setup, something until now that, to our knowledge, was only achieved via much more complex configurations. This approach could be used to greatly simplify and enhance the functionality of multidimensional spectroscopy and coherent control experiments, in which multiple coherent pulses are used to manipulate quantum states in materials of interest.
DEFF Research Database (Denmark)
Kraft, Dirk; Pugeault, Nicolas; Baseski, Emre
2008-01-01
We describe a process in which the segmentation of objects as well as the extraction of the object shape becomes realized through active exploration of a robot vision system. In the exploration process, two behavioral modules that link robot actions to the visual and haptic perception of objects...... interact. First, by making use of an object independent grasping mechanism, physical control over potential objects can be gained. Having evaluated the initial grasping mechanism as being successful, a second behavior extracts the object shape by making use of prediction based on the motion induced...... system, knowledge about its own embodiment as well as knowledge about geometric relationships such as rigid body motion. This prior knowledge allows the extraction of representations that are semantically richer compared to many other approaches....
Hydrodynamical winds from a geometrically thin disk
International Nuclear Information System (INIS)
Fukue, Jun
1989-01-01
Hydrodynamical winds emanating from the surface of a geometrically thin disk under the gravitational field of the central object are examined. The attention is focused on the transonic nature of the flow. For a given configuration of streamlines, the flow fields are divided into three regions: the inner region where the gas near the disk plane is gravitationally bound to form a corona; the intermediate wind region where multiple critical points appear and the gas flows out from the disk passing through critical points; and the outer region where the gas is unbound to escape to infinity without passing through critical points. This behavior of disk winds is due to the shape of the gravitational potential of the central object along the streamline and due to the energy source distribution at the flow base on the disk plane where the potential in finite. (author)
Geometric Transformations in Engineering Geometry
Directory of Open Access Journals (Sweden)
I. F. Borovikov
2015-01-01
Full Text Available Recently, for business purposes, in view of current trends and world experience in training engineers, research and faculty staff there has been a need to transform traditional courses of descriptive geometry into the course of engineering geometry in which the geometrical transformations have to become its main section. On the basis of critical analysis the paper gives suggestions to improve a presentation technique of this section both in the classroom and in academic literature, extend an application scope of geometrical transformations to solve the position and metric tasks and simulation of surfaces, as well as to design complex engineering configurations, which meet a number of pre-specified conditions.The article offers to make a number of considerable amendments to the terms and definitions used in the existing courses of descriptive geometry. It draws some conclusions and makes the appropriate proposals on feasibility of coordination in teaching the movement transformation in the courses of analytical and descriptive geometry. This will provide interdisciplinary team teaching and allow students to be convinced that a combination of analytical and graphic ways to solve geometric tasks is useful and reasonable.The traditional sections of learning courses need to be added with a theory of projective and bi-rational transformations. In terms of application simplicity and convenience it is enough to consider the central transformations when solving the applied tasks. These transformations contain a beam of sub-invariant (low-invariant straight lines on which the invariant curve induces non-involution and involution projectivities. The expediency of nonlinear transformations application is shown in the article by a specific example of geometric modeling of the interfacing surface "spar-blade".Implementation of these suggestions will contribute to a real transformation of a traditional course of descriptive geometry to the engineering geometry
DEFF Research Database (Denmark)
Lopdrup-Hjorth, Thomas
2015-01-01
This paper explores the erosion and problematization of ‘the organization’ as a demarcated entity. Utilizing Foucault's reflections on ‘state-phobia’ as a source of inspiration, I show how an organization-phobia has gained a hold within Organization Theory (OT). By attending to the history...... of this organization-phobia, the paper argues that OT has become increasingly incapable of speaking about its core object. I show how organizations went from being conceptualized as entities of major importance to becoming theoretically deconstructed and associated with all kinds of ills. Through this history......, organizations as distinct entities have been rendered so problematic that they have gradually come to be removed from the center of OT. The costs of this have been rather significant. Besides undermining the grounds that gave OT intellectual credibility and legitimacy to begin with, the organization-phobia...
Energy Technology Data Exchange (ETDEWEB)
Bahl, Björn; Söhler, Theo; Hennen, Maike; Bardow, André, E-mail: andre.bardow@ltt.rwth-aachen.de [Institute of Technical Thermodynamics, RWTH Aachen University, Aachen (Germany)
2018-01-08
Two-stage synthesis problems simultaneously consider here-and-now decisions (e.g., optimal investment) and wait-and-see decisions (e.g., optimal operation). The optimal synthesis of energy systems reveals such a two-stage character. The synthesis of energy systems involves multiple large time series such as energy demands and energy prices. Since problem size increases with the size of the time series, synthesis of energy systems leads to complex optimization problems. To reduce the problem size without loosing solution quality, we propose a method for time-series aggregation to identify typical periods. Typical periods retain the chronology of time steps, which enables modeling of energy systems, e.g., with storage units or start-up cost. The aim of the proposed method is to obtain few typical periods with few time steps per period, while accurately representing the objective function of the full time series, e.g., cost. Thus, we determine the error of time-series aggregation as the cost difference between operating the optimal design for the aggregated time series and for the full time series. Thereby, we rigorously bound the maximum performance loss of the optimal energy system design. In an initial step, the proposed method identifies the best length of typical periods by autocorrelation analysis. Subsequently, an adaptive procedure determines aggregated typical periods employing the clustering algorithm k-medoids, which groups similar periods into clusters and selects one representative period per cluster. Moreover, the number of time steps per period is aggregated by a novel clustering algorithm maintaining chronology of the time steps in the periods. The method is iteratively repeated until the error falls below a threshold value. A case study based on a real-world synthesis problem of an energy system shows that time-series aggregation from 8,760 time steps to 2 typical periods with each 2 time steps results in an error smaller than the optimality gap of
Colombo, Barbara; Balzarotti, Stefania; Mazzucchelli, Nicla
2016-04-01
