WorldWideScience

Sample records for geodetic reference frame

  1. Geodetic precession or dragging of inertial frames?

    International Nuclear Information System (INIS)

    Ashby, N.; Shahid-Saless, B.

    1990-01-01

    In metric theories of gravity the principle of general covariance allows one to describe phenomena by means of any convenient choice of coordinate system. In this paper it is shown that in an appropriately chosen coordinate system, geodetic precession of a gyroscope orbiting a spherically symmetric, spinning mass can be recast as a Lense-Thirring frame-dragging effect without invoking spatial curvature. The origin of this reference frame moves around the source but the frame axes point in fixed directions. The drag can be interpreted to arise from the orbital angular momentum of the source around the origin of the reference frame. In this reference frame the effects of geodetic precession and Lense-Thirring drag due to intrinsic angular momentum of the source have the same origin, namely, gravitomagnetism

  2. NChina16: A stable geodetic reference frame for geological hazard studies in North China

    Science.gov (United States)

    Wang, Guoquan; Bao, Yan; Gan, Weijun; Geng, Jianghui; Xiao, Gengru; Shen, Jack S.

    2018-04-01

    We have developed a stable North China Reference Frame 2016 (NChina16) using five years of continuous GPS observations (2011.8-2016.8) from 12 continuously operating reference stations (CORS) fixed to the North China Craton. Applications of NChina16 in landslide and subsidence studies are illustrated in this article. A method for realizing a regional geodetic reference frame is introduced. The primary result of this study is the seven parameters for transforming Cartesian ECEF (Earth-Centered, Earth-Fixed) coordinates X, Y, and Z from the International GNSS Service Reference Frame 2008 (IGS08) to NChina16. The seven parameters include the epoch that is used to align the regional reference frame to IGS08 and the time derivatives of three translations and three rotations. The GIPSY-OASIS (V6.4) software package was used to obtain the precise point positioning (PPP) daily solutions with respect to IGS08. The frame stability of NChina16 is approximately 0.5 mm/year in both horizontal and vertical directions. This study also developed a regional model for correcting seasonal motions superimposed into the vertical component of the GPS-derived displacement time series. Long-term GPS observations (1999-2016) from five CORS in North China were used to develop the seasonal model. According to this study, the PPP daily solutions with respect to NChina16 could achieve 2-3 mm horizontal accuracy and 4-5 mm vertical accuracy after being modified by the regional model. NChina16 will be critical to study geodynamic problems in North China, such as earthquakes, faulting, subsidence, and landslides. The regional reference frame will be periodically updated every few years to mitigate degradation of the frame with time and be synchronized with the update of IGS reference frame.

  3. Multi-geodetic characterization of the seasonal signal at the CERGA geodetic reference, France

    Science.gov (United States)

    Memin, A.; Viswanathan, V.; Fienga, A.; Santamaría-Gómez, A.; Boy, J. P.

    2016-12-01

    Crustal deformations due to surface-mass loading account for a significant part of the variability in geodetic time series. A perfect understanding of the loading signal observed by geodetic techniques should help in improving terrestrial reference frame (TRF) realizations. Yet, discrepancies between crustal motion estimates from models of surface-mass loading and observations are still too large so that no model is currently recommended by the IERS for reducing the data. We investigate the discrepancy observed in the seasonal variations of the CERGA station, South of France.We characterize the seasonal motions of the reference geodetic station CERGA from GNSS, SLR and LLR. We compare the station motion observed with GNSS and SLR and we estimate changes in the station-to-the-moon distance using an improved processing strategy. We investigate the consistency between these geodetic techniques and compare the observed station motion with that estimated using models of surface-mass change. In that regard, we compute atmospheric loading effects using surface pressure fields from ECMWF, assuming an ocean response according to the classical inverted barometer (IB) assumption, considered to be valid for periods typically exceeding a week. We also used general circulation ocean models (ECCO and GLORYS) forced by wind, heat and fresh water fluxes. The continental water storage is described using GLDAS/Noah and MERRA-land models.Using the surface-mass models, we estimate the amplitude of the seasonal vertical motion of the CERGA station ranging between 5 and 10 mm with a maximum reached in August, mostly due to hydrology. The horizontal seasonal motion of the station may reach up to 3 mm. Such a station motion should induce a change in the distance to the moon reaching up to 10 mm, large enough to be detected in LLR time series and compared to GNSS- and SLR-derived motion.

  4. Co-location of space geodetic techniques carried out at the Geodetic Observatory Wettzell using a closure in time and a multi-technique reference target

    Science.gov (United States)

    Kodet, J.; Schreiber, K. U.; Eckl, J.; Plötz, C.; Mähler, S.; Schüler, T.; Klügel, T.; Riepl, S.

    2018-01-01

    The quality of the links between the different space geodetic techniques (VLBI, SLR, GNSS and DORIS) is still one of the major limiting factors for the realization of a unique global terrestrial reference frame that is accurate enough to allow the monitoring of the Earth system, i.e., of processes like sea level change, postglacial rebound and silent earthquakes. According to the specifications of the global geodetic observing system of the International Association of Geodesy, such a reference frame should be accurate to 1 mm over decades, with rates of change stable at the level of 0.1 mm/year. The deficiencies arise from inaccurate or incomplete local ties at many fundamental sites as well as from systematic instrumental biases in the individual space geodetic techniques. Frequently repeated surveys, the continuous monitoring of antenna heights and the geometrical mount stability (Lösler et al. in J Geod 90:467-486, 2016. https://doi.org/10.1007/s00190-016-0887-8) have not provided evidence for insufficient antenna stability. Therefore, we have investigated variations in the respective system delays caused by electronic circuits, which is not adequately captured by the calibration process, either because of subtle differences in the circuitry between geodetic measurement and calibration, high temporal variability or because of lacking resolving bandwidth. The measured system delay variations in the electric chain of both VLBI- and SLR systems reach the order of 100 ps, which is equivalent to 3 cm of path length. Most of this variability is usually removed by the calibrations but by far not all. This paper focuses on the development of new technologies and procedures for co-located geodetic instrumentation in order to identify and remove systematic measurement biases within and between the individual measurement techniques. A closed-loop optical time and frequency distribution system and a common inter-technique reference target provide the possibility to remove

  5. A new velocity field for Africa from combined GPS and DORIS space geodetic Solutions: Contribution to the definition of the African reference frame (AFREF)

    Science.gov (United States)

    Saria, E.; Calais, E.; Altamimi, Z.; Willis, P.; Farah, H.

    2013-04-01

    We analyzed 16 years of GPS and 17 years of Doppler orbitography and radiopositioning integrated by satellite (DORIS) data at continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. The resulting velocity field describes horizontal and vertical motion at 133 GPS sites and 9 DORIS sites. Horizontal velocities at sites located on stable Nubia fit a single plate model with a weighted root mean square residual of 0.6 mm/yr (maximum residual 1 mm/yr), an upper bound for plate-wide motions and for regional-scale deformation in the seismically active southern Africa and Cameroon volcanic line. We confirm significant southward motion ( ˜ 1.5 mm/yr) in Morocco with respect to Nubia, consistent with earlier findings. We propose an updated angular velocity for the divergence between Nubia and Somalia, which provides the kinematic boundary conditions to rifting in East Africa. We update a plate motion model for the East African Rift and revise the counterclockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. Vertical velocities range from - 2 to +2 mm/yr, close to their uncertainties, with no clear geographic pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). Except for a few regions, the African continent remains largely under-sampled by continuous space geodetic data. Efforts are needed to augment the geodetic infrastructure and openly share existing data sets so that the objectives of AFREF can be fully reached.

  6. Uvođenje novih geodetskih referentnih sistema u Bosni i Hercegovini : Introduction of a new geodetic reference systems in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Šeho Zimić

    2017-12-01

    Full Text Available The introduction of a new reference system in Bosnia and Herzegovina is not only a necessity, but an obligation imposed by the United Nations (UN and the European Union (EU. At the General Assembly on February 26, 2015, the UN has adopted a resolution titled "Global Geodetic Reference Frame for Sustainable Development - GGRF", which for the first time raise the geodetic issue as a political issue at such a high level. The resolution highlights the strong need for more precise positioning and navigation from the use of smartphones to the study of climate changes, population migrations and other scientific researches of relevance to the whole world (http://www.unggrf.org/. All this is not possible without a global exchange of geodata and a common global geodetic reference system. Through the Inspire Directive, the EU has clearly specified which coordinate and heights systems are being applied in Europe. The countries in the region have adopted the European terrestrial reference system ETRS89 as a new reference system in their legislation. Through the EUREF campaign BALKAN98 and the introduction of the Network of permanent GNSS stations Bosnia and Herzegovina has joined the famil

  7. A Modernized National Spatial Reference System in 2022: Focus on the Caribbean Terrestrial Reference Frame

    Science.gov (United States)

    Roman, D. R.

    2017-12-01

    In 2022, the National Geodetic Survey will replace all three NAD 83 reference frames the four new terrestrial reference frames. Each frame will be named after a tectonic plate (North American, Pacific, Caribbean and Mariana) and each will be related to the IGS frame through three Euler Pole parameters (EPPs). This talk will focus on practical application in the Caribbean region. A working group is being re-established for development of the North American region and will likely also result in analysis of the Pacific region as well. Both of these regions are adequately covered with existing CORS sites to model the EPPs. The Mariana region currently lacks sufficient coverage, but a separate project is underway to collect additional information to help in defining EPPs for that region at a later date. The Caribbean region has existing robust coverage through UNAVCO's COCONet and other data sets, but these require further analysis. This discussion will focus on practical examination of Caribbean sites to establish candidates for determining the Caribbean frame EPPs as well as an examination of any remaining velocities that might inform a model of the remaining velocities within that frame (Intra-Frame Velocity Model). NGS has a vested interest in defining such a model to meet obligations to U.S. citizens in Puerto Rico and the U.S. Virgin Islands. Beyond this, NGS aims to collaborate with other countries in the region through efforts with SIRGAS and UN-GGIM-Americas for a more acceptable regional model to serve everyone's needs.

  8. Time Biases in laser ranging measurements; impacts on geodetic products (Reference Frame and Orbitography)

    Science.gov (United States)

    Belli, A.; Exertier, P.; Lemoine, F. G.; Chinn, D. S.; Zelensky, N. P.

    2017-12-01

    The GGOS objectives are to maintain a geodetic network with an accuracy of 1 mm and a stability of 0.1 mm per year. For years, the laser ranging technique, which provide very accurate absolute distances to geodetic targets enable to determine the scale factor as well as coordinates of the geocenter. In order to achieve this goal, systematic errors appearing in the laser ranging measurements must be considered and solved. In addition to Range Bias (RB), which is the primary source of uncertainty of the technique, Time Bias (TB) has been recently detected by using the Time Transfer by Laser Link (T2L2) space instrument capability on-board the satellite Jason-2. Instead of determining TB through the precise orbit determination that is applied to commonly used geodetic targets like LAGEOS to estimate global geodetic products, we have developed, independently, a dedicated method to transfer time between remote satellite laser ranging stations. As a result, the evolving clock phase shift to UTC of around 30 stations has been determined under the form of time series of time bias per station from 2008 to 2016 with an accuracy of 3-4 ns. It demonstrated the difficulty, in terms of Time & Frequency used technologies, to locally maintain accuracy and long term stability at least in the range of 100 ns that is the current requirement for time measurements (UTC) for the laser ranging technique. Because some laser ranging stations oftently exceed this limit (from 100 ns to a few μs) we have been studying these effects first on the precision orbit determination itself, second on the station positioning. We discuss the impact of TB on LAGEOS and Jason-2 orbits, which appears to affect the along-track component essentially. We also investigate the role of TB in global geodetic parameters as the station coordinates. Finally, we propose to provide the community with time series of time bias of laser ranging stations, under the form of a data- handling-file in order to be included in

  9. Changing quantum reference frames

    OpenAIRE

    Palmer, Matthew C.; Girelli, Florian; Bartlett, Stephen D.

    2013-01-01

    We consider the process of changing reference frames in the case where the reference frames are quantum systems. We find that, as part of this process, decoherence is necessarily induced on any quantum system described relative to these frames. We explore this process with examples involving reference frames for phase and orientation. Quantifying the effect of changing quantum reference frames serves as a first step in developing a relativity principle for theories in which all objects includ...

  10. Assessment of the possible contribution of space ties on-board GNSS satellites to the terrestrial reference frame

    Science.gov (United States)

    Bruni, Sara; Rebischung, Paul; Zerbini, Susanna; Altamimi, Zuheir; Errico, Maddalena; Santi, Efisio

    2018-04-01

    The realization of the international terrestrial reference frame (ITRF) is currently based on the data provided by four space geodetic techniques. The accuracy of the different technique-dependent materializations of the frame physical parameters (origin and scale) varies according to the nature of the relevant observables and to the impact of technique-specific errors. A reliable computation of the ITRF requires combining the different inputs, so that the strengths of each technique can compensate for the weaknesses of the others. This combination, however, can only be performed providing some additional information which allows tying together the independent technique networks. At present, the links used for that purpose are topometric surveys (local/terrestrial ties) available at ITRF sites hosting instruments of different techniques. In principle, a possible alternative could be offered by spacecrafts accommodating the positioning payloads of multiple geodetic techniques realizing their co-location in orbit (space ties). In this paper, the GNSS-SLR space ties on-board GPS and GLONASS satellites are thoroughly examined in the framework of global reference frame computations. The investigation focuses on the quality of the realized physical frame parameters. According to the achieved results, the space ties on-board GNSS satellites cannot, at present, substitute terrestrial ties in the computation of the ITRF. The study is completed by a series of synthetic simulations investigating the impact that substantial improvements in the volume and quality of SLR observations to GNSS satellites would have on the precision of the GNSS frame parameters.

  11. The Global Geodetic Observing System: Recent Activities and Accomplishments

    Science.gov (United States)

    Gross, R. S.

    2017-12-01

    The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) provides the basis on which future advances in geosciences can be built. By considering the Earth system as a whole (including the geosphere, hydrosphere, cryosphere, atmosphere and biosphere), monitoring Earth system components and their interactions by geodetic techniques and studying them from the geodetic point of view, the geodetic community provides the global geosciences community with a powerful tool consisting mainly of high-quality services, standards and references, and theoretical and observational innovations. The mission of GGOS is: (a) to provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution; (b) to provide the global frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications; and (c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. The goals of GGOS are: (1) to be the primary source for all global geodetic information and expertise serving society and Earth system science; (2) to actively promote, sustain, improve, and evolve the integrated global geodetic infrastructure needed to meet Earth science and societal requirements; (3) to coordinate with the international geodetic services that are the main source of key parameters and products needed to realize a stable global frame of reference and to observe and study changes in the dynamic Earth system; (4) to communicate and advocate the benefits of GGOS to user communities, policy makers, funding organizations, and society. In order to accomplish its mission and goals, GGOS depends on the IAG Services, Commissions, and Inter-Commission Committees. The Services provide the infrastructure and products on which all contributions

  12. Consistent realization of Celestial and Terrestrial Reference Frames

    Science.gov (United States)

    Kwak, Younghee; Bloßfeld, Mathis; Schmid, Ralf; Angermann, Detlef; Gerstl, Michael; Seitz, Manuela

    2018-03-01

    The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005-2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of Δ UT1 results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several μas. Moreover, the CRF is influenced by up to 50 μas if the station coordinates and EOP are dominated by the satellite techniques.

  13. Verification of Positional Accuracy of ZVS3003 Geodetic Control ...

    African Journals Online (AJOL)

    The International GPS Service (IGS) has provided GPS orbit products to the scientific community with increased precision and timeliness. Many users interested in geodetic positioning have adopted the IGS precise orbits to achieve centimeter level accuracy and ensure long-term reference frame stability. Positioning with ...

  14. GEOdetic Data assimilation and EStimation of references for climate change InvEstigation. An overall presentation of the French GEODESIE project

    Science.gov (United States)

    Nahmani, S.; Coulot, D.; Biancale, R.; Bizouard, C.; Bonnefond, P.; Bouquillon, S.; Collilieux, X.; Deleflie, F.; Garayt, B.; Lambert, S. B.; Laurent-Varin, S.; Marty, J. C.; Mercier, F.; Metivier, L.; Meyssignac, B.; Pollet, A.; Rebischung, P.; Reinquin, F.; Richard, J. Y.; Tertre, F.; Woppelmann, G.

    2017-12-01

    Many major indicators of climate change are monitored with space observations. This monitoring is highly dependent on references that only geodesy can provide. The current accuracy of these references does not permit to fully support the challenges that the constantly evolving Earth system gives rise to, and can consequently limit the accuracy of these indicators. Thus, in the framework of the GGOS, stringent requirements are fixed to the International Terrestrial Reference Frame (ITRF) for the next decade: an accuracy at the level of 1 mm and a stability at the level of 0.1 mm/yr. This means an improvement of the current quality of ITRF by a factor of 5-10. Improving the quality of the geodetic references is an issue which requires a thorough reassessment of the methodologies involved. The most relevant and promising method to improve this quality is the direct combination of the space-geodetic measurements used to compute the official references of the IERS. The GEODESIE project aims at (i) determining highly-accurate global and consistent references and (ii) providing the geophysical and climate research communities with these references, for a better estimation of geocentric sea level rise, ice mass balance and on-going climate changes. Time series of sea levels computed from altimetric data and tide gauge records with these references will also be provided. The geodetic references will be essential bases for Earth's observation and monitoring to support the challenges of the century. The geocentric time series of sea levels will permit to better apprehend (i) the drivers of the global mean sea level rise and of regional variations of sea level and (ii) the contribution of the global climate change induced by anthropogenic greenhouse gases emissions to these drivers. All the results and computation and quality assessment reports will be available at geodesie_anr.ign.fr.This project, supported by the French Agence Nationale de la Recherche (ANR) for the period

  15. Optimal primitive reference frames

    International Nuclear Information System (INIS)

    Jennings, David

    2011-01-01

    We consider the smallest possible directional reference frames allowed and determine the best one can ever do in preserving quantum information in various scenarios. We find that for the preservation of a single spin state, two orthogonal spins are optimal primitive reference frames; and in a product state, they do approximately 22% as well as an infinite-sized classical frame. By adding a small amount of entanglement to the reference frame, this can be raised to 2(2/3) 5 =26%. Under the different criterion of entanglement preservation, a very similar optimal reference frame is found; however, this time it is for spins aligned at an optimal angle of 87 deg. In this case 24% of the negativity is preserved. The classical limit is considered numerically, and indicates under the criterion of entanglement preservation, that 90 deg. is selected out nonmonotonically, with a peak optimal angle of 96.5 deg. for L=3 spins.

  16. The Global Geodetic Observing System: Space Geodesy Networks for the Future

    Science.gov (United States)

    Pearlman, Michael; Pavlis, Erricos; Ma, Chopo; Altamini, Zuheir; Noll, Carey; Stowers, David

    2011-01-01

    Ground-based networks of co-located space geodetic techniques (VLBI, SLR, GNSS. and DORIS) are the basis for the development and maintenance of the International Terrestrial Reference frame (ITRF), which is our metric of reference for measurements of global change, The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at 1 mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence, but other applications are not far behind. Recent studies including one by the US National Research Council has strongly stated the need and the urgency for the fundamental space geodesy network. Simulations are underway to examining accuracies for origin, scale and orientation of the resulting ITRF based on various network designs and system performance to determine the optimal global network to achieve this goal. To date these simulations indicate that 24 - 32 co-located stations are adequate to define the reference frame and a more dense GNSS and DORIS network will be required to distribute the reference frame to users anywhere on Earth. Stations in the new global network will require geologically stable sites with good weather, established infrastructure, and local support and personnel. GGOS wil seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to contribute in the network implementation and operation. Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in

  17. CONSTRUCTION THEORY AND NOISE ANALYSIS METHOD OF GLOBAL CGCS2000 COORDINATE FRAME

    Directory of Open Access Journals (Sweden)

    Z. Jiang

    2018-04-01

    Full Text Available The definition, renewal and maintenance of geodetic datum has been international hot issue. In recent years, many countries have been studying and implementing modernization and renewal of local geodetic reference coordinate frame. Based on the precise result of continuous observation for recent 15 years from state CORS (continuously operating reference system network and the mainland GNSS (Global Navigation Satellite System network between 1999 and 2007, this paper studies the construction of mathematical model of the Global CGCS2000 frame, mainly analyzes the theory and algorithm of two-step method for Global CGCS2000 Coordinate Frame formulation. Finally, the noise characteristic of the coordinate time series are estimated quantitatively with the criterion of maximum likelihood estimation.

  18. On the Assessment of Global Terrestrial Reference Frame Temporal Variations

    Science.gov (United States)

    Ampatzidis, Dimitrios; Koenig, Rolf; Zhu, Shengyuan

    2015-04-01

    Global Terrestrial Reference Frames (GTRFs) as the International Terrestrial Reference Frame (ITRF) provide reliable 4-D position information (3-D coordinates and their evolution through time). The given 3-D velocities play a significant role in precise position acquisition and are estimated from long term coordinate time series from the space-geodetic techniques DORIS, GNSS, SLR, and VLBI. GTRFs temporal evolution is directly connected with their internal stability: The more intense and inhomogeneous velocity field, the less stable TRF is derived. The assessment of the quality of the GTRF is mainly realized by comparing it to each individual technique's reference frame. E.g the comparison of GTRFs to SLR-only based TRF gives the sense of the ITRF stability with respect to the Geocenter and scale and their associated rates respectively. In addition, the comparison of ITRF to the VLBI-only based TRF can be used for the scale validation. However, till now there is not any specified methodology for the total assessment (in terms of origin, orientation and scale respectively) of the temporal evolution and GTRFs associated accuracy. We present a new alternative diagnostic tool for the assessment of GTRFs temporal evolution based on the well-known time-dependent Helmert type transformation formula (three shifts, three rotations and scale rates respectively). The advantage of the new methodology relies on the fact that it uses the full velocity field of the TRF and therefore all points not just the ones common to different techniques. It also examines simultaneously rates of origin, orientation and scale. The methodology is presented and implemented to the two existing GTRFs on the market (ITRF and DTRF which is computed from DGFI) , the results are discussed. The results also allow to compare directly each GTRF dynamic behavior. Furthermore, the correlations of the estimated parameters can also provide useful information to the proposed GTRFs assessment scheme.

  19. Postural adaptation of the spatial reference frames to microgravity: back to the egocentric reference frame.

    Directory of Open Access Journals (Sweden)

    Sébastien Viel

    Full Text Available BACKGROUND: In order to test how gravitational information would affect the choice of stable reference frame used to control posture and voluntary movement, we have analysed the forearm stabilisation during sit to stand movement under microgravity condition obtained during parabolic flights. In this study, we hypothesised that in response to the transient loss of graviceptive information, the postural adaptation might involve the use of several strategies of segmental stabilisation, depending on the subject's perceptual typology (dependence--independence with respect to the visual field. More precisely, we expected a continuum of postural strategies across subjects with 1 at one extreme the maintaining of an egocentric reference frame and 2 at the other the re-activation of childhood strategies consisting in adopting an egocentric reference frame. METHODOLOGY/PRINCIPAL FINDINGS: To check this point, a forearm stabilisation task combined with a sit to stand movement was performed with eyes closed by 11 subjects during parabolic flight campaigns. Kinematic data were collected during 1-g and 0-g periods. The postural adaptation to microgravity's constraint may be described as a continuum of strategies ranging from the use of an exo- to an egocentric reference frame for segmental stabilisation. At one extremity, the subjects used systematically an exocentric frame to control each of their body segments independently, as under normogravity conditions. At the other, the segmental stabilisation strategies consist in systematically adopting an egocentric reference frame to control their forearm's stabilisation. A strong correlation between the mode of segmental stabilisation used and the perceptual typology (dependence--independence with respect to the visual field of the subjects was reported. CONCLUSION: The results of this study show different subjects' typologies from those that use the forearm orientation in a mainly exocentric reference frame to

  20. The Influence of the Terrestrial Reference Frame on Studies of Sea Level Change

    Science.gov (United States)

    Nerem, R. S.; Bar-Sever, Y. E.; Haines, B. J.; Desai, S.; Heflin, M. B.

    2015-12-01

    The terrestrial reference frame (TRF) provides the foundation for the accurate monitoring of sea level using both ground-based (tide gauges) and space-based (satellite altimetry) techniques. For the latter, tide gauges are also used to monitor drifts in the satellite instruments over time. The accuracy of the terrestrial reference frame (TRF) is thus a critical component for both types of sea level measurements. The TRF is central to the formation of geocentric sea-surface height (SSH) measurements from satellite altimeter data. The computed satellite orbits are linked to a particular TRF via the assumed locations of the ground-based tracking systems. The manner in which TRF errors are expressed in the orbit solution (and thus SSH) is not straightforward, and depends on the models of the forces underlying the satellite's motion. We discuss this relationship, and provide examples of the systematic TRF-induced errors in the altimeter derived sea-level record. The TRF is also crucial to the interpretation of tide-gauge measurements, as it enables the separation of vertical land motion from volumetric changes in the water level. TRF errors affect tide gauge measurements through GNSS estimates of the vertical land motion at each tide gauge. This talk will discuss the current accuracy of the TRF and how errors in the TRF impact both satellite altimeter and tide gauge sea level measurements. We will also discuss simulations of how the proposed Geodetic Reference Antenna in SPace (GRASP) satellite mission could reduce these errors and revolutionize how reference frames are computed in general.

  1. Inertial reference frames and gravitational forces

    International Nuclear Information System (INIS)

    Santavy, I.

    1981-01-01

    The connection between different definitions of inertial, i.e. fundamental, reference frames and the corresponding characterisation of gravitational fields by gravitational forces are considered from the point of view of their possible interpretation in university introductory courses. The introduction of a special class of reference frames, denoted 'mixed reference frames' is proposed and discussed. (author)

  2. Future global SLR network evolution and its impact on the terrestrial reference frame

    Science.gov (United States)

    Kehm, Alexander; Bloßfeld, Mathis; Pavlis, Erricos C.; Seitz, Florian

    2018-06-01

    Satellite laser ranging (SLR) is an important technique that contributes to the determination of terrestrial geodetic reference frames, especially to the realization of the origin and the scale of global networks. One of the major limiting factors of SLR-derived reference frame realizations is the datum accuracy which significantly suffers from the current global SLR station distribution. In this paper, the impact of a potential future development of the SLR network on the estimated datum parameters is investigated. The current status of the SLR network is compared to a simulated potential future network featuring additional stations improving the global network geometry. In addition, possible technical advancements resulting in a higher amount of observations are taken into account as well. As a result, we find that the network improvement causes a decrease in the scatter of the network translation parameters of up to 24%, and up to 20% for the scale, whereas the technological improvement causes a reduction in the scatter of up to 27% for the translations and up to 49% for the scale. The Earth orientation parameters benefit by up to 15% from both effects.

  3. Physics of Non-Inertial Reference Frames

    International Nuclear Information System (INIS)

    Kamalov, Timur F.

    2010-01-01

    Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate of its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.

  4. ``Frames of Reference'' revisited

    Science.gov (United States)

    Steyn-Ross, Alistair; Ivey, Donald G.

    1992-12-01

    The PSSC teaching film, ``Frames of Reference,'' was made in 1960, and was one of the first audio-visual attempts at showing how your physical ``point of view,'' or frame of reference, necessarily alters both your perceptions and your observations of motion. The gentle humor and original demonstrations made a lasting impact on many audiences, and with its recent re-release as part of the AAPT Cinema Classics videodisc it is timely that we should review both the message and the methods of the film. An annotated script and photographs from the film are presented, followed by extension material on rotating frames which teachers may find appropriate for use in their classrooms: constructions, demonstrations, an example, and theory.

  5. Common Frame of Reference and social justice

    NARCIS (Netherlands)

    Hesselink, M.W.; Satyanarayana, R.

    2009-01-01

    The article "Common Frame of Reference and Social Justice" by Martijn W. Hesselink evaluates the Draft Common Frame of Reference (DCFR) of social justice. It discusses the important areas, namely a common frame of Reference in a broad sense, social justice and contract law, private law and

  6. Quantum frames of reference

    International Nuclear Information System (INIS)

    Kaufherr, T.

    1981-01-01

    The idea that only relative variables have physical meaning came to be known as Mach's principle. Carrying over this idea to quantum theory, has led to the consideration of finite mass, macroscopic reference frames, relative to which all physical quantities are measured. During the process of measurement, a finite mass observer receives a kickback, and this reaction of the measuring device is not negligible in quantum theory because of the quantization of the action. Hence, the observer himself has to be included in the system that is being considered. Using this as the starting point, a number of thought experiments involving finite mass observers is discussed which have quantum uncertainties in their time or in their position. These thought experiments serve to elucidate in a qualitative way some of the difficulties involved, as well as pointing out a direction to take in seeking solutions to them. When the discussion is extended to include more than one observer, the question of the covariance of the theory immediately arises. Because none of the frames of reference should be preferred, the theory should be covariant. This demand expresses an equivalence principle which here is extended to include reference frames which are in quantum uncertainties relative to each other. Formulating the problem in terms of canonical variables, the ensueing free Hamiltonian contains vector and scalar potentials which represent the kick that the reference frame receives during measurement. These are essentially gravitational type potentials, resulting, as it were, from the extension of the equivalence principle into the quantum domain

  7. Are all spatial reference frames egocentric? Reinterpreting evidence for allocentric, object-centered, or world-centered reference frames

    Directory of Open Access Journals (Sweden)

    Flavia eFilimon

    2015-12-01

    Full Text Available The use and neural representation of egocentric spatial reference frames is well documented. In contrast, whether the brain represents spatial relationships between objects in allocentric, object-centered, or world-centered coordinates is debated. Here, I review behavioral, neuropsychological, neurophysiological (neuronal recording, and neuroimaging evidence for and against allocentric, object-centered, or world-centered spatial reference frames. Based on theoretical considerations, simulations, and empirical findings from spatial navigation, spatial judgments, and goal-directed movements, I suggest that all spatial representations may in fact be dependent on egocentric reference frames.

  8. Post-Newtonian reference frames for advanced theory of the lunar motion and for a new generation of Lunar laser ranging

    International Nuclear Information System (INIS)

    Xie, Yi.; Kopeikin, S.

    2010-01-01

    We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging. We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter and spatial axes stretching up to infinity. The solar-system barycenter frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame. The secondary reference frame has its origin at the Earth-Moon barycenter. The Earth-Moon barycenter frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the Earth-Moon barycenter frame, does not contain the Coriolis and centripetal forces. Two other local frames-geocentric and seleno centric-have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the International Celestial Reference Frame because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of International Celestial Reference Frame after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion

  9. Quantum mechanics with respect to different reference frames

    International Nuclear Information System (INIS)

    Mangiarotti, L.; Sardanashvily, G.

    2007-01-01

    Geometric (Schroedinger) quantization of nonrelativistic mechanics with respect to different reference frames is considered. In classical nonrelativistic mechanics, a reference frame is represented by a connection on a configuration space fibered over a time axis R. Under quantization, it yields a connection on the quantum algebra of Schroedinger operators. The operators of energy with respect to different reference frames are examined

  10. Transformations between inertial and linearly accelerated frames of reference

    International Nuclear Information System (INIS)

    Ashworth, D.G.

    1983-01-01

    Transformation equations between inertial and linearly accelerated frames of reference are derived and these transformation equations are shown to be compatible, where applicable, with those of special relativity. The physical nature of an accelerated frame of reference is unambiguously defined by means of an equation which relates the velocity of all points within the accelerated frame of reference to measurements made in an inertial frame of reference. (author)

  11. Are All Spatial Reference Frames Egocentric? Reinterpreting Evidence for Allocentric, Object-Centered, or World-Centered Reference Frames

    OpenAIRE

    Filimon, Flavia

    2015-01-01

    The use and neural representation of egocentric spatial reference frames is well-documented. In contrast, whether the brain represents spatial relationships between objects in allocentric, object-centered, or world-centered coordinates is debated. Here, I review behavioral, neuropsychological, neurophysiological (neuronal recording), and neuroimaging evidence for and against allocentric, object-centered, or world-centered spatial reference frames. Based on theoretical considerations, simulati...

  12. The Australian Geodetic Observing Program. Current Status and Future Plans

    Science.gov (United States)

    Johnston, G.; Dawson, J. H.

    2015-12-01

    Over the last decade, the Australian government has through programs like AuScope, the Asia Pacific Reference Frame (APREF), and the Pacific Sea Level Monitoring (PSLM) Project made a significant contribution to the Global Geodetic Observing Program. In addition to supporting the national research priorities, this contribution is justified by Australia's growing economic dependence on precise positioning to underpin efficient transportation, geospatial data management, and industrial automation (e.g., robotic mining and precision agriculture) and the consequent need for the government to guarantee provision of precise positioning products to the Australian community. It is also well recognised within Australia that there is an opportunity to exploit our near unique position as being one of the few regions in the world to see all new and emerging satellite navigation systems including Galileo (Europe), GPS III (USA), GLONASS (Russia), Beidou (China), QZSS (Japan) and IRNSS (India). It is in this context that the Australian geodetic program will build on earlier efforts and further develop its key geodetic capabilities. This will include the creation of an independent GNSS analysis capability that will enable Australia to contribute to the International GNSS Service (IGS) and an upgrade of key geodetic infrastructure including the national VLBI and GNSS arrays. This presentation will overview the significant geodetic activities undertaken by the Australian government and highlight its future plans.

  13. Post-Newtonian Reference Frames For Advanced Theory Of The Lunar Motion And For A New Generation Of Lunar Laser Ranging

    International Nuclear Information System (INIS)

    Xie, Y.; Kopeikon, S.

    2010-01-01

    We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging (LLR). We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and , and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter (SSB) and spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame (ICRF). The secondary reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames geocentric (GRF) and selenocentric (SRF) have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of ICRF after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion, an observer on Earth, and a retro-reflector on Moon to directly measurable

  14. Current status of the EPOS WG4 - GNSS and Other Geodetic Data

    Science.gov (United States)

    Fernandes, Rui; Bastos, Luisa; Bruyninx, Carine; D'Agostino, Nicola; Dousa, Jan; Ganas, Athanassios; Lidberg, Martin; Nocquet, Jean-Mathieu

    2014-05-01

    WG4 - "EPOS Geodetic Data and Other Geodetic Data" is the Working Group of the EPOS project in charge of defining and preparing the integration of the existing Pan-European Geodetic Infrastructures that will support European Geosciences, which is the ultimate goal of the EPOS project. The WG4 is formed by representatives of the participating EPOS countries (23) but it is also open to the entire geodetic community. In fact, WG4 also already includes members from countries that formally are not integrating EPOS in this first step. The geodetic component of EPOS (WG4) is dealing essentially with Research Infrastructures focused on continuous operating GNSS (cGNSS) in the current phase. The option of concentrating the efforts on the presently most generalized geodetic tool supporting research on Solid Earth was decided in order to optimize the existing resources. Nevertheless, WG4 will continue to pursue the development of tools and methodologies that permit the access of the EPOS community to other geodetic information (e.g., gravimetry). Furthermore, although the focus is on Solid Earth applications, other research and technical applications (e.g., reference frames, meteorology, space weather) can also benefit from the efforts of WG4 EPOS towards the optimization of the geodetic resources in Europe. We will present and discuss the plans for the implementation of the thematic and core services (TCS) for geodetic data within EPOS and the related business plan. We will focus on strategies towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using transparent and uniform processes. Five pillars have been defined proposed for the TCS: Dissemination, Preservation, Monitoring, and Analysis of geodetic data plus the Support and Governance Infrastructure. Current proposals and remaining open questions will be discussed.

  15. Measuring the quality of a quantum reference frame: The relative entropy of frameness

    International Nuclear Information System (INIS)

    Gour, Gilad; Marvian, Iman; Spekkens, Robert W.

    2009-01-01

    In the absence of a reference frame for transformations associated with group G, any quantum state that is noninvariant under the action of G may serve as a token of the missing reference frame. We here present a measure of the quality of such a token: the relative entropy of frameness. This is defined as the relative entropy distance between the state of interest and the nearest G-invariant state. Unlike the relative entropy of entanglement, this quantity is straightforward to calculate, and we find it to be precisely equal to the G-asymmetry, a measure of frameness introduced by Vaccaro et al. It is shown to provide an upper bound on the mutual information between the group element encoded into the token and the group element that may be extracted from it by measurement. In this sense, it quantifies the extent to which the token successfully simulates a full reference frame. We also show that despite a suggestive analogy from entanglement theory, the regularized relative entropy of frameness is zero and therefore does not quantify the rate of interconversion between the token and some standard form of quantum reference frame. Finally, we show how these investigations yield an approach to bounding the relative entropy of entanglement.

  16. Results from the Geodetic Observatory TIGO due to the Mw 8.8 Earthquake

    Science.gov (United States)

    Hase, H.; Böer, A.; Sierk, B.; Ihde, J.; Weber, G.; Wilmes, H.; Falk, R.; Hessels, U.; Neumaier, P.; Söhne, W.; Wziontek, H.; Engelhard, G.; Sobarzo, S.; Cifuentes, O.; Guaitiao, C.; Cona, I.; Avendaño, M.; Herrera, C.; Mora, V.; Fernandez, A.; Oñate, E.; Zaror, P.; Pedreros, F.; Zapata, O.

    2010-12-01

    The Geodetic Observatory TIGO is unique in Latin America. With its sensors and instruments it defines a reference point in the time, space and gravity field domain. Its operation started in 2002, for which reason data series documented the preseismic situation very well. With the Mw 8.8 earthquake on February 27, 2010, the entire observatory was exposed to strong motions due to its closeness to the epicenter. Since then the postseismic behaviour of the subduction zone can be studied and compared with the preseismic situation. TIGO provided continuous GPS/GLONASS data with 1s samples which give an insight to the mechanism of the decoupling of the Nazca and the South-American plate. The displacement of more than 3m had a duration of 30s at the beginning of the 147s duration of the earthquake. The displacement could be confirmed afterwards with VLBI and SLR methods. TIGO used its absolute gravity meter in an unusual way with weekly measurements on the same monument. These data show an irregularity during the last 3 weeks before the earthquake. Finally the postseismic movement to the west triggered by the earthquake and registered by geodetic space techniques indicate that the western expansion of the South-American plate did not stop yet. The pre- and post-seismic displacement vectors differ by less than 180° which might be explained by a fractional strike slip in the mega thrust. The coincidence of the epicenter with one of the keystations for global reference frames showed deficiencies by the linear modelling of tectonical movements in terrestial reference frames. This problem calls for near-real time reference frames.

  17. Rigorous Combination of GNSS and VLBI: How it Improves Earth Orientation and Reference Frames

    Science.gov (United States)

    Lambert, S. B.; Richard, J. Y.; Bizouard, C.; Becker, O.

    2017-12-01

    Current reference series (C04) of the International Earth Rotation and Reference Systems Service (IERS) are produced by a weighted combination of Earth orientation parameters (EOP) time series built up by combination centers of each technique (VLBI, GNSS, Laser ranging, DORIS). In the future, we plan to derive EOP from a rigorous combination of the normal equation systems of the four techniques.We present here the results of a rigorous combination of VLBI and GNSS pre-reduced, constraint-free, normal equations with the DYNAMO geodetic analysis software package developed and maintained by the French GRGS (Groupe de Recherche en GeÌodeÌsie Spatiale). The used normal equations are those produced separately by the IVS and IGS combination centers to which we apply our own minimal constraints.We address the usefulness of such a method with respect to the classical, a posteriori, combination method, and we show whether EOP determinations are improved.Especially, we implement external validations of the EOP series based on comparison with geophysical excitation and examination of the covariance matrices. Finally, we address the potential of the technique for the next generation celestial reference frames, which are currently determined by VLBI only.

  18. Balinese Frame of Reference

    Directory of Open Access Journals (Sweden)

    I Nyoman Aryawibawa

    2016-04-01

    Full Text Available Abstract: Balinese Frame of Reference. Wassmann and Dasen (1998 did a study on the acquisition of Balinese frames of reference. They pointed out that, in addition to the dominant use of absolute system, the use of relative system was also observed. This article aims at verifying Wassmann and Dasen’ study. Employing monolingual Balinese speakers and using linguistic and non-linguistic tasks, Aryawibawa (2010, 2012, 2015 showed that Balinese subjects used an absolute system dominantly in responding the two tasks, e.g. The man is north/south/east/west of the car. Unlike Wassmann and Dasen’s results, no relative system was used by the subjects in solving the tasks. Instead of the relative system, an intrinsic system was also observed in this study, even though it was unfrequent. The article concludes that the absolute system was dominantly employed by Balinese speakers in describing spatial relations in Balinese. The use of the system seems to affect their cognitive functions.

  19. Quantum reference frames and their applications to thermodynamics.

    Science.gov (United States)

    Popescu, Sandu; Sainz, Ana Belén; Short, Anthony J; Winter, Andreas

    2018-07-13

    We construct a quantum reference frame, which can be used to approximately implement arbitrary unitary transformations on a system in the presence of any number of extensive conserved quantities, by absorbing any back action provided by the conservation laws. Thus, the reference frame at the same time acts as a battery for the conserved quantities. Our construction features a physically intuitive, clear and implementation-friendly realization. Indeed, the reference system is composed of the same types of subsystems as the original system and is finite for any desired accuracy. In addition, the interaction with the reference frame can be broken down into two-body terms coupling the system to one of the reference frame subsystems at a time. We apply this construction to quantum thermodynamic set-ups with multiple, possibly non-commuting conserved quantities, which allows for the definition of explicit batteries in such cases.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  20. Simulations of VLBI observations of a geodetic satellite providing co-location in space

    Science.gov (United States)

    Anderson, James M.; Beyerle, Georg; Glaser, Susanne; Liu, Li; Männel, Benjamin; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald

    2018-02-01

    We performed Monte Carlo simulations of very-long-baseline interferometry (VLBI) observations of Earth-orbiting satellites incorporating co-located space-geodetic instruments in order to study how well the VLBI frame and the spacecraft frame can be tied using such measurements. We simulated observations of spacecraft by VLBI observations, time-of-flight (TOF) measurements using a time-encoded signal in the spacecraft transmission, similar in concept to precise point positioning, and differential VLBI (D-VLBI) observations using angularly nearby quasar calibrators to compare their relative performance. We used the proposed European Geodetic Reference Antenna in Space (E-GRASP) mission as an initial test case for our software. We found that the standard VLBI technique is limited, in part, by the present lack of knowledge of the absolute offset of VLBI time to Coordinated Universal Time at the level of microseconds. TOF measurements are better able to overcome this problem and provide frame ties with uncertainties in translation and scale nearly a factor of three smaller than those yielded from VLBI measurements. If the absolute time offset issue can be resolved by external means, the VLBI results can be significantly improved and can come close to providing 1 mm accuracy in the frame tie parameters. D-VLBI observations with optimum performance assumptions provide roughly a factor of two higher uncertainties for the E-GRASP orbit. We additionally simulated how station and spacecraft position offsets affect the frame tie performance.

  1. Mercury's Reference Frames After the MESSENGER Mission

    Science.gov (United States)

    Stark, A.; Oberst, J.; Preusker, F.; Burmeister, S.; Steinbrügge, G.; Hussmann, H.

    2018-05-01

    We provide an overview of Mercury's reference frames based on MESSENGER observations. We discuss the dynamical, the principal-axes, the ellipsoid, as well as the cartographic frame, which was adopted for MESSENGER data products.

  2. Connecting VLBI and Gaia celestial reference frames

    Directory of Open Access Journals (Sweden)

    Zinovy Malkin

    2016-09-01

    Full Text Available The current state of the link problem between radio and optical celestial reference frames is considered.The main objectives of the investigations in this direction during the next few years are the preparation of a comparisonand the mutual orientation and rotation between the optical it Gaia Celestial Reference Frame (GCRFand the 3rd generation radio International Celestial Reference Frame (ICRF3, obtained from VLBI observations.Both systems, ideally, should be a realization of the ICRS (International Celestial Reference System at micro-arcsecond level accuracy.Therefore, the link accuracy between the ICRF and GCRF should be obtained with similar error level, which is not a trivial taskdue to relatively large systematic and random errors in source positions at different frequency bands.In this paper, a brief overview of recent work on the GCRF--ICRF link is presented.Additional possibilities to improve the GCRF--ICRF link accuracy are discussed.The suggestion is made to use astrometric radio sources with optical magnitude to 20$^m$ rather than to 18$^m$ as currently plannedfor the GCRF--ICRF link.In addition, the use of radio stars is also a prospective method to obtain independent and accurate orientation between the Gaia frame and the ICRF.

  3. Connecting VLBI and Gaia Celestial Reference Frames

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, Zinovy, E-mail: malkin@gao.spb.ru [Department of Radio Astronomy Research, The Pulkovo Astronomical Observatory, St. Petersburg (Russian Federation); Institute of Earth Sciences, St. Petersburg State University, St. Petersburg (Russian Federation); Astronomy and Cosmic Geodesy Department, Kazan Federal University, Kazan (Russian Federation)

    2016-09-12

    The current state of the link problem between radio and optical celestial reference frames is considered. The main objectives of the investigations in this direction during the next few years are the preparation of a comparison and the mutual orientation and rotation between the optical Gaia Celestial Reference Frame (GCRF) and the 3rd generation radio International Celestial Reference Frame (ICRF3), obtained from VLBI observations. Both systems, ideally, should be a realization of the ICRS (International Celestial Reference System) at micro-arcsecond level accuracy. Therefore, the link accuracy between the ICRF and GCRF should be obtained with similar error level, which is not a trivial task due to relatively large systematic and random errors in source positions at different frequency bands. In this paper, a brief overview of recent work on the GCRF–ICRF link is presented. Additional possibilities to improve the GCRF–ICRF link accuracy are discussed. The suggestion is made to use astrometric radio sources with optical magnitude to 20{sup m} rather than to 18{sup m} as currently planned for the GCRF–ICRF link. In addition, the use of radio stars is also a prospective method to obtain independent and accurate orientation between the Gaia frame and the ICRF.

  4. Mechanical Energy Change in Inertial Reference Frames

    Science.gov (United States)

    Ghanbari, Saeed

    2016-01-01

    The mechanical energy change of a system in an inertial frame of reference equals work done by the total nonconservative force in the same frame. This relation is covariant under the Galilean transformations from inertial frame S to S', where S' moves with constant velocity relative to S. In the presence of nonconservative forces, such as normal…

  5. SIRGAS: the core geodetic infrastructure in Latin America and the Caribbean

    Science.gov (United States)

    Sanchez, L.; Brunini, C.; Drewes, H.; Mackern, V.; da Silva, A.

    2013-05-01

    Studying, understanding, and modelling geophysical phenomena, such as global change and geodynamics, require geodetic reference frames with (1) an order of accuracy higher than the magnitude of the effects we want to study, (2) consistency and reliability worldwide (the same accuracy everywhere), and (3) a long-term stability (the same order of accuracy at any time). The definition, realisation, maintenance, and wide-utilisation of the International Terrestrial Reference System (ITRS) are oriented to guarantee a globally unified geometric reference frame with reliability at the mm-level, i.e. the International Terrestrial Reference Frame (ITRF). The densification of the global ITRF in Latin America and The Caribbean is given by SIRGAS (Sistema de Referencia Geocéntrico para Las Américas), primary objective of which is to provide the most precise coordinates in the region. Therefore, SIRGAS is the backbone for all regional projects based on the generation, use, and analysis of geo-referenced data at national as well as at international level. Besides providing the reference for a wide range of scientific applications such as the monitoring of Earth's crust deformations, vertical movements, sea level variations, atmospheric studies, etc., SIRGAS is also the platform for practical applications such as engineering projects, digital administration of geographical data, geospatial data infrastructures, etc. According to this, the present contribution describes the main features of SIRGAS, giving special care to those challenges faced to continue providing the best possible, long-term stable and high-precise reference frame for Latin America and the Caribbean.

  6. A Global Terrestrial Reference Frame from simulated VLBI and SLR data in view of GGOS

    Science.gov (United States)

    Glaser, Susanne; König, Rolf; Ampatzidis, Dimitrios; Nilsson, Tobias; Heinkelmann, Robert; Flechtner, Frank; Schuh, Harald

    2017-07-01

    In this study, we assess the impact of two combination strategies, namely local ties (LT) and global ties (GT), on the datum realization of Global Terrestrial Reference Frames in view of the Global Geodetic Observing System requiring 1 mm-accuracy. Simulated Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) data over a 7 year time span was used. The LT results show that the geodetic datum can be best transferred if the precision of the LT is at least 1 mm. Investigating different numbers of LT, the lack of co-located sites on the southern hemisphere is evidenced by differences of 9 mm in translation and rotation compared to the solution using all available LT. For the GT, the combination applying all Earth rotation parameters (ERP), such as pole coordinates and UT1-UTC, indicates that the rotation around the Z axis cannot be adequately transferred from VLBI to SLR within the combination. Applying exclusively the pole coordinates as GT, we show that the datum can be transferred with mm-accuracy within the combination. Furthermore, adding artificial stations in Tahiti and Nigeria to the current VLBI network results in an improvement in station positions by 13 and 12%, respectively, and in ERP by 17 and 11%, respectively. Extending to every day VLBI observations leads to 65% better ERP estimates compared to usual twice-weekly VLBI observations.

  7. Quantum communication, reference frames, and gauge theory

    International Nuclear Information System (INIS)

    Enk, S. J. van

    2006-01-01

    We consider quantum communication in the case that the communicating parties not only do not share a reference frame but use imperfect quantum communication channels, in that each channel applies some fixed but unknown unitary rotation to each qubit. We discuss similarities and differences between reference frames within that quantum communication model and gauge fields in gauge theory. We generalize the concept of refbits and analyze various quantum communication protocols within the communication model

  8. Quantum bit commitment with misaligned reference frames

    International Nuclear Information System (INIS)

    Harrow, Aram; Oliveira, Roberto; Terhal, Barbara M.

    2006-01-01

    Suppose that Alice and Bob define their coordinate axes differently, and the change of reference frame between them is given by a probability distribution μ over SO(3). We show that this uncertainty of reference frame is of no use for bit commitment when μ is uniformly distributed over a (sub)group of SO(3), but other choices of μ can give rise to a partially or even arbitrarily secure bit commitment

  9. Can space ties on board GNSS satellites replace terrestrial ties in the implementation of Terrestrial Reference Frames?

    Science.gov (United States)

    Bruni, Sara; Zerbini, Susanna; Altamimi, Zuheir; Rebischung, Paul; Errico, Maddalena; Santi, Efisio

    2016-04-01

    The realization of Terrestrial Reference Frames (TRFs) must be periodically updated in order to account for newly acquired observations and for upgrades in data analysis procedures and/or combination techniques. Any innovative computation strategy should ameliorate the definition of the frame physical parameters, upon which a number of scientific applications critically rely. On the basis of the requirements of scientific cutting edge studies, the geodetic community has estimated that the present day challenge in the determination of TRFs is to provide a frame that is accurate and long-term stable at the level of 1 mm and 0.1 mm/y respectively. This work aims at characterizing the frame realized by a combination of Satellite Laser Ranging (SLR) and Global Navigation Satellite Systems (GNSS) observations via their co-location on board GNSS spacecrafts. In particular, it is established how such a frame compares to the traditional ITRF computation and what is the impact on the realization of the frame origin and scale. Four years of data from a global network encompassing about one hundred GNSS stations and all SLR sites have been analyzed. In order to ensure the highest possible consistency, the raw data of both techniques are treated with the same analysis Software (Bernese GNSS Software 5.2) following IERS2010 Conventions. Both weekly and long term solutions are carried out exploiting either the Bernese or the Combination and Analysis of Terrestrial Reference Frames (CATREF) Software packages. We present the results of a combination study involving GNSS data and SLR observations to the two LAGEOS and to the GNSS satellites equipped with retroreflector arrays. The latter type of measurements is currently not included in the computation of the official ITRF solutions. The assessment of the benefit that they could provide to the definition of the origin and scale of the ITRF is however worth investigating, as such data provide the potential for linking the GNSS and

  10. Spatial Updating Strategy Affects the Reference Frame in Path Integration.

    Science.gov (United States)

    He, Qiliang; McNamara, Timothy P

    2018-06-01

    This study investigated how spatial updating strategies affected the selection of reference frames in path integration. Participants walked an outbound path consisting of three successive waypoints in a featureless environment and then pointed to the first waypoint. We manipulated the alignment of participants' final heading at the end of the outbound path with their initial heading to examine the adopted reference frame. We assumed that the initial heading defined the principal reference direction in an allocentric reference frame. In Experiment 1, participants were instructed to use a configural updating strategy and to monitor the shape of the outbound path while they walked it. Pointing performance was best when the final heading was aligned with the initial heading, indicating the use of an allocentric reference frame. In Experiment 2, participants were instructed to use a continuous updating strategy and to keep track of the location of the first waypoint while walking the outbound path. Pointing performance was equivalent regardless of the alignment between the final and the initial headings, indicating the use of an egocentric reference frame. These results confirmed that people could employ different spatial updating strategies in path integration (Wiener, Berthoz, & Wolbers Experimental Brain Research 208(1) 61-71, 2011), and suggested that these strategies could affect the selection of the reference frame for path integration.

  11. The combined geodetic network adjusted on the reference ellipsoid – a comparison of three functional models for GNSS observations

    Directory of Open Access Journals (Sweden)

    Kadaj Roman

    2016-12-01

    Full Text Available The adjustment problem of the so-called combined (hybrid, integrated network created with GNSS vectors and terrestrial observations has been the subject of many theoretical and applied works. The network adjustment in various mathematical spaces was considered: in the Cartesian geocentric system on a reference ellipsoid and on a mapping plane. For practical reasons, it often takes a geodetic coordinate system associated with the reference ellipsoid. In this case, the Cartesian GNSS vectors are converted, for example, into geodesic parameters (azimuth and length on the ellipsoid, but the simple form of converted pseudo-observations are the direct differences of the geodetic coordinates. Unfortunately, such an approach may be essentially distorted by a systematic error resulting from the position error of the GNSS vector, before its projection on the ellipsoid surface. In this paper, an analysis of the impact of this error on the determined measures of geometric ellipsoid elements, including the differences of geodetic coordinates or geodesic parameters is presented. Assuming that the adjustment of a combined network on the ellipsoid shows that the optimal functional approach in relation to the satellite observation, is to create the observational equations directly for the original GNSS Cartesian vector components, writing them directly as a function of the geodetic coordinates (in numerical applications, we use the linearized forms of observational equations with explicitly specified coefficients. While retaining the original character of the Cartesian vector, one avoids any systematic errors that may occur in the conversion of the original GNSS vectors to ellipsoid elements, for example the vector of the geodesic parameters. The problem is theoretically developed and numerically tested. An example of the adjustment of a subnet loaded from the database of reference stations of the ASG-EUPOS system was considered for the preferred functional

  12. Reference frame for Product Configuration

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde; Oddsson, Gudmundur Valur

    2011-01-01

    a reference frame for configuration that permits 1) a more precise understanding of a configuration system, 2) a understanding of how the configuration system relate to other systems, and 3) a definition of the basic concepts in configuration. The total configuration system, together with the definition...

  13. Overall properties of the Gaia DR1 reference frame

    Science.gov (United States)

    Liu, N.; Zhu, Z.; Liu, J.-C.; Ding, C.-Y.

    2017-03-01

    Aims: The first Gaia data release (Gaia DR1) provides 2191 ICRF2 sources with their positions in the auxiliary quasar solution and five astrometric parameters - positions, parallaxes, and proper motions - for stars in common between the Tycho-2 catalogue and Gaia in the joint Tycho-Gaia astrometric solution (TGAS). We aim to analyze the overall properties of Gaia DR1 reference frame. Methods: We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the Gaia DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J2015.0 period. Then we estimate the global rotation between TGAS with Tycho-2 proper motion systems to investigate the property of the Gaia DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of Gaia DR1 reference frame. Results: The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of -0.1mas in Gaia quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset 0.01mas of the Z axis direction of Gaia DR1 reference frame. The global rotation between TGAS and Tycho-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.24mas yr-1. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG = -0.38±0.15mas yr-1 and the differential part ω^primeYG = -0.29±0.19mas yr-1 around the YG axis of Galactic coordinates, which indicates possible residual rotation in Gaia DR1 reference frame or problems in the current Galactic kinematical model. Conclusions: The Gaia DR1 reference frame is well aligned to ICRF2, and the possible influence of the Galactic aberration effect should be taken into consideration

  14. COORDINATE TRANSFORMATION USING FEATHERSTONE AND VANÍČEK PROPOSED APPROACH - A CASE STUDY OF GHANA GEODETIC REFERENCE NETWORK

    Directory of Open Access Journals (Sweden)

    Yao Yevenyo Ziggah

    2017-03-01

    Full Text Available Most developing countries like Ghana are yet to adopt the geocentric datum for its surveying and mapping purposes. It is well known and documented that non-geocentric datums based on its establishment have more distortions in height compared with satellite datums. Most authors have argued that combining such height with horizontal positions (latitude and longitude in the transformation process could introduce unwanted distortions to the network. This is because the local geodetic height in most cases is assumed to be determined to a lower accuracy compared with the horizontal positions. In the light of this, a transformation model was proposed by Featherstone and Vaníček (1999 which avoids the use of height in both global and local datums in coordinate transformation. It was confirmed that adopting such a method reduces the effect of distortions caused by geodetic height on the transformation parameters estimated. Therefore, this paper applied Featherstone and Vaníček (FV model for the first time to a set of common points coordinates in Ghana geodetic reference network. The FV model was used to transform coordinates from global datum (WGS84 to local datum (Accra datum. The results obtained based on the Root Mean Square Error (RMSE and Mean Absolute Error (MAE in both Eastings and Northings were satisfactory. Thus, a RMSE value of 0.66 m and 0.96 m were obtained for the Eastings and Northings while 0.76 m and 0.73 m were the MAE values achieved. Also, the FV model attained a transformation accuracy of 0.49 m. Hence, this study will serve as a preliminary investigation in avoiding the use of height in coordinate transformation within Ghana’s geodetic reference network.