Prior research has shown that right dorsolateral prefrontal cortex may be crucial in cognitive control of affective impulses during decision making. The present study examines whether modulation of r-DLPFC with transcranial direct current stimulation influences attentional behavior and decision-making in a purchase task requiring participants to choose either emotional/attractive or functional/useful objects. 30 participants were shown sixteen pairs of emotionally or functionally designed products while their eye-movements were recorded. Participants were asked to judge aesthetics and usefulness of each object, and to decide which object of each pair they would buy. Results revealed that participants decided to buy the functionally designed objects more often regardless of condition; however, participants receiving anodal stimulation were faster in decision making. Although stimulation of r-DLPFC did not affect the actual purchasing choice and had little effect on visual exploration during decision making, it influenced perceived usefulness and attractiveness, with temporary inhibition of r-DLPFC leading to evaluate functional objects as less attractive. Finally, anodal stimulation led to judge the objects as more useful. The implications of these results are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Van Rheenen, Tamsyn E; Rossell, Susan L
2014-06-01
People with bipolar disorder (BD) experience significant psychosocial impairment. Understandings of the nature and causes of such impairment is limited by the lack of research exploring the extent to which subjectively reported functioning should be valued as an indicator of objective dysfunction, or examining the relative influence of neurocognition, social cognition and emotion regulation on these important, but different aspects of psychosocial functioning in the context of mania and depression symptoms. This study aimed to address this paucity of research by conducting a comprehensive investigation of psychosocial functioning in a well characterised group of BD patients. Fifty-one BD patients were compared to 52 healthy controls on objectively and subjectively assessed psychosocial outcomes. Relationships between current mood symptoms, psychosocial function and neurocognitive, social cognitive and emotion regulation measures were also examined in the patient group. Patients had significantly worse scores on the global objective and subjective functioning measures relative to controls. In the patient group, although these scores were correlated, regression analyses showed that variance in each of the measures was explained by different predictors. Depressive symptomatology was the most important predictor of global subjective functioning, and neurocognition had a concurrent and important influence with depressive symptoms on objective psychosocial function. Emotion regulation also had an indirect effect on psychosocial functioning via its influence on depressive symptomatology. As this study was cross-sectional in nature, we are unable to draw precise conclusions regarding contributing pathways involved in psychosocial functioning in BD. These results suggest that patients' own evaluations of their subjective functioning represent important indicators of the extent to which their observable function is impaired. They also highlight the importance of
Some Hermite–Hadamard type inequalities for geometrically quasi ...
Indian Academy of Sciences (India)
Hermite–Hadamard's integral inequality; geometrically quasi-convex function. 2010 Mathematics Subject Classification. Primary: 26A51, 26D15; Secondary: ... If f : I ⊆ R → R is a convex function on [a,b] and a,b ∈ I with a
Places in the Brain: Bridging Layout and Object Geometry in Scene-Selective Cortex.
Dillon, Moira R; Persichetti, Andrew S; Spelke, Elizabeth S; Dilks, Daniel D
2017-06-13
Diverse animal species primarily rely on sense (left-right) and egocentric distance (proximal-distal) when navigating the environment. Recent neuroimaging studies with human adults show that this information is represented in 2 scene-selective cortical regions-the occipital place area (OPA) and retrosplenial complex (RSC)-but not in a third scene-selective region-the parahippocampal place area (PPA). What geometric properties, then, does the PPA represent, and what is its role in scene processing? Here we hypothesize that the PPA represents relative length and angle, the geometric properties classically associated with object recognition, but only in the context of large extended surfaces that compose the layout of a scene. Using functional magnetic resonance imaging adaptation, we found that the PPA is indeed sensitive to relative length and angle changes in pictures of scenes, but not pictures of objects that reliably elicited responses to the same geometric changes in object-selective cortical regions. Moreover, we found that the OPA is also sensitive to such changes, while the RSC is tolerant to such changes. Thus, the geometric information typically associated with object recognition is also used during some aspects of scene processing. These findings provide evidence that scene-selective cortex differentially represents the geometric properties guiding navigation versus scene categorization. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Balanced partitions of 3-colored geometric sets in the plane
Bereg, S.; Hurtado, F.; Kano, M.; Korman, M.; Lara, D.; Seara, C.; Silveira, R.I.; Urrutia, J.; Verbeek, K.A.B.
2015-01-01
Let SS be a finite set of geometric objects partitioned into classes or colors . A subset S'¿SS'¿S is said to be balanced if S'S' contains the same amount of elements of SS from each of the colors. We study several problems on partitioning 33-colored sets of points and lines in the plane into two
Geometrical approach to tumor growth.
Escudero, Carlos
2006-08-01
Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.
Geometrical interpretation of optical absorption
Energy Technology Data Exchange (ETDEWEB)
Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L. [Departamento de Optica, Facultad de Fisica, Universidad Complutense, E-28040 Madrid (Spain); Montesinos-Amilibia, J. M. [Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad Complutense, E-28040 Madrid (Spain)
2011-08-15
We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.
Parametric FEM for geometric biomembranes
Bonito, Andrea; Nochetto, Ricardo H.; Sebastian Pauletti, M.
2010-05-01
We consider geometric biomembranes governed by an L2-gradient flow for bending energy subject to area and volume constraints (Helfrich model). We give a concise derivation of a novel vector formulation, based on shape differential calculus, and corresponding discretization via parametric FEM using quadratic isoparametric elements and a semi-implicit Euler method. We document the performance of the new parametric FEM with a number of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while exhibiting large deformations.
Geometrical methods in learning theory
International Nuclear Information System (INIS)
Burdet, G.; Combe, Ph.; Nencka, H.
2001-01-01
The methods of information theory provide natural approaches to learning algorithms in the case of stochastic formal neural networks. Most of the classical techniques are based on some extremization principle. A geometrical interpretation of the associated algorithms provides a powerful tool for understanding the learning process and its stability and offers a framework for discussing possible new learning rules. An illustration is given using sequential and parallel learning in the Boltzmann machine
Geometrical approach to tumor growth
Escudero, Carlos
2006-01-01
Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells/particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former article [C. Escudero, Phys. Rev. E 73, 020902(R) (200...