  15. Updating of visual orientation in a gravity-based reference frame.

    Science.gov (United States)

    Niehof, Nynke; Tramper, Julian J; Doeller, Christian F; Medendorp, W Pieter

    2017-10-01

    The brain can use multiple reference frames to code line orientation, including head-, object-, and gravity-centered references. If these frames change orientation, their representations must be updated to keep register with actual line orientation. We tested this internal updating during head rotation in roll, exploiting the rod-and-frame effect: The illusory tilt of a vertical line surrounded by a tilted visual frame. If line orientation is stored relative to gravity, these distortions should also affect the updating process. Alternatively, if coding is head- or frame-centered, updating errors should be related to the changes in their orientation. Ten subjects were instructed to memorize the orientation of a briefly flashed line, surrounded by a tilted visual frame, then rotate their head, and subsequently judge the orientation of a second line relative to the memorized first while the frame was upright. Results showed that updating errors were mostly related to the amount of subjective distortion of gravity at both the initial and final head orientation, rather than to the amount of intervening head rotation. In some subjects, a smaller part of the updating error was also related to the change of visual frame orientation. We conclude that the brain relies primarily on a gravity-based reference to remember line orientation during head roll.

  16. Reference frame access under the effects of great earthquakes: a least squares collocation approach for non-secular post-seismic evolution

    Science.gov (United States)

    Gómez, D. D.; Piñón, D. A.; Smalley, R.; Bevis, M.; Cimbaro, S. R.; Lenzano, L. E.; Barón, J.

    2016-03-01

    The 2010, (Mw 8.8) Maule, Chile, earthquake produced large co-seismic displacements and non-secular, post-seismic deformation, within latitudes 28°S-40°S extending from the Pacific to the Atlantic oceans. Although these effects are easily resolvable by fitting geodetic extended trajectory models (ETM) to continuous GPS (CGPS) time series, the co- and post-seismic deformation cannot be determined at locations without CGPS (e.g., on passive geodetic benchmarks). To estimate the trajectories of passive geodetic benchmarks, we used CGPS time series to fit an ETM that includes the secular South American plate motion and plate boundary deformation, the co-seismic discontinuity, and the non-secular, logarithmic post-seismic transient produced by the earthquake in the Posiciones Geodésicas Argentinas 2007 (POSGAR07) reference frame (RF). We then used least squares collocation (LSC) to model both the background secular inter-seismic and the non-secular post-seismic components of the ETM at the locations without CGPS. We tested the LSC modeled trajectories using campaign and CGPS data that was not used to generate the model and found standard deviations (95 % confidence level) for position estimates for the north and east components of 3.8 and 5.5 mm, respectively, indicating that the model predicts the post-seismic deformation field very well. Finally, we added the co-seismic displacement field, estimated using an elastic finite element model. The final, trajectory model allows accessing the POSGAR07 RF using post-Maule earthquake coordinates within 5 cm for ˜ 91 % of the passive test benchmarks.

  17. Frames of reference in spatial language acquisition.

    Science.gov (United States)

    Shusterman, Anna; Li, Peggy

    2016-08-01

    Languages differ in how they encode spatial frames of reference. It is unknown how children acquire the particular frame-of-reference terms in their language (e.g., left/right, north/south). The present paper uses a word-learning paradigm to investigate 4-year-old English-speaking children's acquisition of such terms. In Part I, with five experiments, we contrasted children's acquisition of novel word pairs meaning left-right and north-south to examine their initial hypotheses and the relative ease of learning the meanings of these terms. Children interpreted ambiguous spatial terms as having environment-based meanings akin to north and south, and they readily learned and generalized north-south meanings. These studies provide the first direct evidence that children invoke geocentric representations in spatial language acquisition. However, the studies leave unanswered how children ultimately acquire "left" and "right." In Part II, with three more experiments, we investigated why children struggle to master body-based frame-of-reference words. Children successfully learned "left" and "right" when the novel words were systematically introduced on their own bodies and extended these words to novel (intrinsic and relative) uses; however, they had difficulty learning to talk about the left and right sides of a doll. This difficulty was paralleled in identifying the left and right sides of the doll in a non-linguistic memory task. In contrast, children had no difficulties learning to label the front and back sides of a doll. These studies begin to paint a detailed account of the acquisition of spatial terms in English, and provide insights into the origins of diverse spatial reference frames in the world's languages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Geodetic Control Points - National Geodetic Survey Benchmarks

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  19. Contextual cueing of tactile search is coded in an anatomical reference frame.

    Science.gov (United States)

    Assumpção, Leonardo; Shi, Zhuanghua; Zang, Xuelian; Müller, Hermann J; Geyer, Thomas

    2018-04-01

    This work investigates the reference frame(s) underlying tactile context memory, a form of statistical learning in a tactile (finger) search task. In this task, if a searched-for target object is repeatedly encountered within a stable spatial arrangement of task-irrelevant distractors, detecting the target becomes more efficient over time (relative to nonrepeated arrangements), as learned target-distractor spatial associations come to guide tactile search, thus cueing attention to the target location. Since tactile search displays can be represented in several reference frames, including multiple external and an anatomical frame, in Experiment 1 we asked whether repeated search displays are represented in tactile memory with reference to an environment-centered or anatomical reference frame. In Experiment 2, we went on examining a hand-centered versus anatomical reference frame of tactile context memory. Observers performed a tactile search task, divided into a learning and test session. At the transition between the two sessions, we introduced postural manipulations of the hands (crossed ↔ uncrossed in Expt. 1; palm-up ↔ palm-down in Expt. 2) to determine the reference frame of tactile contextual cueing. In both experiments, target-distractor associations acquired during learning transferred to the test session when the placement of the target and distractors was held constant in anatomical, but not external, coordinates. In the latter, RTs were even slower for repeated displays. We conclude that tactile contextual learning is coded in an anatomical reference frame. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. A Comparative Study of the Applied Methods for Estimating Deflection of the Vertical in Terrestrial Geodetic Measurements

    Directory of Open Access Journals (Sweden)

    Luca Vittuari

    2016-04-01

    Full Text Available This paper compares three different methods capable of estimating the deflection of the vertical (DoV: one is based on the joint use of high precision spirit leveling and Global Navigation Satellite Systems (GNSS, a second uses astro-geodetic measurements and the third gravimetric geoid models. The working data sets refer to the geodetic International Terrestrial Reference Frame (ITRF co-location sites of Medicina (Northern, Italy and Noto (Sicily, these latter being excellent test beds for our investigations. The measurements were planned and realized to estimate the DoV with a level of precision comparable to the angular accuracy achievable in high precision network measured by modern high-end total stations. The three methods are in excellent agreement, with an operational supremacy of the astro-geodetic method, being faster and more precise than the others. The method that combines leveling and GNSS has slightly larger standard deviations; although well within the 1 arcsec level, which was assumed as threshold. Finally, the geoid model based method, whose 2.5 arcsec standard deviations exceed this threshold, is also statistically consistent with the others and should be used to determine the DoV components where local ad hoc measurements are lacking.

  1. The International Celestial Reference Frame (ICRF) and the Relationship Between Frames

    Science.gov (United States)

    Ma, Chopo

    2000-01-01

    The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.

  2. Examining egocentric and allocentric frames of reference in virtual space systems

    NARCIS (Netherlands)

    Friedman, A.

    2005-01-01

    The aim of this paper is to examine the egocentric and allocentric frames of reference, through evidence from both gesture and linguistic communication. The action of frames of reference, helps the user refer to the agent as a base for movement or to the object as a guiding point. We will show that

  3. Common Frame of Reference & social justice

    NARCIS (Netherlands)

    Hesselink, M.

    2008-01-01

    This paper evaluates the draft Common Frame of Reference (DCFR) in terms of social justice. It concludes the DCFR has all the characteristics of a typical European compromise. Ideological and esthetical purists will certainly be disappointed. In this respect, it has much in common with the

  4. Magnetic resonance described in the excitation dependent rotating frame of reference.

    Science.gov (United States)

    Tahayori, Bahman; Johnston, Leigh A; Mareels, Iven M Y; Farrell, Peter M

    2008-01-01

    An excitation dependent rotating frame of reference to observe the magnetic resonance phenomenon is introduced in this paper that, to the best of our knowledge, has not been used previously in the nuclear magnetic resonance context. The mathematical framework for this new rotating frame of reference is presented based on time scaling the Bloch equation after transformation to the classical rotating frame of reference whose transverse plane is rotating at the Larmor frequency. To this end, the Bloch equation is rewritten in terms of a magnetisation vector observed from the excitation dependent rotating frame of reference. The resultant Bloch equation is referred to as the time scaled Bloch equation. In the excitation dependent rotating frame of reference whose coordinates are rotating at the instantaneous Rabi frequency the observed magnetisation vector is a much slower signal than the true magnetisation in the rotating frame of reference. As a result the ordinary differential equation solvers have the ability to solve the time scaled version of the Bloch equation with a larger step size resulting in a smaller number of samples for solving the equation to a desired level of accuracy. The simulation results for different types of excitation are presented in this paper. This method may be used in true Bloch simulators in order to reduce the simulation time or increase the accuracy of the numerical solution. Moreover, the time scaled Bloch equation may be employed to determine the optimal excitation pattern in magnetic resonance imaging as well as designing pulses with better slice selectivity which is an active area of research in this field.

  5. Enhanced three-dimensional stochastic adjustment for combined volcano geodetic networks

    Science.gov (United States)

    Del Potro, R.; Muller, C.

    2009-12-01

    Volcano geodesy is unquestionably a necessary technique in studies of physical volcanology and for eruption early warning systems. However, as every volcano geodesist knows, obtaining measurements of the required resolution using traditional campaigns and techniques is time consuming and requires a large manpower. Moreover, most volcano geodetic networks worldwide use a combination of data from traditional techniques; levelling, electronic distance measurements (EDM), triangulation and Global Navigation Satellite Systems (GNSS) but, in most cases, these data are surveyed, analysed and adjusted independently. This then leaves it to the authors’ criteria to decide which technique renders the most realistic results in each case. Herein we present a way of solving the problem of inter-methodology data integration in a cost-effective manner following a methodology were all the geodetic data of a redundant, combined network (e.g. surveyed by GNSS, levelling, distance, angular data, INSAR, extensometers, etc.) is adjusted stochastically within a single three-dimensional referential frame. The adjustment methodology is based on the least mean square method and links the data with its geometrical component providing combined, precise, three-dimensional, displacement vectors, relative to external reference points as well as stochastically-quantified, benchmark-specific, uncertainty ellipsoids. Three steps in the adjustment allow identifying, and hence dismissing, flagrant measurement errors (antenna height, atmospheric effects, etc.), checking the consistency of external reference points and a final adjustment of the data. Moreover, since the statistical indicators can be obtained from expected uncertainties in the measurements of the different geodetic techniques used (i.e. independent of the measured data), it is possible to run a priori simulations of a geodetic network in order to constrain its resolution, and reduce logistics, before the network is even built. In this

  6. The reference frame for encoding and retention of motion depends on stimulus set size.

    Science.gov (United States)

    Huynh, Duong; Tripathy, Srimant P; Bedell, Harold E; Öğmen, Haluk

    2017-04-01

    The goal of this study was to investigate the reference frames used in perceptual encoding and storage of visual motion information. In our experiments, observers viewed multiple moving objects and reported the direction of motion of a randomly selected item. Using a vector-decomposition technique, we computed performance during smooth pursuit with respect to a spatiotopic (nonretinotopic) and to a retinotopic component and compared them with performance during fixation, which served as the baseline. For the stimulus encoding stage, which precedes memory, we found that the reference frame depends on the stimulus set size. For a single moving target, the spatiotopic reference frame had the most significant contribution with some additional contribution from the retinotopic reference frame. When the number of items increased (Set Sizes 3 to 7), the spatiotopic reference frame was able to account for the performance. Finally, when the number of items became larger than 7, the distinction between reference frames vanished. We interpret this finding as a switch to a more abstract nonmetric encoding of motion direction. We found that the retinotopic reference frame was not used in memory. Taken together with other studies, our results suggest that, whereas a retinotopic reference frame may be employed for controlling eye movements, perception and memory use primarily nonretinotopic reference frames. Furthermore, the use of nonretinotopic reference frames appears to be capacity limited. In the case of complex stimuli, the visual system may use perceptual grouping in order to simplify the complexity of stimuli or resort to a nonmetric abstract coding of motion information.

  7. Current control of PMSM based on maximum torque control reference frame

    Science.gov (United States)

    Ohnuma, Takumi

    2017-07-01

    This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.

  8. Space Geodetic Technique Co-location in Space: Simulation Results for the GRASP Mission

    Science.gov (United States)

    Kuzmicz-Cieslak, M.; Pavlis, E. C.

    2011-12-01

    The Global Geodetic Observing System-GGOS, places very stringent requirements in the accuracy and stability of future realizations of the International Terrestrial Reference Frame (ITRF): an origin definition at 1 mm or better at epoch and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale (0.1 ppb) and orientation components. These goals were derived from the requirements of Earth science problems that are currently the international community's highest priority. None of the geodetic positioning techniques can achieve this goal alone. This is due in part to the non-observability of certain attributes from a single technique. Another limitation is imposed from the extent and uniformity of the tracking network and the schedule of observational availability and number of suitable targets. The final limitation derives from the difficulty to "tie" the reference points of each technique at the same site, to an accuracy that will support the GGOS goals. The future GGOS network will address decisively the ground segment and to certain extent the space segment requirements. The JPL-proposed multi-technique mission GRASP (Geodetic Reference Antenna in Space) attempts to resolve the accurate tie between techniques, using their co-location in space, onboard a well-designed spacecraft equipped with GNSS receivers, a SLR retroreflector array, a VLBI beacon and a DORIS system. Using the anticipated system performance for all four techniques at the time the GGOS network is completed (ca 2020), we generated a number of simulated data sets for the development of a TRF. Our simulation studies examine the degree to which GRASP can improve the inter-technique "tie" issue compared to the classical approach, and the likely modus operandi for such a mission. The success of the examined scenarios is judged by the quality of the origin and scale definition of the resulting TRF.

  9. Representing Spatial Layout According to Intrinsic Frames of Reference.

    Science.gov (United States)

    Xie, Chaoxiang; Li, Shiyi; Tao, Weidong; Wei, Yiping; Sun, Hong-Jin

    2017-01-01

    Mou and McNamara have suggested that object locations are represented according to intrinsic reference frames. In three experiments, we investigated the limitations of intrinsic reference frames as a mean to represent object locations in spatial memory. Participants learned the locations of seven or eight common objects in a rectangular room and then made judgments of relative direction based on their memory of the layout. The results of all experiments showed that when all objects were positioned regularly, judgments of relative direction were faster or more accurate for novel headings that were aligned with the primary intrinsic structure than for other novel headings; however, when one irregularly positioned object was added to the layout, this advantage was eliminated. The experiments further indicated that with a single view at study, participants could represent the layout from either an egocentric orientation or a different orientation, according to experimental instructions. Together, these results suggest that environmental reference frames and intrinsic axes can influence performance for novel headings, but their role in spatial memory depends on egocentric experience, layout regularity, and instructions.

  10. The resource theory of quantum reference frames: manipulations and monotones

    International Nuclear Information System (INIS)

    Gour, Gilad; Spekkens, Robert W

    2008-01-01

    Every restriction on quantum operations defines a resource theory, determining how quantum states that cannot be prepared under the restriction may be manipulated and used to circumvent the restriction. A superselection rule (SSR) is a restriction that arises through the lack of a classical reference frame and the states that circumvent it (the resource) are quantum reference frames. We consider the resource theories that arise from three types of SSRs, associated respectively with lacking: (i) a phase reference, (ii) a frame for chirality, and (iii) a frame for spatial orientation. Focusing on pure unipartite quantum states (and in some cases restricting our attention even further to subsets of these), we explore single-copy and asymptotic manipulations. In particular, we identify the necessary and sufficient conditions for a deterministic transformation between two resource states to be possible and, when these conditions are not met, the maximum probability with which the transformation can be achieved. We also determine when a particular transformation can be achieved reversibly in the limit of arbitrarily many copies and find the maximum rate of conversion. A comparison of the three resource theories demonstrates that the extent to which resources can be interconverted decreases as the strength of the restriction increases. Along the way, we introduce several measures of frameness and prove that these are monotonically non-increasing under various classes of operations that are permitted by the SSR

  11. On Translators' Cultural Frame of Functionist Reference

    Science.gov (United States)

    Fu, Zhiyi

    2009-01-01

    A deep cognition with translators' cultural frame of functionist reference can help instructors and teachers adjust and extend patterns and schemes of translation and generate the optimal classroom conditions for acquisition of the target language. The author of the paper, in the perspectives of motivational, cognitive and communicative…

  12. Establishment of 2000 National Geodetic Control Network of China and It’s Technological Progress

    Directory of Open Access Journals (Sweden)

    CHEN Junyong

    2007-02-01

    Full Text Available Objectives: 2000’ National Geodetic Control Network of China is an important fundamental scientific engineering project in China. It consists of three parts which are establishment of 2000 National GPS Geodetic Network, its combination adjustment with national astro-geodetic network and 2000 National Gravity Fundamental network. It provides the high precise coordinate reference and gravity reference for three dimensional geo-center national coordinates system and gravity system, respectively. Additionally, it provides precise unified geometric and physical geodesy information for the economic construction, the national defense and the scientific research. Methods: 1. The larger number of data are processed in triple networks adjustment of 2000 National GPS Geodetic Network, which are chosen from the GPS monitoring stations, such as grade A, B of national GPS network , grade 1st and 2nd of national GPS network, crustal movement observation network of China, and others crustal deformation monitoring stations. Finally, the data of 2666 GPS stations are used in the data processing of 2000 National GPS Geodetic Network, including 124 external stations and 2542 internal stations. In order to the results of triple networks adjustment are corresponding to that of three dimensional geo-center coordinates system, ITRF 97 and epoch 2000.0 are chosen as the coordinate reference frame and epoch reference, respectively. The methods of “strong reference” and “weak reference” are combined used in the control data selection of triple networks adjustment. The scale and rotation scales are adopted for each sub network. The least square adjustment is firstly adopted in each sub network adjustment. The data of obvious abnormal baselines are found and rejected firstly. And the method of double factor robust estimation is adopted in the data processing. 2. The combined adjustment of 2000 National GPS Geodetic Network and national astro-geodetic network is

  13. Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2013-12-01

    Full Text Available In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR observations for the International Laser Ranging Service (ILRS associate analysis center (AAC. Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/ GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD and finding solutions of a terrestrial reference frame (TRF and Earth orientation parameters (EOPs. For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS 08 C04 results, shows that standard deviations of polar motion Xp and Yp are 0.754 milliarcseconds (mas and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.

  14. Perception of space by multiple intrinsic frames of reference.

    Directory of Open Access Journals (Sweden)

    Yanlong Sun

    Full Text Available It has been documented that when memorizing a physical space, the person's mental representation of that space is biased with distortion and segmentation. Two experiments reported here suggest that distortion and segmentation arise due to a hierarchical organization of the spatial representation. The spatial relations associated with salient landmarks are more strongly encoded and easier to recall than those associated with non-salient landmarks. In the presence of multiple salient landmarks, multiple intrinsic frames of reference are formed and spatial relations are anchored to each individual frame of reference. Multiple such representations may co-exist and interactively determine a person's spatial performance.

  15. Impact of quasar proper motions on the alignment between the International Celestial Reference Frame and the Gaia reference frame

    Science.gov (United States)

    Liu, J.-C.; Malkin, Z.; Zhu, Z.

    2018-03-01

    The International Celestial Reference Frame (ICRF) is currently realized by the very long baseline interferometry (VLBI) observations of extragalactic sources with the zero proper motion assumption, while Gaia will observe proper motions of these distant and faint objects to an accuracy of tens of microarcseconds per year. This paper investigates the difference between VLBI and Gaia quasar proper motions and it aims to understand the impact of quasar proper motions on the alignment of the ICRF and Gaia reference frame. We use the latest time series data of source coordinates from the International VLBI Service analysis centres operated at Goddard Space Flight Center (GSF2017) and Paris observatory (OPA2017), as well as the Gaia auxiliary quasar solution containing 2191 high-probability optical counterparts of the ICRF2 sources. The linear proper motions in right ascension and declination of VLBI sources are derived by least-squares fits while the proper motions for Gaia sources are simulated taking into account the acceleration of the Solar system barycentre and realistic uncertainties depending on the source brightness. The individual and global features of source proper motions in GSF2017 and OPA2017 VLBI data are found to be inconsistent, which may result from differences in VLBI observations, data reduction and analysis. A comparison of the VLBI and Gaia proper motions shows that the accuracies of the components of rotation and glide between the two systems are 2-4 μas yr- 1 based on about 600 common sources. For the future alignment of the ICRF and Gaia reference frames at different wavelengths, the proper motions of quasars must necessarily be considered.

  16. Determination of recent horizontal crustal movements and deformations of African and Eurasian plates in western Mediterranean region using geodetic-GPS computations extended to 2006 (from 1997) related to NAFREF and AFREF frames.

    Science.gov (United States)

    Azzouzi, R.

    2009-04-01

    Determination of recent horizontal crustal movements and deformations of African and Eurasian plates in western Mediterranean region using geodetic-GPS computations extended to 2006 (from 1997) related to NAFREF and AFREF frames. By: R. Azzouzi*, M. Ettarid*, El H. Semlali*, et A. Rimi+ * Filière de Formation en Topographie Institut Agronomique et Vétérinaire Hassan II B.P. 6202 Rabat-Instituts MAROC + Département de la Physique du Globe Université Mohammed V Rabat MAROC This study focus on the use of the geodetic spatial technique GPS for geodynamic purposes generally in the Western Mediterranean area and particularly in Morocco. It aims to exploit this technique first to determine the geodetic coordinates on some western Mediterranean sites. And also this technique is used to detect and to determine movements cross the boundary line between the two African and Eurasian crustal plates on some well chosen GPS-Geodynamics sites. It will allow us also to estimate crustal dynamic parameters of tension that results. These parameters are linked to deformations of terrestrial crust in the region. They are also associated with tectonic constraints of the study area. The usefulness of repeated measurements of these elements, the estimate of displacements and the determination of their temporal rates is indisputable. Indeed, sismo-tectonique studies allow a good knowledge of the of earthquake processes, their frequency their amplitude and even of their prediction in the world in general and in Moroccan area especially. They allow also contributing to guarantee more security for all most important management projects, as projects of building great works (dams, bridges, nuclear centrals). And also as preliminary study, for the most important joint-project between Europe and Africa through the Strait of Gibraltar. For our application, 23 GPS monitoring stations under the ITRF2000 reference frame are chosen in Eurasian and African plates. The sites are located around the

  17. Optical position meters analyzed in the noninertial reference frames

    International Nuclear Information System (INIS)

    Tarabrin, Sergey P.; Seleznyov, Alexander A.

    2008-01-01

    In the framework of general relativity we develop a method for the analysis of the operation of the optical position meters in their photodetectors proper reference frames. These frames are noninertial in general due to the action of external fluctuative forces on meters test masses, including detectors. For comparison we also perform the calculations in the laboratory (globally inertial) reference frame and demonstrate that for certain optical schemes laboratory-based analysis results in unmeasurable quantities, in contrast to the detector-based analysis. We also calculate the response of the simplest optical meters to weak plane gravitational waves and fluctuative motions of their test masses. It is demonstrated that for the round-trip meter analysis in both the transverse-traceless (TT) and local Lorentz (LL) gauges produces equal results, while for the forward-trip meter corresponding results differ in accordance with different physical assumptions (e.g. procedure of clocks synchronization) implicitly underlying the construction of the TT and LL gauges.

  18. Reframing Student Affairs Leadership: An Analysis of Organizational Frames of Reference and Locus of Control

    Science.gov (United States)

    Tull, Ashley; Freeman, Jerrid P.

    2011-01-01

    Examined in this study were the identified frames of reference and locus of control used by 478 student affairs administrators. Administrator responses were examined to identify frames of reference most commonly used and their preference order. Locus of control most commonly used and the relationship between frames of reference and locus of…

  19. Defining an absolute reference frame for 'clumped' isotope studies of CO 2

    Science.gov (United States)

    Dennis, Kate J.; Affek, Hagit P.; Passey, Benjamin H.; Schrag, Daniel P.; Eiler, John M.

    2011-11-01

    We present a revised approach for standardizing and reporting analyses of multiply substituted isotopologues of CO 2 (i.e., 'clumped' isotopic species, especially the mass-47 isotopologues). Our approach standardizes such data to an absolute reference frame based on theoretical predictions of the abundances of multiply-substituted isotopologues in gaseous CO 2 at thermodynamic equilibrium. This reference frame is preferred over an inter-laboratory calibration of carbonates because it enables all laboratories measuring mass 47 CO 2 to use a common scale that is tied directly to theoretical predictions of clumping in CO 2, regardless of the laboratory's primary research field (carbonate thermometry or CO 2 biogeochemistry); it explicitly accounts for mass spectrometric artifacts rather than convolving (and potentially confusing) them with chemical fractionations associated with sample preparation; and it is based on a thermodynamic equilibrium that can be experimentally established in any suitably equipped laboratory using commonly available materials. By analyzing CO 2 gases that have been subjected to established laboratory procedures known to promote isotopic equilibrium (i.e., heated gases and water-equilibrated CO 2), and by reference to thermodynamic predictions of equilibrium isotopic distributions, it is possible to construct an empirical transfer function that is applicable to data with unknown clumped isotope signatures. This transfer function empirically accounts for the fragmentation and recombination reactions that occur in electron impact ionization sources and other mass spectrometric artifacts. We describe the protocol necessary to construct such a reference frame, the method for converting gases with unknown clumped isotope compositions to this reference frame, and suggest a protocol for ensuring that all reported isotopic compositions (e.g., Δ 47 values; Eiler and Schauble, 2004; Eiler, 2007) can be compared among different laboratories and

  20. Tracking down abstract linguistic meaning: neural correlates of spatial frame of reference ambiguities in language.

    Directory of Open Access Journals (Sweden)

    Gabriele Janzen

    Full Text Available This functional magnetic resonance imaging (fMRI study investigates a crucial parameter in spatial description, namely variants in the frame of reference chosen. Two frames of reference are available in European languages for the description of small-scale assemblages, namely the intrinsic (or object-oriented frame and the relative (or egocentric frame. We showed participants a sentence such as "the ball is in front of the man", ambiguous between the two frames, and then a picture of a scene with a ball and a man--participants had to respond by indicating whether the picture did or did not match the sentence. There were two blocks, in which we induced each frame of reference by feedback. Thus for the crucial test items, participants saw exactly the same sentence and the same picture but now from one perspective, now the other. Using this method, we were able to precisely pinpoint the pattern of neural activation associated with each linguistic interpretation of the ambiguity, while holding the perceptual stimuli constant. Increased brain activity in bilateral parahippocampal gyrus was associated with the intrinsic frame of reference whereas increased activity in the right superior frontal gyrus and in the parietal lobe was observed for the relative frame of reference. The study is among the few to show a distinctive pattern of neural activation for an abstract yet specific semantic parameter in language. It shows with special clarity the nature of the neural substrate supporting each frame of spatial reference.

  1. How Flexible is the Use of Egocentric Versus Allocentric Frame of Reference in the Williams Syndrome Population?

    Science.gov (United States)

    Heiz, J; Majerus, S; Barisnikov, K

    2017-09-28

    This study examined the spontaneous use of allocentric and egocentric frames of reference and their flexible use as a function of instructions. The computerized spatial reference task created by Heiz and Barisnikov (2015) was used. Participants had to choose a frame of reference according to three types of instructions: spontaneous, allocentric and egocentric. The performances of 16 Williams Syndrome participants between 10 and 41 years were compared to those of two control groups (chronological age and non-verbal intellectual ability). The majority of Williams Syndrome participants did not show a preference for a particular frame of reference. When explicitly inviting participants to use an allocentric frame of reference, all three groups showed an increased use of the allocentric frame of reference. At the same time, an important heterogeneity of type of frame of reference used by Williams Syndrome participants was observed. Results demonstrate that despite difficulties in the spontaneous use of allocentric and egocentric frames of reference, some Williams Syndrome participants show flexibility in the use of an allocentric frame of reference when an explicit instruction is provided. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Geometric Cues, Reference Frames, and the Equivalence of Experienced-Aligned and Novel-Aligned Views in Human Spatial Memory

    Science.gov (United States)

    Kelly, Jonathan W.; Sjolund, Lori A.; Sturz, Bradley R.

    2013-01-01

    Spatial memories are often organized around reference frames, and environmental shape provides a salient cue to reference frame selection. To date, however, the environmental cues responsible for influencing reference frame selection remain relatively unknown. To connect research on reference frame selection with that on orientation via…

  3. The current state of the creation and modernization of national geodetic and cartographic resources in Poland

    Directory of Open Access Journals (Sweden)

    Doskocz Adam

    2016-01-01

    Full Text Available All official data are currently integrated and harmonized in a spatial reference system. This paper outlines a national geodetic and cartographic resources in Poland. The national geodetic and cartographic resources are an important part of the spatial information infrastructure in the European Community. They also provide reference data for other resources of Spatial Data Infrastructure (SDI, including: main and detailed geodetic control networks, base maps, land and buildings registries, geodetic registries of utilities and topographic maps. This paper presents methods of producing digital map data and technical standards for field surveys, and in addition paper also presents some aspects of building Global and Regional SDI.

  4. Integration of Reference Frames Using VLBI

    Science.gov (United States)

    Ma, Chopo; Smith, David E. (Technical Monitor)

    2001-01-01

    Very Long Baseline Interferometry (VLBI) has the unique potential to integrate the terrestrial and celestial reference frames through simultaneous estimation of positions and velocities of approx. 40 active VLBI stations and a similar number of stations/sites with sufficient historical data, the position and position stability of approx. 150 well-observed extragalactic radio sources and another approx. 500 sources distributed fairly uniformly on the sky, and the time series of the five parameters that specify the relative orientation of the two frames. The full realization of this potential is limited by a number of factors including the temporal and spatial distribution of the stations, uneven distribution of observations over the sources and the sky, variations in source structure, modeling of the solid/fluid Earth and troposphere, logistical restrictions on the daily observing network size, and differing strategies for optimizing analysis for TRF, for CRF and for EOP. The current status of separately optimized and integrated VLBI analysis will be discussed.

  5. Explicitly computing geodetic coordinates from Cartesian coordinates

    Science.gov (United States)

    Zeng, Huaien

    2013-04-01

    This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.

  6. Geodesy introduction to geodetic datum and geodetic systems

    CERN Document Server

    Lu, Zhiping; Qiao, Shubo

    2014-01-01

    A full introduction to geodetic data and systems written by well-known experts in their respective fields, this book is an ideal text for courses in geodesy and geomatics covering everything from coordinate and gravimetry data to geodetic systems of all types.

  7. Language and spatial frames of reference in mind and brain.

    Science.gov (United States)

    Gallistel, C R.

    2002-08-01

    Some language communities routinely use allocentric reference directions (e.g. 'uphill-downhill') where speakers of European languages would use egocentric references ('left-right'). Previous experiments have suggested that the different language groups use different reference frames in non-linguistic tasks involving the recreation of oriented arrays. However, a recent paper argues that manipulating test conditions produces similar effects in monolingual English speakers, and in animals.

  8. Quantum mechanics in noninertial reference frames: Violations of the nonrelativistic equivalence principle

    International Nuclear Information System (INIS)

    Klink, W.H.; Wickramasekara, S.

    2014-01-01

    In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration can equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is given. •The key concept is the Galilean line group, an infinite dimensional group. •A large class of general cocycle representations of the Galilean line group is constructed. •These representations show violations of the equivalence principle at the quantum level. •At the classical limit, no violations of the equivalence principle are detected

  9. Selection of spatial reference frames depends on task's demands

    Directory of Open Access Journals (Sweden)

    Greeshma Sharma

    2016-12-01

    Full Text Available Spatial reference frames (SRF are the means of representing spatial relations or locations either in an egocentric coordinate system (centred on navigator or in an allocentric coordinate system (Centred on object. It is necessary to understand when and how spatial representation switches between allocentric and egocentric reference frames in context to spatial tasks. The objective of this study was to explore if the elementary spatial representation does exist, whether it would remain consistent or change under the influence of a task's demand. Also, we explored how the SRF would assist if the environment is enriched with landmarks, having multiple routes for wayfinding. The results showed that the switching of SRF depends not only on the default representation but also on a task's demand. They also demonstrated that participants who were using allocentric representation performed better in the presence of landmarks.

  10. Rate of alignment and communication using quantum systems in the absence of a shared frame of reference

    Science.gov (United States)

    Skotiniotis, Michael

    Quantum information theory is concerned with the storage, transmission, and manipulation of information that is represented in the degrees of freedom of quantum systems. These degrees of freedom are described relative to an external frame of reference. The lack of a requisite frame of reference imposes restrictions on the types of states quantum systems can be prepared in and the type of operations that can be performed on quantum systems. This thesis is concerned with the communication between two parties that lack a shared frame of reference. Specifically, I introduce a protocol whereby the parties can align their respective frames of reference, and a protocol for communicating quantum information in a reference frame independent manner. Using the accessible information to quantify the success of a reference frame alignment protocol I propose a new measure—the alignment rate—for quantifying the ability of a quantum state to stand in place of a classical frame of reference. I show that for the case where Alice and Bob lack a shared frame of reference associated with the groups G = U(1) and G = ZM (the finite cyclic group of M elements), the alignment rate is equal to the regularized, linearized G-asymmetry. The latter is a unique measure of the frameness of a quantum state and my result provides an operational interpretation of the G-asymmetry that was thus far lacking. In addition, I show that the alignment rate for finite cyclic groups of more than three elements is super-additive under the tensor product of two distinct pure quantum states. The latter is, to my knowledge, the first instance of a regularized quantity that exhibits super-additivity. In addition, I propose a reference-frame-independent protocol for communicating quantum information in the absence of a shared frame of reference associated with a general finite group G. The protocol transmits m logical qudits using r + m physical qudits prepared in a specific state that is reference-frame

  11. Analysis, Design, and Experimental Verification of A Synchronous Reference Frame Voltage Control for Single-Phase Inverters

    DEFF Research Database (Denmark)

    Monfared, Mohammad; Golestan, Saeed; Guerrero, Josep M.

    2014-01-01

    Control of three-phase power converters in the synchronous reference frame is now a mature and well developed research topic. However, for single-phase converters, it is not as well-established as three-phase applications. This paper deals with the design of a synchronous reference frame multi-lo...... on a frequency response approach is presented. Finally, the theoretical achievements are supported by experimental results.......-loop control strategy for single phase inverter-based islanded distributed generation (DG) systems. The proposed controller uses a synchronous reference frame PI (SRFPI) controller to regulate the instantaneous output voltage, a capacitor current shaping loop in the stationary reference frame to provide active...

  12. Location memory biases reveal the challenges of coordinating visual and kinesthetic reference frames

    Science.gov (United States)

    Simmering, Vanessa R.; Peterson, Clayton; Darling, Warren; Spencer, John P.

    2008-01-01

    Five experiments explored the influence of visual and kinesthetic/proprioceptive reference frames on location memory. Experiments 1 and 2 compared visual and kinesthetic reference frames in a memory task using visually-specified locations and a visually-guided response. When the environment was visible, results replicated previous findings of biases away from the midline symmetry axis of the task space, with stability for targets aligned with this axis. When the environment was not visible, results showed some evidence of bias away from a kinesthetically-specified midline (trunk anterior–posterior [a–p] axis), but there was little evidence of stability when targets were aligned with body midline. This lack of stability may reflect the challenges of coordinating visual and kinesthetic information in the absence of an environmental reference frame. Thus, Experiments 3–5 examined kinesthetic guidance of hand movement to kinesthetically-defined targets. Performance in these experiments was generally accurate with no evidence of consistent biases away from the trunk a–p axis. We discuss these results in the context of the challenges of coordinating reference frames within versus between multiple sensori-motor systems. PMID:17703284

  13. Cross-Sensory Transfer of Reference Frames in Spatial Memory

    Science.gov (United States)

    Kelly, Jonathan W.; Avraamides, Marios N.

    2011-01-01

    Two experiments investigated whether visual cues influence spatial reference frame selection for locations learned through touch. Participants experienced visual cues emphasizing specific environmental axes and later learned objects through touch. Visual cues were manipulated and haptic learning conditions were held constant. Imagined perspective…

  14. Developing a Frame of Reference for understanding configuration systems

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde; Edwards, Kasper

    2008-01-01

    This paper uses the theory of technical systems to develop a frame of reference of product configuration systems. Following a definition of the configuration task, product model and product configuration system the theory of technical systems are presented. Configuration systems are then related...

  15. International Laser Ranging Service (ILRS): Terms of Reference

    Science.gov (United States)

    Husson, Van; Noll, Carey

    2000-01-01

    The International Laser Ranging Service (ILRS) is an established Service within Section II , Advanced Space Technology, of the International Association of Geodesy (IAG). The primary objective of the ILRS is to provide a service to support, through Satellite and Lunar Laser Ranging data and related products, geodetic and geophysical research activities as well as International Earth Rotation Service (IERS) products important to the maintenance of an accurate International Terrestrial Reference Frame (ITRF). The service also develops the necessary standards/specifications and encourages international adherence to its conventions.

  16. Different reference frames can lead to different hand transplantation decisions by patients and physicians.

    Science.gov (United States)

    Edgell, S E; McCabe, S J; Breidenbach, W C; Neace, W P; LaJoie, A S; Abell, T D

    2001-03-01

    Different frames of reference can affect one's assessment of the value of hand transplantation. This can result in different yet rational decisions by different groups of individuals, especially patients and physicians. In addition, factors other than frames of reference can affect one's evaluation of hand transplantation, which can result in different decisions.

  17. Consistent Feature Extraction From Vector Fields: Combinatorial Representations and Analysis Under Local Reference Frames

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Harsh [Univ. of Utah, Salt Lake City, UT (United States)

    2015-05-01

    This dissertation presents research on addressing some of the contemporary challenges in the analysis of vector fields—an important type of scientific data useful for representing a multitude of physical phenomena, such as wind flow and ocean currents. In particular, new theories and computational frameworks to enable consistent feature extraction from vector fields are presented. One of the most fundamental challenges in the analysis of vector fields is that their features are defined with respect to reference frames. Unfortunately, there is no single “correct” reference frame for analysis, and an unsuitable frame may cause features of interest to remain undetected, thus creating serious physical consequences. This work develops new reference frames that enable extraction of localized features that other techniques and frames fail to detect. As a result, these reference frames objectify the notion of “correctness” of features for certain goals by revealing the phenomena of importance from the underlying data. An important consequence of using these local frames is that the analysis of unsteady (time-varying) vector fields can be reduced to the analysis of sequences of steady (timeindependent) vector fields, which can be performed using simpler and scalable techniques that allow better data management by accessing the data on a per-time-step basis. Nevertheless, the state-of-the-art analysis of steady vector fields is not robust, as most techniques are numerical in nature. The residing numerical errors can violate consistency with the underlying theory by breaching important fundamental laws, which may lead to serious physical consequences. This dissertation considers consistency as the most fundamental characteristic of computational analysis that must always be preserved, and presents a new discrete theory that uses combinatorial representations and algorithms to provide consistency guarantees during vector field analysis along with the uncertainty

  18. A Ka-Band Celestial Reference Frame with Applications to Deep Space Navigation

    Science.gov (United States)

    Jacobs, Christopher S.; Clark, J. Eric; Garcia-Miro, Cristina; Horiuchi, Shinji; Sotuela, Ioana

    2011-01-01

    The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of approximately 200 micro-arcsec in alpha cos(delta) and approximately 300 micro-arcsec in delta. There is evidence for systematic errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.

  19. Berry's phase factors in moving frames of reference and their observable effects

    International Nuclear Information System (INIS)

    Sun Changpu; Zhang Linzhi

    1990-01-01

    Under non-relativistic conditions, the properties of adiabatic solutions of the Schroedinger equation in moving frame of reference and the behaviours of the corresponding Berry's Phase are analysed. Two cases of translation and rotation are discussed in detail, which show that the existence of Berry's phase depends on the choice of frame of reference. While Bitter and Dubbers's experiment is explained by the first-order approximation in the discussion. The non-adiabatic effects in this experiment are predicted by the second-order approximation when the adiabatic condition is broken

  20. Frames of Reference: A Metaphor for Analyzing and Interpreting Attitudes of Environmental Policy Makers and Policy Influencers

    Science.gov (United States)

    Swaffield

    1998-07-01

    / The concept of frame of reference offers a potentially useful analytical metaphor in environmental management. This is illustrated by a case study in which attitudes of individuals involved in the management of trees in the New Zealand high country are classified into seven distinctive frames of reference. Some practical and theoretical implications of the use of the frame metaphor are explored, including its potential contribution to the emerg- ing field of communicative planning. KEY WORDS: Frames of reference; Environmental policy analysis; Metaphor; New Zealand high country

  1. Shift of the spectrum in the non-inertial reference frame

    International Nuclear Information System (INIS)

    Kudykina, T. A.; Pervak, A. I.

    2012-01-01

    We propose a new natural explanation of the spectral redshift (blue shift) arguing that the rotatory non-inertial reference frame of cosmological objects is the main reason of the shift of the frequency of emitting light. (Author)

  2. National Geodetic Survey (NGS) Geodetic Control Stations, (Horizontal and/or Vertical Control), March 2009

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  3. Identifying and Allocating Geodetic Systems to historical oil gas wells by using high-resolution satellite imagery

    Science.gov (United States)

    Alvarez, Gabriel O.

    2018-05-01

    Hydrocarbon exploration in Argentina started long before the IGM created a single, high-precision geodetic reference network for the whole country. Several geodetic surveys were conducted in every producing basin, which have ever since then supported well placement. Currently, every basin has a huge amount of information referenced to the so-called "local" geodetic systems, such as Chos Malal - Quiñi Huao in the Neuquén Basin, and Pampa del Castillo in the San Jorge Basin, which differ to a greater or lesser extent from the national Campo Inchauspe datum established by the IGM in 1969 as the official geodetic network. However, technology development over the last few years and the expansion of satellite positioning systems such as GPS resulted in a new world geodetic order. Argentina rapidly joined this new geodetic order through the implementation of a new national geodetic system by the IGM: POSGAR network, which replaced the old national Campo Inchauspe system. However, this only helped to worsen the data georeferencing issue for oil companies, as a third reference system was added to each basin. Now every basin has a local system, the national system until 1997 (Campo Inchauspe), and finally the newly created POSGAR network national satellite system, which is geocentric unlike the former two planimetric datums. The purpose of this paper is to identify and allocate geodetic systems of coordinates to historical wells, whose geodetic system is missing or has been erroneously allocated, by using currently available technological resources such as geographic information systems and high-resolution satellite imagery.

  4. Generalized frame of reference with null congruence

    International Nuclear Information System (INIS)

    Ferrarese, G.; Antonelli, R.

    2000-01-01

    The paper derives the main properties of a generalized frame of reference with a null congruence (light flux), by means of adapted non-holonomic techniques; then it studies the geometry of the space-time in terms of non-orthogonal projection: longitudinal and transverse covariant derivatives and corresponding commutation formulae, decomposition of the Riemann and gravitational tensors, lie derivatives of the Ricci rotation coefficients, transverse Bianchi identity. Application to the (absolute and relative) light flux: kinematical characteristics and screen, Sachs theorems etc. are also given

  5. Search for evidence of a preferred reference frame

    International Nuclear Information System (INIS)

    Warburton, R.J.; Goodkind, J.M.

    1976-01-01

    Some gravity theories, in contradiction to general relativity, allow the existence of a universal preferred reference frame. Also allowed in some theories can be a galaxy-induced anisotropy of the gravitation constant. The parametrized post-Newtonian theory predicts that in these cases there will be anomalous Earth tide amplitudes at specific frequencies. An 18-month Earth tide record obtained with the superconducting gravimeter has been examined for such anomalies. The data allow for the existence of such effects but cannot prove it because of uncertainties concerning geophysical perturbations of the tides. However, an upper limit to the preferred frame parameter, α 2 , of the parametrized post-Newtonian formalism is established at 2 x 10 -3 . The results also set a less rigorous limit on the anisotropy parameter, zeta/sub omega/, of order 10 -3

  6. Decoherence-full subsystems and the cryptographic power of a private shared reference frame

    International Nuclear Information System (INIS)

    Bartlett, Stephen D.; Rudolph, Terry; Spekkens, Robert W.

    2004-01-01

    We show that private shared reference frames can be used to perform private quantum and private classical communication over a public quantum channel. Such frames constitute a type of private shared correlation, distinct from private classical keys or shared entanglement, useful for cryptography. We present optimally efficient schemes for private quantum and classical communication given a finite number of qubits transmitted over an insecure channel and given a private shared Cartesian frame and/or a private shared reference ordering of the qubits. We show that in this context, it is useful to introduce the concept of a decoherence-full subsystem, wherein every state is mapped to the completely mixed state under the action of the decoherence

  7. Ipsilateral wrist-ankle movements in the sagittal plane encoded in extrinsic reference frame.

    Science.gov (United States)

    Muraoka, Tetsuro; Ishida, Yuki; Obu, Takashi; Crawshaw, Larry; Kanosue, Kazuyuki

    2013-04-01

    When performing oscillatory movements of two joints in the sagittal plane, there is a directional constraint for performing such movements. Previous studies could not distinguish whether the directional constraint reflected movement direction encoded in the extrinsic (outside the body) reference frame or in the intrinsic (the participants' torso/head) reference frame since participants performed coordinated movements in a sitting position where the torso/head was stationary relative to the external world. In order to discern the reference frame in the present study, participants performed paced oscillatory movements of the ipsilateral wrist and ankle in the sagittal plane in a standing position so that the torso/head moved relative to the external world. The coordinated movements were performed in one of two modes of coordination, moving the hand upward concomitant with either ankle plantarflexion or ankle dorsiflexion. The same directional mode relative to extrinsic space was more stable and accurate as compared with the opposite directional mode. When forearm position was changed from the pronated position to the supinated position, similar results were obtained, indicating that the results were independent of a particular coupling of muscles. These findings suggest that the directional constraint on ipsilateral joints movements in the sagittal plane reflects movement direction encoded in the extrinsic reference frame. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  8. Estimating the Celestial Reference Frame via Intra-Technique Combination

    Science.gov (United States)

    Iddink, Andreas; Artz, Thomas; Halsig, Sebastian; Nothnagel, Axel

    2016-12-01

    One of the primary goals of Very Long Baseline Interferometry (VLBI) is the determination of the International Celestial Reference Frame (ICRF). Currently the third realization of the internationally adopted CRF, the ICRF3, is under preparation. In this process, various optimizations are planned to realize a CRF that does not benefit only from the increased number of observations since the ICRF2 was published. The new ICRF can also benefit from an intra-technique combination as is done for the Terrestrial Reference Frame (TRF). Here, we aim at estimating an optimized CRF by means of an intra-technique combination. The solutions are based on the input to the official combined product of the International VLBI Service for Geodesy and Astrometry (IVS), also providing the radio source parameters. We discuss the differences in the setup using a different number of contributions and investigate the impact on TRF and CRF as well as on the Earth Orientation Parameters (EOPs). Here, we investigate the differences between the combined CRF and the individual CRFs from the different analysis centers.

  9. Exploring students' understanding of reference frames and time in Galilean and special relativity

    International Nuclear Information System (INIS)

    De Hosson, C; Kermen, I; Parizot, E

    2010-01-01

    This paper aims at exploring prospective physics teachers' reasoning associated with the concepts of reference frame, time and event which form the framework of the classical kinematics and that of the relativistic kinematics. About 100 prospective physics teachers were surveyed by means of a questionnaire involving classical kinematics situations and relativistic ones. The analysis of the answers shows a deep lack of understanding of both concepts of reference frame and event. Some students think that events may be simultaneous for an observer and not simultaneous for another one, even when both observers are located in the same reference frame. Most of the students surveyed cannot give an answer only depending on the location of the observer when his/her velocity is mentioned as if the movement contaminated the event. This lack of understanding is embodied in reasoning implemented by the population surveyed to address classical kinematics questions and seems to form a major obstacle to grasping relativistic kinematics.

  10. National Geodetic Control Stations, Geographic NAD83, NGS (2004) [geodetic_ctrl_point_la_NGS_2004

    Data.gov (United States)

    Louisiana Geographic Information Center — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  11. The effect of the reference frame on the thermophysical properties of an ideal gas

    International Nuclear Information System (INIS)

    Speziale, Cg.

    1986-01-01

    The effect that the frame of reference has on the thermophysical properties of an ideal gas is examined from a fundamental theoretical standpoint based on the Boltzmann equation. In continuum mechanics, the principle of material frame in deference forbids the thermophysical properties of a fluid or solid to depend in any way on the motion of the reference frame. It is demonstrated that the Boltzmann equation is only consistent with material frame-indeffrence in a strong approximate sense provided that the gas is not highly rarefield and, thus, well within the limits of classical continuum mechanics. Estimates of the mean free times for which material frame-indifference can be invoked in the modeling of gas flows are provided from an analysis of the problem of heat conduction in a rigidly rotating gas. Applications of these results in obtaining asymptotic solutions of the Boltzmann equation for the continuum description of an ideal gas are discussed briefly

  12. Thinking inside the box: Spatial frames of reference for drawing in Williams syndrome and typical development.

    Science.gov (United States)

    Hudson, Kerry D; Farran, Emily K

    2017-09-01

    Successfully completing a drawing relies on the ability to accurately impose and manipulate spatial frames of reference for the object that is being drawn and for the drawing space. Typically developing (TD) children use cues such as the page boundary as a frame of reference to guide the orientation of drawn lines. Individuals with Williams syndrome (WS) typically produce incohesive drawings; this is proposed to reflect a local processing bias. Across two studies, we provide the first investigation of the effect of using a frame of reference when drawing simple lines and shapes in WS and TD groups (matched for non-verbal ability). Individuals with WS (N=17 Experiment 1; N=18 Experiment 2) and TD children matched by non-verbal ability drew single lines (Experiment One) and whole shapes (Experiment Two) within a neutral, incongruent or congruent frame. The angular deviation of the drawn line/shape, relative to the model line/shape, was measured. Both groups were sensitive to spatial frames of reference when drawing single lines and whole shapes, imposed by a frame around the drawing space. A local processing bias in WS cannot explain poor drawing performance in WS. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Frontal eye fields involved in shifting frame of reference within working memory for scenes

    DEFF Research Database (Denmark)

    Wallentin, Mikkel; Roepstorff, Andreas; Burgess, Neil

    2008-01-01

    Working memory (WM) evoked by linguistic cues for allocentric spatial and egocentric spatial aspects of a visual scene was investigated by correlating fMRI BOLD signal (or "activation") with performance on a spatial-relations task. Subjects indicated the relative positions of a person or object...... (referenced by the personal pronouns "he/she/it") in a previously-shown image relative to either themselves (egocentric reference frame) or shifted to a reference frame anchored in another person or object in the image (allocentric reference frame), e.g. "Was he in front of you/her?" Good performers had both...... shorter response time and more correct responses than poor performers in both tasks. These behavioural variables were entered into a principal component analysis. The first component reflected generalised performance level. We found that the frontal eye fields (FEF), bilaterally, had a higher BOLD...

  14. How role distribution influences choice of spatial reference frames in a virtual collaborative task

    OpenAIRE

    Pouliquen-Lardy , Lauriane; Milleville-Pennel , Isabelle; Guillaume , François; Mars , Franck

    2014-01-01

    International audience; We investigated the effects of role distribution on individuals' choice of reference frames in a two-person task. Pairs of participants had to move a virtual block in a constraint immersive virtual environment: only one of them could manipulate the ob-ject, his coworker guided him in the VE. Results show that the guiding operators used more addressee-centered frames of ref-erence than the manipulators. They also suggest that the guides tried to facilitate the manipulat...

  15. Frames of Reference and Some of its Applications

    OpenAIRE

    Bel, Ll.

    1998-01-01

    We define a Frame of reference as a two ingredients concept: A meta-rigid motion, which is a generalization of a Born motion, and a chorodesic synchronization, which is an adapted foliation. At the end of the line we uncover a low-level 3-dimensional geometry with constant curvature and a corresponding coordinated proper-time scale. We discuss all these aspects both from the geometrical point of view as from the point of view of some of the physical applications derived from them.

  16. Reference-Frame-Independent and Measurement-Device-Independent Quantum Key Distribution Using One Single Source

    Science.gov (United States)

    Li, Qian; Zhu, Changhua; Ma, Shuquan; Wei, Kejin; Pei, Changxing

    2018-04-01

    Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detector side-channel attacks. However, practical implementations of MDI-QKD, which require two-photon interferences from separated independent single-photon sources and a nontrivial reference alignment procedure, are still challenging with current technologies. Here, we propose a scheme that significantly reduces the experimental complexity of two-photon interferences and eliminates reference frame alignment by the combination of plug-and-play and reference frame independent MDI-QKD. Simulation results show that the secure communication distance can be up to 219 km in the finite-data case and the scheme has good potential for practical MDI-QKD systems.

  17. Geodetic Control Information on Passive Marks: Horizontal and Vertical Geodetic Control Data for the United States - National Geospatial Data Asset (NGDA) Geodetic Control Information on Passive Marks

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  18. Angular distribution of large qsub(T) muon pairs in different reference frames

    International Nuclear Information System (INIS)

    Lindfors, J.

    1979-01-01

    The angular distribution of large transverse momentum muon pairs produced in hadron-hadron collisions is calculated in lowest order of perturbative QCD. It is shown that for the process quark-antiquark → gluon + μ + μ - the polar and azimuthal angle distributions can be made independent of the parton distributions by choosing a special reference frame, the Collins-Soper frame, but for the process quark + gluon → quark + μ + μ - this is not possible. (author)

  19. A global vertical reference frame based on four regional vertical datums

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 48, č. 3 (2004), s. 493-502 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotentinal * local vertical datums * global vertical reference frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.447, year: 2004

  20. DQ reference frame modeling and control of single-phase active power decoupling circuits

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    . This paper presents the dq synchronous reference frame modeling of single-phase power decoupling circuits and a complete model describing the dynamics of dc-link ripple voltage is presented. The proposed model is universal and valid for both inductive and capacitive decoupling circuits, and the input...... of decoupling circuits can be either dependent or independent of its front-end converters. Based on this model, a dq synchronous reference frame controller is designed which allows the decoupling circuit to operate in two different modes because of the circuit symmetry. Simulation and experimental results...... are presented to verify the effectiveness of the proposed modeling and control method....

  1. Three-dimensional stochastic adjustment of volcano geodetic network in Arenal volcano, Costa Rica

    Science.gov (United States)

    Muller, C.; van der Laat, R.; Cattin, P.-H.; Del Potro, R.

    2009-04-01

    Volcano geodetic networks are a key instrument to understanding magmatic processes and, thus, forecasting potentially hazardous activity. These networks are extensively used on volcanoes worldwide and generally comprise a number of different traditional and modern geodetic surveying techniques such as levelling, distances, triangulation and GNSS. However, in most cases, data from the different methodologies are surveyed, adjusted and analysed independently. Experience shows that the problem with this procedure is the mismatch between the excellent correlation of position values within a single technique and the low cross-correlation of such values within different techniques or when the same network is surveyed shortly after using the same technique. Moreover one different independent network for each geodetic surveying technique strongly increase logistics and thus the cost of each measurement campaign. It is therefore important to develop geodetic networks which combine the different geodetic surveying technique, and to adjust geodetic data together in order to better quantify the uncertainties associated to the measured displacements. In order to overcome the lack of inter-methodology data integration, the Geomatic Institute of the University of Applied Sciences of Western Switzerland (HEIG-VD) has developed a methodology which uses a 3D stochastic adjustment software of redundant geodetic networks, TRINET+. The methodology consists of using each geodetic measurement technique for its strengths relative to other methodologies. Also, the combination of the measurements in a single network allows more cost-effective surveying. The geodetic data are thereafter adjusted and analysed in the same referential frame. The adjustment methodology is based on the least mean square method and links the data with the geometry. Trinet+ also allows to run a priori simulations of the network, hence testing the quality and resolution to be expected for a determined network even

  2. The Gaia inertial reference frame and the tilting of the Milky Way disk

    International Nuclear Information System (INIS)

    Perryman, Michael; Spergel, David N.; Lindegren, Lennart

    2014-01-01

    While the precise relationship between the Milky Way disk and the symmetry planes of the dark matter halo remains somewhat uncertain, a time-varying disk orientation with respect to an inertial reference frame seems probable. Hierarchical structure formation models predict that the dark matter halo is triaxial and tumbles with a characteristic rate of ∼2 rad H 0 −1 (∼30 μas yr –1 ). These models also predict a time-dependent accretion of gas, such that the angular momentum vector of the disk should be misaligned with that of the halo. These effects, as well as tidal effects of the LMC, will result in the rotation of the angular momentum vector of the disk population with respect to the quasar reference frame. We assess the accuracy with which the positions and proper motions from Gaia can be referred to a kinematically non-rotating system, and show that the spin vector of the transformation from any rigid self-consistent catalog frame to the quasi-inertial system defined by quasars should be defined to better than 1 μas yr –1 . Determination of this inertial frame by Gaia will reveal any signature of the disk orientation varying with time, improve models of the potential and dynamics of the Milky Way, test theories of gravity, and provide new insights into the orbital evolution of the Sagittarius dwarf galaxy and the Magellanic Clouds.