Directory of Open Access Journals (Sweden)
Sathish ePeriyasamy
2013-12-01
Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells.
Geometric mean for subspace selection.
Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J
2009-02-01
Subspace selection approaches are powerful tools in pattern classification and data visualization. One of the most important subspace approaches is the linear dimensionality reduction step in the Fisher's linear discriminant analysis (FLDA), which has been successfully employed in many fields such as biometrics, bioinformatics, and multimedia information management. However, the linear dimensionality reduction step in FLDA has a critical drawback: for a classification task with c classes, if the dimension of the projected subspace is strictly lower than c - 1, the projection to a subspace tends to merge those classes, which are close together in the original feature space. If separate classes are sampled from Gaussian distributions, all with identical covariance matrices, then the linear dimensionality reduction step in FLDA maximizes the mean value of the Kullback-Leibler (KL) divergences between different classes. Based on this viewpoint, the geometric mean for subspace selection is studied in this paper. Three criteria are analyzed: 1) maximization of the geometric mean of the KL divergences, 2) maximization of the geometric mean of the normalized KL divergences, and 3) the combination of 1 and 2. Preliminary experimental results based on synthetic data, UCI Machine Learning Repository, and handwriting digits show that the third criterion is a potential discriminative subspace selection method, which significantly reduces the class separation problem in comparing with the linear dimensionality reduction step in FLDA and its several representative extensions.
International Nuclear Information System (INIS)
1981-04-01
At the present time, final repository criteria have not been issued by the responsible agencies. This document describes general objectives, requirements, and criteria that the DOE intends to apply in the interim to the National Waste Terminal Storage (NWTS) Program. These objectives, requirements, and criteria have been developed on the basis of DOE's analysis of what is needed to achieve the National objective of safe waste disposal in an environmentally acceptable and economic manner and are expected to be consistent with anticipated regulatory standards. The qualitative statements in this document address the broad issues of public and occupational health and safety, institutional acceptability, engineering feasibility, and economic considerations. A comprehensive set of criteria, general and project specific, of which these are a part, will constitute a portion of the technical basis for preparation and submittal by the DOE of formal documents to support future license applications for nuclear waste repositories
Energy Technology Data Exchange (ETDEWEB)
None
1981-04-01
At the present time, final repository criteria have not been issued by the responsible agencies. This document describes general objectives, requirements, and criteria that the DOE intends to apply in the interim to the National Waste Terminal Storage (NWTS) Program. These objectives, requirements, and criteria have been developed on the basis of DOE's analysis of what is needed to achieve the National objective of safe waste disposal in an environmentally acceptable and economic manner and are expected to be consistent with anticipated regulatory standards. The qualitative statements in this document address the broad issues of public and occupational health and safety, institutional acceptability, engineering feasibility, and economic considerations. A comprehensive set of criteria, general and project specific, of which these are a part, will constitute a portion of the technical basis for preparation and submittal by the DOE of formal documents to support future license applications for nuclear waste repositories.
Geometric reconstruction methods for electron tomography
Energy Technology Data Exchange (ETDEWEB)
Alpers, Andreas, E-mail: alpers@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany); Gardner, Richard J., E-mail: Richard.Gardner@wwu.edu [Department of Mathematics, Western Washington University, Bellingham, WA 98225-9063 (United States); König, Stefan, E-mail: koenig@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany); Pennington, Robert S., E-mail: robert.pennington@uni-ulm.de [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Boothroyd, Chris B., E-mail: ChrisBoothroyd@cantab.net [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Houben, Lothar, E-mail: l.houben@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Dunin-Borkowski, Rafal E., E-mail: rdb@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Joost Batenburg, Kees, E-mail: Joost.Batenburg@cwi.nl [Centrum Wiskunde and Informatica, NL-1098XG, Amsterdam, The Netherlands and Vision Lab, Department of Physics, University of Antwerp, B-2610 Wilrijk (Belgium)
2013-05-15
Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and non-linear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180° tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire. - Highlights: ► Four algorithms for electron tomography are introduced that utilize prior knowledge. ► Objects are assumed to be homogeneous; convexity and regularity is also discussed. ► We are able to reconstruct slices of a nanowire from as few as four projections. ► Algorithms should be selected based on the specific reconstruction task at hand.
Geometric reconstruction methods for electron tomography
International Nuclear Information System (INIS)
Alpers, Andreas; Gardner, Richard J.; König, Stefan; Pennington, Robert S.; Boothroyd, Chris B.; Houben, Lothar; Dunin-Borkowski, Rafal E.; Joost Batenburg, Kees
2013-01-01
Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and non-linear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180° tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire. - Highlights: ► Four algorithms for electron tomography are introduced that utilize prior knowledge. ► Objects are assumed to be homogeneous; convexity and regularity is also discussed. ► We are able to reconstruct slices of a nanowire from as few as four projections. ► Algorithms should be selected based on the specific reconstruction task at hand
Image quality assessment based on multiscale geometric analysis.