  3. Hybrid state‐space time integration in a rotating frame of reference

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2011-01-01

    displacements and the global velocities are represented by the same shape functions. This leads to a simple generalization of the corresponding equations of motion in a stationary frame in which all inertial effects are represented via the classic global mass matrix. The formulation introduces two gyroscopic......A time integration algorithm is developed for the equations of motion of a flexible body in a rotating frame of reference. The equations are formulated in a hybrid state‐space, formed by the local displacement components and the global velocity components. In the spatial discretization the local...... terms, while the centrifugal forces are represented implicitly via the hybrid state‐space format. An angular momentum and energy conserving algorithm is developed, in which the angular velocity of the frame is represented by its mean value. A consistent algorithmic damping scheme is identified...

  4. Understanding Frame-of-Reference Training Success: A Social Learning Theory Perspective

    Science.gov (United States)

    Sulsky, Lorne M.; Kline, Theresa J. B.

    2007-01-01

    Employing the social learning theory (SLT) perspective on training, we analysed the effects of alternative frame-of-reference (FOR) training protocols on various criteria of training effectiveness. Undergraduate participants (N = 65) were randomly assigned to one of four FOR training conditions and a control condition. Training effectiveness was…

  5. Entanglement detection with bounded reference frames

    International Nuclear Information System (INIS)

    Costa, Fabio; Brukner, Caslav; Harrigan, Nicholas; Rudolph, Terry

    2009-01-01

    Quantum experiments usually assume the existence of perfect, classical reference frames (RFs), which allow for the specification of measurement settings (e.g. orientation of the Stern-Gerlach magnet in spin measurements) with arbitrary precision. If the RFs are 'bounded' (i.e. quantum systems themselves, having a finite number of degrees of freedom), only limited precision can be attained. Using spin coherent states as bounded RFs, we have found the minimum size needed for them to violate local realism for entangled spin systems. For composite systems of spin 1/2 particles, RFs of very small size are sufficient for the violation; however, to see this violation for macroscopic entangled spins, the size of the RF must be at least quadratically larger than that of the spins. The unavailability of such RFs gives a possible explanation for the non-observance of violation of local realism in everyday experience.

  6. Relativistic effects in local inertial frames including PPN effects

    International Nuclear Information System (INIS)

    Shahid-Saless, B.

    1986-01-01

    In this dissertation they use the concept of a generalized Fermi frame to describe the relativistic effects on a body placed in a local inertial frame of reference due to local and distant sources of gravitation. They have considered, in particular, a model, consisted of two spherically symmetric gravitating sources, moving in circular orbits around a common barycenter where one of the bodies is chosen to be the local and the other the distant one. This has been done in the Parametrized-Post-Newtonian formalism using the slow motion, weak field approximation. The PPN parameters used are γ, β, zeta 1 and zeta 2 . They show that the main relativistic effect on a local satellite is described by the Schwarzchild field of the local body and the nonlinear term corresponding to the self-interaction of the local source itself. There are also much smaller terms that are proportional to the product of the potentials of local and distant bodies and distant body's self interactions. The spatial axis of the local frame undergoes Geodetic precession. Effects involving the parameters zeta 1 and zeta 2 seem to be slightly too small to be observable at the present time. In addition they have found accelerations that vanish in the general relativity limit

  7. Geodetic Survey Water Level Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Over one million images of National Coast & Geodetic Survey (now NOAA's National Geodetic Survey/NGS) forms captured from microfiche. Tabular forms and charts...

  8. Conventional Synchronous Reference Frame Phase-Locked Loop Is An Adaptive Complex Filter

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.

    2015-01-01

    Despite the wide acceptance and use of the conventional synchronous reference frame phase-locked loop (SRFPLL) no transfer function describing its actual input-output relationship has been developed so far. Arguably, the absence of such transfer function has hampered the application of SRF...

  9. A radio/optical reference frame. 5: Additional source positions in the mid-latitude southern hemisphere

    Science.gov (United States)

    Russell, J. L.; Reynolds, J. E.; Jauncey, D. L.; de Vegt, C.; Zacharias, N.; Ma, C.; Fey, A. L.; Johnston, K. J.; Hindsley, R.; Hughes, J. A.; Malin, D. F.; White, G. L.; Kawaguchi, N.; Takahashi, Y.

    1994-01-01

    We report new accurate radio position measurements for 30 sources, preliminary positions for two sources, improved radio postions for nine additional sources which had limited previous observations, and optical positions and optical-radio differences for six of the radio sources. The Very Long Baseline Interferometry (VLBI) observations are part of the continuing effort to establish a global radio reference frame of about 400 compact, flat spectrum sources, which are evenly distributed across the sky. The observations were made using Mark III data format in four separate sessions in 1988-89 with radio telescopes at Tidbinbilla, Australia, Kauai, USA, and Kashima, Japan. We observed a total of 54 sources, including ten calibrators and three which were undetected. The 32 new source positions bring the total number in the radio reference frame catalog to 319 (172 northern and 147 southern) and fill in the zone -25 deg greater than delta greater than -45 deg which, prior to this list, had the lowest source density. The VLBI positions have an average formal precision of less than 1 mas, although unknown radio structure effects of about 1-2 mas may be present. The six new optical postion measurements are part of the program to obtain positions of the optical counterparts of the radio reference frame source and to map accurately the optical on to the radio reference frames. The optical measurements were obtained from United States Naval Observatory (USNO) Black Birch astrograph plates and source plates from the AAT, and Kitt Peak National Observatory (KPNO) 4 m, and the European Southern Observatory (ESO) Schmidt. The optical positions have an average precision of 0.07 sec, mostly due to the zero point error when adjusted to the FK5 optical frame using the IRS catalog. To date we have measured optical positions for 46 sources.

  10. Dissociating contributions of head and torso to spatial reference frames

    DEFF Research Database (Denmark)

    Alsmith, Adrian J T; Ferrè, Elisa R; Longo, Matthew R.

    2017-01-01

    contribution of each part to spatial judgments. Both the head and the torso contributed to judgements, though with greater contributions from the torso. A second experiment manipulating visual contrast of the torso showed that this does not reflect low-level differences in visual salience between body parts....... Our results demonstrate that spatial perspective-taking relies on a weighted combination of reference frames centred on different parts of the body....

  11. Global Vertical Reference Frame

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 33, - (2004), s. 404-407 ISSN 1436-3445 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotential WO * vertical systems * global vertical frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  12. Binocular perception of slant about oblique axes relative to a visual frame of reference

    NARCIS (Netherlands)

    Ee, R. van; Erkelens, Casper J.

    1995-01-01

    From the literature it is known that the processing of disparity for slant is different in the presence and in the absence of a visual frame of reference. We elaborate the experimental finding that vertical disparity is not processed for slant perception in the presence of a visual reference. This

  13. The assessment of the transformation of global tectonic plate models and the global terrestrial reference frames using the Velocity Decomposition Analysis

    Science.gov (United States)

    Ampatzidis, Dimitrios; König, Rolf; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald; Flechtner, Frank; Nilsson, Tobias

    2016-04-01

    The aim of our study is to assess the classical Helmert similarity transformation using the Velocity Decomposition Analysis (VEDA). The VEDA is a new methodology, developed by GFZ for the assessment of the reference frames' temporal variation and it is based on the separation of the velocities into two specified parts: The first is related to the reference system choice (the so called datum effect) and the latter one which refers to the real deformation of the terrestrial points. The advantage of the VEDA is its ability to detect the relative biases and reference system effects between two different frames or two different realizations of the same frame, respectively. We apply the VEDA for the assessment between several modern tectonic plate models and the recent global terrestrial reference frames.

  14. An accelerating reference frame for electromagnetic waves in a rapidly growing plasma

    International Nuclear Information System (INIS)

    Yablonovitch, E.

    1989-01-01

    In 1974, Hawking showed that black holes can evaporate by the emission of low temperature thermal radiation, now named Hawking radiation. Shortly thereafter, a closely related effect called Unruh radiation became apparent. The author discusses how, according to Unruh and Davies, observers of the electromagnetic field in an accelerating reference frame should see thermal radiation at a temperature T: KT = h/2π a/c where a is the acceleration relative to an inertial frame, c is the speed of light and h and K are Planck's and Boltzmann's constant respectively. In a frame accelerating at g = 980 cm/sec 2 , equivalent to the acceleration experienced at the earth's surface, this thermal radiation is at a temperature of only 4 x 10 -20 degrees K. Therefore, physicists hoping to observe this radiation, have sought out systems being subjected to extreme acceleration

  15. Quantum reference frames and quantum transformations

    International Nuclear Information System (INIS)

    Toller, M.

    1997-01-01

    A quantum frame is defined by a material object following the laws of quantum mechanics. The present paper studies the relations between quantum frames, which are described by some generalization of the Poincare' group. The possibility of using a suitable quantum group is examined, but some arguments are given which show that a different mathematical structure is necessary. Some simple examples in lower-dimensional space-times are treated. They indicate the necessity of taking into account some ''internal'' degrees of freedom of the quantum frames, that can be disregarded in a classical treatment

  16. Ostrogradski Hamiltonian approach for geodetic brane gravity

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2010-01-01

    We present an alternative Hamiltonian description of a branelike universe immersed in a flat background spacetime. This model is named geodetic brane gravity. We set up the Regge-Teitelboim model to describe our Universe where such field theory is originally thought as a second order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. This approach comprize the manage of both first- and second-class constraints and the counting of degrees of freedom follows accordingly.

  17. Global Vertical Reference Frame

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    -, č. 5 (2009), s. 53-63 ISSN 1801-8483 R&D Projects: GA ČR GA205/08/0328 Institutional research plan: CEZ:AV0Z10030501 Keywords : sea surface topography * satellite altimetry * vertical frames Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  18. Legacy and future of Kilauea's geodetic studies

    Science.gov (United States)

    Montgomery-Brown, E. D.; Miklius, A.

    2011-12-01

    Because of its extensive and detailed history of geodetic measurements, Kilauea is one of the best-studied if not also best-understood volcanic systems in the world. Hawaiian volcanoes have a long history of deformation observations. These observations range from native legends of Pele's underground travels, through initial measurements made by the Hawaiian Volcano Observatory, and finally to current ground-based and satellite observations. Many questions still remain, relating to Kilauea's dynamics, where geodetic measurements could offer fundamental insights. For example, new geodetic experiments could lead to a better understanding of the degree of magmatic and tectonic interaction, the geometries of faults at depth, the extent of offshore deformation, and the magmatic plumbing system. While it is possible to design many experiments to address these issues, we focus on three deformation targets where geodetic improvements, including finer sampling in space and time, could yield significant advancements toward understanding Kilauea's dynamics. First, by scrutinizing spatially-dense space-borne geodetic data for signs of upper east rift zone deformation and incorporating gravity and seismic data in a high resolution tomographic model, the hydraulic connection between Kilauea's summit and the rift zone could be imaged, which would provide insight into the pathways that transport magma out to the rift zones. Second, a combination of geodetic and seismic data could be used to determine the nature of possible relationships and interactions between the Hilina fault system and Kilauea's basal decollement. Such a study would have important implications for assessments of future earthquake and sector collapse hazards. Lastly, by adding seafloor geodetic measurements and seismic data to the current geodetic network on Kilauea, we could delimit the offshore extent of transient and episodic decollement deformation. In addition to multidisciplinary approaches, future geodetic

  19. Relativistic effects in local inertial frames including parametrized-post-Newtonian effects

    International Nuclear Information System (INIS)

    Shahid-Saless, B.; Ashby, N.

    1988-01-01

    We use the concept of a generalized Fermi frame to describe relativistic effects, due to local and distant sources of gravitation, on a body placed in a local inertial frame of reference. In particular we have considered a model of two spherically symmetric gravitating point sources, moving in circular orbits around a common barycenter where one of the bodies is chosen to be the local and the other the distant one. This has been done using the slow-motion, weak-field approximation and including four of the parametrized-post-Newtonian (PPN) parameters. The position of the classical center of mass must be modified when the PPN parameter zeta 2 is included. We show that the main relativistic effect on a local satellite is described by the Schwarzschild field of the local body and the nonlinear term corresponding to the self-interaction of the local source with itself. There are also much smaller terms that are proportional, respectively, to the product of the potentials of local and distant bodies and to the distant body's self-interactions. The spatial axes of the local frame undergo geodetic precession. In addition we have an acceleration of the order of 10/sup -11/ cm sec -2 that vanish in the case of general relativity, which is discussed in detail

  20. Light escape cones in local reference frames of Kerr-de Sitter black hole spacetimes and related black hole shadows

    Science.gov (United States)

    Stuchlík, Zdeněk; Charbulák, Daniel; Schee, Jan

    2018-03-01

    We construct the light escape cones of isotropic spot sources of radiation residing in special classes of reference frames in the Kerr-de Sitter (KdS) black hole spacetimes, namely in the fundamental class of `non-geodesic' locally non-rotating reference frames (LNRFs), and two classes of `geodesic' frames, the radial geodesic frames (RGFs), both falling and escaping, and the frames related to the circular geodesic orbits (CGFs). We compare the cones constructed in a given position for the LNRFs, RGFs, and CGFs. We have shown that the photons locally counter-rotating relative to LNRFs with positive impact parameter and negative covariant energy are confined to the ergosphere region. Finally, we demonstrate that the light escaping cones govern the shadows of black holes located in front of a radiating screen, as seen by the observers in the considered frames. For shadows related to distant static observers the LNRFs are relevant.

  1. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Maslennikov, K. [Central Astronomical Observatory at Pulkovo, Pulkovskoye Shosse, 65/1, 196140, St. Petersburg (Russian Federation); Boldycheva, A., E-mail: oleg.titov@ga.gov.au [Ioffe Physical Technical Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021 (Russian Federation)

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  2. National Geodetic Survey's Airport Aerial Photography

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Geodetic Survey (NGS), formerly part of the U.S. Coast and Geodetic Survey, has been performing Aeronautical surveys since the 1920's. NGS, in...

  3. Somali refugees' experiences with their general practitioners: frames of reference and critical episodes.

    NARCIS (Netherlands)

    Feldmann, C.T.; Bensing, J.M.; Ruijter, A. de; Boeije, H.R.

    2006-01-01

    The article presents the results of a qualitative study based on in-depth interviews with Somali refugees living in The Netherlands, on their experiences with general practitioners (GPs). The central question is: what are the frames of reference participants use to interpret their experiences? The

  4. Somali refugees’ experiences with their general practitioners: frames of reference and critical episodes

    NARCIS (Netherlands)

    Titia Feldmann, C.; Bensing, J.; Ruijter, Arie de; Boeije, H.R.

    2006-01-01

    The article presents the results of a qualitative study based on in-depth interviews with Somali refugees living in The Netherlands, on their experiences with general practitioners (GPs). The central question is: what are the frames of reference participants use to interpret their experiences? The

  5. Using geodetic data to infer the kinematic and mechanical properties of deformation sources on Kilauea Volcano, Hawaii

    Science.gov (United States)

    Cervelli, Peter Francis

    2002-09-01

    thesis, a method of minimizing the effect of reference frame error on GPS time series is developed, and we present and discuss the continuous GPS data from Kilauea and Mauna Loa volcanoes that were recorded between 1996 and 2001.5.

  6. A preliminary geodetic data model for geographic information systems

    Science.gov (United States)

    Kelly, K. M.

    2009-12-01

    Our ability to gather and assimilate integrated data collections from multiple disciplines is important for earth system studies. Moreover, geosciences data collection has increased dramatically, with pervasive networks of observational stations on the ground, in the oceans, in the atmosphere and in space. Contemporary geodetic observations from several space and terrestrial technologies contribute to our knowledge of earth system processes and thus are a valuable source of high accuracy information for many global change studies. Assimilation of these geodetic observations and numerical models into models of weather, climate, oceans, hydrology, ice, and solid Earth processes is an important contribution geodesists can make to the earth science community. Clearly, the geodetic observations and models are fundamental to these contributions. ESRI wishes to provide leadership in the geodetic community to collaboratively build an open, freely available content specification that can be used by anyone to structure and manage geodetic data. This Geodetic Data Model will provide important context for all geographic information. The production of a task-specific geodetic data model involves several steps. The goal of the data model is to provide useful data structures and best practices for each step, making it easier for geodesists to organize their data and metadata in a way that will be useful in their data analyses and to their customers. Built on concepts from the successful Arc Marine data model, we introduce common geodetic data types and summarize the main thematic layers of the Geodetic Data Model. These provide a general framework for envisioning the core feature classes required to represent geodetic data in a geographic information system. Like Arc Marine, the framework is generic to allow users to build workflow or product specific geodetic data models tailored to the specific task(s) at hand. This approach allows integration of the data with other existing

  7. Early visual deprivation prompts the use of body-centered frames of reference for auditory localization.

    Science.gov (United States)

    Vercillo, Tiziana; Tonelli, Alessia; Gori, Monica

    2018-01-01

    The effects of early visual deprivation on auditory spatial processing are controversial. Results from recent psychophysical studies show that people who were born blind have a spatial impairment in localizing sound sources within specific auditory settings, while previous psychophysical studies revealed enhanced auditory spatial abilities in early blind compared to sighted individuals. An explanation of why an auditory spatial deficit is sometimes observed within blind populations and its task-dependency remains to be clarified. We investigated auditory spatial perception in early blind adults and demonstrated that the deficit derives from blind individual's reduced ability to remap sound locations using an external frame of reference. We found that performance in blind population was severely impaired when they were required to localize brief auditory stimuli with respect to external acoustic landmarks (external reference frame) or when they had to reproduce the spatial distance between two sounds. However, they performed similarly to sighted controls when had to localize sounds with respect to their own hand (body-centered reference frame), or to judge the distances of sounds from their finger. These results suggest that early visual deprivation and the lack of visual contextual cues during the critical period induce a preference for body-centered over external spatial auditory representations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The use of the empirical mode decomposition for the identification of mean field aligned reference frames

    Directory of Open Access Journals (Sweden)

    Mauro Regi

    2017-01-01

    Full Text Available The magnetic field satellite data are usually referred to geocentric coordinate reference frame. Conversely, the magnetohydrodynamic waves modes in magnetized plasma depend on the ambient magnetic field, and is then useful to rotate the magnetic field measurements into the mean field aligned (MFA coordinate system. This reference frame is useful to study the ultra low frequency magnetic field variations along the direction of the mean field and perpendicularly to it. In order to identify the mean magnetic field the classical moving average (MAVG approach is usually adopted but, under particular conditions, this procedure induces undesired features, such as spectral alteration in the rotated components. We discuss these aspects promoting an alternative and more efficient method for mean field aligned projection, based on the empirical mode decomposition (EMD.

  9. Grid Synchronization of Wind Turbine Converters under Transient Grid Faults using a Double Synchronous Reference Frame PLL

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Rodriguez, P.

    2008-01-01

    This work employs the Double Synchronous Reference Frame PLL (DSRF-PLL) as an effective method for grid synchronization of WT's power converters in the presence of transient faults in the grid. The DSRF-PLL exploits a dual synchronous reference frame voltage characterization, adding a decoupling...... network to a standard SRF-PLL in order to effectively separate the positive- and negative-sequence voltage components in a fast and accurate way. Experimental evaluation of the proposed grid synchronization method and simulations regarding its application to ride through transient faults verify...

  10. The perspective matters! Multisensory integration in ego-centric reference frames determines full body ownership

    Directory of Open Access Journals (Sweden)

    Valeria Ivanova Petkova

    2011-03-01

    Full Text Available Recent advances in experimental science have made it possible to investigate the perceptual processes involved in generating a sense of owning an entire body. This is achieved by full-body ownership illusions which make use of specific patterns of visual and somatic stimuli integration. Here we investigate the fundamental question of the reference frames used in the process of attributing an entire body to the self. We quantified the strength of the body-swap illusion in conditions where the participants were observing this artificial body from the perspective of the first or third person. Consistent results from subjective reports and physiological recordings show that the first person visual perspective is critical for the induction of this full-body ownership illusion. This demonstrates that the multisensory integration processes producing the sense of corporeal self operates in an ego-centric reference frame.

  11. The Perspective Matters! Multisensory Integration in Ego-Centric Reference Frames Determines Full-Body Ownership

    Science.gov (United States)

    Petkova, Valeria I.; Khoshnevis, Mehrnoush; Ehrsson, H. Henrik

    2011-01-01

    Recent advances in experimental science have made it possible to investigate the perceptual processes involved in generating a sense of owning an entire body. This is achieved by full-body ownership illusions which make use of specific patterns of visual and somatic stimuli integration. Here we investigate the fundamental question of the reference frames used in the process of attributing an entire body to the self. We quantified the strength of the body-swap illusion in conditions where the participants were observing this artificial body from the perspective of the first or third person. Consistent results from subjective reports and physiological recordings show that the first person visual perspective is critical for the induction of this full-body ownership illusion. This demonstrates that the multisensory integration processes producing the sense of corporeal self operates in an ego-centric reference frame. PMID:21687436

  12. A New Synchronous Reference Frame-Based Method for Single-Phase Shunt Active Power Filters

    DEFF Research Database (Denmark)

    Monfared, Mohammad; Golestan, Saeed; Guerrero, Josep M.

    2013-01-01

    This paper deals with the design of a novel method in the synchronous reference frame (SRF) to extract the reference compensating current for single-phase shunt active power filters (APFs). Unlike previous works in the SRF, the proposed method has an innovative feature that it does not need...... the fictitious current signal. Frequency-independent operation, accurate reference current extraction and relatively fast transient response are other key features of the presented strategy. The effectiveness of the proposed method is investigated by means of detailed mathematical analysis. The results confirm...

  13. A Kalman filter approach for the determination of celestial reference frames

    Science.gov (United States)

    Soja, Benedikt; Gross, Richard; Jacobs, Christopher; Chin, Toshio; Karbon, Maria; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald

    2017-04-01

    The coordinate model of radio sources in International Celestial Reference Frames (ICRF), such as the ICRF2, has traditionally been a constant offset. While sufficient for a large part of radio sources considering current accuracy requirements, several sources exhibit significant temporal coordinate variations. In particular, the group of the so-called special handling sources is characterized by large fluctuations in the source positions. For these sources and for several from the "others" category of radio sources, a coordinate model that goes beyond a constant offset would be beneficial. However, due to the sheer amount of radio sources in catalogs like the ICRF2, and even more so with the upcoming ICRF3, it is difficult to find the most appropriate coordinate model for every single radio source. For this reason, we have developed a time series approach to the determination of celestial reference frames (CRF). We feed the radio source coordinates derived from single very long baseline interferometry (VLBI) sessions sequentially into a Kalman filter and smoother, retaining their full covariances. The estimation of the source coordinates is carried out with a temporal resolution identical to the input data, i.e. usually 1-4 days. The coordinates are assumed to behave like random walk processes, an assumption which has already successfully been made for the determination of terrestrial reference frames such as the JTRF2014. To be able to apply the most suitable process noise value for every single radio source, their statistical properties are analyzed by computing their Allan standard deviations (ADEV). Additional to the determination of process noise values, the ADEV allows drawing conclusions whether the variations in certain radio source positions significantly deviate from random walk processes. Our investigations also deal with other means of source characterization, such as the structure index, in order to derive a suitable process noise model. The Kalman

  14. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations

    Science.gov (United States)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.

    2013-12-01

    The high cost of acquiring geodetic data from the sea floor has limited the observations available to help us understand and model the behavior of seafloor geodetic processes. To address this problem, the Pacific GPS Facility at the University of Hawaii is developing a cost effective approach for accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure without the requirement for costly ship time. There is a recognized need to vastly increase our underwater geodetic observing capacity. Most of the largest recorded earthquakes and most devastating tsunamis are generated at subduction zones underwater. Similarly, many volcanoes are partly (e.g. Santorini) or completely (e.g. Loihi) submerged, and are not well observed and understood. Furthermore, landslide features ring many ocean basins, and huge debris deposits surround many volcanic oceanic islands. Our approach will lower the cost of collecting sea-floor geodetic data, reducing the barriers preventing us from acquiring the information we need to observe and understand these types of structures and provide a direct societal benefit in improving hazard assessment. The capability is being developed by equipping one of the University of Hawaii Wave Gliders with an integrated acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, processing unit, and cellular communications. The Wave Glider will interrogate high accuracy pressure sensors on the sea floor to maintain a near-continuous stream of pressure and temperature data, but seafloor pressure data includes contribution from a variety of sources and on its own may not provide the accuracy required for geodetic investigations. Independent measurements of sea surface pressure and sea surface height can be used to remove these contributions from the observed sea floor pressure timeseries. We will integrate our seafloor pressure measurements with air

  15. The frames of reference of the motor-visual aftereffect.

    Directory of Open Access Journals (Sweden)

    Guido Barchiesi

    Full Text Available Repeatedly performing similar motor acts produces short-term adaptive changes in the agent's motor system. One striking use-dependent effect is the motor-to-visual aftereffect (MVA, a short-lasting negative bias in the conceptual categorization of visually-presented training-related motor behavior. The MVA is considered the behavioral counterpart of the adaptation of visuomotor neurons that code for congruent executed and observed motor acts. Here we characterize which features of the motor training generate the MVA, along 3 main dimensions: a the relative role of motor acts vs. the semantics of the task-set; b the role of muscular-specific vs. goal-specific training and c the spatial frame of reference with respect to the whole body. Participants were asked to repeatedly push or pull some small objects in a bowl as we varied different components of adapting actions across three experiments. The results show that a the semantic value of the instructions given to the participant have no role in generating the MVA, which depends only on the motor meaning of the training act; b both intrinsic body movements and extrinsic action goals contribute simultaneously to the genesis of the MVA and c changes in the relative position of the acting hand compared to the observed hand, when they do not involve changes to the movement performed or to the action meaning, do not have an effect on the MVA. In these series of experiments we confirm that recent motor experiences produce measurable changes in how humans see each others' actions. The MVA is an exquisite motor effect generated by two distinct motor sub-systems, one operating in an intrinsic, muscular specific, frame of reference and the other operating in an extrinsic motor space.

  16. Operationalization of a Frame of Reference for Studying Organizational Culture in Middle Schools.

    Science.gov (United States)

    Daniel, Larry G.

    A frame of reference for studying culture in middle schools was developed. Items for the Middle School Description Survey (MSDS), which was designed to test elements of the ideal middle school culture, were created based on middle school advocacy literature. The items were conceptually categorized according to E. H. Schein's (1985) cultural…

  17. Entanglement and symmetry: A case study in superselection rules, reference frames, and beyond

    International Nuclear Information System (INIS)

    Jones, S. J.; Wiseman, H. M.; Vaccaro, J. A.; Pope, D. T.; Bartlett, S. D.

    2006-01-01

    In recent years it has become apparent that constraints on possible quantum operations, such as those constraints imposed by superselection rules (SSRs), have a profound effect on quantum information theoretic concepts like bipartite entanglement. This paper concentrates on a particular example: the constraint that applies when the parties (Alice and Bob) cannot distinguish among certain quantum objects they have. This arises naturally in the context of ensemble quantum information processing such as in liquid NMR. We discuss how a SSR for the symmetric group can be applied, and show how the extractable entanglement can be calculated analytically in certain cases, with a maximum bipartite entanglement in an ensemble of N Bell-state pairs scaling as log(N) as N→∞. We discuss the apparent disparity with the asymptotic (N→∞) recovery of unconstrained entanglement for other sorts of superselection rules, and show that the disparity disappears when the correct notion of applying the symmetric group SSR to multiple copies is used. Next we discuss reference frames in the context of this SSR, showing the relation to the work of von Korff and Kempe [Phys. Rev. Lett. 93, 260502 (2004)]. The action of a reference frame can be regarded as the analog of activation in mixed-state entanglement. We also discuss the analog of distillation: there exist states such that one copy can act as an imperfect reference frame for another copy. Finally we present an example of a stronger operational constraint, that operations must be noncollective as well as symmetric. Even under this stronger constraint we, nevertheless, show that Bell nonlocality (and hence entanglement) can be demonstrated for an ensemble of N Bell-state pairs no matter how large N is. This last work is a generalization of that of Mermin [Phys. Rev. D 22, 356 (1980)

  18. The draft common frame of reference (DCFR) : A giant with feet of clay

    NARCIS (Netherlands)

    Chirico, F.; van Damme, E.E.C.; Larouche, P.; Larouche, P.; Cserne, P.

    2013-01-01

    This chapter summarizes the lessons drawn from the work of the Economic Impact Group (EIG), a part of the CoPECL Network of Excellence funded by the EU to prepare a Draft Common Frame of Reference (DCFR). First, it revisits basic principles which are central to the work of the whole group. For one,

  19. Micro-arcsecond Celestial Reference Frames: definition and realization — Impact of the recent IAU Resolutions

    International Nuclear Information System (INIS)

    Capitaine, Nicole

    2012-01-01

    The adoption of the International Celestial Reference System (ICRS), based on Very Long Baseline Interferometry (VLBI) observations of extragalactic radiosources by the International Astronomical Union (IAU) since 1998 January 1, opened a new era for astronomy. The ICRS and the corresponding frame, the International Celestial Reference Frame (ICRF), replaced the Fundamental Catalog (FK5) based on positions and proper motions of bright stars, with the Hipparcos catalog being adopted as the primary realization of the ICRS in optical wavelengths. According to its definition, the ICRS is such that the barycentric directions of distant extragalactic objects show no global rotation with respect to these objects; this provides a quasi-inertial reference for measuring the positions and angular motions of the celestial objects. Other resolutions on reference systems were passed by the IAU in 2000 and 2006 and endorsed by the International Union of Geodesy and Geophysics (IUGG) in 2003 and 2007, respectively. These especially concern the definition and realization of the astronomical reference systems in the framework of general relativity and transformations between them. First, the IAU 2000 resolutions refined the concepts and definition of the astronomical reference systems and parameters for Earth's rotation, and adopted the IAU 2000 precession-nutation. Then, the IAU 2006 resolutions adopted a new precession model that is consistent with dynamical theories; they also addressed definition, terminology or orientation issues relative to reference systems and time scales that needed to be specified after the adoption of the IAU 2000 resolutions. An additional IUGG 2007 resolution defined the International Terrestrial Reference System (ITRS) so that it strictly complies with the IAU recommendations. Finally, the IAU 2009 resolutions adopted a new system of astronomical constants and an improved realization of the ICRF. These fundamental changes have led to significant

  20. Asymptotically Matched Layer (AML) for transient wave propagation in a moving frame of reference

    DEFF Research Database (Denmark)

    Madsen, Stine Skov; Krenk, Steen

    2017-01-01

    The paper presents an Asymptotically Matched Layer (AML) formulation in a moving frame of reference for transient dynamic response of a multi-layer 2D half-space. A displacement based finite element formulation of the convected domain problem is presented together with the AML formulation in whic...

  1. The ICRF-3: Status, Plans, and Multi-wavelength Progress on the next generation Celestial Reference Frame.

    Science.gov (United States)

    Jacobs, Christopher

    2015-08-01

    ICRF-3 seeks to improve upon the highly successful ICRF-2. Our goals are to improve the precision, spatial and frequency coverage relative to the ICRF-2 by 2018. This date is driven by the desire to create radio frames that are ready for comparison with the Gaia optical frame.Several specific actions are underway. A collaboration to improve at S/X-band precision of the Very Long Baseline Array (VLBA) Calibrator Survey's ~2200 sources, which are typically 5 times less precise than the rest of the ICRF-2, is bearing fruit and is projected to yield a factor of 3 improvement in precision. S/X-band southern hemisphere precision improvements are underway with observations using southern antennas such as the AuScope, Warkworth, and HartRAO, South Africa.We also seek to improve radio frequency coverage with X/Ka-band and K-band work. An X/Ka frame of 660 sources now has full sky coverage from the addition of a 2nd southern station in Argentina which is strengthening the southern hemisphere in general. The X/Ka-band frame's precision is now comparable to the ICRF-2 for the 530 sources in common. A K-band collaboration has formed with similar coverage and southern precision goals. By the time of this meeting, we expect K-band to complete full sky coverage with south polar cap observations and to improve spatial density north of -30 deg declination with VLBA observations.On the analysis front, special attention is being given to combination techniques both of Very Long Baseline Interferometry (VLBI) frames and of multiple data types. Consistency of the Celestial Reference Frame (CRF) with the Terrestrial Reference Frame (TRF) and Earth Oreintation Parameters (EOP) is another area of concern. Comparison of celestial frame solutions from various groups is underway in order to identify and correct systematic errors. We will discuss evidence emerging for 100 µas zonal errors in the ICRF2 in the declination range from 0 to -30 deg.Finally, work is underway to identify and

  2. Classical field theory in the space of reference frames. [Space-time manifold, action principle

    Energy Technology Data Exchange (ETDEWEB)

    Toller, M [Dipartimento di Matematica e Fisica, Libera Universita, Trento (Italy)

    1978-03-11

    The formalism of classical field theory is generalized by replacing the space-time manifold M by the ten-dimensional manifold S of all the local reference frames. The geometry of the manifold S is determined by ten vector fields corresponding to ten operationally defined infinitesimal transformations of the reference frames. The action principle is written in terms of a differential 4-form in the space S (the Lagrangian form). Densities and currents are represented by differential 3-forms in S. The field equations and the connection between symmetries and conservation laws (Noether's theorem) are derived from the action principle. Einstein's theory of gravitation and Maxwell's theory of electromagnetism are reformulated in this language. The general formalism can also be used to formulate theories in which charge, energy and momentum cannot be localized in space-time and even theories in which a space-time manifold cannot be defined exactly in any useful way.

  3. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame

    Directory of Open Access Journals (Sweden)

    Jakub Limanowski

    2018-03-01

    Full Text Available Spatially and temporally congruent visuotactile stimulation of a fake hand together with one’s real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants’ index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  4. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame.

    Science.gov (United States)

    Limanowski, Jakub; Blankenburg, Felix

    2018-01-01

    Spatially and temporally congruent visuotactile stimulation of a fake hand together with one's real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants' index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  5. Contribution of Multi-GNSS Constellation to SLR-Derived Terrestrial Reference Frame

    Science.gov (United States)

    Sośnica, K.; Bury, G.; Zajdel, R.

    2018-03-01

    All satellites of new Global Navigation Satellite Systems (GNSS) are equipped with laser retroreflectors dedicated to Satellite Laser Ranging (SLR). This paper demonstrates the contribution of SLR tracking of multi-GNSS constellations to the improved SLR-derived reference frame and scientific products. We show a solution strategy with estimating satellite orbits, SLR station coordinates, geocenter coordinates, and Earth rotation parameters using SLR observations to 2 Laser Geodynamics Satellites (LAGEOS) and 55 GNSS satellites: 1 GPS, 31 Globalnaya Navigatsionnaya Sputnikovaya Sistema, 18 Galileo, 3 BeiDou Inclined Geosynchronous Orbit, 1 BeiDou Medium Earth Orbit, and 1 Quasi-Zenith Satellite System satellite for the period 2014.0-2017.4. Due to a substantial number of GNSS observations, the number of weekly solutions for some SLR stations, for example, Arkhyz, Komsomolsk, Altay, and Brasilia, is larger up to 41% in the combined LAGEOS + GNSS solution when compared to the LAGEOS-only solution. The SLR observations to GNSS can transfer the orientation of the reference frame from GNSS to SLR solutions. As a result, the SLR-derived pole coordinates and length-of-day estimates become more consistent with GNSS microwave-based results. The root-mean-square errors of length-of-day are reduced from 122.5 μs/d to 43.0 μs/d, whereas mean offsets are reduced from -81.6 μs/d to 0.5 μs/d in LAGEOS only and in the combined LAGEOS + GNSS solutions, respectively.

  6. Regional Crustal Deformation and Lithosphere Thickness Observed with Geodetic Techniques

    Science.gov (United States)

    Vermeer, M.; Poutanen, M.; Kollo, K.; Koivula, H.; Ahola, J.

    2009-04-01

    The solid Earth, including the lithosphere, interacts in many ways with other components of the Earth system, oceans, atmosphere and climate. Geodesy is a key provider of data needed for global and environmental research. Geodesy provides methods and accurate measurements of contemporary deformation, sea level and gravity change. The importance of the decades-long stability and availability of reference frames must be stressed for such studies. In the future, the need to accurately monitor 3-D crustal motions will grow, both together with increasingly precise GNSS (Global Navigation Satellite System) positioning, demands for better follow-up of global change, and local needs for crustal motions, especially in coastal areas. These demands cannot yet be satisfied. The project described here is a part of a larger entity: Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas, DynaQlim, an International Lithosphere Project (ILP) -sponsored initiative. The aims of DynaQlim are to understand the relations between upper mantle dynamics, mantle composition, physical properties, temperature and rheology, to study the postglacial uplift and ice thickness models, sea level change and isostatic response, Quaternary climate variations and Weichselian (Laurentian and other) glaciations during the late Quaternary. We aim at studying various aspects of lithospheric motion within the Finnish and Fennoscandian area, but within a global perspective, by the newest geodetic techniques in a multidisciplinary setting. The studies involve observations of three-dimensional motions and gravity change in a multidisciplinary context on a range of spatial scales: the whole of Fennoscandia, Finland, a regional test area of Satakunta, and the local test site Olkiluoto. Objectives of the research include improving our insight into the 3-D motion of a thick lithosphere, and into the gravity effect of the uplift, using novel approaches; improving the kinematic 3-D models in the

  7. Locations of serial reach targets are coded in multiple reference frames.

    Science.gov (United States)

    Thompson, Aidan A; Henriques, Denise Y P

    2010-12-01

    Previous work from our lab, and elsewhere, has demonstrated that remembered target locations are stored and updated in an eye-fixed reference frame. That is, reach errors systematically vary as a function of gaze direction relative to a remembered target location, not only when the target is viewed in the periphery (Bock, 1986, known as the retinal magnification effect), but also when the target has been foveated, and the eyes subsequently move after the target has disappeared but prior to reaching (e.g., Henriques, Klier, Smith, Lowy, & Crawford, 1998; Sorrento & Henriques, 2008; Thompson & Henriques, 2008). These gaze-dependent errors, following intervening eye movements, cannot be explained by representations whose frame is fixed to the head, body or even the world. However, it is unknown whether targets presented sequentially would all be coded relative to gaze (i.e., egocentrically/absolutely), or if they would be coded relative to the previous target (i.e., allocentrically/relatively). It might be expected that the reaching movements to two targets separated by 5° would differ by that distance. But, if gaze were to shift between the first and second reaches, would the movement amplitude between the targets differ? If the target locations are coded allocentrically (i.e., the location of the second target coded relative to the first) then the movement amplitude should be about 5°. But, if the second target is coded egocentrically (i.e., relative to current gaze direction), then the reaches to this target and the distances between the subsequent movements should vary systematically with gaze as described above. We found that requiring an intervening saccade to the opposite side of 2 briefly presented targets between reaches to them resulted in a pattern of reaching error that systematically varied as a function of the distance between current gaze and target, and led to a systematic change in the distance between the sequential reach endpoints as predicted by

  8. Formal structures, the concepts of covariance, invariance, equivalent reference frames, and the principle Relativity

    Science.gov (United States)

    Rodrigues, W. A.; Scanavini, M. E. F.; de Alcantara, L. P.

    1990-02-01

    In this paper a given spacetime theory T is characterized as the theory of a certain species of structure in the sense of Bourbaki [1]. It is then possible to clarify in a rigorous way the concepts of passive and active covariance of T under the action of the manifold mapping group G M . For each T, we define also an invariance group G I T and, in general, G I T ≠ G M . This group is defined once we realize that, for each τ ∈ ModT, each explicit geometrical object defining the structure can be classified as absolute or dynamical [2]. All spacetime theories possess also implicit geometrical objects that do not appear explicitly in the structure. These implicit objects are not absolute nor dynamical. Among them there are the reference frame fields, i.e., “timelike” vector fields X ∈ TU,U subseteq M M, where M is a manifold which is part of ST, a substructure for each τ ∈ ModT, called spacetime. We give a physically motivated definition of equivalent reference frames and introduce the concept of the equivalence group of a class of reference frames of kind X according to T, G X T. We define that T admits a weak principle of relativity (WPR) only if G X T ≠ identity for some X. If G X T = G I T for some X, we say that T admits a strong principle of relativity (PR). The results of this paper generalize and clarify several results obtained by Anderson [2], Scheibe [3], Hiskes [4], Recami and Rodrigues [5], Friedman [6], Fock [7], and Scanavini [8]. Among the novelties here, there is the realization that the definitions of G I T and G X T can be given only when certain boundary conditions for the equations of motion of T can be physically realizable in the domain U U subseteq M M, where a given reference frame is defined. The existence of physically realizable boundary conditions for each τ ∈ ModT (in ∂ U), in contrast with the mathematically possible boundary condition, is then seen to be essential for the validity of a principle of relativity for T

  9. Modified geodetic brane cosmology

    International Nuclear Information System (INIS)

    Cordero, Rubén; Cruz, Miguel; Molgado, Alberto; Rojas, Efraín

    2012-01-01

    We explore the cosmological implications provided by the geodetic brane gravity action corrected by an extrinsic curvature brane term, describing a codimension-1 brane embedded in a 5D fixed Minkowski spacetime. In the geodetic brane gravity action, we accommodate the correction term through a linear term in the extrinsic curvature swept out by the brane. We study the resulting geodetic-type equation of motion. Within a Friedmann–Robertson–Walker metric, we obtain a generalized Friedmann equation describing the associated cosmological evolution. We observe that, when the radiation-like energy contribution from the extra dimension is vanishing, this effective model leads to a self-(non-self)-accelerated expansion of the brane-like universe in dependence on the nature of the concomitant parameter β associated with the correction, which resembles an analogous behaviour in the DGP brane cosmology. Several possibilities in the description for the cosmic evolution of this model are embodied and characterized by the involved density parameters related in turn to the cosmological constant, the geometry characterizing the model, the introduced β parameter as well as the dark-like energy and the matter content on the brane. (paper)

  10. The Generalized Internal/External Frame of Reference Model: An Extension to Dimensional Comparison Theory

    Science.gov (United States)

    Möller, Jens; Müller-Kalthoff, Hanno; Helm, Friederike; Nagy, Nicole; Marsh, Herb W.

    2016-01-01

    The dimensional comparison theory (DCT) focuses on the effects of internal, dimensional comparisons (e.g., "How good am I in math compared to English?") on academic self-concepts with widespread consequences for students' self-evaluation, motivation, and behavioral choices. DCT is based on the internal/external frame of reference model…

  11. Differential School Contextual Effects for Math and English: Integrating the Big-Fish-Little-Pond Effect and the Internal/External Frame of Reference

    Science.gov (United States)

    Parker, Philip D.; Marsh, Herbert W.; Ludtke, Oliver; Trautwein, Ulrich

    2013-01-01

    The internal/external frame of reference and the big-fish-little-pond effect are two major models of academic self-concept formation which have considerable theoretical and empirical support. Integrating the domain specific and compensatory processes of the internal/external frame of reference model with the big-fish-little-pond effect suggests a…

  12. A System to Produce Precise Global GPS Network Solutions for all Geodetic GPS Stations in the World

    Science.gov (United States)

    Blewitt, G.; Kreemer, C. W.

    2010-12-01

    We have developed an end-to-end system that automatically seeks and routinely retrieves geodetic GPS data from ~5000 stations (currently) around the globe, reduces the data into unique, daily global network solutions, and produces high precision time series for station coordinates ready for time-series analysis, geophysical modeling and interpretation. Moreover, “carrier range” data are produced for all stations, enabling epoch-by-epoch tracking of individual station motions by precise point positioning for investigation of sub-daily processes, such as post-seismic after-slip and ocean tidal loading. Solutions are computed in a global reference frame aligned to ITRF, and optionally in user-specified continental-scale reference frames that can filter out common-mode signals to enhance regional strain anomalies. We describe the elements of this system, the underlying signal processing theory, the products, operational statistics, and scientific applications of our system. The system is fundamentally based on precise point positioning using JPL's GIPSY OASIS II software, coupled with ambiguity resolution and a global network adjustment of ~300,000 parameters per day using our newly developed Ambizap3 software. The system is designed to easily and efficiently absorb stations that deliver data very late, by recycling prior computations in the network adjustment, such that the resulting network solution is identical to starting from scratch. Thus, it becomes possible to trawl continuously the Internet for late arriving data, or for newly discovered data, and seamlessly update all GPS station time series using the new information content. As new stations are added to the processing archive, automated e-mail requests are made to H.-G. Scherneck's server at Chalmers University to compute ocean loading coefficients used by the station motion model. Rinex file headers are parsed and compared with alias tables in order to infer the correct receiver type and antenna

  13. Leveraging geodetic data to reduce losses from earthquakes

    Science.gov (United States)

    Murray, Jessica R.; Roeloffs, Evelyn A.; Brooks, Benjamin A.; Langbein, John O.; Leith, William S.; Minson, Sarah E.; Svarc, Jerry L.; Thatcher, Wayne R.

    2018-04-23

    Seismic hazard assessments that are based on a variety of data and the best available science, coupled with rapid synthesis of real-time information from continuous monitoring networks to guide post-earthquake response, form a solid foundation for effective earthquake loss reduction. With this in mind, the Earthquake Hazards Program (EHP) of the U.S. Geological Survey (USGS) Natural Hazards Mission Area (NHMA) engages in a variety of undertakings, both established and emergent, in order to provide high quality products that enable stakeholders to take action in advance of and in response to earthquakes. Examples include the National Seismic Hazard Model (NSHM), development of tools for improved situational awareness such as earthquake early warning (EEW) and operational earthquake forecasting (OEF), research about induced seismicity, and new efforts to advance comprehensive subduction zone science and monitoring. Geodetic observations provide unique and complementary information directly relevant to advancing many aspects of these efforts (fig. 1). EHP scientists have long leveraged geodetic data for a range of influential studies, and they continue to develop innovative observation and analysis methods that push the boundaries of the field of geodesy as applied to natural hazards research. Given the ongoing, rapid improvement in availability, variety, and precision of geodetic measurements, considering ways to fully utilize this observational resource for earthquake loss reduction is timely and essential. This report presents strategies, and the underlying scientific rationale, by which the EHP could achieve the following outcomes: The EHP is an authoritative source for the interpretation of geodetic data and its use for earthquake loss reduction throughout the United States and its territories.The USGS consistently provides timely, high quality geodetic data to stakeholders.Significant earthquakes are better characterized by incorporating geodetic data into USGS

  14. Does Environmental Experience Shape Spatial Cognition? Frames of Reference among Ancash Quechua Speakers (Peru)

    Science.gov (United States)

    Shapero, Joshua A.

    2017-01-01

    Previous studies have shown that language contributes to humans' ability to orient using landmarks and shapes their use of frames of reference (FoRs) for memory. However, the role of environmental experience in shaping spatial cognition has not been investigated. This study addresses such a possibility by examining the use of FoRs in a nonverbal…

  15. Adaptive Interval Type-2 Fuzzy Logic Control for PMSM Drives with a Modified Reference Frame

    KAUST Repository

    Chaoui, Hicham

    2017-01-10

    In this paper, an adaptive interval type-2 fuzzy logic control scheme is proposed for high-performance permanent magnet synchronous machine drives. This strategy combines the power of type-2 fuzzy logic systems with the adaptive control theory to achieve accurate tracking and robustness to higher uncertainties. Unlike other controllers, the proposed strategy does not require electrical transducers and hence, no explicit currents loop regulation is needed, which yields a simplified control scheme. But, this limits the machine\\'s operation range since it results in a higher energy consumption. Therefore, a modified reference frame is also proposed in this paper to decrease the machine\\'s consumption. To better assess the performance of the new reference frame, comparison against its original counterpart is carried-out under the same conditions. Moreover, the stability of the closed-loop control scheme is guaranteed by a Lyapunov theorem. Simulation and experimental results for numerous situations highlight the effectiveness of the proposed controller in standstill, transient, and steady-state conditions.

  16. Quantum cosmology with effects of a preferred reference frame

    International Nuclear Information System (INIS)

    Ghaffarnejad, Hossein

    2010-01-01

    Recently, we presented a gravity model by generalizing the Brans-Dicke theory which is suitable for studying the metric signature transition dynamics without using an imaginary time parameter. Adding a suitable scalar potential described in terms of the Brans-Dicke scalar field 'Φ-tilde, this alternative theory is used to study the Wheeler-DeWitt approach of quantum cosmology. We assumed that the universe is defined in a flat Robertson-Walker metric with Lorentzian signature. In that case, the Wheeler-DeWitt wavefunctional is obtained as two-dimensional quantum harmonic oscillator convergent polynomials for both of the choices of positive and negative values of the Brans-Dicke parameter. Here we choose a preferred reference frame with a time coordinate of 'γ' which relates to time of cosmological free falling observer 't' as 'dt= Φ-tilde(γ)dγ'.

  17. Anandan quantum phase for a neutral particle with Fermi-Walker reference frame in the cosmic string background

    International Nuclear Information System (INIS)

    Bakke, Knut; Furtado, C.

    2010-01-01

    We study geometric quantum phases in the relativistic and non-relativistic quantum dynamics of a neutral particle with a permanent magnetic dipole moment interacting with two distinct field configurations in a cosmic string spacetime. We consider the local reference frames of the observers are transported via Fermi-Walker transport and study the influence of the non-inertial effects on the phase shift of the wave function of the neutral particle due to the choice of this local frame. We show that the wave function of the neutral particle acquires non-dispersive relativistic and non-relativistic quantum geometric phases due to the topology of the spacetime, the interaction between the magnetic dipole moment with external fields and the spin-rotation coupling. However, due to the Fermi-Walker reference frame, no phase shift associated to the Sagnac effect appears in the quantum dynamics of a neutral particle. We show that in the absence of topological defect, the contribution to the quantum phase due to the spin-rotation coupling is equivalent to the Mashhoon effect in non-relativistic dynamics. (orig.)

  18. Media Framing

    DEFF Research Database (Denmark)

    Pedersen, Rasmus T.

    2017-01-01

    The concept of media framing refers to the way in which the news media organize and provide meaning to a news story by emphasizing some parts of reality and disregarding other parts. These patterns of emphasis and exclusion in news coverage create frames that can have considerable effects on news...... consumers’ perceptions and attitudes regarding the given issue or event. This entry briefly elaborates on the concept of media framing, presents key types of media frames, and introduces the research on media framing effects....

  19. Device-dependent and device-independent quantum key distribution without a shared reference frame

    International Nuclear Information System (INIS)

    Slater, Joshua A; Tittel, Wolfgang; Branciard, Cyril; Brunner, Nicolas

    2014-01-01

    Standard quantum key distribution (QKD) protocols typically assume that the distant parties share a common reference frame. In practice, however, establishing and maintaining a good alignment between distant observers is rarely a trivial issue, which may significantly restrain the implementation of long-distance quantum communication protocols. Here we propose simple QKD protocols that do not require the parties to share any reference frame, and study their security and feasibility in both the usual device-dependent (DD) case—in which the two parties use well characterized measurement devices—as well as in the device-independent (DI) case—in which the measurement devices can be untrusted, and the security relies on the violation of a Bell inequality. To illustrate the practical relevance of these ideas, we present a proof-of-principle demonstration of our protocols using polarization entangled photons distributed over a coiled 10-km long optical fiber. We consider two situations, in which either the fiber spool's polarization transformation freely drifts, or randomly chosen polarization transformations are applied. The correlations obtained from measurements allow, with high probability, to generate positive asymptotic secret key rates in both the DD and DI scenarios (under the fair-sampling assumption for the latter case). (paper)

  20. The right frame of reference makes it simple: an example of introductory mechanics supported by video analysis of motion

    International Nuclear Information System (INIS)

    Klein, P; Gröber, S; Kuhn, J; Fleischhauer, A; Müller, A

    2015-01-01

    The selection and application of coordinate systems is an important issue in physics. However, considering different frames of references in a given problem sometimes seems un-intuitive and is difficult for students. We present a concrete problem of projectile motion which vividly demonstrates the value of considering different frames of references. We use this example to explore the effectiveness of video-based motion analysis (VBMA) as an instructional technique at university level in enhancing students’ understanding of the abstract concept of coordinate systems. A pilot study with 47 undergraduate students indicates that VBMA instruction improves conceptual understanding of this issue. (paper)

  1. The right frame of reference makes it simple: an example of introductory mechanics supported by video analysis of motion

    Science.gov (United States)

    Klein, P.; Gröber, S.; Kuhn, J.; Fleischhauer, A.; Müller, A.

    2015-01-01

    The selection and application of coordinate systems is an important issue in physics. However, considering different frames of references in a given problem sometimes seems un-intuitive and is difficult for students. We present a concrete problem of projectile motion which vividly demonstrates the value of considering different frames of references. We use this example to explore the effectiveness of video-based motion analysis (VBMA) as an instructional technique at university level in enhancing students’ understanding of the abstract concept of coordinate systems. A pilot study with 47 undergraduate students indicates that VBMA instruction improves conceptual understanding of this issue.

  2. Out of body, out of space: Impaired reference frame processing in eating disorders.

    Science.gov (United States)

    Serino, Silvia; Dakanalis, Antonios; Gaudio, Santino; Carrà, Giuseppe; Cipresso, Pietro; Clerici, Massimo; Riva, Giuseppe

    2015-12-15

    A distorted body representation is a core symptom in eating disorders (EDs), though its mechanism is unclear. Allocentric lock theory, emphasising the role of reference frame processing in body image, suggests that ED patients may be (b)locked to an (allocentric) representation of their own body stored in long-term memory (e.g., my body is fat) that is not updated (modified) by the (real-time egocentric) perception-driven experience of the physical body. Employing a well-validated virtual reality-based procedure, relative to healthy controls, ED patients showed deficits in the ability to refer to and update a long-term stored (allocentric) representation with (egocentric) perceptual-driven inputs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Investigation on Reference Frames and Time Systems in Multi-GNSS

    Directory of Open Access Journals (Sweden)

    Luca Nicolini

    2018-01-01

    Full Text Available Receivers able to track satellites belonging to different GNSSs (Global Navigation Satellite Systems are available on the market. To compute coordinates and velocities it is necessary to identify all the elements that contribute to interoperability of the different GNSSs. For example the timescales kept by different GNSSs have to be aligned. Receiver-specific biases, or firmware-dependent biases, need to be calibrated. The reference frame used in the representation of the orbits must be unique. In this paper we address the interoperability issues from the standpoint of a Single Point Positioning (SPP user, i.e., using pseudoranges and broadcast ephemeris. The biases between GNSSs timescales and receiver-dependent biases are analyzed for a set of 31 MGEX (Multi-GNSS Experiment stations over a time span of more than three years. Time series of biases between timescales of GPS (Global Positioning System, GLONASS (Global Navigation Satellite System, Galileo, BeiDou, QZSS (Quasi-Zenith Satellite System, SBAS (Satellite Based Augmentation System and NAVIC (Navigation with Indian Constellation are investigated, in addition to the identification of events like discontinuity of receiver-dependent biases due to firmware updating. The GPS broadcast reference frame is shown to be aligned to the one (IGS14 realized by the precise ephemeris of CODE (Center for Orbit Determination in Europe to within 0.1 m and 2 milliarcsec, with values dependent on whether IIR-A, IIR-B/M or IIF satellite blocks are considered. Larger offsets are observed for GLONASS, up to 1 m for GLONASS K satellites. For Galileo the alignment of the broadcast orbit to IGS14/CODE is again at the 0.1 m and several milliarcsec level, with the FOC (Full Operational Capability satellites slightly better than IOV (In Orbit Validation. For BeiDou an alignment of the broadcast frame to IGS14/CODE comparable to GLONASS is observed, regardless of whether IGSO (Inclined Geosynchronous Orbit or MEO

  4. Technical Note: Modification of the standard gain correction algorithm to compensate for the number of used reference flat frames in detector performance studies

    International Nuclear Information System (INIS)

    Konstantinidis, Anastasios C.; Olivo, Alessandro; Speller, Robert D.

    2011-01-01

    Purpose: The x-ray performance evaluation of digital x-ray detectors is based on the calculation of the modulation transfer function (MTF), the noise power spectrum (NPS), and the resultant detective quantum efficiency (DQE). The flat images used for the extraction of the NPS should not contain any fixed pattern noise (FPN) to avoid contamination from nonstochastic processes. The ''gold standard'' method used for the reduction of the FPN (i.e., the different gain between pixels) in linear x-ray detectors is based on normalization with an average reference flat-field. However, the noise in the corrected image depends on the number of flat frames used for the average flat image. The aim of this study is to modify the standard gain correction algorithm to make it independent on the used reference flat frames. Methods: Many publications suggest the use of 10-16 reference flat frames, while other studies use higher numbers (e.g., 48 frames) to reduce the propagated noise from the average flat image. This study quantifies experimentally the effect of the number of used reference flat frames on the NPS and DQE values and appropriately modifies the gain correction algorithm to compensate for this effect. Results: It is shown that using the suggested gain correction algorithm a minimum number of reference flat frames (i.e., down to one frame) can be used to eliminate the FPN from the raw flat image. This saves computer memory and time during the x-ray performance evaluation. Conclusions: The authors show that the method presented in the study (a) leads to the maximum DQE value that one would have by using the conventional method and very large number of frames and (b) has been compared to an independent gain correction method based on the subtraction of flat-field images, leading to identical DQE values. They believe this provides robust validation of the proposed method.

  5. Phase-encoded measurement device independent quantum key distribution without a shared reference frame

    Science.gov (United States)

    Zhuo-Dan, Zhu; Shang-Hong, Zhao; Chen, Dong; Ying, Sun

    2018-07-01

    In this paper, a phase-encoded measurement device independent quantum key distribution (MDI-QKD) protocol without a shared reference frame is presented, which can generate secure keys between two parties while the quantum channel or interferometer introduces an unknown and slowly time-varying phase. The corresponding secret key rate and single photons bit error rate is analysed, respectively, with single photons source (SPS) and weak coherent source (WCS), taking finite-key analysis into account. The numerical simulations show that the modified phase-encoded MDI-QKD protocol has apparent superiority both in maximal secure transmission distance and key generation rate while possessing the improved robustness and practical security in the high-speed case. Moreover, the rejection of the frame-calibrating part will intrinsically reduce the consumption of resources as well as the potential security flaws of practical MDI-QKD systems.

  6. Extension of the PSE code NOLOT for transition analysis in rotating reference frames

    OpenAIRE

    Dechamps, Xavier; Hein, Stefan

    2016-01-01

    The present work aims at contributing to a better understanding of the effect of rotation on the stability properties of boundary layers. For this purpose, the Parabolized-Stability-Equations based NOLOT code was extended to rotating reference frames through the inclusion of the centrifugal and Coriolis forces. Stability analyses of three flow configurations were then considered for verification: the rotating Blasius Profile, the flow along a curved wall and the three-dimensional flow due to ...

  7. A reference Pelton turbine - High speed visualization in the rotating frame

    Science.gov (United States)

    Solemslie, Bjørn W.; Dahlhaug, Ole G.

    2016-11-01

    To enable a detailed study the flow mechanisms effecting the flow within the reference Pelton runner designed at the Waterpower Laboratory (NTNLT) a flow visualization system has been developed. The system enables high speed filming of the hydraulic surface of a single bucket in the rotating frame of reference. It is built with an angular borescopes adapter entering the turbine along the rotational axis and a borescope embedded within a bucket. A stationary high speed camera located outside the turbine housing has been connected to the optical arrangement by a non-contact coupling. The view point of the system includes the whole hydraulic surface of one half of a bucket. The system has been designed to minimize the amount of vibrations and to ensure that the vibrations felt by the borescope are the same as those affecting the camera. The preliminary results captured with the system are promising and enable a detailed study of the flow within the turbine.

  8. Integration of space geodesy: A US National Geodetic Observatory

    Science.gov (United States)

    Yunck, Thomas P.; Neilan, Ruth E.

    2005-11-01

    In the interest of improving the performance and efficiency of space geodesy a diverse group in the US, in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO). To launch this effort an international team will conduct a multi-year program of research into the technical issues of integrating SLR, VLBI, and GPS geodesy to produce a unified set of global geodetic products. The goal is to improve measurement accuracy by up to an order of magnitude while lowering the cost to current sponsors. A secondary goal is to expand and diversify international sponsorship of space geodesy. Principal benefits will be to open new vistas of research in geodynamics and surface change while freeing scarce NASA funds for scientific studies. NGO will proceed in partnership with, and under the auspices of, the International Association of Geodesy (IAG) as an element of the Integrated Global Geodetic Observation System project. The collaboration will be conducted within, and will make full use of, the IAG's existing international services: the IGS, IVS, ILRS, and IERS. Seed funding for organizational activities and technical analysis will come from NASA's Solid Earth and Natural Hazards Program. Additional funds to develop an integrated geodetic data system known as Inter-service Data Integration for Geodetic Operations (INDIGO), will come from a separate NASA program in Earth science information technology. INDIGO will offer ready access to the full variety of NASA's space geodetic data and will extend the GPS Seamless Archive (GSAC) philosophy to all space geodetic data types.

  9. The General Medical Council: frame of reference or arbiter of morals?

    Science.gov (United States)

    Hill, D

    1977-01-01

    Many members of the public think of the General Medical Council (GMC) as the body which tries doctors: the doctors' law courts, as it were. And, except in the more sober of newspapers and news reports, the 'offences ' which receive the most publicity are those concerning alleged improper relations between doctors and patients. Professor Sir Denis Hill, in the following paper, which he read in the spring of this year to the annual conference of the London Medical Group devoted to a discussion of human sexuality, chose to examine the whole function of the General Medical Council as a frame of moral reference for doctors. Judging allegations of professional misconduct by doctors is the function of the Council's Disciplinary Committee. Judging sexual misconduct forms only a small part of their work. The GMC's responsibility covers the whole notion of morals and morality as it concerns doctors in their professional work. Sir Denis Hill stresses the modern thinking that morality must be learned and that attitudes are always shifting as society alters its norms of what is moral conduct. That is not to say that all that was previously considered not to be moral has now become acceptable but rather that other concepts have entered the field of moral debate. Therefore the GMC must constantly review the frame of reference it offers to doctors and the public may be surprised to learn that that process is never static. Sir Denis Hill in this paper is speaking personally and not as a member of the General Medical Council or of any of that body's special committees. PMID:926129

  10. Performance Improvement of a Prefiltered Synchronous-Reference-Frame PLL By Using a PID-Type Loop Filter

    DEFF Research Database (Denmark)

    Golestan, Saeed; Monfared, Mohammad; Frejeido, Francisco

    2014-01-01

    Control Parameters design of a three-phase synchronous reference frame phase locked loop (SRF-PLL) with a pre-filtering stage (acting as the sequence separator) is not a trivial task. The conventional way to deal with this problem is to neglect the interaction between the SRF-PLL and pre-filterin......Control Parameters design of a three-phase synchronous reference frame phase locked loop (SRF-PLL) with a pre-filtering stage (acting as the sequence separator) is not a trivial task. The conventional way to deal with this problem is to neglect the interaction between the SRF-PLL and pre......-integral-derivative controller as the loop filter (instead of the commonly adopted proportionalintegral controller) and arranging a pole-zero cancellation. The suggested method is simple and efficient, and is applicable to the joint operation of different sequence separation techniques and the SRF-PLL. The effectiveness...

  11. A Novel Real-Time Reference Key Frame Scan Matching Method

    Directory of Open Access Journals (Sweden)

    Haytham Mohamed

    2017-05-01

    Full Text Available Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions’ environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF. RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems.

  12. A Global Moving Hotspot Reference Frame: How well it fits?

    Science.gov (United States)

    Doubrovine, P. V.; Steinberger, B.; Torsvik, T. H.

    2010-12-01

    Since the early 1970s, when Jason Morgan proposed that hotspot tracks record motion of lithosphere over deep-seated mantle plumes, the concept of fixed hotspots has dominated the way we think about absolute plate reconstructions. In the last decade, with compelling evidence for southward drift of the Hawaiian hotspot from paleomagnetic studies, and for the relative motion between the Pacific and Indo-Atlantic hotspots from refined plate circuit reconstructions, the perception changed and a global moving hotspot reference frame (GMHRF) was introduced, in which numerical models of mantle convection and advection of plume conduits in the mantle flow were used to estimate hotspot motion. This reference frame showed qualitatively better performance in fitting hotspot tracks globally, but the error analysis and formal estimates of the goodness of fitted rotations were lacking in this model. Here we present a new generation of the GMHRF, in which updated plate circuit reconstructions and radiometric age data from the hotspot tracks were combined with numerical models of plume motion, and uncertainties of absolute plate rotations were estimated through spherical regression analysis. The overall quality of fit was evaluated using a formal statistical test, by comparing misfits produced by the model with uncertainties assigned to the data. Alternative plate circuit models linking the Pacific plate to the plates of Indo-Atlantic hemisphere were tested and compared to the fixed hotspot models with identical error budgets. Our results show that, with an appropriate choice of the Pacific plate circuit, it is possible to reconcile relative plate motions and modeled motions of mantle plumes globally back to Late Cretaceous time (80 Ma). In contrast, all fixed hotspot models failed to produce acceptable fits for Paleogene to Late Cretaceous time (30-80 Ma), highlighting significance of relative motion between the Pacific and Indo-Atlantic hotspots during this interval. The

  13. Enhanced Decoupled Double Synchronous Reference Frame Current Controller for Unbalanced Grid-Voltage Conditions

    DEFF Research Database (Denmark)

    Reyes, M.; Rodriguez, Pedro; Vazquez, S.

    2012-01-01

    . In these codes, the injection of positive- and negative-sequence current components becomes necessary for fulfilling, among others, the low-voltage ride-through requirements during balanced and unbalanced grid faults. However, the performance of classical dq current controllers, applied to power converters......, under unbalanced grid-voltage conditions is highly deficient, due to the unavoidable appearance of current oscillations. This paper analyzes the performance of the double synchronous reference frame controller and improves its structure by adding a decoupling network for estimating and compensating...

  14. Time delay control of power converters: Mixed frame and stationary-frame variants

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P.C.; Tang, Y.

    2008-01-01

    In this paper, a mixed-frame and a stationary-frame time delay current controller are proposed for high precision reference tracking and disturbance rejection of power converters. In particular, the controllers use a proportional-resonant regulator in the stationary frame for regulating...... the positive and negative-sequence fundamental currents, which are known to directly influence the flow of active and reactive power in most energy conversion systems. Moreover, for the tracking or compensation of harmonics, the controllers include a time delay control path in either the synchronous...... or stationary frame, whose inherent feedback and feedforward structure can be proven to resemble a bank of resonant filters in either reference frames. Unlike other existing controllers, the proposed time delay controllers function by introducing multiple resonant peaks at only those harmonic frequencies...

  15. Quantum frames

    Science.gov (United States)

    Brown, Matthew J.

    2014-02-01

    The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.

  16. Geodetic achievement and avoidance games for graphs | Haynes ...

    African Journals Online (AJOL)

    Let G = (V,E) be a nontrivial connected graph. For a subset S ⊆ V, the geodesic closure (S) of S is the set of all vertices on geodesics (shortest paths) between two vertices of S. We study the geodetic achievement and avoidance games defined by Buckley and Harary (Geodetic games for graphs, Quaestiones Math.

  17. The values underlying the Draft Common Frame of Reference: what role for fairness and 'social justice'?

    NARCIS (Netherlands)

    Hesselink, M.W.

    2008-01-01

    This study provides an in-depth analysis of the provisions of the draft Common Frame of Reference (DCFR), in order to assess if the DCFR perceives contract law only as a tool for regulating private law relations between equally strong parties or if it contains elements of 'social justice' in favour

  18. Structured perceptual input imposes an egocentric frame of reference-pointing, imagery, and spatial self-consciousness.

    Science.gov (United States)

    Marcel, Anthony; Dobel, Christian

    2005-01-01

    Perceptual input imposes and maintains an egocentric frame of reference, which enables orientation. When blindfolded, people tended to mistake the assumed intrinsic axes of symmetry of their immediate environment (a room) for their own egocentric relation to features of the room. When asked to point to the door and window, known to be at mid-points of facing (or adjacent) walls, they pointed with their arms at 180 degrees (or 90 degrees) angles, irrespective of where they thought they were in the room. People did the same when requested to imagine the situation. They justified their responses (inappropriately) by logical necessity or a structural description of the room rather than (appropriately) by relative location of themselves and the reference points. In eight experiments, we explored the effect on this in perception and imagery of: perceptual input (without perceptibility of the target reference points); imaging oneself versus another person; aids to explicit spatial self-consciousness; order of questions about self-location; and the relation of targets to the axes of symmetry of the room. The results indicate that, if one is deprived of structured perceptual input, as well as losing one's bearings, (a) one is likely to lose one's egocentric frame of reference itself, and (b) instead of pointing to reference points, one demonstrates their structural relation by adopting the intrinsic axes of the environment as one's own. This is prevented by providing noninformative perceptual input or by inducing subjects to imagine themselves from the outside, which makes explicit the fact of their being located relative to the world. The role of perceptual contact with a structured world is discussed in relation to sensory deprivation and imagery, appeal is made to Gibson's theory of joint egoreception and exteroception, and the data are related to recent theories of spatial memory and navigation.

  19. Greenberger-Horne-Zeilinger-like proof of Bell's theorem involving observers who do not share a reference frame

    International Nuclear Information System (INIS)

    Cabello, Adan

    2003-01-01

    Vaidman described how a team of three players, each of them isolated in a remote booth, could use a three-qubit Greenberger-Horne-Zeilinger state to always win a game which would be impossible to always win without quantum resources. However, Vaidman's method requires all three players to share a common reference frame; it does not work if the adversary is allowed to disorientate one player. Here we show how to always win the game, even if the players do not share any reference frame. The introduced method uses a 12-qubit state which is invariant under any transformation R a xR b xR c (where R a =U a xU a xU a xU a , where U j is a unitary operation on a single qubit) and requires only single-qubit measurements. A number of further applications of this 12-qubit state are described

  20. Navigation accuracy comparing non-covered frame and use of plastic sterile drapes to cover the reference frame in 3D acquisition.

    Science.gov (United States)

    Corenman, Donald S; Strauch, Eric L; Dornan, Grant J; Otterstrom, Eric; Zalepa King, Lisa

    2017-09-01

    Advancements in surgical navigation technology coupled with 3-dimensional (3D) radiographic data have significantly enhanced the accuracy and efficiency of spinal fusion implant placement. Increased usage of such technology has led to rising concerns regarding maintenance of the sterile field, as makeshift drape systems are fraught with breaches thus presenting increased risk of surgical site infections (SSIs). A clinical need exists for a sterile draping solution with these techniques. Our objective was to quantify expected accuracy error associated with 2MM and 4MM thickness Sterile-Z Patient Drape ® using Medtronic O-Arm ® Surgical Imaging with StealthStation ® S7 ® Navigation System. Camera distance to reference frame was investigated for contribution to accuracy error. A testing jig was placed on the radiolucent table and the Medtronic passive reference frame was attached to jig. The StealthStation ® S7 ® navigation camera was placed at various distances from testing jig and the geometry error of reference frame was captured for three different drape configurations: no drape, 2MM drape and 4MM drape. The O-Arm ® gantry location and StealthStation ® S7 ® camera position was maintained and seven 3D acquisitions for each of drape configurations were measured. Data was analyzed by a two-factor analysis of variance (ANOVA) and Bonferroni comparisons were used to assess the independent effects of camera angle and drape on accuracy error. Median (and maximum) measurement accuracy error was higher for the 2MM than for the 4MM drape for each camera distance. The most extreme error observed (4.6 mm) occurred when using the 2MM and the 'far' camera distance. The 4MM drape was found to induce an accuracy error of 0.11 mm (95% confidence interval, 0.06-0.15; P<0.001) relative to the no drape testing, regardless of camera distance. Medium camera distance produced lower accuracy error than either the close (additional 0.08 mm error; 95% CI, 0-0.15; P=0.035) or far

  1. Geodetic contributions to IWRM-projects in middle Java, Indonesia

    Science.gov (United States)

    Schmitt, Günter

    2010-12-01

    The district of Gunung Kidul in middle Java is one of the poorest regions in Indonesia. The essential reason is the acute water scarcity in this karst region during the months of the dry season. As a consequence of the poor living conditions many people have migrated away and therefore the development of the region is stagnating. During the last few years two projects have been initiated under the theme “Integrated Water Resources Management” in order to improve the water supply situation, both funded by the German Federal Ministry of Education and Research, and realized essentially by institutes of the University of Karlsruhe. Geodetic sub-projects are integrated into both projects. Special surveying activities had been, and have still to be, carried out to realise the geometrical basis for several other sub-projects. The particular contributions are 3D cave measurements for visualisation and planning, staking out of drilling points and construction axes, the definition of a common reference system, the surveying of the water distribution network and its technical facilities, the setting up and the management of a geographical information system (GIS), as well as special measurements such as dam monitoring or controlling of a vertical drilling machine. The paper reviews these projects and describes the geodetic activities.

  2. The role of spatial memory and frames of reference in the precision of angular path integration.

    Science.gov (United States)

    Arthur, Joeanna C; Philbeck, John W; Kleene, Nicholas J; Chichka, David

    2012-09-01

    Angular path integration refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. Previous work has found that non-sensory inputs, namely spatial memory, can play a powerful role in angular path integration (Arthur et al., 2007, 2009). Here we investigated the conditions under which spatial memory facilitates angular path integration. We hypothesized that the benefit of spatial memory is particularly likely in spatial updating tasks in which one's self-location estimate is referenced to external space. To test this idea, we administered passive, non-visual body rotations (ranging 40°-140°) about the yaw axis and asked participants to use verbal reports or open-loop manual pointing to indicate the magnitude of the rotation. Prior to some trials, previews of the surrounding environment were given. We found that when participants adopted an egocentric frame of reference, the previously-observed benefit of previews on within-subject response precision was not manifested, regardless of whether remembered spatial frameworks were derived from vision or spatial language. We conclude that the powerful effect of spatial memory is dependent on one's frame of reference during self-motion updating. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Frame by Frame II: A Filmography of the African American Image, 1978-1994.

    Science.gov (United States)

    Klotman, Phyllis R.; Gibson, Gloria J.

    A reference guide on African American film professionals, this book is a companion volume to the earlier "Frame by Frame I." It focuses on giving credit to African Americans who have contributed their talents to a film industry that has scarcely recognized their contributions, building on the aforementioned "Frame by Frame I,"…

  4. Impact of uncertain reference-frame motions in plate kinematic reconstructions

    DEFF Research Database (Denmark)

    Iaffaldano, Giampiero; Stein, Seth

    2017-01-01

    Geoscientists infer past plate motions, which serve as fundamental constraints for a range of studies, from observations of magnetic isochrons as well as hotspots tracks on the ocean floor and, for stages older than the Cretaceous, from paleomagnetic data. These observations effectively represent...... time-integrals of past plate motions but, because they are made at present, yield plate kinematics naturally tied to a present-day reference-frame, which may be another plate or a hotspots system. These kinematics are therefore different than those occurred at the time when the rocks acquired...... – in a temporal sense – and prone to noise. This limitation is commonly perceived to hamper the correction of plate kinematic reconstructions for RFAMs, but the extent to which this may be the case has not been explored. Here we assess the impact of uncertain RFAMs on kinematic reconstructions using synthetic...

  5. Pathway to 2022: The Ongoing Modernization of the United States National Spatial Reference System

    Science.gov (United States)

    Stone, W. A.; Caccamise, D.

    2017-12-01

    The National Oceanic and Atmospheric Administration's National Geodetic Survey (NGS) mission is "to define, maintain and provide access to the National Spatial Reference System (NSRS) to meet our nation's economic, social, and environmental needs." The NSRS is an assemblage of geophysical and geodetic models, tools, and data, with the most-visible components being the North American Datum of 1983 (NAD83) and the North American Vertical Datum of 1988 (NAVD88), which together provide a consistent spatial reference framework for myriad geospatial applications and positioning requirements throughout the United States. The NGS is engaged in an ongoing and comprehensive multi-year project of modernizing the NSRS, a makeover necessitated by technological developments and user accuracy requirements, all with a goal of providing a modern, accurate, accessible, and globally aligned national positioning framework exploiting the substantial power and utility of the Global Navigation Satellite System - of both today and tomorrow. The modernized NSRS will include four new-generation geometric terrestrial reference frames (replacing NAD83) and a technically unprecedented geopotential datum (replacing NAVD88), all to be released in 2022 (anticipated). This poster/presentation will describe the justification for this modernization effort and will update the status and planned evolution of the NSRS as 2022 draws ever closer. Also discussed will be recent developments, including the publication of "blueprint" documents addressing technical details of various facets of the modernized NSRS and a continued series of public Geospatial Summits. Supporting/ancillary projects such as Gravity for the Redefinition of the American Vertical Datum (GRAV-D), which will result in the generation of a highly accurate gravimetric geoid - or definitional reference surface (zero elevation) - for the future geopotential datum, and Geoid Slope Validation Surveys (GSVS), which are exploring the achievable

  6. Analysis and controller design for stand-alone VSIs in synchronous reference frame

    DEFF Research Database (Denmark)

    Ramezani, Malek; Li, Shuhui; Golestan, Saeed

    2017-01-01

    -by-step graphical analysis and design approach for a three-phase stand-alone VSI system in the dq reference frame, which provides a clear systematic decoupling process to design the inner- and outer-loop current and voltage controllers, respectively. The closed-loop d- and q-axis output impedances of the stand......-alone VSI system by considering the coupling effects between axes are also formulated, modelled, and evaluated. The study investigates how the decoupling and compensating terms added in the current and voltage controllers affect the dynamic performance and output dq impedances of the VSI system. Simulation...... and hardware results verify the effectiveness of the graphic design and analysis strategy....

  7. The irreducible needs of children for development: a frame of reference to health care

    Directory of Open Access Journals (Sweden)

    Maria De La Ó Ramallo Veríssimo

    2018-03-01

    Full Text Available ABSTRACT A comprehensive health care to children implies in caring for their development, by perceiving the needs based on a suitable reference to children’s specificities. This theoretical study aimed to analyze the “irreducible needs of children” frame of reference, based on a child development theory. We performed a comparative analysis between the contents of children’s irreducible needs and the components of the Bioecological Theory of Human Development. An extensive correspondence was verified among the components of the Bioecological Theory and the following essential needs: ongoing nurturing relationships; experiences tailored to individual differences; developmentally appropriate experiences; limit setting, structure and expectations; stable, supportive communities and cultural continuity. The need for physical protection, safety, and regulation is not explicit in the elements of the theory, although it is also verified in their definitions. We concluded that the irreducible needs’ reference can support nurses in health care and in child development promotion.

  8. Molecular frame and recoil frame angular distributions in dissociative photoionization of small molecules

    International Nuclear Information System (INIS)

    Lucchese, R R; Carey, R; Elkharrat, C; Houver, J C; Dowek, D

    2008-01-01

    Photoelectron angular distributions in the dipole approximation can be written with respect to several different reference frames. A brief review of the molecular frame and recoil frame are given. Experimentally, one approach for obtaining such angular distributions is through angle-resolved coincidence measurements of dissociative ionization. If the system dissociates into two heavy fragments, then the recoil frame angular distribution can be measured. Computed molecular frame and recoil frame photoelectron angular distributions are compared to experimental data for the Cl 2p ionization of CH 3 Cl.

  9. Nursing home staff members' subjective frames of reference on residents' achievement of ego integrity: A Q-methodology study.

    Science.gov (United States)

    Lim, Sun-Young; Chang, Sung-Ok

    2018-01-01

    To discover the structure of the frames of reference for nursing home staff members' subjective judgment of residents' achievement of ego integrity. Q-methodology was applied. Twenty-eight staff members who were working in a nursing home sorted 34 Q-statements into the shape of a normal distribution. A centroid factor analysis and varimax rotation, using the PQ-method program, revealed four factors: identifying clues to residents' positive acceptance of their whole life span, identifying residents' ways of enjoying their current life, referencing residents' attitudes and competencies toward harmonious relationships, and identifying residents' integrated efforts to establish self-esteem. These subjective frames of reference need to be investigated in order to improve the relationships with nursing home residents and their quality of life. Consequently, the fundamental monitoring tools to help staff members make subjective judgments can be formed. © 2017 Japan Academy of Nursing Science.

  10. Numerical Analysis of a Rotating Detonation Engine in the Relative Reference Frame

    Science.gov (United States)

    Paxson, Daniel E.

    2014-01-01

    A two-dimensional, computational fluid dynamic (CFD) simulation of a semi-idealized rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction yields rapidly converging, steady solutions. Results from the simulation are compared to those from a more complex and refined code, and found to be in reasonable agreement. The performance impacts of several RDE design parameters are then examined. Finally, for a particular RDE configuration, it is found that direct performance comparison can be made with a straight-tube pulse detonation engine (PDE). Results show that they are essentially equivalent.

  11. When Students Doubt Their Teachers' Diagnostic Competence: Moderation in the Internal/External Frame of Reference Model

    Science.gov (United States)

    Zimmermann, Friederike; Möller, Jens; Köller, Olaf

    2018-01-01

    The internal/external frame of reference model (I/E model) posits that individuals' achievement-related self-concepts are formed through social comparisons (e.g., self vs. peers) within academic domains and dimensional comparisons (e.g., math vs. verbal) between distinct domains. A large body of research has supported the theorized pattern of…

  12. Demonstration of free-space reference frame independent quantum key distribution

    International Nuclear Information System (INIS)

    Wabnig, J; Bitauld, D; Li, H W; Niskanen, A O; Laing, A; O'Brien, J L

    2013-01-01

    Quantum key distribution (QKD) is moving from research laboratories towards applications. As computing becomes more mobile, cashless as well as cardless payment solutions are introduced. A possible route to increase the security of wireless communications is to incorporate QKD in a mobile device. Handheld devices present a particular challenge as the orientation and the phase of a qubit will depend on device motion. This problem is addressed by the reference frame independent (RFI) QKD scheme. The scheme tolerates an unknown phase between logical states that vary slowly compared to the rate of particle repetition. Here we experimentally demonstrate the feasibility of RFI QKD over a free-space link in a prepare and measure scheme using polarization encoding. We extend the security analysis of the RFI QKD scheme to be able to deal with uncalibrated devices and a finite number of measurements. Together these advances are an important step towards mass production of handheld QKD devices. (paper)

  13. High-Precision Global Geodetic Systems: Revolution And Revelation In Fluid And 'Solid' Earth Tracking (Invited)

    Science.gov (United States)

    Minster, J. H.; Altamimi, Z.; Blewitt, G.; Carter, W. E.; Cazenave, A. A.; Davis, J. L.; Dragert, H.; Feary, D. A.; Herring, T.; Larson, K. M.; Ries, J. C.; Sandwell, D. T.; Wahr, J. M.

    2009-12-01

    Over the past half-century, space geodetic technologies have changed profoundly the way we look at the planet, not only in the matter of details and accuracy, but also in the matter of how the entire planet changes with time, even on “human” time scales. The advent of space geodesy has provided exquisite images of the ever-changing land and ocean topography and global gravity field of the planet. We now enjoy an International Terrestrial Reference System with a time-dependent geocenter position accurate to a few millimeters. We can image small and large tectonic deformations of the surface before, during, and after earthquakes and volcanic eruptions. We measure both the past subtle changes as well as the recent dramatic changes in the ice sheets, and track global and regional sea-level change to a precision of a millimeter per year or better. The remarkable achievements of Earth observing missions over the past two decades, and the success of future international missions described in the Decadal Survey depend both implicitly and explicitly on the continued availability and enhancement of a reliable and resilient global infrastructure for precise geodesy, and on ongoing advances in geodetic science that are linked to it. This allows us to deal with global scientific, technological and social issues such as climate change and natural hazards, but the impact of the global precise geodetic infrastructure also permeates our everyday lives. Nowadays drivers, aviators, and sailors can determine their positions inexpensively to meter precision in real time, anywhere on the planet. In the foreseeable future, not only will we be able to know a vehicle’s position to centimeter accuracy in real time, but also to control that position, and thus introduce autonomous navigation systems for many tasks which are beyond the reach of “manual” navigation capabilities. This vision will only be realized with sustained international support of the precise global geodetic

  14. An improved synchronous reference frame phase-locked loop for stand-alone variable speed constant frequency power generation systems

    DEFF Research Database (Denmark)

    Liu, Yi; Xu, Wei; Ke, Longzhang

    2017-01-01

    The phase-locked loop (PLL) based on conventional synchronous reference frame, i.e. dqPLL, is usually employed in grid-connected variable speed constant frequency (VSCF) power generation systems (PGSs). However, the voltage amplitude drop of stand-alone PGSs is often greater than that of the grid...

  15. Comprehensive synchronous reference frame discrete-time modelling of a grid-connected PV for fast DC-side voltage control

    NARCIS (Netherlands)

    Almeida, P.M.; Barbosa, P.G.; Duarte, J.L.; Ribeiro, P.F.

    2017-01-01

    This paper presents a novel comprehensive discrete-time model of a three-phase single stage grid-connected photovoltaic generation system. The detailed model is carried out on synchronous reference frame. It is shown that both converter's AC and DC-side discrete time model differs from the

  16. How well can online GPS PPP post-processing services be used to establish geodetic survey control networks?

    Science.gov (United States)

    Ebner, R.; Featherstone, W. E.

    2008-09-01

    Establishing geodetic control networks for subsequent surveys can be a costly business, even when using GPS. Multiple stations should be occupied simultaneously and post-processed with scientific software. However, the free availability of online GPS precise point positioning (PPP) post-processing services offer the opportunity to establish a whole geodetic control network with just one dual-frequency receiver and one field crew. To test this idea, we compared coordinates from a moderate-sized (~550 km by ~440 km) geodetic network of 46 points over part of south-western Western Australia, which were processed both with the Bernese v5 scientific software and with the CSRS (Canadian Spatial Reference System) PPP free online service. After rejection of five stations where the antenna type was not recognised by CSRS, the PPP solutions agreed on average with the Bernese solutions to 3.3 mm in east, 4.8 mm in north and 11.8 mm in height. The average standard deviations of the Bernese solutions were 1.0 mm in east, 1.2 mm in north and 6.2 mm in height, whereas for CSRS they were 3.9 mm in east, 1.9 mm in north and 7.8 mm in height, reflecting the inherently lower precision of PPP. However, at the 99% confidence level, only one CSRS solution was statistically different to the Bernese solution in the north component, due to a data interruption at that site. Nevertheless, PPP can still be used to establish geodetic survey control, albeit with a slightly lower quality because of the larger standard deviations. This approach may be of particular benefit in developing countries or remote regions, where geodetic infrastructure is sparse and would not normally be established without this approach.

  17. Variability of extragalactic sources: its contribution to the link between ICRF and the future Gaia Celestial Reference Frame

    Science.gov (United States)

    Taris, F.; Damljanovic, G.; Andrei, A.; Souchay, J.; Klotz, A.; Vachier, F.

    2018-03-01

    Context. The first release of the Gaia catalog is available since 14 September 2016. It is a first step in the realization of the future Gaia reference frame. This reference frame will be materialized by the optical positions of the sources and will be compared with and linked to the International Celestial Reference Frame, materialized by the radio position of extragalactic sources. Aim. As in the radio domain, it can be reasonably postulated that quasar optical flux variations can alert us to potential changes in the source structure. These changes could have important implications for the position of the target photocenters (together with the evolution in time of these centers) and in parallel have consequences for the link of the reference systems. Methods: A set of nine optical telescopes was used to monitor the magnitude variations, often at the same time as Gaia, thanks to the Gaia Observation Forecast Tool. The Allan variances, which are statistical tools widely used in the atomic time and frequency community, are introduced. Results: This work describes the magnitude variations of 47 targets that are suitable for the link between reference systems. We also report on some implications for the Gaia catalog. For 95% of the observed targets, new information about their variability is reported. In the case of some targets that are well observed by the TAROT telescopes, the Allan time variance shows that the longest averaging period of the magnitudes is in the range 20-70 d. The observation period by Gaia for a single target largely exceeds these values, which might be a problem when the magnitude variations exhibit flicker or random walk noises. Preliminary computations show that if the coordinates of the targets studied in this paper were affected by a white-phase noise with a formal uncertainty of about 1 mas (due to astrophysical processes that are put in evidence by the magnitude variations of the sources), it would affect the precision of the link at the

  18. Time-Dependent Selection of an Optimal Set of Sources to Define a Stable Celestial Reference Frame

    Science.gov (United States)

    Le Bail, Karine; Gordon, David

    2010-01-01

    Temporal statistical position stability is required for VLBI sources to define a stable Celestial Reference Frame (CRF) and has been studied in many recent papers. This study analyzes the sources from the latest realization of the International Celestial Reference Frame (ICRF2) with the Allan variance, in addition to taking into account the apparent linear motions of the sources. Focusing on the 295 defining sources shows how they are a good compromise of different criteria, such as statistical stability and sky distribution, as well as having a sufficient number of sources, despite the fact that the most stable sources of the entire ICRF2 are mostly in the Northern Hemisphere. Nevertheless, the selection of a stable set is not unique: studying different solutions (GSF005a and AUG24 from GSFC and OPA from the Paris Observatory) over different time periods (1989.5 to 2009.5 and 1999.5 to 2009.5) leads to selections that can differ in up to 20% of the sources. Observing, recording, and network improvement are some of the causes, showing better stability for the CRF over the last decade than the last twenty years. But this may also be explained by the assumption of stationarity that is not necessarily right for some sources.

  19. Mixed-frame and stationary-frame repetitive control schemes for compensating typical load and grid harmonics

    DEFF Research Database (Denmark)

    Loh, P.; Tang, Y.; Blaabjerg, Frede

    2011-01-01

    In this study, repetitive current controllers operating in either the mixed or stationary frame are proposed for high-precision reference tracking and disturbance rejection of power converters. Both controllers use a proportional-resonant regulator in the stationary frame for regulating...... the positive- and negative-sequence fundamental currents, which are known to directly influence the flow of active and reactive power in most energy conversion systems. Moreover, for the tracking or compensation of harmonics, the controllers include a repetitive control path in either the synchronous...... or stationary frame, whose inherent feedback and feedforward structure is proven to resemble a bank of resonant filters in either reference frames. Unlike other existing controllers, the proposed repetitive controllers function by introducing multiple resonant peaks at only those harmonic frequencies typically...

  20. W production at LHC: lepton angular distributions and reference frames for probing hard QCD

    International Nuclear Information System (INIS)

    Richter-Was, E.; Was, Z.

    2017-01-01

    Precision tests of the Standard Model in the Strong and Electroweak sectors play a crucial role, among the physics program of LHC experiments. Because of the nature of proton-proton processes, observables based on the measurement of the direction and energy of final state leptons provide the most precise probes of such processes. In the present paper, we concentrate on the angular distribution of leptons from W → lν decays in the lepton-pair rest-frame. The vector nature of the intermediate state imposes that distributions are to a good precision described by spherical harmonics of at most second order. We argue, that contrary to general belief often expressed in the literature, the full set of angular coefficients can be measured experimentally, despite the presence of escaping detection neutrino in the final state. There is thus no principle difference with respect to the phenomenology of the Z/γ → l"+l"- Drell-Yan process. We show also, that with the proper choice of the reference frames, only one coefficient in this polynomial decomposition remains sizable, even in the presence of one or more high p_T jets. The necessary stochastic choice of the frames relies on probabilities independent from any coupling constants. In this way, electroweak effects (dominated by the V - A nature of W couplings to fermions), can be better separated from the ones of strong interactions. The separation is convenient for the measurements interpretation. (orig.)

  1. Stability of Global Geodetic Results

    Science.gov (United States)

    Herring, T.

    The precision of global geodetic techniques has reached unprecedented levels. Sys- tems capable of millimeter level horizontal and several millimeter vertical precisions are now deployed. The Global Positioning System (GPS) has the most deployed continuously-operating receivers with several hundred providing data through the in- ternet for analysis. However, the satellite system used with GPS evolves with time as new generations of GPS satellites are launched. During the 1990's, the constellation evolved from Block I to Block II and IIA with the most recent generation being Block IIR. There are considerable differences in the size and antenna configurations in the different generations of satellites. The antenna configuration specifically could cause systematic changes in the terrestrial reference system. Results from the ITRF2000 combinations suggest that there are significant time variations in the scale of GPS system possibly due to phase center variations in GPS transmission antennas. These variations could result in height changes of up to 3 mm/yr. We will investigate the stability of the GPS system through combination of GPS results with results from VLBI and SLR. All components of the transformation between the systems, rotation, translation and scale will be investigated.

  2. Comparison of the reference mark azimuth determination methods

    Directory of Open Access Journals (Sweden)

    Danijel Šugar

    2013-03-01

    Full Text Available The knowledge of the azimuth of the reference mark is of crucial importance in the determination of the declination which is defined as the ellipsoidal (geodetic azimuth of the geomagnetic meridian. The accuracy of the azimuth determination has direct impact on the accuracy of the declination. The orientation of the Declination-Inclination Magnetometer is usually carried out by sighting the reference mark in two telescope faces in order to improve the reliability of the observations and eliminate some instrumental errors. In this paper, different coordinate as well as azimuth determination methods using GNSS (Global Navigation Satellite System observation techniques within VPPS (High-Precision Positioning Service and GPPS (Geodetic-Precision Positioning Service services of the CROPOS (CROatian POsitioning System system were explained. The azimuth determination by the observation of the Polaris was exposed and it was subsequently compared with the observation of the Sun using hour-angle and zenith-distance method. The procedure of the calculation of the geodetic azimuth from the astronomic azimuth was explained. The azimuth results obtained by different methods were compared and the recommendations on the minimal distance between repeat station and azimuth mark were given. The results shown in this paper were based on the observations taken on the POKU_SV repeat station.

  3. International Celestial Reference Frame (ICRF): mantenimiento y extensión

    Science.gov (United States)

    Ma, C.; Arias, E. F.; Eubanks, T.; Fey, A. L.; Gontier, A.-M.; Jacobs, C. S.; Sovers, O. J.; Archinal, B. A.; Charlot, P.

    A partir de enero de 1998 el sistema de referencia celeste convencional está representado por el International Celestial Reference System (ICRS) y materializado a través de las coordenadas VLBI del conjunto de radiofuentes extragalácticas que conforman el International Celestial Reference Frame (ICRF). La primera realización del ICRF, fue elaborada en 1995 por un grupo de expertos designado por la IAU, la que encomendó al International Earth Rotation Service el mantenimiento del ICRS, del ICRF y del vínculo con marcos de referencia en otras frecuencias. Una primera extensión del ICRF se realizó entre abril y junio de 1999, con el objetivo primario de proveer posiciones de radiofuentes extragalácticas observadas a partir de julio de 1995 y de mejorar las posiciones de las fuentes ``candidatas" con la inclusión de observaciones adicionales. Objetivos secundarios fueron monitorear a las radiofuentes para verificar que siguen siendo adecuadas para realizar al ICRF y mejorar las técnicas de análisis de datos. Como resultado del nuevo análisis se obtuvo una solución a partir de la cual se construyó la primera extensión del ICRF, denominada ICRF - Ext.1. Ella representa al ICRS, sus fuentes de definición se mantienen con las mismas posiciones y errores que en la primera realización del ICRF; las demás radiofuentes tienen coordenadas mejor determinadas que en ICRF; el marco de referencia se densificó con el agregado de 59 nuevas radiofuentes.

  4. UTC(SU) and EOP(SU) - the only legal reference frames of Russian Federation

    Science.gov (United States)

    Koshelyaevsky, Nikolay B.; Blinov, Igor Yu; Pasynok, Sergey L.

    2015-08-01

    There are two legal time reference frames in Russian Federation. UTC(SU) deals with atomic time and play a role of reference for legal timing through the whole country. The other one, EOP(SU), deals with Earth's orientation parameters and provides the official EOP data for scientific, technical and metrological applications in Russia.The atomic time is based on two essential hardware components: primary Cs fountain standards and ensemble of continuously operating H-masers as a time unit/time scale keeper. Basing on H-maser intercomparison system data, regular H-maser frequency calibration against Cs standards and time algorithm autonomous TA(SU) time scale is maintained by the Main Metrological Center. Since 2013 time unit in TA(SU) is the second (SU) reproduced independently by VNIIFTRI Cs primary standards in accordance to it’s definition in the SI. UTC(SU) is relied on TA(SU) and steering to UTC basing on TWSTFT/GNSS time link data. As a result TA(SU) stability level relative to TT considerably exceeds 1×10-15 for sample time one month and more, RMS[UTC-UTC(SU)] ≤ 3 ns for the period of 2013-2015. UTC(SU) is broadcasted by different national means such as specialized radio and TV stations, NTP servers and GLONASS. Signals of Russian radio stations contains DUT1 and dUT1 values at 0.1s and 0.02s resolution respectively.The definitive EOP(SU) are calculated by the Main Metrological Center basing on composition of the eight independent individual EOP data streams delivered by four Russian analysis centers: VNIIFTRI, Institute of Applied Astronomy, Information-Analytical Center of Russian Space Agency and Analysis Center of Russian Space Agency. The accuracy of ultra-rapid EOP values for 2014 is estimated ≤ 0.0006" for polar motion, ≤ 70 microseconds for UT1-UTC and ≤ 0.0003" for celestial pole offsets respectively.The other VNIIFTRI EOP activities can be grouped in three basic directions:- arrangement and carrying out GNSS and SLR observations at five

  5. Classical relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated reference frame

    International Nuclear Information System (INIS)

    Louis-Martinez, Domingo J

    2011-01-01

    A classical (non-quantum-mechanical) relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated frame of reference is studied using Gibbs's microcanonical and grand canonical formulations of statistical mechanics. Using these methods explicit expressions for the particle, energy and entropy density distributions are obtained, which are found to be in agreement with the well-known results of the relativistic formulation of Boltzmann's kinetic theory. Explicit expressions for the total entropy, total energy and rest mass of the gas are obtained. The position of the center of mass of the gas in equilibrium is found. The non-relativistic and ultrarelativistic approximations are also considered. The phase space volume of the system is calculated explicitly in the ultrarelativistic approximation.

  6. National Geospatial Data Asset (NGDA) Continuously Operating Reference Stations (CORS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Geodetic Survey (NGS), an office of NOAA's National Ocean Service, manages a network of Continuously Operating Reference Stations (CORS) that provide...

  7. ALGORITHMS VARIANTS OF ELABORATION OF THE PRECISE GNSS NETWORK ESTABLISHED FOR GEODETIC SERVICE OF BUILDING OF THE MINING FACILITY

    Directory of Open Access Journals (Sweden)

    Ryszard MIELIMĄKA

    2014-10-01

    Full Text Available The article presents the problem of the usage of post‐processing services of the ASG‐EUPOS system on the example of GNSS network established for geodetic service of building of the inclined drift, to make coal deposit accessible, and also building associated objects. For the purpose of geodetic service of construction realization network was established outside the planned objects. The network consists of six new ground points and four control points belonging to ASG‐EUPOS network. Simultaneous, static measurements of the network were performed in three‐hour observation session, using multi‐frequency and multi‐system satellite receivers – Trimble R8. The paper presents three variants of post‐processing of the observation results. Calculations were performed using POZGEO‐D service and geodetic software package GEONET. The results of the calculation process revealed, that homogeneous vector networks should be adjusted on the ellipsoid or in the geocentric system. Model of adjustment of the vector network on the plane adopted in the GEONET software package should not be applied for elaboration of this type of network (long reference vectors more than 50km.

  8. Supplier-induced demand as strategic framing

    OpenAIRE

    De Jaegher, K.J.M.

    2010-01-01

    This paper develops a model of supplier-induced demand as strategic framing where the patient has reference-dependent references, and the physician can persuade the patient to buy a treatment by affecting the patient’s reference point. In the main result, the patient is assumed to have a constant rate of risk aversion (lovingness) in the gain (loss) region. Two scenarios are treated. In the cure scenario, the physician wants to frame the patient’s decision problem such that he prefers to buy ...

  9. Contribution of SELENE-2 geodetic measurements to constrain the lunar internal structure

    Science.gov (United States)

    Matsumoto, K.; Kikuchi, F.; Yamada, R.; Iwata, T.; Kono, Y.; Tsuruta, S.; Hanada, H.; Goossens, S. J.; Ishihara, Y.; Kamata, S.; Sasaki, S.

    2012-12-01

    Internal structure and composition of the Moon provide important clue and constraints on theories for how the Moon formed and evolved. The Apollo seismic network has contributed to the internal structure modeling. Efforts have been made to detect the lunar core from the noisy Apollo data (e.g., [1], [2]), but there is scant information about the structure below the deepest moonquakes at about 1000 km depth. On the other hand, there have been geodetic studies to infer the deep structure of the Moon. For example, LLR (Lunar Laser Ranging) data analyses detected a displacement of the lunar pole of rotation, indicating that dissipation is acting on the rotation arising from a fluid core [3]. Bayesian inversion using geodetic data (such as mass, moments of inertia, tidal Love numbers k2 and h2, and quality factor Q) also suggests a fluid core and partial melt in the lower mantle region [4]. Further improvements in determining the second-degree gravity coefficients (which will lead to better estimates of moments of inertia) and the Love number k2 will help us to better constrain the lunar internal structure. Differential VLBI (Very Long Baseline Interferometry) technique, which was used in the Japanese lunar exploration mission SELENE (Sept. 2007 - June 2009), is expected to contribute to better determining the second-degree potential Love number k2 and low-degree gravity coefficients. SELENE will be followed by the future lunar mission SELENE-2 which will carry both a lander and an orbiter. We propose to put the SELENE-type radio sources on these spacecraft in order to accurately estimate k2 and the low-degree gravity coefficients. By using the same-beam VLBI tracking technique, these parameters will be retrieved through precision orbit determination of the orbiter with respect to the lander which serves as a reference. The VLBI mission with the radio sources is currently one of the mission candidates for SELENE-2. We have conducted a preliminary simulation study on the

  10. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia); Zenere, Katrina A., E-mail: oleg.titov@ga.gov.au [School of Physics, University of Sydney, NSW 2006 (Australia)

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  11. An improved evaluation of the seismic/geodetic deformation-rate ratio for the Zagros Fold-and-Thrust collisional belt

    Science.gov (United States)

    Palano, Mimmo; Imprescia, Paola; Agnon, Amotz; Gresta, Stefano

    2018-04-01

    We present an improved picture of the ongoing crustal deformation field for the Zagros Fold-and-Thrust Belt continental collision zone by using an extensive combination of both novel and published GPS observations. The main results define the significant amount of oblique Arabia-Eurasia convergence currently being absorbed within the Zagros: right-lateral shear along the NW trending Main Recent fault in NW Zagros and accommodated between fold-and-thrust structures and NS right-lateral strike-slip faults on Southern Zagros. In addition, taking into account the 1909-2016 instrumental seismic catalogue, we provide a statistical evaluation of the seismic/geodetic deformation-rate ratio for the area. On Northern Zagros and on the Turkish-Iranian Plateau, a moderate to large fraction (˜49 and >60 per cent, respectively) of the crustal deformation occurs seismically. On the Sanandaj-Sirjan zone, the seismic/geodetic deformation-rate ratio suggests that a small to moderate fraction (<40 per cent) of crustal deformation occurs seismically; locally, the occurrence of large historic earthquakes (M ≥ 6) coupled with the high geodetic deformation, could indicate overdue M ≥ 6 earthquakes. On Southern Zagros, aseismic strain dominates crustal deformation (the ratio ranges in the 15-33 per cent interval). Such aseismic deformation is probably related to the presence of the weak evaporitic Hormuz Formation which allows the occurrence of large aseismic motion on both subhorizontal faults and surfaces of décollement. These results, framed into the seismotectonic framework of the investigated region, confirm that the fold-and-thrust-dominated deformation is driven by buoyancy forces; by contrast, the shear-dominated deformation is primary driven by plate stresses.

  12. Individual differences in the ability to identify, select and use appropriate frames of reference for perceptuo-motor control.

    Science.gov (United States)

    Isableu, B; Ohlmann, T; Cremieux, J; Vuillerme, N; Amblard, B; Gresty, M A

    2010-09-01

    The causes of the interindividual differences (IDs) in how we perceive and control spatial orientation are poorly understood. Here, we propose that IDs partly reflect preferred modes of spatial referencing and that these preferences or "styles" are maintained from the level of spatial perception to that of motor control. Two groups of experimental subjects, one with high visual field dependency (FD) and one with marked visual field independency (FI) were identified by the Rod and Frame Test, which identifies relative dependency on a visual frame of reference (VFoR). FD and FI subjects were tasked with standing still in conditions of increasing postural difficulty while visual cues of self-orientation (a visual frame tilted in roll) and self-motion (in stroboscopic illumination) were varied and in darkness to assess visual dependency. Postural stability, overall body orientation and modes of segmental stabilization relative to either external (space) or egocentric (adjacent segments) frames of reference in the roll plane were analysed. We hypothesized that a moderate challenge to balance should enhance subjects' reliance on VFoR, particularly in FD subjects, whereas a substantial challenge should constrain subjects to use a somatic-vestibular based FoR to prevent falling in which case IDs would vanish. The results showed that with increasing difficulty, FD subjects became more unstable and more disoriented shown by larger effects of the tilted visual frame on posture. Furthermore, their preference to coalign body/VFoR coordinate systems lead to greater fixation of the head-trunk articulation and stabilization of the hip in space, whereas the head and trunk remained more stabilized in space with the hip fixed on the leg in FI subjects. These results show that FD subjects have difficulties at identifying and/or adopting a more appropriate FoR based on proprioceptive and vestibular cues to regulate the coalignment of posturo/exocentric FoRs. The FI subjects' resistance

  13. The Internal/External Frame of Reference Model of Self-Concept and Achievement Relations: Age-Cohort and Cross-Cultural Differences

    Science.gov (United States)

    Marsh, Herbert W.; Abduljabbar, Adel Salah; Parker, Philip D.; Morin, Alexandre J. S.; Abdelfattah, Faisal; Nagengast, Benjamin; Möller, Jens; Abu-Hilal, Maher M.

    2015-01-01

    The internal/external frame of reference (I/E) model and dimensional comparison theory posit paradoxical relations between achievement (ACH) and self-concept (SC) in mathematics (M) and verbal (V) domains; ACH in each domain positively affects SC in the matching domain (e.g., MACH to MSC) but negatively in the nonmatching domain (e.g., MACH to…

  14. Moving loads on flexible structures presented in the floating frame of reference formulation

    Energy Technology Data Exchange (ETDEWEB)

    Hartweg, Stefan, E-mail: stefan.hartweg@web.de; Heckmann, Andreas, E-mail: andreas.heckmann@dlr.de [German Aerospace Center (DLR), Institute of System Dynamics and Control (Germany)

    2016-06-15

    The introduction of moving loads in the Floating Frame of Reference Formulation is presented. We derive the kinematics and governing equations of motion of a general flexible multibody system and their extension to moving loads. The equivalence of convective effects with Coriolis and centripetal forces is shown. These effects are measured numerically and their significance in moving loads traveling at high speed is confirmed. A method is presented to handle discontinuities when moving loads separate from the flexible structure. The method is extended from beam models to general flexible structures obtained by means of the Finite Element Method. An interpolation method for the deformation field of the modal representation of these bodies is introduced.The work is concluded by application of the method to modern mechanical problems in numerical simulations.

  15. Comparison of direct and geodetic mass balances on a multi-annual time scale

    Directory of Open Access Journals (Sweden)

    A. Fischer

    2011-02-01

    Full Text Available The geodetic mass balances of six Austrian glaciers over 19 periods between 1953 and 2006 are compared to the direct mass balances over the same periods. For two glaciers, Hintereisferner and Kesselwandferner, case studies showing possible reasons for discrepancies between the geodetic and the direct mass balance are presented. The mean annual geodetic mass balance for all periods is −0.5 m w.e. a−1, the mean annual direct mass balance −0.4 m w.e. a−1. The mean cumulative difference is −0.6 m w.e., the minimum −7.3 m w.e., and the maximum 5.6 m w.e. The accuracy of geodetic mass balance may depend on the accuracy of the DEMs, which ranges from 2 m w.e. for photogrammetric data to 0.02 m w.e. for airborne laser scanning (LiDAR data. Basal melt, seasonal snow cover, and density changes of the surface layer also contribute up to 0.7 m w.e. to the difference between the two methods over the investigated period of 10 yr. On Hintereisferner, the fraction of area covered by snow or firn has been changing within 1953–2006. The accumulation area is not identical with the firn area, and both are not coincident with areas of volume gain. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Trends in the difference between the direct and the geodetic data vary from glacier to glacier and can differ systematically for specific glaciers under specific types of climate forcing. Ultimately, geodetic and direct mass balance data are complementary, and great care must be taken when attempting to combine them.

  16. Operational production of Geodetic Excitation Functions from EOP estimated values at ASI-CGS

    Science.gov (United States)

    Sciarretta, C.; Luceri, V.; Bianco, G.

    2009-04-01

    ASI-CGS is routinely providing geodetic excitation functions from its own estimated EOP values (at present SLR and VLBI; the current use of GPS EOP's is also planned as soon as this product will be fully operational) on the ASI geodetic web site (http://geodaf.mt.asi.it). This product has been generated and monitored (for ASI internal use only) in a long pre-operational phase (more than two years), including validation and testing. The daily geodetic excitation functions are now weekly updated along with the operational ASI SLR and VLBI EOP solutions and compared, whenever possible, with the atmospheric excitation functions available at the IERS SBAAM, under the IB and not-IB assumption, including the "wind" term. The work will present the available estimated geodetic function time series and its comparison with the relevant atmospheric excitation functions, deriving quantitative indicators on the quality of the estimates. The similarities as well as the discrepancies among the atmospheric and geodetic series will be analysed and commented, evaluating in particular the degree of correlation among the two estimated time series and the likelihood of a linear dependence hypothesis.

  17. Power Quality Improvement by Unified Power Quality Conditioner Based on CSC Topology Using Synchronous Reference Frame Theory

    Directory of Open Access Journals (Sweden)

    Rajasekaran Dharmalingam

    2014-01-01

    Full Text Available This paper deals with the performance of unified power quality conditioner (UPQC based on current source converter (CSC topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems.

  18. Power quality improvement by unified power quality conditioner based on CSC topology using synchronous reference frame theory.

    Science.gov (United States)

    Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani

    2014-01-01

    This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems.

  19. Power Quality Improvement by Unified Power Quality Conditioner Based on CSC Topology Using Synchronous Reference Frame Theory

    Science.gov (United States)

    Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani

    2014-01-01

    This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems. PMID:25013854

  20. Dragging of inertial frames.

    Science.gov (United States)

    Ciufolini, Ignazio

    2007-09-06

    The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth.

  1. A Community-based Partnership for a Sustainable GNSS Geodetic Network

    Science.gov (United States)

    Dokka, R. K.

    2009-12-01

    Geodetic networks offer unparalleled opportunities to monitor and understand many of the rhythms of the Earth most vital to the sustainability of modern and future societies, i.e., crustal motions, sea-level, and the weather. For crustal deformation studies, the advantage is clear. Modern measurements allow us to document not only the permanent strains incurred over a seismic cycle, for example, but also the ephemeral strains that are critical for understanding the underlying physical mechanism. To be effective for science, however, geodetic networks must be properly designed, capitalized, and maintained over sufficient time intervals to fully capture the processes in action. Unfortunately, most networks lack interoperability and lack a business plan to ensure long term sustainability. The USA, for example, lacks a unified nation-wide GNSS network that can sustain its self over the coming years, decades, and century. Current federal priorities do not yet envision such a singular network. Publicly and privately funded regional networks exist, but tend to be parochial in scope, and optimized for a special user community, e.g., surveying, crustal motions, etc. Data sharing is common, but the lack of input at the beginning limits the functionality of the system for non-primary users. Funding for private networks depend heavily on the user demand, business cycle, and regulatory requirements. Agencies funding science networks offer no guarantee of sustained support. An alternative model (GULFNet) developed in Louisiana is meeting user needs, is sustainable, and is helping engineers, surveyors, and geologists become more spatially enabled. The common denominator among all participants is the view that accurate, precise, and timely geodetic data have tangible value for all segments of society. Although operated by a university (LSU), GULFNet is a community-based partnership between public and private sectors. GULFNet simultaneously achieves scientific goals by providing

  2. Parametrized post-Newtonian theory of reference frames, multipolar expansions and equations of motion in the N-body problem

    International Nuclear Information System (INIS)

    Kopeikin, Sergei; Vlasov, Igor

    2004-01-01

    Post-Newtonian relativistic theory of astronomical reference frames based on Einstein's general theory of relativity was adopted by General Assembly of the International Astronomical Union in 2000. This theory is extended in the present paper by taking into account all relativistic effects caused by the presumable existence of a scalar field and parametrized by two parameters, β and γ, of the parametrized post-Newtonian (PPN) formalism. We use a general class of the scalar-tensor (Brans-Dicke type) theories of gravitation to work out PPN concepts of global and local reference frames for an astronomical N-body system. The global reference frame is a standard PPN coordinate system. A local reference frame is constructed in the vicinity of a weakly self-gravitating body (a sub-system of the bodies) that is a member of the astronomical N-body system. Such local inertial frame is required for unambiguous derivation of the equations of motion of the body in the field of other members of the N-body system and for construction of adequate algorithms for data analysis of various gravitational experiments conducted in ground-based laboratories and/or on board of spacecrafts in the solar system.We assume that the bodies comprising the N-body system have weak gravitational field and move slowly. At the same time we do not impose any specific limitations on the distribution of density, velocity and the equation of state of the body's matter. Scalar-tensor equations of the gravitational field are solved by making use of the post-Newtonian approximations so that the metric tensor and the scalar field are obtained as functions of the global and local coordinates. A correspondence between the local and global coordinate frames is found by making use of asymptotic expansion matching technique. This technique allows us to find a class of the post-Newtonian coordinate transformations between the frames as well as equations of translational motion of the origin of the local frame

  3. A Giant with Feet of Clay : A First Law and Economics Analysis of the Draft Common Frame of Reference (DCFR)

    NARCIS (Netherlands)

    Chirico, F.; van Damme, E.E.C.; Larouche, P.

    2010-01-01

    This paper contains the conclusions from the work of the Economic Impact Group (EIG), a part of the CoPECL Network of Excellence funded by the EU to prepare a Draft Common Frame of Reference (DCFR). Part 1 revisits basic principles which are central to the work of the whole group. For one, contract

  4. About the geometry of the Earth geodetic reference surfaces

    Science.gov (United States)

    Husár, Ladislav; Švaral, Peter; Janák, Juraj

    2017-10-01

    The paper focuses on the comparison of metrics of three most common reference surfaces of the Earth used in geodesy (excluding the plane which also belongs to reference surfaces used in geodesy when dealing with small areas): a sphere, an ellipsoid of revolution and a triaxial ellipsoid. The two latter surfaces are treated in a more detailed way. First, the mathematical form of the metric tensors using three types of coordinates is derived and the lengths of meridian and parallel arcs between the two types of ellipsoids are compared. Three kinds of parallels, according to the type of latitude, can be defined on a triaxial ellipsoid. We show that two types of parallels are spatial curves and one is represented by ellipses. The differences of curvature of both kinds of ellipsoid are analysed using the normal curvature radii. Priority of the chosen triaxial ellipsoid is documented by its better fit with respect to the high-degree geoid model EIGEN6c4 computed up to degree and order 2160.

  5. Geodetic alignment of laser power installations

    International Nuclear Information System (INIS)

    Shtorm, V.V.; Gostev, A.M.; Drobikov, A.V.

    1989-01-01

    Main problems occuring in applied geodesy under initial alignment of laser power installation optical channel are considered. Attention is paid to alignment of lens beamguide telescopic pairs and alignment quality control. Methods and means of geodetic measurements under alignment are indicated. Conclusions are made about the degree of working through certain aspects of the problem

  6. Geodetic Control Points - Multi-State Control Point Database

    Data.gov (United States)

    NSGIC State | GIS Inventory — The Multi-State Control Point Database (MCPD) is a database of geodetic and mapping control covering Idaho and Montana. The control were submitted by registered land...