Gao, Xinbo; Lu, Wen; Tao, Dacheng; Li, Xuelong
2009-07-01
Reduced-reference (RR) image quality assessment (IQA) has been recognized as an effective and efficient way to predict the visual quality of distorted images. The current standard is the wavelet-domain natural image statistics model (WNISM), which applies the Kullback-Leibler divergence between the marginal distributions of wavelet coefficients of the reference and distorted images to measure the image distortion. However, WNISM fails to consider the statistical correlations of wavelet coefficients in different subbands and the visual response characteristics of the mammalian cortical simple cells. In addition, wavelet transforms are optimal greedy approximations to extract singularity structures, so they fail to explicitly extract the image geometric information, e.g., lines and curves. Finally, wavelet coefficients are dense for smooth image edge contours. In this paper, to target the aforementioned problems in IQA, we develop a novel framework for IQA to mimic the human visual system (HVS) by incorporating the merits from multiscale geometric analysis (MGA), contrast sensitivity function (CSF), and the Weber's law of just noticeable difference (JND). In the proposed framework, MGA is utilized to decompose images and then extract features to mimic the multichannel structure of HVS. Additionally, MGA offers a series of transforms including wavelet, curvelet, bandelet, contourlet, wavelet-based contourlet transform (WBCT), and hybrid wavelets and directional filter banks (HWD), and different transforms capture different types of image geometric information. CSF is applied to weight coefficients obtained by MGA to simulate the appearance of images to observers by taking into account many of the nonlinearities inherent in HVS. JND is finally introduced to produce a noticeable variation in sensory experience. Thorough empirical studies are carried out upon the LIVE database against subjective mean opinion score (MOS) and demonstrate that 1) the proposed framework has
Cognitive object recognition system (CORS)
Raju, Chaitanya; Varadarajan, Karthik Mahesh; Krishnamurthi, Niyant; Xu, Shuli; Biederman, Irving; Kelley, Troy
2010-04-01
We have developed a framework, Cognitive Object Recognition System (CORS), inspired by current neurocomputational models and psychophysical research in which multiple recognition algorithms (shape based geometric primitives, 'geons,' and non-geometric feature-based algorithms) are integrated to provide a comprehensive solution to object recognition and landmarking. Objects are defined as a combination of geons, corresponding to their simple parts, and the relations among the parts. However, those objects that are not easily decomposable into geons, such as bushes and trees, are recognized by CORS using "feature-based" algorithms. The unique interaction between these algorithms is a novel approach that combines the effectiveness of both algorithms and takes us closer to a generalized approach to object recognition. CORS allows recognition of objects through a larger range of poses using geometric primitives and performs well under heavy occlusion - about 35% of object surface is sufficient. Furthermore, geon composition of an object allows image understanding and reasoning even with novel objects. With reliable landmarking capability, the system improves vision-based robot navigation in GPS-denied environments. Feasibility of the CORS system was demonstrated with real stereo images captured from a Pioneer robot. The system can currently identify doors, door handles, staircases, trashcans and other relevant landmarks in the indoor environment.
Stationary radiation of objects with scattering media
International Nuclear Information System (INIS)
Vasil'eva, Inna A
2001-01-01
The radiation observed inside or outside a stationary radiator with a scattering medium is a sum of components, each being determined by, first, the primary radiation from some part of the radiator and, second, the probability of this radiation reaching the region where it is observed. In this review, general and rather simple relations between these components are discussed. These relations, unlike the components themselves, are independent of the specific optical characteristics of the object as well as of its geometry, inhomogeneity, etc. In deriving the relations, the situations in which geometrical optics is either applicable or inapplicable to radiation in a scattering medium are considered. For the case where geometrical optics does apply, stationary relations are derived from the probabilistic stationarity condition for radiation passing through the medium, i.e., from the fact that all radiation emitted in a stationary regime disappears with probability unity. Equilibrium relations are derived from the stationary relations in the particular case of a thermal radiator in an isothermal cavity. To derive the stationary relations in the geometrical optics approximation, we obtain general solutions of the linear equation of transfer using the Green function approach. If geometrical optics cannot be applied to a scattering and radiating medium, only relations for the components of outgoing thermal radiation are obtained, and the generalized Kirchhoff law, obtained by Levin and Rytov using statistical radio-physics methods, is employed. In this case, stationary relations are also derived from a probabilistic stationarity condition; the equilibrium relations follow from the stationary ones as well as from the equilibrium condition for radiation in the isothermal cavity. The quantities involved in all the relations obtained are a subject of experimental and computational spectroscopic studies. Examples of current and potential applications are given. The relations
Geometric model from microscopic theory for nuclear absorption
International Nuclear Information System (INIS)
John, S.; Townsend, L.W.; Wilson, J.W.; Tripathi, R.K.
1993-07-01
A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained
Geometric model for nuclear absorption from microscopic theory
International Nuclear Information System (INIS)
John, S.; Townsend, L.W.; Wilson, J.W.; Tripathi, R.K.
1993-01-01
A parameter-free geometric model for nuclear absorption is derived from microscopic theory. The expression for the absorption cross section in the eikonal approximation taken in integral form is separated into a geometric contribution, described by an energy-dependent effective radius, and two surface terms which are shown to cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived using harmonic-oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half density radius for the harmonic-oscillator functions. Coulomb corrections are incorporated and a simplified geometric form of the Bradt-Peters type obtained. Results spanning the energy range of 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained
Directory of Open Access Journals (Sweden)
Asenjo Juan A
2011-04-01
Full Text Available Abstract Background Functionally relevant artificial or natural mutations are difficult to assess or predict if no structure-function information is available for a protein. This is especially important to correctly identify functionally significant non-synonymous single nucleotide polymorphisms (nsSNPs or to design a site-directed mutagenesis strategy for a target protein. A new and powerful methodology is proposed to guide these two decision strategies, based only on conservation rules of physicochemical properties of amino acids extracted from a multiple alignment of a protein family where the target protein belongs, with no need of explicit structure-function relationships. Results A statistical analysis is performed over each amino acid position in the multiple protein alignment, based on different amino acid physical or chemical characteristics, including hydrophobicity, side-chain volume, charge and protein conformational parameters. The variances of each of these properties at each position are combined to obtain a global statistical indicator of the conservation degree of each property. Different types of physicochemical conservation are defined to characterize relevant and irrelevant positions. The differences between statistical variances are taken together as the basis of hypothesis tests at each position to search for functionally significant mutable sites and to identify specific mutagenesis targets. The outcome is used to statistically predict physicochemical consensus sequences based on different properties and to calculate the amino acid propensities at each position in a given protein. Hence, amino acid positions are identified that are putatively responsible for function, specificity, stability or binding interactions in a family of proteins. Once these key functional positions are identified, position-specific statistical distributions are applied to divide the 20 common protein amino acids in each position of the protein
Exact Solutions for Einstein's Hyperbolic Geometric Flow
International Nuclear Information System (INIS)
He Chunlei
2008-01-01
In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow
Model-based object classification using unification grammars and abstract representations
Liburdy, Kathleen A.; Schalkoff, Robert J.
1993-04-01
The design and implementation of a high level computer vision system which performs object classification is described. General object labelling and functional analysis require models of classes which display a wide range of geometric variations. A large representational gap exists between abstract criteria such as `graspable' and current geometric image descriptions. The vision system developed and described in this work addresses this problem and implements solutions based on a fusion of semantics, unification, and formal language theory. Object models are represented using unification grammars, which provide a framework for the integration of structure and semantics. A methodology for the derivation of symbolic image descriptions capable of interacting with the grammar-based models is described and implemented. A unification-based parser developed for this system achieves object classification by determining if the symbolic image description can be unified with the abstract criteria of an object model. Future research directions are indicated.
Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics.
Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei
2017-02-03
Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that "Electron Tracking Compton Camera" (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.
Point- and curve-based geometric conflation
Ló pez-Vá zquez, C.; Manso Callejo, M.A.
2013-01-01
Geometric conflation is the process undertaken to modify the coordinates of features in dataset A in order to match corresponding ones in dataset B. The overwhelming majority of the literature considers the use of points as features to define the transformation. In this article we present a procedure to consider one-dimensional curves also, which are commonly available as Global Navigation Satellite System (GNSS) tracks, routes, coastlines, and so on, in order to define the estimate of the displacements to be applied to each object in A. The procedure involves three steps, including the partial matching of corresponding curves, the computation of some analytical expression, and the addition of a correction term in order to satisfy basic cartographic rules. A numerical example is presented. © 2013 Copyright Taylor and Francis Group, LLC.
Burmester, Bridget; Leathem, Janet; Merrick, Paul
2016-12-01
Research investigating how subjective cognitive complaints (SCCs) might reliably indicate impairments in objective cognitive functioning has produced highly varied findings, and despite attempts to synthesise this literature (e.g., Jonker et al. International Journal of Geriatric Psychiatry, 15, 983-991, 2000; Reid and MacLullich Dementia and Geriatric Cognitive Disorders, 22(5-6), 471-485, 2006; Crumley et al. Psychology and Aging, 29(2), 250-263, 2014), recent work continues to offer little resolution. This review provides both quantitative and qualitative synthesis of research conducted since the last comprehensive review in 2006, with the aim of identifying reasons for these discrepancies that might provide fruitful avenues for future exploration. Meta-analysis found a small but significant association between SCCs and objective cognitive function, although it was limited by large heterogeneity between studies and evidence of potential publication bias. Often, assessments of SCCs and objective cognitive function were brief or not formally validated. However, studies that employed more comprehensive SCC measures tended to find that SCCs were associated independently with both objective cognitive function and depressive symptoms. Further explicit investigation of how assessment measures relate to reports of SCCs, and the validity of the proposed 'compensation theory' of SCC aetiology, is recommended.
Multiscale geometric modeling of macromolecules II: Lagrangian representation
Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2013-01-01
Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599
International Nuclear Information System (INIS)
Peña Ramírez, K.; Béjar, V. J. S.; Zapatero Osorio, M. R.; Martín, E. L.; Petr-Gotzens, M. G.
2012-01-01
We report on our analysis of the VISTA Orion ZY JHK s photometric data (completeness magnitudes of Z = 22.6 and J = 21.0 mag) focusing on a circular area of 2798.4 arcmin 2 around the young σ Orionis star cluster (∼3 Myr, ∼352 pc, and solar metallicity). The combination of the VISTA photometry with optical, WISE and Spitzer data allows us to identify a total of 210 σ Orionis member candidates with masses in the interval 0.25-0.004 M ☉ , 23 of which are new planetary-mass object findings. These discoveries double the number of cluster planetary-mass candidates known so far. One object has colors compatible with a T spectral type. The σ Orionis cluster harbors about as many brown dwarfs (69, 0.072-0.012 M ☉ ) and planetary-mass objects (37, 0.012-0.004 M ☉ ) as very low mass stars (104, 0.25-0.072 M ☉ ). Based on Spitzer data, we derive a disk frequency of ∼40% for very low mass stars, brown dwarfs, and planetary-mass objects in σ Orionis. The radial density distributions of these three mass intervals are alike: all are spatially concentrated within an effective radius of 12' (1.2 pc) around the multiple star σ Ori, and no obvious segregation between disk-bearing and diskless objects is observed. Using the VISTA data and the Mayrit catalog, we derive the cluster mass spectrum (ΔN/ΔM ∼ M –α ) from ∼19 to 0.006 M ☉ (VISTA ZJ completeness), which is reasonably described by two power-law expressions with indices of α = 1.7 ± 0.2 for M > 0.35 M ☉ , and α = 0.6 ± 0.2 for M ☉ . The σ Orionis mass spectrum smoothly extends into the planetary-mass regime down to 0.004 M ☉ . Our findings of T-type sources ( ☉ ) in the VISTA σ Orionis exploration appear to be smaller than what is predicted by the extrapolation of the cluster mass spectrum down to the survey J-band completeness.