  7. Development of a slim window frame made of glass fibre reinforced polyester

    DEFF Research Database (Denmark)

    Appelfeld, David; Hansen, Christian Skodborg; Svendsen, Svend

    2010-01-01

    This paper presents the development of an energy efficient window frame made of a glass fibre reinforced polyester (GFRP) material. Three frame proposals were considered. The energy and structural performances of the frames were calculated and compared with wooden and aluminium reference frames....... In order to estimate performances, detailed thermal calculations were performed in four successive steps including solar energy and light transmittance in addition to heat loss and supplemented with a simplified structural calculation of frame load capacity and deflection. Based on these calculations, we...... carried out an analysis of the potential energy savings of the frame. The calculations for a reference office building showed that the heating demand was considerably lower with a window made of GFRP than with the reference frames. It was found that GFRP is suitable for window frames, and windows made...

  8. Harnessing Wind Power in Moving Reference Frames with Application to Vehicles

    Science.gov (United States)

    Goushcha, Oleg; Felicissimo, Robert; Danesh-Yazdi, Amir; Andreopoulos, Yiannis

    2017-11-01

    The extraction of wind power from unique configurations embedded in moving vehicles by using micro-turbine devices has been investigated. In such moving environments, the specific power of the air motion is much greater and less intermittent than in stationary wind turbines anchored to the ground in open atmospheric conditions. In a translational frame of reference, the rate of work done by the drag force acting on the wind harnessing device due the relative motion of air should be taken into account in the overall performance evaluation through an energy balance. A device with a venting tube has been tested that connects a high-pressure stagnating flow region in the front of the vehicle with a low-pressure region at its rear. Our analysis identified two key areas to focus on for potentially significant rewards: (1) Vehicles with high energy conversion efficiency which require a high mass flow rate through the venting duct, and (2) low efficiency vehicles with wakes, which will be globally affected by the introduction of the venting duct device in a manner that reduces their drag so that there is a net gain in power generation.

  9. Support time-dependent transformations for surveying and GIS : current status and upcoming challenges

    Science.gov (United States)

    Mahmoudabadi, H.; Lercier, D.; Vielliard, S.; Mein, N.; Briggs, G.

    2016-12-01

    The support of time-dependent transformations for surveying and GIS is becoming a critical issue. We need to convert positions from the realizations of the International Terrestrial Reference Frame to any national reference frame. This problem is easy to solve when all of the required information is available. But it becomes really complicated in a worldwide context. We propose an overview of the current ITRF-aligned reference frames and we describe a global solution to support time-dependent transformations between them and the International Terrestrial Reference Frame. We focus on the uncertainties of station velocities used. In a first approximation, we use a global tectonic plate model to calculate point velocities. We show the impact of the velocity model on the coordinate accuracies. Several countries, particularly in active regions, are developing semi-dynamic reference frames. These frames include local displacement models updated regularly and/or after major events (such as earthquakes). Their integration into surveying or GIS applications is an upcoming challenge. We want to encourage the geodetic community to develop and use standard formats.

  10. Relations between Temperament and Metacognition and Frames of Reference in Behaviors in Public Situations in Early and Middle Adolescence: An Analysis of Age Stages

    Directory of Open Access Journals (Sweden)

    Nana Kanzaki

    2018-02-01

    Full Text Available We conducted a questionnaire survey using a cross-sectional sample of early and middle adolescents aged 10–15 (n = 351 in order to investigate relationships between temperament, metacognition, and frames of reference in behaviors in public situations. The sample was divided into two groups by age (ear group: 10–12; middle-adolescence group: 13–15 and were analyzed by Multiple Group Structural Equation Modeling. Explanatory variables were four components of temperament [effortful control (EfC, affiliativeness (Afil, surgency (Sur, and negative affect (NgA] and metacognition. Objective variables were three components of frames of reference in behaviors in public situations [egocentrism (Ego, neighborhood evaluation (Nei, and public values (Pub]. In both age groups, EfC had a negative effect on Ego, and Sur had a negative effect on Nei. However, only in the middle-adolescence group did Afil and NgA have significant effects on Pub. Meanwhile, metacognition in the ear group had a positive effect on Ego and Nei, but these relations disappeared in the middle-adolescence group, and only in the middle-adolescence group did metacognition have a positive effect on Pub. We discuss frames of reference in behaviors in public situations from the viewpoint of the development of social cognition in early and middle adolescence in relation to temperament and metacognition.

  11. The Effect of Motion Analysis Activities in a Video-Based Laboratory in Students' Understanding of Position, Velocity and Frames of Reference

    Science.gov (United States)

    Koleza, Eugenia; Pappas, John

    2008-01-01

    In this article, we present the results of a qualitative research project on the effect of motion analysis activities in a Video-Based Laboratory (VBL) on students' understanding of position, velocity and frames of reference. The participants in our research were 48 pre-service teachers enrolled in Education Departments with no previous strong…

  12. Electrodynamics in Arbitrary Reference Frames and in Arbitrary Material Media

    International Nuclear Information System (INIS)

    Horzela, A.; Kapuscik, E.; Widomski, M.

    1999-01-01

    Full text: The investigation of electromagnetic phenomena in material media still belongs to the most difficult tasks of electrodynamics. Complexity and variability of material media practically exclude effective applications of methods and computational techniques elaborated in the framework of standard microscopic electrodynamics with classical vacuum as a ground state. In order to obtain satisfactorily exact descriptions of electromagnetic properties of complex material media one is enforced to use methods and approximations which are difficult to control. Moreover, they usually break covariance properties and the results obtained are valid in one reference frame which choice remains subjective and model dependent. Some time ago we have proposed a reformulation of Maxwell electrodynamics which opens new ways in study of electromagnetic processes in material media. The formalism gets rid of assumptions characteristic for vacuum electrodynamics only and it avoids the usage of constitutive relations as primary relations put on quantities needed for a complete description of an electromagnetic system. Fundamental properties of all electromagnetic quantities are their uniquely defined transformation rules and their analysis allows to determine the possible relations between them. Within such a scheme it is possible to introduce constitutive relations which do not have analogies in macroscopic classical electrodynamics. They may be used in description of microscopic electromagnetic processes in a different way than it is done in the framework of quantum electrodynamics. (author)

  13. investigation of horizontal and vertical controls on knust campus

    African Journals Online (AJOL)

    A modern method that uses satellite positioning techniques such as GPS is currently in operation and has numerous advantages in the establishment of control networks. GPS control surveys were carried-out on seven controls and ellipsoidal coordinates were obtained in the World Geodetic System 84 reference frame.

  14. Regular Formal Evaluation Sessions are Effective as Frame-of-Reference Training for Faculty Evaluators of Clerkship Medical Students.

    Science.gov (United States)

    Hemmer, Paul A; Dadekian, Gregory A; Terndrup, Christopher; Pangaro, Louis N; Weisbrod, Allison B; Corriere, Mark D; Rodriguez, Rechell; Short, Patricia; Kelly, William F

    2015-09-01

    Face-to-face formal evaluation sessions between clerkship directors and faculty can facilitate the collection of trainee performance data and provide frame-of-reference training for faculty. We hypothesized that ambulatory faculty who attended evaluation sessions at least once in an academic year (attendees) would use the Reporter-Interpreter-Manager/Educator (RIME) terminology more appropriately than faculty who did not attend evaluation sessions (non-attendees). Investigators conducted a retrospective cohort study using the narrative assessments of ambulatory internal medicine clerkship students during the 2008-2009 academic year. The study included assessments of 49 clerkship medical students, which comprised 293 individual teacher narratives. Single-teacher written and transcribed verbal comments about student performance were masked and reviewed by a panel of experts who, by consensus, (1) determined whether RIME was used, (2) counted the number of RIME utterances, and (3) assigned a grade based on the comments. Analysis included descriptive statistics and Pearson correlation coefficients. The authors reviewed 293 individual teacher narratives regarding the performance of 49 students. Attendees explicitly used RIME more frequently than non-attendees (69.8 vs. 40.4 %; p sessions used RIME terminology more frequently and provided more accurate grade recommendations than teachers who did not attend. Formal evaluation sessions may provide frame-of-reference training for the RIME framework, a method that improves the validity and reliability of workplace assessment.

  15. Reynolds Stress Closure for Inertial Frames and Rotating Frames

    Science.gov (United States)

    Petty, Charles; Benard, Andre

    2017-11-01

    In a rotating frame-of-reference, the Coriolis acceleration and the mean vorticity field have a profound impact on the redistribution of kinetic energy among the three components of the fluctuating velocity. Consequently, the normalized Reynolds (NR) stress is not objective. Furthermore, because the Reynolds stress is defined as an ensemble average of a product of fluctuating velocity vector fields, its eigenvalues must be non-negative for all turbulent flows. These fundamental properties (realizability and non-objectivity) of the NR-stress cannot be compromised in computational fluid dynamic (CFD) simulations of turbulent flows in either inertial frames or in rotating frames. The recently developed universal realizable anisotropic prestress (URAPS) closure for the NR-stress depends explicitly on the local mean velocity gradient and the Coriolis operator. The URAPS-closure is a significant paradigm shift from turbulent closure models that assume that dyadic-valued operators associated with turbulent fluctuations are objective.

  16. Geodetic Volcano Monitoring Research in Canary Islands: Recent Results

    Science.gov (United States)

    Fernandez, J.; Gonzalez, P. J.; Arjona, A.; Camacho, A. G.; Prieto, J. F.; Seco, A.; Tizzani, P.; Manzo, M. R.; Lanari, R.; Blanco, P.; Mallorqui, J. J.

    2009-05-01

    The Canarian Archipelago is an oceanic island volcanic chain with a long-standing history of volcanic activity (> 40 Ma). It is located off the NW coast of the African continent, lying over a transitional crust of the Atlantic African passive margin. At least 12 eruptions have been occurred on the islands of Lanzarote, Tenerife and La Palma in the last 500 years. Volcanism manifest predominantly as basaltic strombolian monogenetic activity (whole archipelago) and central felsic volcanism (active only in Tenerife Island). We concentrate our studies in the two most active islands, Tenerife and La Palma. In these islands, we tested different methodologies of geodetic monitoring systems. We use a combination of ground- and space-based techniques. At Tenerife Island, a differential interferometric study was performed to detect areas of deformation. DInSAR detected two clear areas of deformation, using this results a survey-based GPS network was designed and optimized to control those deformations and the rest of the island. Finally, using SBAS DInSAR results weak spatial long- wavelength subsidence signals has been detected. At La Palma, the first DInSAR analysis have not shown any clear deformation, so a first time series analysis was performed detecting a clear subsidence signal at Teneguia volcano, as for Tenerife a GPS network was designed and optimized taking into account stable and deforming areas. After several years of activities, geodetic results served to study ground deformations caused by a wide variety of sources, such as changes in groundwater levels, volcanic activity, volcano-tectonics, gravitational loading, etc. These results proof that a combination of ground-based and space-based techniques is suitable tool for geodetic volcano monitoring in Canary Islands. Finally, we would like to strength that those results could have serious implications on the continuous geodetic monitoring system design and implementation for the Canary Islands which is under

  17. Supplier-induced demand as strategic framing

    NARCIS (Netherlands)

    De Jaegher, K.J.M.

    2010-01-01

    This paper develops a model of supplier-induced demand as strategic framing where the patient has reference-dependent references, and the physician can persuade the patient to buy a treatment by affecting the patient’s reference point. In the main result, the patient is assumed to have a constant

  18. Explaining as Mediated Action: An Analysis of Pre-Service Teachers' Account of Forces of Inertia in Non-Inertial Frames of Reference

    Science.gov (United States)

    de Pereira, Alexsandro Pereira; Lima Junior, Paulo; Rodrigues, Renato Felix

    2016-01-01

    Explaining is one of the most important everyday practices in science education. In this article, we examine how scientific explanations could serve as cultural tools for members of a group of pre-service physics teachers. Specifically, we aim at their use of explanations about forces of inertia in non-inertial frames of reference. A basic…

  19. Allocentrically implied target locations are updated in an eye-centred reference frame.

    Science.gov (United States)

    Thompson, Aidan A; Glover, Christopher V; Henriques, Denise Y P

    2012-04-18

    When reaching to remembered target locations following an intervening eye movement a systematic pattern of error is found indicating eye-centred updating of visuospatial memory. Here we investigated if implicit targets, defined only by allocentric visual cues, are also updated in an eye-centred reference frame as explicit targets are. Participants viewed vertical bars separated by varying distances, and horizontal lines of equivalently varying lengths, implying a "target" location at the midpoint of the stimulus. After determining the implied "target" location from only the allocentric stimuli provided, participants saccaded to an eccentric location, and reached to the remembered "target" location. Irrespective of the type of stimulus reaching errors to these implicit targets are gaze-dependent, and do not differ from those found when reaching to remembered explicit targets. Implicit target locations are coded and updated as a function of relative gaze direction with respect to those implied locations just as explicit targets are, even though no target is specifically represented. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Added-value joint source modelling of seismic and geodetic data

    Science.gov (United States)

    Sudhaus, Henriette; Heimann, Sebastian; Walter, Thomas R.; Krueger, Frank

    2013-04-01

    In tectonically active regions earthquake source studies strongly support the analysis of the current faulting processes as they reveal the location and geometry of active faults, the average slip released or more. For source modelling of shallow, moderate to large earthquakes often a combination of geodetic (GPS, InSAR) and seismic data is used. A truly joint use of these data, however, usually takes place only on a higher modelling level, where some of the first-order characteristics (time, centroid location, fault orientation, moment) have been fixed already. These required basis model parameters have to be given, assumed or inferred in a previous, separate and highly non-linear modelling step using one of the these data sets alone. We present a new earthquake rupture model implementation that realizes a fully combined data integration of surface displacement measurements and seismic data in a non-linear optimization of simple but extended planar ruptures. The model implementation allows for fast forward calculations of full seismograms and surface deformation and therefore enables us to use Monte Carlo global search algorithms. Furthermore, we benefit from the complementary character of seismic and geodetic data, e. g. the high definition of the source location from geodetic data and the sensitivity of the resolution of the seismic data on moment releases at larger depth. These increased constraints from the combined dataset make optimizations efficient, even for larger model parameter spaces and with a very limited amount of a priori assumption on the source. A vital part of our approach is rigorous data weighting based on the empirically estimated data errors. We construct full data error variance-covariance matrices for geodetic data to account for correlated data noise and also weight the seismic data based on their signal-to-noise ratio. The estimation of the data errors and the fast forward modelling opens the door for Bayesian inferences of the source

  1. Bound states for a neutral particle analogous to a quantum dot induced by the non-inertial effects of the Fermi-Walker reference frame

    International Nuclear Information System (INIS)

    Bakke, Knut

    2010-01-01

    We study the appearance of bound states analogous to a quantum dot, proposed by Tan and Inkson (1996) , in the non-relativistic quantum dynamics of a neutral particle with permanent magnetic dipole moment induced by the non-inertial effects of the Fermi-Walker reference frame.

  2. Simulation and Hardware Implementation of Shunt Active Power Filter Based on Synchronous Reference Frame Theory

    Directory of Open Access Journals (Sweden)

    Karthikrjan Senthilnathan

    2018-02-01

    Full Text Available This paper describes about the Hybrid Shunt Active Power Filter (HSAPF for the elimination of the current harmonics in the line side of the three phase three wire systems. The Active Power Filter is based on the Voltage Source Converter (VSC topology. The control strategy for the converter is based on Synchronous Reference Frame (SRF theory. The compensation of harmonics is done by the APF which is connected in the shunt configuration to the system. The Shunt APF has the better compensation of current harmonics. The design and implementation of Shunt active power filter is done by MATLAB/Simulink. The real time implementation by using the ATMEGA 8 Microcontroller. The Simulation and Hardware results shows that the current harmonics are eliminated in the system

  3. Status of NGS CORS Network and Its Contribution to the GGOS Infrastructure

    Science.gov (United States)

    Choi, K. K.; Haw, D.; Sun, L.

    2017-12-01

    Recent advancement of Satellite Geodesy techniques can now contribute to the global frame realization needed to improve worldwide accuracies. These techniques rely on coordinates computed using continuously observed GPS data and corresponding satellite orbits. The GPS-based reference system continues to depend on the physical stability of a ground-based network of points as the primary foundation for these observations. NOAA's National Geodetic Survey (NGS) has been operating Continuously Operating Reference Stations (CORS) to provide direct access to the National Spatial Reference System (NSRS). By virtue of NGS' scientific reputation and leadership in national and international geospatial issues, NGS has determined to increase its participation in the maintenance of the U.S. component of the global GPS tracking network in order to realize a long-term stable national terrestrial reference frame. NGS can do so by leveraging its national leadership role coupled with NGS' scientific expertise, in designating and upgrading a subset of the current tracking network for this purpose. This subset of stations must have the highest operational standards to serve the dual functions: being the U.S. contribution to the international frame, along with providing the link to the national datum. These stations deserve special attention to ensure that the highest possible levels of quality and stability are maintained. To meet this need, NGS is working with the international scientific groups to add and designate these reference stations based on scientific merit such as: colocation with other geodetic techniques, geographic area, and monumentation stability.

  4. Research in Application of Geodetic GPS Receivers in Time Synchronization

    Science.gov (United States)

    Zhang, Q.; Zhang, P.; Sun, Z.; Wang, F.; Wang, X.

    2018-04-01

    In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV) which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV) is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability) cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns). In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km) were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2-4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even there will be at least

  5. RESEARCH IN APPLICATION OF GEODETIC GPS RECEIVERS IN TIME SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2018-04-01

    Full Text Available In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns. In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2–4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even

  6. Error Propagation in Geodetic Networks Studied by FEMLAB

    DEFF Research Database (Denmark)

    Borre, Kai

    2009-01-01

    Geodetic networks can be described by discrete models. The observations may be height differences, distances, and directions. Geodesists always make more observations than necessary and estimate the solution by using the principle of least squares. Contemporary networks often contain several thou...

  7. Another frame, another game? : Explaining framing effects in economic games

    NARCIS (Netherlands)

    Gerlach, Philipp; Jaeger, B.; Hopfensitz, A.; Lori, E.

    2016-01-01

    Small changes in the framing of games (i.e., the way in which the game situation is described to participants) can have large effects on players' choices. For example, referring to a prisoner's dilemma game as the "Community Game" as opposed to the "Wall Street Game" can double the cooperation rate

  8. An Overview of Geodetic Volcano Research in the Canary Islands

    Science.gov (United States)

    Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe

    2015-11-01

    The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.

  9. Frame-based safety analysis approach for decision-based errors

    International Nuclear Information System (INIS)

    Fan, Chin-Feng; Yihb, Swu

    1997-01-01

    A frame-based approach is proposed to analyze decision-based errors made by automatic controllers or human operators due to erroneous reference frames. An integrated framework, Two Frame Model (TFM), is first proposed to model the dynamic interaction between the physical process and the decision-making process. Two important issues, consistency and competing processes, are raised. Consistency between the physical and logic frames makes a TFM-based system work properly. Loss of consistency refers to the failure mode that the logic frame does not accurately reflect the state of the controlled processes. Once such failure occurs, hazards may arise. Among potential hazards, the competing effect between the controller and the controlled process is the most severe one, which may jeopardize a defense-in-depth design. When the logic and physical frames are inconsistent, conventional safety analysis techniques are inadequate. We propose Frame-based Fault Tree; Analysis (FFTA) and Frame-based Event Tree Analysis (FETA) under TFM to deduce the context for decision errors and to separately generate the evolution of the logical frame as opposed to that of the physical frame. This multi-dimensional analysis approach, different from the conventional correctness-centred approach, provides a panoramic view in scenario generation. Case studies using the proposed techniques are also given to demonstrate their usage and feasibility

  10. Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations

    Directory of Open Access Journals (Sweden)

    Wyszkowska Patrycja

    2017-12-01

    Full Text Available The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.

  11. Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations

    Science.gov (United States)

    Wyszkowska, Patrycja

    2017-12-01

    The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula) are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.

  12. [The framing effect: medical implications].

    Science.gov (United States)

    Mazzocco, Ketti; Cherubini, Paolo; Rumiati, Rino

    2005-01-01

    Over the last 20 years, many studies explored how the way information is presented modifies choices. This sort of effect, referred to as "framing effects", typically consists of the inversion of choices when presenting structurally identical decision problems in different ways. It is a common assumption that physicians are unaffected (or less affected) by the surface description of a decision problem, because they are formally trained in medical decision making. However, several studies showed that framing effects occur even in the medical field. The complexity and variability of these effects are remarkable, making it necessary to distinguish among different framing effects, depending on whether the effect is obtained by modifying adjectives (attribute framing), goals of a behavior (goal framing), or the probability of an outcome (risky choice framing). A further reason for the high variability of the framing effects seems to be the domain of the decision problem, with different effects occurring in prevention decisions, disease-detection decisions, and treatment decisions. The present work reviews the studies on framing effects, in order to summarize them and clarify their possible role in medical decision making.

  13. Quotation and Framing

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2010-01-01

    . In Black Angels the composer – among other well-known pieces of music – quotes the medieval dies irae sequence and the second movement of Schubert’s string quartet in D minor (D. 810). The musical and intermedial references are framed with striking modernistic sounds exploring instrumental possibilities...

  14. A Stationary Reference Frame Grid Synchronization System for Three-Phase Grid-Connected Power Converters Under Adverse Grid Conditions

    DEFF Research Database (Denmark)

    Rodríguez, P.; Luna, A.; Muñoz-Aguilar, R. S.

    2012-01-01

    synchronization method for three-phase three-wire networks, namely dual second-order generalized integrator (SOGI) frequency-locked loop. The method is based on two adaptive filters, implemented by using a SOGI on the stationary αβ reference frame, and it is able to perform an excellent estimation......Grid synchronization algorithms are of great importance in the control of grid-connected power converters, as fast and accurate detection of the grid voltage parameters is crucial in order to implement stable control strategies under generic grid conditions. This paper presents a new grid...

  15. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Vink, Martinus J.; Boezeman, Daan; Dewulf, Art; Termeer, Catrien J.A.M.

    2013-01-01

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  16. Geodetic Control Points, Benchmarks; Vertical elevation bench marks for monumented geodetic survey control points for which mean sea level elevations have been determined., Published in 1995, 1:24000 (1in=2000ft) scale, Rhode Island and Providence Plantations.

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geodetic Control Points dataset current as of 1995. Benchmarks; Vertical elevation bench marks for monumented geodetic survey control points for which mean sea level...

  17. A stationary reference frame current control for a multi-level H-bridge power converter for universal and flexible power management in future electricity network

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Iov, Florin; Zanchetta, Pericle

    2008-01-01

    converters for grid connection of renewable sources will be needed. These power converters must be able to provide intelligent power management as well as ancillary services. This paper assesses a control method based on the stationary reference frame with Proportional-Resonant current controllers...

  18. Integration of space geodesy: a US National Geodetic Observatory

    Science.gov (United States)

    Yunck, Thomas P.; Neilan, Ruth

    2003-01-01

    In the interest of improving the performance and efficiency of space geodesy a diverse group in the U.S., in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO).

  19. A New Way of Controlling Parallel-Connected Inverters by Using Synchronous-Reference-Frame Virtual Impedance Loop

    DEFF Research Database (Denmark)

    Guan, Yajuan; Guerrero, Josep M.; Zhao, Xin

    2016-01-01

    A novel simple and effective autonomous current-sharing controller for parallel three-phase inverters is proposed in this paper. The proposed controller provides faster response and better accuracy in contrast to the conventional droop control, since this novel approach does not require any active...... or reactive power calculations. Instead, a synchronous-reference-frame (SRF) virtual impedance loop and an SRF-based phase-locked loop are used. Stationary analysis is provided in order to identify the inherent mechanism of the direct and quadrature output currents in relation to the voltage amplitude...... from a setup with three parallel 2.2 kW inverters verify the effectiveness of the proposed control strategy in different scenarios....

  20. Work and Inertial Frames

    Science.gov (United States)

    Kaufman, Richard

    2017-12-01

    A fairly recent paper resolves a large discrepancy in the internal energy utilized to fire a cannon as calculated by two inertial observers. Earth and its small reaction velocity must be considered in the system so that the change in kinetic energy is calculated correctly. This paper uses a car in a similar scenario, but considers the work done by forces acting over distances. An analysis of the system must include all energy interactions, including the work done on the car and especially the (negative) work done on Earth in a moving reference frame. This shows the importance of considering the force on Earth and the distance Earth travels. For calculation of work in inertial reference frames, the center of mass perspective is shown to be useful. We also consider the energy requirements to efficiently accelerate a mass among interacting masses.

  1. Adjoint-Based Design of Rotors Using the Navier-Stokes Equations in a Noninertial Reference Frame

    Science.gov (United States)

    Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Jones, William T.

    2010-01-01

    Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementation of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the implementation is demonstrated by using comparisons with a complex-variable technique, and a number of single- and multipoint optimizations for the rotorcraft figure of merit function are shown for varying blade collective angles. Design trends are shown to remain consistent as the grid is refined.

  2. Technological Frame Incongruence, Diffusion, and Noncompliance

    Science.gov (United States)

    Sobreperez, Polly

    The technological frames of reference strand of social shaping of technology theory is used to overlay the issues arising from a case study looking at noncompliance with information systems. A recent review of the theory suggests that although frame content is often addressed, frame structure, the process of framing, and the characteristics and outcomes of frames are largely overlooked. This paper attempts to address this shortfall by applying the indicators identified by case study research to the frames of different groups and using them to highlight differing perceptions and attitudes. In this way, the author suggests that issues surrounding noncompliance should not be dismissed as resistance but instead should be further studied by managers and developers, leading to accommodation of differing views. Further examination of frame incongruence reveals dependence on inefficient or ineffective organizational situations and thus these indicators can be useful in future studies to identify and address procedural, acceptance and cultural issues leading to acts of noncompliance.

  3. Spatial Frames of Reference in Traditional Negev Arabic: Language-to-Cognition Correlation.

    Science.gov (United States)

    Cerqueglini, Letizia

    2015-09-01

    Linguistic and cognitive tasks on spatial Frames of Reference (FoRs) in Traditional Negev Arabic (TNA) show that TNA is a referentially promiscuous language, using Intrinsic, Relative and Absolute FoRs. FoRs are selected in context according to culture-specific features of the ground (G). TNA speakers exclusively use the Absolute FoR in cognitive tasks, similarly to Mesoamerican languages (Bohnemeyer et al. in Proceedings of the 36th Annual Conference of the Cognitive Science Society, Austin, 2014). Absolute FoR in TNA is anchored on the four cardinal directions. Nevertheless, in TNA and in other varieties of Nomadic Arabic, geocentric sub-types of the Absolute FoR are also observable. Indeed, as in other Absolute-framing systems worldwide, different anchoring strategies (geocentric and astronomic) tend to coexist. I define their coexistence "Absolute Referential Modularity" (ARM). ARM appears in TNA in cognitive referential tasks and in some lexical items, not in linguistic tasks (as elaborated by Levinson et al. in Space stimuli kit 1.2: November 1992. Max Planck Institute for Psycholinguistics, Nijmegen, pp 7-14, 1992). Cardinal directions across Nomadic Arabic varieties show great cultural salience. They are associated with concrete geographical elements and encode topological relations: east-west axis encodes the mountain-sea opposition, beside many symbolic meanings, and encodes the oppositions Up/Down and Inside (familiar)/Outside (foreign). The detection of cognitive and linguistic Absolute referential practices-characterized by Modularity-and the cultural salience of cardinal directions within the whole Nomadic Arabic linguistic group, support the bias for Absolute cognition in promiscuous systems and its antecedence with respect to later linguistic referential strategies (Bohnemeyer et al. 2014). TNA linguistic promiscuity represents an innovation with respect to the cognitive concepts and demonstrates that language first generates semantic structures

  4. Explaining Paradoxical Relations Between Academic Self-Concepts and Achievements: Cross-Cultural Generalizability of the Internal/External Frame of Reference Predictions Across 26 Countries

    Science.gov (United States)

    Marsh, Herbert W.; Hau, Kit-Tai

    2004-01-01

    The internal/external frame of reference (I/E) model explains a seemingly paradoxical pattern of relations between math and verbal self-concepts and corresponding measures of achievement, extends social comparison theory, and has important educational implications. In a cross-cultural study of nationally representative samples of 15-year-olds from…

  5. Frames and semi-frames

    International Nuclear Information System (INIS)

    Antoine, Jean-Pierre; Balazs, Peter

    2011-01-01

    Loosely speaking, a semi-frame is a generalized frame for which one of the frame bounds is absent. More precisely, given a total sequence in a Hilbert space, we speak of an upper (resp. lower) semi-frame if only the upper (resp. lower) frame bound is valid. Equivalently, for an upper semi-frame, the frame operator is bounded, but has an unbounded inverse, whereas a lower semi-frame has an unbounded frame operator, with a bounded inverse. We study mostly upper semi-frames, both in the continuous and discrete case, and give some remarks for the dual situation. In particular, we show that reconstruction is still possible in certain cases.

  6. IAEA activities related to safety indicators, time frames and reference scenarios

    International Nuclear Information System (INIS)

    Batandjieva, B.; Hioki, K.; Metcalf, P.

    2002-01-01

    The fundamental principles for the safe management of radioactive waste have been agreed internationally and form the basis for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management that entered into force in June 2001. Protection of human health and the environment and safety of facilities (including radioactive waste disposal facilities) are widely recognised principles to be followed and demonstrated in post-closure safety assessment of waste repositories. Dose and risk are at present internationally agreed safety criteria, used for judging the acceptability of such facilities. However, there have been a number of activities initiated and co-ordinated by the International Atomic Energy Agency (IAEA) which have provided an international forum for discussion and consensus building on the use safety indicators which are complementary to dose and risk. The Agency has been working on the definition of other safety indicators, such as flux, time, environmental concentration, etc.; the desired characteristics, and use of these indicators in different time frames. The IAEA has focused on safety indicators related to geological disposal, exploring their role in the development of a safety case, evaluating the advantages and disadvantages of using other safety indicators and how they complement the dose and risk indicators. The use of these indicators have been discussed also from regulatory perspective, mainly in terms of achieving reasonable assurance and confidence in safety assessments for waste repositories and decision making in the presence of uncertainty in the context of disposal of long-lived waste. Considerable effort has also been expended by the Agency on the development and application of principles for defining critical groups and biospheres for deep geological repositories. One of the important and successful IAEA programmes in this field is the Biosphere Modelling and Assessment (BIOMASS) project

  7. First-order design of geodetic networks using the simulated annealing method

    Science.gov (United States)

    Berné, J. L.; Baselga, S.

    2004-09-01

    The general problem of the optimal design for a geodetic network subject to any extrinsic factors, namely the first-order design problem, can be dealt with as a numeric optimization problem. The classic theory of this problem and the optimization methods are revised. Then the innovative use of the simulated annealing method, which has been successfully applied in other fields, is presented for this classical geodetic problem. This method, belonging to iterative heuristic techniques in operational research, uses a thermodynamical analogy to crystalline networks to offer a solution that converges probabilistically to the global optimum. Basic formulation and some examples are studied.

  8. Comparison between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australian tide gauges

    Science.gov (United States)

    Filmer, M. S.; Hughes, C. W.; Woodworth, P. L.; Featherstone, W. E.; Bingham, R. J.

    2018-04-01

    The direct method of vertical datum unification requires estimates of the ocean's mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based numerical ocean models and six MDTs computed from observed geodetic and/or ocean data at 32 tide gauges around the Australian coast. We focus on the viability of numerical ocean models for vertical datum unification, classifying the 13 ocean models used as either independent (do not contain assimilated geodetic data) or non-independent (do contain assimilated geodetic data). We find that the independent and non-independent ocean models deliver similar results. Maximum differences among ocean models and geodetic MDTs reach >150 mm at several Australian tide gauges and are considered anomalous at the 99% confidence level. These differences appear to be of geodetic origin, but without additional independent information, or formal error estimates for each model, some of these errors remain inseparable. Our results imply that some ocean models have standard deviations of differences with other MDTs (using geodetic and/or ocean observations) at Australian tide gauges, and with levelling between some Australian tide gauges, of ˜ ± 50 mm . This indicates that they should be considered as an alternative to geodetic MDTs for the direct unification of vertical datums. They can also be used as diagnostics for errors in geodetic MDT in coastal zones, but the inseparability problem remains, where the error cannot be discriminated between the geoid model or altimeter-derived mean sea surface.

  9. Frame-of-Reference Training: Establishing Reliable Assessment of Teaching Effectiveness.

    Science.gov (United States)

    Newman, Lori R; Brodsky, Dara; Jones, Richard N; Schwartzstein, Richard M; Atkins, Katharyn Meredith; Roberts, David H

    2016-01-01

    Frame-of-reference (FOR) training has been used successfully to teach faculty how to produce accurate and reliable workplace-based ratings when assessing a performance. We engaged 21 Harvard Medical School faculty members in our pilot and implementation studies to determine the effectiveness of using FOR training to assess health professionals' teaching performances. All faculty were novices at rating their peers' teaching effectiveness. Before FOR training, we asked participants to evaluate a recorded lecture using a criterion-based peer assessment of medical lecturing instrument. At the start of training, we discussed the instrument and emphasized its precise behavioral standards. During training, participants practiced rating lectures and received immediate feedback on how well they categorized and scored performances as compared with expert-derived scores of the same lectures. At the conclusion of the training, we asked participants to rate a post-training recorded lecture to determine agreement with the experts' scores. Participants and experts had greater rating agreement for the post-training lecture compared with the pretraining lecture. Through this investigation, we determined that FOR training is a feasible method to teach faculty how to accurately and reliably assess medical lectures. Medical school instructors and continuing education presenters should have the opportunity to be observed and receive feedback from trained peer observers. Our results show that it is possible to use FOR rater training to teach peer observers how to accurately rate medical lectures. The process is time efficient and offers the prospect for assessment and feedback beyond traditional learner evaluation of instruction.

  10. An attempt to evaluate horizontal crustal movement by geodetic and geological approach in the Horonobe area, Northern Hokkaido, Japan

    International Nuclear Information System (INIS)

    Tokiwa, Tetsuya; Niizato, Tadafumi; Nohara, Tsuyoshi; Asamori, Koichi; Matsuura, Yuki; Kosaka, Hideki

    2011-01-01

    In this study, we present the preliminary results for the estimation of a horizontal crustal movement by using geodetic and geological approach in the Horonobe area, northern Hokkaido, Japan. The estimations have been carried out by using a GPS data and a geological cross section obtained by applying balanced-section method. As results of this study, both of the shortening rates estimated by GPS data and balanced-section method indicate several millimeters per year. Namely, there is no contradiction between geodetic and geological data, and it is considered that Horonobe area is still situated similar tendency and magnitude of a crustal movement. It is seemingly considered that geodetic data is unhelpful for estimating the long-term crustal movement, because period of geodetic observations is a very short. However, the result of this study indicates that geodetic data provide valuable information for estimating the long-term crustal movement in the area, and it is considered that geodetic approach play an important role in improvement of the credibility of evaluation for prediction of long-term stability. (author)

  11. Comprehensive geo-spatial data creation for Ar-Riyadh region in the KSA

    Science.gov (United States)

    Alrajhi, M.; Hawarey, M.

    2009-04-01

    The General Directorate for Surveying and Mapping (GDSM) of the Deputy Ministry for Land and Surveying (DMLS) of the Ministry of Municipal and Rural Affairs (MOMRA) in the Kingdom of Saudi Arabia (KSA) has the exclusive mandate to carry out aerial photography and produce large-scale detailed maps for about 220 cities and villages in the KSA. This presentation is about the comprehensive geo-spatial data creation for the Ar-Riyadh region, Central KSA, that was founded on country-wide horizontal geodetic ground control using Global Navigation Satellite Systems (GNSS) within the MOMRA's Terrestrial Reference Frame 2000 (MTRF2000) that is tied to International Terrestrial Reference Frame 2000 (ITRF2000) Epoch 2004.0, and vertical geodetic ground control using precise digital leveling in reference to Jeddah 1969 mean sea level, and included aerial photography of area 3,000 km2 at 1:5,500 scale and 10,000 km2 at 1:45,000 scale, full aerial triangulation, and production of orthophoto maps at scale of 1:10,000 (480 sheets) for 10,000 km2, with aerial photography lasting from July 2007 thru August 2007.

  12. Comprehensive geo-spatial data creation for Najran region in the KSA

    Science.gov (United States)

    Alrajhi, M.; Hawarey, M.

    2009-04-01

    The General Directorate for Surveying and Mapping (GDSM) of the Deputy Ministry for Land and Surveying (DMLS) of the Ministry of Municipal and Rural Affairs (MOMRA) in the Kingdom of Saudi Arabia (KSA) has the exclusive mandate to carry out aerial photography and produce large-scale detailed maps for about 220 cities and villages in the KSA. This presentation is about the comprehensive geo-spatial data creation for the Najran region, South KSA, that was founded on country-wide horizontal geodetic ground control using Global Navigation Satellite Systems (GNSS) within the MOMRA's Terrestrial Reference Frame 2000 (MTRF2000) that is tied to International Terrestrial Reference Frame 2000 (ITRF2000) Epoch 2004.0, and vertical geodetic ground control using precise digital leveling in reference to Jeddah 1969 mean sea level, and included aerial photography of area 917 km2 at 1:5,500 scale and 14,304 km2 at 1:45,000 scale, full aerial triangulation, and production of orthophoto maps at scale of 1:10,000 (298 sheets) for 14,304 km2, with aerial photography lasting from May 2006 until July 2006.

  13. Comprehensive geo-spatial data creation for Asir region in the KSA

    Science.gov (United States)

    Alrajhi, M.; Hawarey, M.

    2009-04-01

    The General Directorate for Surveying and Mapping (GDSM) of the Deputy Ministry for Land and Surveying (DMLS) of the Ministry of Municipal and Rural Affairs (MOMRA) in the Kingdom of Saudi Arabia (KSA) has the exclusive mandate to carry out aerial photography and produce large-scale detailed maps for about 220 cities and villages in the KSA. This presentation is about the comprehensive geo-spatial data creation for the Asir region, South West KSA, that was founded on country-wide horizontal geodetic ground control using Global Navigation Satellite Systems (GNSS) within the MOMRA's Terrestrial Reference Frame 2000 (MTRF2000) that is tied to International Terrestrial Reference Frame 2000 (ITRF2000) Epoch 2004.0, and vertical geodetic ground control using precise digital leveling in reference to Jeddah 1969 mean sea level, and included aerial photography of area 2,188 km2 at 1:5,500 scale and 32,640 km2 at 1:45,000 scale, full aerial triangulation, and production of orthophoto maps at scale of 1:10,000 (680 sheets) for 32,640 km2, with aerial photography lasting from July 2007 thru October 2007.

  14. Aftershock distribution as a constraint on the geodetic model of coseismic slip for the 2004 Parkfield earthquake

    Science.gov (United States)

    Bennington, Ninfa; Thurber, Clifford; Feigl, Kurt; ,

    2011-01-01

    Several studies of the 2004 Parkfield earthquake have linked the spatial distribution of the event’s aftershocks to the mainshock slip distribution on the fault. Using geodetic data, we find a model of coseismic slip for the 2004 Parkfield earthquake with the constraint that the edges of coseismic slip patches align with aftershocks. The constraint is applied by encouraging the curvature of coseismic slip in each model cell to be equal to the negative of the curvature of seismicity density. The large patch of peak slip about 15 km northwest of the 2004 hypocenter found in the curvature-constrained model is in good agreement in location and amplitude with previous geodetic studies and the majority of strong motion studies. The curvature-constrained solution shows slip primarily between aftershock “streaks” with the continuation of moderate levels of slip to the southeast. These observations are in good agreement with strong motion studies, but inconsistent with the majority of published geodetic slip models. Southeast of the 2004 hypocenter, a patch of peak slip observed in strong motion studies is absent from our curvature-constrained model, but the available GPS data do not resolve slip in this region. We conclude that the geodetic slip model constrained by the aftershock distribution fits the geodetic data quite well and that inconsistencies between models derived from seismic and geodetic data can be attributed largely to resolution issues.

  15. Moving to a Modernized Height Reference System in Canada: Rationale, Status and Plans

    Science.gov (United States)

    Veronneau, M.; Huang, J.

    2007-05-01

    technologies for positioning should naturally move users to the new height reference and offer the possibility of transferring heights over longer distances, within the precision of the geoid model. This transition will also reduce user dependency on a dense network of benchmarks and offer the possibility for geodetic agencies to provide the reference frame with a reduced number of 3D control points. While the rationale for moving to a modernized height system is easily understood, the acceptance of the new system by users will only occur gradually as they adopt new technologies and procedures to access the height reference. A stakeholder consultation indicates user readiness and an implementation plan is starting to unfold. This presentation will look at the current state of the geoid model and control networks that will support the modernized height system. Results of the consultation and the recommendations regarding the roles and responsibilities of the various stakeholders involved in implementing the transition will also be reported.

  16. Design and validation of an open-source library of dynamic reference frames for research and education in optical tracking.

    Science.gov (United States)

    Brown, Alisa; Uneri, Ali; Silva, Tharindu De; Manbachi, Amir; Siewerdsen, Jeffrey H

    2018-04-01

    Dynamic reference frames (DRFs) are a common component of modern surgical tracking systems; however, the limited number of commercially available DRFs poses a constraint in developing systems, especially for research and education. This work presents the design and validation of a large, open-source library of DRFs compatible with passive, single-face tracking systems, such as Polaris stereoscopic infrared trackers (NDI, Waterloo, Ontario). An algorithm was developed to create new DRF designs consistent with intra- and intertool design constraints and convert to computer-aided design (CAD) files suitable for three-dimensional printing. A library of 10 such groups, each with 6 to 10 DRFs, was produced and tracking performance was validated in comparison to a standard commercially available reference, including pivot calibration, fiducial registration error (FRE), and target registration error (TRE). Pivot tests showed calibration error [Formula: see text], indistinguishable from the reference. FRE was [Formula: see text], and TRE in a CT head phantom was [Formula: see text], both equivalent to the reference. The library of DRFs offers a useful resource for surgical navigation research and could be extended to other tracking systems and alternative design constraints.

  17. Study and Analysis of a Natural Reference Frame Current Controller for a Multi-Level H-Bridge Power Converter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Iov, Florin; Zanchetta, P.

    2008-01-01

    will be needed in order to control the power flow and to ensure proper and secure operation of this future grid with an increased level of renewable power. These power converters must be able to provide intelligent power management as well as ancillary services. This paper presents an analysis of the natural...... reference frame controller, based on proportional-resonant (PR) technique, for a multi-level H-bridge power converter for Universal and Flexible Power Management in Future Electricity Network. The proposed method is tested in terms of harmonic content in the Point of Common Coupling (PCC), voltage...

  18. An alternative frame of reference for rehabilitation: the helping process versus the medical model.

    Science.gov (United States)

    Anderson, T P

    1975-03-01

    In rehabilitation the frame of reference of the helping professions is significantly different from the standard medical model in the following areas: the dynamics of the relationship, basis for client's trust of the professional, activity versus passivity of both the client and the professional, and the approach to identification and solution of client problems. "The helping process" as practiced in the helping professions is not doing the task, but assisting the client to do it himself, for himself. In this process the needs, values and feelings of both the helper and the helpee must be recognized and dealt with. For the helping process to be successful, three basic conditions are required: development of mutual trust, joint exploration of the problem(s) and listening by both sides. Also involved in attaining success in the helping process is an awareness of not only the barriers in receiving help but also the difficulties in giving help.

  19. Pseudo-set framing.

    Science.gov (United States)

    Barasz, Kate; John, Leslie K; Keenan, Elizabeth A; Norton, Michael I

    2017-10-01

    Pseudo-set framing-arbitrarily grouping items or tasks together as part of an apparent "set"-motivates people to reach perceived completion points. Pseudo-set framing changes gambling choices (Study 1), effort (Studies 2 and 3), giving behavior (Field Data and Study 4), and purchase decisions (Study 5). These effects persist in the absence of any reward, when a cost must be incurred, and after participants are explicitly informed of the arbitrariness of the set. Drawing on Gestalt psychology, we develop a conceptual account that predicts what will-and will not-act as a pseudo-set, and defines the psychological process through which these pseudo-sets affect behavior: over and above typical reference points, pseudo-set framing alters perceptions of (in)completeness, making intermediate progress seem less complete. In turn, these feelings of incompleteness motivate people to persist until the pseudo-set has been fulfilled. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Establishing a Modern Ground Network for Space Geodesy Applications

    Science.gov (United States)

    Pearlman, M.; Pavlis, E.; Altamimi, Z.; Noll, C.

    2010-01-01

    Ground-based networks of co-located space-geodesy techniques (VLBI, SLR, GLASS, DORIS) are the basis for the development and maintenance of the :International Terrestrial deference Frame (ITRE), which is the basis for our metric measurements of global change. The Global Geodetic Observing System (GGOS) within the International Association of Geodesy has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at I mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence. As a first step, simulations focused on establishing the optimal global SLR and VLBI network, since these two techniques alone are sufficient to define the reference frame. The GLASS constellations will then distribute the reference frame to users anywhere on the Earth. Using simulated data to be collected by the future networks, we investigated various designs and the resulting accuracy in the origin, scale and orientation of the resulting ITRF. We present here the results of extensive simulation studies aimed at designing optimal global geodetic networks to support GGOS science products. Current estimates are the network will require 24 - 32 globally distributed co-location sites. Stations in the near global network will require geologically stable sites witla good weather, established infrastructure, and local support and personnel. EGOS will seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to take part in the network implementation and operation_ Some examples of integrated stations currently in operation or under development will be presented. We will examine

  1. Towards a poetics of the cinematographic frame

    Directory of Open Access Journals (Sweden)

    Des O'Rawe

    2011-05-01

    Full Text Available In delineating a poetics of the cinematographic frame, this essay presents a typology of framing styles, and demonstrates ways in which filmmakers use the frame as an expressive resource—and ways in which the frame uses them. The examples discussed are modernist in orientation, and each has a particular association with a city—its history, architecture, and cultural character. Although it is common practice to refer to various—especially, modernist—framing situations as instances of deframing, the essay also enquires into the problematic nature of this term, suggesting alternative visual and cinematographic contexts more amenable to the deconstructive implications of this term. As the boundaries between cinema and the other arts continue to converge and relations between frame, image, and screen become more complex, this essay offers a reassessment of some first principles of film language, especially the aesthetic integrity of the cinematographic frame.

  2. BATING A REFERENCE INSTALLATION BASED ON CONTROLLED-POTENTIAL COULOMETRY METOD IN THE FRAME OF IMPROVING THE STATE PRIMARY STANDARD GET 176 AND ITS MEASUREMENT CAPABILITIES

    Directory of Open Access Journals (Sweden)

    V. M. Zyskin

    2016-01-01

    Full Text Available The results of developing of reference installation, based on a controlled-potential coulometry, in the frame of improving the State primary standard of the units of mass (molar fraction and mass (molar concentration of a component in the liquid and solid substances and materials GET 176 are presented. The physical principles of controlled-potential coulometry, content and metrological characteristics of the developed installation are considered. Measurement results of copper, iron and lead contents in the certified reference materials of metals' solutions and CRM of brass produced by BAM, Germany, obtained using reference installation are given.

  3. DoD Modeling and Simulation (M&S) Glossary

    Science.gov (United States)

    1998-01-01

    i 66 January 1998 DoD 5000.59-M SSTORM STAARS STADLS STAF STAFLO STAGE STAMIS STARS I » STDL STDN STE STEMS STEP STM STOW STOW...references (b) and (c)) 556. World Coordinate System. The right-handed geocentric Cartesian system. The shape of the world is described by the...557. World Geodetic System 1984 (WGS 84). A geocentric coordinate system which describes a basic frame of reference and geometric figure for the

  4. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  5. Modeling laser wakefield accelerators in a Lorentz boosted frame

    Energy Technology Data Exchange (ETDEWEB)

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grotec, D. P.

    2010-06-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  6. Modeling laser wakefield accelerators in a Lorentz boosted frame

    International Nuclear Information System (INIS)

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

    2010-01-01

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference (1) is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accommodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  7. Adjustment of positional geodetic networks by unconventional estimations

    Directory of Open Access Journals (Sweden)

    Silvia Gašincová

    2010-06-01

    Full Text Available The content of this paper is the adjustment of positional geodetic networks by robust estimations. The techniques (basedon the unconventional estimations of repeated least-square method which have turned out to be suitable and applicable in the practisehave been demonstrated on the example of the local geodetic network, which was founded to compose this thesis. In the thesisthe following techniques have been chosen to compare the Method of least-squares with those many published in foreign literature:M-estimation of Biweight,M-estimation of Welsch and Danish method. All presented methods are based on the repeated least-squaremethod principle with gradual changing of weight of individual measurements. In the first stage a standard least-square method wascarried out in the following steps – iterations we gradually change individual weights according to the relevant instructions/ regulation(so-called weight function. Iteration process will be stopped when no deviated measurements are found in the file of measured data.MatLab programme version 5.2 T was used to implement mathematical adjustment.

  8. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    Science.gov (United States)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  9. Current Trends and Challenges in Satellite Laser Ranging

    Science.gov (United States)

    Appleby, Graham M.; Bianco, Giuseppe; Noll, Carey E.; Pavlis, Erricos C.; Pearlman, Michael R.

    2016-12-01

    Satellite Laser Ranging (SLR) is used to measure accurately the distance from ground stations to retro-reflectors on satellites and on the Moon. SLR is one of the fundamental space-geodetic techniques that define the International Terrestrial Reference Frame (ITRF), which is the basis upon which many aspects of global change over space, time, and evolving technology are measured; with VLBI the two techniques define the scale of the ITRF; alone the SLR technique defines its origin (geocenter). The importance of the reference frame has recently been recognized at the inter-governmental level through the United Nations, which adopted in February 2015 the Resolution "Global Geodetic Reference Frame for Sustainable Development." Laser Ranging provides precision orbit determination and instrument calibration and validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice mass-balance, and terrestrial topography. It is also a tool to study the dynamics of the Moon and fundamental constants and theories. With the exception of the currently in-orbit GPS constellation, all GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation; the next generation of GPS satellites due for launch from 2019 onwards will also carry retro-reflectors. The ILRS delivers weekly realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter series with a daily resolution. SLR technology continues to evolve towards the next-generation laser ranging systems and it is expected to successfully meet the challenges of the GGOS2020 program for a future Global Space Geodetic Network. Ranging precision is improving as higher repetition rate, narrower pulse lasers, and faster detectors are implemented within the network. Automation and pass interleaving at some stations is expanding temporal coverage and

  10. Research on Optimization of Formula SAE Truss-Frame

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2017-01-01

    Full Text Available The frame, as one of the basic components of a car, plays an important role of connecting components and withstanding various loads. The truss-frame is the commonest form of Formula SAE car in that it has many advantages, such as low cost, simple manufacture, high rigidity and high strength. The development of frame is reviewed. First, the key performance indicators and the mechanical state of the frame under different conditions are discussed. Second, a variety of optimization methods used in the design of frame are described. Finally, the test method of frame are introduced, with the experimental data and the finite element analysis of results being compared. Through analyzing and summarizing the development of the design, optimization and testing technology of the Formula SAE truss-frame, forecasting the future trends, the great theoretical reference is provided for the design and research of the follow-up frame.

  11. The purpose and coherence of the rules on good faith acquisition and acquisitive prescription in the Draft Common Frame of Reference: a tale of two gatekeepers

    NARCIS (Netherlands)

    Salomons, A.

    2013-01-01

    The drafters of Book VIII of the Draft Common Frame of Reference (DCFR) have consistently tried to formulate rules on the related topics of acquisitive prescription and good faith acquisition to further the underlying policy goals: where ordinary transfer has failed, good faith acquisition should

  12. Mixed Frames and Risky Decision-Making.

    Science.gov (United States)

    Peng, Jiaxi; Zhang, Jiaxi; Sun, Hao; Zeng, Zhicong; Mai, Yuexia; Miao, Danmin

    2017-01-01

    By applying unitive vocabulary, "die" or "save," to respective frames of the Asian disease problem, Tversky and Kahneman were able to define framing effect. In this study, we preliminarily explored the effect of mixed frames, which are characterized by the use of different vocabulary in one frame. In study 1, we found that only the sure option description had significant effect on decision-making, while the effects of risky option descriptions were not significant, nor were interactions between descriptions. In study 2, the results suggested that after controlling the effects of the hedonic tone of the sure options, risky option description did not significantly predict decision-making. In study 3, we found that neither the sure-to-risky option presentation order nor presentation order within risky options had significant effect on decision-making. We thus concluded that sure option description can serve as the decision-making foundation (reference point) for decision-makers in mixed frames.

  13. Misbheaving Faults: The Expanding Role of Geodetic Imaging in Unraveling Unexpected Fault Slip Behavior

    Science.gov (United States)

    Barnhart, W. D.; Briggs, R.

    2015-12-01

    Geodetic imaging techniques enable researchers to "see" details of fault rupture that cannot be captured by complementary tools such as seismology and field studies, thus providing increasingly detailed information about surface strain, slip kinematics, and how an earthquake may be transcribed into the geological record. For example, the recent Haiti, Sierra El Mayor, and Nepal earthquakes illustrate the fundamental role of geodetic observations in recording blind ruptures where purely geological and seismological studies provided incomplete views of rupture kinematics. Traditional earthquake hazard analyses typically rely on sparse paleoseismic observations and incomplete mapping, simple assumptions of slip kinematics from Andersonian faulting, and earthquake analogs to characterize the probabilities of forthcoming ruptures and the severity of ground accelerations. Spatially dense geodetic observations in turn help to identify where these prevailing assumptions regarding fault behavior break down and highlight new and unexpected kinematic slip behavior. Here, we focus on three key contributions of space geodetic observations to the analysis of co-seismic deformation: identifying near-surface co-seismic slip where no easily recognized fault rupture exists; discerning non-Andersonian faulting styles; and quantifying distributed, off-fault deformation. The 2013 Balochistan strike slip earthquake in Pakistan illuminates how space geodesy precisely images non-Andersonian behavior and off-fault deformation. Through analysis of high-resolution optical imagery and DEMs, evidence emerges that a single fault map slip as both a strike slip and dip slip fault across multiple seismic cycles. These observations likewise enable us to quantify on-fault deformation, which account for ~72% of the displacements in this earthquake. Nonetheless, the spatial distribution of on- and off-fault deformation in this event is highly spatially variable- a complicating factor for comparisons

  14. Stress coupling in the seismic cycle indicated from geodetic measurements

    Science.gov (United States)

    Wang, L.; Hainzl, S.; Zoeller, G.; Holschneider, M.

    2012-12-01

    The seismic cycle includes several phases, the interseismic, coseismic and postseismic phase. In the interseismic phase, strain gradually builds up around the overall locked fault in tens to thousands of years, while it is coseismically released in seconds. In the postseismic interval, stress relaxation lasts months to years, indicated by evident aseismic deformations which have been indicated to release comparable or even higher strain energy than the main shocks themselves. Benefiting from the development of geodetic observatory, e.g., Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) in the last two decades, the measurements of surface deformation have been significantly improved and become valuable information for understanding the stress evolution on the large fault plane. In this study, we utilize the GPS/InSAR data to investigate the slip deficit during the interseismic phase, the coseismic slip and the early postseismic creep on the fault plane. However, it is already well-known that slip inversions based only on the surface measurements are typically non-unique and subject to large uncertainties. To reduce the ambiguity, we utilize the assumption of stress coupling between interseismic and coseismic phases, and between coseismic and postseismic phases. We use a stress constrained joint inversion in Bayesian approach (Wang et al., 2012) to invert simultaneously for (1) interseismic slip deficit and coseismic slip, and (2) coseismic slip and postseismic creep. As case studies, we analyze earthquakes occurred in well-instrumented regions such as the 2004 M6.0 Parkfield earthquake, the 2010 M8.7 earthquake and the 2011 M9.1 Tohoku-Oki earthquake. We show that the inversion with the stress-coupling constraint leads to better constrained slip distributions. Meanwhile, the results also indicate that the assumed stress coupling is reasonable and can be well reflected from the available geodetic measurements. Reference: Lifeng

  15. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking.

    Science.gov (United States)

    Lin, Zhicheng; He, Sheng

    2012-10-25

    Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.

  16. The impacts of source structure on geodetic parameters demonstrated by the radio source 3C371

    Science.gov (United States)

    Xu, Ming H.; Heinkelmann, Robert; Anderson, James M.; Mora-Diaz, Julian; Karbon, Maria; Schuh, Harald; Wang, Guang L.

    2017-07-01

    Closure quantities measured by very-long-baseline interferometry (VLBI) observations are independent of instrumental and propagation instabilities and antenna gain factors, but are sensitive to source structure. A new method is proposed to calculate a structure index based on the median values of closure quantities rather than the brightness distribution of a source. The results are comparable to structure indices based on imaging observations at other epochs and demonstrate the flexibility of deriving structure indices from exactly the same observations as used for geodetic analysis and without imaging analysis. A three-component model for the structure of source 3C371 is developed by model-fitting closure phases. It provides a real case of tracing how the structure effect identified by closure phases in the same observations as the delay observables affects the geodetic analysis, and investigating which geodetic parameters are corrupted to what extent by the structure effect. Using the resulting structure correction based on the three-component model of source 3C371, two solutions, with and without correcting the structure effect, are made. With corrections, the overall rms of this source is reduced by 1 ps, and the impacts of the structure effect introduced by this single source are up to 1.4 mm on station positions and up to 4.4 microarcseconds on Earth orientation parameters. This study is considered as a starting point for handling the source structure effect on geodetic VLBI from geodetic sessions themselves.