Energy Technology Data Exchange (ETDEWEB)
Pena Ramirez, K.; Bejar, V. J. S. [Instituto de Astrofisica de Canarias, C/. Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Zapatero Osorio, M. R.; Martin, E. L. [Centro de Astrobiologia (CSIC-INTA), Crta. Ajalvir km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); Petr-Gotzens, M. G., E-mail: karla@iac.es, E-mail: vbejar@iac.es, E-mail: mosorio@cab.inta-csic.es, E-mail: ege@cab.inta-csic.es, E-mail: mpetr@eso.org [European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei Muenchen (Germany)
2012-07-20
We report on our analysis of the VISTA Orion ZY JHK{sub s} photometric data (completeness magnitudes of Z = 22.6 and J = 21.0 mag) focusing on a circular area of 2798.4 arcmin{sup 2} around the young {sigma} Orionis star cluster ({approx}3 Myr, {approx}352 pc, and solar metallicity). The combination of the VISTA photometry with optical, WISE and Spitzer data allows us to identify a total of 210 {sigma} Orionis member candidates with masses in the interval 0.25-0.004 M{sub Sun }, 23 of which are new planetary-mass object findings. These discoveries double the number of cluster planetary-mass candidates known so far. One object has colors compatible with a T spectral type. The {sigma} Orionis cluster harbors about as many brown dwarfs (69, 0.072-0.012 M{sub Sun }) and planetary-mass objects (37, 0.012-0.004 M{sub Sun }) as very low mass stars (104, 0.25-0.072 M{sub Sun }). Based on Spitzer data, we derive a disk frequency of {approx}40% for very low mass stars, brown dwarfs, and planetary-mass objects in {sigma} Orionis. The radial density distributions of these three mass intervals are alike: all are spatially concentrated within an effective radius of 12' (1.2 pc) around the multiple star {sigma} Ori, and no obvious segregation between disk-bearing and diskless objects is observed. Using the VISTA data and the Mayrit catalog, we derive the cluster mass spectrum ({Delta}N/{Delta}M {approx} M{sup -{alpha}}) from {approx}19 to 0.006 M{sub Sun} (VISTA ZJ completeness), which is reasonably described by two power-law expressions with indices of {alpha} = 1.7 {+-} 0.2 for M > 0.35 M{sub Sun }, and {alpha} = 0.6 {+-} 0.2 for M < 0.35 M{sub Sun }. The {sigma} Orionis mass spectrum smoothly extends into the planetary-mass regime down to 0.004 M{sub Sun }. Our findings of T-type sources (<0.004 M{sub Sun }) in the VISTA {sigma} Orionis exploration appear to be smaller than what is predicted by the extrapolation of the cluster mass spectrum down to the survey J
Proximity functions for general right cylinders
International Nuclear Information System (INIS)
Kellerer, A.M.
1981-01-01
Distributions of distances between pairs of points within geometrical objects, or the closely related proximity functions and geometric reduction factors, have applications to dosimetric and microdosimetric calculations. For convex bodies these functions are linked to the chord-length distributions that result from random intersections by straight lines. A synopsis of the most important relations is given. The proximity functions and related functions are derived for right cylinders with arbitrary cross sections. The solution utilizes the fact that the squares of the distances between two random points are sums of independently distributed squares of distances parallel and perpendicular to the axis of the cylinder. Analogous formulas are derived for the proximity functions or geometric reduction factors for a cylinder relative to a point. This requires only a minor modification of the solution
Transmuted Lindley-Geometric Distribution and its applications
Merovci, Faton; Elbatal, Ibrahim
2013-01-01
A functional composition of the cumulative distribution function of one probability distribution with the inverse cumulative distribution function of another is called the transmutation map. In this article, we will use the quadratic rank transmutation map (QRTM) in order to generate a flexible family of probability distributions taking Lindley geometric distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. It will be show...
Moving walls and geometric phases
Energy Technology Data Exchange (ETDEWEB)
Facchi, Paolo, E-mail: paolo.facchi@ba.infn.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Garnero, Giancarlo, E-mail: giancarlo.garnero@uniba.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Marmo, Giuseppe [Dipartimento di Scienze Fisiche and MECENAS, Università di Napoli “Federico II”, I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); Samuel, Joseph [Raman Research Institute, 560080 Bangalore (India)
2016-09-15
We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity. For these boundary conditions we compute explicitly the geometric phase two-form on the parameter space. The unboundedness of the Hamiltonian describing the system leads to a natural prescription of renormalization for divergent contributions arising from the boundary.
Geometric Topology and Shape Theory
Segal, Jack
1987-01-01
The aim of this international conference the third of its type was to survey recent developments in Geometric Topology and Shape Theory with an emphasis on their interaction. The volume contains original research papers and carefully selected survey of currently active areas. The main topics and themes represented by the papers of this volume include decomposition theory, cell-like mappings and CE-equivalent compacta, covering dimension versus cohomological dimension, ANR's and LCn-compacta, homology manifolds, embeddings of continua into manifolds, complement theorems in shape theory, approximate fibrations and shape fibrations, fibered shape, exact homologies and strong shape theory.
Geometric approach to soliton equations
International Nuclear Information System (INIS)
Sasaki, R.
1979-09-01
A class of nonlinear equations that can be solved in terms of nxn scattering problem is investigated. A systematic geometric method of exploiting conservation laws and related equations, the so-called prolongation structure, is worked out. The nxn problem is reduced to nsub(n-1)x(n-1) problems and finally to 2x2 problems, which have been comprehensively investigated recently by the author. A general method of deriving the infinite numbers of polynomial conservation laws for an nxn problem is presented. The cases of 3x3 and 2x2 problems are discussed explicitly. (Auth.)
Field guide to geometrical optics
Greivenkamp, John E
2004-01-01
This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.
Geometric phase from dielectric matrix
International Nuclear Information System (INIS)
Banerjee, D.
2005-10-01
The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)
A history of geometrical methods
Coolidge, Julian Lowell
2013-01-01
Full and authoritative, this history of the techniques for dealing with geometric questions begins with synthetic geometry and its origins in Babylonian and Egyptian mathematics; reviews the contributions of China, Japan, India, and Greece; and discusses the non-Euclidean geometries. Subsequent sections cover algebraic geometry, starting with the precursors and advancing to the great awakening with Descartes; and differential geometry, from the early work of Huygens and Newton to projective and absolute differential geometry. The author's emphasis on proofs and notations, his comparisons betwe
International Nuclear Information System (INIS)
Barragan M, A.M.; Martin del Campo M, C.; Palomera P, M.A.