  17. FRAME, animal experimentation and the Three Rs: past, present and future.

    Science.gov (United States)

    Balls, Michael

    2009-12-01

    At the opening of a meeting to celebrate the 50th anniversary of the publication of The Principles of Humane Experimental Technique, by W.M.S. Russell and R.L. Burch, and the 40th anniversary of the establishment of FRAME, some comments on the early days of the Charity are made, with particular reference to the special contributions made by its founder-Chairman, Dorothy Hegarty, and the author's own appointment as a Trustee, and later as Chairman. Reference is made to some key events and successes, and especially to the importance of FRAME's move from London to Nottingham, and the establishment of an ongoing collaboration with the University of Nottingham, including the setting-up of the FRAME Alternatives Laboratory. 2009 FRAME.

  18. Framing Vision: An Examination of Framing, Sensegiving, and Sensemaking during a Change Initiative

    Science.gov (United States)

    Hamilton, William

    2016-01-01

    The purpose of this short article is to review the findings from an instrumental case study that examines how a college president used what this article refers to as "frame alignment processes" to mobilize internal and external support for a college initiative--one that achieved success under the current president. Specifically, I…

  19. A comparative study for the estimation of geodetic point velocity by ...

    Indian Academy of Sciences (India)

    Geodetic point velocity; artificial neural networks; back propagation; radial basis function; Kriging. J. Earth Syst. Sci. ...... The employment of BPANN is an alternative tool to KRIG for .... Computational Intelligence and Multimedia Applications.

  20. Geodetic and seismological investigation in the Ionian area

    Directory of Open Access Journals (Sweden)

    F. Riguzzi

    1997-06-01

    Full Text Available Geodetic and seismic evidence of crustal deformations in the Ionian area are shown in this paper. The Ionian GPS network, composed of nine sites crossing the Ionian Sea from Calabria, Southern Italy, to Northwestern Greece, was established and surveyed in 1991, 1994, 1995 within the framework of the TYRGEONET project (Anzidei et al., 1996. In 1996 a return campaign was carried out after the occurrence of seismic activity in 1995. The displacement pattern obtained for the Greek side of the network agrees well with those previously displayed, both in magnitude and direction, confirming a mean displacement rate of about 1-2 cm1/yr. The same agreement is not found for the Italian side of the network, where no significant deformations were detected between 1994 and 1996. Seismic deformation was also studied for the same area, starting from the moment tensors of events which occurred in the last 20 years with magnitude greater than 5.0; evident similarity with the displacement field exhibited by the Greek side of the Ionian Sea by geodetic surveys was inferred. On the contrary, the motion detected for the Italian area cannot be simply related to seismic activity.

  1. The Impact of Sea Level Rise on Geodetic Vertical Datum of Peninsular Malaysia

    Science.gov (United States)

    Din, A. H. M.; Abazu, I. C.; Pa'suya, M. F.; Omar, K. M.; Hamid, A. I. A.

    2016-09-01

    Sea level rise is rapidly turning into major issues among our community and all levels of the government are working to develop responses to ensure these matters are given the uttermost attention in all facets of planning. It is more interesting to understand and investigate the present day sea level variation due its potential impact, particularly on our national geodetic vertical datum. To determine present day sea level variation, it is vital to consider both in-situ tide gauge and remote sensing measurements. This study presents an effort to quantify the sea level rise rate and magnitude over Peninsular Malaysia using tide gauge and multi-mission satellite altimeter. The time periods taken for both techniques are 32 years (from 1984 to 2015) for tidal data and 23 years (from 1993 to 2015) for altimetry data. Subsequently, the impact of sea level rise on Peninsular Malaysia Geodetic Vertical Datum (PMGVD) is evaluated in this study. the difference between MSL computed from 10 years (1984 - 1993) and 32 years (1984 - 2015) tidal data at Port Kelang showed that the increment of sea level is about 27mm. The computed magnitude showed an estimate of the long-term effect a change in MSL has on the geodetic vertical datum of Port Kelang tide gauge station. This will help give a new insight on the establishment of national geodetic vertical datum based on mean sea level data. Besides, this information can be used for a wide variety of climatic applications to study environmental issues related to flood and global warming in Malaysia.

  2. THE IMPACT OF SEA LEVEL RISE ON GEODETIC VERTICAL DATUM OF PENINSULAR MALAYSIA

    Directory of Open Access Journals (Sweden)

    A. H. M. Din

    2016-09-01

    Full Text Available Sea level rise is rapidly turning into major issues among our community and all levels of the government are working to develop responses to ensure these matters are given the uttermost attention in all facets of planning. It is more interesting to understand and investigate the present day sea level variation due its potential impact, particularly on our national geodetic vertical datum. To determine present day sea level variation, it is vital to consider both in-situ tide gauge and remote sensing measurements. This study presents an effort to quantify the sea level rise rate and magnitude over Peninsular Malaysia using tide gauge and multi-mission satellite altimeter. The time periods taken for both techniques are 32 years (from 1984 to 2015 for tidal data and 23 years (from 1993 to 2015 for altimetry data. Subsequently, the impact of sea level rise on Peninsular Malaysia Geodetic Vertical Datum (PMGVD is evaluated in this study. the difference between MSL computed from 10 years (1984 – 1993 and 32 years (1984 – 2015 tidal data at Port Kelang showed that the increment of sea level is about 27mm. The computed magnitude showed an estimate of the long-term effect a change in MSL has on the geodetic vertical datum of Port Kelang tide gauge station. This will help give a new insight on the establishment of national geodetic vertical datum based on mean sea level data. Besides, this information can be used for a wide variety of climatic applications to study environmental issues related to flood and global warming in Malaysia.

  3. Demonstration of the Cascadia G‐FAST geodetic earthquake early warning system for the Nisqually, Washington, earthquake

    Science.gov (United States)

    Crowell, Brendan; Schmidt, David; Bodin, Paul; Vidale, John; Gomberg, Joan S.; Hartog, Renate; Kress, Victor; Melbourne, Tim; Santillian, Marcelo; Minson, Sarah E.; Jamison, Dylan

    2016-01-01

    A prototype earthquake early warning (EEW) system is currently in development in the Pacific Northwest. We have taken a two‐stage approach to EEW: (1) detection and initial characterization using strong‐motion data with the Earthquake Alarm Systems (ElarmS) seismic early warning package and (2) the triggering of geodetic modeling modules using Global Navigation Satellite Systems data that help provide robust estimates of large‐magnitude earthquakes. In this article we demonstrate the performance of the latter, the Geodetic First Approximation of Size and Time (G‐FAST) geodetic early warning system, using simulated displacements for the 2001Mw 6.8 Nisqually earthquake. We test the timing and performance of the two G‐FAST source characterization modules, peak ground displacement scaling, and Centroid Moment Tensor‐driven finite‐fault‐slip modeling under ideal, latent, noisy, and incomplete data conditions. We show good agreement between source parameters computed by G‐FAST with previously published and postprocessed seismic and geodetic results for all test cases and modeling modules, and we discuss the challenges with integration into the U.S. Geological Survey’s ShakeAlert EEW system.

  4. Modeling laser wakefield accelerators in a Lorentz boosted frame

    Energy Technology Data Exchange (ETDEWEB)

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

    2010-09-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing theframe of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  5. A Terrestrial Reference Frame realised on the observation level using a GPS-LEO satellite constellation

    Science.gov (United States)

    Koenig, Daniel

    2018-02-01

    Applying a one-step integrated process, i.e. by simultaneously processing all data and determining all satellite orbits involved, a Terrestrial Reference Frame (TRF) consisting of a geometric as well as a dynamic part has been determined at the observation level using the EPOS-OC software of Deutsches GeoForschungsZentrum. The satellite systems involved comprise the Global Positioning System (GPS) as well as the twin GRACE spacecrafts. Applying a novel approach, the inherent datum defect has been overcome empirically. In order not to rely on theoretical assumptions this is done by carrying out the TRF estimation based on simulated observations and using the associated satellite orbits as background truth. The datum defect is identified here as the total of all three translations as well as the rotation about the z-axis of the ground station network leading to a rank-deficient estimation problem. To rectify this singularity, datum constraints comprising no-net translation (NNT) conditions in x, y, and z as well as a no-net rotation (NNR) condition about the z-axis are imposed. Thus minimally constrained, the TRF solution covers a time span of roughly a year with daily resolution. For the geometric part the focus is put on Helmert transformations between the a priori and the estimated sets of ground station positions, and the dynamic part is represented by gravity field coefficients of degree one and two. The results of a reference solution reveal the TRF parameters to be estimated reliably with high precision. Moreover, carrying out a comparable two-step approach using the same data and models leads to parameters and observational residuals of worse quality. A validation w.r.t. external sources shows the dynamic origin to coincide at a level of 5 mm or better in x and y, and mostly better than 15 mm in z. Comparing the derived GPS orbits to IGS final orbits as well as analysing the SLR residuals for the GRACE satellites reveals an orbit quality on the few cm level

  6. Evidences of the expanding Earth from space-geodetic data over solid land and sea level rise in recent two decades

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2015-07-01

    Full Text Available According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008, our previous estimate of the average-weighted vertical variation of the Earth's solid surface suggests that the Earth's solid part is expanding at a rate of 0.24 ± 0.05 mm/a in recent two decades. In another aspect, the satellite altimetry observations spanning recent two decades demonstrate the sea level rise (SLR rate 3.2 ± 0.4 mm/a, of which 1.8 ± 0.5 mm/a is contributed by the ice melting over land. This study shows that the oceanic thermal expansion is 1.0 ± 0.1 mm/a due to the temperature increase in recent half century, which coincides with the estimate provided by previous authors. The SLR observation by altimetry is not balanced by the ice melting and thermal expansion, which is an open problem before this study. However, in this study we infer that the oceanic part of the Earth is expanding at a rate about 0.4 mm/a. Combining the expansion rates of land part and oceanic part, we conclude that the Earth is expanding at a rate of 0.35 ± 0.47 mm/a in recent two decades. If the Earth expands at this rate, then the altimetry-observed SLR can be well explained.

  7. A Comparison of Geodetic and Geologic Rates Prior to Large Strike-Slip Earthquakes: A Diversity of Earthquake-Cycle Behaviors?

    Science.gov (United States)

    Dolan, James F.; Meade, Brendan J.

    2017-12-01

    Comparison of preevent geodetic and geologic rates in three large-magnitude (Mw = 7.6-7.9) strike-slip earthquakes reveals a wide range of behaviors. Specifically, geodetic rates of 26-28 mm/yr for the North Anatolian fault along the 1999 MW = 7.6 Izmit rupture are ˜40% faster than Holocene geologic rates. In contrast, geodetic rates of ˜6-8 mm/yr along the Denali fault prior to the 2002 MW = 7.9 Denali earthquake are only approximately half as fast as the latest Pleistocene-Holocene geologic rate of ˜12 mm/yr. In the third example where a sufficiently long pre-earthquake geodetic time series exists, the geodetic and geologic rates along the 2001 MW = 7.8 Kokoxili rupture on the Kunlun fault are approximately equal at ˜11 mm/yr. These results are not readily explicable with extant earthquake-cycle modeling, suggesting that they may instead be due to some combination of regional kinematic fault interactions, temporal variations in the strength of lithospheric-scale shear zones, and/or variations in local relative plate motion rate. Whatever the exact causes of these variable behaviors, these observations indicate that either the ratio of geodetic to geologic rates before an earthquake may not be diagnostic of the time to the next earthquake, as predicted by many rheologically based geodynamic models of earthquake-cycle behavior, or different behaviors characterize different fault systems in a manner that is not yet understood or predictable.

  8. Extending Resolution of Fault Slip With Geodetic Networks Through Optimal Network Design

    Science.gov (United States)

    Sathiakumar, Sharadha; Barbot, Sylvain Denis; Agram, Piyush

    2017-12-01

    Geodetic networks consisting of high precision and high rate Global Navigation Satellite Systems (GNSS) stations continuously monitor seismically active regions of the world. These networks measure surface displacements and the amount of geodetic strain accumulated in the region and give insight into the seismic potential. SuGar (Sumatra GPS Array) in Sumatra, GEONET (GNSS Earth Observation Network System) in Japan, and PBO (Plate Boundary Observatory) in California are some examples of established networks around the world that are constantly expanding with the addition of new stations to improve the quality of measurements. However, installing new stations to existing networks is tedious and expensive. Therefore, it is important to choose suitable locations for new stations to increase the precision obtained in measuring the geophysical parameters of interest. Here we describe a methodology to design optimal geodetic networks that augment the existing system and use it to investigate seismo-tectonics at convergent and transform boundaries considering land-based and seafloor geodesy. The proposed network design optimization would be pivotal to better understand seismic and tsunami hazards around the world. Land-based and seafloor networks can monitor fault slip around subduction zones with significant resolution, but transform faults are more challenging to monitor due to their near-vertical geometry.

  9. Gravity in Gravity’s Rainbow – Force, Fictitious Force, and Frame of Reference; or: The Science and Poetry of Sloth

    Directory of Open Access Journals (Sweden)

    Nina Engelhardt

    2014-09-01

    Full Text Available Gravity is a prominent physical concept in 'Gravity's Rainbow', as already announced by the novel's title. If the second part of the title – the poetic image of the rainbow – is bound up with mathematical formulas and the parabolic path of the Rocket, so conversely, this paper argues, Pynchon's novel introduces a relation between gravity and fiction. The paper explores 'Gravity's Rainbow''s use of the changing historical understandings of gravitation from the seventeenth to the twentieth centuries by examining the novel's illustration of Newton and Leibniz's opposed concepts as well as its references to gravity as understood in Einstein's theory of relativity. When tracing the notions of gravity as force, fictitious force, and frame of reference, a particular focus lies on the relation of physical imagery to ethical questions and on the way 'Gravity's Rainbow' provides a physico-ethical explanation of Slothrop's disappearance from the novel.

  10. The spaces in the looking glass: stilling the frame/framing the still

    Directory of Open Access Journals (Sweden)

    Marvin E. Kirsh

    2015-06-01

    Full Text Available The purpose of this writing is to propose a frame of view, a form as the eternal world element, that is compatible with paradox within the history of ideas, modern discovery as they confront one another. Under special consideration are problems of representation of phenomena, life, the cosmos as the rational facility of mind confronts the physical/perceptual, and itself. Current topics in pursuit are near as diverse and numbered as are the possibilities for a world composed strictly of uniqueness able to fill infinite space; it is assumed that not all of the paths chosen in contemporary pursuits will produce coherent determinations in an appropriate frame able to accommodate a world of nominals in motion, containing motion, and is commensurate with basic physical law and the propagation of form, change from within. Intended as a potential guiding post for the aim of reason seeking to select, define and capture topics, chosen as special examples are the works of logistician/mathematician Lewis Carroll as he presents a paradox of actuality verses the reality of perception in Alice in Wonderland, the theory of relativity of Albert Einstein as he fails to elaborate a mathematics to communicate an inertial frame of reference, and the reconstruction ideas of Jacques Derrida as he refers for contrast with the scientific world view constructed of dualisms, monisms that are conceived to have no opposites. Supporting discussion is evolved from the works of Bertrand Russell, Erwin Schrodinger, Jurgen Habermas, Bronislaw Malinowski, Michel Foucault.

  11. Concepts and Contexts – Argumentative Forms of Framing

    DEFF Research Database (Denmark)

    Gabrielsen, Jonas; Nørholm Just, Sine; Bengtsson, Mette

    2011-01-01

    this argument we combine theories of framing with the classical rhetorical theory of the stases, more precisely status definitio and status translatio. Our focus is primarily theoretical, but we illustrate our points by means of examples taken from public debates on the value of real estate.......The notion of framing has become central in the field of argumentation. The question is, however, what we gain from studying the process of argumentation through framing, since framing is itself a broad concept in need of specification. Different traditions understand the term differently......, and it is necessary to determine what argumentative forms the concept of framing actually covers. In this paper we argue that framing refers to at least two different argumentative forms. One is an internal definition of the concepts in question; the other is an external shift in the context of the case. In making...

  12. Plasma physics in noninertial frames

    International Nuclear Information System (INIS)

    Thyagaraja, A.; McClements, K. G.

    2009-01-01

    Equations describing the nonrelativistic motion of a charged particle in an arbitrary noninertial reference frame are derived from the relativistically invariant form of the particle action. It is shown that the equations of motion can be written in the same form in inertial and noninertial frames, with the effective electric and magnetic fields in the latter modified by inertial effects associated with centrifugal and Coriolis accelerations. These modifications depend on the particle charge-to-mass ratio, and also the vorticity, specific kinetic energy, and compressibility of the frame flow. The Newton-Lorentz, Vlasov, and Fokker-Planck equations in such a frame are derived. Reduced models such as gyrokinetic, drift-kinetic, and fluid equations are then derivable from these equations in the appropriate limits, using standard averaging procedures. The results are applied to tokamak plasmas rotating about the machine symmetry axis with a nonrelativistic but otherwise arbitrary toroidal flow velocity. Astrophysical applications of the analysis are also possible since the power of the action principle is such that it can be used to describe relativistic flows in curved spacetime.

  13. Framing Effects: Dynamics and Task Domains

    Science.gov (United States)

    Wang

    1996-11-01

    The author examines the mechanisms and dynamics of framing effects in risky choices across three distinct task domains (i.e., life-death, public property, and personal money). The choice outcomes of the problems presented in each of the three task domains had a binary structure of a sure thing vs a gamble of equal expected value; the outcomes differed in their framing conditions and the expected values, raging from 6000, 600, 60, to 6, numerically. It was hypothesized that subjects would become more risk seeking, if the sure outcome was below their aspiration level (the minimum requirement). As predicted, more subjects preferred the gamble when facing the life-death choice problems than facing the counterpart problems presented in the other two task domains. Subjects' risk preference varied categorically along the group size dimension in the life-death domain but changed more linearly over the expected value dimension in the monetary domain. Framing effects were observed in 7 of 13 pairs of problems, showing a positive frame-risk aversion and negative frame-risk seeking relationship. In addition, two types of framing effects were theoretically defined and empirically identified. A bidirectional framing effect involves a reversal in risk preference, and occurs when a decision maker's risk preference is ambiguous or weak. Four bidirectional effects were observed; in each case a majority of subjects preferred the sure outcome under a positive frame but the gamble under a negative frame. In contrast, a unidirectional framing effect refers to a preference shift due to the framing of choice outcomes: A majority of subjects preferred one choice outcome (either the sure thing or the gamble) under both framing conditions, with positive frame augmented the preference for the sure thing and negative frame augmented the preference for the gamble. These findings revealed some dynamic regularities of framing effects and posed implications for developing predictive and testable

  14. Geodetic refraction effects of electromagnetic wave propagation through the atmosphere

    CERN Document Server

    1984-01-01

    With very few exceptions, geodetic measurements use electro­ magnetic radiation in order to measure directions, distances, time delays, and Doppler frequency shifts, to name the main ter­ restrial and space observables. Depending on the wavelength of the radiation and the purpose of the measurements, the follow­ ing parameters of the electromagnetic wave are measured: ampli­ tude, phase, angle-of-arrival, polarisation and frequency. Ac­ curate corrections have to be applied to the measurements in order to take into account the effects of the intervening medium between transmitter and receiver. The known solutions use at­ mospheric models, special observation programs, remote sensing techniques and instrumental methods. It has been shown that the effects of the earth's atmospheric envelope present a fundamental limitation to the accuracy and precision of geodetic measurements. This applies equally to ter­ restrial and space applications. Instrumental accuracies are al­ ready below the atmospherically i...

  15. The Influence of Framing on Risky Decisions: A Meta-analysis.

    Science.gov (United States)

    Kühberger

    1998-07-01

    In framing studies, logically equivalent choice situations are differently described and the resulting preferences are studied. A meta-analysis of framing effects is presented for risky choice problems which are framed either as gains or as losses. This evaluates the finding that highlighting the positive aspects of formally identical problems does lead to risk aversion and that highlighting their equivalent negative aspects does lead to risk seeking. Based on a data pool of 136 empirical papers that reported framing experiments with nearly 30,000 participants, we calculated 230 effect sizes. Results show that the overall framing effect between conditions is of small to moderate size and that profound differences exist between research designs. Potentially relevant characteristics were coded for each study. The most important characteristics were whether framing is manipulated by changing reference points or by manipulating outcome salience, and response mode (choice vs. rating/judgment). Further important characteristics were whether options differ qualitatively or quantitatively in risk, whether there is one or multiple risky events, whether framing is manipulated by gain/loss or by task-responsive wording, whether dependent variables are measured between- or within- subjects, and problem domains. Sample (students vs. target populations) and unit of analysis (individual vs. group) was not influential. It is concluded that framing is a reliable phenomenon, but that outcome salience manipulations, which constitute a considerable amount of work, have to be distinguished from reference point manipulations and that procedural features of experimental settings have a considerable effect on effect sizes in framing experiments. Copyright 1998 Academic Press.

  16. An Investigation on the Use of Different Centroiding Algorithms and Star Catalogs in Astro-Geodetic Observations

    Science.gov (United States)

    Basoglu, Burak; Halicioglu, Kerem; Albayrak, Muge; Ulug, Rasit; Tevfik Ozludemir, M.; Deniz, Rasim

    2017-04-01

    In the last decade, the importance of high-precise geoid determination at local or national level has been pointed out by Turkish National Geodesy Commission. The Commission has also put objective of modernization of national height system of Turkey to the agenda. Meanwhile several projects have been realized in recent years. In Istanbul city, a GNSS/Levelling geoid was defined in 2005 for the metropolitan area of the city with an accuracy of ±3.5cm. In order to achieve a better accuracy in this area, "Local Geoid Determination with Integration of GNSS/Levelling and Astro-Geodetic Data" project has been conducted in Istanbul Technical University and Bogazici University KOERI since January 2016. The project is funded by The Scientific and Technological Research Council of Turkey. With the scope of the project, modernization studies of Digital Zenith Camera System are being carried on in terms of hardware components and software development. Accentuated subjects are the star catalogues, and centroiding algorithm used to identify the stars on the zenithal star field. During the test observations of Digital Zenith Camera System performed between 2013-2016, final results were calculated using the PSF method for star centroiding, and the second USNO CCD Astrograph Catalogue (UCAC2) for the reference star positions. This study aims to investigate the position accuracy of the star images by comparing different centroiding algorithms and available star catalogs used in astro-geodetic observations conducted with the digital zenith camera system.

  17. Calibration of Robot Reference Frames for Enhanced Robot Positioning Accuracy

    OpenAIRE

    Cheng, Frank Shaopeng

    2008-01-01

    This chapter discussed the importance and methods of conducting robot workcell calibration for enhancing the accuracy of the robot TCP positions in industrial robot applications. It shows that the robot frame transformations define the robot geometric parameters such as joint position variables, link dimensions, and joint offsets in an industrial robot system. The D-H representation allows the robot designer to model the robot motion geometry with the four standard D-H parameters. The robot k...

  18. Geodetic Space Weather Monitoring by means of Ionosphere Modelling

    Science.gov (United States)

    Schmidt, Michael

    2017-04-01

    The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via

  19. Frames of Mind in Intertemporal Choice

    OpenAIRE

    George F. Loewenstein

    1988-01-01

    Recent research has demonstrated that choices between gambles are systematically influenced by the way they are expressed. Kahneman and Tversky's Prospect Theory (Kahneman, D., A. Tversky. 1979. Prospect theory: An analysis of decision under risk. Econometrica 47(2) 363--391.) explains many of these "framing" effects as shifts in the point of reference from which prospects are evaluated. This paper demonstrates the applicability of the reference point concept to intertemporal choice. Three ex...

  20. PHOTOMETRIC OBSERVATIONS OF SELECTED, OPTICALLY BRIGHT QUASARS FOR SPACE INTERFEROMETRY MISSION AND OTHER FUTURE CELESTIAL REFERENCE FRAMES

    International Nuclear Information System (INIS)

    Ojha, Roopesh; Zacharias, Norbert; Hennessy, Gregory S.; Gaume, Ralph A.; Johnston, Kenneth J.

    2009-01-01

    Photometric observations of 235 extragalactic objects that are potential targets for the Space Interferometry Mission (SIM) are presented. Mean B, V, R, I magnitudes at the 5% level are obtained at 1-4 epochs between 2005 and 2007 using the 1 m telescopes at Cerro Tololo Inter-American Observatory and the Naval Observatory Flagstaff Station. Of the 134 sources that have V magnitudes in the Veron and Veron-Cetty catalog, a difference of over 1.0 mag is found for the observed-catalog magnitudes for about 36% of the common sources, and 10 sources show over 3 mag difference. Our first set of observations presented here form the basis of a long-term photometric variability study of the selected reference frame sources to assist in mission target selection and to support QSO multicolor photometric variability studies in general.

  1. Promotional Frames' Influence on Price Perceptions of Two Apparel Products.

    Science.gov (United States)

    Stanforth, Nancy; Lennon, Sharron; Shin, Jung Im

    2001-01-01

    A study explored the differences in price perceptions of two apparel products when promotions were framed as either a price discount or a gift-with-purchase. The majority preferred the discount. Results illustrate the importance of promotional framing in forming consumer price perceptions. (Contains 30 references.) (Author/JOW)

  2. Framing the frame

    Directory of Open Access Journals (Sweden)

    Todd McElroy

    2007-08-01

    Full Text Available We examined how the goal of a decision task influences the perceived positive, negative valence of the alternatives and thereby the likelihood and direction of framing effects. In Study 1 we manipulated the goal to increase, decrease or maintain the commodity in question and found that when the goal of the task was to increase the commodity, a framing effect consistent with those typically observed in the literature was found. When the goal was to decrease, a framing effect opposite to the typical findings was observed whereas when the goal was to maintain, no framing effect was found. When we examined the decisions of the entire population, we did not observe a framing effect. In Study 2, we provided participants with a similar decision task except in this situation the goal was ambiguous, allowing us to observe participants' self-imposed goals and how they influenced choice preferences. The findings from Study 2 demonstrated individual variability in imposed goal and provided a conceptual replication of Study 1. %need keywords

  3. On the effect of ionospheric delay on geodetic relative GPS positioning

    NARCIS (Netherlands)

    Georgiadou, P.Y.; Kleusberg, A.

    1988-01-01

    Uncorrected ionospheric delay is one of the factors limiting the accuracy in geodetic relative positioning with single frequency Global Positioning System (GPS) carrier phase observations. Dual frequency measurements can be combined to eliminate the ionospheric delay in the observations. A

  4. Framing the frame

    OpenAIRE

    Todd McElroy; John J. Seta

    2007-01-01

    We examined how the goal of a decision task influences the perceived positive, negative valence of the alternatives and thereby the likelihood and direction of framing effects. In Study 1 we manipulated the goal to increase, decrease or maintain the commodity in question and found that when the goal of the task was to increase the commodity, a framing effect consistent with those typically observed in the literature was found. When the goal was to decrease, a framing effect opposite to the ty...

  5. Post-Newtonian reference ellipsoid for relativistic geodesy

    Science.gov (United States)

    Kopeikin, Sergei; Han, Wenbiao; Mazurova, Elena

    2016-02-01

    We apply general relativity to construct the post-Newtonian background manifold that serves as a reference spacetime in relativistic geodesy for conducting a relativistic calculation of the geoid's undulation and the deflection of the plumb line from the vertical. We chose an axisymmetric ellipsoidal body made up of a perfect homogeneous fluid uniformly rotating around a fixed axis, as a source generating the reference geometry of the background manifold through Einstein's equations. We then reformulate and extend hydrodynamic calculations of rotating fluids done by a number of previous researchers for astrophysical applications to the realm of relativistic geodesy to set up algebraic equations defining the shape of the post-Newtonian reference ellipsoid. To complete this task, we explicitly perform all integrals characterizing gravitational field potentials inside the fluid body and represent them in terms of the elementary functions depending on the eccentricity of the ellipsoid. We fully explore the coordinate (gauge) freedom of the equations describing the post-Newtonian ellipsoid and demonstrate that the fractional deviation of the post-Newtonian level surface from the Maclaurin ellipsoid can be made much smaller than the previously anticipated estimate based on the astrophysical application of the coordinate gauge advocated by Bardeen and Chandrasekhar. We also derive the gauge-invariant relations of the post-Newtonian mass and the constant angular velocity of the rotating fluid with the parameters characterizing the shape of the post-Newtonian ellipsoid including its eccentricity, a semiminor axis, and a semimajor axis. We formulate the post-Newtonian theorems of Pizzetti and Clairaut that are used in geodesy to connect the geometric parameters of the reference ellipsoid to the physically measurable force of gravity at the pole and equator of the ellipsoid. Finally, we expand the post-Newtonian geodetic equations describing the post-Newtonian ellipsoid to

  6. Geodetic Imaging: Expanding the Boundaries of Geodesy in the 21st Century

    Science.gov (United States)

    Fernandez Diaz, J. C.; Carter, W. E.; Shrestha, R. L.; Glennie, C. L.

    2013-12-01

    coastal waters) is just beginning to attract the attention of researchers studying such plant life as marsh vegetation and sea grasses, and the habitats of animals as diverse as fish, migratory birds, and lions (Vierling et al., 2008). From thousands and thousands of survey markers covering large regions of the earth common to geodesy a half century ago, the focus of some geodesist has changed to billions and billions of points covering landscapes, which are enabling them to redefine and extend the limits of geodesy in the 21st century. References: Carter, W. E. et al., (2012), 'Geodetic Imaging: A New Tool for Mesoamerican Archaeology,' Eos, Trans. American Geophysical Union, Vol. 93, No. 42, pages 413-415. Chase, A. F. et al., (2010) 'Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize,' Journal Of Archaeological Science, vol. 38, no. 2, p. 387-398. Evans, D. H. et al., (2013), 'Uncovering archaeological landscapes at Angkor using lidar.' PNAS. Oskin, M. E. et al., (2012), 'Near-Field Deformation from the El Mayor-Cucapah Earthquake Revealed by Differential LIDAR,' Science. Vol. 335 no.6069, pp. 702-705. Perron, J. Taylor, et al (2009), 'Formation of evenly spaced ridges and valleys,' Nature, Vol. 460/23. Vierling, K. T. et al., (2008),'Lidar: shedding new light on habitat characterization and modeling,' Front Ecol Environ 2008, 6(2): 90-98.

  7. Wavelet based comparison of high frequency oscillations in the geodetic and fluid excitation functions of polar motion

    Science.gov (United States)

    Kosek, W.; Popinski, W.; Niedzielski, T.

    2011-10-01

    It has been already shown that short period oscillations in polar motion, with periods less than 100 days, are very chaotic and are responsible for increase in short-term prediction errors of pole coordinates data. The wavelet technique enables to compare the geodetic and fluid excitation functions in the high frequency band in many different ways, e.g. by looking at the semblance function. The waveletbased semblance filtering enables determination the common signal in both geodetic and fluid excitation time series. In this paper the considered fluid excitation functions consist of the atmospheric, oceanic and land hydrology excitation functions from ECMWF atmospheric data produced by IERS Associated Product Centre Deutsches GeoForschungsZentrum, Potsdam. The geodetic excitation functions have been computed from the combined IERS pole coordinates data.

  8. Geodynamical behavior of some active area in Egypt, as deduced from geodetic and gravity data

    Science.gov (United States)

    Issawy, E.; Mrlina, J.; Radwan, A.; Mahmoud, S.; Rayan, A.

    2009-04-01

    Temporal gravity variation in parallel with the space geodetic technique (GPS) had been started in Egypt for real campaigns in 1997. The geodetic networks around the High Dam, Aswan area was the first net to be measured. More than five measurement epochs were performed. The results had a considerable limit of coincidence between gravity and GPS observations. The trend of gravity changes indicated a positive stress and had the vertical displacement observed for leveling points. The lowest gravity changes along Kalabsha fault reflect extensional and/or strike component of the stress field. Also, the areas around Cairo (Greater Cairo) and due to the occurrence of an earthquake of 1992, such type of measurements were useful for monitoring the recent activity. The data of the geodetic network around Cairo after 5 campaigns showed that, the estimated horizontal velocities for almost all points are 5.5± mm/year in approximately NW-SE direction. The non-tidal changes can explain the dynamic process within the upper crust related to the development of local stress conditions. The trends of gravity changes are more or less coincident with that deduced from GPS deformation analysis and the occurrence of the main shocks in the area. In additions, in 2005 the geodetic network around the southern part of Sinai and the Gulf of Suez were established. One campaign of measurements had been performed and the gravity values were obtained.

  9. Viewer-centered and body-centered frames of reference in direct visuomotor transformations.

    Science.gov (United States)

    Carrozzo, M; McIntyre, J; Zago, M; Lacquaniti, F

    1999-11-01

    It has been hypothesized that the end-point position of reaching may be specified in an egocentric frame of reference. In most previous studies, however, reaching was toward a memorized target, rather than an actual target. Thus, the role played by sensorimotor transformation could not be disassociated from the role played by storage in short-term memory. In the present study the direct process of sensorimotor transformation was investigated in reaching toward continuously visible targets that need not be stored in memory. A virtual reality system was used to present visual targets in different three-dimensional (3D) locations in two different tasks, one with visual feedback of the hand and arm position (Seen Hand) and the other without such feedback (Unseen Hand). In the Seen Hand task, the axes of maximum variability and of maximum contraction converge toward the mid-point between the eyes. In the Unseen Hand task only the maximum contraction correlates with the sight-line and the axes of maximum variability are not viewer-centered but rotate anti-clockwise around the body and the effector arm during the move from the right to the left workspace. The bulk of findings from these and previous experiments support the hypothesis of a two-stage process, with a gradual transformation from viewer-centered to body-centered and arm-centered coordinates. Retinal, extra-retinal and arm-related signals appear to be progressively combined in superior and inferior parietal areas, giving rise to egocentric representations of the end-point position of reaching.

  10. Plate motions and deformations from geologic and geodetic data

    Science.gov (United States)

    Jordan, T. H.

    1986-06-01

    Research effort on behalf of the Crustal Dynamics Project focused on the development of methodologies suitable for the analysis of space-geodetic data sets for the estimation of crustal motions, in conjunction with results derived from land-based geodetic data, neo-tectonic studies, and other geophysical data. These methodologies were used to provide estimates of both global plate motions and intraplate deformation in the western U.S. Results from the satellite ranging experiment for the rate of change of the baseline length between San Diego and Quincy, California indicated that relative motion between the North American and Pacific plates over the course of the observing period during 1972 to 1982 were consistent with estimates calculated from geologic data averaged over the past few million years. This result, when combined with other kinematic constraints on western U.S. deformation derived from land-based geodesy, neo-tectonic studies, and other geophysical data, places limits on the possible extension of the Basin and Range province, and implies significant deformation is occurring west of the San Andreas fault. A new methodology was developed to analyze vector-position space-geodetic data to provide estimates of relative vector motions of the observing sites. The algorithm is suitable for the reduction of large, inhomogeneous data sets, and takes into account the full position covariances, errors due to poorly resolved Earth orientation parameters and vertical positions, and reduces baises due to inhomogeneous sampling of the data. This methodology was applied to the problem of estimating the rate-scaling parameter of a global plate tectonic model using satellite laser ranging observations over a five-year interval. The results indicate that the mean rate of global plate motions for that interval are consistent with those averaged over several million years, and are not consistent with quiescent or greatly accelerated plate motions. This methodology was also

  11. Frame dependence of spin-one angular conditions in light front dynamics

    International Nuclear Information System (INIS)

    Bakker, Bernard L. G.; Ji Chuengryong

    2002-01-01

    We elaborate the frame dependence of the angular conditions for spin-1 form factors. An extra angular condition is found in addition to the usual angular condition relating the four helicity amplitudes. Investigating the frame dependence of angular conditions, we find that the extra angular condition is in general as complicated as the usual one, although it becomes very simple in the q + =0 frame involving only two helicity amplitudes. It is confirmed that the angular conditions are identical in frames that are connected by kinematical transformations. The high-Q 2 behavior of the physical form factors and the limiting behavior in special reference frames are also discussed

  12. Geodetic and geophysical observations in Antarctica an overview in the IPY perspective

    CERN Document Server

    Capra, Alessandro

    2008-01-01

    This book is a collection of papers on various aspects of the geodetic and geophysical investigation and observation techniques. It includes material from the Arctic and Antarctica, as well as covering work from both temporary and permanent observatories.

  13. Performance Evaluation of UPQC under Nonlinear Unbalanced Load Conditions Using Synchronous Reference Frame Based Control

    Science.gov (United States)

    Kota, Venkata Reddy; Vinnakoti, Sudheer

    2017-12-01

    Today, maintaining Power Quality (PQ) is very important in the growing competent world. With new equipments and devices, new challenges are also being put before power system operators. Unified Power Quality Conditioner (UPQC) is proposed to mitigate many power quality problems and to improve the performance of the power system. In this paper, an UPQC with Fuzzy Logic controller for capacitor voltage balancing is proposed in Synchronous Reference Frame (SRF) based control with Modified Phased Locked Loop (MPLL). The proposed controller with SRF-MPLL based control is tested under non-linear and unbalanced load conditions. The system is developed in Matlab/Simulink and its performance is analyzed under various conditions like non-linear, unbalanced load and polluted supply voltage including voltage sag/swells. Active and reactive power flow in the system, power factor and %THD of voltages and currents before and after compensation are also analyzed in this work. Results prove the applicability of the proposed scheme for power quality improvement. It is observed that the fuzzy controller gives better performance than PI controller with faster capacitor voltage balancing and also improves the dynamic performance of the system.

  14. Quantum back-action-evading measurement of motion in a negative mass reference frame

    Science.gov (United States)

    Møller, Christoffer B.; Thomas, Rodrigo A.; Vasilakis, Georgios; Zeuthen, Emil; Tsaturyan, Yeghishe; Balabas, Mikhail; Jensen, Kasper; Schliesser, Albert; Hammerer, Klemens; Polzik, Eugene S.

    2017-07-01

    Quantum mechanics dictates that a continuous measurement of the position of an object imposes a random quantum back-action (QBA) perturbation on its momentum. This randomness translates with time into position uncertainty, thus leading to the well known uncertainty on the measurement of motion. As a consequence of this randomness, and in accordance with the Heisenberg uncertainty principle, the QBA puts a limitation—the so-called standard quantum limit—on the precision of sensing of position, velocity and acceleration. Here we show that QBA on a macroscopic mechanical oscillator can be evaded if the measurement of motion is conducted in the reference frame of an atomic spin oscillator. The collective quantum measurement on this hybrid system of two distant and disparate oscillators is performed with light. The mechanical oscillator is a vibrational ‘drum’ mode of a millimetre-sized dielectric membrane, and the spin oscillator is an atomic ensemble in a magnetic field. The spin oriented along the field corresponds to an energetically inverted spin population and realizes a negative-effective-mass oscillator, while the opposite orientation corresponds to an oscillator with positive effective mass. The QBA is suppressed by -1.8 decibels in the negative-mass setting and enhanced by 2.4 decibels in the positive-mass case. This hybrid quantum system paves the way to entanglement generation and distant quantum communication between mechanical and spin systems and to sensing of force, motion and gravity beyond the standard quantum limit.

  15. Quantum back-action-evading measurement of motion in a negative mass reference frame.

    Science.gov (United States)

    Møller, Christoffer B; Thomas, Rodrigo A; Vasilakis, Georgios; Zeuthen, Emil; Tsaturyan, Yeghishe; Balabas, Mikhail; Jensen, Kasper; Schliesser, Albert; Hammerer, Klemens; Polzik, Eugene S

    2017-07-12

    Quantum mechanics dictates that a continuous measurement of the position of an object imposes a random quantum back-action (QBA) perturbation on its momentum. This randomness translates with time into position uncertainty, thus leading to the well known uncertainty on the measurement of motion. As a consequence of this randomness, and in accordance with the Heisenberg uncertainty principle, the QBA puts a limitation-the so-called standard quantum limit-on the precision of sensing of position, velocity and acceleration. Here we show that QBA on a macroscopic mechanical oscillator can be evaded if the measurement of motion is conducted in the reference frame of an atomic spin oscillator. The collective quantum measurement on this hybrid system of two distant and disparate oscillators is performed with light. The mechanical oscillator is a vibrational 'drum' mode of a millimetre-sized dielectric membrane, and the spin oscillator is an atomic ensemble in a magnetic field. The spin oriented along the field corresponds to an energetically inverted spin population and realizes a negative-effective-mass oscillator, while the opposite orientation corresponds to an oscillator with positive effective mass. The QBA is suppressed by -1.8 decibels in the negative-mass setting and enhanced by 2.4 decibels in the positive-mass case. This hybrid quantum system paves the way to entanglement generation and distant quantum communication between mechanical and spin systems and to sensing of force, motion and gravity beyond the standard quantum limit.

  16. Flexible body dynamics in a local frame with explicitly predicted motion

    DEFF Research Database (Denmark)

    Kawamoto, A.; Krenk, Steen; Suzuki, A.

    2010-01-01

    This paper deals with formulation of dynamics of a moving flexible body in a local frame of reference. In a conventional approach the local frame is normally fixed to the corresponding body and always represents the positions and angles of the body: the positions and angles are represented by Car...

  17. Effector-independent motor sequence representations exist in extrinsic and intrinsic reference frames.

    Science.gov (United States)

    Wiestler, Tobias; Waters-Metenier, Sheena; Diedrichsen, Jörn

    2014-04-02

    Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere.

  18. Outputs of paired Gabor filters summed across the background frame of reference predict the direction of movement

    Science.gov (United States)

    Lawton, Teri B.

    1989-01-01

    A cortical neural network that computes the visibility of shifts in the direction of movement is proposed. The network computes: (1) the magnitude of the position difference between the test and background patterns, (2) localized contrast differences at different spatial scales analyzed by computing temporal gradients of the difference and sum of the outputs of paired even- and odd-symmetric bandpass filters convolved with the input pattern, and (3) using global processes that pool the output from paired even- and odd-symmetric simple and complex cells across the spatial extent of the background frame of reference the direction a test pattern moved relative to a textured background. Evidence that magnocellular pathways are used to discriminate the direction of movement is presented. Since magnocellular pathways are used to discriminate the direction of movement, this task is not affected by small pattern changes such as jitter, short presentations, blurring, and different background contrasts that result when the veiling illumination in a scene changes.

  19. Some relationship between G-frames and frames

    Directory of Open Access Journals (Sweden)

    Mehdi Rashidi-Kouchi

    2015-06-01

    Full Text Available In this paper we proved that every g-Riesz basis for Hilbert space $H$ with respect to $K$ by adding a condition is a Riesz basis for Hilbert $B(K$-module $B(H,K$. This is an extension of [A. Askarizadeh,M. A. Dehghan, {em G-frames as special frames}, Turk. J. Math., 35, (2011 1-11]. Also, we derived similar results for g-orthonormal and orthogonal bases. Some relationships between dual frame, dual g-frame and exact frame and exact g-frame are presented too.

  20. Brain potentials associated with the outcome processing in framing effects.

    Science.gov (United States)

    Ma, Qingguo; Feng, Yandong; Xu, Qing; Bian, Jun; Tang, Huixian

    2012-10-24

    Framing effect is a cognitive bias referring to the phenomenon that people respond differently to different but objectively equivalent descriptions of the same problem. By measuring event-related potentials, the present study aimed to investigate the neural mechanisms underlying the framing effect, especially how the negative and positive frames influence the outcome processing in our brain. Participants were presented directly with outcomes framed either positively in terms of lives saved or negatively in terms of lives lost in large and small group conditions, and were asked to rate the favorableness of each of them. The behavioral results showed that the framing effect occurred in both group size conditions, with more favorable evaluations associated with positive framing. Compared with outcomes in positive framing condition, a significant feedback-related negativity (FRN) effect was elicited by outcomes in negative framing condition, even though the outcomes in different conditions were objectively equivalent. The results are explained in terms of the associative model of attribute framing effect which states that attribute framing effect occurs as a result of a valence-based associative processing. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. ESPACE - a geodetic Master's program for the education of Satellite Application Engineers

    Science.gov (United States)

    Hedman, K.; Kirschner, S.; Seitz, F.

    2012-04-01

    In the last decades there has been a rapid development of new geodetic and other Earth observation satellites. Applications of these satellites such as car navigation systems, weather predictions, and, digital maps (such as Google Earth or Google Maps) play a more and more important role in our daily life. For geosciences, satellite applications such as remote sensing and precise positioning/navigation have turned out to be extremely useful and are meanwhile indispensable. Today, researchers within geodesy, climatology, oceanography, meteorology as well as within Earth system science are all dependent on up-to-date satellite data. Design, development and handling of these missions require experts with knowledge not only in space engineering, but also in the specific applications. That gives rise to a new kind of engineers - satellite application engineers. The study program for these engineers combines parts of different classical disciplines such as geodesy, aerospace engineering or electronic engineering. The satellite application engineering program Earth Oriented Space Science and Technology (ESPACE) was founded in 2005 at the Technische Universität München, mainly from institutions involved in geodesy and aerospace engineering. It is an international, interdisciplinary Master's program, and is open to students with a BSc in both Science (e.g. Geodesy, Mathematics, Informatics, Geophysics) and Engineering (e.g. Aerospace, Electronical and Mechanical Engineering). The program is completely conducted in English. ESPACE benefits from and utilizes its location in Munich with its unique concentration of expertise related to space science and technology. Teaching staff from 3 universities (Technische Universität München, Ludwig-Maximilian University, University of the Federal Armed Forces), research institutions (such as the German Aerospace Center, DLR and the German Geodetic Research Institute, DGFI) and space industry (such as EADS or Kayser-Threde) are

  2. Deformation offshore Northern Chile monitored by a seafloor geodetic network (GeoSEA)

    Science.gov (United States)

    Hannemann, Katrin; Lange, Dietrich; Kopp, Heidrun; Petersen, Florian; Contreras-Reyes, Eduardo

    2017-04-01

    The Nazca-South American plate boundary around 21°S has last ruptured in an earthquake in 1877 and was identified as a seismic gap prior to the 2014 Iquique earthquake (Mw=8.1). The southern portion of this segment is still unbroken. The geodetic monitoring of the Chilean subduction zone is crucial to understand the deformation processes in this area. Most geodetic measurements rely on GPS and are therefore limited to onshore campaigns. In December 2015, we installed the GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array around 21°S of the Nazca-South American plate boundary with RV SONNE to extend the geodetic observations to the offshore areas. The GeoSEA array consists of autonomous acoustic seafloor transponders mounted on 4 m high tripods. These transponders are able to continuously measure the two-way travel time of acoustic signals between station pairs (baselines) and the properties of the sea water (sound speed, temperature and pressure) at each transponder. These measurements are used to retrieve the distances between the transponders and give insights into the deformation of the seafloor. At the Chilean subduction zone, we installed in total 23 transponders in 3 subarrays with interstation distances of up to 2500 m. On the middle continental slope in 2300 m water depth, an array consisting of 8 transponders measures across crustal faults seen in AUV mapping. A second array of 5 stations located on the outer rise monitors extension across normal plate-bending faults. The deepest deployment in 5000 m water depth located on the lower continental slope with 10 stations is designed to measure diffuse strain build-up. The transponders are intended to monitor the seafloor deformation for 3.5 years. In November 2016 during a cruise of RV Langseth, the first 11 months of data were successfully uploaded via an acoustic modem. Furthermore, an additional component of the network, GeoSURF, a self-steering autonomous vehicle (wave glider), was

  3. Monitoring Coral Growth - the Dichotomy Between Underwater Photogrammetry and Geodetic Control Network

    Science.gov (United States)

    Neyer, F.; Nocerino, E.; Gruen, A.

    2018-05-01

    Creating 3-dimensional (3D) models of underwater scenes has become a common approach for monitoring coral reef changes and its structural complexity. Also in underwater archeology, 3D models are often created using underwater optical imagery. In this paper, we focus on the aspect of detecting small changes in the coral reef using a multi-temporal photogrammetric modelling approach, which requires a high quality control network. We show that the quality of a good geodetic network limits the direct change detection, i.e., without any further registration process. As the photogrammetric accuracy is expected to exceed the geodetic network accuracy by at least one order of magnitude, we suggest to do a fine registration based on a number of signalized points. This work is part of the Moorea Island Digital Ecosystem Avatar (IDEA) project that has been initiated in 2013 by a group of international researchers (https://mooreaidea.ethz.ch/).

  4. Roadmap to a mutually consistent set of offshore vertical reference frames

    NARCIS (Netherlands)

    Slobbe, D.C.

    2013-01-01

    This thesis presents a combined approach for the realization of the (quasi-)geoid as a height reference surface and the vertical reference surface at sea (chart datum). This approach, specifically designed for shallow seas and coastal waters, provides the relation between the two vertical reference

  5. JTRF2014, the JPL Kalman filter and smoother realization of the International Terrestrial Reference System

    Science.gov (United States)

    Abbondanza, Claudio; Chin, Toshio M.; Gross, Richard S.; Heflin, Michael B.; Parker, Jay W.; Soja, Benedikt S.; van Dam, Tonie; Wu, Xiaoping

    2017-10-01

    We present and discuss JTRF2014, the Terrestrial Reference Frame (TRF) the Jet Propulsion Laboratory constructed by combining space-geodetic inputs from very long baseline interferometry (VLBI), satellite laser ranging (SLR), Global Navigation Satellite Systems (GNSS), and Doppler orbitography and radiopositioning integrated by satellite submitted for the realization of ITRF2014. Determined through a Kalman filter and Rauch-Tung-Striebel smoother assimilating position observations, Earth orientation parameters, and local ties, JTRF2014 is a subsecular, time series-based TRF whose origin is at the quasi-instantaneous center of mass (CM) as sensed by SLR and whose scale is determined by the quasi-instantaneous VLBI and SLR scales. The dynamical evolution of the positions accounts for a secular motion term, annual, and semiannual periodic modes. Site-dependent variances based on the analysis of loading displacements induced by mass redistributions of terrestrial fluids have been used to control the extent of random walk adopted in the combination. With differences in the amplitude of the annual signal within the range 0.5-0.8 mm, JTRF2014-derived center of network-to-center of mass (CM-CN) is in remarkable agreement with the geocenter motion obtained via spectral inversion of GNSS, Gravity Recovery and Climate Experiment (GRACE) observations and modeled ocean bottom pressure from Estimating the Circulation and Climate of the Ocean (ECCO). Comparisons of JTRF2014 to ITRF2014 suggest high-level consistency with time derivatives of the Helmert transformation parameters connecting the two frames below 0.18 mm/yr and weighted root-mean-square differences of the polar motion (polar motion rate) in the order of 30 μas (17 μas/d).

  6. On transforms between Gabor frames and wavelet frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Goh, Say Song

    2013-01-01

    We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly...... supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames....

  7. Evaluation of a New Prototype Geodetic Astrolabe for Measuring Deflections of the Vertical

    Science.gov (United States)

    Slater, J. A.; Thompson, N.; Angell, L. E.; Belenkii, M. S.; Bruns, D. G.; Johnson, D. O.

    2009-12-01

    During the last three years, the National Geospatial-Intelligence Agency (NGA), with assistance from the U.S. Naval Observatory (USNO), sponsored the development of a new electronic geodetic astrolabe for measuring deflections of the vertical (DoV). NGA’s current operational astrolabes, built in 1995, have a number of undesirable features including the need for a pool of liquid mercury as a reflecting surface. The new state-of-the-art prototype instrument, completed by Trex Enterprises in early 2009, was designed to meet a 0.2 arcsec accuracy requirement. It reduces the weight, eliminates the mercury, and dramatically reduces observation times. The new astrolabe consists of a 101 mm aperture telescope with a 1.5° field of view and an inclinometer mounted inside a 92-cm high, 30-cm diameter tube, an external GPS receiver for timing, and a laptop computer that controls and monitors the instrument and performs the computations. Star images are recorded by an astronomical-grade camera with a 2,048 x 2,048 pixel CCD sensor that is externally triggered by time pulses from the GPS receiver. The prototype was designed for nighttime observation of visible stars equal to or brighter than magnitude 10.0. The inclinometer is a system of two orthogonal pendula that define the local gravitational vertical, each consisting of a brass plumb bob suspended from an aluminized polymer ribbon set between two electrodes. An internal reference collimator is rigidly tied to the inclinometer and projects an array of reference points of light onto the CCD sensor. After the astrolabe is coarsely leveled to within 20 arcsec, voice coil actuators automatically adjust and maintain the inclinometer vertical to within 0.02 arcsec. Independent images are collected at 6 second intervals using a 200 msec exposure time. The CCD coordinates are determined for each star and a collimator reference point on each image. Stars are identified by referencing a customized star catalog produced by USNO. A

  8. Resolution testing and limitations of geodetic and tsunami datasets for finite fault inversions along subduction zones

    Science.gov (United States)

    Williamson, A.; Newman, A. V.

    2017-12-01

    Finite fault inversions utilizing multiple datasets have become commonplace for large earthquakes pending data availability. The mixture of geodetic datasets such as Global Navigational Satellite Systems (GNSS) and InSAR, seismic waveforms, and when applicable, tsunami waveforms from Deep-Ocean Assessment and Reporting of Tsunami (DART) gauges, provide slightly different observations that when incorporated together lead to a more robust model of fault slip distribution. The merging of different datasets is of particular importance along subduction zones where direct observations of seafloor deformation over the rupture area are extremely limited. Instead, instrumentation measures related ground motion from tens to hundreds of kilometers away. The distance from the event and dataset type can lead to a variable degree of resolution, affecting the ability to accurately model the spatial distribution of slip. This study analyzes the spatial resolution attained individually from geodetic and tsunami datasets as well as in a combined dataset. We constrain the importance of distance between estimated parameters and observed data and how that varies between land-based and open ocean datasets. Analysis focuses on accurately scaled subduction zone synthetic models as well as analysis of the relationship between slip and data in recent large subduction zone earthquakes. This study shows that seafloor deformation sensitive datasets, like open-ocean tsunami waveforms or seafloor geodetic instrumentation, can provide unique offshore resolution for understanding most large and particularly tsunamigenic megathrust earthquake activity. In most environments, we simply lack the capability to resolve static displacements using land-based geodetic observations.

  9. Influence of bad measurements in properties of GeodeticNnetwork

    Directory of Open Access Journals (Sweden)

    Vincent Jakub

    2008-12-01

    Full Text Available In establishment of LGS (Local geodetic Net some given coordinated points from the relevant area are used, new points areestablished and the required distances and angles among the points are measured. If some measurements are defective, the netadjustment with the obtained values is depreciated, unacceptable. In the paper there is given an identification method of incorrectmeasurement results. The faulty results are eliminated in a new adjustment or the relevant defective measurements are repeated forobtaining correct values.

  10. The evaluation of a frame-of-reference training programme for intern psychometrists

    Directory of Open Access Journals (Sweden)

    Gerdi Mulder

    2013-07-01

    Full Text Available Orientation: The use of assessment centres (ACs has drastically increased over the past decade. However, ACs are constantly confronted with the lack of construct validity. One aspect of ACs that could improve the construct validity significantly is that of assessor training. Unfortunately untrained or poorly trained assessors are often used in AC processes. Research purpose: The purpose of this research was to evaluate a frame-of-reference (FOR programme to train intern psychometrists as assessors at an assessment centre. Motivation of study: The role of an assessor is important in an AC; therefore it is vital for an assessor to be able to evaluate and observe candidates’ behaviour adequately. Commencing with this training in a graduate psychometrist programme gives the added benefit of sending skilled psychometrists to the workplace. Research design, approach and method: A quantitative research approach was implemented, utilising a randomised pre-test-post-test comparison group design. Industrial Psychology postgraduate students (N = 22 at a South African university were used and divided into an experimental group (n = 11 and control group (n = 11. Three typical AC simulations were utilised as pre- and post-tests, and the ratings obtained from both groups were statistically analysed to determine the effect of the FOR training programme. Main findings: The data indicated that there was a significant increase in the familiarity of the participants with the one-on-one simulation and the group discussion simulation. Practical/managerial implications: Training intern psychometrists in a FOR programme could assist organisations in the appointment of more competent assessors. Contribution/value-add: To design an assessor training programme using FOR training for intern psychometrists in the South African context, specifically by incorporating this programme into the training programme for Honours students at universities.

  11. First results of the Nordic and Baltic GNSS Analysis Centre

    Science.gov (United States)

    Lahtinen, Sonja; Pasi, Häkli; Jivall, Lotti; Kempe, Christina; Kollo, Karin; Kosenko, Ksenija; Pihlak, Priit; Prizginiene, Dalia; Tangen, Oddvar; Weber, Mette; Paršeliūnas, Eimuntas; Baniulis, Rimvydas; Galinauskas, Karolis

    2018-03-01

    The Nordic Geodetic Commission (NKG) has launched a joint NKG GNSS Analysis Centre that aims to routinely produce high qualityGNSS solutions for the common needs of the NKG and the Nordic and Baltic countries. A consistent and densified velocity field is needed for the constraining of the gla-cial isostatic adjustment (GIA) modelling that is a key component of maintaining the national reference frame realisations in the area. We described the methods of the NKG GNSS Analysis Centre including the defined processing setup for the local analysis centres (LAC) and for the combination centres.We analysed the results of the first 2.5 years (2014.5-2016). The results showed that different subnets were consistent with the combined solution within 1-2 mm level. We observed the so called network effect affecting our reference frame alignment. However, the accuracy of the reference frame alignment was on a few millimetre level in the area of the main interest (Nordic and Baltic Countries). TheNKGGNSS AC was declared fully operational in April 2017.

  12. Applicability of the "Frame of Reference" approach for environmental monitoring of offshore renewable energy projects.

    Science.gov (United States)

    Garel, Erwan; Rey, Cibran Camba; Ferreira, Oscar; van Koningsveld, Mark

    2014-08-01

    This paper assesses the applicability of the Frame of Reference (FoR) approach for the environmental monitoring of large-scale offshore Marine Renewable Energy (MRE) projects. The focus is on projects harvesting energy from winds, waves and currents. Environmental concerns induced by MRE projects are reported based on a classification scheme identifying stressors, receptors, effects and impacts. Although the potential effects of stressors on most receptors are identified, there are large knowledge gaps regarding the corresponding (positive and negative) impacts. In that context, the development of offshore MRE requires the implementation of fit-for-purpose monitoring activities aimed at environmental protection and knowledge development. Taking European legislation as an example, it is suggested to adopt standardized monitoring protocols for the enhanced usage and utility of environmental indicators. Towards this objective, the use of the FoR approach is advocated since it provides guidance for the definition and use of coherent set of environmental state indicators. After a description of this framework, various examples of applications are provided considering a virtual MRE project located in European waters. Finally, some conclusions and recommendations are provided for the successful implementation of the FoR approach and for future studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Analysis of frame structure of medium and small truck crane

    Science.gov (United States)

    Cao, Fuyi; Li, Jinlong; Cui, Mengkai

    2018-03-01

    Truck crane is an important part of hoisting machinery. Frame, as the support component of the quality of truck crane, determines the safety of crane jib load and the rationality of structural design. In this paper, the truck crane frame is a box structure, the three-dimensional model is established in CATIA software, and imported into Hyperworks software for finite element analysis. On the base of doing constraints and loads for the finite element model of the frame, the finite element static analysis is carried out. And the static stress test verifies whether the finite element model and the frame structure design are reasonable; then the free modal analysis of the frame and the analysis of the first 8 - order modal vibration deformation are carried out. The analysis results show that the maximum stress value of the frame is greater than the yield limit value of the material, and the low-order modal value is close to the excitation frequency value, which needs to be improved to provide theoretical reference for the structural design of the truck crane frame.

  14. Improved fault ride through capability of DFIG based wind turbines using synchronous reference frame control based dynamic voltage restorer.

    Science.gov (United States)

    Rini Ann Jerin, A; Kaliannan, Palanisamy; Subramaniam, Umashankar

    2017-09-01

    Fault ride through (FRT) capability in wind turbines to maintain the grid stability during faults has become mandatory with the increasing grid penetration of wind energy. Doubly fed induction generator based wind turbine (DFIG-WT) is the most popularly utilized type of generator but highly susceptible to the voltage disturbances in grid. Dynamic voltage restorer (DVR) based external FRT capability improvement is considered. Since DVR is capable of providing fast voltage sag mitigation during faults and can maintain the nominal operating conditions for DFIG-WT. The effectiveness of the DVR using Synchronous reference frame (SRF) control is investigated for FRT capability in DFIG-WT during both balanced and unbalanced fault conditions. The operation of DVR is confirmed using time-domain simulation in MATLAB/Simulink using 1.5MW DFIG-WT. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Case study of a framing effect in course evaluations.

    Science.gov (United States)

    Lynöe, Niels; Juth, Niklas; Helgesson, Gert

    2012-01-01

    When new elements are included in the medical curriculum and the total time frame remains unchanged, established disciplines have to shorten their courses. This might bring about frustration among the teachers and students concerned, which in turn might affect how other courses are perceived. Two course evaluations, one before and one after a major change in the curriculum were compared. Comments were also analysed. We found that the students' and teachers' frustration influenced the students' evaluations of a new course in the philosophy of medicine and accordingly brought about an unintended message effect referred to as a framing effect. The results of this observational study indicate that a negative framing effect might influence course-evaluations. We suggest that this study might be used as a point of departure for further empirical studies about negative framing effects.

  16. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala.

    Science.gov (United States)

    Inagaki, Mikio; Fujita, Ichiro

    2011-07-13

    Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.

  17. VLBI TRF Combination Using GNSS Software

    Directory of Open Access Journals (Sweden)

    Younghee Kwak

    2013-12-01

    Full Text Available Space geodetic techniques can be used to obtain precise shape and rotation information of the Earth. To achieve this, the representative combination solution of each space geodetic technique has to be produced, and then those solutions need to be combined. In this study, the representative combination solution of very long baseline interferometry (VLBI, which is one of the space geodetic techniques, was produced, and the variations in the position coordinate of each station during 7 years were analyzed. Products from five analysis centers of the International VLBI Service for Geodesy and Astrometry (IVS were used as the input data, and Bernese 5.0, which is the global navigation satellite system (GNSS data processing software, was used. The analysis of the coordinate time series for the 43 VLBI stations indicated that the latitude component error was about 15.6 mm, the longitude component error was about 37.7 mm, and the height component error was about 30.9 mm, with respect to the reference frame, International Terrestrial Reference Frame 2008 (ITRF2008. The velocity vector of the 42 stations excluding the YEBES station showed a magnitude difference of 7.3 mm/yr (30.2% and a direction difference of 13.8° (3.8%, with respect to ITRF2008. Among these, the 10 stations in Europe showed a magnitude difference of 7.8 mm/yr (30.3% and a direction difference of 3.7° (1.0%, while the 14 stations in North America showed a magnitude difference of 2.7 mm/yr (15.8% and a direction difference of 10.3° (2.9%.

  18. The role of scene type and priming in the processing and selection of a spatial frame of reference

    Directory of Open Access Journals (Sweden)

    Katrin eJohannsen

    2013-04-01

    Full Text Available The selection and processing of a spatial frame of reference (FOR in interpreting verbal scene descriptions is of great interest to psycholinguistics. In this study, we focus on the choice between the relative and the intrinsic FOR, addressing two questions: a does the presence or absence of a background in the scene influence the selection of a FOR, and b what is the effect of a previously selected FOR on the subsequent processing of a different FOR. Our results show that if a scene includes a realistic background, this will make the selection of the relative FOR more likely. We attribute this effect to the facilitation of mental simulation, which enhances the relation between the viewer and the objects. With respect to the response accuracy, we found both a higher (due to FOR priming and a lower accuracy (due to different FOR, while for the response latencies, we only found a delay effect.

  19. Attribute Framing and Goal Framing Effects in Health Decisions.

    Science.gov (United States)

    Krishnamurthy, Parthasarathy; Carter, Patrick; Blair, Edward

    2001-07-01

    Levin, Schneider, and Gaeth (LSG, 1998) have distinguished among three types of framing-risky choice, attribute, and goal framing-to reconcile conflicting findings in the literature. In the research reported here, we focus on attribute and goal framing. LSG propose that positive frames should be more effective than negative frames in the context of attribute framing, and negative frames should be more effective than positive frames in the context of goal framing. We test this framework by manipulating frame valence (positive vs negative) and frame type (attribute vs goal) in a unified context with common procedures. We also argue that the nature of effects in a goal-framing context may depend on the extent to which the research topic has "intrinsic self-relevance" to the population. In the context of medical decision making, we operationalize low intrinsic self-relevance by using student subjects and high intrinsic self-relevance by using patients. As expected, we find complete support for the LSG framework under low intrinsic self-relevance and modified support for the LSG framework under high intrinsic self-relevance. Overall, our research appears to confirm and extend the LSG framework. Copyright 2001 Academic Press.

  20. Frame model of knowledge in quality control systems

    Energy Technology Data Exchange (ETDEWEB)

    Macherauskas, V.Yu.

    1982-09-01

    The purpose of this article is to develop a semiotic model for representation of data and knowledge in a system for supplying operational information to management personnel on the progress of a technological process, with the aim of enabling an analysis of deviations of product quality and formulation of recommendations to the technologists as to how to eliminate them. Since any knowledge of people that can be realistically utilized in machine systems is represented in natural language form, special languages for representation of knowledge, based on the concept of frames, are being developed for formation of semiotic models in computers. This article defines the frames, followed by a description of a mechanism of knowledge manipulation and of some aspects of realization of a frame model of knowledge. 9 references.

  1. Selected Problems of Determining the Course of Railway Routes by Use of GPS Network Solution

    Science.gov (United States)

    Koc, Władysław; Specht, Cezary

    2011-09-01

    The main problem related to railroad surveying design and its maintenance is the necessity to operate in local geodetic reference systems caused by the long rail sections with straight lines and curvatures of the running edge. Due to that reason the geodetic railroad classical surveying methods requires to divide all track for a short measurement section and that caused additional errors. Development of the Global Navigational Satellite Systems (GNSS) positioning methods operating in the standardized World Geodetic System (WGS-84) allowed verification of capability of utilization GPS measurements for railroad surveying. It can be stated that implemented satellite measurement techniques opens a whole new perspective on applied research and enables very precise determination of data for railway line determining, modernization and design. The research works focused on implementation GNSS multi-receivers measurement positioning platform for projecting and stock-taking working based on polish active geodesic network ASG-EUPOS, as a reference frame. In order to eliminate the influence of random measurement errors and to obtain the coordinates representing the actual shape of the track few campaigns were realized in 2009 and 2010. Leica GPS Total station system 1200 SmartRover (with ATX1230 GG antennas) receivers were located in the diameter of the measurement platform. Polish Active Geodetic Network ASG-EUPOS was used as a reference network transmitted Real Time Kinematic Positioning Service according to RTCM 3.1 standard. Optimum time period were selected for GNSS campaign and testing area was chosen without large obstructions. The article presents some surveying results of the measurement campaigns and also discusses the accuracy of the course determination. Analyzes and implementation of results in railroad design process are also discussed.

  2. Solid-state framing camera with multiple time frames

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K. L.; Stewart, R. E.; Steele, P. T.; Vernon, S. P.; Hsing, W. W.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-10-07

    A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.

  3. The University, the Market, and the Geodetic Engineer or

    DEFF Research Database (Denmark)

    Stubkjær, Erik

    2002-01-01

    In Europe, universities have existed for more than 800 years. The university is the place in society for higher learning and related research. Through the ages, the universities have enjoyed a remarkably freedom relative to religious and secular powers. In recent years, the objectives and practises...... project, which concerned the education of geodetic engineers in Slovenia. The body of the paper presents a selection of ideas that shaped the university through the centuries, with a view to balance the present interest in advancing market-directed behaviour....

  4. Nonmonotonic belief state frames and reasoning frames

    NARCIS (Netherlands)

    Engelfriet, J.; Herre, H.; Treur, J.

    1995-01-01

    In this paper five levels of specification of nonmonotonic reasoning are distinguished. The notions of semantical frame, belief state frame and reasoning frame are introduced and used as a semantical basis for the first three levels. Moreover, the semantical connections between the levels are

  5. Self- and Other-Referent Criteria of Career Success.

    Science.gov (United States)

    Heslin, Peter A.

    2003-01-01

    Business students (n=71) evaluated their career success thus far. Framed by social comparison theory, results showed that 68% used other-referent criteria to assess their success. Participants who believed that ability and personality are fixed attributes had greater reliance on other-referent criteria. (Contains 100 references.) (SK)

  6. Analytic-graphic testing of deformities at the waterworks Pod Bukovcom

    Directory of Open Access Journals (Sweden)

    Jeèný Miloš

    2001-09-01

    Full Text Available The paper presents some geodetic measurement results in a frame of deformity survey of the bulk dam at the waterworks Pod Bukovcom nearby Košice. Periodic geodetic position and levelling measurement are realized on the dam since 1999. Testing statistics are applied into the deformity survey. Geodetic data obtained from individual measurements in the geodetic network on the bulk dam at the waterworks Pod Bukovcom are adjusted using Gauss-Markov model. Accuracy analysis by means of using relative and confidence ellipses is complemented to geodetic measurements.

  7. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis

    Science.gov (United States)

    Hofmeister, Armin; Böhm, Johannes

    2017-08-01

    The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the

  8. LONG-TERM STABILITY OF THE LOCAL GROUND CONTROL NETWORK AT THE CO-LOCATION SITE OF MEDICINA

    Science.gov (United States)

    Abbondanza, C.; Sarti, P.; Legrand, J.

    2009-12-01

    ITRF combinations rely on the availability of accurate tie vectors linking reference points of space geodetic techniques. Co-located instruments are assumed to move consistently and no local relative motion is taken into account. Instabilities may degrade the quality of the co-location itself and perturb the result of ITRF combinations. This work aims to determine the stability of the local ground control network at Medicina (Italy) with independent surveying methods. The observatory hosts a co-location between a VLBI telescope and two GPS antennas, MEDI and MSEL. It is located in the Po Plain where thick layers of clays are the prevalent soil characteristics. Hence, provision of long term stability of geodetic monuments is a challenge and monitoring their stability is an issue. MEDI and the VLBI station regularly contribute to the determination of ITRF, while MSEL is part of the EUREF network. A set of five tie vectors observations linking the VLBI and MEDI reference points was acquired between 2001 and 2007. It is our main tool for performing local deformation analysis. Additionally, the GPS time series of MEDI and MSEL were used to cross check and confirm the local instability detected by terrestrial methods. To achieve a rigorous and reliable investigation of the local stability, multi-epoch terrestrial observations were homogeneously processed according to common parameterizations in a consistent reference frame. Similarly, continuous GPS observations from MEDI and MSEL were analysed according to the new EPN reprocessing strategy in order to monitor the short baseline between MEDI and MSEL; to spotlight any change in its length. Both approaches confirm differential motions at the site which can be related to monument instabilities originated by the particularly unfavourable local geological setting and the inapt design of the monuments foundation. The monuments move non homogeneously at rates reaching up to 1.6 mm/year, this value being comparable to intra

  9. General Eulerian formulation of the comoving-frame equation of radiative transfer

    International Nuclear Information System (INIS)

    Riffert, H.

    1986-01-01

    For a wide range of problems in radiation hydrodynamics the motion of the matter is best described in an Eulerian coordinate system, and here a comoving-frame equation of radiation transfer in such fixed coordinates is derived, using the radiation quantities measured in the comoving frame. The choice of coordinates is arbitrary, and the equation is given explicitly for an arbitrary diagonal metric, correct to all orders in v/c. All comoving frame equations derived earlier are included as special cases. An example is given for the case of a spherically symmetric flow in a Schwarzschild metric. 9 references

  10. Patch-based frame interpolation for old films via the guidance of motion paths

    Science.gov (United States)

    Xia, Tianran; Ding, Youdong; Yu, Bing; Huang, Xi

    2018-04-01

    Due to improper preservation, traditional films will appear frame loss after digital. To deal with this problem, this paper presents a new adaptive patch-based method of frame interpolation via the guidance of motion paths. Our method is divided into three steps. Firstly, we compute motion paths between two reference frames using optical flow estimation. Then, the adaptive bidirectional interpolation with holes filled is applied to generate pre-intermediate frames. Finally, using patch match to interpolate intermediate frames with the most similar patches. Since the patch match is based on the pre-intermediate frames that contain the motion paths constraint, we show a natural and inartificial frame interpolation. We test different types of old film sequences and compare with other methods, the results prove that our method has a desired performance without hole or ghost effects.

  11. Geodetic reanalysis of annual glaciological mass balances (2001-2011) of Hintereisferner, Austria

    Science.gov (United States)

    Klug, Christoph; Bollmann, Erik; Galos, Stephan Peter; Nicholson, Lindsey; Prinz, Rainer; Rieg, Lorenzo; Sailer, Rudolf; Stötter, Johann; Kaser, Georg

    2018-03-01

    This study presents a reanalysis of the glaciologically obtained annual glacier mass balances at Hintereisferner, Ötztal Alps, Austria, for the period 2001-2011. The reanalysis is accomplished through a comparison with geodetically derived mass changes, using annual high-resolution airborne laser scanning (ALS). The grid-based adjustments for the method-inherent differences are discussed along with associated uncertainties and discrepancies of the two methods of mass balance measurements. A statistical comparison of the two datasets shows no significant difference for seven annual, as well as the cumulative, mass changes over the 10-year record. Yet, the statistical view hides significant differences in the mass balance years 2002/03 (glaciological minus geodetic records = +0.92 m w.e.), 2005/06 (+0.60 m w.e.), and 2006/07 (-0.45 m w.e.). We conclude that exceptional meteorological conditions can render the usual glaciological observational network inadequate. Furthermore, we consider that ALS data reliably reproduce the annual mass balance and can be seen as validation or calibration tools for the glaciological method.

  12. Framing effects in choices between multioutcome life-expectancy lotteries.

    Science.gov (United States)

    Bernstein, L M; Chapman, G B; Elstein, A S

    1999-01-01

    To explore framing or editing effects and a method to debias framing in a clinical context. Clinical scenarios using multioutcome life-expectancy lotteries of equal value required choices between two supplementary drugs that either prolonged or shortened life from the 20-year beneficial effect of a baseline drug. The effects of these supplementary drugs were presented in two conditions, using a between-subjects design. In segregated editing (n = 116) the effects were presented separately from the effects of the baseline drug. In integrated editing (n = 100), effects of supplementary and baseline drugs were combined in the lottery presentation. Each subject responded to 30 problems. To explore one method of debiasing, another 100 subjects made choices after viewing both segregated and integrated editings of 20 problems (dual framing). Statistically significant preference reversals between segregated and integrated editing of pure lotteries occurred only when one framing placed outcomes in the gain domain, and the other framing placed them in the loss domain. When both editings resulted in gain-domain outcomes only, there was no framing effect. There was a related relationship of framing-effect shifts from losses to gains in mixed-lottery-choice problems. Responses to the dual framing condition did not consistently coincide with responses to either single framing. In some situations, dual framing eliminated or lessened framing effects. The results support two components of prospect theory, coding outcomes as gains or losses from a reference point, and an s-shaped utility function (concave in gain, convex in loss domains). Presenting both alternative editings of a complex situation prior to choice more fully informs the decision maker and may help to reduce framing effects. Given the extent to which preferences shift in response to alternative presentations, it is unclear which choice represents the subject's "true preferences."

  13. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica.

    Science.gov (United States)

    Scheinert, M; Ferraccioli, F; Schwabe, J; Bell, R; Studinger, M; Damaske, D; Jokat, W; Aleshkova, N; Jordan, T; Leitchenkov, G; Blankenship, D D; Damiani, T M; Young, D; Cochran, J R; Richter, T D

    2016-01-28

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km 2 , which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica.

  14. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica

    Science.gov (United States)

    Scheinert, M.; Ferraccioli, F.; Schwabe, J.; Bell, R.; Studinger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.; Blankenship, D. D.; Damiani, T. M.; Young, D.; Cochran, J. R.; Richter, T. D.

    2018-01-01

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km2, which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica. PMID:29326484

  15. Introducing a New Software for Geodetic Analysis

    Science.gov (United States)

    Hjelle, Geir Arne; Dähnn, Michael; Fausk, Ingrid; Kirkvik, Ann-Silje; Mysen, Eirik

    2017-04-01

    At the Norwegian Mapping Authority, we are currently developing Where, a new software for geodetic analysis. Where is built on our experiences with the Geosat software, and will be able to analyse and combine data from VLBI, SLR, GNSS and DORIS. The software is mainly written in Python which has proved very fruitful. The code is quick to write and the architecture is easily extendable and maintainable, while at the same time taking advantage of well-tested code like the SOFA and IERS libraries. This presentation will show some of the current capabilities of Where, including benchmarks against other software packages, and outline our plans for further progress. In addition we will report on some investigations we have done experimenting with alternative weighting strategies for VLBI.

  16. Determining Coastal Mean Dynamic Topography by Geodetic Methods

    Science.gov (United States)

    Huang, Jianliang

    2017-11-01

    In geodesy, coastal mean dynamic topography (MDT) was traditionally determined by spirit leveling technique. Advances in navigation satellite positioning (e.g., GPS) and geoid determination enable space-based leveling with an accuracy of about 3 cm at tide gauges. Recent CryoSat-2, a satellite altimetry mission with synthetic aperture radar (SAR) and SAR interferometric measurements, extends the space-based leveling to the coastal ocean with the same accuracy. However, barriers remain in applying the two space-based geodetic methods for MDT determination over the coastal ocean because current geoid modeling focuses primarily on land as a substitute to spirit leveling to realize the vertical datum.

  17. Versions and perversions of rigid frames: The bucking importance in the beams design of industrial warehouses

    International Nuclear Information System (INIS)

    Guerra Romero, I.; Fernandez Majo, M. C.; Valdes, A. J.

    2010-01-01

    In this paper many bibliographic references have been analyses which deal on the importance of the buckling in rigid frames, and many versions of it, have been got. About 70 frames have been analysed by the authors and they have found that it is advisable to consider the bucking in the design of frames beams. (Author) 30 refs.

  18. Automated and dynamic scheduling for geodetic VLBI - A simulation study for AuScope and global networks

    Science.gov (United States)

    Iles, E. J.; McCallum, L.; Lovell, J. E. J.; McCallum, J. N.

    2018-02-01

    As we move into the next era of geodetic VLBI, the scheduling process is one focus for improvement in terms of increased flexibility and the ability to react with changing conditions. A range of simulations were conducted to ascertain the impact of scheduling on geodetic results such as Earth Orientation Parameters (EOPs) and station coordinates. The potential capabilities of new automated scheduling modes were also simulated, using the so-called 'dynamic scheduling' technique. The primary aim was to improve efficiency for both cost and time without losing geodetic precision, particularly to maximise the uses of the Australian AuScope VLBI array. We show that short breaks in observation will not significantly degrade the results of a typical 24 h experiment, whereas simply shortening observing time degrades precision exponentially. We also confirm the new automated, dynamic scheduling mode is capable of producing the same standard of result as a traditional schedule, with close to real-time flexibility. Further, it is possible to use the dynamic scheduler to augment the 3 station Australian AuScope array and thereby attain EOPs of the current global precision with only intermittent contribution from 2 additional stations. We thus confirm automated, dynamic scheduling bears great potential for flexibility and automation in line with aims for future continuous VLBI operations.

  19. Inaccuracies when mixing coordinate reference frameworks in a system of systems simulation

    CSIR Research Space (South Africa)

    Duvenhage, B

    2007-09-01

    Full Text Available commonly used are flat and spherical earth. Another well known ERM is the World Geodetic System from 1984 (WGS 84). For the purposes of this paper the authors however focus on the simpler flat and spherical earth models with example coordinate... words, the equatorial and pole to pole diameters of the earth, as modelled in this ERM, are equal. This paper will use the term ‘real world’ ERMs to refer to spherical, WGS 84 and better ERM approximations. A. The Earth-Centred, Earth...

  20. Geodetic Slip Solution for the Mw=7.4 Champerico (Guatemala) Earthquake of 07 November 2012

    Science.gov (United States)

    Ellis, A. P.; DeMets, C.; Briole, P.; Molina, E.; Flores, O.; Rivera, J.; Lasserre, C.; Lyon-Caen, H.; Lord, N. E.

    2014-12-01

    As the first large subduction thrust earthquake off the coast of western Guatemala in the past several decades, the 07 November 2012 Mw=7.4 earthquake offers the first opportunity for a geodetic study of coseismic and postseismic behavior for a segment of the Middle America trench where frictional coupling makes a transition from weak coupling off the coast of El Salvador to strong coupling in southern Mexico. We use measurements at 19 continuous GPS sites in Guatemala, El Salvador, and Mexico to estimate the coseismic slip and post-seismic deformation of the November 2012 Champerico (Guatemala) earthquake. Coseismic offsets range from ~47 mm near the epicenter to El Salvador. An inversion of the geodetic data indicate that that up to ~2 m of coseismic slip occurred on a ~30 km by 30 km rupture area between ~10 and 30 km depth, encouragingly close to the global CMT epicenter. The geodetic moment of 13 x 1019 N·m and corresponding magnitude of 7.4 both agree well with independent seismological estimates. An inversion for the postseismic fault afterslip shows that the transient postseismic motions recorded at 11 GPS sites are well fit with a logarithmically decaying function. More than 70 per cent of the postseismic slip occurred at the same depth or directly downdip from the main shock epicenter. At the upper limit, afterslip that occurred within 6 months of the earthquake released energy equivalent to only ~20 per cent of the coseismic moment. The seismologically derived slip solution from Ye et al. (2012), which features more highly concentrated slip than our own, fits our GPS offsets reasonably well provided that we translate their slip centroid ~51 km to the west to a position close to our own slip centroid. The geodetic and seismologic slip solutions thus suggest bounds of 2-5 m for the peak slip along a region of the interface no larger than 30 x 30 km and possibly much smaller.

  1. The Experimental Research on Seismic Capacity of the Envelope Systems with Steel Frame

    Science.gov (United States)

    Li, Jiuyang; Wang, Bingbing; Li, Hengxu

    2017-09-01

    In this paper, according to the present application situation of the external envelope systems steel frame in the severe cold region, the stuffed composite wall panels are improved, the flexible connection with the steel frame is designed, the reduced scale specimens are made, the seismic capacity test is made and some indexes of the envelope systems such as bearing capacity, energy consumption and ductility, etc. are compared, which provide reference for the development and application of the steel frame envelope systems.

  2. Effects of news frames on perceived risk, emotions, and learning.

    Directory of Open Access Journals (Sweden)

    Christine Otieno

    Full Text Available The media play a key role in forming opinions by influencing people´s understanding and perception of a topic. People gather information about topics of interest from the internet and print media, which employ various news frames to attract attention. One example of a common news frame is the human-interest frame, which emotionalizes and dramatizes information and often accentuates individual affectedness. Our study investigated effects of human-interest frames compared to a neutral-text condition with respect to perceived risk, emotions, and knowledge acquisition, and tested whether these effects can be "generalized" to common variants of the human-interest frame. Ninety-one participants read either one variant of the human-interest frame or a neutrally formulated version of a newspaper article describing the effects of invasive species in general and the Asian ladybug (an invasive species in particular. The framing was achieved by varying the opening and concluding paragraphs (about invasive species, as well as the headline. The core text (about the Asian ladybug was the same across all conditions. All outcome variables on framing effects referred to this common core text. We found that all versions of the human-interest frame increased perceived risk and the strength of negative emotions compared to the neutral text. Furthermore, participants in the human-interest frame condition displayed better (quantitative learning outcomes but also biased knowledge, highlighting a potential dilemma: Human-interest frames may increase learning, but they also lead to a rather unbalanced view of the given topic on a "deeper level".

  3. Effects of News Frames on Perceived Risk, Emotions, and Learning

    Science.gov (United States)

    Otieno, Christine; Spada, Hans; Renkl, Alexander

    2013-01-01

    The media play a key role in forming opinions by influencing people´s understanding and perception of a topic. People gather information about topics of interest from the internet and print media, which employ various news frames to attract attention. One example of a common news frame is the human-interest frame, which emotionalizes and dramatizes information and often accentuates individual affectedness. Our study investigated effects of human-interest frames compared to a neutral-text condition with respect to perceived risk, emotions, and knowledge acquisition, and tested whether these effects can be "generalized" to common variants of the human-interest frame. Ninety-one participants read either one variant of the human-interest frame or a neutrally formulated version of a newspaper article describing the effects of invasive species in general and the Asian ladybug (an invasive species) in particular. The framing was achieved by varying the opening and concluding paragraphs (about invasive species), as well as the headline. The core text (about the Asian ladybug) was the same across all conditions. All outcome variables on framing effects referred to this common core text. We found that all versions of the human-interest frame increased perceived risk and the strength of negative emotions compared to the neutral text. Furthermore, participants in the human-interest frame condition displayed better (quantitative) learning outcomes but also biased knowledge, highlighting a potential dilemma: Human-interest frames may increase learning, but they also lead to a rather unbalanced view of the given topic on a “deeper level”. PMID:24223999

  4. Agile Big Data Analytics of High-Volume Geodetic Data Products for Improving Science and Hazard Response

    Data.gov (United States)

    National Aeronautics and Space Administration — Geodetic imaging is revolutionizing geophysics, but the scope of discovery has been limited by labor-intensive technological implementation of the analyses. The...

  5. Framing of health information messages.

    Science.gov (United States)

    Akl, Elie A; Oxman, Andrew D; Herrin, Jeph; Vist, Gunn E; Terrenato, Irene; Sperati, Francesca; Costiniuk, Cecilia; Blank, Diana; Schünemann, Holger

    2011-12-07

    The same information about the evidence on health effects can be framed either in positive words or in negative words. Some research suggests that positive versus negative framing can lead to different decisions, a phenomenon described as the framing effect. Attribute framing is the positive versus negative description of a specific attribute of a single item or a state, for example, "the chance of survival with cancer is 2/3" versus "the chance of mortality with cancer is 1/3". Goal framing is the description of the consequences of performing or not performing an act as a gain versus a loss, for example, "if you undergo a screening test for cancer, your survival will be prolonged" versus "if you don't undergo screening test for cancer, your survival will be shortened". To evaluate the effects of attribute (positive versus negative) framing and of goal (gain versus loss) framing of the same health information, on understanding, perception of effectiveness, persuasiveness, and behavior of health professionals, policy makers, and consumers. We searched the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, issue 3 2007), MEDLINE (Ovid) (1966 to October 2007), EMBASE (Ovid) (1980 to October 2007), PsycINFO (Ovid) (1887 to October 2007). There were no language restrictions. We reviewed the reference lists of related systematic reviews, included studies and of excluded but closely related studies. We also contacted experts in the field. We included randomized controlled trials, quasi-randomised controlled trials, and cross-over studies with health professionals, policy makers, and consumers evaluating one of the two types of framing. Two review authors extracted data in duplicate and independently. We graded the quality of evidence for each outcome using the GRADE approach. We standardized the outcome effects using standardized mean difference (SMD). We stratified the analysis by the type of framing (attribute, goal) and conducted pre

  6. The Importance of Geodetically Controlled Data Sets: THEMIS Controlled Mosaics of Mars, a Case Study

    Science.gov (United States)

    Fergason, R. L.; Weller, L.

    2018-04-01

    Accurate image registration is necessary to answer questions that are key to addressing fundamental questions about our universe. To provide such a foundational product for Mars, we have geodetically controlled and mosaicked THEMIS IR images.

  7. Framing effects over time: comparing affective and cognitive news frames

    NARCIS (Netherlands)

    Lecheler, S.; Matthes, J.

    2012-01-01

    A growing number of scholars examine the duration of framing effects. However, duration is likely to differ from frame to frame, depending on how strong a frame is. This strength is likely to be enhanced by adding emotional components to a frame. By means of an experimental survey design (n = 111),

  8. Geodesy, a Bibliometric Approach for 2000-2006

    Science.gov (United States)

    Vazquez, G.; Landeros, C. F.

    2007-12-01

    In recent years, bibliometric science has been frequently applied in the development and evaluation of scientific research. This work presents a bibliometric analysis for the research work performed in the field of geodesy "science of the measurement and mapping of the earth surface including its external gravity field". The objective of this work is to present a complete overview of the generated research on this field to assemble and study the most important publications occurred during the past seven years. The analysis was performed including the SCOPUS and WEB OF SCIENCE databases for all the geodetic scientific articles published between 2000 and 2006. The search profile was designed considering a strategy to seek for titles and article descriptors using the terms geodesy and geodetic and some other terms associated with the topics: geodetic surfaces, vertical measurements, reference systems and frames, modern space-geodetic techniques and satellite missions. Some preliminary results had been achieved specifically Bradford law of distribution for journals and education institutes, and Lotka's law for authors that also includes the cooperation between countries in terms of writing together scientific articles. In the particular case of distributions, the model suggested by Egghe (2002) was adopted for determining the cores.

  9. Mixed quantum/classical theory for inelastic scattering of asymmetric-top-rotor + atom in the body-fixed reference frame and application to the H₂O + He system.

    Science.gov (United States)

    Semenov, Alexander; Dubernet, Marie-Lise; Babikov, Dmitri

    2014-09-21

    The mixed quantum/classical theory (MQCT) for inelastic molecule-atom scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is extended to treat a general case of an asymmetric-top-rotor molecule in the body-fixed reference frame. This complements a similar theory formulated in the space-fixed reference-frame [M. Ivanov, M.-L. Dubernet, and D. Babikov, J. Chem. Phys. 140, 134301 (2014)]. Here, the goal was to develop an approximate computationally affordable treatment of the rotationally inelastic scattering and apply it to H2O + He. We found that MQCT is somewhat less accurate at lower scattering energies. For example, below E = 1000 cm(-1) the typical errors in the values of inelastic scattering cross sections are on the order of 10%. However, at higher scattering energies MQCT method appears to be rather accurate. Thus, at scattering energies above 2000 cm(-1) the errors are consistently in the range of 1%-2%, which is basically our convergence criterion with respect to the number of trajectories. At these conditions our MQCT method remains computationally affordable. We found that computational cost of the fully-coupled MQCT calculations scales as n(2), where n is the number of channels. This is more favorable than the full-quantum inelastic scattering calculations that scale as n(3). Our conclusion is that for complex systems (heavy collision partners with many internal states) and at higher scattering energies MQCT may offer significant computational advantages.

  10. Riesz frames and approximation of the frame coefficients

    DEFF Research Database (Denmark)

    Casazza, P.; Christensen, Ole

    1998-01-01

    A frame is a fmaily {f i } i=1 ∞ of elements in a Hilbert space with the property that every element in can be written as a (infinite) linear combination of the frame elements. Frame theory describes how one can choose the corresponding coefficients, which are called frame coefficients. From...... the mathematical point of view this is gratifying, but for applications it is a problem that the calculation requires inversion of an operator on . The projection method is introduced in order to avoid this problem. The basic idea is to consider finite subfamilies {f i } i=1 n of the frame and the orthogonal...... projection Pn onto its span. For has a representation as a linear combination of fi, i=1,2,..., n and the corresponding coefficients can be calculated using finite dimensional methods. We find conditions implying that those coefficients converge to the correct frame coefficients as n→∞, in which case we have...

  11. RTX Correction Accuracy and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    Science.gov (United States)

    Zimakov, L. G.; Raczka, J.; Barrientos, S. E.

    2016-12-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chile (Chilean National Network), Italy (University of Naples Network), and California. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized case. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording includes an ANSS Class A, force balance accelerometer with the latest, low power, 24-bit A/D converter, producing high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol providing data integrity between the field and the processing center. The SG160-09 has been installed in three seismic stations in different geographic locations with different Trimble global reference stations coverage The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, both radio and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the centralized Data Acquisition Centers for real-time data processing. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot platform. Data from the SG160-09 system was used for seismic event characterization along with data from traditional seismic and geodetic stations

  12. Frames of exponentials:lower frame bounds for finite subfamilies, and approximation of the inverse frame operator

    DEFF Research Database (Denmark)

    Christensen, Ole; Lindner, Alexander M

    2001-01-01

    We give lower frame bounds for finite subfamilies of a frame of exponentials {e(i lambdak(.))}k is an element ofZ in L-2(-pi,pi). We also present a method for approximation of the inverse frame operator corresponding to {e(i lambdak(.))}k is an element ofZ, where knowledge of the frame bounds for...

  13. Toward an Understanding of Reference-Dependent Labor Supply

    DEFF Research Database (Denmark)

    Andersen, Steffen; Brandon, Alec; Gneezy, Uri

    Perhaps the most powerful form of framing arises through reference dependence, wherein choices are made recognizing the starting point or a goal. In labor economics, for example, a form of reference dependence, income targeting, has been argued to represent a serious challenge to traditional...

  14. EPOS-IP WP10: services and data provision for the GNSS community

    Science.gov (United States)

    Fernandes, Rui

    2016-04-01

    The EPOS-IP WP10 - "GNSS Data & Products" is the Working Package of the EPOS-IP project in charge of implementing the necessary services in order that the geo-sciences community can access the existing Pan-European Geodetic Infrastructures. The WP10 is formed by representatives of the participating institutions (10) but it is also open to the entire geodetic community. In fact, WP10 also includes members from other institutions/countries that formally are not participating in the EPOS-IP. During the EPOS-IP project, the geodetic component of EPOS (WP10) is dealing essentially with Research Infrastructures focused on continuous operating GNSS (cGNSS). The option of concentrating the efforts on the presently most generalized geodetic tool supporting research on Solid Earth was decided in order to optimize the existing resources. Furthermore, although the focus is on Solid Earth applications, other research and technical applications (e.g., reference frames, meteorology, space weather) can also benefit from the efforts of WP10 towards the optimization of the geodetic resources in Europe. We will present and discuss the plans for the implementation of the thematic and core services (TCS) for GNSS data within EPOS and the related business plan. We will focus on strategies towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using transparent and uniform processes. The collaboration with EUREF is also an essential component of the implementation plan.

  15. Exploring deformation scenarios in Timanfaya volcanic area (Lanzarote, Canary Islands) from GNSS and ground based geodetic observations

    Science.gov (United States)

    Riccardi, U.; Arnoso, J.; Benavent, M.; Vélez, E.; Tammaro, U.; Montesinos, F. G.

    2018-05-01

    We report on a detailed geodetic continuous monitoring in Timanfaya volcanic area (TVA), where the most intense geothermal anomalies of Lanzarote Island are located. We analyze about three years of GNSS data collected on a small network of five permanent stations, one of which at TVA, deployed on the island, and nearly 20 years of tiltmeter and strainmeter records acquired at Los Camelleros site settled in the facilities of the Geodynamics Laboratory of Lanzarote within TVA. This study is intended to contribute to understanding the active tectonics on Lanzarote Island and its origin, mainly in TVA. After characterizing and filtering out the seasonal periodicities related to "non-tectonic" sources from the geodetic records, a tentative ground deformation field is reconstructed through the analysis of both tilt, strain records and the time evolution of the baselines ranging the GNSS stations. The joint interpretation of the collected geodetic data show that the area of the strongest geothermal anomaly in TVA is currently undergoing a SE trending relative displacement at a rate of about 3 mm/year. This area even experiences a significant subsidence with a maximum rate of about 6 mm/year. Moreover, we examine the possible relation between the observed deformations and atmospheric effects by modelling the response functions of temperature and rain recorded in the laboratory. Finally, from the retrieval of the deformation patterns and the joint analysis of geodetic and environmental observations, we propose a qualitative model of the interplaying role between the hydrological systems and the geothermal anomalies. Namely, we explain the detected time correlation between rainfall and ground deformation because of the enhancement of the thermal transfer from the underground heat source driven by the infiltration of meteoric water.

  16. Prime tight frames

    DEFF Research Database (Denmark)

    Lemvig, Jakob; Miller, Christopher; Okoudjou, Kasso A.

    2014-01-01

    to suggest effective analysis and synthesis computation strategies for such frames. Finally, we describe all prime frames constructed from the spectral tetris method, and, as a byproduct, we obtain a characterization of when the spectral tetris construction works for redundancies below two.......We introduce a class of finite tight frames called prime tight frames and prove some of their elementary properties. In particular, we show that any finite tight frame can be written as a union of prime tight frames. We then characterize all prime harmonic tight frames and use thischaracterization...

  17. Comprehensive geo-spatial data creation for Qassim region in the KSA

    Science.gov (United States)

    Alrajhi, M.; Hawarey, M.

    2009-04-01

    The General Directorate for Surveying and Mapping (GDSM) of the Deputy Ministry for Land and Surveying (DMLS) of the Ministry of Municipal and Rural Affairs (MOMRA) in the Kingdom of Saudi Arabia (KSA) has the exclusive mandate to carry out aerial photography and produce large-scale detailed maps for about 220 cities and villages in the KSA. This presentation is about the comprehensive geo-spatial data creation for the Qassim region, North KSA, that was founded on country-wide horizontal geodetic ground control using Global Navigation Satellite Systems (GNSS) within the MOMRA's Terrestrial Reference Frame 2000 (MTRF2000) that is tied to International Terrestrial Reference Frame 2000 (ITRF2000) Epoch 2004.0, and vertical geodetic ground control using precise digital leveling in reference to Jeddah 1969 mean sea level, and included aerial photography of 1,505 km2 at 1:5,500 scale, 4,081 km2 at scale 22,500 and 22,224 km2 at 1:45,000 scale, full aerial triangulation, production of orthophoto maps at scale of 1:10,000 (463 sheets) for 22,224 km2, and production of GIS-oriented highly-detailed digital line maps in various formats at scales of 1:1,000 (1,534 sheets) and 1:2,500 (383 sheets) for 1,150 km2, 1:10,000 (161 sheets) for 7,700 km2, and 1:20,000 (130 sheets) for 22,000 km2. While aerial photography lasted from Feb 2003 thru May 2003, the line mapping continued May 2005 until December 2008.

  18. Writing More Informative Letters of Reference

    OpenAIRE

    Wright, Scott M; Ziegelstein, Roy C

    2004-01-01

    Writing a meaningful and valuable letter of reference is not an easy task. Several factors influence the quality of any letter of reference. First, the accuracy and reliability of the writer's impressions and judgment depend on how well he knows the individual being described. Second, the writer's frame of reference, which is determined by the number of persons at the same level that he has worked with, will impact the context and significance of his beliefs and estimations. Third, the letter...

  19. Postglacial Rebound from VLBI Geodesy: On Establishing Vertical Reference

    Science.gov (United States)

    Argus, Donald F.

    1996-01-01

    Difficulty in establishing a reference frame fixed to the earth's interior complicates the measurement of the vertical (radial) motions of the surface. I propose that a useful reference frame for vertical motions is that found by minimizing differences between vertical motions observed with VLBI [Ma and Ryan] and predictions from postglacial rebound predictions [Peltier]. The optimal translation of the geocenter is 1.7mm/year toward 36degN, 111degE when determined from the motions of 10 VLBI sites. This translation gives a better fit of observations to predictions than does the VLBI reference frame used by Ma and Ryan, but the improvement is statistically insignificant. The root mean square of differences decreases 20% to 0.73 mm/yr and the correlation coefficient increases from 0.76 to 0.87. Postglacial rebound is evident in the uplift of points in Sweden and Ontario that were beneath the ancient ice sheets of Fennoscandia and Canada, and in the subsidence of points in the northeastern U.S., Germany, and Alaska that were around the periphery of the ancient ice sheets.

  20. Frame scaling function sets and frame wavelet sets in Rd

    International Nuclear Information System (INIS)

    Liu Zhanwei; Hu Guoen; Wu Guochang

    2009-01-01

    In this paper, we classify frame wavelet sets and frame scaling function sets in higher dimensions. Firstly, we obtain a necessary condition for a set to be the frame wavelet sets. Then, we present a necessary and sufficient condition for a set to be a frame scaling function set. We give a property of frame scaling function sets, too. Some corresponding examples are given to prove our theory in each section.

  1. Dynamics of entanglement under decoherence in noninertial frames

    International Nuclear Information System (INIS)

    Shi Jia-Dong; Wu Tao; Song Xue-Ke; Ye Liu

    2014-01-01

    In this paper, we investigate the entanglement dynamics of a two-qubit entangled state coupled with its noisy environment, and plan to utilize weak measurement and quantum reversal measurement to study the entanglement dynamics under different decoherence channels in noninertial frames. Through the calculations and analyses, it is shown that the weak measurement can prevent entanglement from coupling to the amplitude damping channel, while the system is under the phase damping and flip channels. This protection protocol cannot prevent entanglement but will accelerate the death of entanglement. In addition, if the system is in the noninertial reference frame, then the effect of weak measurement will be weakened for the amplitude damping channel. Nevertheless, for other decoherence channels, the Unruh effect does not affect the quantum weak measurement, the only exception is that the maximum value of entanglement is reduced to √2/2 of the original value in the inertial frames. (general)

  2. Cognitive ability, academic achievement and academic self-concept: extending the internal/external frame of reference model.

    Science.gov (United States)

    Chen, Ssu-Kuang; Hwang, Fang-Ming; Yeh, Yu-Chen; Lin, Sunny S J

    2012-06-01

    Marsh's internal/external (I/E) frame of reference model depicts the relationship between achievement and self-concept in specific academic domains. Few efforts have been made to examine concurrent relationships among cognitive ability, achievement, and academic self-concept (ASC) within an I/E model framework. To simultaneously examine the influences of domain-specific cognitive ability and grades on domain self-concept in an extended I/E model, including the indirect effect of domain-specific cognitive ability on domain self-concept via grades. Tenth grade respondents (628 male, 452 female) to a national adolescent survey conducted in Taiwan. Respondents completed surveys designed to measure maths and verbal aptitudes. Data on Maths and Chinese class grades and self-concepts were also collected. Statistically significant and positive path coefficients were found between cognitive ability and self-concept in the same domain (direct effect) and between these two constructs via grades (indirect effect). The cross-domain effects of either ability or grades on ASC were negatively significant. Taiwanese 10th graders tend to evaluate their ASCs based on a mix of ability and achievement, with achievement as a mediator exceeding ability as a predictor. In addition, the cross-domain effects suggest that Taiwanese students are likely to view Maths and verbal abilities and achievements as distinctly different. ©2011 The British Psychological Society.

  3. Riesz Frames and Approximation of the Frame Coefficients

    DEFF Research Database (Denmark)

    Christensen, Ole

    1996-01-01

    A frame is a familyof elements in a Hilbert space with the propertythat every element in the Hilbert space can be written as a (infinite)linear combination of the frame elements. Frame theory describes howone can choose the corresponding coefficients, which are calledframe coefficients. From...... the mathematical point of view this isgratifying, but for applications it is a problem that the calculationrequires inversion of an operator on the Hilbert space.The projection method is introduced in order to avoid this problem.The basic idea is to consider finite subfamiliesof the frame and the orthogonal...... projection onto its span. Forfin QTR H,P_nf has a representation as a linear combinationof f_i,i=1,2,..,n, and the corresponding coefficients can be calculatedusing finite dimensional methods. We find conditions implying that thosecoefficients converge to the correct frame coefficients as n goes...

  4. Frames and counter-frames giving meaning to dementia: a framing analysis of media content.

    Science.gov (United States)

    Van Gorp, Baldwin; Vercruysse, Tom

    2012-04-01

    Media tend to reinforce the stigmatization of dementia as one of the most dreaded diseases in western society, which may have repercussions on the quality of life of those with the illness. The persons with dementia, but also those around them become imbued with the idea that life comes to an end as soon as the diagnosis is pronounced. The aim of this paper is to understand the dominant images related to dementia by means of an inductive framing analysis. The sample is composed of newspaper articles from six Belgian newspapers (2008-2010) and a convenience sample of popular images of the condition in movies, documentaries, literature and health care communications. The results demonstrate that the most dominant frame postulates that a human being is composed of two distinct parts: a material body and an immaterial mind. If this frame is used, the person with dementia ends up with no identity, which is in opposition to the Western ideals of personal self-fulfilment and individualism. For each dominant frame an alternative counter-frame is defined. It is concluded that the relative absence of counter-frames confirms the negative image of dementia. The inventory might be a help for caregivers and other professionals who want to evaluate their communication strategy. It is discussed that a more resolute use of counter-frames in communication about dementia might mitigate the stigma that surrounds dementia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. On correlation comparison of identical pions in different systems of reference

    International Nuclear Information System (INIS)

    Podgoretskij, M.I.

    1983-01-01

    It is shown that a comparison of correlations of identical pions in reference frames moving with different velocities along the reaction axis enables one to select the frame for which there is a kinematical symmetry in the multiple generation process. The indicated possibility is due to the fact that in the considered symmetrical frame the space-time parameters R and tau are extremal. An experimental selection of the ''symmetrical frame'' may be useful in the choice between competing models of multiple generation

  6. Land water storage from space and the geodetic infrastructure

    Science.gov (United States)

    Cazenave, A.; Larson, K.; Wahr, J.

    2009-04-01

    In recent years, remote sensing techniques have been increasingly used to monitor components of the water balance of large river basins. By complementing scarce in situ observations and hydrological modelling, space observations have the potential to significantly improve our understanding of hydrological processes at work in river basins and their relationship with climate variability and socio-economic life. Among the remote sensing tools used in land hydrology, several originate from space geodesy and are integral parts of the Global Geodetic Observing System. For example, satellite altimetry is used for systematic monitoring of water levels of large rivers, lakes and floodplains. InSAR allows the detection of surface water change. GRACE-based space gravity offers for the first time the possibility of directly measuring the spatio-temporal variations of the vertically integrated water storage in large river basins. GRACE is also extremely useful for measuring changes in mass of the snow pack in boreal regions. Vertical motions of the ground induced by changes in water storage in aquifers can be measured by both GPS and InSAR. These techniques can also be used to investigate water loading effects. Recently GPS has been used to measure changes in surface soil moisture, which would be important for agriculture, weather prediction, and for calibrationg satellite missions such as SMOS and SMAP. These few examples show that space and ground geodetic infrastructures are increasingly important for hydrological sciences and applications. Future missions like SWOT (Surface Waters Ocean Topography; a wide swath interferometric altimetry mission) and GRACE 2 (space gravimetry mission based on new technology) will provide a new generation of hydrological products with improved precision and resolution.

  7. Are OPERA neutrinos faster than light because of non-inertial reference frames?

    Science.gov (United States)

    Germanà, C.

    2012-02-01

    Context. Recent results from the OPERA experiment reported a neutrino beam traveling faster than light. The challenging experiment measured the neutrino time of flight (TOF) over a baseline from the CERN to the Gran Sasso site, concluding that the neutrino beam arrives ~60 ns earlier than a light ray would do. Because the result, if confirmed, has an enormous impact on science, it might be worth double-checking the time definitions with respect to the non-inertial system in which the neutrino travel time was measured. An observer with a clock measuring the proper time τ free of non-inertial effects is the one located at the solar system barycenter (SSB). Aims: Potential problems in the OPERA data analysis connected with the definition of the reference frame and time synchronization are emphasized. We aim to investigate the synchronization of non-inertial clocks on Earth by relating this time to the proper time of an inertial observer at SSB. Methods: The Tempo2 software was used to time-stamp events observed on the geoid with respect to the SSB inertial observer time. Results: Neutrino results from OPERA might carry the fingerprint of non-inertial effects because they are timed by terrestrial clocks. The CERN-Gran Sasso clock synchronization is accomplished by applying corrections that depend on special and general relativistic time dilation effects at the clocks, depending on the position of the clocks in the solar system gravitational well. As a consequence, TOF distributions are centered on values shorter by tens of nanoseconds than expected, integrating over a period from April to December, longer if otherwise. It is worth remarking that the OPERA runs have always been carried out from April/May to November. Conclusions: If the analysis by Tempo2 holds for the OPERA experiment, the excellent measurement by the OPERA collaboration will turn into a proof of the general relativity theory in a weak field approximation. The analysis presented here is falsifiable

  8. Body frames and frame singularities for three-atom systems

    International Nuclear Information System (INIS)

    Littlejohn, R.G.; Mitchell, K.A.; Aquilanti, V.; Cavalli, S.

    1998-01-01

    The subject of body frames and their singularities for three-particle systems is important not only for large-amplitude rovibrational coupling in molecular spectroscopy, but also for reactive scattering calculations. This paper presents a geometrical analysis of the meaning of body frame conventions and their singularities in three-particle systems. Special attention is devoted to the principal axis frame, a certain version of the Eckart frame, and the topological inevitability of frame singularities. The emphasis is on a geometrical picture, which is intended as a preliminary study for the more difficult case of four-particle systems, where one must work in higher-dimensional spaces. The analysis makes extensive use of kinematic rotations. copyright 1998 The American Physical Society

  9. Frame on frames: an annotated bibliography

    International Nuclear Information System (INIS)

    Wright, T.; Tsao, H.J.

    1983-01-01

    The success or failure of any sample survey of a finite population is largely dependent upon the condition and adequacy of the list or frame from which the probability sample is selected. Much of the published survey sampling related work has focused on the measurement of sampling errors and, more recently, on nonsampling errors to a lesser extent. Recent studies on data quality for various types of data collection systems have revealed that the extent of the nonsampling errors far exceeds that of the sampling errors in many cases. While much of this nonsampling error, which is difficult to measure, can be attributed to poor frames, relatively little effort or theoretical work has focused on this contribution to total error. The objective of this paper is to present an annotated bibliography on frames with the hope that it will bring together, for experimenters, a number of suggestions for action when sampling from imperfect frames and that more attention will be given to this area of survey methods research

  10. Mixed quantum/classical theory of rotationally and vibrationally inelastic scattering in space-fixed and body-fixed reference frames.

    Science.gov (United States)

    Semenov, Alexander; Babikov, Dmitri

    2013-11-07

    We formulated the mixed quantum/classical theory for rotationally and vibrationally inelastic scattering process in the diatomic molecule + atom system. Two versions of theory are presented, first in the space-fixed and second in the body-fixed reference frame. First version is easy to derive and the resultant equations of motion are transparent, but the state-to-state transition matrix is complex-valued and dense. Such calculations may be computationally demanding for heavier molecules and/or higher temperatures, when the number of accessible channels becomes large. In contrast, the second version of theory requires some tedious derivations and the final equations of motion are rather complicated (not particularly intuitive). However, the state-to-state transitions are driven by real-valued sparse matrixes of much smaller size. Thus, this formulation is the method of choice from the computational point of view, while the space-fixed formulation can serve as a test of the body-fixed equations of motion, and the code. Rigorous numerical tests were carried out for a model system to ensure that all equations, matrixes, and computer codes in both formulations are correct.

  11. Mixed quantum/classical theory of rotationally and vibrationally inelastic scattering in space-fixed and body-fixed reference frames

    International Nuclear Information System (INIS)

    Semenov, Alexander; Babikov, Dmitri

    2013-01-01

    We formulated the mixed quantum/classical theory for rotationally and vibrationally inelastic scattering process in the diatomic molecule + atom system. Two versions of theory are presented, first in the space-fixed and second in the body-fixed reference frame. First version is easy to derive and the resultant equations of motion are transparent, but the state-to-state transition matrix is complex-valued and dense. Such calculations may be computationally demanding for heavier molecules and/or higher temperatures, when the number of accessible channels becomes large. In contrast, the second version of theory requires some tedious derivations and the final equations of motion are rather complicated (not particularly intuitive). However, the state-to-state transitions are driven by real-valued sparse matrixes of much smaller size. Thus, this formulation is the method of choice from the computational point of view, while the space-fixed formulation can serve as a test of the body-fixed equations of motion, and the code. Rigorous numerical tests were carried out for a model system to ensure that all equations, matrixes, and computer codes in both formulations are correct

  12. A soil sampling reference site: The challenge in defining reference material for sampling

    International Nuclear Information System (INIS)

    De Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Jacimovic, Radojko; Jeran, Zvonka; Sansone, Umberto; Perk, Marcel van der

    2008-01-01

    In the frame of the international SOILSAMP project, funded and coordinated by the Italian Environmental Protection Agency, an agricultural area was established as a reference site suitable for performing soil sampling inter-comparison exercises. The reference site was characterized for trace element content in soil, in terms of the spatial and temporal variability of their mass fraction. Considering that the behaviour of long-lived radionuclides in soil can be expected to be similar to that of some stable trace elements and that the distribution of these trace elements in soil can simulate the distribution of radionuclides, the reference site characterised in term of trace elements, can be also used to compare the soil sampling strategies developed for radionuclide investigations

  13. A soil sampling reference site: The challenge in defining reference material for sampling

    Energy Technology Data Exchange (ETDEWEB)

    De Zorzi, Paolo [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Metrologia Ambientale, Via di Castel Romano, Rome 100-00128 (Italy)], E-mail: paolo.dezorzi@apat.it; Barbizzi, Sabrina; Belli, Maria [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Metrologia Ambientale, Via di Castel Romano, Rome 100-00128 (Italy); Fajgelj, Ales [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, Vienna A-1400 (Austria); Jacimovic, Radojko; Jeran, Zvonka; Sansone, Umberto [Jozef Stefan Institute, Jamova 39, Ljubljana 1000 (Slovenia); Perk, Marcel van der [Department of Physical Geography, Utrecht University, P.O. Box 80115, TC Utrecht 3508 (Netherlands)

    2008-11-15

    In the frame of the international SOILSAMP project, funded and coordinated by the Italian Environmental Protection Agency, an agricultural area was established as a reference site suitable for performing soil sampling inter-comparison exercises. The reference site was characterized for trace element content in soil, in terms of the spatial and temporal variability of their mass fraction. Considering that the behaviour of long-lived radionuclides in soil can be expected to be similar to that of some stable trace elements and that the distribution of these trace elements in soil can simulate the distribution of radionuclides, the reference site characterised in term of trace elements, can be also used to compare the soil sampling strategies developed for radionuclide investigations.

  14. A soil sampling reference site: the challenge in defining reference material for sampling.

    Science.gov (United States)

    de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Jacimovic, Radojko; Jeran, Zvonka; Sansone, Umberto; van der Perk, Marcel

    2008-11-01

    In the frame of the international SOILSAMP project, funded and coordinated by the Italian Environmental Protection Agency, an agricultural area was established as a reference site suitable for performing soil sampling inter-comparison exercises. The reference site was characterized for trace element content in soil, in terms of the spatial and temporal variability of their mass fraction. Considering that the behaviour of long-lived radionuclides in soil can be expected to be similar to that of some stable trace elements and that the distribution of these trace elements in soil can simulate the distribution of radionuclides, the reference site characterised in term of trace elements, can be also used to compare the soil sampling strategies developed for radionuclide investigations.

  15. The Gravity-Probe-B relativity gyroscope experiment - Development of the prototype flight instrument

    Science.gov (United States)

    Turneaure, J. P.; Everitt, C. W. F.; Parkinson, B. W.; Bardas, D.; Breakwell, J. V.

    1989-01-01

    The Gravity-Probe-B relativity gyroscope experiment (GP-B) will measure the geodetic and frame-dragging precession rates of gyroscopes in a 650 km high polar orbit about the earth. The goal is to measure these two effects, which are predicted by Einstein's General Theory of Relativity, to 0.01 percent (geodetic) and 1 percent (frame-dragging). This paper presents the development progress for full-size prototype flight hardware including the gyroscopes, gyro readout and magnetic shielding system, and an integrated ground test instrument.

  16. iGRaND: an invariant frame for RGBD sensor feature detection and descriptor extraction with applications

    Science.gov (United States)

    Willis, Andrew R.; Brink, Kevin M.

    2016-06-01

    This article describes a new 3D RGBD image feature, referred to as iGRaND, for use in real-time systems that use these sensors for tracking, motion capture, or robotic vision applications. iGRaND features use a novel local reference frame derived from the image gradient and depth normal (hence iGRaND) that is invariant to scale and viewpoint for Lambertian surfaces. Using this reference frame, Euclidean invariant feature components are computed at keypoints which fuse local geometric shape information with surface appearance information. The performance of the feature for real-time odometry is analyzed and its computational complexity and accuracy is compared with leading alternative 3D features.