2005-01-01
A methodology based on Fuzzy Logic for the construction of the objective function of the optimization problems of nuclear fuel is described. It was created an inference system that responds, in certain form, as a human expert when it has the task of qualifying different radial designs of fuel cells. Specifically it is detailed how an inference system based based on Fuzzy Logic that has five enter variables and one exit variable was built, which corresponds to the objective function for the radial design of a fuel cell for a BWR. The use of Fuzzy with Mat lab offered the visualization capacity of the exit variable in function of one or two enter variables at the same time. This allowed to build, in appropriate way, the combination of the inference rules and the membership functions of those diffuse sets used for each one of the enter variables. The obtained objective function was used in an optimization process based on Taboo search. The new methodology was proven for the design of a cell used in a fuel assemble of the Laguna Verde reactor obtaining excellent results. (Author)
Symmetry analysis of talus bone: A Geometric morphometric approach.
Islam, K; Dobbe, A; Komeili, A; Duke, K; El-Rich, M; Dhillon, S; Adeeb, S; Jomha, N M
2014-01-01
The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139-45.
Zimmermann, Kathrin; Eschen, Anne
2017-04-01
Object-location memory (OLM) enables us to keep track of the locations of objects in our environment. The neurocognitive model of OLM (Postma, A., Kessels, R. P. C., & Van Asselen, M. (2004). The neuropsychology of object-location memory. In G. L. Allen (Ed.), Human spatial memory: Remembering where (pp. 143-160). Mahwah, NJ: Lawrence Erlbaum, Postma, A., Kessels, R. P. C., & Van Asselen, M. (2008). How the brain remembers and forgets where things are: The neurocognition of object-location memory. Neuroscience & Biobehavioral Reviews, 32, 1339-1345. doi: 10.1016/j.neubiorev.2008.05.001 ) proposes that distinct brain regions are specialised for different subprocesses of OLM (object processing, location processing, and object-location binding; categorical and coordinate OLM; egocentric and allocentric OLM). It was based mainly on findings from lesion studies. However, recent episodic memory studies point to a contribution of additional or different brain regions to object and location processing within episodic OLM. To evaluate and update the neurocognitive model of OLM, we therefore conducted a systematic literature search for lesion as well as functional neuroimaging studies contrasting small-space episodic OLM with object memory or location memory. We identified 10 relevant lesion studies and 8 relevant functional neuroimaging studies. We could confirm some of the proposals of the neurocognitive model of OLM, but also differing hypotheses from episodic memory research, about which brain regions are involved in the different subprocesses of small-space episodic OLM. In addition, we were able to identify new brain regions as well as important research gaps.
DEFF Research Database (Denmark)
Geertsen, Svend Sparre; Thomas, Richard; Larsen, Malte Nejst
2016-01-01
the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between...... sustained attention (Pmemory (Pmemory, episodic memory, sustained attention and processing speed were all associated with better performance in mathematics and reading...
DEFF Research Database (Denmark)
Demirel, Mehmet C.; Mai, Juliane; Mendiguren Gonzalez, Gorka
2018-01-01
selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient...
White, Tobin
2009-01-01
This paper introduces an applied problem-solving task, set in the context of cryptography and embedded in a network of computer-based tools. This designed learning environment engaged students in a series of collaborative problem-solving activities intended to introduce the topic of functions through a set of linked representations. In a…
Farris, Emily A; Ring, Jeremiah; Black, Jeffrey; Lyon, G Reid; Odegard, Timothy N
2016-04-01
An object rhyming task that does not require text reading and is suitable for younger children was used to predict gains in word level reading skills following an intensive 2-year reading intervention for children with developmental dyslexia. The task evoked activation in bilateral inferior frontal regions. Growth in untimed pseudoword reading was associated with increased pre-intervention activation of the left inferior frontal gyrus, and growth in timed word reading was associated with pre-intervention activation of the left and right inferior frontal gyri. These analyses help identify pre-intervention factors that facilitate reading skill improvements in children with developmental dyslexia.
Effect analysis of geometric parameters of floating raft on isolation performance
Directory of Open Access Journals (Sweden)
LI Shangda
2017-12-01
Full Text Available [Objectives] This paper focuses on the effects of the geometric parameters of a floating raft on isolation performance.[Methods] Based on the idea that the weight of a floating raft remains constant, a parametric finite element model is established using geometric parameters, and the effects of the geometric parameters when isolation performance is measured by vibration level difference are discussed.[Results] The effects of the geometric parameters of a floating raft on isolation performance are mainly reflected in the middle and high frequency areas. The most important geometric parameters which have an impact on isolation performance are the raft's height, length to width ratio and number of ribs. Adjusting the geometric parameters of the raft is one effective way to avoid the vibration frequency of mechanical equipment.[Conclusions] This paper has some practical value for the engineering design of floating raft isolation systems.
Improvement of the R-SWAT-FME framework to support multiple variables and multi-objective functions
Wu, Yiping; Liu, Shu-Guang
2014-01-01
Application of numerical models is a common practice in the environmental field for investigation and prediction of natural and anthropogenic processes. However, process knowledge, parameter identifiability, sensitivity, and uncertainty analyses are still a challenge for large and complex mathematical models such as the hydrological/water quality model, Soil and Water Assessment Tool (SWAT). In this study, the previously developed R program language-SWAT-Flexible Modeling Environment (R-SWAT-FME) was improved to support multiple model variables and objectives at multiple time steps (i.e., daily, monthly, and annually). This expansion is significant because there is usually more than one variable (e.g., water, nutrients, and pesticides) of interest for environmental models like SWAT. To further facilitate its easy use, we also simplified its application requirements without compromising its merits, such as the user-friendly interface. To evaluate the performance of the improved framework, we used a case study focusing on both streamflow and nitrate nitrogen in the Upper Iowa River Basin (above Marengo) in the United States. Results indicated that the R-SWAT-FME performs well and is comparable to the built-in auto-calibration tool in multi-objective model calibration. Overall, the enhanced R-SWAT-FME can be useful for the SWAT community, and the methods we used can also be valuable for wrapping potential R packages with other environmental models.