  17. Moderating Effects of Consumer Involvement and the Need for Cognition on Goal Framing

    Directory of Open Access Journals (Sweden)

    Leandro Miletto Tonetto

    2010-01-01

    Full Text Available Goal framing effect refers to the finding that different ways of presenting the same communication content to a consumer tends to generate distinct levels of persuasion for the emitted message. This research is aimed at investigating the interaction between goal framing effect, consumer involvement and the Need for Cognition (NfC on consumer decision making. Two experiments have been carried out to test the hypothesis that the level of persuasion for a promotional text elevates as consumer involvement increases, independent of the message frame or the NfC. Results showed that consumer's involvement seemed to draw the text's persuasion level up, as it increases, or down, as it decreases, independent of the text frame and the NfC.

  18. Some aspects of an induced electric dipole moment in rotating and non-rotating frames.

    Science.gov (United States)

    Oliveira, Abinael B; Bakke, Knut

    2017-06-01

    Quantum effects on a neutral particle (atom or molecule) with an induced electric dipole moment are investigated when it is subject to the Kratzer potential and a scalar potential proportional to the radial distance. In addition, this neutral is placed in a region with electric and magnetic fields. This system is analysed in both non-rotating and rotating reference frames. Then, it is shown that bound state solutions to the Schrödinger equation can be achieved and, in the search for polynomial solutions to the radial wave function, a restriction on the values of the cyclotron frequency is analysed in both reference frames.

  19. Framing of task performance strategies: effects on performance in a multiattribute dynamic decision making environment.

    Science.gov (United States)

    Nygren, T E

    1997-09-01

    It is well documented that the way a static choice task is "framed" can dramatically alter choice behavior, often leading to observable preference reversals. This framing effect appears to result from perceived changes in the nature or location of a person's initial reference point, but it is not clear how framing effects might generalize to performance on dynamic decision making tasks that are characterized by high workload, time constraints, risk, or stress. A study was conducted to examine the hypothesis that framing can introduce affective components to the decision making process and can influence, either favorably (positive frame) or adversely (negative frame), the implementation and use of decision making strategies in dynamic high-workload environments. Results indicated that negative frame participants were significantly impaired in developing and employing a simple optimal decision strategy relative to a positive frame group. Discussion focuses on implications of these results for models of dynamic decision making.

  20. Geodetic antenna calibration test in the Antarctic environment

    Science.gov (United States)

    Grejner-Brzezinska, A.; Vazquez, E.; Hothem, L.

    2006-01-01

    TransAntarctic Mountain DEFormation (TAMDEF) Monitoring Network is the NSF-sponsored OSU and USGS project, aimed at measuring crustal motion in the Transantarctic Mountains of Victoria Land using GPS carrier phase measurements. Station monumentation, antenna mounts, antenna types, and data processing strategies were optimized to achieve mm-level estimates for the rates of motion. These data contributes also to regional Antarctic frame definition. Significant amount of data collected over several years allow the investigation of unique aspects of GPS geodesy in Antarctica, to determine how the error spectrum compares to the mid-latitude regions, and to identify the optimum measurement and data processing schemes for Antarctic conditions, in order to test the predicted rates of motion (mm-level w.r.t. time). The data collection for the TAMDEF project was initiated in 1996. The primary antenna used has been the Ashtech L1/L2 Dorne Margolin (D/M) choke ring. A few occupations involved the use of a Trimble D/M choke ring. The data were processed using the antenna calibration data available from the National Geodetic Survey (NGS). The recent developments in new antenna designs that are lighter in weight and lower in cost are being considered as a possible alternative to the bulkier and more expensive D/M choke ring design. In November 2003, in situ testing of three alternative models of L1/L2 antennas was conducted at a site located in the vicinity of McMurdo Station, Antarctica (S77.87, E166.56). The antenna models used in this test were: Ashtech D/M choke ring, Trimble D/M choke ring, Trimble Zephyr, and the NovAtel GPS-702. Two stations, spaced within 30 meters, were used in the test. Both had the characteristics similar to the stations of the TAMDEF network, i.e., the UNAVCO fixed-height, force-centered level mounts with a constant antenna offset were used, ensuring extreme stability of the antenna/ mount/pin set up. During each of the four 3-day test data collection

  1. Analysis of Truss Frames by Method of the Stiffness Matrix

    Science.gov (United States)

    1990-12-01

    of the web members of the truss. There also are variations in the truss frame given by the geometric shape of the frame, also referred to in some...at the elastic center, 0 (Figure .3.2), are: R AX = Wix - Hot RBX W2x -Ho, RAY =WIY + Vo, (1) RBy WLy - Vo, MAB =- Mo + CH. + aVo + CMA, MBA =M - CH...o Co Ce Substituting the results of Equation (7) into Equations (1), x c D x RAY = Wix + + -- (eA - GO - D (8)C x C x C cx x cx AY a D RAY

  2. Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames

    Science.gov (United States)

    Kamanli, Mehmet; Unal, Alptug

    2017-10-01

    After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.

  3. Approximately dual frames in Hilbert spaces and applications to Gabor frames

    OpenAIRE

    Christensen, Ole; Laugesen, Richard S.

    2011-01-01

    Approximately dual frames are studied in the Hilbert space setting. Approximate duals are easier to construct than classical dual frames, and can be tailored to yield almost perfect reconstruction. Bounds on the deviation from perfect reconstruction are obtained for approximately dual frames constructed via perturbation theory. An alternative bound is derived for the rich class of Gabor frames, by using the Walnut representation of the frame operator to estimate the deviation from equality in...

  4. Framing the frame: How task goals determine the likelihood and direction of framing effects

    OpenAIRE

    Todd McElroy; John J. Seta

    2007-01-01

    We examined how the goal of a decision task influences the perceived positive, negative valence of the alternatives and thereby the likelihood and direction of framing effects. In Study 1 we manipulated the goal to increase, decrease or maintain the commodity in question and found that when the goal of the task was to increase the commodity, a framing effect consistent with those typically observed in the literature was found. When the goal was to decrease, a framing effect opposite to the ty...

  5. Cansiglio Karst Plateau: 10 Years of Geodetic-Hydrological Observations in Seismically Active Northeast Italy

    Science.gov (United States)

    Grillo, Barbara; Braitenberg, Carla; Nagy, Ildikó; Devoti, Roberto; Zuliani, David; Fabris, Paolo

    2018-04-01

    Ten years' geodetic observations (2006-2016) in a natural cave of the Cansiglio Plateau (Bus de la Genziana), a limestone karstic area in northeastern Italy, are discussed. The area is of medium-high seismic risk: a strong earthquake in 1936 below the plateau (M m = 6.2) and the 1976 disastrous Friuli earthquake (M m = 6.5) are recent events. At the foothills of the karstic massif, three springs emerge, with average flow from 5 to 10 m3/s, and which are the sources of a river. The tiltmeter station is set in a natural cavity that is part of a karstic system. From March 2013, a multiparametric logger (temperature, stage, electrical conductivity) was installed in the siphon at the bottom of the cave to discover the underground hydrodynamics. The tilt records include signals induced by hydrologic and tectonic effects. The tiltmeter signals have a clear correlation to the rainfall, the discharge series of the river and the data recorded by multiparametric loggers. Additionally, the data of a permanent GPS station located on the southern slopes of the Cansiglio Massif (CANV) show also a clear correspondence with the river level. The fast water infiltration into the epikarst, closely related to daily rainfall, is distinguished in the tilt records from the characteristic time evolution of the karstic springs, which have an impulsive level increase with successive exponential decay. It demonstrates the usefulness of geodetic measurements to reveal the hydrological response of the karst. One outcome of the work is that the tiltmeters can be used as proxies for the presence of flow channels and the pressure that builds up due to the water flow. With 10 years of data, a new multidisciplinary frontier was opened between the geodetic studies and the karstic hydrogeology to obtain a more complete geologic description of the karst plateau.

  6. Application of Geodetic VLBI Data to Obtaining Long-Term Light Curves for Astrophysics

    Science.gov (United States)

    Kijima, Masachika

    2010-01-01

    The long-term light curve is important to research on binary black holes and disk instability in AGNs. The light curves have been drawn mainly using single dish data provided by the University of Michigan Radio Observatory and the Metsahovi Radio Observatory. Hence, thus far, we have to research on limited sources. I attempt to draw light curves using VLBI data for those sources that have not been monitored by any observatories with single dish. I developed software, analyzed all geodetic VLBI data available at the IVS Data Centers, and drew the light curves at 8 GHz. In this report, I show the tentative results for two AGNs. I compared two light curves of 4C39.25, which were drawn based on single dish data and on VLBI data. I confirmed that the two light curves were consistent. Furthermore, I succeeded in drawing the light curve of 0454-234 with VLBI data, which has not been monitored by any observatory with single dish. In this report, I suggest that the geodetic VLBI archive data is useful to obtain the long-term light curves at radio bands for astrophysics.

  7. Mars Science Laboratory Frame Manager for Centralized Frame Tree Database and Target Pointing

    Science.gov (United States)

    Kim, Won S.; Leger, Chris; Peters, Stephen; Carsten, Joseph; Diaz-Calderon, Antonio

    2013-01-01

    The FM (Frame Manager) flight software module is responsible for maintaining the frame tree database containing coordinate transforms between frames. The frame tree is a proper tree structure of directed links, consisting of surface and rover subtrees. Actual frame transforms are updated by their owner. FM updates site and saved frames for the surface tree. As the rover drives to a new area, a new site frame with an incremented site index can be created. Several clients including ARM and RSM (Remote Sensing Mast) update their related rover frames that they own. Through the onboard centralized FM frame tree database, client modules can query transforms between any two frames. Important applications include target image pointing for RSM-mounted cameras and frame-referenced arm moves. The use of frame tree eliminates cumbersome, error-prone calculations of coordinate entries for commands and thus simplifies flight operations significantly.

  8. Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames

    Directory of Open Access Journals (Sweden)

    Kamanli Mehmet

    2017-01-01

    Full Text Available After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.

  9. Slip deficit on the san andreas fault at parkfield, california, as revealed by inversion of geodetic data.

    Science.gov (United States)

    Segall, P; Harris, R

    1986-09-26

    A network of geodetic lines spanning the San Andreas fault near the rupture zone of the 1966 Parkfield, California, earthquake (magnitude M = 6) has been repeatedly surveyed since 1959. In the study reported here the average rates of line-length change since 1966 were inverted to determine the distribution of interseismic slip rate on the fault. These results indicate that the Parkfield rupture surface has not slipped significantly since 1966. Comparison of the geodetically determined seismic moment of the 1966 earthquake with the interseismic slip-deficit rate suggests that the strain released by the latest shock will most likely be restored between 1984 and 1989, although this may not occur until 1995. These results lend independent support to the earlier forecast of an M = 6 earthquake near Parkfield within 5 years of 1988.

  10. Improvement of Quality of Reconstructed Images in Multi-Frame Fresnel Digital Holography

    International Nuclear Information System (INIS)

    Xiao-Wei, Lu; Jing-Zhen, Li; Hong-Yi, Chen

    2010-01-01

    A modified reconstruction algorithm to improve the quality of reconstructed images of multi-frame Fresnel digital holography is presented. When the reference beams are plane or spherical waves with azimuth encoding, by introducing two spherical wave factors, images can be reconstructed with only one time Fourier transform. In numerical simulation, this algorithm could simplify the reconstruction process and improve the signal-to-noise ratio of the reconstructed images. In single-frame reconstruction experiments, the accurate reconstructed image is obtained with this simplified algorithm

  11. Ellipsoidal terrain correction based on multi-cylindrical equal-area map projection of the reference ellipsoid

    Science.gov (United States)

    Ardalan, A. A.; Safari, A.

    2004-09-01

    An operational algorithm for computation of terrain correction (or local gravity field modeling) based on application of closed-form solution of the Newton integral in terms of Cartesian coordinates in multi-cylindrical equal-area map projection of the reference ellipsoid is presented. Multi-cylindrical equal-area map projection of the reference ellipsoid has been derived and is described in detail for the first time. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid are selected and the gravitational potential and vector of gravitational intensity (i.e. gravitational acceleration) of the mass elements are computed via numerical solution of the Newton integral in terms of geodetic coordinates {λ,ϕ,h}. Four base- edge points of the ellipsoidal mass elements are transformed into a multi-cylindrical equal-area map projection surface to build Cartesian mass elements by associating the height of the corresponding ellipsoidal mass elements to the transformed area elements. Using the closed-form solution of the Newton integral in terms of Cartesian coordinates, the gravitational potential and vector of gravitational intensity of the transformed Cartesian mass elements are computed and compared with those of the numerical solution of the Newton integral for the ellipsoidal mass elements in terms of geodetic coordinates. Numerical tests indicate that the difference between the two computations, i.e. numerical solution of the Newton integral for ellipsoidal mass elements in terms of geodetic coordinates and closed-form solution of the Newton integral in terms of Cartesian coordinates, in a multi-cylindrical equal-area map projection, is less than 1.6×10-8 m2/s2 for a mass element with a cross section area of 10×10 m and a height of 10,000 m. For a mass element with a cross section area of 1×1 km and a height of 10,000 m the difference is less than 1.5×10-4m2/s2. Since 1.5× 10-4 m2/s2 is equivalent to 1.5×10-5m in the vertical

  12. X/Ka Celestial Frame Improvements: Vision to Reality

    Science.gov (United States)

    Jacobs, C. S.; Bagri, D. S.; Britcliffe, M. J.; Clark, J. E.; Franco, M. M.; Garcia-Miro, C.; Goodhart, C. E.; Horiuchi, S.; Lowe, S. T.; Moll, V. E.; hide

    2010-01-01

    In order to extend the International Celestial Reference Frame from its S/X-band (2.3/8.4 GHz) basis to a complementary frame at X/Ka-band (8.4/32 GHz), we began in mid-2005 an ongoing series of X/Ka observations using NASA s Deep Space Network (DSN) radio telescopes. Over the course of 47 sessions, we have detected 351 extra-galactic radio sources covering the full 24 hours of right ascension and declinations down to -45 degrees. Angular source position accuracy is at the part-per-billion level. We developed an error budget which shows that the main errors arise from limited sensitivity, mismodeling of the troposphere, uncalibrated instrumental effects, and the lack of a southern baseline. Recent work has improved sensitivity by improving pointing calibrations and by increasing the data rate four-fold. Troposphere calibration has been demonstrated at the mm-level. Construction of instrumental phase calibrators and new digital baseband filtering electronics began in recent months. We will discuss the expected effect of these improvements on the X/Ka frame.

  13. Multivariate wavelet frames

    CERN Document Server

    Skopina, Maria; Protasov, Vladimir

    2016-01-01

    This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...

  14. Collaborative learning for public relations: Frame analysis in training for spokespersons

    Directory of Open Access Journals (Sweden)

    Sergio Álvarez Sánchez

    2018-05-01

    Full Text Available The collaborative model for learning implies students forming teams in order to reach a common goal. The objectives of this research are both exploring the impact of the collaborative model over the performance of those learners who study contents related to the formation of spokespersons for organizations; and evaluating the potential of frame analysis as a content for training in public relations. To delve into those issues, a case study exercise was administered to six groups of students of the “Training for Spokespersons” subject, consisting of analyzing the audiovisual intervention of a spokesperson talking on behalf of a strike commitee, and answering questions about target publics and frames of reference. The exercise succeeded in helping the students understand the role of emotional communication; however, they still got slightly confused about frame analysis and its link with the concept of social norm. For future research, it becomes necessary to focus on moving even more away from the classic master classes, as well as using cases that students can feel closer to their interests. With respect to frame analysis, the results encourage the teaching of more precise classifications in terms of general frames about a certain topic, and specific frames about particular situations.

  15. Transformative decision rules, permutability, and non-sequential framing of decision problems

    NARCIS (Netherlands)

    Peterson, M.B.

    2004-01-01

    The concept of transformative decision rules provides auseful tool for analyzing what is often referred to as the`framing', or `problem specification', or `editing' phase ofdecision making. In the present study we analyze a fundamentalaspect of transformative decision rules, viz. permutability. A

  16. Global geodetic observing system meeting the requirements of a global society on a changing planet in 2020

    CERN Document Server

    Plag, Hans-Peter

    2009-01-01

    Geodesy plays a key role in geodynamics, geohazards, the global water cycle, global change, atmosphere and ocean dynamics. This book covers geodesy's contribution to science and society and identifies user needs regarding geodetic observations and products.

  17. Frames and outer frames for Hilbert C^*-modules

    OpenAIRE

    Arambašić, Ljiljana; Bakić, Damir

    2015-01-01

    The goal of the present paper is to extend the theory of frames for countably generated Hilbert $C^*$-modules over arbitrary $C^*$-algebras. In investigating the non-unital case we introduce the concept of outer frame as a sequence in the multiplier module $M(X)$ that has the standard frame property when applied to elements of the ambient module $X$. Given a Hilbert $\\A$-module $X$, we prove that there is a bijective correspondence of the set of all adjointable surjections from the generalize...

  18. A two-level approach to VLBI terrestrial and celestial reference frames using both least-squares adjustment and Kalman filter algorithms

    Science.gov (United States)

    Soja, B.; Krasna, H.; Boehm, J.; Gross, R. S.; Abbondanza, C.; Chin, T. M.; Heflin, M. B.; Parker, J. W.; Wu, X.

    2017-12-01

    The most recent realizations of the ITRS include several innovations, two of which are especially relevant to this study. On the one hand, the IERS ITRS combination center at DGFI-TUM introduced a two-level approach with DTRF2014, consisting of a classical deterministic frame based on normal equations and an optional coordinate time series of non-tidal displacements calculated from geophysical loading models. On the other hand, the JTRF2014 by the combination center at JPL is a time series representation of the ITRF determined by Kalman filtering. Both the JTRF2014 and the second level of the DTRF2014 are thus able to take into account short-term variations in the station coordinates. In this study, based on VLBI data, we combine these two approaches, applying them to the determination of both terrestrial and celestial reference frames. Our product has two levels like DTRF2014, with the second level being a Kalman filter solution like JTRF2014. First, we compute a classical TRF and CRF in a global least-squares adjustment by stacking normal equations from 5446 VLBI sessions between 1979 and 2016 using the Vienna VLBI and Satellite Software VieVS (solution level 1). Next, we obtain coordinate residuals from the global adjustment by applying the level-1 TRF and CRF in the single-session analysis and estimating coordinate offsets. These residuals are fed into a Kalman filter and smoother, taking into account the stochastic properties of the individual stations and radio sources. The resulting coordinate time series (solution level 2) serve as an additional layer representing irregular variations not considered in the first level of our approach. Both levels of our solution are implemented in VieVS in order to test their individual and combined performance regarding the repeatabilities of estimated baseline lengths, EOP, and radio source coordinates.

  19. Modified Synchronous Reference Frame Based Shunt Active Power Filter with Fuzzy Logic Control Pulse Width Modulation Inverter

    Directory of Open Access Journals (Sweden)

    Suleiman Musa

    2017-05-01

    Full Text Available Harmonic distortion in power networks has greatly reduced power quality and this affects system stability. In order to mitigate this power quality issue, the shunt active power filter (SAPF has been widely applied and it is proven to be the best solution to current harmonics. This paper evaluates the performance of the modified synchronous reference frame extraction (MSRF algorithm with fuzzy logic controller (FLC based current control pulse width modulation (PWM inverter of three-phase three-wire SAPF to mitigate current harmonics. The proposed FLC is designed with a reduced amount of membership functions (MFs and rules, and thus significantly reduces the computational time and memory size. Modeling and simulations of SAPF are carried out using MATLAB/Simulink R2012a with the power system toolbox under steady-state condition, and this is followed with hardware implementation using a TMS320F28335 digital signal processor (DSP, Specrum Digital Inc., Stafford, TX, USA. The results obtained demonstrate a good and satisfactory response to mitigate the harmonics in the system. The total harmonic distortion (THD for the system has been reduced from 25.60% to 0.92% and 1.41% in the simulation study with and without FLC, respectively. Similarly for the experimental study, the SAPF can compensate for the three-phase load current by reducing THD to 5.07% and 7.4% with and without FLC, respectively.

  20. Weather Test Reference Year of Greenland

    DEFF Research Database (Denmark)

    Kragh, Jesper; Pedersen, Frank; Svendsen, Svend

    2005-01-01

    the construction of two test reference years of Greenland used in the work of establishing new energy frame for the coming building code of Greenland. The first test reference year is constructed using measurements of climatic parameters from the town Nuuk located in the southwestern part of Greenland. The second...... test reference year is constructed using measurements from the town Uummannaq located in the north part of Greenland on the west coast. The construction of the test reference years fulfills the procedures described in the standard EN ISO 15927-4 using the following main weather parameters: Dry bulb...... temperature, global radiation, relative humidity and mean wind speed. To construct the test reference years a program called REFYEAR was developed in MatLab. REFYEAR automatically constructs the test reference year using an input file containing the climatic measurements. The two constructed test reference...

  1. How Managers Can Create Value from Strategic Framing of Social Media

    DEFF Research Database (Denmark)

    Rydén, Pernille; Ringberg, Torsten; Wilke, Ricky

    2015-01-01

    these frames influence what the manager will consider as the optimal use of social media for a given situation. More specifically, we identify six conceptualizations of social media, of which the first three regard social media as tactical tools for enhancing communication to and from end users......Strategic framing of social media tends to refer to the use of different platforms for marketingtactical purposes. This conceptual paper advances the fields of Business-to-Consumer marketing and strategic management by demonstrating how social media become conceptually framed and, in turn, how....... Such conceptualizations prevent the use of social media as strategic tools and thereby limits a strategically relevant and - for consumers - more meaningful engagement, thereby reducing potential customer value.The other three conceptualizations, we identify, regard social media in gradually more disruptive ways...

  2. GOZCARDS Source Data for Temperature Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid V1.00

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Temperature Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpT) contains zonal means and related...

  3. Face-infringement space: the frame of reference of the ventral intraparietal area.

    Science.gov (United States)

    McCollum, Gin; Klam, François; Graf, Werner

    2012-07-01

    Experimental studies have shown that responses of ventral intraparietal area (VIP) neurons specialize in head movements and the environment near the head. VIP neurons respond to visual, auditory, and tactile stimuli, smooth pursuit eye movements, and passive and active movements of the head. This study demonstrates mathematical structure on a higher organizational level created within VIP by the integration of a complete set of variables covering face-infringement. Rather than positing dynamics in an a priori defined coordinate system such as those of physical space, we assemble neuronal receptive fields to find out what space of variables VIP neurons together cover. Section 1 presents a view of neurons as multidimensional mathematical objects. Each VIP neuron occupies or is responsive to a region in a sensorimotor phase space, thus unifying variables relevant to the disparate sensory modalities and movements. Convergence on one neuron joins variables functionally, as space and time are joined in relativistic physics to form a unified spacetime. The space of position and motion together forms a neuronal phase space, bridging neurophysiology and the physics of face-infringement. After a brief review of the experimental literature, the neuronal phase space natural to VIP is sequentially characterized, based on experimental data. Responses of neurons indicate variables that may serve as axes of neural reference frames, and neuronal responses have been so used in this study. The space of sensory and movement variables covered by VIP receptive fields joins visual and auditory space to body-bound sensory modalities: somatosensation and the inertial senses. This joining of allocentric and egocentric modalities is in keeping with the known relationship of the parietal lobe to the sense of self in space and to hemineglect, in both humans and monkeys. Following this inductive step, variables are formalized in terms of the mathematics of graph theory to deduce which

  4. A FORTRAN version implementation of block adjustment of CCD frames and its preliminary application

    Science.gov (United States)

    Yu, Y.; Tang, Z.-H.; Li, J.-L.; Zhao, M.

    2005-09-01

    A FORTRAN version implementation of the block adjustment (BA) of overlapping CCD frames is developed and its flowchart is shown. The program is preliminarily applied to obtain the optical positions of four extragalactic radio sources. The results show that because of the increase in the number and sky coverage of reference stars the precision of optical positions with BA is improved compared with the single CCD frame adjustment.

  5. Geodetic analysis of disputed accurate qibla direction

    Science.gov (United States)

    Saksono, Tono; Fulazzaky, Mohamad Ali; Sari, Zamah

    2018-04-01

    Muslims perform the prayers facing towards the correct qibla direction would be the only one of the practical issues in linking theoretical studies with practice. The concept of facing towards the Kaaba in Mecca during the prayers has long been the source of controversy among the muslim communities to not only in poor and developing countries but also in developed countries. The aims of this study were to analyse the geodetic azimuths of qibla calculated using three different models of the Earth. The use of ellipsoidal model of the Earth could be the best method for determining the accurate direction of Kaaba from anywhere on the Earth's surface. A muslim cannot direct himself towards the qibla correctly if he cannot see the Kaaba due to setting out process and certain motions during the prayer this can significantly shift the qibla direction from the actual position of the Kaaba. The requirement of muslim prayed facing towards the Kaaba is more as spiritual prerequisite rather than physical evidence.

  6. On frame multiresolution analysis

    DEFF Research Database (Denmark)

    Christensen, Ole

    2003-01-01

    We use the freedom in frame multiresolution analysis to construct tight wavelet frames (even in the case where the refinable function does not generate a tight frame). In cases where a frame multiresolution does not lead to a construction of a wavelet frame we show how one can nevertheless...

  7. Effects of Alternative Framing on the Publics Perceived Importance of Environmental Conservation

    Directory of Open Access Journals (Sweden)

    Amanda E Sorensen

    2015-05-01

    Full Text Available Effective communication of science to the general public is important for numerous reasons, including support for policy, funding, informed public decision making, among others. Prior research has found that scientists participating in public policy and public communication must frame their communication efforts in order to connect with audiences. A frame is the mechanism that individuals use to understand and interpret the world around them. Framing can encourage specific interpretations and reference points for a particular issue or event; especially when meaning is negotiated between the media and public audiences. In this study, we looked at the effect of framing within an environmental conservation context. To do this we had survey respondents rank common issues, among them being environmental conservation, from most important to least important for the government to address. We framed environmental conservation using three synonymous terms (environmental security, ecosystem services, and environmental quality to assess whether there was an effect on rankings dependent on how we framed environmental conservation. We also investigated the effect of individuals’ personality characteristics (identity frame on those environmental conservation rankings. We found that individuals who self-identified as environmentalist were positively associated with ranking highly (most important environmental conservation when it was framed as either environmental quality or ecosystem services, but not when it was framed as environmental security. Conversely, those individuals who did not rank themselves highly as self-identified environmentalists were positively associated with environmental conservation when it was framed as environmental security. This research suggests that framing audience specific messages can engender audience support in hot-button issues such as environmental conservation and climate change.

  8. Robust adjustment of a geodetic network measured by satellite technology in the Dargovských Hrdinov suburb

    Directory of Open Access Journals (Sweden)

    Slavomír Labant

    2011-12-01

    Full Text Available This article addresses the adjustment of a 3D geodetic network in the Dargovských Hrdinov suburbs using Global Navigation SatelliteSystems (GNSS for the purposes of deformation analysis. The advantage of using the GNSS compared to other terrestrial technology is thatit is not influenced by unpredictability in the ground level atmosphere and individual visibilities between points in the observed network arenot necessary. This article also includes the planning of GNSS observations using Planning Open Source software from Trimble as well assubsequent observations at individual network points. The geodetic network is processing on the basis of the Gauss-Markov model usingthe least square method and robust adjustment. From robust methods, Huber’s Robust M-estimation and Hampel’s Robust M-estimationwere used. Individual adjustments were tested and subsequently the results of analysis were graphically visualised using absolute confidenceellipsoids.

  9. NASA's Next Generation Space Geodesy Network

    Science.gov (United States)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  10. Theoretical and Applied Research in the Field of Higher Geodesy Conducted in Rzeszow

    Directory of Open Access Journals (Sweden)

    Kadaj Roman

    2016-06-01

    Full Text Available Important qualitative changes were taking place in polish geodesy in last few years. It was related to application of new techniques and technologies and to introduction of European reference frames in Poland. New reference stations network ASG-EUPOS, together with Internet services which helps in precise positioning was created. It allows to fast setting up precise hybrid networks. New, accurate satellite networks became the basis of new definitions in the field of reference systems. Simultaneously arise the need of new software, which enables to execute the geodetic works in new technical conditions. Authors had an opportunity to participate in mentioned undertakings, also under the aegis of GUGiK, by creation of methods, algorithms and necessary software tools. In this way the automatic postprocessing module (APPS in POZGEO service, a part of ASG-EUPOS system came into being. It is an entirely polish product which works in Trimble environment. Universal software for transformation between PLETRF89, PL-ETRF2000, PULKOWO’42 reference systems as well as defined coordinate systems was created (TRANSPOL v. 2.06 and published as open product. An essential functional element of the program is the quasi-geoid model PL-geoid-2011, which has been elaborated by adjustment (calibration of the global quasi-geoid model EGM2008 to 570 geodetic points (satellite-leveling points. Those and other studies are briefly described in this paper.

  11. Framed School--Frame Factors, Frames and the Dynamics of Social Interaction in School

    Science.gov (United States)

    Persson, Anders

    2015-01-01

    This paper aims to show how the Goffman frame perspective can be used in an analysis of school and education and how it can be combined, in such analysis, with the frame factor perspective. The latter emphasizes factors that are determined outside the teaching process, while the former stresses how actors organize their experiences and define…

  12. GOZCARDS Source Data for Ozone Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Ozone Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpO3) contains zonal means and related information...

  13. GOZCARDS Merged Data for Ozone Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Ozone Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpO3) contains zonal means and related information...

  14. Causal anomalies and the case for a preferred referential frame

    International Nuclear Information System (INIS)

    Martins, R.A.

    1984-01-01

    A theoretical argument supporting the idea that in some physical situations compatible with the general theory of relativity one may have very good reasons for choosing one particular reference frame in a locally Minkowskian space-time-that is, in a case where special relativity is supposed to hold, is described. (L.C.) [pt

  15. ACCURACY ASSESSMENT OF MOBILE MAPPING POINT CLOUDS USING THE EXISTING ENVIRONMENT AS TERRESTRIAL REFERENCE

    Directory of Open Access Journals (Sweden)

    S. Hofmann

    2016-06-01

    Full Text Available Mobile mapping data is widely used in various applications, what makes it especially important for data users to get a statistically verified quality statement on the geometric accuracy of the acquired point clouds or its processed products. The accuracy of point clouds can be divided into an absolute and a relative quality, where the absolute quality describes the position of the point cloud in a world coordinate system such as WGS84 or UTM, whereas the relative accuracy describes the accuracy within the point cloud itself. Furthermore, the quality of processed products such as segmented features depends on the global accuracy of the point cloud but mainly on the quality of the processing steps. Several data sources with different characteristics and quality can be thought of as potential reference data, such as cadastral maps, orthophoto, artificial control objects or terrestrial surveys using a total station. In this work a test field in a selected residential area was acquired as reference data in a terrestrial survey using a total station. In order to reach high accuracy the stationing of the total station was based on a newly made geodetic network with a local accuracy of less than 3 mm. The global position of the network was determined using a long time GNSS survey reaching an accuracy of 8 mm. Based on this geodetic network a 3D test field with facades and street profiles was measured with a total station, each point with a two-dimensional position and altitude. In addition, the surface of poles of street lights, traffic signs and trees was acquired using the scanning mode of the total station. Comparing this reference data to the acquired mobile mapping point clouds of several measurement campaigns a detailed quality statement on the accuracy of the point cloud data is made. Additionally, the advantages and disadvantages of the described reference data source concerning availability, cost, accuracy and applicability are discussed.

  16. Justice orientation as a moderator of the framing effect on procedural justice perception.

    Science.gov (United States)

    Sasaki, Hiroyuki; Hayashi, Yoichiro

    2014-01-01

    Justice orientation is a justice-relevant personality trait, which is referred to as the tendency to attend to fairness issues and to internalize justice as a moral virtue. This study examined the moderating role of justice orientation in the relationship between justice perception and response to a decision problem. The authors manipulated procedural justice and the outcome valence of the decision frame within a vignette, and measured justice orientation of 174 Japanese participants. As hypothesized, the results indicated an interaction between procedural justice and framing manipulation, which was moderated by individual differences in justice orientation. In negative framing, justice effects were larger for individuals with high rather than low justice orientation. The results are explained from a social justice perspective, and the contributions and limitations of this study are also discussed with respect to our sample and framing manipulation.

  17. The evolution of OPUS: A set of web-based GPS processing tools offered by the National Geodetic Survey

    Science.gov (United States)

    Weston, Dr.; Mader, Dr.; Schenewerk, Dr.

    2012-04-01

    The Online Positioning User Service (OPUS) is a suite of web-based GPS processing tools that were initially developed by the National Geodetic Survey approximately eleven years ago. The first version, known as OPUS static (OPUS-S), processes L1 and L2 carrier-phase data in native receiver and RINEX formats. Datasets submitted to OPUS-S must be between two and 48 hours in duration and pass several quality control steps before being passed onto the positioning algorithm. OPUS-S was designed to select five nearby CORS to form baselines that are processed independently. The best three solutions are averaged to produce a final set of coordinates. The current version of OPUS-S has been optimized to accept and process GPS data from any location in the continental United States, Alaska, Hawaii and the Caribbean. OPUS Networks (OPUS-Net), one of the most recently developed versions and currently in beta testing, has many of the same processing characteristics and dataset requirements as OPUS-S but with one significant difference. OPUS-Net selects up to 10 IGS reference sites and three regional CORS to perform a simultaneous least squares adjustment with the user-submitted data. The CORS stations are primarily used to better estimate the troposphere while the position of the unknown station and the three CORS reference stations are determined from the more precisely known and monitored IGS reference stations. Additional enhancements to OPUS-Net are the implementation of absolute antenna patterns and ocean tides (FES2004), using reference station coordinates in IGS08 reference frame, as well as using improved phase ambiguity integer fixing and troposphere modeling (GPT and GMF a priori models). OPUS Projects, the final version of OPUS to be reviewed in this paper, is a complete web-based, GPS data processing and analysis environment. The main idea behind OPUS Projects is that one or more managers can define numerous, independent GPS projects. Each newly defined project is

  18. Network-based H.264/AVC whole frame loss visibility model and frame dropping methods.

    Science.gov (United States)

    Chang, Yueh-Lun; Lin, Ting-Lan; Cosman, Pamela C

    2012-08-01

    We examine the visual effect of whole frame loss by different decoders. Whole frame losses are introduced in H.264/AVC compressed videos which are then decoded by two different decoders with different common concealment effects: frame copy and frame interpolation. The videos are seen by human observers who respond to each glitch they spot. We found that about 39% of whole frame losses of B frames are not observed by any of the subjects, and over 58% of the B frame losses are observed by 20% or fewer of the subjects. Using simple predictive features which can be calculated inside a network node with no access to the original video and no pixel level reconstruction of the frame, we developed models which can predict the visibility of whole B frame losses. The models are then used in a router to predict the visual impact of a frame loss and perform intelligent frame dropping to relieve network congestion. Dropping frames based on their visual scores proves superior to random dropping of B frames.

  19. Framing Failures in Wood-Frame Hip Roofs under Extreme Wind Loads

    Directory of Open Access Journals (Sweden)

    Sarah A. Stevenson

    2018-02-01

    Full Text Available Wood-frame residential roof failures are among the most common and expensive types of wind damage. Hip roofs are commonly understood to be more resilient during extreme wind in relation to gable roofs. However, inspection of damage survey data from recent tornadoes has revealed a previously unstudied failure mode in which hip roofs suffer partial failure of the framing structure. In the current study, evidence of partial framing failures and statistics of their occurrence are explored and discussed, while the common roof design and construction practice are reviewed. Two-dimensional finite element models are developed to estimate the element-level load effects on hip roof trusses and stick-frame components. The likelihood of failure in each member is defined based on relative demand-to-capacity ratios. Trussed and stick-frame structures are compared to assess the relative performance of the two types of construction. The present analyses verify the common understanding that toenailed roof-to-wall connections are likely to be the most vulnerable elements in the structure of a wood-frame hip roof. However, the results also indicate that certain framing members and connections display significant vulnerability under the same wind uplift, and the possibility of framing failure is not to be discounted. Furthermore, in the case where the roof-to-wall connection uses hurricane straps, certain framing members and joints become the likely points of failure initiation. The analysis results and damage survey observations are used to expand the understanding of wood-frame residential roof failures, as they relate to the Enhanced Fujita Scale and provide assessment of potential gaps in residential design codes.

  20. When message-frame fits salient cultural-frame, messages feel more persuasive

    OpenAIRE

    Uskul, Ayse K.; Oyserman, Daphna

    2010-01-01

    The present study examines the persuasive effects of tailored health messages comparing those tailored to match (versus not match) both chronic cultural frame and momentarily salient cultural frame. Evidence from two studies (Study 1: n = 72 European Americans; Study 2: n = 48 Asian Americans) supports the hypothesis that message persuasiveness increases when chronic cultural frame, health message tailoring and momentarily salient cultural frame all match. The hypothesis was tested using a me...

  1. GNSS-SLR satellite co-location for the estimate of local ties

    Science.gov (United States)

    Bruni, Sara; Zerbini, Susanna; Errico, Maddalena; Santi, Efisio

    2013-04-01

    The current realization of the International Terrestrial Reference Frame (ITRF) is based on four different space-geodetic techniques, so that the benefits brought by each observing system to the definition of the frame can compensate for the drawbacks of the others and technique-specific systematic errors might be identified. The strategy used to combine the observations from the different techniques is then of prominent importance for the realization of a precise and stable reference frame. This study concentrates, in particular, on the combination of Satellite Laser Ranging (SLR) and Global Navigation Satellite System (GNSS) observations by exploiting satellite co-locations. This innovative approach is based on the fact that laser tracking of GNSS satellites, carrying on board laser reflector arrays, allows for the combination of optical and microwave signals in the determination of the spacecraft orbit. Besides, the use of satellite co-locations differs quite significantly from the traditional combination method in which each single technique solution is carried out autonomously and is interrelated in a second step. One of the benefits of the approach adopted in this study is that it allows for an independent validation of the local tie, i.e. of the vector connecting the SLR and GNSS reference points in a multi-techniques station. Typically, local ties are expressed by a single value, measured with ground-based geodetic techniques and taken as constant. In principle, however, local ties might show time variations likely caused by the different monumentation characteristics of the GNSS antennas with respect to those of a SLR system. This study evaluates the possibility of using the satellite co-location approach to generate local-ties time series by means of observations available for a selected network of ILRS stations. The data analyzed in this study were acquired as part of the NASA's Earth Science Data Systems and are archived and distributed by the Crustal

  2. The Frame Constraint on Experimentally Elicited Speech Errors in Japanese

    Science.gov (United States)

    Saito, Akie; Inoue, Tomoyoshi

    2017-01-01

    The so-called syllable position effect in speech errors has been interpreted as reflecting constraints posed by the frame structure of a given language, which is separately operating from linguistic content during speech production. The effect refers to the phenomenon that when a speech error occurs, replaced and replacing sounds tend to be in the…

  3. Redes alternativas de comunicación, framing y la construcción del poder político (Alternative communication networks, framing and construction of political power

    Directory of Open Access Journals (Sweden)

    Mayra Martínez Avidad

    2011-12-01

    Full Text Available El objetivo del presente artículo es analizar el papel de las redes alternativas de comunicación en la construcción del poder político a través del proceso de framing o enmarcado. En los últimos años, la capacidad del público para producir (nuestros propios mensajes que potencialmente desafíen los encuadres fijados por la elite política se ha expandido enormemente con la llegada de Internet y las comunicaciones móviles. En este sentido, las redes virtuales son importantes porque pueden aumentar la capacidad de las masas para comunicarse entre sí transformando los marcos de referencia individuales en marcos interpretativos de carácter colectivo.The aim of this paper is to analyze the role of alternative communication networks in the construction of political power through the process of framing. In recent years, the ability of the public to produce (our own messages that potentially challenge those frames established by political elites has been importantly expanded by the advent of Internet and mobile communications. In this sense, virtual networks are important because they can influence the capacity of masses to communicate with each other transforming individual frames of reference into collective interpretative frames.

  4. Value Framing: A Prelude to Software Problem Framing

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Gordijn, Jaap; van Eck, Pascal; Cox, K.; Hall, J.G.; Rapanotti, L.

    2004-01-01

    Software problem framing is a way to find specifications for software. Software problem frames can be used to structure the environment of a software system (the machine) and specify desired software properties in such a way that we can show that software with these properties will help achieve the

  5. Message Framing in Vaccine Communication: A Systematic Review of Published Literature.

    Science.gov (United States)

    Penţa, Marcela A; Băban, Adriana

    2018-03-01

    Suboptimal vaccination rates are a significant problem in many countries today, in spite of improved access to vaccine services. As a result, there has been a recent expansion of research on how best to communicate about vaccines. The purpose of the present article is to provide an updated review of published, peer-reviewed empirical studies that examined the effectiveness of gain versus loss framing (i.e., goal framing) in the context of vaccine communication. To locate studies, we examined the reference list from the previous meta-analytic review (O'Keefe & Nan, 2012), and we conducted systematic searches across multiple databases. We included 34 studies in the qualitative synthesis. The relative effectiveness of goal-framed vaccine messages was often shown to depend on characteristics of the message recipient, perceived risk, or situational factors, yet most effects were inconsistent across studies, or simply limited by an insufficient number of studies. Methodological characteristics and variations are noted and discussed. The review points to several directions concerning moderators and mediators of framing effects where additional rigorous studies would be needed.

  6. Filtering SVM frame-by-frame binary classification in a detection framework

    NARCIS (Netherlands)

    Betancourt Arango, A.; Morerio, P.; Marcenaro, L.; Rauterberg, G.W.M.; Regazzoni, C.S.

    2015-01-01

    Classifying frames, or parts of them, is a common way of carrying out detection tasks in computer vision. However, frame by frame classification suffers from sudden significant variations in image texture, colour and luminosity, resulting in noise in the extracted features and consequently in the

  7. New characterizations of fusion frames (frames of subspaces)

    Indian Academy of Sciences (India)

    Theory (College Park, MD, 2003) Contemp. Math. 345, Amer. Math. Soc. (RI: Provi- dence) (2004) 87–113. [4] Casazza P G and Kutyniok G, Robustness of Fusion Frames under Erasures of sub- spaces and of Local Frame Vectors, Radon transforms, geometry, and wavelets (LA: New Orleans) (2006) Contemp. Math., Amer.

  8. Immune reactivity of candidate reference materials

    NARCIS (Netherlands)

    Fernandez-Rivas, Montserrat; Aalbers, Marja; Fötisch, Kay; de Heer, Pleuni; Notten, Silla; Vieths, Stefan; van Ree, Ronald

    2006-01-01

    Immune reactivity is a key issue in the evaluation of the quality of recombinant allergens as potential reference materials. Within the frame of the CREATE project, the immune reactivity of the natural and recombinant versions of the major allergens of birch pollen (Bet v 1), grass pollen (Phl p 1

  9. Use of Geodetic Surveys of Leveling Lines and Dry Tilt Arrays to Study Faults and Volcanoes in Undergraduate Field Geophysics Classes

    Science.gov (United States)

    Polet, J.; Alvarez, K.; Elizondo, K.

    2017-12-01

    In the early 1980's and 1990's numerous leveling lines and dry tilt arrays were installed throughout Central and Southern California by United States Geological Survey scientists and other researchers (e.g. Sylvester, 1985). These lines or triangular arrays of geodetic monuments commonly straddle faults or have been installed close to volcanic areas, where significant motion is expected over relatively short time periods. Over the past year, we have incorporated geodetic surveys of these arrays as part of our field exercises in undergraduate and graduate level classes on topics such as shallow subsurface geophysics and field geophysics. In some cases, the monuments themselves first had to be located based on only limited information, testing students' Brunton use and map reading skills. Monuments were then surveyed using total stations and global navigation satellite system (GNSS) receivers, using a variety of experimental procedures. The surveys were documented with tables, photos, maps and graphs in field reports, as well as in wiki pages created by student groups for a geophysics field class this June. The measurements were processed by the students and compared with similar data from surveys conducted soon after installation of the arrays, to analyze the deformation that occurred over the last few decades. The different geodetic techniques were also compared and an error analysis was conducted. The analysis and processing of these data challenged and enhanced students' quantitative literacy and technology skills. The final geodetic measurements are being incorporated into several senior and MSc thesis projects. Further surveys are planned for additional classes, in topics that could include seismology, geodesy, volcanology and global geophysics. We are also considering additional technologies, such as structure from motion (SfM) photogrammetry.

  10. Recent achievements of SIRGAS

    Science.gov (United States)

    Brunini, C.; Sánchez, L.

    2008-05-01

    SIRGAS is the geocentric reference system for the Americas. Its definition corresponds to the IERS International Terrestrial Reference System (ITRS) and it is realized by a regional densification of the IERS International Terrestrial Reference Frame (ITRF). The SIRGAS activities are coordinated by three working groups: SIRGAS-WGI (Reference System) is committed to establish and maintain a continental-wide geocentric reference frame within the ITRF. This objective was initially accomplished through two continental GPS campaigns in 1995 and 2000, including 58 and 184 stations, respectively. Today, it is realized by around 130 continuously operating GNSS sites, which are processed weekly by the IGS Regional Network Associate Analysis Centre for SIRGAS (IGS- RNAAC-SIR). SIRGAS-WGII (Geocentric Datum) is primarily in charged of defining the SIRGAS geodetic datum in the individual countries, which is given by the origin, orientation and scale of the SIRGAS system, and the parameters of the GRS80 ellipsoid. It is concentrating on promoting and supporting the adoption of SIRGAS in the Latin American and Caribbean countries through national densifications of the continental network. SIRGAS- WGIII (Vertical Datum) is dedicated to the definition and realization of a unified vertical reference system within a global frame. Its central purpose is to refer the geopotential numbers (or physical heights) in all countries to one and the same equipotential surface (W0), which must be globally defined. This includes also the transformation of the existing height datums into the new system. This study shows the SIRGAS achievements of the last two years.

  11. EUPOS - Satellite multifunctional system of reference stations in Central and Eastern Europe

    Science.gov (United States)

    Sledzinski, J.

    2003-04-01

    The European project EUPOS (European Position Determination System) of establishment of a system of multifunctional satellite reference stations in Central and Eastern Europe is described in the paper. Fifteen countries intend to participate in the project: Bulgaria, Croatia, Czech Republic, Estonia, Germany, Hungary, Latvia, Lithuania, Macedonia, Poland, Romania, Russia, Serbia, Slovak Republic and Slovenia. One common project will be prepared for all countries, however it will include the existing or developed infrastructure in particular countries. The experiences of establishing and operating of the German network SAPOS as well as experiences gained by other countries will be used. The European network of stations will be compatible with the system SAPOS and future European system Galileo. The network of reference stations will provide signal for both positioning of the geodetic control points and for land, air and marine navigation. Several levels of positioning accuracy will be delivered.

  12. Safety Management. An Introduction to a Frame of Reference Exemplified with Case Studies from Non-Nuclear Contexts

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Ola (Risk Analysis, Social and Decision Research Unit, Dept. of Psychology, Stockholm Univ., Stockholm (Sweden)); Salo, Ilkka (Dept. of Psychology, Lund Univ., Lund (Sweden))

    2004-11-15

    A systems perspective on safety management is introduced followed by two briefly presented case studies of safety management in non-nuclear contexts. The first study concerns a car manufacturer and the second study a road traffic tunnel system. The risks of a car accident in the first case study are evident. The great exposure generates many incidents and accidents. In the second study, the rather low traffic intensity through the tunnel produces few incidents and accidents and only a few fatal accidents over the years. Yet, the risk of the individual traveler is much greater in the tunnel than on the average road. The case studies are presented in a systems perspective with emphasis on information feedback about the risks of the systems. The first case study illustrates high quality safety management, while the second case study shows many weaknesses of the safety management in the tunnel system. Some differences in safety management between the case studies are noted. The last part of the study presents an organizational perspective on safety management and offers alternative theoretical perspectives on the concept of safety management. The report shows that further studies are needed both (1) to develop a frame of reference for describing safety management across industries and activities and (2) to collect data illustrating of good and poor safety management. Then, the results can be used to strengthen and/or improving safety management in the nuclear power industry and its regulators

  13. Safety Management. An Introduction to a Frame of Reference Exemplified with Case Studies from Non-Nuclear Contexts

    International Nuclear Information System (INIS)

    Svensson, Ola; Salo, Ilkka

    2004-11-01

    A systems perspective on safety management is introduced followed by two briefly presented case studies of safety management in non-nuclear contexts. The first study concerns a car manufacturer and the second study a road traffic tunnel system. The risks of a car accident in the first case study are evident. The great exposure generates many incidents and accidents. In the second study, the rather low traffic intensity through the tunnel produces few incidents and accidents and only a few fatal accidents over the years. Yet, the risk of the individual traveler is much greater in the tunnel than on the average road. The case studies are presented in a systems perspective with emphasis on information feedback about the risks of the systems. The first case study illustrates high quality safety management, while the second case study shows many weaknesses of the safety management in the tunnel system. Some differences in safety management between the case studies are noted. The last part of the study presents an organizational perspective on safety management and offers alternative theoretical perspectives on the concept of safety management. The report shows that further studies are needed both (1) to develop a frame of reference for describing safety management across industries and activities and (2) to collect data illustrating of good and poor safety management. Then, the results can be used to strengthen and/or improving safety management in the nuclear power industry and its regulators

  14. Framing Gangnam Style

    Directory of Open Access Journals (Sweden)

    Hyunsun Catherine Yoon

    2017-08-01

    Full Text Available This paper examines the way in which news about Gangnam Style was framed in the Korean press. First released on 15th July 2012, it became the first video to pass two billion views on YouTube. 400 news articles between July 2012 and March 2013 from two South Korean newspapers - Chosun Ilbo and Hankyoreh were analyzed using the frame analysis method in five categories: industry/economy, globalization, cultural interest, criticism, and competition. The right-left opinion cleavage is important because news frames interact with official discourses, audience frames and prior knowledge which consequently mediate effects on public opinion, policy debates, social movement and individual interpretations. Whilst the existing literature on Gangnam Style took rather holistic approach, this study aimed to fill the lacuna, considering this phenomenon as a dynamic process, by segmenting different stages - recognition, spread, peak and continuation. Both newspapers acknowledged Gangnam Style was an epochal event but their perspectives and news frames were different; globalization frame was most frequently used in Chosun Ilbo whereas cultural interest frame was most often used in Hankyoreh. Although more critical approaches were found in Hankyoreh, reflecting the right-left opinion cleavage, both papers lacked in critical appraisal and analysis of Gangnam Style’s reception in a broader context of the new Korean Wave.

  15. EPOS-GNSS - Improving the infrastructure for GNSS data and products in Europe

    Science.gov (United States)

    Fernandes, Rui; Bos, Machiel; Bruyninx, Carine; Crocker, Paul; Dousa, Jan; Socquet, Anne; Walpersdorf, Andrea; Avallone, Antonio; Ganas, Athanassios; Gunnar, Benedikt; Ionescu, Constantin; Kenyeres, Ambrus; Ozener, Haluk; Vergnolle, Mathilde; Lidberg, Martin; Liwosz, Tomek; Soehne, Wolfgang

    2017-04-01

    EPOS-IP WP10 - "GNSS Data & Products" is the Working Package 10 of the European Plate Observing System - Implementation Phase project in charge of implementing services for the geo-sciences community to access existing Pan-European Geodetic Infrastructures. WP10 is currently formed by representatives of participating European institutions but in the operational phase contributions will be solicited from the entire geodetic community. In fact, WP10 also includes members from other institutions/countries that formally are not participating in the EPOS-IP but will be key players in the future services to be provided by EPOS. Additionally, several partners are also key partners at EUREF, which is also actively collaborating with EPOS. The geodetic component of EPOS is dealing essentially with implementing an e-infrastructure to store and disseminate the continuous GNSS data from existing Research Infrastructures. Present efforts are on developing geodetic tools to support Solid Earth research by optimizing the existing resources. However, other research and technical applications (e.g., reference frames, meteorology, space weather) can also benefit in the future from the optimization of the geodetic resources in Europe. We present and discuss the status of the implementation of the thematic and core services (TCS) for GNSS data within EPOS and the related business plan. We explain the tools and web-services being developed towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using a transparent and standardized processes. We also detail the different DDSS (Data, Data-Products, Services, Software) that will be made available for the Operational Phase of EPOS, which will start to be tested and made available during 2017 and 2018.

  16. Hunting down frame shifts: Ecological analysis of diverse functional gene sequences

    Directory of Open Access Journals (Sweden)

    Michal eStrejcek

    2015-11-01

    Full Text Available Functional gene ecological analyses using amplicon sequencing can be challenging as translated sequences are often burdened with shifted reading frames. The aim of this work was to evaluate several bioinformatics tools designed to correct errors which arise during sequencing in an effort to reduce the number of frame-shifts (FS. Genes encoding for alpha subunits of biphenyl (bphA and benzoate (benA dioxygenases were used as model sequences. FrameBot, a FS correction tool, was able to reduce the number of detected FS to zero. However, up to 43.1% of sequences were discarded by FrameBot as non-specific targets. Therefore, we proposed a de novo mode of FrameBot for FS correction, which works on a similar basis as common chimera identifying platforms and is not dependent on reference sequences. By nature of FrameBot de novo design, it is crucial to provide it with data as error free as possible. We tested the ability of several publicly available correction tools to decrease the number of errors in the data sets. The combination of Maximum Expected Error (MEE filtering and single linkage pre-clustering (SLP proved the most efficient read procession. Applying FrameBot de novo on the processed data enabled analysis of BphA sequences with minimal losses of potentially functional sequences not homologous to those previously known. This experiment also demonstrated the extensive diversity of dioxygenases in soil. A script which performs FrameBot de novo is presented in the supplementary material to the study and the tool was implemented into FunGene Pipeline available at http://fungene.cme.msu.edu/FunGenePipeline/ and https://github.com/rdpstaff/Framebot.

  17. Pneumafil casing blower through moving reference frame (MRF) - A CFD simulation

    Science.gov (United States)

    Manivel, R.; Vijayanandh, R.; Babin, T.; Sriram, G.

    2018-05-01

    In this analysis work, the ring frame of Pneumafil casing blower of the textile mills with a power rating of 5 kW have been simulated using Computational Fluid Dynamics (CFD) code. The CFD analysis of the blower is carried out in Ansys Workbench 16.2 with Fluent using MRF solver settings. The simulation settings and boundary conditions are based on literature study and field data acquired. The main objective of this work is to reduce the energy consumption of the blower. The flow analysis indicated that the power consumption is influenced by the deflector plate orientation and deflector plate strip situated at the outlet casing of the blower. The energy losses occurred in the blower is due to the recirculation zones formed around the deflector plate strip. The deflector plate orientation is changed and optimized to reduce the energy consumption. The proposed optimized model is based on the simulation results which had relatively lesser power consumption than the existing and other cases. The energy losses in the Pneumafil casing blower are reduced through CFD analysis.

  18. GOZCARDS Merged Data for Hydrogen Chloride Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Hydrogen Chloride Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpHCl) contains zonal means and related...

  19. DETECTION OF COASTLINE DEFORMATION USING REMOTE SENSING AND GEODETIC SURVEYS

    Directory of Open Access Journals (Sweden)

    A. Sabuncu

    2016-06-01

    Full Text Available The coastal areas are being destroyed due to the usage that effect the natural balance. Unconsciously sand mining from the sea for nearshore nourishment and construction uses are the main ones. Physical interferences for mining of sand cause an ecologic threat to the coastal environment. However, use of marine sand is inevitable because of economic reasons or unobtainable land-based sand resources. The most convenient solution in such a protection–usage dilemma is to reduce negative impacts of sand production from marine. This depends on the accurate determination of criteriaon production place, style, and amount of sand. With this motivation, nearshore geodedic surveying studies performed on Kilyos Campus of Bogazici University located on the Black Sea coast, north of Istanbul, Turkey between 2001-2002. The study area extends 1 km in the longshore. Geodetic survey was carried out in the summer of 2001 to detect the initial condition for the shoreline. Long-term seasonal changes in shoreline positions were determined biannually. The coast was measured with post-processed kinematic GPS. Besides, shoreline change has studied using Landsat imagery between the years 1986-2015. The data set of Landsat 5 imageries were dated 05.08.1986 and 31.08.2007 and Landsat 7 imageries were dated 21.07.2001 and 28.07.2015. Landcover types in the study area were analyzed on the basis of pixel based classification method. Firstly, unsupervised classification based on ISODATA (Iterative Self Organizing Data Analysis Technique has been applied and spectral clusters have been determined that gives prior knowledge about the study area. In the second step, supervised classification was carried out by using the three different approaches which are minimum-distance, parallelepiped and maximum-likelihood. All pixel based classification processes were performed with ENVI 4.8 image processing software. Results of geodetic studies and classification outputs will be

  20. Frames for undergraduates

    CERN Document Server

    Han, Deguang; Larson, David; Weber, Eric

    2007-01-01

    Frames for Undergraduates is an undergraduate-level introduction to the theory of frames in a Hilbert space. This book can serve as a text for a special-topics course in frame theory, but it could also be used to teach a second semester of linear algebra, using frames as an application of the theoretical concepts. It can also provide a complete and helpful resource for students doing undergraduate research projects using frames. The early chapters contain the topics from linear algebra that students need to know in order to read the rest of the book. The later chapters are devoted to advanced topics, which allow students with more experience to study more intricate types of frames. Toward that end, a Student Presentation section gives detailed proofs of fairly technical results with the intention that a student could work out these proofs independently and prepare a presentation to a class or research group. The authors have also presented some stories in the Anecdotes section about how this material has moti...