Object orientation affects spatial language comprehension.
Burigo, Michele; Sacchi, Simona
2013-01-01
Typical spatial descriptions, such as "The car is in front of the house," describe the position of a located object (LO; e.g., the car) in space relative to a reference object (RO) whose location is known (e.g., the house). The orientation of the RO affects spatial language comprehension via the reference frame selection process. However, the effects of the LO's orientation on spatial language have not received great attention. This study explores whether the pure geometric information of the LO (e.g., its orientation) affects spatial language comprehension using placing and production tasks. Our results suggest that the orientation of the LO influences spatial language comprehension even in the absence of functional relationships. Copyright © 2013 Cognitive Science Society, Inc.
Image understanding using geometric context
Zhang, Xiaochun; Liu, Chuancai
2017-07-01
A Gibbs Sampler based topic model for image annotation, which takes into account the interaction between visual geometric context and related topic, is presented. Most of the existing topic models for scene annotation use segmentation-based algorithm. However, topic models using segmentation algorithm alone sometimes can produce erroneous results when used to annotate real-life scene pictures. Therefore, our algorithm makes use of peaks of image surface instead of segmentation regions. Existing approaches use SIFT algorithm and treat the peaks as round blob features. In this paper, the peaks are treated as anisotropic blob features, which models low level visual elements more precisely. In order to better utilize visual features, our model not only takes into consideration visual codeword, but also considers influence of visual properties to topic formation, such as orientation, width, length and color. The basic idea is based on the assumption that different topics will produce distinct visual appearance, and different visual appearance is helpful to distinguish topics. During the learning stage, each topic will be associated with a set of distributions of visual properties, which depicts appearance of the topic. This paper considers more geometric properties, which will reduce topic uncertainty and learn the images better. Tested with Corel5K, SAIAPR-TC12 and Espgame100k Datasets, our method performs moderately better than some state of the arts methods.
Practical application of the geometric geoid for heighting over ...
African Journals Online (AJOL)
This is because a geoid model is required to convert ellipsoidal heights to orthometric heights that are used in practice. A local geometric geoid ... The geoid height is expressed as a function of the local plane coordinates through a biquadratic surface polynomial, using 14 GPS/levelling points. Five points have been used ...
A geometrical approach to free-field quantization
International Nuclear Information System (INIS)
Tabensky, R.; Valle, J.W.F.
1977-01-01
A geometrical approach to the quantization of free relativistic fields is given. Complex probability amplitudes are assigned to the solutions of the classical evolution equation. It is assumed that the evolution is stricly classical, according to the scalar unitary representation of the Poincare group in a functional space. The theory is equivalent to canonical quantization [pt
A geometric model for magnetizable bodies with internal variables
Directory of Open Access Journals (Sweden)
Restuccia, L
2005-11-01
Full Text Available In a geometrical framework for thermo-elasticity of continua with internal variables we consider a model of magnetizable media previously discussed and investigated by Maugin. We assume as state variables the magnetization together with its space gradient, subjected to evolution equations depending on both internal and external magnetic fields. We calculate the entropy function and necessary conditions for its existence.
Complementary Huygens principle for geometrical and nongeometrical optics
International Nuclear Information System (INIS)
Luis, Alfredo
2007-01-01
We develop a fundamental principle depicting the generalized ray formulation of optics provided by the Wigner function. This principle is formally identical to the Huygens-Fresnel principle but in terms of opposite concepts, rays instead of waves, and incoherent superpositions instead of coherent ones. This ray picture naturally includes diffraction and interference, and provides a geometrical picture of the degree of coherence
Epsilon Systems on Geometric Crystals of type A_n
Directory of Open Access Journals (Sweden)
Toshiki Nakashima
2010-03-01
Full Text Available We introduce an epsilon system on a geometric crystal of type A_n, which is a certain set of rational functions with some nice properties. We shall show that it is equipped with a product structure and that it is invariant under the action of tropical R maps.
Analysis on the geometrical shape of T-honeycomb structure by finite element method (FEM)
Zain, Fitri; Rosli, Muhamad Farizuan; Effendi, M. S. M.; Abdullah, Mohamad Hariri
2017-09-01
Geometric in design is much related with our life. Each of the geometrical structure interacts with each other. The overall shape of an object contains other shape inside, and there shapes create a relationship between each other in space. Besides that, how geometry relates to the function of the object have to be considerate. In this project, the main purpose was to design the geometrical shape of modular furniture with the shrinking of Polyethylene Terephthalate (PET) jointing system that has good strength when applied load on it. But, the goal of this paper is focusing on the analysis of Static Cases by FEM of the hexagonal structure to obtain the strength when load apply on it. The review from the existing product has many information and very helpful to finish this paper. This project focuses on hexagonal shape that distributed to become a shelf inspired by honeycomb structure. It is very natural look and simple in shape and its modular structure more easily to separate and combine. The method discusses on chapter methodology are the method used to analysis the strength when the load applied to the structure. The software used to analysis the structure is Finite Element Method from CATIA V5R21 software. Bending test is done on the jointing part between the edges of the hexagonal shape by using Universal Tensile Machine (UTM). The data obtained have been calculate by bending test formulae and sketch the graph between flexural strains versus flexural stress. The material selection of the furniture is focused on wood. There are three different types of wood such as balsa, pine and oak, while the properties of jointing also be mentioned in this thesis. Hence, the design structural for honeycomb shape already have in the market but this design has main objective which has a good strength that can withstand maximum load and offers more potentials in the form of furniture.